src/share/vm/memory/genCollectedHeap.hpp

Thu, 24 Mar 2011 15:47:01 -0700

author
ysr
date
Thu, 24 Mar 2011 15:47:01 -0700
changeset 2710
5134fa1cfe63
parent 2336
6cd6d394f280
child 2825
1f4413413144
permissions
-rw-r--r--

7029036: Card-table verification hangs with all framework collectors, except G1, even before the first GC
Summary: When verifying clean card ranges, use memory-range-bounded iteration over oops of objects overlapping that range, thus avoiding the otherwise quadratic worst-case cost of scanning large object arrays.
Reviewed-by: jmasa, jwilhelm, tonyp

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    29 #include "memory/collectorPolicy.hpp"
    30 #include "memory/generation.hpp"
    31 #include "memory/sharedHeap.hpp"
    33 class SubTasksDone;
    35 // A "GenCollectedHeap" is a SharedHeap that uses generational
    36 // collection.  It is represented with a sequence of Generation's.
    37 class GenCollectedHeap : public SharedHeap {
    38   friend class GenCollectorPolicy;
    39   friend class Generation;
    40   friend class DefNewGeneration;
    41   friend class TenuredGeneration;
    42   friend class ConcurrentMarkSweepGeneration;
    43   friend class CMSCollector;
    44   friend class GenMarkSweep;
    45   friend class VM_GenCollectForAllocation;
    46   friend class VM_GenCollectForPermanentAllocation;
    47   friend class VM_GenCollectFull;
    48   friend class VM_GenCollectFullConcurrent;
    49   friend class VM_GC_HeapInspection;
    50   friend class VM_HeapDumper;
    51   friend class HeapInspection;
    52   friend class GCCauseSetter;
    53   friend class VMStructs;
    54 public:
    55   enum SomeConstants {
    56     max_gens = 10
    57   };
    59   friend class VM_PopulateDumpSharedSpace;
    61  protected:
    62   // Fields:
    63   static GenCollectedHeap* _gch;
    65  private:
    66   int _n_gens;
    67   Generation* _gens[max_gens];
    68   GenerationSpec** _gen_specs;
    70   // The generational collector policy.
    71   GenCollectorPolicy* _gen_policy;
    73   // Indicates that the most recent previous incremental collection failed.
    74   // The flag is cleared when an action is taken that might clear the
    75   // condition that caused that incremental collection to fail.
    76   bool _incremental_collection_failed;
    78   // In support of ExplicitGCInvokesConcurrent functionality
    79   unsigned int _full_collections_completed;
    81   // Data structure for claiming the (potentially) parallel tasks in
    82   // (gen-specific) strong roots processing.
    83   SubTasksDone* _gen_process_strong_tasks;
    84   SubTasksDone* gen_process_strong_tasks() { return _gen_process_strong_tasks; }
    86   // In block contents verification, the number of header words to skip
    87   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
    89   // GC is not allowed during the dump of the shared classes.  Keep track
    90   // of this in order to provide an reasonable error message when terminating.
    91   bool _preloading_shared_classes;
    93 protected:
    94   // Directs each generation up to and including "collectedGen" to recompute
    95   // its desired size.
    96   void compute_new_generation_sizes(int collectedGen);
    98   // Helper functions for allocation
    99   HeapWord* attempt_allocation(size_t size,
   100                                bool   is_tlab,
   101                                bool   first_only);
   103   // Helper function for two callbacks below.
   104   // Considers collection of the first max_level+1 generations.
   105   void do_collection(bool   full,
   106                      bool   clear_all_soft_refs,
   107                      size_t size,
   108                      bool   is_tlab,
   109                      int    max_level);
   111   // Callback from VM_GenCollectForAllocation operation.
   112   // This function does everything necessary/possible to satisfy an
   113   // allocation request that failed in the youngest generation that should
   114   // have handled it (including collection, expansion, etc.)
   115   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
   117   // Callback from VM_GenCollectFull operation.
   118   // Perform a full collection of the first max_level+1 generations.
   119   void do_full_collection(bool clear_all_soft_refs, int max_level);
   121   // Does the "cause" of GC indicate that
   122   // we absolutely __must__ clear soft refs?
   123   bool must_clear_all_soft_refs();
   125 public:
   126   GenCollectedHeap(GenCollectorPolicy *policy);
   128   GCStats* gc_stats(int level) const;
   130   // Returns JNI_OK on success
   131   virtual jint initialize();
   132   char* allocate(size_t alignment, PermanentGenerationSpec* perm_gen_spec,
   133                  size_t* _total_reserved, int* _n_covered_regions,
   134                  ReservedSpace* heap_rs);
   136   // Does operations required after initialization has been done.
   137   void post_initialize();
   139   // Initialize ("weak") refs processing support
   140   virtual void ref_processing_init();
   142   virtual CollectedHeap::Name kind() const {
   143     return CollectedHeap::GenCollectedHeap;
   144   }
   146   // The generational collector policy.
   147   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
   149   // Adaptive size policy
   150   virtual AdaptiveSizePolicy* size_policy() {
   151     return gen_policy()->size_policy();
   152   }
   154   size_t capacity() const;
   155   size_t used() const;
   157   // Save the "used_region" for generations level and lower,
   158   // and, if perm is true, for perm gen.
   159   void save_used_regions(int level, bool perm);
   161   size_t max_capacity() const;
   163   HeapWord* mem_allocate(size_t size,
   164                          bool   is_large_noref,
   165                          bool   is_tlab,
   166                          bool*  gc_overhead_limit_was_exceeded);
   168   // We may support a shared contiguous allocation area, if the youngest
   169   // generation does.
   170   bool supports_inline_contig_alloc() const;
   171   HeapWord** top_addr() const;
   172   HeapWord** end_addr() const;
   174   // Return an estimate of the maximum allocation that could be performed
   175   // without triggering any collection activity.  In a generational
   176   // collector, for example, this is probably the largest allocation that
   177   // could be supported in the youngest generation.  It is "unsafe" because
   178   // no locks are taken; the result should be treated as an approximation,
   179   // not a guarantee.
   180   size_t unsafe_max_alloc();
   182   // Does this heap support heap inspection? (+PrintClassHistogram)
   183   virtual bool supports_heap_inspection() const { return true; }
   185   // Perform a full collection of the heap; intended for use in implementing
   186   // "System.gc". This implies as full a collection as the CollectedHeap
   187   // supports. Caller does not hold the Heap_lock on entry.
   188   void collect(GCCause::Cause cause);
   190   // This interface assumes that it's being called by the
   191   // vm thread. It collects the heap assuming that the
   192   // heap lock is already held and that we are executing in
   193   // the context of the vm thread.
   194   void collect_as_vm_thread(GCCause::Cause cause);
   196   // The same as above but assume that the caller holds the Heap_lock.
   197   void collect_locked(GCCause::Cause cause);
   199   // Perform a full collection of the first max_level+1 generations.
   200   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
   201   void collect(GCCause::Cause cause, int max_level);
   203   // Returns "TRUE" iff "p" points into the allocated area of the heap.
   204   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
   205   // be expensive to compute in general, so, to prevent
   206   // their inadvertent use in product jvm's, we restrict their use to
   207   // assertion checking or verification only.
   208   bool is_in(const void* p) const;
   210   // override
   211   bool is_in_closed_subset(const void* p) const {
   212     if (UseConcMarkSweepGC) {
   213       return is_in_reserved(p);
   214     } else {
   215       return is_in(p);
   216     }
   217   }
   219   // Returns "TRUE" iff "p" points into the youngest generation.
   220   bool is_in_youngest(void* p);
   222   // Iteration functions.
   223   void oop_iterate(OopClosure* cl);
   224   void oop_iterate(MemRegion mr, OopClosure* cl);
   225   void object_iterate(ObjectClosure* cl);
   226   void safe_object_iterate(ObjectClosure* cl);
   227   void object_iterate_since_last_GC(ObjectClosure* cl);
   228   Space* space_containing(const void* addr) const;
   230   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   231   // each address in the (reserved) heap is a member of exactly
   232   // one block.  The defining characteristic of a block is that it is
   233   // possible to find its size, and thus to progress forward to the next
   234   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   235   // represent Java objects, or they might be free blocks in a
   236   // free-list-based heap (or subheap), as long as the two kinds are
   237   // distinguishable and the size of each is determinable.
   239   // Returns the address of the start of the "block" that contains the
   240   // address "addr".  We say "blocks" instead of "object" since some heaps
   241   // may not pack objects densely; a chunk may either be an object or a
   242   // non-object.
   243   virtual HeapWord* block_start(const void* addr) const;
   245   // Requires "addr" to be the start of a chunk, and returns its size.
   246   // "addr + size" is required to be the start of a new chunk, or the end
   247   // of the active area of the heap. Assumes (and verifies in non-product
   248   // builds) that addr is in the allocated part of the heap and is
   249   // the start of a chunk.
   250   virtual size_t block_size(const HeapWord* addr) const;
   252   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   253   // the block is an object. Assumes (and verifies in non-product
   254   // builds) that addr is in the allocated part of the heap and is
   255   // the start of a chunk.
   256   virtual bool block_is_obj(const HeapWord* addr) const;
   258   // Section on TLAB's.
   259   virtual bool supports_tlab_allocation() const;
   260   virtual size_t tlab_capacity(Thread* thr) const;
   261   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
   262   virtual HeapWord* allocate_new_tlab(size_t size);
   264   // Can a compiler initialize a new object without store barriers?
   265   // This permission only extends from the creation of a new object
   266   // via a TLAB up to the first subsequent safepoint.
   267   virtual bool can_elide_tlab_store_barriers() const {
   268     return true;
   269   }
   271   virtual bool card_mark_must_follow_store() const {
   272     return UseConcMarkSweepGC;
   273   }
   275   // We don't need barriers for stores to objects in the
   276   // young gen and, a fortiori, for initializing stores to
   277   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
   278   // only and may need to be re-examined in case other
   279   // kinds of collectors are implemented in the future.
   280   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
   281     // We wanted to assert that:-
   282     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
   283     //       "Check can_elide_initializing_store_barrier() for this collector");
   284     // but unfortunately the flag UseSerialGC need not necessarily always
   285     // be set when DefNew+Tenured are being used.
   286     return is_in_youngest((void*)new_obj);
   287   }
   289   // Can a compiler elide a store barrier when it writes
   290   // a permanent oop into the heap?  Applies when the compiler
   291   // is storing x to the heap, where x->is_perm() is true.
   292   virtual bool can_elide_permanent_oop_store_barriers() const {
   293     // CMS needs to see all, even intra-generational, ref updates.
   294     return !UseConcMarkSweepGC;
   295   }
   297   // The "requestor" generation is performing some garbage collection
   298   // action for which it would be useful to have scratch space.  The
   299   // requestor promises to allocate no more than "max_alloc_words" in any
   300   // older generation (via promotion say.)   Any blocks of space that can
   301   // be provided are returned as a list of ScratchBlocks, sorted by
   302   // decreasing size.
   303   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
   304   // Allow each generation to reset any scratch space that it has
   305   // contributed as it needs.
   306   void release_scratch();
   308   size_t large_typearray_limit();
   310   // Ensure parsability: override
   311   virtual void ensure_parsability(bool retire_tlabs);
   313   // Time in ms since the longest time a collector ran in
   314   // in any generation.
   315   virtual jlong millis_since_last_gc();
   317   // Total number of full collections completed.
   318   unsigned int total_full_collections_completed() {
   319     assert(_full_collections_completed <= _total_full_collections,
   320            "Can't complete more collections than were started");
   321     return _full_collections_completed;
   322   }
   324   // Update above counter, as appropriate, at the end of a stop-world GC cycle
   325   unsigned int update_full_collections_completed();
   326   // Update above counter, as appropriate, at the end of a concurrent GC cycle
   327   unsigned int update_full_collections_completed(unsigned int count);
   329   // Update "time of last gc" for all constituent generations
   330   // to "now".
   331   void update_time_of_last_gc(jlong now) {
   332     for (int i = 0; i < _n_gens; i++) {
   333       _gens[i]->update_time_of_last_gc(now);
   334     }
   335     perm_gen()->update_time_of_last_gc(now);
   336   }
   338   // Update the gc statistics for each generation.
   339   // "level" is the level of the lastest collection
   340   void update_gc_stats(int current_level, bool full) {
   341     for (int i = 0; i < _n_gens; i++) {
   342       _gens[i]->update_gc_stats(current_level, full);
   343     }
   344     perm_gen()->update_gc_stats(current_level, full);
   345   }
   347   // Override.
   348   bool no_gc_in_progress() { return !is_gc_active(); }
   350   // Override.
   351   void prepare_for_verify();
   353   // Override.
   354   void verify(bool allow_dirty, bool silent, bool /* option */);
   356   // Override.
   357   void print() const;
   358   void print_on(outputStream* st) const;
   359   virtual void print_gc_threads_on(outputStream* st) const;
   360   virtual void gc_threads_do(ThreadClosure* tc) const;
   361   virtual void print_tracing_info() const;
   363   // PrintGC, PrintGCDetails support
   364   void print_heap_change(size_t prev_used) const;
   365   void print_perm_heap_change(size_t perm_prev_used) const;
   367   // The functions below are helper functions that a subclass of
   368   // "CollectedHeap" can use in the implementation of its virtual
   369   // functions.
   371   class GenClosure : public StackObj {
   372    public:
   373     virtual void do_generation(Generation* gen) = 0;
   374   };
   376   // Apply "cl.do_generation" to all generations in the heap (not including
   377   // the permanent generation).  If "old_to_young" determines the order.
   378   void generation_iterate(GenClosure* cl, bool old_to_young);
   380   void space_iterate(SpaceClosure* cl);
   382   // Return "true" if all generations (but perm) have reached the
   383   // maximal committed limit that they can reach, without a garbage
   384   // collection.
   385   virtual bool is_maximal_no_gc() const;
   387   // Return the generation before "gen", or else NULL.
   388   Generation* prev_gen(Generation* gen) const {
   389     int l = gen->level();
   390     if (l == 0) return NULL;
   391     else return _gens[l-1];
   392   }
   394   // Return the generation after "gen", or else NULL.
   395   Generation* next_gen(Generation* gen) const {
   396     int l = gen->level() + 1;
   397     if (l == _n_gens) return NULL;
   398     else return _gens[l];
   399   }
   401   Generation* get_gen(int i) const {
   402     if (i >= 0 && i < _n_gens)
   403       return _gens[i];
   404     else
   405       return NULL;
   406   }
   408   int n_gens() const {
   409     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
   410     return _n_gens;
   411   }
   413   // Convenience function to be used in situations where the heap type can be
   414   // asserted to be this type.
   415   static GenCollectedHeap* heap();
   417   void set_par_threads(int t);
   420   // Invoke the "do_oop" method of one of the closures "not_older_gens"
   421   // or "older_gens" on root locations for the generation at
   422   // "level".  (The "older_gens" closure is used for scanning references
   423   // from older generations; "not_older_gens" is used everywhere else.)
   424   // If "younger_gens_as_roots" is false, younger generations are
   425   // not scanned as roots; in this case, the caller must be arranging to
   426   // scan the younger generations itself.  (For example, a generation might
   427   // explicitly mark reachable objects in younger generations, to avoid
   428   // excess storage retention.)  If "collecting_perm_gen" is false, then
   429   // roots that may only contain references to permGen objects are not
   430   // scanned. The "so" argument determines which of the roots
   431   // the closure is applied to:
   432   // "SO_None" does none;
   433   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
   434   // "SO_SystemClasses" to all the "system" classes and loaders;
   435   // "SO_Symbols_and_Strings" applies the closure to all entries in
   436   // SymbolsTable and StringTable.
   437   void gen_process_strong_roots(int level,
   438                                 bool younger_gens_as_roots,
   439                                 // The remaining arguments are in an order
   440                                 // consistent with SharedHeap::process_strong_roots:
   441                                 bool activate_scope,
   442                                 bool collecting_perm_gen,
   443                                 SharedHeap::ScanningOption so,
   444                                 OopsInGenClosure* not_older_gens,
   445                                 bool do_code_roots,
   446                                 OopsInGenClosure* older_gens);
   448   // Apply "blk" to all the weak roots of the system.  These include
   449   // JNI weak roots, the code cache, system dictionary, symbol table,
   450   // string table, and referents of reachable weak refs.
   451   void gen_process_weak_roots(OopClosure* root_closure,
   452                               CodeBlobClosure* code_roots,
   453                               OopClosure* non_root_closure);
   455   // Set the saved marks of generations, if that makes sense.
   456   // In particular, if any generation might iterate over the oops
   457   // in other generations, it should call this method.
   458   void save_marks();
   460   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
   461   // allocated since the last call to save_marks in generations at or above
   462   // "level" (including the permanent generation.)  The "cur" closure is
   463   // applied to references in the generation at "level", and the "older"
   464   // closure to older (and permanent) generations.
   465 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
   466   void oop_since_save_marks_iterate(int level,                          \
   467                                     OopClosureType* cur,                \
   468                                     OopClosureType* older);
   470   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
   472 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
   474   // Returns "true" iff no allocations have occurred in any generation at
   475   // "level" or above (including the permanent generation) since the last
   476   // call to "save_marks".
   477   bool no_allocs_since_save_marks(int level);
   479   // Returns true if an incremental collection is likely to fail.
   480   // We optionally consult the young gen, if asked to do so;
   481   // otherwise we base our answer on whether the previous incremental
   482   // collection attempt failed with no corrective action as of yet.
   483   bool incremental_collection_will_fail(bool consult_young) {
   484     // Assumes a 2-generation system; the first disjunct remembers if an
   485     // incremental collection failed, even when we thought (second disjunct)
   486     // that it would not.
   487     assert(heap()->collector_policy()->is_two_generation_policy(),
   488            "the following definition may not be suitable for an n(>2)-generation system");
   489     return incremental_collection_failed() ||
   490            (consult_young && !get_gen(0)->collection_attempt_is_safe());
   491   }
   493   // If a generation bails out of an incremental collection,
   494   // it sets this flag.
   495   bool incremental_collection_failed() const {
   496     return _incremental_collection_failed;
   497   }
   498   void set_incremental_collection_failed() {
   499     _incremental_collection_failed = true;
   500   }
   501   void clear_incremental_collection_failed() {
   502     _incremental_collection_failed = false;
   503   }
   505   // Promotion of obj into gen failed.  Try to promote obj to higher non-perm
   506   // gens in ascending order; return the new location of obj if successful.
   507   // Otherwise, try expand-and-allocate for obj in each generation starting at
   508   // gen; return the new location of obj if successful.  Otherwise, return NULL.
   509   oop handle_failed_promotion(Generation* gen,
   510                               oop obj,
   511                               size_t obj_size);
   513 private:
   514   // Accessor for memory state verification support
   515   NOT_PRODUCT(
   516     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
   517   )
   519   // Override
   520   void check_for_non_bad_heap_word_value(HeapWord* addr,
   521     size_t size) PRODUCT_RETURN;
   523   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
   524   // in an essential way: compaction is performed across generations, by
   525   // iterating over spaces.
   526   void prepare_for_compaction();
   528   // Perform a full collection of the first max_level+1 generations.
   529   // This is the low level interface used by the public versions of
   530   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
   531   void collect_locked(GCCause::Cause cause, int max_level);
   533   // Returns success or failure.
   534   bool create_cms_collector();
   536   // In support of ExplicitGCInvokesConcurrent functionality
   537   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   538   void collect_mostly_concurrent(GCCause::Cause cause);
   540   // Save the tops of the spaces in all generations
   541   void record_gen_tops_before_GC() PRODUCT_RETURN;
   543 protected:
   544   virtual void gc_prologue(bool full);
   545   virtual void gc_epilogue(bool full);
   547 public:
   548   virtual void preload_and_dump(TRAPS) KERNEL_RETURN;
   549 };
   551 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP

mercurial