src/share/vm/memory/space.cpp

Thu, 24 Mar 2011 15:47:01 -0700

author
ysr
date
Thu, 24 Mar 2011 15:47:01 -0700
changeset 2710
5134fa1cfe63
parent 2314
f95d63e2154a
child 2715
abdfc822206f
permissions
-rw-r--r--

7029036: Card-table verification hangs with all framework collectors, except G1, even before the first GC
Summary: When verifying clean card ranges, use memory-range-bounded iteration over oops of objects overlapping that range, thus avoiding the otherwise quadratic worst-case cost of scanning large object arrays.
Reviewed-by: jmasa, jwilhelm, tonyp

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "gc_implementation/shared/liveRange.hpp"
    29 #include "gc_implementation/shared/markSweep.hpp"
    30 #include "gc_implementation/shared/spaceDecorator.hpp"
    31 #include "memory/blockOffsetTable.inline.hpp"
    32 #include "memory/defNewGeneration.hpp"
    33 #include "memory/genCollectedHeap.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/space.inline.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/oop.inline2.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/safepoint.hpp"
    41 #include "utilities/copy.hpp"
    42 #include "utilities/globalDefinitions.hpp"
    44 void SpaceMemRegionOopsIterClosure::do_oop(oop* p)       { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    45 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    47 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
    48                                                 HeapWord* top_obj) {
    49   if (top_obj != NULL) {
    50     if (_sp->block_is_obj(top_obj)) {
    51       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
    52         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
    53           // An arrayOop is starting on the dirty card - since we do exact
    54           // store checks for objArrays we are done.
    55         } else {
    56           // Otherwise, it is possible that the object starting on the dirty
    57           // card spans the entire card, and that the store happened on a
    58           // later card.  Figure out where the object ends.
    59           // Use the block_size() method of the space over which
    60           // the iteration is being done.  That space (e.g. CMS) may have
    61           // specific requirements on object sizes which will
    62           // be reflected in the block_size() method.
    63           top = top_obj + oop(top_obj)->size();
    64         }
    65       }
    66     } else {
    67       top = top_obj;
    68     }
    69   } else {
    70     assert(top == _sp->end(), "only case where top_obj == NULL");
    71   }
    72   return top;
    73 }
    75 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
    76                                             HeapWord* bottom,
    77                                             HeapWord* top) {
    78   // 1. Blocks may or may not be objects.
    79   // 2. Even when a block_is_obj(), it may not entirely
    80   //    occupy the block if the block quantum is larger than
    81   //    the object size.
    82   // We can and should try to optimize by calling the non-MemRegion
    83   // version of oop_iterate() for all but the extremal objects
    84   // (for which we need to call the MemRegion version of
    85   // oop_iterate()) To be done post-beta XXX
    86   for (; bottom < top; bottom += _sp->block_size(bottom)) {
    87     // As in the case of contiguous space above, we'd like to
    88     // just use the value returned by oop_iterate to increment the
    89     // current pointer; unfortunately, that won't work in CMS because
    90     // we'd need an interface change (it seems) to have the space
    91     // "adjust the object size" (for instance pad it up to its
    92     // block alignment or minimum block size restrictions. XXX
    93     if (_sp->block_is_obj(bottom) &&
    94         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
    95       oop(bottom)->oop_iterate(_cl, mr);
    96     }
    97   }
    98 }
   100 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
   102   // Some collectors need to do special things whenever their dirty
   103   // cards are processed. For instance, CMS must remember mutator updates
   104   // (i.e. dirty cards) so as to re-scan mutated objects.
   105   // Such work can be piggy-backed here on dirty card scanning, so as to make
   106   // it slightly more efficient than doing a complete non-detructive pre-scan
   107   // of the card table.
   108   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
   109   if (pCl != NULL) {
   110     pCl->do_MemRegion(mr);
   111   }
   113   HeapWord* bottom = mr.start();
   114   HeapWord* last = mr.last();
   115   HeapWord* top = mr.end();
   116   HeapWord* bottom_obj;
   117   HeapWord* top_obj;
   119   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
   120          _precision == CardTableModRefBS::Precise,
   121          "Only ones we deal with for now.");
   123   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   124          _cl->idempotent() || _last_bottom == NULL ||
   125          top <= _last_bottom,
   126          "Not decreasing");
   127   NOT_PRODUCT(_last_bottom = mr.start());
   129   bottom_obj = _sp->block_start(bottom);
   130   top_obj    = _sp->block_start(last);
   132   assert(bottom_obj <= bottom, "just checking");
   133   assert(top_obj    <= top,    "just checking");
   135   // Given what we think is the top of the memory region and
   136   // the start of the object at the top, get the actual
   137   // value of the top.
   138   top = get_actual_top(top, top_obj);
   140   // If the previous call did some part of this region, don't redo.
   141   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
   142       _min_done != NULL &&
   143       _min_done < top) {
   144     top = _min_done;
   145   }
   147   // Top may have been reset, and in fact may be below bottom,
   148   // e.g. the dirty card region is entirely in a now free object
   149   // -- something that could happen with a concurrent sweeper.
   150   bottom = MIN2(bottom, top);
   151   mr     = MemRegion(bottom, top);
   152   assert(bottom <= top &&
   153          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   154           _min_done == NULL ||
   155           top <= _min_done),
   156          "overlap!");
   158   // Walk the region if it is not empty; otherwise there is nothing to do.
   159   if (!mr.is_empty()) {
   160     walk_mem_region(mr, bottom_obj, top);
   161   }
   163   // An idempotent closure might be applied in any order, so we don't
   164   // record a _min_done for it.
   165   if (!_cl->idempotent()) {
   166     _min_done = bottom;
   167   } else {
   168     assert(_min_done == _last_explicit_min_done,
   169            "Don't update _min_done for idempotent cl");
   170   }
   171 }
   173 DirtyCardToOopClosure* Space::new_dcto_cl(OopClosure* cl,
   174                                           CardTableModRefBS::PrecisionStyle precision,
   175                                           HeapWord* boundary) {
   176   return new DirtyCardToOopClosure(this, cl, precision, boundary);
   177 }
   179 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
   180                                                HeapWord* top_obj) {
   181   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
   182     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
   183       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   184         // An arrayOop is starting on the dirty card - since we do exact
   185         // store checks for objArrays we are done.
   186       } else {
   187         // Otherwise, it is possible that the object starting on the dirty
   188         // card spans the entire card, and that the store happened on a
   189         // later card.  Figure out where the object ends.
   190         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
   191           "Block size and object size mismatch");
   192         top = top_obj + oop(top_obj)->size();
   193       }
   194     }
   195   } else {
   196     top = (_sp->toContiguousSpace())->top();
   197   }
   198   return top;
   199 }
   201 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
   202                                       HeapWord* bottom,
   203                                       HeapWord* top) {
   204   // Note that this assumption won't hold if we have a concurrent
   205   // collector in this space, which may have freed up objects after
   206   // they were dirtied and before the stop-the-world GC that is
   207   // examining cards here.
   208   assert(bottom < top, "ought to be at least one obj on a dirty card.");
   210   if (_boundary != NULL) {
   211     // We have a boundary outside of which we don't want to look
   212     // at objects, so create a filtering closure around the
   213     // oop closure before walking the region.
   214     FilteringClosure filter(_boundary, _cl);
   215     walk_mem_region_with_cl(mr, bottom, top, &filter);
   216   } else {
   217     // No boundary, simply walk the heap with the oop closure.
   218     walk_mem_region_with_cl(mr, bottom, top, _cl);
   219   }
   221 }
   223 // We must replicate this so that the static type of "FilteringClosure"
   224 // (see above) is apparent at the oop_iterate calls.
   225 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
   226 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
   227                                                    HeapWord* bottom,    \
   228                                                    HeapWord* top,       \
   229                                                    ClosureType* cl) {   \
   230   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
   231   if (bottom < top) {                                                   \
   232     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
   233     while (next_obj < top) {                                            \
   234       /* Bottom lies entirely below top, so we can call the */          \
   235       /* non-memRegion version of oop_iterate below. */                 \
   236       oop(bottom)->oop_iterate(cl);                                     \
   237       bottom = next_obj;                                                \
   238       next_obj = bottom + oop(bottom)->size();                          \
   239     }                                                                   \
   240     /* Last object. */                                                  \
   241     oop(bottom)->oop_iterate(cl, mr);                                   \
   242   }                                                                     \
   243 }
   245 // (There are only two of these, rather than N, because the split is due
   246 // only to the introduction of the FilteringClosure, a local part of the
   247 // impl of this abstraction.)
   248 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(OopClosure)
   249 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
   251 DirtyCardToOopClosure*
   252 ContiguousSpace::new_dcto_cl(OopClosure* cl,
   253                              CardTableModRefBS::PrecisionStyle precision,
   254                              HeapWord* boundary) {
   255   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
   256 }
   258 void Space::initialize(MemRegion mr,
   259                        bool clear_space,
   260                        bool mangle_space) {
   261   HeapWord* bottom = mr.start();
   262   HeapWord* end    = mr.end();
   263   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
   264          "invalid space boundaries");
   265   set_bottom(bottom);
   266   set_end(end);
   267   if (clear_space) clear(mangle_space);
   268 }
   270 void Space::clear(bool mangle_space) {
   271   if (ZapUnusedHeapArea && mangle_space) {
   272     mangle_unused_area();
   273   }
   274 }
   276 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
   277     _concurrent_iteration_safe_limit(NULL) {
   278   _mangler = new GenSpaceMangler(this);
   279 }
   281 ContiguousSpace::~ContiguousSpace() {
   282   delete _mangler;
   283 }
   285 void ContiguousSpace::initialize(MemRegion mr,
   286                                  bool clear_space,
   287                                  bool mangle_space)
   288 {
   289   CompactibleSpace::initialize(mr, clear_space, mangle_space);
   290   set_concurrent_iteration_safe_limit(top());
   291 }
   293 void ContiguousSpace::clear(bool mangle_space) {
   294   set_top(bottom());
   295   set_saved_mark();
   296   CompactibleSpace::clear(mangle_space);
   297 }
   299 bool Space::is_in(const void* p) const {
   300   HeapWord* b = block_start_const(p);
   301   return b != NULL && block_is_obj(b);
   302 }
   304 bool ContiguousSpace::is_in(const void* p) const {
   305   return _bottom <= p && p < _top;
   306 }
   308 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
   309   return p >= _top;
   310 }
   312 void OffsetTableContigSpace::clear(bool mangle_space) {
   313   ContiguousSpace::clear(mangle_space);
   314   _offsets.initialize_threshold();
   315 }
   317 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   318   Space::set_bottom(new_bottom);
   319   _offsets.set_bottom(new_bottom);
   320 }
   322 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
   323   // Space should not advertize an increase in size
   324   // until after the underlying offest table has been enlarged.
   325   _offsets.resize(pointer_delta(new_end, bottom()));
   326   Space::set_end(new_end);
   327 }
   329 #ifndef PRODUCT
   331 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
   332   mangler()->set_top_for_allocations(v);
   333 }
   334 void ContiguousSpace::set_top_for_allocations() {
   335   mangler()->set_top_for_allocations(top());
   336 }
   337 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
   338   mangler()->check_mangled_unused_area(limit);
   339 }
   341 void ContiguousSpace::check_mangled_unused_area_complete() {
   342   mangler()->check_mangled_unused_area_complete();
   343 }
   345 // Mangled only the unused space that has not previously
   346 // been mangled and that has not been allocated since being
   347 // mangled.
   348 void ContiguousSpace::mangle_unused_area() {
   349   mangler()->mangle_unused_area();
   350 }
   351 void ContiguousSpace::mangle_unused_area_complete() {
   352   mangler()->mangle_unused_area_complete();
   353 }
   354 void ContiguousSpace::mangle_region(MemRegion mr) {
   355   // Although this method uses SpaceMangler::mangle_region() which
   356   // is not specific to a space, the when the ContiguousSpace version
   357   // is called, it is always with regard to a space and this
   358   // bounds checking is appropriate.
   359   MemRegion space_mr(bottom(), end());
   360   assert(space_mr.contains(mr), "Mangling outside space");
   361   SpaceMangler::mangle_region(mr);
   362 }
   363 #endif  // NOT_PRODUCT
   365 void CompactibleSpace::initialize(MemRegion mr,
   366                                   bool clear_space,
   367                                   bool mangle_space) {
   368   Space::initialize(mr, clear_space, mangle_space);
   369   set_compaction_top(bottom());
   370   _next_compaction_space = NULL;
   371 }
   373 void CompactibleSpace::clear(bool mangle_space) {
   374   Space::clear(mangle_space);
   375   _compaction_top = bottom();
   376 }
   378 HeapWord* CompactibleSpace::forward(oop q, size_t size,
   379                                     CompactPoint* cp, HeapWord* compact_top) {
   380   // q is alive
   381   // First check if we should switch compaction space
   382   assert(this == cp->space, "'this' should be current compaction space.");
   383   size_t compaction_max_size = pointer_delta(end(), compact_top);
   384   while (size > compaction_max_size) {
   385     // switch to next compaction space
   386     cp->space->set_compaction_top(compact_top);
   387     cp->space = cp->space->next_compaction_space();
   388     if (cp->space == NULL) {
   389       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
   390       assert(cp->gen != NULL, "compaction must succeed");
   391       cp->space = cp->gen->first_compaction_space();
   392       assert(cp->space != NULL, "generation must have a first compaction space");
   393     }
   394     compact_top = cp->space->bottom();
   395     cp->space->set_compaction_top(compact_top);
   396     cp->threshold = cp->space->initialize_threshold();
   397     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
   398   }
   400   // store the forwarding pointer into the mark word
   401   if ((HeapWord*)q != compact_top) {
   402     q->forward_to(oop(compact_top));
   403     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
   404   } else {
   405     // if the object isn't moving we can just set the mark to the default
   406     // mark and handle it specially later on.
   407     q->init_mark();
   408     assert(q->forwardee() == NULL, "should be forwarded to NULL");
   409   }
   411   VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(q, size));
   412   compact_top += size;
   414   // we need to update the offset table so that the beginnings of objects can be
   415   // found during scavenge.  Note that we are updating the offset table based on
   416   // where the object will be once the compaction phase finishes.
   417   if (compact_top > cp->threshold)
   418     cp->threshold =
   419       cp->space->cross_threshold(compact_top - size, compact_top);
   420   return compact_top;
   421 }
   424 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
   425                                         HeapWord* q, size_t deadlength) {
   426   if (allowed_deadspace_words >= deadlength) {
   427     allowed_deadspace_words -= deadlength;
   428     CollectedHeap::fill_with_object(q, deadlength);
   429     oop(q)->set_mark(oop(q)->mark()->set_marked());
   430     assert((int) deadlength == oop(q)->size(), "bad filler object size");
   431     // Recall that we required "q == compaction_top".
   432     return true;
   433   } else {
   434     allowed_deadspace_words = 0;
   435     return false;
   436   }
   437 }
   439 #define block_is_always_obj(q) true
   440 #define obj_size(q) oop(q)->size()
   441 #define adjust_obj_size(s) s
   443 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
   444   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
   445 }
   447 // Faster object search.
   448 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
   449   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
   450 }
   452 void Space::adjust_pointers() {
   453   // adjust all the interior pointers to point at the new locations of objects
   454   // Used by MarkSweep::mark_sweep_phase3()
   456   // First check to see if there is any work to be done.
   457   if (used() == 0) {
   458     return;  // Nothing to do.
   459   }
   461   // Otherwise...
   462   HeapWord* q = bottom();
   463   HeapWord* t = end();
   465   debug_only(HeapWord* prev_q = NULL);
   466   while (q < t) {
   467     if (oop(q)->is_gc_marked()) {
   468       // q is alive
   470       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));
   471       // point all the oops to the new location
   472       size_t size = oop(q)->adjust_pointers();
   473       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());
   475       debug_only(prev_q = q);
   476       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));
   478       q += size;
   479     } else {
   480       // q is not a live object.  But we're not in a compactible space,
   481       // So we don't have live ranges.
   482       debug_only(prev_q = q);
   483       q += block_size(q);
   484       assert(q > prev_q, "we should be moving forward through memory");
   485     }
   486   }
   487   assert(q == t, "just checking");
   488 }
   490 void CompactibleSpace::adjust_pointers() {
   491   // Check first is there is any work to do.
   492   if (used() == 0) {
   493     return;   // Nothing to do.
   494   }
   496   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
   497 }
   499 void CompactibleSpace::compact() {
   500   SCAN_AND_COMPACT(obj_size);
   501 }
   503 void Space::print_short() const { print_short_on(tty); }
   505 void Space::print_short_on(outputStream* st) const {
   506   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
   507               (int) ((double) used() * 100 / capacity()));
   508 }
   510 void Space::print() const { print_on(tty); }
   512 void Space::print_on(outputStream* st) const {
   513   print_short_on(st);
   514   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   515                 bottom(), end());
   516 }
   518 void ContiguousSpace::print_on(outputStream* st) const {
   519   print_short_on(st);
   520   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   521                 bottom(), top(), end());
   522 }
   524 void OffsetTableContigSpace::print_on(outputStream* st) const {
   525   print_short_on(st);
   526   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   527                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   528               bottom(), top(), _offsets.threshold(), end());
   529 }
   531 void ContiguousSpace::verify(bool allow_dirty) const {
   532   HeapWord* p = bottom();
   533   HeapWord* t = top();
   534   HeapWord* prev_p = NULL;
   535   while (p < t) {
   536     oop(p)->verify();
   537     prev_p = p;
   538     p += oop(p)->size();
   539   }
   540   guarantee(p == top(), "end of last object must match end of space");
   541   if (top() != end()) {
   542     guarantee(top() == block_start_const(end()-1) &&
   543               top() == block_start_const(top()),
   544               "top should be start of unallocated block, if it exists");
   545   }
   546 }
   548 void Space::oop_iterate(OopClosure* blk) {
   549   ObjectToOopClosure blk2(blk);
   550   object_iterate(&blk2);
   551 }
   553 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
   554   guarantee(false, "NYI");
   555   return bottom();
   556 }
   558 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
   559                                           ObjectClosureCareful* cl) {
   560   guarantee(false, "NYI");
   561   return bottom();
   562 }
   565 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   566   assert(!mr.is_empty(), "Should be non-empty");
   567   // We use MemRegion(bottom(), end()) rather than used_region() below
   568   // because the two are not necessarily equal for some kinds of
   569   // spaces, in particular, certain kinds of free list spaces.
   570   // We could use the more complicated but more precise:
   571   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
   572   // but the slight imprecision seems acceptable in the assertion check.
   573   assert(MemRegion(bottom(), end()).contains(mr),
   574          "Should be within used space");
   575   HeapWord* prev = cl->previous();   // max address from last time
   576   if (prev >= mr.end()) { // nothing to do
   577     return;
   578   }
   579   // This assert will not work when we go from cms space to perm
   580   // space, and use same closure. Easy fix deferred for later. XXX YSR
   581   // assert(prev == NULL || contains(prev), "Should be within space");
   583   bool last_was_obj_array = false;
   584   HeapWord *blk_start_addr, *region_start_addr;
   585   if (prev > mr.start()) {
   586     region_start_addr = prev;
   587     blk_start_addr    = prev;
   588     // The previous invocation may have pushed "prev" beyond the
   589     // last allocated block yet there may be still be blocks
   590     // in this region due to a particular coalescing policy.
   591     // Relax the assertion so that the case where the unallocated
   592     // block is maintained and "prev" is beyond the unallocated
   593     // block does not cause the assertion to fire.
   594     assert((BlockOffsetArrayUseUnallocatedBlock &&
   595             (!is_in(prev))) ||
   596            (blk_start_addr == block_start(region_start_addr)), "invariant");
   597   } else {
   598     region_start_addr = mr.start();
   599     blk_start_addr    = block_start(region_start_addr);
   600   }
   601   HeapWord* region_end_addr = mr.end();
   602   MemRegion derived_mr(region_start_addr, region_end_addr);
   603   while (blk_start_addr < region_end_addr) {
   604     const size_t size = block_size(blk_start_addr);
   605     if (block_is_obj(blk_start_addr)) {
   606       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
   607     } else {
   608       last_was_obj_array = false;
   609     }
   610     blk_start_addr += size;
   611   }
   612   if (!last_was_obj_array) {
   613     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
   614            "Should be within (closed) used space");
   615     assert(blk_start_addr > prev, "Invariant");
   616     cl->set_previous(blk_start_addr); // min address for next time
   617   }
   618 }
   620 bool Space::obj_is_alive(const HeapWord* p) const {
   621   assert (block_is_obj(p), "The address should point to an object");
   622   return true;
   623 }
   625 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   626   assert(!mr.is_empty(), "Should be non-empty");
   627   assert(used_region().contains(mr), "Should be within used space");
   628   HeapWord* prev = cl->previous();   // max address from last time
   629   if (prev >= mr.end()) { // nothing to do
   630     return;
   631   }
   632   // See comment above (in more general method above) in case you
   633   // happen to use this method.
   634   assert(prev == NULL || is_in_reserved(prev), "Should be within space");
   636   bool last_was_obj_array = false;
   637   HeapWord *obj_start_addr, *region_start_addr;
   638   if (prev > mr.start()) {
   639     region_start_addr = prev;
   640     obj_start_addr    = prev;
   641     assert(obj_start_addr == block_start(region_start_addr), "invariant");
   642   } else {
   643     region_start_addr = mr.start();
   644     obj_start_addr    = block_start(region_start_addr);
   645   }
   646   HeapWord* region_end_addr = mr.end();
   647   MemRegion derived_mr(region_start_addr, region_end_addr);
   648   while (obj_start_addr < region_end_addr) {
   649     oop obj = oop(obj_start_addr);
   650     const size_t size = obj->size();
   651     last_was_obj_array = cl->do_object_bm(obj, derived_mr);
   652     obj_start_addr += size;
   653   }
   654   if (!last_was_obj_array) {
   655     assert((bottom() <= obj_start_addr)  && (obj_start_addr <= end()),
   656            "Should be within (closed) used space");
   657     assert(obj_start_addr > prev, "Invariant");
   658     cl->set_previous(obj_start_addr); // min address for next time
   659   }
   660 }
   662 #ifndef SERIALGC
   663 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
   664                                                                             \
   665   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
   666     HeapWord* obj_addr = mr.start();                                        \
   667     HeapWord* t = mr.end();                                                 \
   668     while (obj_addr < t) {                                                  \
   669       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
   670       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
   671     }                                                                       \
   672   }
   674   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
   676 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
   677 #endif // SERIALGC
   679 void ContiguousSpace::oop_iterate(OopClosure* blk) {
   680   if (is_empty()) return;
   681   HeapWord* obj_addr = bottom();
   682   HeapWord* t = top();
   683   // Could call objects iterate, but this is easier.
   684   while (obj_addr < t) {
   685     obj_addr += oop(obj_addr)->oop_iterate(blk);
   686   }
   687 }
   689 void ContiguousSpace::oop_iterate(MemRegion mr, OopClosure* blk) {
   690   if (is_empty()) {
   691     return;
   692   }
   693   MemRegion cur = MemRegion(bottom(), top());
   694   mr = mr.intersection(cur);
   695   if (mr.is_empty()) {
   696     return;
   697   }
   698   if (mr.equals(cur)) {
   699     oop_iterate(blk);
   700     return;
   701   }
   702   assert(mr.end() <= top(), "just took an intersection above");
   703   HeapWord* obj_addr = block_start(mr.start());
   704   HeapWord* t = mr.end();
   706   // Handle first object specially.
   707   oop obj = oop(obj_addr);
   708   SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
   709   obj_addr += obj->oop_iterate(&smr_blk);
   710   while (obj_addr < t) {
   711     oop obj = oop(obj_addr);
   712     assert(obj->is_oop(), "expected an oop");
   713     obj_addr += obj->size();
   714     // If "obj_addr" is not greater than top, then the
   715     // entire object "obj" is within the region.
   716     if (obj_addr <= t) {
   717       obj->oop_iterate(blk);
   718     } else {
   719       // "obj" extends beyond end of region
   720       obj->oop_iterate(&smr_blk);
   721       break;
   722     }
   723   };
   724 }
   726 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
   727   if (is_empty()) return;
   728   WaterMark bm = bottom_mark();
   729   object_iterate_from(bm, blk);
   730 }
   732 // For a continguous space object_iterate() and safe_object_iterate()
   733 // are the same.
   734 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
   735   object_iterate(blk);
   736 }
   738 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
   739   assert(mark.space() == this, "Mark does not match space");
   740   HeapWord* p = mark.point();
   741   while (p < top()) {
   742     blk->do_object(oop(p));
   743     p += oop(p)->size();
   744   }
   745 }
   747 HeapWord*
   748 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
   749   HeapWord * limit = concurrent_iteration_safe_limit();
   750   assert(limit <= top(), "sanity check");
   751   for (HeapWord* p = bottom(); p < limit;) {
   752     size_t size = blk->do_object_careful(oop(p));
   753     if (size == 0) {
   754       return p;  // failed at p
   755     } else {
   756       p += size;
   757     }
   758   }
   759   return NULL; // all done
   760 }
   762 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
   763                                                                           \
   764 void ContiguousSpace::                                                    \
   765 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
   766   HeapWord* t;                                                            \
   767   HeapWord* p = saved_mark_word();                                        \
   768   assert(p != NULL, "expected saved mark");                               \
   769                                                                           \
   770   const intx interval = PrefetchScanIntervalInBytes;                      \
   771   do {                                                                    \
   772     t = top();                                                            \
   773     while (p < t) {                                                       \
   774       Prefetch::write(p, interval);                                       \
   775       debug_only(HeapWord* prev = p);                                     \
   776       oop m = oop(p);                                                     \
   777       p += m->oop_iterate(blk);                                           \
   778     }                                                                     \
   779   } while (t < top());                                                    \
   780                                                                           \
   781   set_saved_mark_word(p);                                                 \
   782 }
   784 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
   786 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
   788 // Very general, slow implementation.
   789 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
   790   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
   791   if (p >= top()) {
   792     return top();
   793   } else {
   794     HeapWord* last = bottom();
   795     HeapWord* cur = last;
   796     while (cur <= p) {
   797       last = cur;
   798       cur += oop(cur)->size();
   799     }
   800     assert(oop(last)->is_oop(), "Should be an object start");
   801     return last;
   802   }
   803 }
   805 size_t ContiguousSpace::block_size(const HeapWord* p) const {
   806   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
   807   HeapWord* current_top = top();
   808   assert(p <= current_top, "p is not a block start");
   809   assert(p == current_top || oop(p)->is_oop(), "p is not a block start");
   810   if (p < current_top)
   811     return oop(p)->size();
   812   else {
   813     assert(p == current_top, "just checking");
   814     return pointer_delta(end(), (HeapWord*) p);
   815   }
   816 }
   818 // This version requires locking.
   819 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
   820                                                 HeapWord* const end_value) {
   821   assert(Heap_lock->owned_by_self() ||
   822          (SafepointSynchronize::is_at_safepoint() &&
   823           Thread::current()->is_VM_thread()),
   824          "not locked");
   825   HeapWord* obj = top();
   826   if (pointer_delta(end_value, obj) >= size) {
   827     HeapWord* new_top = obj + size;
   828     set_top(new_top);
   829     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   830     return obj;
   831   } else {
   832     return NULL;
   833   }
   834 }
   836 // This version is lock-free.
   837 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
   838                                                     HeapWord* const end_value) {
   839   do {
   840     HeapWord* obj = top();
   841     if (pointer_delta(end_value, obj) >= size) {
   842       HeapWord* new_top = obj + size;
   843       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   844       // result can be one of two:
   845       //  the old top value: the exchange succeeded
   846       //  otherwise: the new value of the top is returned.
   847       if (result == obj) {
   848         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   849         return obj;
   850       }
   851     } else {
   852       return NULL;
   853     }
   854   } while (true);
   855 }
   857 // Requires locking.
   858 HeapWord* ContiguousSpace::allocate(size_t size) {
   859   return allocate_impl(size, end());
   860 }
   862 // Lock-free.
   863 HeapWord* ContiguousSpace::par_allocate(size_t size) {
   864   return par_allocate_impl(size, end());
   865 }
   867 void ContiguousSpace::allocate_temporary_filler(int factor) {
   868   // allocate temporary type array decreasing free size with factor 'factor'
   869   assert(factor >= 0, "just checking");
   870   size_t size = pointer_delta(end(), top());
   872   // if space is full, return
   873   if (size == 0) return;
   875   if (factor > 0) {
   876     size -= size/factor;
   877   }
   878   size = align_object_size(size);
   880   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
   881   if (size >= (size_t)align_object_size(array_header_size)) {
   882     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
   883     // allocate uninitialized int array
   884     typeArrayOop t = (typeArrayOop) allocate(size);
   885     assert(t != NULL, "allocation should succeed");
   886     t->set_mark(markOopDesc::prototype());
   887     t->set_klass(Universe::intArrayKlassObj());
   888     t->set_length((int)length);
   889   } else {
   890     assert(size == CollectedHeap::min_fill_size(),
   891            "size for smallest fake object doesn't match");
   892     instanceOop obj = (instanceOop) allocate(size);
   893     obj->set_mark(markOopDesc::prototype());
   894     obj->set_klass_gap(0);
   895     obj->set_klass(SystemDictionary::Object_klass());
   896   }
   897 }
   899 void EdenSpace::clear(bool mangle_space) {
   900   ContiguousSpace::clear(mangle_space);
   901   set_soft_end(end());
   902 }
   904 // Requires locking.
   905 HeapWord* EdenSpace::allocate(size_t size) {
   906   return allocate_impl(size, soft_end());
   907 }
   909 // Lock-free.
   910 HeapWord* EdenSpace::par_allocate(size_t size) {
   911   return par_allocate_impl(size, soft_end());
   912 }
   914 HeapWord* ConcEdenSpace::par_allocate(size_t size)
   915 {
   916   do {
   917     // The invariant is top() should be read before end() because
   918     // top() can't be greater than end(), so if an update of _soft_end
   919     // occurs between 'end_val = end();' and 'top_val = top();' top()
   920     // also can grow up to the new end() and the condition
   921     // 'top_val > end_val' is true. To ensure the loading order
   922     // OrderAccess::loadload() is required after top() read.
   923     HeapWord* obj = top();
   924     OrderAccess::loadload();
   925     if (pointer_delta(*soft_end_addr(), obj) >= size) {
   926       HeapWord* new_top = obj + size;
   927       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   928       // result can be one of two:
   929       //  the old top value: the exchange succeeded
   930       //  otherwise: the new value of the top is returned.
   931       if (result == obj) {
   932         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   933         return obj;
   934       }
   935     } else {
   936       return NULL;
   937     }
   938   } while (true);
   939 }
   942 HeapWord* OffsetTableContigSpace::initialize_threshold() {
   943   return _offsets.initialize_threshold();
   944 }
   946 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
   947   _offsets.alloc_block(start, end);
   948   return _offsets.threshold();
   949 }
   951 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   952                                                MemRegion mr) :
   953   _offsets(sharedOffsetArray, mr),
   954   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
   955 {
   956   _offsets.set_contig_space(this);
   957   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   958 }
   961 class VerifyOldOopClosure : public OopClosure {
   962  public:
   963   oop  _the_obj;
   964   bool _allow_dirty;
   965   void do_oop(oop* p) {
   966     _the_obj->verify_old_oop(p, _allow_dirty);
   967   }
   968   void do_oop(narrowOop* p) {
   969     _the_obj->verify_old_oop(p, _allow_dirty);
   970   }
   971 };
   973 #define OBJ_SAMPLE_INTERVAL 0
   974 #define BLOCK_SAMPLE_INTERVAL 100
   976 void OffsetTableContigSpace::verify(bool allow_dirty) const {
   977   HeapWord* p = bottom();
   978   HeapWord* prev_p = NULL;
   979   VerifyOldOopClosure blk;      // Does this do anything?
   980   blk._allow_dirty = allow_dirty;
   981   int objs = 0;
   982   int blocks = 0;
   984   if (VerifyObjectStartArray) {
   985     _offsets.verify();
   986   }
   988   while (p < top()) {
   989     size_t size = oop(p)->size();
   990     // For a sampling of objects in the space, find it using the
   991     // block offset table.
   992     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   993       guarantee(p == block_start_const(p + (size/2)),
   994                 "check offset computation");
   995       blocks = 0;
   996     } else {
   997       blocks++;
   998     }
  1000     if (objs == OBJ_SAMPLE_INTERVAL) {
  1001       oop(p)->verify();
  1002       blk._the_obj = oop(p);
  1003       oop(p)->oop_iterate(&blk);
  1004       objs = 0;
  1005     } else {
  1006       objs++;
  1008     prev_p = p;
  1009     p += size;
  1011   guarantee(p == top(), "end of last object must match end of space");
  1014 void OffsetTableContigSpace::serialize_block_offset_array_offsets(
  1015                                                       SerializeOopClosure* soc) {
  1016   _offsets.serialize(soc);
  1020 size_t TenuredSpace::allowed_dead_ratio() const {
  1021   return MarkSweepDeadRatio;
  1025 size_t ContigPermSpace::allowed_dead_ratio() const {
  1026   return PermMarkSweepDeadRatio;

mercurial