src/share/vm/memory/cardTableModRefBS.hpp

Thu, 24 Mar 2011 15:47:01 -0700

author
ysr
date
Thu, 24 Mar 2011 15:47:01 -0700
changeset 2710
5134fa1cfe63
parent 2314
f95d63e2154a
child 2715
abdfc822206f
permissions
-rw-r--r--

7029036: Card-table verification hangs with all framework collectors, except G1, even before the first GC
Summary: When verifying clean card ranges, use memory-range-bounded iteration over oops of objects overlapping that range, thus avoiding the otherwise quadratic worst-case cost of scanning large object arrays.
Reviewed-by: jmasa, jwilhelm, tonyp

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP
    26 #define SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP
    28 #include "memory/modRefBarrierSet.hpp"
    29 #include "oops/oop.hpp"
    30 #include "oops/oop.inline2.hpp"
    32 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
    33 // enumerate ref fields that have been modified (since the last
    34 // enumeration.)
    36 // As it currently stands, this barrier is *imprecise*: when a ref field in
    37 // an object "o" is modified, the card table entry for the card containing
    38 // the head of "o" is dirtied, not necessarily the card containing the
    39 // modified field itself.  For object arrays, however, the barrier *is*
    40 // precise; only the card containing the modified element is dirtied.
    41 // Any MemRegionClosures used to scan dirty cards should take these
    42 // considerations into account.
    44 class Generation;
    45 class OopsInGenClosure;
    46 class DirtyCardToOopClosure;
    48 class CardTableModRefBS: public ModRefBarrierSet {
    49   // Some classes get to look at some private stuff.
    50   friend class BytecodeInterpreter;
    51   friend class VMStructs;
    52   friend class CardTableRS;
    53   friend class CheckForUnmarkedOops; // Needs access to raw card bytes.
    54   friend class SharkBuilder;
    55 #ifndef PRODUCT
    56   // For debugging.
    57   friend class GuaranteeNotModClosure;
    58 #endif
    59  protected:
    61   enum CardValues {
    62     clean_card                  = -1,
    63     // The mask contains zeros in places for all other values.
    64     clean_card_mask             = clean_card - 31,
    66     dirty_card                  =  0,
    67     precleaned_card             =  1,
    68     claimed_card                =  2,
    69     deferred_card               =  4,
    70     last_card                   =  8,
    71     CT_MR_BS_last_reserved      = 16
    72   };
    74   // dirty and precleaned are equivalent wrt younger_refs_iter.
    75   static bool card_is_dirty_wrt_gen_iter(jbyte cv) {
    76     return cv == dirty_card || cv == precleaned_card;
    77   }
    79   // Returns "true" iff the value "cv" will cause the card containing it
    80   // to be scanned in the current traversal.  May be overridden by
    81   // subtypes.
    82   virtual bool card_will_be_scanned(jbyte cv) {
    83     return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv);
    84   }
    86   // Returns "true" iff the value "cv" may have represented a dirty card at
    87   // some point.
    88   virtual bool card_may_have_been_dirty(jbyte cv) {
    89     return card_is_dirty_wrt_gen_iter(cv);
    90   }
    92   // The declaration order of these const fields is important; see the
    93   // constructor before changing.
    94   const MemRegion _whole_heap;       // the region covered by the card table
    95   const size_t    _guard_index;      // index of very last element in the card
    96                                      // table; it is set to a guard value
    97                                      // (last_card) and should never be modified
    98   const size_t    _last_valid_index; // index of the last valid element
    99   const size_t    _page_size;        // page size used when mapping _byte_map
   100   const size_t    _byte_map_size;    // in bytes
   101   jbyte*          _byte_map;         // the card marking array
   103   int _cur_covered_regions;
   104   // The covered regions should be in address order.
   105   MemRegion* _covered;
   106   // The committed regions correspond one-to-one to the covered regions.
   107   // They represent the card-table memory that has been committed to service
   108   // the corresponding covered region.  It may be that committed region for
   109   // one covered region corresponds to a larger region because of page-size
   110   // roundings.  Thus, a committed region for one covered region may
   111   // actually extend onto the card-table space for the next covered region.
   112   MemRegion* _committed;
   114   // The last card is a guard card, and we commit the page for it so
   115   // we can use the card for verification purposes. We make sure we never
   116   // uncommit the MemRegion for that page.
   117   MemRegion _guard_region;
   119  protected:
   120   // Initialization utilities; covered_words is the size of the covered region
   121   // in, um, words.
   122   inline size_t cards_required(size_t covered_words);
   123   inline size_t compute_byte_map_size();
   125   // Finds and return the index of the region, if any, to which the given
   126   // region would be contiguous.  If none exists, assign a new region and
   127   // returns its index.  Requires that no more than the maximum number of
   128   // covered regions defined in the constructor are ever in use.
   129   int find_covering_region_by_base(HeapWord* base);
   131   // Same as above, but finds the region containing the given address
   132   // instead of starting at a given base address.
   133   int find_covering_region_containing(HeapWord* addr);
   135   // Resize one of the regions covered by the remembered set.
   136   void resize_covered_region(MemRegion new_region);
   138   // Returns the leftmost end of a committed region corresponding to a
   139   // covered region before covered region "ind", or else "NULL" if "ind" is
   140   // the first covered region.
   141   HeapWord* largest_prev_committed_end(int ind) const;
   143   // Returns the part of the region mr that doesn't intersect with
   144   // any committed region other than self.  Used to prevent uncommitting
   145   // regions that are also committed by other regions.  Also protects
   146   // against uncommitting the guard region.
   147   MemRegion committed_unique_to_self(int self, MemRegion mr) const;
   149   // Mapping from address to card marking array entry
   150   jbyte* byte_for(const void* p) const {
   151     assert(_whole_heap.contains(p),
   152            "out of bounds access to card marking array");
   153     jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift];
   154     assert(result >= _byte_map && result < _byte_map + _byte_map_size,
   155            "out of bounds accessor for card marking array");
   156     return result;
   157   }
   159   // The card table byte one after the card marking array
   160   // entry for argument address. Typically used for higher bounds
   161   // for loops iterating through the card table.
   162   jbyte* byte_after(const void* p) const {
   163     return byte_for(p) + 1;
   164   }
   166   // Iterate over the portion of the card-table which covers the given
   167   // region mr in the given space and apply cl to any dirty sub-regions
   168   // of mr. cl and dcto_cl must either be the same closure or cl must
   169   // wrap dcto_cl. Both are required - neither may be NULL. Also, dcto_cl
   170   // may be modified. Note that this function will operate in a parallel
   171   // mode if worker threads are available.
   172   void non_clean_card_iterate(Space* sp, MemRegion mr,
   173                               DirtyCardToOopClosure* dcto_cl,
   174                               MemRegionClosure* cl,
   175                               bool clear);
   177   // Utility function used to implement the other versions below.
   178   void non_clean_card_iterate_work(MemRegion mr, MemRegionClosure* cl,
   179                                    bool clear);
   181   void par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
   182                                        DirtyCardToOopClosure* dcto_cl,
   183                                        MemRegionClosure* cl,
   184                                        bool clear,
   185                                        int n_threads);
   187   // Dirty the bytes corresponding to "mr" (not all of which must be
   188   // covered.)
   189   void dirty_MemRegion(MemRegion mr);
   191   // Clear (to clean_card) the bytes entirely contained within "mr" (not
   192   // all of which must be covered.)
   193   void clear_MemRegion(MemRegion mr);
   195   // *** Support for parallel card scanning.
   197   enum SomeConstantsForParallelism {
   198     StridesPerThread    = 2,
   199     CardsPerStrideChunk = 256
   200   };
   202   // This is an array, one element per covered region of the card table.
   203   // Each entry is itself an array, with one element per chunk in the
   204   // covered region.  Each entry of these arrays is the lowest non-clean
   205   // card of the corresponding chunk containing part of an object from the
   206   // previous chunk, or else NULL.
   207   typedef jbyte*  CardPtr;
   208   typedef CardPtr* CardArr;
   209   CardArr* _lowest_non_clean;
   210   size_t*  _lowest_non_clean_chunk_size;
   211   uintptr_t* _lowest_non_clean_base_chunk_index;
   212   int* _last_LNC_resizing_collection;
   214   // Initializes "lowest_non_clean" to point to the array for the region
   215   // covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk
   216   // index of the corresponding to the first element of that array.
   217   // Ensures that these arrays are of sufficient size, allocating if necessary.
   218   // May be called by several threads concurrently.
   219   void get_LNC_array_for_space(Space* sp,
   220                                jbyte**& lowest_non_clean,
   221                                uintptr_t& lowest_non_clean_base_chunk_index,
   222                                size_t& lowest_non_clean_chunk_size);
   224   // Returns the number of chunks necessary to cover "mr".
   225   size_t chunks_to_cover(MemRegion mr) {
   226     return (size_t)(addr_to_chunk_index(mr.last()) -
   227                     addr_to_chunk_index(mr.start()) + 1);
   228   }
   230   // Returns the index of the chunk in a stride which
   231   // covers the given address.
   232   uintptr_t addr_to_chunk_index(const void* addr) {
   233     uintptr_t card = (uintptr_t) byte_for(addr);
   234     return card / CardsPerStrideChunk;
   235   }
   237   // Apply cl, which must either itself apply dcto_cl or be dcto_cl,
   238   // to the cards in the stride (of n_strides) within the given space.
   239   void process_stride(Space* sp,
   240                       MemRegion used,
   241                       jint stride, int n_strides,
   242                       DirtyCardToOopClosure* dcto_cl,
   243                       MemRegionClosure* cl,
   244                       bool clear,
   245                       jbyte** lowest_non_clean,
   246                       uintptr_t lowest_non_clean_base_chunk_index,
   247                       size_t lowest_non_clean_chunk_size);
   249   // Makes sure that chunk boundaries are handled appropriately, by
   250   // adjusting the min_done of dcto_cl, and by using a special card-table
   251   // value to indicate how min_done should be set.
   252   void process_chunk_boundaries(Space* sp,
   253                                 DirtyCardToOopClosure* dcto_cl,
   254                                 MemRegion chunk_mr,
   255                                 MemRegion used,
   256                                 jbyte** lowest_non_clean,
   257                                 uintptr_t lowest_non_clean_base_chunk_index,
   258                                 size_t    lowest_non_clean_chunk_size);
   260 public:
   261   // Constants
   262   enum SomePublicConstants {
   263     card_shift                  = 9,
   264     card_size                   = 1 << card_shift,
   265     card_size_in_words          = card_size / sizeof(HeapWord)
   266   };
   268   static int clean_card_val()      { return clean_card; }
   269   static int clean_card_mask_val() { return clean_card_mask; }
   270   static int dirty_card_val()      { return dirty_card; }
   271   static int claimed_card_val()    { return claimed_card; }
   272   static int precleaned_card_val() { return precleaned_card; }
   273   static int deferred_card_val()   { return deferred_card; }
   275   // For RTTI simulation.
   276   bool is_a(BarrierSet::Name bsn) {
   277     return bsn == BarrierSet::CardTableModRef || ModRefBarrierSet::is_a(bsn);
   278   }
   280   CardTableModRefBS(MemRegion whole_heap, int max_covered_regions);
   282   // *** Barrier set functions.
   284   bool has_write_ref_pre_barrier() { return false; }
   286   inline bool write_ref_needs_barrier(void* field, oop new_val) {
   287     // Note that this assumes the perm gen is the highest generation
   288     // in the address space
   289     return new_val != NULL && !new_val->is_perm();
   290   }
   292   // Record a reference update. Note that these versions are precise!
   293   // The scanning code has to handle the fact that the write barrier may be
   294   // either precise or imprecise. We make non-virtual inline variants of
   295   // these functions here for performance.
   296 protected:
   297   void write_ref_field_work(oop obj, size_t offset, oop newVal);
   298   virtual void write_ref_field_work(void* field, oop newVal);
   299 public:
   301   bool has_write_ref_array_opt() { return true; }
   302   bool has_write_region_opt() { return true; }
   304   inline void inline_write_region(MemRegion mr) {
   305     dirty_MemRegion(mr);
   306   }
   307 protected:
   308   void write_region_work(MemRegion mr) {
   309     inline_write_region(mr);
   310   }
   311 public:
   313   inline void inline_write_ref_array(MemRegion mr) {
   314     dirty_MemRegion(mr);
   315   }
   316 protected:
   317   void write_ref_array_work(MemRegion mr) {
   318     inline_write_ref_array(mr);
   319   }
   320 public:
   322   bool is_aligned(HeapWord* addr) {
   323     return is_card_aligned(addr);
   324   }
   326   // *** Card-table-barrier-specific things.
   328   template <class T> inline void inline_write_ref_field_pre(T* field, oop newVal) {}
   330   template <class T> inline void inline_write_ref_field(T* field, oop newVal) {
   331     jbyte* byte = byte_for((void*)field);
   332     *byte = dirty_card;
   333   }
   335   // These are used by G1, when it uses the card table as a temporary data
   336   // structure for card claiming.
   337   bool is_card_dirty(size_t card_index) {
   338     return _byte_map[card_index] == dirty_card_val();
   339   }
   341   void mark_card_dirty(size_t card_index) {
   342     _byte_map[card_index] = dirty_card_val();
   343   }
   345   bool is_card_claimed(size_t card_index) {
   346     jbyte val = _byte_map[card_index];
   347     return (val & (clean_card_mask_val() | claimed_card_val())) == claimed_card_val();
   348   }
   350   void set_card_claimed(size_t card_index) {
   351       jbyte val = _byte_map[card_index];
   352       if (val == clean_card_val()) {
   353         val = (jbyte)claimed_card_val();
   354       } else {
   355         val |= (jbyte)claimed_card_val();
   356       }
   357       _byte_map[card_index] = val;
   358   }
   360   bool claim_card(size_t card_index);
   362   bool is_card_clean(size_t card_index) {
   363     return _byte_map[card_index] == clean_card_val();
   364   }
   366   bool is_card_deferred(size_t card_index) {
   367     jbyte val = _byte_map[card_index];
   368     return (val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val();
   369   }
   371   bool mark_card_deferred(size_t card_index);
   373   // Card marking array base (adjusted for heap low boundary)
   374   // This would be the 0th element of _byte_map, if the heap started at 0x0.
   375   // But since the heap starts at some higher address, this points to somewhere
   376   // before the beginning of the actual _byte_map.
   377   jbyte* byte_map_base;
   379   // Return true if "p" is at the start of a card.
   380   bool is_card_aligned(HeapWord* p) {
   381     jbyte* pcard = byte_for(p);
   382     return (addr_for(pcard) == p);
   383   }
   385   // The kinds of precision a CardTableModRefBS may offer.
   386   enum PrecisionStyle {
   387     Precise,
   388     ObjHeadPreciseArray
   389   };
   391   // Tells what style of precision this card table offers.
   392   PrecisionStyle precision() {
   393     return ObjHeadPreciseArray; // Only one supported for now.
   394   }
   396   // ModRefBS functions.
   397   virtual void invalidate(MemRegion mr, bool whole_heap = false);
   398   void clear(MemRegion mr);
   399   void dirty(MemRegion mr);
   400   void mod_oop_in_space_iterate(Space* sp, OopClosure* cl,
   401                                 bool clear = false,
   402                                 bool before_save_marks = false);
   404   // *** Card-table-RemSet-specific things.
   406   // Invoke "cl.do_MemRegion" on a set of MemRegions that collectively
   407   // includes all the modified cards (expressing each card as a
   408   // MemRegion).  Thus, several modified cards may be lumped into one
   409   // region.  The regions are non-overlapping, and are visited in
   410   // *decreasing* address order.  (This order aids with imprecise card
   411   // marking, where a dirty card may cause scanning, and summarization
   412   // marking, of objects that extend onto subsequent cards.)
   413   // If "clear" is true, the card is (conceptually) marked unmodified before
   414   // applying the closure.
   415   void mod_card_iterate(MemRegionClosure* cl, bool clear = false) {
   416     non_clean_card_iterate_work(_whole_heap, cl, clear);
   417   }
   419   // Like the "mod_cards_iterate" above, except only invokes the closure
   420   // for cards within the MemRegion "mr" (which is required to be
   421   // card-aligned and sized.)
   422   void mod_card_iterate(MemRegion mr, MemRegionClosure* cl,
   423                         bool clear = false) {
   424     non_clean_card_iterate_work(mr, cl, clear);
   425   }
   427   static uintx ct_max_alignment_constraint();
   429   // Apply closure "cl" to the dirty cards containing some part of
   430   // MemRegion "mr".
   431   void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
   433   // Return the MemRegion corresponding to the first maximal run
   434   // of dirty cards lying completely within MemRegion mr.
   435   // If reset is "true", then sets those card table entries to the given
   436   // value.
   437   MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
   438                                          int reset_val);
   440   // Set all the dirty cards in the given region to precleaned state.
   441   void preclean_dirty_cards(MemRegion mr);
   443   // Provide read-only access to the card table array.
   444   const jbyte* byte_for_const(const void* p) const {
   445     return byte_for(p);
   446   }
   447   const jbyte* byte_after_const(const void* p) const {
   448     return byte_after(p);
   449   }
   451   // Mapping from card marking array entry to address of first word
   452   HeapWord* addr_for(const jbyte* p) const {
   453     assert(p >= _byte_map && p < _byte_map + _byte_map_size,
   454            "out of bounds access to card marking array");
   455     size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte));
   456     HeapWord* result = (HeapWord*) (delta << card_shift);
   457     assert(_whole_heap.contains(result),
   458            "out of bounds accessor from card marking array");
   459     return result;
   460   }
   462   // Mapping from address to card marking array index.
   463   size_t index_for(void* p) {
   464     assert(_whole_heap.contains(p),
   465            "out of bounds access to card marking array");
   466     return byte_for(p) - _byte_map;
   467   }
   469   const jbyte* byte_for_index(const size_t card_index) const {
   470     return _byte_map + card_index;
   471   }
   473   void verify();
   474   void verify_guard();
   476   void verify_clean_region(MemRegion mr) PRODUCT_RETURN;
   477   void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
   479   static size_t par_chunk_heapword_alignment() {
   480     return CardsPerStrideChunk * card_size_in_words;
   481   }
   483 };
   485 class CardTableRS;
   487 // A specialization for the CardTableRS gen rem set.
   488 class CardTableModRefBSForCTRS: public CardTableModRefBS {
   489   CardTableRS* _rs;
   490 protected:
   491   bool card_will_be_scanned(jbyte cv);
   492   bool card_may_have_been_dirty(jbyte cv);
   493 public:
   494   CardTableModRefBSForCTRS(MemRegion whole_heap,
   495                            int max_covered_regions) :
   496     CardTableModRefBS(whole_heap, max_covered_regions) {}
   498   void set_CTRS(CardTableRS* rs) { _rs = rs; }
   499 };
   501 #endif // SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP

mercurial