src/share/vm/memory/threadLocalAllocBuffer.cpp

Thu, 24 Mar 2011 15:47:01 -0700

author
ysr
date
Thu, 24 Mar 2011 15:47:01 -0700
changeset 2710
5134fa1cfe63
parent 2423
b1a2afa37ec4
child 3156
f08d439fab8c
permissions
-rw-r--r--

7029036: Card-table verification hangs with all framework collectors, except G1, even before the first GC
Summary: When verifying clean card ranges, use memory-range-bounded iteration over oops of objects overlapping that range, thus avoiding the otherwise quadratic worst-case cost of scanning large object arrays.
Reviewed-by: jmasa, jwilhelm, tonyp

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/genCollectedHeap.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "memory/threadLocalAllocBuffer.inline.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/oop.inline.hpp"
    31 #include "utilities/copy.hpp"
    32 #ifdef TARGET_OS_FAMILY_linux
    33 # include "thread_linux.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_FAMILY_solaris
    36 # include "thread_solaris.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_FAMILY_windows
    39 # include "thread_windows.inline.hpp"
    40 #endif
    42 // Thread-Local Edens support
    44 // static member initialization
    45 unsigned         ThreadLocalAllocBuffer::_target_refills = 0;
    46 GlobalTLABStats* ThreadLocalAllocBuffer::_global_stats   = NULL;
    48 void ThreadLocalAllocBuffer::clear_before_allocation() {
    49   _slow_refill_waste += (unsigned)remaining();
    50   make_parsable(true);   // also retire the TLAB
    51 }
    53 void ThreadLocalAllocBuffer::accumulate_statistics_before_gc() {
    54   global_stats()->initialize();
    56   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
    57     thread->tlab().accumulate_statistics();
    58     thread->tlab().initialize_statistics();
    59   }
    61   // Publish new stats if some allocation occurred.
    62   if (global_stats()->allocation() != 0) {
    63     global_stats()->publish();
    64     if (PrintTLAB) {
    65       global_stats()->print();
    66     }
    67   }
    68 }
    70 void ThreadLocalAllocBuffer::accumulate_statistics() {
    71   size_t capacity = Universe::heap()->tlab_capacity(myThread()) / HeapWordSize;
    72   size_t unused   = Universe::heap()->unsafe_max_tlab_alloc(myThread()) / HeapWordSize;
    73   size_t used     = capacity - unused;
    75   // Update allocation history if a reasonable amount of eden was allocated.
    76   bool update_allocation_history = used > 0.5 * capacity;
    78   _gc_waste += (unsigned)remaining();
    80   if (PrintTLAB && (_number_of_refills > 0 || Verbose)) {
    81     print_stats("gc");
    82   }
    84   if (_number_of_refills > 0) {
    86     if (update_allocation_history) {
    87       // Average the fraction of eden allocated in a tlab by this
    88       // thread for use in the next resize operation.
    89       // _gc_waste is not subtracted because it's included in
    90       // "used".
    91       size_t allocation = _number_of_refills * desired_size();
    92       double alloc_frac = allocation / (double) used;
    93       _allocation_fraction.sample(alloc_frac);
    94     }
    95     global_stats()->update_allocating_threads();
    96     global_stats()->update_number_of_refills(_number_of_refills);
    97     global_stats()->update_allocation(_number_of_refills * desired_size());
    98     global_stats()->update_gc_waste(_gc_waste);
    99     global_stats()->update_slow_refill_waste(_slow_refill_waste);
   100     global_stats()->update_fast_refill_waste(_fast_refill_waste);
   102   } else {
   103     assert(_number_of_refills == 0 && _fast_refill_waste == 0 &&
   104            _slow_refill_waste == 0 && _gc_waste          == 0,
   105            "tlab stats == 0");
   106   }
   107   global_stats()->update_slow_allocations(_slow_allocations);
   108 }
   110 // Fills the current tlab with a dummy filler array to create
   111 // an illusion of a contiguous Eden and optionally retires the tlab.
   112 // Waste accounting should be done in caller as appropriate; see,
   113 // for example, clear_before_allocation().
   114 void ThreadLocalAllocBuffer::make_parsable(bool retire) {
   115   if (end() != NULL) {
   116     invariants();
   118     if (retire) {
   119       myThread()->incr_allocated_bytes(used_bytes());
   120     }
   122     CollectedHeap::fill_with_object(top(), hard_end(), retire);
   124     if (retire || ZeroTLAB) {  // "Reset" the TLAB
   125       set_start(NULL);
   126       set_top(NULL);
   127       set_pf_top(NULL);
   128       set_end(NULL);
   129     }
   130   }
   131   assert(!(retire || ZeroTLAB)  ||
   132          (start() == NULL && end() == NULL && top() == NULL),
   133          "TLAB must be reset");
   134 }
   136 void ThreadLocalAllocBuffer::resize_all_tlabs() {
   137   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   138     thread->tlab().resize();
   139   }
   140 }
   142 void ThreadLocalAllocBuffer::resize() {
   144   if (ResizeTLAB) {
   145     // Compute the next tlab size using expected allocation amount
   146     size_t alloc = (size_t)(_allocation_fraction.average() *
   147                             (Universe::heap()->tlab_capacity(myThread()) / HeapWordSize));
   148     size_t new_size = alloc / _target_refills;
   150     new_size = MIN2(MAX2(new_size, min_size()), max_size());
   152     size_t aligned_new_size = align_object_size(new_size);
   154     if (PrintTLAB && Verbose) {
   155       gclog_or_tty->print("TLAB new size: thread: " INTPTR_FORMAT " [id: %2d]"
   156                           " refills %d  alloc: %8.6f desired_size: " SIZE_FORMAT " -> " SIZE_FORMAT "\n",
   157                           myThread(), myThread()->osthread()->thread_id(),
   158                           _target_refills, _allocation_fraction.average(), desired_size(), aligned_new_size);
   159     }
   160     set_desired_size(aligned_new_size);
   162     set_refill_waste_limit(initial_refill_waste_limit());
   163   }
   164 }
   166 void ThreadLocalAllocBuffer::initialize_statistics() {
   167     _number_of_refills = 0;
   168     _fast_refill_waste = 0;
   169     _slow_refill_waste = 0;
   170     _gc_waste          = 0;
   171     _slow_allocations  = 0;
   172 }
   174 void ThreadLocalAllocBuffer::fill(HeapWord* start,
   175                                   HeapWord* top,
   176                                   size_t    new_size) {
   177   _number_of_refills++;
   178   if (PrintTLAB && Verbose) {
   179     print_stats("fill");
   180   }
   181   assert(top <= start + new_size - alignment_reserve(), "size too small");
   182   initialize(start, top, start + new_size - alignment_reserve());
   184   // Reset amount of internal fragmentation
   185   set_refill_waste_limit(initial_refill_waste_limit());
   186 }
   188 void ThreadLocalAllocBuffer::initialize(HeapWord* start,
   189                                         HeapWord* top,
   190                                         HeapWord* end) {
   191   set_start(start);
   192   set_top(top);
   193   set_pf_top(top);
   194   set_end(end);
   195   invariants();
   196 }
   198 void ThreadLocalAllocBuffer::initialize() {
   199   initialize(NULL,                    // start
   200              NULL,                    // top
   201              NULL);                   // end
   203   set_desired_size(initial_desired_size());
   205   // Following check is needed because at startup the main (primordial)
   206   // thread is initialized before the heap is.  The initialization for
   207   // this thread is redone in startup_initialization below.
   208   if (Universe::heap() != NULL) {
   209     size_t capacity   = Universe::heap()->tlab_capacity(myThread()) / HeapWordSize;
   210     double alloc_frac = desired_size() * target_refills() / (double) capacity;
   211     _allocation_fraction.sample(alloc_frac);
   212   }
   214   set_refill_waste_limit(initial_refill_waste_limit());
   216   initialize_statistics();
   217 }
   219 void ThreadLocalAllocBuffer::startup_initialization() {
   221   // Assuming each thread's active tlab is, on average,
   222   // 1/2 full at a GC
   223   _target_refills = 100 / (2 * TLABWasteTargetPercent);
   224   _target_refills = MAX2(_target_refills, (unsigned)1U);
   226   _global_stats = new GlobalTLABStats();
   228   // During jvm startup, the main (primordial) thread is initialized
   229   // before the heap is initialized.  So reinitialize it now.
   230   guarantee(Thread::current()->is_Java_thread(), "tlab initialization thread not Java thread");
   231   Thread::current()->tlab().initialize();
   233   if (PrintTLAB && Verbose) {
   234     gclog_or_tty->print("TLAB min: " SIZE_FORMAT " initial: " SIZE_FORMAT " max: " SIZE_FORMAT "\n",
   235                         min_size(), Thread::current()->tlab().initial_desired_size(), max_size());
   236   }
   237 }
   239 size_t ThreadLocalAllocBuffer::initial_desired_size() {
   240   size_t init_sz;
   242   if (TLABSize > 0) {
   243     init_sz = MIN2(TLABSize / HeapWordSize, max_size());
   244   } else if (global_stats() == NULL) {
   245     // Startup issue - main thread initialized before heap initialized.
   246     init_sz = min_size();
   247   } else {
   248     // Initial size is a function of the average number of allocating threads.
   249     unsigned nof_threads = global_stats()->allocating_threads_avg();
   251     init_sz  = (Universe::heap()->tlab_capacity(myThread()) / HeapWordSize) /
   252                       (nof_threads * target_refills());
   253     init_sz = align_object_size(init_sz);
   254     init_sz = MIN2(MAX2(init_sz, min_size()), max_size());
   255   }
   256   return init_sz;
   257 }
   259 const size_t ThreadLocalAllocBuffer::max_size() {
   261   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
   262   // This restriction could be removed by enabling filling with multiple arrays.
   263   // If we compute that the reasonable way as
   264   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
   265   // we'll overflow on the multiply, so we do the divide first.
   266   // We actually lose a little by dividing first,
   267   // but that just makes the TLAB  somewhat smaller than the biggest array,
   268   // which is fine, since we'll be able to fill that.
   270   size_t unaligned_max_size = typeArrayOopDesc::header_size(T_INT) +
   271                               sizeof(jint) *
   272                               ((juint) max_jint / (size_t) HeapWordSize);
   273   return align_size_down(unaligned_max_size, MinObjAlignment);
   274 }
   276 void ThreadLocalAllocBuffer::print_stats(const char* tag) {
   277   Thread* thrd = myThread();
   278   size_t waste = _gc_waste + _slow_refill_waste + _fast_refill_waste;
   279   size_t alloc = _number_of_refills * _desired_size;
   280   double waste_percent = alloc == 0 ? 0.0 :
   281                       100.0 * waste / alloc;
   282   size_t tlab_used  = Universe::heap()->tlab_capacity(thrd) -
   283                       Universe::heap()->unsafe_max_tlab_alloc(thrd);
   284   gclog_or_tty->print("TLAB: %s thread: " INTPTR_FORMAT " [id: %2d]"
   285                       " desired_size: " SIZE_FORMAT "KB"
   286                       " slow allocs: %d  refill waste: " SIZE_FORMAT "B"
   287                       " alloc:%8.5f %8.0fKB refills: %d waste %4.1f%% gc: %dB"
   288                       " slow: %dB fast: %dB\n",
   289                       tag, thrd, thrd->osthread()->thread_id(),
   290                       _desired_size / (K / HeapWordSize),
   291                       _slow_allocations, _refill_waste_limit * HeapWordSize,
   292                       _allocation_fraction.average(),
   293                       _allocation_fraction.average() * tlab_used / K,
   294                       _number_of_refills, waste_percent,
   295                       _gc_waste * HeapWordSize,
   296                       _slow_refill_waste * HeapWordSize,
   297                       _fast_refill_waste * HeapWordSize);
   298 }
   300 void ThreadLocalAllocBuffer::verify() {
   301   HeapWord* p = start();
   302   HeapWord* t = top();
   303   HeapWord* prev_p = NULL;
   304   while (p < t) {
   305     oop(p)->verify();
   306     prev_p = p;
   307     p += oop(p)->size();
   308   }
   309   guarantee(p == top(), "end of last object must match end of space");
   310 }
   312 Thread* ThreadLocalAllocBuffer::myThread() {
   313   return (Thread*)(((char *)this) +
   314                    in_bytes(start_offset()) -
   315                    in_bytes(Thread::tlab_start_offset()));
   316 }
   319 GlobalTLABStats::GlobalTLABStats() :
   320   _allocating_threads_avg(TLABAllocationWeight) {
   322   initialize();
   324   _allocating_threads_avg.sample(1); // One allocating thread at startup
   326   if (UsePerfData) {
   328     EXCEPTION_MARK;
   329     ResourceMark rm;
   331     char* cname = PerfDataManager::counter_name("tlab", "allocThreads");
   332     _perf_allocating_threads =
   333       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK);
   335     cname = PerfDataManager::counter_name("tlab", "fills");
   336     _perf_total_refills =
   337       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK);
   339     cname = PerfDataManager::counter_name("tlab", "maxFills");
   340     _perf_max_refills =
   341       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK);
   343     cname = PerfDataManager::counter_name("tlab", "alloc");
   344     _perf_allocation =
   345       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
   347     cname = PerfDataManager::counter_name("tlab", "gcWaste");
   348     _perf_gc_waste =
   349       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
   351     cname = PerfDataManager::counter_name("tlab", "maxGcWaste");
   352     _perf_max_gc_waste =
   353       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
   355     cname = PerfDataManager::counter_name("tlab", "slowWaste");
   356     _perf_slow_refill_waste =
   357       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
   359     cname = PerfDataManager::counter_name("tlab", "maxSlowWaste");
   360     _perf_max_slow_refill_waste =
   361       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
   363     cname = PerfDataManager::counter_name("tlab", "fastWaste");
   364     _perf_fast_refill_waste =
   365       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
   367     cname = PerfDataManager::counter_name("tlab", "maxFastWaste");
   368     _perf_max_fast_refill_waste =
   369       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_Bytes, CHECK);
   371     cname = PerfDataManager::counter_name("tlab", "slowAlloc");
   372     _perf_slow_allocations =
   373       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK);
   375     cname = PerfDataManager::counter_name("tlab", "maxSlowAlloc");
   376     _perf_max_slow_allocations =
   377       PerfDataManager::create_variable(SUN_GC, cname, PerfData::U_None, CHECK);
   378   }
   379 }
   381 void GlobalTLABStats::initialize() {
   382   // Clear counters summarizing info from all threads
   383   _allocating_threads      = 0;
   384   _total_refills           = 0;
   385   _max_refills             = 0;
   386   _total_allocation        = 0;
   387   _total_gc_waste          = 0;
   388   _max_gc_waste            = 0;
   389   _total_slow_refill_waste = 0;
   390   _max_slow_refill_waste   = 0;
   391   _total_fast_refill_waste = 0;
   392   _max_fast_refill_waste   = 0;
   393   _total_slow_allocations  = 0;
   394   _max_slow_allocations    = 0;
   395 }
   397 void GlobalTLABStats::publish() {
   398   _allocating_threads_avg.sample(_allocating_threads);
   399   if (UsePerfData) {
   400     _perf_allocating_threads   ->set_value(_allocating_threads);
   401     _perf_total_refills        ->set_value(_total_refills);
   402     _perf_max_refills          ->set_value(_max_refills);
   403     _perf_allocation           ->set_value(_total_allocation);
   404     _perf_gc_waste             ->set_value(_total_gc_waste);
   405     _perf_max_gc_waste         ->set_value(_max_gc_waste);
   406     _perf_slow_refill_waste    ->set_value(_total_slow_refill_waste);
   407     _perf_max_slow_refill_waste->set_value(_max_slow_refill_waste);
   408     _perf_fast_refill_waste    ->set_value(_total_fast_refill_waste);
   409     _perf_max_fast_refill_waste->set_value(_max_fast_refill_waste);
   410     _perf_slow_allocations     ->set_value(_total_slow_allocations);
   411     _perf_max_slow_allocations ->set_value(_max_slow_allocations);
   412   }
   413 }
   415 void GlobalTLABStats::print() {
   416   size_t waste = _total_gc_waste + _total_slow_refill_waste + _total_fast_refill_waste;
   417   double waste_percent = _total_allocation == 0 ? 0.0 :
   418                          100.0 * waste / _total_allocation;
   419   gclog_or_tty->print("TLAB totals: thrds: %d  refills: %d max: %d"
   420                       " slow allocs: %d max %d waste: %4.1f%%"
   421                       " gc: " SIZE_FORMAT "B max: " SIZE_FORMAT "B"
   422                       " slow: " SIZE_FORMAT "B max: " SIZE_FORMAT "B"
   423                       " fast: " SIZE_FORMAT "B max: " SIZE_FORMAT "B\n",
   424                       _allocating_threads,
   425                       _total_refills, _max_refills,
   426                       _total_slow_allocations, _max_slow_allocations,
   427                       waste_percent,
   428                       _total_gc_waste * HeapWordSize,
   429                       _max_gc_waste * HeapWordSize,
   430                       _total_slow_refill_waste * HeapWordSize,
   431                       _max_slow_refill_waste * HeapWordSize,
   432                       _total_fast_refill_waste * HeapWordSize,
   433                       _max_fast_refill_waste * HeapWordSize);
   434 }

mercurial