src/share/vm/opto/library_call.cpp

Tue, 26 Nov 2013 18:38:19 -0800

author
goetz
date
Tue, 26 Nov 2013 18:38:19 -0800
changeset 6489
50fdb38839eb
parent 6479
2113136690bc
child 6502
3514ee402842
permissions
-rw-r--r--

8028515: PPPC64 (part 113.2): opto: Introduce LoadFence/StoreFence.
Summary: Use new nodes for loadFence/storeFence intrinsics in C2.
Reviewed-by: kvn, dholmes

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mathexactnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/runtime.hpp"
    39 #include "opto/subnode.hpp"
    40 #include "prims/nativeLookup.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "trace/traceMacros.hpp"
    44 class LibraryIntrinsic : public InlineCallGenerator {
    45   // Extend the set of intrinsics known to the runtime:
    46  public:
    47  private:
    48   bool             _is_virtual;
    49   bool             _is_predicted;
    50   bool             _does_virtual_dispatch;
    51   vmIntrinsics::ID _intrinsic_id;
    53  public:
    54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
    55     : InlineCallGenerator(m),
    56       _is_virtual(is_virtual),
    57       _is_predicted(is_predicted),
    58       _does_virtual_dispatch(does_virtual_dispatch),
    59       _intrinsic_id(id)
    60   {
    61   }
    62   virtual bool is_intrinsic() const { return true; }
    63   virtual bool is_virtual()   const { return _is_virtual; }
    64   virtual bool is_predicted()   const { return _is_predicted; }
    65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
    67   virtual Node* generate_predicate(JVMState* jvms);
    68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    69 };
    72 // Local helper class for LibraryIntrinsic:
    73 class LibraryCallKit : public GraphKit {
    74  private:
    75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    76   Node*             _result;        // the result node, if any
    77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    81  public:
    82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    83     : GraphKit(jvms),
    84       _intrinsic(intrinsic),
    85       _result(NULL)
    86   {
    87     // Check if this is a root compile.  In that case we don't have a caller.
    88     if (!jvms->has_method()) {
    89       _reexecute_sp = sp();
    90     } else {
    91       // Find out how many arguments the interpreter needs when deoptimizing
    92       // and save the stack pointer value so it can used by uncommon_trap.
    93       // We find the argument count by looking at the declared signature.
    94       bool ignored_will_link;
    95       ciSignature* declared_signature = NULL;
    96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
    97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
    98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
    99     }
   100   }
   102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   104   ciMethod*         caller()    const    { return jvms()->method(); }
   105   int               bci()       const    { return jvms()->bci(); }
   106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   108   ciMethod*         callee()    const    { return _intrinsic->method(); }
   110   bool try_to_inline();
   111   Node* try_to_predicate();
   113   void push_result() {
   114     // Push the result onto the stack.
   115     if (!stopped() && result() != NULL) {
   116       BasicType bt = result()->bottom_type()->basic_type();
   117       push_node(bt, result());
   118     }
   119   }
   121  private:
   122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   124   }
   126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   127   void  set_result(RegionNode* region, PhiNode* value);
   128   Node*     result() { return _result; }
   130   virtual int reexecute_sp() { return _reexecute_sp; }
   132   // Helper functions to inline natives
   133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   134   Node* generate_slow_guard(Node* test, RegionNode* region);
   135   Node* generate_fair_guard(Node* test, RegionNode* region);
   136   Node* generate_negative_guard(Node* index, RegionNode* region,
   137                                 // resulting CastII of index:
   138                                 Node* *pos_index = NULL);
   139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   140                                    // resulting CastII of index:
   141                                    Node* *pos_index = NULL);
   142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   143                              Node* array_length,
   144                              RegionNode* region);
   145   Node* generate_current_thread(Node* &tls_output);
   146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   148   Node* load_mirror_from_klass(Node* klass);
   149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   150                                       RegionNode* region, int null_path,
   151                                       int offset);
   152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   153                                RegionNode* region, int null_path) {
   154     int offset = java_lang_Class::klass_offset_in_bytes();
   155     return load_klass_from_mirror_common(mirror, never_see_null,
   156                                          region, null_path,
   157                                          offset);
   158   }
   159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   160                                      RegionNode* region, int null_path) {
   161     int offset = java_lang_Class::array_klass_offset_in_bytes();
   162     return load_klass_from_mirror_common(mirror, never_see_null,
   163                                          region, null_path,
   164                                          offset);
   165   }
   166   Node* generate_access_flags_guard(Node* kls,
   167                                     int modifier_mask, int modifier_bits,
   168                                     RegionNode* region);
   169   Node* generate_interface_guard(Node* kls, RegionNode* region);
   170   Node* generate_array_guard(Node* kls, RegionNode* region) {
   171     return generate_array_guard_common(kls, region, false, false);
   172   }
   173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   174     return generate_array_guard_common(kls, region, false, true);
   175   }
   176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   177     return generate_array_guard_common(kls, region, true, false);
   178   }
   179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   180     return generate_array_guard_common(kls, region, true, true);
   181   }
   182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   183                                     bool obj_array, bool not_array);
   184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   186                                      bool is_virtual = false, bool is_static = false);
   187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   188     return generate_method_call(method_id, false, true);
   189   }
   190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   191     return generate_method_call(method_id, true, false);
   192   }
   193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   197   bool inline_string_compareTo();
   198   bool inline_string_indexOf();
   199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   200   bool inline_string_equals();
   201   Node* round_double_node(Node* n);
   202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   203   bool inline_math_native(vmIntrinsics::ID id);
   204   bool inline_trig(vmIntrinsics::ID id);
   205   bool inline_math(vmIntrinsics::ID id);
   206   void inline_math_mathExact(Node* math);
   207   bool inline_math_addExactI(bool is_increment);
   208   bool inline_math_addExactL(bool is_increment);
   209   bool inline_math_multiplyExactI();
   210   bool inline_math_multiplyExactL();
   211   bool inline_math_negateExactI();
   212   bool inline_math_negateExactL();
   213   bool inline_math_subtractExactI(bool is_decrement);
   214   bool inline_math_subtractExactL(bool is_decrement);
   215   bool inline_exp();
   216   bool inline_pow();
   217   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   218   bool inline_min_max(vmIntrinsics::ID id);
   219   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   220   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   221   int classify_unsafe_addr(Node* &base, Node* &offset);
   222   Node* make_unsafe_address(Node* base, Node* offset);
   223   // Helper for inline_unsafe_access.
   224   // Generates the guards that check whether the result of
   225   // Unsafe.getObject should be recorded in an SATB log buffer.
   226   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   227   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   228   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   229   static bool klass_needs_init_guard(Node* kls);
   230   bool inline_unsafe_allocate();
   231   bool inline_unsafe_copyMemory();
   232   bool inline_native_currentThread();
   233 #ifdef TRACE_HAVE_INTRINSICS
   234   bool inline_native_classID();
   235   bool inline_native_threadID();
   236 #endif
   237   bool inline_native_time_funcs(address method, const char* funcName);
   238   bool inline_native_isInterrupted();
   239   bool inline_native_Class_query(vmIntrinsics::ID id);
   240   bool inline_native_subtype_check();
   242   bool inline_native_newArray();
   243   bool inline_native_getLength();
   244   bool inline_array_copyOf(bool is_copyOfRange);
   245   bool inline_array_equals();
   246   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   247   bool inline_native_clone(bool is_virtual);
   248   bool inline_native_Reflection_getCallerClass();
   249   // Helper function for inlining native object hash method
   250   bool inline_native_hashcode(bool is_virtual, bool is_static);
   251   bool inline_native_getClass();
   253   // Helper functions for inlining arraycopy
   254   bool inline_arraycopy();
   255   void generate_arraycopy(const TypePtr* adr_type,
   256                           BasicType basic_elem_type,
   257                           Node* src,  Node* src_offset,
   258                           Node* dest, Node* dest_offset,
   259                           Node* copy_length,
   260                           bool disjoint_bases = false,
   261                           bool length_never_negative = false,
   262                           RegionNode* slow_region = NULL);
   263   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   264                                                 RegionNode* slow_region);
   265   void generate_clear_array(const TypePtr* adr_type,
   266                             Node* dest,
   267                             BasicType basic_elem_type,
   268                             Node* slice_off,
   269                             Node* slice_len,
   270                             Node* slice_end);
   271   bool generate_block_arraycopy(const TypePtr* adr_type,
   272                                 BasicType basic_elem_type,
   273                                 AllocateNode* alloc,
   274                                 Node* src,  Node* src_offset,
   275                                 Node* dest, Node* dest_offset,
   276                                 Node* dest_size, bool dest_uninitialized);
   277   void generate_slow_arraycopy(const TypePtr* adr_type,
   278                                Node* src,  Node* src_offset,
   279                                Node* dest, Node* dest_offset,
   280                                Node* copy_length, bool dest_uninitialized);
   281   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   282                                      Node* dest_elem_klass,
   283                                      Node* src,  Node* src_offset,
   284                                      Node* dest, Node* dest_offset,
   285                                      Node* copy_length, bool dest_uninitialized);
   286   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   287                                    Node* src,  Node* src_offset,
   288                                    Node* dest, Node* dest_offset,
   289                                    Node* copy_length, bool dest_uninitialized);
   290   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   291                                     BasicType basic_elem_type,
   292                                     bool disjoint_bases,
   293                                     Node* src,  Node* src_offset,
   294                                     Node* dest, Node* dest_offset,
   295                                     Node* copy_length, bool dest_uninitialized);
   296   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   297   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   298   bool inline_unsafe_ordered_store(BasicType type);
   299   bool inline_unsafe_fence(vmIntrinsics::ID id);
   300   bool inline_fp_conversions(vmIntrinsics::ID id);
   301   bool inline_number_methods(vmIntrinsics::ID id);
   302   bool inline_reference_get();
   303   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   304   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   305   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   306   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   307   bool inline_encodeISOArray();
   308   bool inline_updateCRC32();
   309   bool inline_updateBytesCRC32();
   310   bool inline_updateByteBufferCRC32();
   311 };
   314 //---------------------------make_vm_intrinsic----------------------------
   315 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   316   vmIntrinsics::ID id = m->intrinsic_id();
   317   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   319   if (DisableIntrinsic[0] != '\0'
   320       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   321     // disabled by a user request on the command line:
   322     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   323     return NULL;
   324   }
   326   if (!m->is_loaded()) {
   327     // do not attempt to inline unloaded methods
   328     return NULL;
   329   }
   331   // Only a few intrinsics implement a virtual dispatch.
   332   // They are expensive calls which are also frequently overridden.
   333   if (is_virtual) {
   334     switch (id) {
   335     case vmIntrinsics::_hashCode:
   336     case vmIntrinsics::_clone:
   337       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   338       break;
   339     default:
   340       return NULL;
   341     }
   342   }
   344   // -XX:-InlineNatives disables nearly all intrinsics:
   345   if (!InlineNatives) {
   346     switch (id) {
   347     case vmIntrinsics::_indexOf:
   348     case vmIntrinsics::_compareTo:
   349     case vmIntrinsics::_equals:
   350     case vmIntrinsics::_equalsC:
   351     case vmIntrinsics::_getAndAddInt:
   352     case vmIntrinsics::_getAndAddLong:
   353     case vmIntrinsics::_getAndSetInt:
   354     case vmIntrinsics::_getAndSetLong:
   355     case vmIntrinsics::_getAndSetObject:
   356     case vmIntrinsics::_loadFence:
   357     case vmIntrinsics::_storeFence:
   358     case vmIntrinsics::_fullFence:
   359       break;  // InlineNatives does not control String.compareTo
   360     case vmIntrinsics::_Reference_get:
   361       break;  // InlineNatives does not control Reference.get
   362     default:
   363       return NULL;
   364     }
   365   }
   367   bool is_predicted = false;
   368   bool does_virtual_dispatch = false;
   370   switch (id) {
   371   case vmIntrinsics::_compareTo:
   372     if (!SpecialStringCompareTo)  return NULL;
   373     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   374     break;
   375   case vmIntrinsics::_indexOf:
   376     if (!SpecialStringIndexOf)  return NULL;
   377     break;
   378   case vmIntrinsics::_equals:
   379     if (!SpecialStringEquals)  return NULL;
   380     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   381     break;
   382   case vmIntrinsics::_equalsC:
   383     if (!SpecialArraysEquals)  return NULL;
   384     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   385     break;
   386   case vmIntrinsics::_arraycopy:
   387     if (!InlineArrayCopy)  return NULL;
   388     break;
   389   case vmIntrinsics::_copyMemory:
   390     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   391     if (!InlineArrayCopy)  return NULL;
   392     break;
   393   case vmIntrinsics::_hashCode:
   394     if (!InlineObjectHash)  return NULL;
   395     does_virtual_dispatch = true;
   396     break;
   397   case vmIntrinsics::_clone:
   398     does_virtual_dispatch = true;
   399   case vmIntrinsics::_copyOf:
   400   case vmIntrinsics::_copyOfRange:
   401     if (!InlineObjectCopy)  return NULL;
   402     // These also use the arraycopy intrinsic mechanism:
   403     if (!InlineArrayCopy)  return NULL;
   404     break;
   405   case vmIntrinsics::_encodeISOArray:
   406     if (!SpecialEncodeISOArray)  return NULL;
   407     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   408     break;
   409   case vmIntrinsics::_checkIndex:
   410     // We do not intrinsify this.  The optimizer does fine with it.
   411     return NULL;
   413   case vmIntrinsics::_getCallerClass:
   414     if (!UseNewReflection)  return NULL;
   415     if (!InlineReflectionGetCallerClass)  return NULL;
   416     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   417     break;
   419   case vmIntrinsics::_bitCount_i:
   420     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   421     break;
   423   case vmIntrinsics::_bitCount_l:
   424     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   425     break;
   427   case vmIntrinsics::_numberOfLeadingZeros_i:
   428     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   429     break;
   431   case vmIntrinsics::_numberOfLeadingZeros_l:
   432     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   433     break;
   435   case vmIntrinsics::_numberOfTrailingZeros_i:
   436     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   437     break;
   439   case vmIntrinsics::_numberOfTrailingZeros_l:
   440     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   441     break;
   443   case vmIntrinsics::_reverseBytes_c:
   444     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   445     break;
   446   case vmIntrinsics::_reverseBytes_s:
   447     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   448     break;
   449   case vmIntrinsics::_reverseBytes_i:
   450     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   451     break;
   452   case vmIntrinsics::_reverseBytes_l:
   453     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   454     break;
   456   case vmIntrinsics::_Reference_get:
   457     // Use the intrinsic version of Reference.get() so that the value in
   458     // the referent field can be registered by the G1 pre-barrier code.
   459     // Also add memory barrier to prevent commoning reads from this field
   460     // across safepoint since GC can change it value.
   461     break;
   463   case vmIntrinsics::_compareAndSwapObject:
   464 #ifdef _LP64
   465     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   466 #endif
   467     break;
   469   case vmIntrinsics::_compareAndSwapLong:
   470     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   471     break;
   473   case vmIntrinsics::_getAndAddInt:
   474     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   475     break;
   477   case vmIntrinsics::_getAndAddLong:
   478     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   479     break;
   481   case vmIntrinsics::_getAndSetInt:
   482     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   483     break;
   485   case vmIntrinsics::_getAndSetLong:
   486     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   487     break;
   489   case vmIntrinsics::_getAndSetObject:
   490 #ifdef _LP64
   491     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   492     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   493     break;
   494 #else
   495     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   496     break;
   497 #endif
   499   case vmIntrinsics::_aescrypt_encryptBlock:
   500   case vmIntrinsics::_aescrypt_decryptBlock:
   501     if (!UseAESIntrinsics) return NULL;
   502     break;
   504   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   505   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   506     if (!UseAESIntrinsics) return NULL;
   507     // these two require the predicated logic
   508     is_predicted = true;
   509     break;
   511   case vmIntrinsics::_updateCRC32:
   512   case vmIntrinsics::_updateBytesCRC32:
   513   case vmIntrinsics::_updateByteBufferCRC32:
   514     if (!UseCRC32Intrinsics) return NULL;
   515     break;
   517   case vmIntrinsics::_incrementExactI:
   518   case vmIntrinsics::_addExactI:
   519     if (!Matcher::match_rule_supported(Op_AddExactI) || !UseMathExactIntrinsics) return NULL;
   520     break;
   521   case vmIntrinsics::_incrementExactL:
   522   case vmIntrinsics::_addExactL:
   523     if (!Matcher::match_rule_supported(Op_AddExactL) || !UseMathExactIntrinsics) return NULL;
   524     break;
   525   case vmIntrinsics::_decrementExactI:
   526   case vmIntrinsics::_subtractExactI:
   527     if (!Matcher::match_rule_supported(Op_SubExactI) || !UseMathExactIntrinsics) return NULL;
   528     break;
   529   case vmIntrinsics::_decrementExactL:
   530   case vmIntrinsics::_subtractExactL:
   531     if (!Matcher::match_rule_supported(Op_SubExactL) || !UseMathExactIntrinsics) return NULL;
   532     break;
   533   case vmIntrinsics::_negateExactI:
   534     if (!Matcher::match_rule_supported(Op_NegExactI) || !UseMathExactIntrinsics) return NULL;
   535     break;
   536   case vmIntrinsics::_negateExactL:
   537     if (!Matcher::match_rule_supported(Op_NegExactL) || !UseMathExactIntrinsics) return NULL;
   538     break;
   539   case vmIntrinsics::_multiplyExactI:
   540     if (!Matcher::match_rule_supported(Op_MulExactI) || !UseMathExactIntrinsics) return NULL;
   541     break;
   542   case vmIntrinsics::_multiplyExactL:
   543     if (!Matcher::match_rule_supported(Op_MulExactL) || !UseMathExactIntrinsics) return NULL;
   544     break;
   546  default:
   547     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   548     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   549     break;
   550   }
   552   // -XX:-InlineClassNatives disables natives from the Class class.
   553   // The flag applies to all reflective calls, notably Array.newArray
   554   // (visible to Java programmers as Array.newInstance).
   555   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   556       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   557     if (!InlineClassNatives)  return NULL;
   558   }
   560   // -XX:-InlineThreadNatives disables natives from the Thread class.
   561   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   562     if (!InlineThreadNatives)  return NULL;
   563   }
   565   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   566   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   567       m->holder()->name() == ciSymbol::java_lang_Float() ||
   568       m->holder()->name() == ciSymbol::java_lang_Double()) {
   569     if (!InlineMathNatives)  return NULL;
   570   }
   572   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   573   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   574     if (!InlineUnsafeOps)  return NULL;
   575   }
   577   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
   578 }
   580 //----------------------register_library_intrinsics-----------------------
   581 // Initialize this file's data structures, for each Compile instance.
   582 void Compile::register_library_intrinsics() {
   583   // Nothing to do here.
   584 }
   586 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
   587   LibraryCallKit kit(jvms, this);
   588   Compile* C = kit.C;
   589   int nodes = C->unique();
   590 #ifndef PRODUCT
   591   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   592     char buf[1000];
   593     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   594     tty->print_cr("Intrinsic %s", str);
   595   }
   596 #endif
   597   ciMethod* callee = kit.callee();
   598   const int bci    = kit.bci();
   600   // Try to inline the intrinsic.
   601   if (kit.try_to_inline()) {
   602     if (C->print_intrinsics() || C->print_inlining()) {
   603       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   604     }
   605     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   606     if (C->log()) {
   607       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   608                      vmIntrinsics::name_at(intrinsic_id()),
   609                      (is_virtual() ? " virtual='1'" : ""),
   610                      C->unique() - nodes);
   611     }
   612     // Push the result from the inlined method onto the stack.
   613     kit.push_result();
   614     return kit.transfer_exceptions_into_jvms();
   615   }
   617   // The intrinsic bailed out
   618   if (C->print_intrinsics() || C->print_inlining()) {
   619     if (jvms->has_method()) {
   620       // Not a root compile.
   621       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   622       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   623     } else {
   624       // Root compile
   625       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   626                vmIntrinsics::name_at(intrinsic_id()),
   627                (is_virtual() ? " (virtual)" : ""), bci);
   628     }
   629   }
   630   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   631   return NULL;
   632 }
   634 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   635   LibraryCallKit kit(jvms, this);
   636   Compile* C = kit.C;
   637   int nodes = C->unique();
   638 #ifndef PRODUCT
   639   assert(is_predicted(), "sanity");
   640   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   641     char buf[1000];
   642     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   643     tty->print_cr("Predicate for intrinsic %s", str);
   644   }
   645 #endif
   646   ciMethod* callee = kit.callee();
   647   const int bci    = kit.bci();
   649   Node* slow_ctl = kit.try_to_predicate();
   650   if (!kit.failing()) {
   651     if (C->print_intrinsics() || C->print_inlining()) {
   652       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   653     }
   654     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   655     if (C->log()) {
   656       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   657                      vmIntrinsics::name_at(intrinsic_id()),
   658                      (is_virtual() ? " virtual='1'" : ""),
   659                      C->unique() - nodes);
   660     }
   661     return slow_ctl; // Could be NULL if the check folds.
   662   }
   664   // The intrinsic bailed out
   665   if (C->print_intrinsics() || C->print_inlining()) {
   666     if (jvms->has_method()) {
   667       // Not a root compile.
   668       const char* msg = "failed to generate predicate for intrinsic";
   669       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   670     } else {
   671       // Root compile
   672       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   673                                         vmIntrinsics::name_at(intrinsic_id()),
   674                                         (is_virtual() ? " (virtual)" : ""), bci);
   675     }
   676   }
   677   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   678   return NULL;
   679 }
   681 bool LibraryCallKit::try_to_inline() {
   682   // Handle symbolic names for otherwise undistinguished boolean switches:
   683   const bool is_store       = true;
   684   const bool is_native_ptr  = true;
   685   const bool is_static      = true;
   686   const bool is_volatile    = true;
   688   if (!jvms()->has_method()) {
   689     // Root JVMState has a null method.
   690     assert(map()->memory()->Opcode() == Op_Parm, "");
   691     // Insert the memory aliasing node
   692     set_all_memory(reset_memory());
   693   }
   694   assert(merged_memory(), "");
   697   switch (intrinsic_id()) {
   698   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   699   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   700   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   702   case vmIntrinsics::_dsin:
   703   case vmIntrinsics::_dcos:
   704   case vmIntrinsics::_dtan:
   705   case vmIntrinsics::_dabs:
   706   case vmIntrinsics::_datan2:
   707   case vmIntrinsics::_dsqrt:
   708   case vmIntrinsics::_dexp:
   709   case vmIntrinsics::_dlog:
   710   case vmIntrinsics::_dlog10:
   711   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   713   case vmIntrinsics::_min:
   714   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   716   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
   717   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
   718   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
   719   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
   720   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
   721   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
   722   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
   723   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
   724   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
   725   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
   726   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
   727   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
   729   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   731   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   732   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   733   case vmIntrinsics::_equals:                   return inline_string_equals();
   735   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   736   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   737   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   738   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   739   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   740   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   741   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   742   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   743   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   745   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   746   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   747   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   748   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   749   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   750   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   751   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   752   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   753   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   755   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   756   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   757   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   758   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   759   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   760   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   761   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   762   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   764   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   765   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   766   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   767   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   768   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   769   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   770   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   771   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   773   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   774   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   775   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   776   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   777   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   778   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   779   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   780   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   781   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   783   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   784   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   785   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   786   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   787   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   788   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   789   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   790   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   791   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   793   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   794   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   795   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   796   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   798   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   799   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   800   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   802   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   803   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   804   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   806   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   807   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   808   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   809   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   810   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   812   case vmIntrinsics::_loadFence:
   813   case vmIntrinsics::_storeFence:
   814   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   816   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   817   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   819 #ifdef TRACE_HAVE_INTRINSICS
   820   case vmIntrinsics::_classID:                  return inline_native_classID();
   821   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   822   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   823 #endif
   824   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   825   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   826   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   827   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   828   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   829   case vmIntrinsics::_getLength:                return inline_native_getLength();
   830   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   831   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   832   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   833   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   835   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   837   case vmIntrinsics::_isInstance:
   838   case vmIntrinsics::_getModifiers:
   839   case vmIntrinsics::_isInterface:
   840   case vmIntrinsics::_isArray:
   841   case vmIntrinsics::_isPrimitive:
   842   case vmIntrinsics::_getSuperclass:
   843   case vmIntrinsics::_getComponentType:
   844   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   846   case vmIntrinsics::_floatToRawIntBits:
   847   case vmIntrinsics::_floatToIntBits:
   848   case vmIntrinsics::_intBitsToFloat:
   849   case vmIntrinsics::_doubleToRawLongBits:
   850   case vmIntrinsics::_doubleToLongBits:
   851   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   853   case vmIntrinsics::_numberOfLeadingZeros_i:
   854   case vmIntrinsics::_numberOfLeadingZeros_l:
   855   case vmIntrinsics::_numberOfTrailingZeros_i:
   856   case vmIntrinsics::_numberOfTrailingZeros_l:
   857   case vmIntrinsics::_bitCount_i:
   858   case vmIntrinsics::_bitCount_l:
   859   case vmIntrinsics::_reverseBytes_i:
   860   case vmIntrinsics::_reverseBytes_l:
   861   case vmIntrinsics::_reverseBytes_s:
   862   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   864   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   866   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   868   case vmIntrinsics::_aescrypt_encryptBlock:
   869   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   871   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   872   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   873     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   875   case vmIntrinsics::_encodeISOArray:
   876     return inline_encodeISOArray();
   878   case vmIntrinsics::_updateCRC32:
   879     return inline_updateCRC32();
   880   case vmIntrinsics::_updateBytesCRC32:
   881     return inline_updateBytesCRC32();
   882   case vmIntrinsics::_updateByteBufferCRC32:
   883     return inline_updateByteBufferCRC32();
   885   default:
   886     // If you get here, it may be that someone has added a new intrinsic
   887     // to the list in vmSymbols.hpp without implementing it here.
   888 #ifndef PRODUCT
   889     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   890       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   891                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   892     }
   893 #endif
   894     return false;
   895   }
   896 }
   898 Node* LibraryCallKit::try_to_predicate() {
   899   if (!jvms()->has_method()) {
   900     // Root JVMState has a null method.
   901     assert(map()->memory()->Opcode() == Op_Parm, "");
   902     // Insert the memory aliasing node
   903     set_all_memory(reset_memory());
   904   }
   905   assert(merged_memory(), "");
   907   switch (intrinsic_id()) {
   908   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   909     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   910   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   911     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   913   default:
   914     // If you get here, it may be that someone has added a new intrinsic
   915     // to the list in vmSymbols.hpp without implementing it here.
   916 #ifndef PRODUCT
   917     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   918       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   919                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   920     }
   921 #endif
   922     Node* slow_ctl = control();
   923     set_control(top()); // No fast path instrinsic
   924     return slow_ctl;
   925   }
   926 }
   928 //------------------------------set_result-------------------------------
   929 // Helper function for finishing intrinsics.
   930 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   931   record_for_igvn(region);
   932   set_control(_gvn.transform(region));
   933   set_result( _gvn.transform(value));
   934   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   935 }
   937 //------------------------------generate_guard---------------------------
   938 // Helper function for generating guarded fast-slow graph structures.
   939 // The given 'test', if true, guards a slow path.  If the test fails
   940 // then a fast path can be taken.  (We generally hope it fails.)
   941 // In all cases, GraphKit::control() is updated to the fast path.
   942 // The returned value represents the control for the slow path.
   943 // The return value is never 'top'; it is either a valid control
   944 // or NULL if it is obvious that the slow path can never be taken.
   945 // Also, if region and the slow control are not NULL, the slow edge
   946 // is appended to the region.
   947 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   948   if (stopped()) {
   949     // Already short circuited.
   950     return NULL;
   951   }
   953   // Build an if node and its projections.
   954   // If test is true we take the slow path, which we assume is uncommon.
   955   if (_gvn.type(test) == TypeInt::ZERO) {
   956     // The slow branch is never taken.  No need to build this guard.
   957     return NULL;
   958   }
   960   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   962   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
   963   if (if_slow == top()) {
   964     // The slow branch is never taken.  No need to build this guard.
   965     return NULL;
   966   }
   968   if (region != NULL)
   969     region->add_req(if_slow);
   971   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
   972   set_control(if_fast);
   974   return if_slow;
   975 }
   977 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   978   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   979 }
   980 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   981   return generate_guard(test, region, PROB_FAIR);
   982 }
   984 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   985                                                      Node* *pos_index) {
   986   if (stopped())
   987     return NULL;                // already stopped
   988   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   989     return NULL;                // index is already adequately typed
   990   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   991   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
   992   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   993   if (is_neg != NULL && pos_index != NULL) {
   994     // Emulate effect of Parse::adjust_map_after_if.
   995     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   996     ccast->set_req(0, control());
   997     (*pos_index) = _gvn.transform(ccast);
   998   }
   999   return is_neg;
  1002 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
  1003                                                         Node* *pos_index) {
  1004   if (stopped())
  1005     return NULL;                // already stopped
  1006   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
  1007     return NULL;                // index is already adequately typed
  1008   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1009   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  1010   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
  1011   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  1012   if (is_notp != NULL && pos_index != NULL) {
  1013     // Emulate effect of Parse::adjust_map_after_if.
  1014     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
  1015     ccast->set_req(0, control());
  1016     (*pos_index) = _gvn.transform(ccast);
  1018   return is_notp;
  1021 // Make sure that 'position' is a valid limit index, in [0..length].
  1022 // There are two equivalent plans for checking this:
  1023 //   A. (offset + copyLength)  unsigned<=  arrayLength
  1024 //   B. offset  <=  (arrayLength - copyLength)
  1025 // We require that all of the values above, except for the sum and
  1026 // difference, are already known to be non-negative.
  1027 // Plan A is robust in the face of overflow, if offset and copyLength
  1028 // are both hugely positive.
  1029 //
  1030 // Plan B is less direct and intuitive, but it does not overflow at
  1031 // all, since the difference of two non-negatives is always
  1032 // representable.  Whenever Java methods must perform the equivalent
  1033 // check they generally use Plan B instead of Plan A.
  1034 // For the moment we use Plan A.
  1035 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
  1036                                                   Node* subseq_length,
  1037                                                   Node* array_length,
  1038                                                   RegionNode* region) {
  1039   if (stopped())
  1040     return NULL;                // already stopped
  1041   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1042   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1043     return NULL;                // common case of whole-array copy
  1044   Node* last = subseq_length;
  1045   if (!zero_offset)             // last += offset
  1046     last = _gvn.transform(new (C) AddINode(last, offset));
  1047   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1048   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1049   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1050   return is_over;
  1054 //--------------------------generate_current_thread--------------------
  1055 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1056   ciKlass*    thread_klass = env()->Thread_klass();
  1057   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1058   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1059   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1060   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
  1061   tls_output = thread;
  1062   return threadObj;
  1066 //------------------------------make_string_method_node------------------------
  1067 // Helper method for String intrinsic functions. This version is called
  1068 // with str1 and str2 pointing to String object nodes.
  1069 //
  1070 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1071   Node* no_ctrl = NULL;
  1073   // Get start addr of string
  1074   Node* str1_value   = load_String_value(no_ctrl, str1);
  1075   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1076   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1078   // Get length of string 1
  1079   Node* str1_len  = load_String_length(no_ctrl, str1);
  1081   Node* str2_value   = load_String_value(no_ctrl, str2);
  1082   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1083   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1085   Node* str2_len = NULL;
  1086   Node* result = NULL;
  1088   switch (opcode) {
  1089   case Op_StrIndexOf:
  1090     // Get length of string 2
  1091     str2_len = load_String_length(no_ctrl, str2);
  1093     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1094                                  str1_start, str1_len, str2_start, str2_len);
  1095     break;
  1096   case Op_StrComp:
  1097     // Get length of string 2
  1098     str2_len = load_String_length(no_ctrl, str2);
  1100     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1101                                  str1_start, str1_len, str2_start, str2_len);
  1102     break;
  1103   case Op_StrEquals:
  1104     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1105                                str1_start, str2_start, str1_len);
  1106     break;
  1107   default:
  1108     ShouldNotReachHere();
  1109     return NULL;
  1112   // All these intrinsics have checks.
  1113   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1115   return _gvn.transform(result);
  1118 // Helper method for String intrinsic functions. This version is called
  1119 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1120 // to Int nodes containing the lenghts of str1 and str2.
  1121 //
  1122 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1123   Node* result = NULL;
  1124   switch (opcode) {
  1125   case Op_StrIndexOf:
  1126     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1127                                  str1_start, cnt1, str2_start, cnt2);
  1128     break;
  1129   case Op_StrComp:
  1130     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1131                                  str1_start, cnt1, str2_start, cnt2);
  1132     break;
  1133   case Op_StrEquals:
  1134     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1135                                  str1_start, str2_start, cnt1);
  1136     break;
  1137   default:
  1138     ShouldNotReachHere();
  1139     return NULL;
  1142   // All these intrinsics have checks.
  1143   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1145   return _gvn.transform(result);
  1148 //------------------------------inline_string_compareTo------------------------
  1149 // public int java.lang.String.compareTo(String anotherString);
  1150 bool LibraryCallKit::inline_string_compareTo() {
  1151   Node* receiver = null_check(argument(0));
  1152   Node* arg      = null_check(argument(1));
  1153   if (stopped()) {
  1154     return true;
  1156   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1157   return true;
  1160 //------------------------------inline_string_equals------------------------
  1161 bool LibraryCallKit::inline_string_equals() {
  1162   Node* receiver = null_check_receiver();
  1163   // NOTE: Do not null check argument for String.equals() because spec
  1164   // allows to specify NULL as argument.
  1165   Node* argument = this->argument(1);
  1166   if (stopped()) {
  1167     return true;
  1170   // paths (plus control) merge
  1171   RegionNode* region = new (C) RegionNode(5);
  1172   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1174   // does source == target string?
  1175   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1176   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1178   Node* if_eq = generate_slow_guard(bol, NULL);
  1179   if (if_eq != NULL) {
  1180     // receiver == argument
  1181     phi->init_req(2, intcon(1));
  1182     region->init_req(2, if_eq);
  1185   // get String klass for instanceOf
  1186   ciInstanceKlass* klass = env()->String_klass();
  1188   if (!stopped()) {
  1189     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1190     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1191     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1193     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1194     //instanceOf == true, fallthrough
  1196     if (inst_false != NULL) {
  1197       phi->init_req(3, intcon(0));
  1198       region->init_req(3, inst_false);
  1202   if (!stopped()) {
  1203     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1205     // Properly cast the argument to String
  1206     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1207     // This path is taken only when argument's type is String:NotNull.
  1208     argument = cast_not_null(argument, false);
  1210     Node* no_ctrl = NULL;
  1212     // Get start addr of receiver
  1213     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1214     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1215     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1217     // Get length of receiver
  1218     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1220     // Get start addr of argument
  1221     Node* argument_val    = load_String_value(no_ctrl, argument);
  1222     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1223     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1225     // Get length of argument
  1226     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1228     // Check for receiver count != argument count
  1229     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1230     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1231     Node* if_ne = generate_slow_guard(bol, NULL);
  1232     if (if_ne != NULL) {
  1233       phi->init_req(4, intcon(0));
  1234       region->init_req(4, if_ne);
  1237     // Check for count == 0 is done by assembler code for StrEquals.
  1239     if (!stopped()) {
  1240       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1241       phi->init_req(1, equals);
  1242       region->init_req(1, control());
  1246   // post merge
  1247   set_control(_gvn.transform(region));
  1248   record_for_igvn(region);
  1250   set_result(_gvn.transform(phi));
  1251   return true;
  1254 //------------------------------inline_array_equals----------------------------
  1255 bool LibraryCallKit::inline_array_equals() {
  1256   Node* arg1 = argument(0);
  1257   Node* arg2 = argument(1);
  1258   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1259   return true;
  1262 // Java version of String.indexOf(constant string)
  1263 // class StringDecl {
  1264 //   StringDecl(char[] ca) {
  1265 //     offset = 0;
  1266 //     count = ca.length;
  1267 //     value = ca;
  1268 //   }
  1269 //   int offset;
  1270 //   int count;
  1271 //   char[] value;
  1272 // }
  1273 //
  1274 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1275 //                             int targetOffset, int cache_i, int md2) {
  1276 //   int cache = cache_i;
  1277 //   int sourceOffset = string_object.offset;
  1278 //   int sourceCount = string_object.count;
  1279 //   int targetCount = target_object.length;
  1280 //
  1281 //   int targetCountLess1 = targetCount - 1;
  1282 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1283 //
  1284 //   char[] source = string_object.value;
  1285 //   char[] target = target_object;
  1286 //   int lastChar = target[targetCountLess1];
  1287 //
  1288 //  outer_loop:
  1289 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1290 //     int src = source[i + targetCountLess1];
  1291 //     if (src == lastChar) {
  1292 //       // With random strings and a 4-character alphabet,
  1293 //       // reverse matching at this point sets up 0.8% fewer
  1294 //       // frames, but (paradoxically) makes 0.3% more probes.
  1295 //       // Since those probes are nearer the lastChar probe,
  1296 //       // there is may be a net D$ win with reverse matching.
  1297 //       // But, reversing loop inhibits unroll of inner loop
  1298 //       // for unknown reason.  So, does running outer loop from
  1299 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1300 //       for (int j = 0; j < targetCountLess1; j++) {
  1301 //         if (target[targetOffset + j] != source[i+j]) {
  1302 //           if ((cache & (1 << source[i+j])) == 0) {
  1303 //             if (md2 < j+1) {
  1304 //               i += j+1;
  1305 //               continue outer_loop;
  1306 //             }
  1307 //           }
  1308 //           i += md2;
  1309 //           continue outer_loop;
  1310 //         }
  1311 //       }
  1312 //       return i - sourceOffset;
  1313 //     }
  1314 //     if ((cache & (1 << src)) == 0) {
  1315 //       i += targetCountLess1;
  1316 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1317 //     i++;
  1318 //   }
  1319 //   return -1;
  1320 // }
  1322 //------------------------------string_indexOf------------------------
  1323 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1324                                      jint cache_i, jint md2_i) {
  1326   Node* no_ctrl  = NULL;
  1327   float likely   = PROB_LIKELY(0.9);
  1328   float unlikely = PROB_UNLIKELY(0.9);
  1330   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1332   Node* source        = load_String_value(no_ctrl, string_object);
  1333   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1334   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1336   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1337   jint target_length = target_array->length();
  1338   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1339   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1341   // String.value field is known to be @Stable.
  1342   if (UseImplicitStableValues) {
  1343     target = cast_array_to_stable(target, target_type);
  1346   IdealKit kit(this, false, true);
  1347 #define __ kit.
  1348   Node* zero             = __ ConI(0);
  1349   Node* one              = __ ConI(1);
  1350   Node* cache            = __ ConI(cache_i);
  1351   Node* md2              = __ ConI(md2_i);
  1352   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1353   Node* targetCount      = __ ConI(target_length);
  1354   Node* targetCountLess1 = __ ConI(target_length - 1);
  1355   Node* targetOffset     = __ ConI(targetOffset_i);
  1356   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1358   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1359   Node* outer_loop = __ make_label(2 /* goto */);
  1360   Node* return_    = __ make_label(1);
  1362   __ set(rtn,__ ConI(-1));
  1363   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1364        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1365        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1366        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1367        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1368          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1369               Node* tpj = __ AddI(targetOffset, __ value(j));
  1370               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1371               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1372               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1373               __ if_then(targ, BoolTest::ne, src2); {
  1374                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1375                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1376                     __ increment(i, __ AddI(__ value(j), one));
  1377                     __ goto_(outer_loop);
  1378                   } __ end_if(); __ dead(j);
  1379                 }__ end_if(); __ dead(j);
  1380                 __ increment(i, md2);
  1381                 __ goto_(outer_loop);
  1382               }__ end_if();
  1383               __ increment(j, one);
  1384          }__ end_loop(); __ dead(j);
  1385          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1386          __ goto_(return_);
  1387        }__ end_if();
  1388        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1389          __ increment(i, targetCountLess1);
  1390        }__ end_if();
  1391        __ increment(i, one);
  1392        __ bind(outer_loop);
  1393   }__ end_loop(); __ dead(i);
  1394   __ bind(return_);
  1396   // Final sync IdealKit and GraphKit.
  1397   final_sync(kit);
  1398   Node* result = __ value(rtn);
  1399 #undef __
  1400   C->set_has_loops(true);
  1401   return result;
  1404 //------------------------------inline_string_indexOf------------------------
  1405 bool LibraryCallKit::inline_string_indexOf() {
  1406   Node* receiver = argument(0);
  1407   Node* arg      = argument(1);
  1409   Node* result;
  1410   // Disable the use of pcmpestri until it can be guaranteed that
  1411   // the load doesn't cross into the uncommited space.
  1412   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1413       UseSSE42Intrinsics) {
  1414     // Generate SSE4.2 version of indexOf
  1415     // We currently only have match rules that use SSE4.2
  1417     receiver = null_check(receiver);
  1418     arg      = null_check(arg);
  1419     if (stopped()) {
  1420       return true;
  1423     ciInstanceKlass* str_klass = env()->String_klass();
  1424     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1426     // Make the merge point
  1427     RegionNode* result_rgn = new (C) RegionNode(4);
  1428     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1429     Node* no_ctrl  = NULL;
  1431     // Get start addr of source string
  1432     Node* source = load_String_value(no_ctrl, receiver);
  1433     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1434     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1436     // Get length of source string
  1437     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1439     // Get start addr of substring
  1440     Node* substr = load_String_value(no_ctrl, arg);
  1441     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1442     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1444     // Get length of source string
  1445     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1447     // Check for substr count > string count
  1448     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1449     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1450     Node* if_gt = generate_slow_guard(bol, NULL);
  1451     if (if_gt != NULL) {
  1452       result_phi->init_req(2, intcon(-1));
  1453       result_rgn->init_req(2, if_gt);
  1456     if (!stopped()) {
  1457       // Check for substr count == 0
  1458       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1459       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1460       Node* if_zero = generate_slow_guard(bol, NULL);
  1461       if (if_zero != NULL) {
  1462         result_phi->init_req(3, intcon(0));
  1463         result_rgn->init_req(3, if_zero);
  1467     if (!stopped()) {
  1468       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1469       result_phi->init_req(1, result);
  1470       result_rgn->init_req(1, control());
  1472     set_control(_gvn.transform(result_rgn));
  1473     record_for_igvn(result_rgn);
  1474     result = _gvn.transform(result_phi);
  1476   } else { // Use LibraryCallKit::string_indexOf
  1477     // don't intrinsify if argument isn't a constant string.
  1478     if (!arg->is_Con()) {
  1479      return false;
  1481     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1482     if (str_type == NULL) {
  1483       return false;
  1485     ciInstanceKlass* klass = env()->String_klass();
  1486     ciObject* str_const = str_type->const_oop();
  1487     if (str_const == NULL || str_const->klass() != klass) {
  1488       return false;
  1490     ciInstance* str = str_const->as_instance();
  1491     assert(str != NULL, "must be instance");
  1493     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1494     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1496     int o;
  1497     int c;
  1498     if (java_lang_String::has_offset_field()) {
  1499       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1500       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1501     } else {
  1502       o = 0;
  1503       c = pat->length();
  1506     // constant strings have no offset and count == length which
  1507     // simplifies the resulting code somewhat so lets optimize for that.
  1508     if (o != 0 || c != pat->length()) {
  1509      return false;
  1512     receiver = null_check(receiver, T_OBJECT);
  1513     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1514     if (stopped()) {
  1515       return true;
  1518     // The null string as a pattern always returns 0 (match at beginning of string)
  1519     if (c == 0) {
  1520       set_result(intcon(0));
  1521       return true;
  1524     // Generate default indexOf
  1525     jchar lastChar = pat->char_at(o + (c - 1));
  1526     int cache = 0;
  1527     int i;
  1528     for (i = 0; i < c - 1; i++) {
  1529       assert(i < pat->length(), "out of range");
  1530       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1533     int md2 = c;
  1534     for (i = 0; i < c - 1; i++) {
  1535       assert(i < pat->length(), "out of range");
  1536       if (pat->char_at(o + i) == lastChar) {
  1537         md2 = (c - 1) - i;
  1541     result = string_indexOf(receiver, pat, o, cache, md2);
  1543   set_result(result);
  1544   return true;
  1547 //--------------------------round_double_node--------------------------------
  1548 // Round a double node if necessary.
  1549 Node* LibraryCallKit::round_double_node(Node* n) {
  1550   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1551     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1552   return n;
  1555 //------------------------------inline_math-----------------------------------
  1556 // public static double Math.abs(double)
  1557 // public static double Math.sqrt(double)
  1558 // public static double Math.log(double)
  1559 // public static double Math.log10(double)
  1560 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1561   Node* arg = round_double_node(argument(0));
  1562   Node* n;
  1563   switch (id) {
  1564   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1565   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1566   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1567   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1568   default:  fatal_unexpected_iid(id);  break;
  1570   set_result(_gvn.transform(n));
  1571   return true;
  1574 //------------------------------inline_trig----------------------------------
  1575 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1576 // argument reduction which will turn into a fast/slow diamond.
  1577 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1578   Node* arg = round_double_node(argument(0));
  1579   Node* n = NULL;
  1581   switch (id) {
  1582   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1583   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1584   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1585   default:  fatal_unexpected_iid(id);  break;
  1587   n = _gvn.transform(n);
  1589   // Rounding required?  Check for argument reduction!
  1590   if (Matcher::strict_fp_requires_explicit_rounding) {
  1591     static const double     pi_4 =  0.7853981633974483;
  1592     static const double neg_pi_4 = -0.7853981633974483;
  1593     // pi/2 in 80-bit extended precision
  1594     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1595     // -pi/2 in 80-bit extended precision
  1596     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1597     // Cutoff value for using this argument reduction technique
  1598     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1599     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1601     // Pseudocode for sin:
  1602     // if (x <= Math.PI / 4.0) {
  1603     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1604     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1605     // } else {
  1606     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1607     // }
  1608     // return StrictMath.sin(x);
  1610     // Pseudocode for cos:
  1611     // if (x <= Math.PI / 4.0) {
  1612     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1613     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1614     // } else {
  1615     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1616     // }
  1617     // return StrictMath.cos(x);
  1619     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1620     // requires a special machine instruction to load it.  Instead we'll try
  1621     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1622     // probably do the math inside the SIN encoding.
  1624     // Make the merge point
  1625     RegionNode* r = new (C) RegionNode(3);
  1626     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1628     // Flatten arg so we need only 1 test
  1629     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1630     // Node for PI/4 constant
  1631     Node *pi4 = makecon(TypeD::make(pi_4));
  1632     // Check PI/4 : abs(arg)
  1633     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1634     // Check: If PI/4 < abs(arg) then go slow
  1635     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1636     // Branch either way
  1637     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1638     set_control(opt_iff(r,iff));
  1640     // Set fast path result
  1641     phi->init_req(2, n);
  1643     // Slow path - non-blocking leaf call
  1644     Node* call = NULL;
  1645     switch (id) {
  1646     case vmIntrinsics::_dsin:
  1647       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1648                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1649                                "Sin", NULL, arg, top());
  1650       break;
  1651     case vmIntrinsics::_dcos:
  1652       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1653                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1654                                "Cos", NULL, arg, top());
  1655       break;
  1656     case vmIntrinsics::_dtan:
  1657       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1658                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1659                                "Tan", NULL, arg, top());
  1660       break;
  1662     assert(control()->in(0) == call, "");
  1663     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1664     r->init_req(1, control());
  1665     phi->init_req(1, slow_result);
  1667     // Post-merge
  1668     set_control(_gvn.transform(r));
  1669     record_for_igvn(r);
  1670     n = _gvn.transform(phi);
  1672     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1674   set_result(n);
  1675   return true;
  1678 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1679   //-------------------
  1680   //result=(result.isNaN())? funcAddr():result;
  1681   // Check: If isNaN() by checking result!=result? then either trap
  1682   // or go to runtime
  1683   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1684   // Build the boolean node
  1685   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1687   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1688     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1689       // The pow or exp intrinsic returned a NaN, which requires a call
  1690       // to the runtime.  Recompile with the runtime call.
  1691       uncommon_trap(Deoptimization::Reason_intrinsic,
  1692                     Deoptimization::Action_make_not_entrant);
  1694     set_result(result);
  1695   } else {
  1696     // If this inlining ever returned NaN in the past, we compile a call
  1697     // to the runtime to properly handle corner cases
  1699     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1700     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1701     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1703     if (!if_slow->is_top()) {
  1704       RegionNode* result_region = new (C) RegionNode(3);
  1705       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1707       result_region->init_req(1, if_fast);
  1708       result_val->init_req(1, result);
  1710       set_control(if_slow);
  1712       const TypePtr* no_memory_effects = NULL;
  1713       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1714                                    no_memory_effects,
  1715                                    x, top(), y, y ? top() : NULL);
  1716       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1717 #ifdef ASSERT
  1718       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1719       assert(value_top == top(), "second value must be top");
  1720 #endif
  1722       result_region->init_req(2, control());
  1723       result_val->init_req(2, value);
  1724       set_result(result_region, result_val);
  1725     } else {
  1726       set_result(result);
  1731 //------------------------------inline_exp-------------------------------------
  1732 // Inline exp instructions, if possible.  The Intel hardware only misses
  1733 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1734 bool LibraryCallKit::inline_exp() {
  1735   Node* arg = round_double_node(argument(0));
  1736   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1738   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1740   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1741   return true;
  1744 //------------------------------inline_pow-------------------------------------
  1745 // Inline power instructions, if possible.
  1746 bool LibraryCallKit::inline_pow() {
  1747   // Pseudocode for pow
  1748   // if (x <= 0.0) {
  1749   //   long longy = (long)y;
  1750   //   if ((double)longy == y) { // if y is long
  1751   //     if (y + 1 == y) longy = 0; // huge number: even
  1752   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1753   //   } else {
  1754   //     result = NaN;
  1755   //   }
  1756   // } else {
  1757   //   result = DPow(x,y);
  1758   // }
  1759   // if (result != result)?  {
  1760   //   result = uncommon_trap() or runtime_call();
  1761   // }
  1762   // return result;
  1764   Node* x = round_double_node(argument(0));
  1765   Node* y = round_double_node(argument(2));
  1767   Node* result = NULL;
  1769   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1770     // Short form: skip the fancy tests and just check for NaN result.
  1771     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1772   } else {
  1773     // If this inlining ever returned NaN in the past, include all
  1774     // checks + call to the runtime.
  1776     // Set the merge point for If node with condition of (x <= 0.0)
  1777     // There are four possible paths to region node and phi node
  1778     RegionNode *r = new (C) RegionNode(4);
  1779     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1781     // Build the first if node: if (x <= 0.0)
  1782     // Node for 0 constant
  1783     Node *zeronode = makecon(TypeD::ZERO);
  1784     // Check x:0
  1785     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1786     // Check: If (x<=0) then go complex path
  1787     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1788     // Branch either way
  1789     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1790     // Fast path taken; set region slot 3
  1791     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1792     r->init_req(3,fast_taken); // Capture fast-control
  1794     // Fast path not-taken, i.e. slow path
  1795     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1797     // Set fast path result
  1798     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1799     phi->init_req(3, fast_result);
  1801     // Complex path
  1802     // Build the second if node (if y is long)
  1803     // Node for (long)y
  1804     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1805     // Node for (double)((long) y)
  1806     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1807     // Check (double)((long) y) : y
  1808     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1809     // Check if (y isn't long) then go to slow path
  1811     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1812     // Branch either way
  1813     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1814     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1816     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1818     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1819     // Node for constant 1
  1820     Node *conone = longcon(1);
  1821     // 1& (long)y
  1822     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1824     // A huge number is always even. Detect a huge number by checking
  1825     // if y + 1 == y and set integer to be tested for parity to 0.
  1826     // Required for corner case:
  1827     // (long)9.223372036854776E18 = max_jlong
  1828     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1829     // max_jlong is odd but 9.223372036854776E18 is even
  1830     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1831     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1832     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1833     Node* correctedsign = NULL;
  1834     if (ConditionalMoveLimit != 0) {
  1835       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1836     } else {
  1837       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1838       RegionNode *r = new (C) RegionNode(3);
  1839       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1840       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1841       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1842       phi->init_req(1, signnode);
  1843       phi->init_req(2, longcon(0));
  1844       correctedsign = _gvn.transform(phi);
  1845       ylong_path = _gvn.transform(r);
  1846       record_for_igvn(r);
  1849     // zero node
  1850     Node *conzero = longcon(0);
  1851     // Check (1&(long)y)==0?
  1852     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1853     // Check if (1&(long)y)!=0?, if so the result is negative
  1854     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1855     // abs(x)
  1856     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1857     // abs(x)^y
  1858     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1859     // -abs(x)^y
  1860     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1861     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1862     Node *signresult = NULL;
  1863     if (ConditionalMoveLimit != 0) {
  1864       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1865     } else {
  1866       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1867       RegionNode *r = new (C) RegionNode(3);
  1868       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1869       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1870       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1871       phi->init_req(1, absxpowy);
  1872       phi->init_req(2, negabsxpowy);
  1873       signresult = _gvn.transform(phi);
  1874       ylong_path = _gvn.transform(r);
  1875       record_for_igvn(r);
  1877     // Set complex path fast result
  1878     r->init_req(2, ylong_path);
  1879     phi->init_req(2, signresult);
  1881     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1882     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1883     r->init_req(1,slow_path);
  1884     phi->init_req(1,slow_result);
  1886     // Post merge
  1887     set_control(_gvn.transform(r));
  1888     record_for_igvn(r);
  1889     result = _gvn.transform(phi);
  1892   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1894   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1895   return true;
  1898 //------------------------------runtime_math-----------------------------
  1899 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1900   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1901          "must be (DD)D or (D)D type");
  1903   // Inputs
  1904   Node* a = round_double_node(argument(0));
  1905   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1907   const TypePtr* no_memory_effects = NULL;
  1908   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1909                                  no_memory_effects,
  1910                                  a, top(), b, b ? top() : NULL);
  1911   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1912 #ifdef ASSERT
  1913   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1914   assert(value_top == top(), "second value must be top");
  1915 #endif
  1917   set_result(value);
  1918   return true;
  1921 //------------------------------inline_math_native-----------------------------
  1922 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1923 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1924   switch (id) {
  1925     // These intrinsics are not properly supported on all hardware
  1926   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1927     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1928   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1929     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1930   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1931     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1933   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1934     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1935   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1936     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1938     // These intrinsics are supported on all hardware
  1939   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
  1940   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1942   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1943     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1944   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1945     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1946 #undef FN_PTR
  1948    // These intrinsics are not yet correctly implemented
  1949   case vmIntrinsics::_datan2:
  1950     return false;
  1952   default:
  1953     fatal_unexpected_iid(id);
  1954     return false;
  1958 static bool is_simple_name(Node* n) {
  1959   return (n->req() == 1         // constant
  1960           || (n->is_Type() && n->as_Type()->type()->singleton())
  1961           || n->is_Proj()       // parameter or return value
  1962           || n->is_Phi()        // local of some sort
  1963           );
  1966 //----------------------------inline_min_max-----------------------------------
  1967 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1968   set_result(generate_min_max(id, argument(0), argument(1)));
  1969   return true;
  1972 void LibraryCallKit::inline_math_mathExact(Node* math) {
  1973   // If we didn't get the expected opcode it means we have optimized
  1974   // the node to something else and don't need the exception edge.
  1975   if (!math->is_MathExact()) {
  1976     set_result(math);
  1977     return;
  1980   Node* result = _gvn.transform( new(C) ProjNode(math, MathExactNode::result_proj_node));
  1981   Node* flags = _gvn.transform( new(C) FlagsProjNode(math, MathExactNode::flags_proj_node));
  1983   Node* bol = _gvn.transform( new (C) BoolNode(flags, BoolTest::overflow) );
  1984   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  1985   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  1986   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  1989     PreserveJVMState pjvms(this);
  1990     PreserveReexecuteState preexecs(this);
  1991     jvms()->set_should_reexecute(true);
  1993     set_control(slow_path);
  1994     set_i_o(i_o());
  1996     uncommon_trap(Deoptimization::Reason_intrinsic,
  1997                   Deoptimization::Action_none);
  2000   set_control(fast_path);
  2001   set_result(result);
  2004 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
  2005   Node* arg1 = argument(0);
  2006   Node* arg2 = NULL;
  2008   if (is_increment) {
  2009     arg2 = intcon(1);
  2010   } else {
  2011     arg2 = argument(1);
  2014   Node* add = _gvn.transform( new(C) AddExactINode(NULL, arg1, arg2) );
  2015   inline_math_mathExact(add);
  2016   return true;
  2019 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
  2020   Node* arg1 = argument(0); // type long
  2021   // argument(1) == TOP
  2022   Node* arg2 = NULL;
  2024   if (is_increment) {
  2025     arg2 = longcon(1);
  2026   } else {
  2027     arg2 = argument(2); // type long
  2028     // argument(3) == TOP
  2031   Node* add = _gvn.transform(new(C) AddExactLNode(NULL, arg1, arg2));
  2032   inline_math_mathExact(add);
  2033   return true;
  2036 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
  2037   Node* arg1 = argument(0);
  2038   Node* arg2 = NULL;
  2040   if (is_decrement) {
  2041     arg2 = intcon(1);
  2042   } else {
  2043     arg2 = argument(1);
  2046   Node* sub = _gvn.transform(new(C) SubExactINode(NULL, arg1, arg2));
  2047   inline_math_mathExact(sub);
  2048   return true;
  2051 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
  2052   Node* arg1 = argument(0); // type long
  2053   // argument(1) == TOP
  2054   Node* arg2 = NULL;
  2056   if (is_decrement) {
  2057     arg2 = longcon(1);
  2058   } else {
  2059     arg2 = argument(2); // type long
  2060     // argument(3) == TOP
  2063   Node* sub = _gvn.transform(new(C) SubExactLNode(NULL, arg1, arg2));
  2064   inline_math_mathExact(sub);
  2065   return true;
  2068 bool LibraryCallKit::inline_math_negateExactI() {
  2069   Node* arg1 = argument(0);
  2071   Node* neg = _gvn.transform(new(C) NegExactINode(NULL, arg1));
  2072   inline_math_mathExact(neg);
  2073   return true;
  2076 bool LibraryCallKit::inline_math_negateExactL() {
  2077   Node* arg1 = argument(0);
  2078   // argument(1) == TOP
  2080   Node* neg = _gvn.transform(new(C) NegExactLNode(NULL, arg1));
  2081   inline_math_mathExact(neg);
  2082   return true;
  2085 bool LibraryCallKit::inline_math_multiplyExactI() {
  2086   Node* arg1 = argument(0);
  2087   Node* arg2 = argument(1);
  2089   Node* mul = _gvn.transform(new(C) MulExactINode(NULL, arg1, arg2));
  2090   inline_math_mathExact(mul);
  2091   return true;
  2094 bool LibraryCallKit::inline_math_multiplyExactL() {
  2095   Node* arg1 = argument(0);
  2096   // argument(1) == TOP
  2097   Node* arg2 = argument(2);
  2098   // argument(3) == TOP
  2100   Node* mul = _gvn.transform(new(C) MulExactLNode(NULL, arg1, arg2));
  2101   inline_math_mathExact(mul);
  2102   return true;
  2105 Node*
  2106 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  2107   // These are the candidate return value:
  2108   Node* xvalue = x0;
  2109   Node* yvalue = y0;
  2111   if (xvalue == yvalue) {
  2112     return xvalue;
  2115   bool want_max = (id == vmIntrinsics::_max);
  2117   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  2118   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  2119   if (txvalue == NULL || tyvalue == NULL)  return top();
  2120   // This is not really necessary, but it is consistent with a
  2121   // hypothetical MaxINode::Value method:
  2122   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  2124   // %%% This folding logic should (ideally) be in a different place.
  2125   // Some should be inside IfNode, and there to be a more reliable
  2126   // transformation of ?: style patterns into cmoves.  We also want
  2127   // more powerful optimizations around cmove and min/max.
  2129   // Try to find a dominating comparison of these guys.
  2130   // It can simplify the index computation for Arrays.copyOf
  2131   // and similar uses of System.arraycopy.
  2132   // First, compute the normalized version of CmpI(x, y).
  2133   int   cmp_op = Op_CmpI;
  2134   Node* xkey = xvalue;
  2135   Node* ykey = yvalue;
  2136   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  2137   if (ideal_cmpxy->is_Cmp()) {
  2138     // E.g., if we have CmpI(length - offset, count),
  2139     // it might idealize to CmpI(length, count + offset)
  2140     cmp_op = ideal_cmpxy->Opcode();
  2141     xkey = ideal_cmpxy->in(1);
  2142     ykey = ideal_cmpxy->in(2);
  2145   // Start by locating any relevant comparisons.
  2146   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2147   Node* cmpxy = NULL;
  2148   Node* cmpyx = NULL;
  2149   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2150     Node* cmp = start_from->fast_out(k);
  2151     if (cmp->outcnt() > 0 &&            // must have prior uses
  2152         cmp->in(0) == NULL &&           // must be context-independent
  2153         cmp->Opcode() == cmp_op) {      // right kind of compare
  2154       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2155       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2159   const int NCMPS = 2;
  2160   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2161   int cmpn;
  2162   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2163     if (cmps[cmpn] != NULL)  break;     // find a result
  2165   if (cmpn < NCMPS) {
  2166     // Look for a dominating test that tells us the min and max.
  2167     int depth = 0;                // Limit search depth for speed
  2168     Node* dom = control();
  2169     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2170       if (++depth >= 100)  break;
  2171       Node* ifproj = dom;
  2172       if (!ifproj->is_Proj())  continue;
  2173       Node* iff = ifproj->in(0);
  2174       if (!iff->is_If())  continue;
  2175       Node* bol = iff->in(1);
  2176       if (!bol->is_Bool())  continue;
  2177       Node* cmp = bol->in(1);
  2178       if (cmp == NULL)  continue;
  2179       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2180         if (cmps[cmpn] == cmp)  break;
  2181       if (cmpn == NCMPS)  continue;
  2182       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2183       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2184       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2185       // At this point, we know that 'x btest y' is true.
  2186       switch (btest) {
  2187       case BoolTest::eq:
  2188         // They are proven equal, so we can collapse the min/max.
  2189         // Either value is the answer.  Choose the simpler.
  2190         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2191           return yvalue;
  2192         return xvalue;
  2193       case BoolTest::lt:          // x < y
  2194       case BoolTest::le:          // x <= y
  2195         return (want_max ? yvalue : xvalue);
  2196       case BoolTest::gt:          // x > y
  2197       case BoolTest::ge:          // x >= y
  2198         return (want_max ? xvalue : yvalue);
  2203   // We failed to find a dominating test.
  2204   // Let's pick a test that might GVN with prior tests.
  2205   Node*          best_bol   = NULL;
  2206   BoolTest::mask best_btest = BoolTest::illegal;
  2207   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2208     Node* cmp = cmps[cmpn];
  2209     if (cmp == NULL)  continue;
  2210     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2211       Node* bol = cmp->fast_out(j);
  2212       if (!bol->is_Bool())  continue;
  2213       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2214       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2215       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2216       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2217         best_bol   = bol->as_Bool();
  2218         best_btest = btest;
  2223   Node* answer_if_true  = NULL;
  2224   Node* answer_if_false = NULL;
  2225   switch (best_btest) {
  2226   default:
  2227     if (cmpxy == NULL)
  2228       cmpxy = ideal_cmpxy;
  2229     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2230     // and fall through:
  2231   case BoolTest::lt:          // x < y
  2232   case BoolTest::le:          // x <= y
  2233     answer_if_true  = (want_max ? yvalue : xvalue);
  2234     answer_if_false = (want_max ? xvalue : yvalue);
  2235     break;
  2236   case BoolTest::gt:          // x > y
  2237   case BoolTest::ge:          // x >= y
  2238     answer_if_true  = (want_max ? xvalue : yvalue);
  2239     answer_if_false = (want_max ? yvalue : xvalue);
  2240     break;
  2243   jint hi, lo;
  2244   if (want_max) {
  2245     // We can sharpen the minimum.
  2246     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2247     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2248   } else {
  2249     // We can sharpen the maximum.
  2250     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2251     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2254   // Use a flow-free graph structure, to avoid creating excess control edges
  2255   // which could hinder other optimizations.
  2256   // Since Math.min/max is often used with arraycopy, we want
  2257   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2258   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2259                                answer_if_false, answer_if_true,
  2260                                TypeInt::make(lo, hi, widen));
  2262   return _gvn.transform(cmov);
  2264   /*
  2265   // This is not as desirable as it may seem, since Min and Max
  2266   // nodes do not have a full set of optimizations.
  2267   // And they would interfere, anyway, with 'if' optimizations
  2268   // and with CMoveI canonical forms.
  2269   switch (id) {
  2270   case vmIntrinsics::_min:
  2271     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2272   case vmIntrinsics::_max:
  2273     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2274   default:
  2275     ShouldNotReachHere();
  2277   */
  2280 inline int
  2281 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2282   const TypePtr* base_type = TypePtr::NULL_PTR;
  2283   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2284   if (base_type == NULL) {
  2285     // Unknown type.
  2286     return Type::AnyPtr;
  2287   } else if (base_type == TypePtr::NULL_PTR) {
  2288     // Since this is a NULL+long form, we have to switch to a rawptr.
  2289     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2290     offset = MakeConX(0);
  2291     return Type::RawPtr;
  2292   } else if (base_type->base() == Type::RawPtr) {
  2293     return Type::RawPtr;
  2294   } else if (base_type->isa_oopptr()) {
  2295     // Base is never null => always a heap address.
  2296     if (base_type->ptr() == TypePtr::NotNull) {
  2297       return Type::OopPtr;
  2299     // Offset is small => always a heap address.
  2300     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2301     if (offset_type != NULL &&
  2302         base_type->offset() == 0 &&     // (should always be?)
  2303         offset_type->_lo >= 0 &&
  2304         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2305       return Type::OopPtr;
  2307     // Otherwise, it might either be oop+off or NULL+addr.
  2308     return Type::AnyPtr;
  2309   } else {
  2310     // No information:
  2311     return Type::AnyPtr;
  2315 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2316   int kind = classify_unsafe_addr(base, offset);
  2317   if (kind == Type::RawPtr) {
  2318     return basic_plus_adr(top(), base, offset);
  2319   } else {
  2320     return basic_plus_adr(base, offset);
  2324 //--------------------------inline_number_methods-----------------------------
  2325 // inline int     Integer.numberOfLeadingZeros(int)
  2326 // inline int        Long.numberOfLeadingZeros(long)
  2327 //
  2328 // inline int     Integer.numberOfTrailingZeros(int)
  2329 // inline int        Long.numberOfTrailingZeros(long)
  2330 //
  2331 // inline int     Integer.bitCount(int)
  2332 // inline int        Long.bitCount(long)
  2333 //
  2334 // inline char  Character.reverseBytes(char)
  2335 // inline short     Short.reverseBytes(short)
  2336 // inline int     Integer.reverseBytes(int)
  2337 // inline long       Long.reverseBytes(long)
  2338 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2339   Node* arg = argument(0);
  2340   Node* n;
  2341   switch (id) {
  2342   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2343   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2344   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2345   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2346   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2347   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2348   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2349   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2350   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2351   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2352   default:  fatal_unexpected_iid(id);  break;
  2354   set_result(_gvn.transform(n));
  2355   return true;
  2358 //----------------------------inline_unsafe_access----------------------------
  2360 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2362 // Helper that guards and inserts a pre-barrier.
  2363 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2364                                         Node* pre_val, bool need_mem_bar) {
  2365   // We could be accessing the referent field of a reference object. If so, when G1
  2366   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2367   // This routine performs some compile time filters and generates suitable
  2368   // runtime filters that guard the pre-barrier code.
  2369   // Also add memory barrier for non volatile load from the referent field
  2370   // to prevent commoning of loads across safepoint.
  2371   if (!UseG1GC && !need_mem_bar)
  2372     return;
  2374   // Some compile time checks.
  2376   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2377   const TypeX* otype = offset->find_intptr_t_type();
  2378   if (otype != NULL && otype->is_con() &&
  2379       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2380     // Constant offset but not the reference_offset so just return
  2381     return;
  2384   // We only need to generate the runtime guards for instances.
  2385   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2386   if (btype != NULL) {
  2387     if (btype->isa_aryptr()) {
  2388       // Array type so nothing to do
  2389       return;
  2392     const TypeInstPtr* itype = btype->isa_instptr();
  2393     if (itype != NULL) {
  2394       // Can the klass of base_oop be statically determined to be
  2395       // _not_ a sub-class of Reference and _not_ Object?
  2396       ciKlass* klass = itype->klass();
  2397       if ( klass->is_loaded() &&
  2398           !klass->is_subtype_of(env()->Reference_klass()) &&
  2399           !env()->Object_klass()->is_subtype_of(klass)) {
  2400         return;
  2405   // The compile time filters did not reject base_oop/offset so
  2406   // we need to generate the following runtime filters
  2407   //
  2408   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2409   //   if (instance_of(base, java.lang.ref.Reference)) {
  2410   //     pre_barrier(_, pre_val, ...);
  2411   //   }
  2412   // }
  2414   float likely   = PROB_LIKELY(  0.999);
  2415   float unlikely = PROB_UNLIKELY(0.999);
  2417   IdealKit ideal(this);
  2418 #define __ ideal.
  2420   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2422   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2423       // Update graphKit memory and control from IdealKit.
  2424       sync_kit(ideal);
  2426       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2427       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2429       // Update IdealKit memory and control from graphKit.
  2430       __ sync_kit(this);
  2432       Node* one = __ ConI(1);
  2433       // is_instof == 0 if base_oop == NULL
  2434       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2436         // Update graphKit from IdeakKit.
  2437         sync_kit(ideal);
  2439         // Use the pre-barrier to record the value in the referent field
  2440         pre_barrier(false /* do_load */,
  2441                     __ ctrl(),
  2442                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2443                     pre_val /* pre_val */,
  2444                     T_OBJECT);
  2445         if (need_mem_bar) {
  2446           // Add memory barrier to prevent commoning reads from this field
  2447           // across safepoint since GC can change its value.
  2448           insert_mem_bar(Op_MemBarCPUOrder);
  2450         // Update IdealKit from graphKit.
  2451         __ sync_kit(this);
  2453       } __ end_if(); // _ref_type != ref_none
  2454   } __ end_if(); // offset == referent_offset
  2456   // Final sync IdealKit and GraphKit.
  2457   final_sync(ideal);
  2458 #undef __
  2462 // Interpret Unsafe.fieldOffset cookies correctly:
  2463 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2465 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2466   // Attempt to infer a sharper value type from the offset and base type.
  2467   ciKlass* sharpened_klass = NULL;
  2469   // See if it is an instance field, with an object type.
  2470   if (alias_type->field() != NULL) {
  2471     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2472     if (alias_type->field()->type()->is_klass()) {
  2473       sharpened_klass = alias_type->field()->type()->as_klass();
  2477   // See if it is a narrow oop array.
  2478   if (adr_type->isa_aryptr()) {
  2479     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2480       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2481       if (elem_type != NULL) {
  2482         sharpened_klass = elem_type->klass();
  2487   // The sharpened class might be unloaded if there is no class loader
  2488   // contraint in place.
  2489   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2490     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2492 #ifndef PRODUCT
  2493     if (C->print_intrinsics() || C->print_inlining()) {
  2494       tty->print("  from base type: ");  adr_type->dump();
  2495       tty->print("  sharpened value: ");  tjp->dump();
  2497 #endif
  2498     // Sharpen the value type.
  2499     return tjp;
  2501   return NULL;
  2504 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2505   if (callee()->is_static())  return false;  // caller must have the capability!
  2507 #ifndef PRODUCT
  2509     ResourceMark rm;
  2510     // Check the signatures.
  2511     ciSignature* sig = callee()->signature();
  2512 #ifdef ASSERT
  2513     if (!is_store) {
  2514       // Object getObject(Object base, int/long offset), etc.
  2515       BasicType rtype = sig->return_type()->basic_type();
  2516       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2517           rtype = T_ADDRESS;  // it is really a C void*
  2518       assert(rtype == type, "getter must return the expected value");
  2519       if (!is_native_ptr) {
  2520         assert(sig->count() == 2, "oop getter has 2 arguments");
  2521         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2522         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2523       } else {
  2524         assert(sig->count() == 1, "native getter has 1 argument");
  2525         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2527     } else {
  2528       // void putObject(Object base, int/long offset, Object x), etc.
  2529       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2530       if (!is_native_ptr) {
  2531         assert(sig->count() == 3, "oop putter has 3 arguments");
  2532         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2533         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2534       } else {
  2535         assert(sig->count() == 2, "native putter has 2 arguments");
  2536         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2538       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2539       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2540         vtype = T_ADDRESS;  // it is really a C void*
  2541       assert(vtype == type, "putter must accept the expected value");
  2543 #endif // ASSERT
  2545 #endif //PRODUCT
  2547   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2549   Node* receiver = argument(0);  // type: oop
  2551   // Build address expression.  See the code in inline_unsafe_prefetch.
  2552   Node* adr;
  2553   Node* heap_base_oop = top();
  2554   Node* offset = top();
  2555   Node* val;
  2557   if (!is_native_ptr) {
  2558     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2559     Node* base = argument(1);  // type: oop
  2560     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2561     offset = argument(2);  // type: long
  2562     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2563     // to be plain byte offsets, which are also the same as those accepted
  2564     // by oopDesc::field_base.
  2565     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2566            "fieldOffset must be byte-scaled");
  2567     // 32-bit machines ignore the high half!
  2568     offset = ConvL2X(offset);
  2569     adr = make_unsafe_address(base, offset);
  2570     heap_base_oop = base;
  2571     val = is_store ? argument(4) : NULL;
  2572   } else {
  2573     Node* ptr = argument(1);  // type: long
  2574     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2575     adr = make_unsafe_address(NULL, ptr);
  2576     val = is_store ? argument(3) : NULL;
  2579   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2581   // First guess at the value type.
  2582   const Type *value_type = Type::get_const_basic_type(type);
  2584   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2585   // there was not enough information to nail it down.
  2586   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2587   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2589   // We will need memory barriers unless we can determine a unique
  2590   // alias category for this reference.  (Note:  If for some reason
  2591   // the barriers get omitted and the unsafe reference begins to "pollute"
  2592   // the alias analysis of the rest of the graph, either Compile::can_alias
  2593   // or Compile::must_alias will throw a diagnostic assert.)
  2594   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2596   // If we are reading the value of the referent field of a Reference
  2597   // object (either by using Unsafe directly or through reflection)
  2598   // then, if G1 is enabled, we need to record the referent in an
  2599   // SATB log buffer using the pre-barrier mechanism.
  2600   // Also we need to add memory barrier to prevent commoning reads
  2601   // from this field across safepoint since GC can change its value.
  2602   bool need_read_barrier = !is_native_ptr && !is_store &&
  2603                            offset != top() && heap_base_oop != top();
  2605   if (!is_store && type == T_OBJECT) {
  2606     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2607     if (tjp != NULL) {
  2608       value_type = tjp;
  2612   receiver = null_check(receiver);
  2613   if (stopped()) {
  2614     return true;
  2616   // Heap pointers get a null-check from the interpreter,
  2617   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2618   // and it is not possible to fully distinguish unintended nulls
  2619   // from intended ones in this API.
  2621   if (is_volatile) {
  2622     // We need to emit leading and trailing CPU membars (see below) in
  2623     // addition to memory membars when is_volatile. This is a little
  2624     // too strong, but avoids the need to insert per-alias-type
  2625     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2626     // we cannot do effectively here because we probably only have a
  2627     // rough approximation of type.
  2628     need_mem_bar = true;
  2629     // For Stores, place a memory ordering barrier now.
  2630     if (is_store)
  2631       insert_mem_bar(Op_MemBarRelease);
  2634   // Memory barrier to prevent normal and 'unsafe' accesses from
  2635   // bypassing each other.  Happens after null checks, so the
  2636   // exception paths do not take memory state from the memory barrier,
  2637   // so there's no problems making a strong assert about mixing users
  2638   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2639   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2640   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2642   if (!is_store) {
  2643     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
  2644     // load value
  2645     switch (type) {
  2646     case T_BOOLEAN:
  2647     case T_CHAR:
  2648     case T_BYTE:
  2649     case T_SHORT:
  2650     case T_INT:
  2651     case T_LONG:
  2652     case T_FLOAT:
  2653     case T_DOUBLE:
  2654       break;
  2655     case T_OBJECT:
  2656       if (need_read_barrier) {
  2657         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2659       break;
  2660     case T_ADDRESS:
  2661       // Cast to an int type.
  2662       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2663       p = ConvX2L(p);
  2664       break;
  2665     default:
  2666       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2667       break;
  2669     // The load node has the control of the preceding MemBarCPUOrder.  All
  2670     // following nodes will have the control of the MemBarCPUOrder inserted at
  2671     // the end of this method.  So, pushing the load onto the stack at a later
  2672     // point is fine.
  2673     set_result(p);
  2674   } else {
  2675     // place effect of store into memory
  2676     switch (type) {
  2677     case T_DOUBLE:
  2678       val = dstore_rounding(val);
  2679       break;
  2680     case T_ADDRESS:
  2681       // Repackage the long as a pointer.
  2682       val = ConvL2X(val);
  2683       val = _gvn.transform(new (C) CastX2PNode(val));
  2684       break;
  2687     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
  2688     if (type != T_OBJECT ) {
  2689       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
  2690     } else {
  2691       // Possibly an oop being stored to Java heap or native memory
  2692       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2693         // oop to Java heap.
  2694         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2695       } else {
  2696         // We can't tell at compile time if we are storing in the Java heap or outside
  2697         // of it. So we need to emit code to conditionally do the proper type of
  2698         // store.
  2700         IdealKit ideal(this);
  2701 #define __ ideal.
  2702         // QQQ who knows what probability is here??
  2703         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2704           // Sync IdealKit and graphKit.
  2705           sync_kit(ideal);
  2706           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2707           // Update IdealKit memory.
  2708           __ sync_kit(this);
  2709         } __ else_(); {
  2710           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
  2711         } __ end_if();
  2712         // Final sync IdealKit and GraphKit.
  2713         final_sync(ideal);
  2714 #undef __
  2719   if (is_volatile) {
  2720     if (!is_store)
  2721       insert_mem_bar(Op_MemBarAcquire);
  2722     else
  2723       insert_mem_bar(Op_MemBarVolatile);
  2726   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2728   return true;
  2731 //----------------------------inline_unsafe_prefetch----------------------------
  2733 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2734 #ifndef PRODUCT
  2736     ResourceMark rm;
  2737     // Check the signatures.
  2738     ciSignature* sig = callee()->signature();
  2739 #ifdef ASSERT
  2740     // Object getObject(Object base, int/long offset), etc.
  2741     BasicType rtype = sig->return_type()->basic_type();
  2742     if (!is_native_ptr) {
  2743       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2744       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2745       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2746     } else {
  2747       assert(sig->count() == 1, "native prefetch has 1 argument");
  2748       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2750 #endif // ASSERT
  2752 #endif // !PRODUCT
  2754   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2756   const int idx = is_static ? 0 : 1;
  2757   if (!is_static) {
  2758     null_check_receiver();
  2759     if (stopped()) {
  2760       return true;
  2764   // Build address expression.  See the code in inline_unsafe_access.
  2765   Node *adr;
  2766   if (!is_native_ptr) {
  2767     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2768     Node* base   = argument(idx + 0);  // type: oop
  2769     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2770     Node* offset = argument(idx + 1);  // type: long
  2771     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2772     // to be plain byte offsets, which are also the same as those accepted
  2773     // by oopDesc::field_base.
  2774     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2775            "fieldOffset must be byte-scaled");
  2776     // 32-bit machines ignore the high half!
  2777     offset = ConvL2X(offset);
  2778     adr = make_unsafe_address(base, offset);
  2779   } else {
  2780     Node* ptr = argument(idx + 0);  // type: long
  2781     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2782     adr = make_unsafe_address(NULL, ptr);
  2785   // Generate the read or write prefetch
  2786   Node *prefetch;
  2787   if (is_store) {
  2788     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2789   } else {
  2790     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2792   prefetch->init_req(0, control());
  2793   set_i_o(_gvn.transform(prefetch));
  2795   return true;
  2798 //----------------------------inline_unsafe_load_store----------------------------
  2799 // This method serves a couple of different customers (depending on LoadStoreKind):
  2800 //
  2801 // LS_cmpxchg:
  2802 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2803 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2804 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2805 //
  2806 // LS_xadd:
  2807 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2808 //   public long getAndAddLong(Object o, long offset, long delta)
  2809 //
  2810 // LS_xchg:
  2811 //   int    getAndSet(Object o, long offset, int    newValue)
  2812 //   long   getAndSet(Object o, long offset, long   newValue)
  2813 //   Object getAndSet(Object o, long offset, Object newValue)
  2814 //
  2815 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2816   // This basic scheme here is the same as inline_unsafe_access, but
  2817   // differs in enough details that combining them would make the code
  2818   // overly confusing.  (This is a true fact! I originally combined
  2819   // them, but even I was confused by it!) As much code/comments as
  2820   // possible are retained from inline_unsafe_access though to make
  2821   // the correspondences clearer. - dl
  2823   if (callee()->is_static())  return false;  // caller must have the capability!
  2825 #ifndef PRODUCT
  2826   BasicType rtype;
  2828     ResourceMark rm;
  2829     // Check the signatures.
  2830     ciSignature* sig = callee()->signature();
  2831     rtype = sig->return_type()->basic_type();
  2832     if (kind == LS_xadd || kind == LS_xchg) {
  2833       // Check the signatures.
  2834 #ifdef ASSERT
  2835       assert(rtype == type, "get and set must return the expected type");
  2836       assert(sig->count() == 3, "get and set has 3 arguments");
  2837       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2838       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2839       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2840 #endif // ASSERT
  2841     } else if (kind == LS_cmpxchg) {
  2842       // Check the signatures.
  2843 #ifdef ASSERT
  2844       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2845       assert(sig->count() == 4, "CAS has 4 arguments");
  2846       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2847       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2848 #endif // ASSERT
  2849     } else {
  2850       ShouldNotReachHere();
  2853 #endif //PRODUCT
  2855   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2857   // Get arguments:
  2858   Node* receiver = NULL;
  2859   Node* base     = NULL;
  2860   Node* offset   = NULL;
  2861   Node* oldval   = NULL;
  2862   Node* newval   = NULL;
  2863   if (kind == LS_cmpxchg) {
  2864     const bool two_slot_type = type2size[type] == 2;
  2865     receiver = argument(0);  // type: oop
  2866     base     = argument(1);  // type: oop
  2867     offset   = argument(2);  // type: long
  2868     oldval   = argument(4);  // type: oop, int, or long
  2869     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2870   } else if (kind == LS_xadd || kind == LS_xchg){
  2871     receiver = argument(0);  // type: oop
  2872     base     = argument(1);  // type: oop
  2873     offset   = argument(2);  // type: long
  2874     oldval   = NULL;
  2875     newval   = argument(4);  // type: oop, int, or long
  2878   // Null check receiver.
  2879   receiver = null_check(receiver);
  2880   if (stopped()) {
  2881     return true;
  2884   // Build field offset expression.
  2885   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2886   // to be plain byte offsets, which are also the same as those accepted
  2887   // by oopDesc::field_base.
  2888   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2889   // 32-bit machines ignore the high half of long offsets
  2890   offset = ConvL2X(offset);
  2891   Node* adr = make_unsafe_address(base, offset);
  2892   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2894   // For CAS, unlike inline_unsafe_access, there seems no point in
  2895   // trying to refine types. Just use the coarse types here.
  2896   const Type *value_type = Type::get_const_basic_type(type);
  2897   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2898   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2900   if (kind == LS_xchg && type == T_OBJECT) {
  2901     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2902     if (tjp != NULL) {
  2903       value_type = tjp;
  2907   int alias_idx = C->get_alias_index(adr_type);
  2909   // Memory-model-wise, a LoadStore acts like a little synchronized
  2910   // block, so needs barriers on each side.  These don't translate
  2911   // into actual barriers on most machines, but we still need rest of
  2912   // compiler to respect ordering.
  2914   insert_mem_bar(Op_MemBarRelease);
  2915   insert_mem_bar(Op_MemBarCPUOrder);
  2917   // 4984716: MemBars must be inserted before this
  2918   //          memory node in order to avoid a false
  2919   //          dependency which will confuse the scheduler.
  2920   Node *mem = memory(alias_idx);
  2922   // For now, we handle only those cases that actually exist: ints,
  2923   // longs, and Object. Adding others should be straightforward.
  2924   Node* load_store;
  2925   switch(type) {
  2926   case T_INT:
  2927     if (kind == LS_xadd) {
  2928       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2929     } else if (kind == LS_xchg) {
  2930       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2931     } else if (kind == LS_cmpxchg) {
  2932       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2933     } else {
  2934       ShouldNotReachHere();
  2936     break;
  2937   case T_LONG:
  2938     if (kind == LS_xadd) {
  2939       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2940     } else if (kind == LS_xchg) {
  2941       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2942     } else if (kind == LS_cmpxchg) {
  2943       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2944     } else {
  2945       ShouldNotReachHere();
  2947     break;
  2948   case T_OBJECT:
  2949     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2950     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2951     // Execute transformation here to avoid barrier generation in such case.
  2952     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2953       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2955     // Reference stores need a store barrier.
  2956     if (kind == LS_xchg) {
  2957       // If pre-barrier must execute before the oop store, old value will require do_load here.
  2958       if (!can_move_pre_barrier()) {
  2959         pre_barrier(true /* do_load*/,
  2960                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2961                     NULL /* pre_val*/,
  2962                     T_OBJECT);
  2963       } // Else move pre_barrier to use load_store value, see below.
  2964     } else if (kind == LS_cmpxchg) {
  2965       // Same as for newval above:
  2966       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  2967         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  2969       // The only known value which might get overwritten is oldval.
  2970       pre_barrier(false /* do_load */,
  2971                   control(), NULL, NULL, max_juint, NULL, NULL,
  2972                   oldval /* pre_val */,
  2973                   T_OBJECT);
  2974     } else {
  2975       ShouldNotReachHere();
  2978 #ifdef _LP64
  2979     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2980       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2981       if (kind == LS_xchg) {
  2982         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2983                                                            newval_enc, adr_type, value_type->make_narrowoop()));
  2984       } else {
  2985         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2986         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2987         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2988                                                                 newval_enc, oldval_enc));
  2990     } else
  2991 #endif
  2993       if (kind == LS_xchg) {
  2994         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  2995       } else {
  2996         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2997         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  3000     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  3001     break;
  3002   default:
  3003     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  3004     break;
  3007   // SCMemProjNodes represent the memory state of a LoadStore. Their
  3008   // main role is to prevent LoadStore nodes from being optimized away
  3009   // when their results aren't used.
  3010   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  3011   set_memory(proj, alias_idx);
  3013   if (type == T_OBJECT && kind == LS_xchg) {
  3014 #ifdef _LP64
  3015     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3016       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  3018 #endif
  3019     if (can_move_pre_barrier()) {
  3020       // Don't need to load pre_val. The old value is returned by load_store.
  3021       // The pre_barrier can execute after the xchg as long as no safepoint
  3022       // gets inserted between them.
  3023       pre_barrier(false /* do_load */,
  3024                   control(), NULL, NULL, max_juint, NULL, NULL,
  3025                   load_store /* pre_val */,
  3026                   T_OBJECT);
  3030   // Add the trailing membar surrounding the access
  3031   insert_mem_bar(Op_MemBarCPUOrder);
  3032   insert_mem_bar(Op_MemBarAcquire);
  3034   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  3035   set_result(load_store);
  3036   return true;
  3039 //----------------------------inline_unsafe_ordered_store----------------------
  3040 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  3041 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  3042 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  3043 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  3044   // This is another variant of inline_unsafe_access, differing in
  3045   // that it always issues store-store ("release") barrier and ensures
  3046   // store-atomicity (which only matters for "long").
  3048   if (callee()->is_static())  return false;  // caller must have the capability!
  3050 #ifndef PRODUCT
  3052     ResourceMark rm;
  3053     // Check the signatures.
  3054     ciSignature* sig = callee()->signature();
  3055 #ifdef ASSERT
  3056     BasicType rtype = sig->return_type()->basic_type();
  3057     assert(rtype == T_VOID, "must return void");
  3058     assert(sig->count() == 3, "has 3 arguments");
  3059     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  3060     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  3061 #endif // ASSERT
  3063 #endif //PRODUCT
  3065   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3067   // Get arguments:
  3068   Node* receiver = argument(0);  // type: oop
  3069   Node* base     = argument(1);  // type: oop
  3070   Node* offset   = argument(2);  // type: long
  3071   Node* val      = argument(4);  // type: oop, int, or long
  3073   // Null check receiver.
  3074   receiver = null_check(receiver);
  3075   if (stopped()) {
  3076     return true;
  3079   // Build field offset expression.
  3080   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  3081   // 32-bit machines ignore the high half of long offsets
  3082   offset = ConvL2X(offset);
  3083   Node* adr = make_unsafe_address(base, offset);
  3084   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  3085   const Type *value_type = Type::get_const_basic_type(type);
  3086   Compile::AliasType* alias_type = C->alias_type(adr_type);
  3088   insert_mem_bar(Op_MemBarRelease);
  3089   insert_mem_bar(Op_MemBarCPUOrder);
  3090   // Ensure that the store is atomic for longs:
  3091   const bool require_atomic_access = true;
  3092   Node* store;
  3093   if (type == T_OBJECT) // reference stores need a store barrier.
  3094     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
  3095   else {
  3096     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
  3098   insert_mem_bar(Op_MemBarCPUOrder);
  3099   return true;
  3102 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  3103   // Regardless of form, don't allow previous ld/st to move down,
  3104   // then issue acquire, release, or volatile mem_bar.
  3105   insert_mem_bar(Op_MemBarCPUOrder);
  3106   switch(id) {
  3107     case vmIntrinsics::_loadFence:
  3108       insert_mem_bar(Op_LoadFence);
  3109       return true;
  3110     case vmIntrinsics::_storeFence:
  3111       insert_mem_bar(Op_StoreFence);
  3112       return true;
  3113     case vmIntrinsics::_fullFence:
  3114       insert_mem_bar(Op_MemBarVolatile);
  3115       return true;
  3116     default:
  3117       fatal_unexpected_iid(id);
  3118       return false;
  3122 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  3123   if (!kls->is_Con()) {
  3124     return true;
  3126   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  3127   if (klsptr == NULL) {
  3128     return true;
  3130   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  3131   // don't need a guard for a klass that is already initialized
  3132   return !ik->is_initialized();
  3135 //----------------------------inline_unsafe_allocate---------------------------
  3136 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  3137 bool LibraryCallKit::inline_unsafe_allocate() {
  3138   if (callee()->is_static())  return false;  // caller must have the capability!
  3140   null_check_receiver();  // null-check, then ignore
  3141   Node* cls = null_check(argument(1));
  3142   if (stopped())  return true;
  3144   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3145   kls = null_check(kls);
  3146   if (stopped())  return true;  // argument was like int.class
  3148   Node* test = NULL;
  3149   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3150     // Note:  The argument might still be an illegal value like
  3151     // Serializable.class or Object[].class.   The runtime will handle it.
  3152     // But we must make an explicit check for initialization.
  3153     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3154     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3155     // can generate code to load it as unsigned byte.
  3156     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
  3157     Node* bits = intcon(InstanceKlass::fully_initialized);
  3158     test = _gvn.transform(new (C) SubINode(inst, bits));
  3159     // The 'test' is non-zero if we need to take a slow path.
  3162   Node* obj = new_instance(kls, test);
  3163   set_result(obj);
  3164   return true;
  3167 #ifdef TRACE_HAVE_INTRINSICS
  3168 /*
  3169  * oop -> myklass
  3170  * myklass->trace_id |= USED
  3171  * return myklass->trace_id & ~0x3
  3172  */
  3173 bool LibraryCallKit::inline_native_classID() {
  3174   null_check_receiver();  // null-check, then ignore
  3175   Node* cls = null_check(argument(1), T_OBJECT);
  3176   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3177   kls = null_check(kls, T_OBJECT);
  3178   ByteSize offset = TRACE_ID_OFFSET;
  3179   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3180   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
  3181   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3182   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3183   Node* clsused = longcon(0x01l); // set the class bit
  3184   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3186   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3187   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
  3188   set_result(andl);
  3189   return true;
  3192 bool LibraryCallKit::inline_native_threadID() {
  3193   Node* tls_ptr = NULL;
  3194   Node* cur_thr = generate_current_thread(tls_ptr);
  3195   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3196   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3197   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3199   Node* threadid = NULL;
  3200   size_t thread_id_size = OSThread::thread_id_size();
  3201   if (thread_id_size == (size_t) BytesPerLong) {
  3202     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
  3203   } else if (thread_id_size == (size_t) BytesPerInt) {
  3204     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
  3205   } else {
  3206     ShouldNotReachHere();
  3208   set_result(threadid);
  3209   return true;
  3211 #endif
  3213 //------------------------inline_native_time_funcs--------------
  3214 // inline code for System.currentTimeMillis() and System.nanoTime()
  3215 // these have the same type and signature
  3216 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3217   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3218   const TypePtr* no_memory_effects = NULL;
  3219   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3220   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3221 #ifdef ASSERT
  3222   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3223   assert(value_top == top(), "second value must be top");
  3224 #endif
  3225   set_result(value);
  3226   return true;
  3229 //------------------------inline_native_currentThread------------------
  3230 bool LibraryCallKit::inline_native_currentThread() {
  3231   Node* junk = NULL;
  3232   set_result(generate_current_thread(junk));
  3233   return true;
  3236 //------------------------inline_native_isInterrupted------------------
  3237 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3238 bool LibraryCallKit::inline_native_isInterrupted() {
  3239   // Add a fast path to t.isInterrupted(clear_int):
  3240   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  3241   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3242   // So, in the common case that the interrupt bit is false,
  3243   // we avoid making a call into the VM.  Even if the interrupt bit
  3244   // is true, if the clear_int argument is false, we avoid the VM call.
  3245   // However, if the receiver is not currentThread, we must call the VM,
  3246   // because there must be some locking done around the operation.
  3248   // We only go to the fast case code if we pass two guards.
  3249   // Paths which do not pass are accumulated in the slow_region.
  3251   enum {
  3252     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3253     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3254     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3255     PATH_LIMIT
  3256   };
  3258   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3259   // out of the function.
  3260   insert_mem_bar(Op_MemBarCPUOrder);
  3262   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3263   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3265   RegionNode* slow_region = new (C) RegionNode(1);
  3266   record_for_igvn(slow_region);
  3268   // (a) Receiving thread must be the current thread.
  3269   Node* rec_thr = argument(0);
  3270   Node* tls_ptr = NULL;
  3271   Node* cur_thr = generate_current_thread(tls_ptr);
  3272   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3273   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3275   generate_slow_guard(bol_thr, slow_region);
  3277   // (b) Interrupt bit on TLS must be false.
  3278   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3279   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3280   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3282   // Set the control input on the field _interrupted read to prevent it floating up.
  3283   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
  3284   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3285   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3287   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3289   // First fast path:  if (!TLS._interrupted) return false;
  3290   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3291   result_rgn->init_req(no_int_result_path, false_bit);
  3292   result_val->init_req(no_int_result_path, intcon(0));
  3294   // drop through to next case
  3295   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3297   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3298   Node* clr_arg = argument(1);
  3299   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3300   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3301   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3303   // Second fast path:  ... else if (!clear_int) return true;
  3304   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3305   result_rgn->init_req(no_clear_result_path, false_arg);
  3306   result_val->init_req(no_clear_result_path, intcon(1));
  3308   // drop through to next case
  3309   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3311   // (d) Otherwise, go to the slow path.
  3312   slow_region->add_req(control());
  3313   set_control( _gvn.transform(slow_region));
  3315   if (stopped()) {
  3316     // There is no slow path.
  3317     result_rgn->init_req(slow_result_path, top());
  3318     result_val->init_req(slow_result_path, top());
  3319   } else {
  3320     // non-virtual because it is a private non-static
  3321     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3323     Node* slow_val = set_results_for_java_call(slow_call);
  3324     // this->control() comes from set_results_for_java_call
  3326     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3327     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3329     // These two phis are pre-filled with copies of of the fast IO and Memory
  3330     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3331     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3333     result_rgn->init_req(slow_result_path, control());
  3334     result_io ->init_req(slow_result_path, i_o());
  3335     result_mem->init_req(slow_result_path, reset_memory());
  3336     result_val->init_req(slow_result_path, slow_val);
  3338     set_all_memory(_gvn.transform(result_mem));
  3339     set_i_o(       _gvn.transform(result_io));
  3342   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3343   set_result(result_rgn, result_val);
  3344   return true;
  3347 //---------------------------load_mirror_from_klass----------------------------
  3348 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3349 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3350   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3351   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3354 //-----------------------load_klass_from_mirror_common-------------------------
  3355 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3356 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3357 // and branch to the given path on the region.
  3358 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3359 // compile for the non-null case.
  3360 // If the region is NULL, force never_see_null = true.
  3361 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3362                                                     bool never_see_null,
  3363                                                     RegionNode* region,
  3364                                                     int null_path,
  3365                                                     int offset) {
  3366   if (region == NULL)  never_see_null = true;
  3367   Node* p = basic_plus_adr(mirror, offset);
  3368   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3369   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3370   Node* null_ctl = top();
  3371   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3372   if (region != NULL) {
  3373     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3374     region->init_req(null_path, null_ctl);
  3375   } else {
  3376     assert(null_ctl == top(), "no loose ends");
  3378   return kls;
  3381 //--------------------(inline_native_Class_query helpers)---------------------
  3382 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3383 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3384 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3385   // Branch around if the given klass has the given modifier bit set.
  3386   // Like generate_guard, adds a new path onto the region.
  3387   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3388   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
  3389   Node* mask = intcon(modifier_mask);
  3390   Node* bits = intcon(modifier_bits);
  3391   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3392   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3393   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3394   return generate_fair_guard(bol, region);
  3396 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3397   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3400 //-------------------------inline_native_Class_query-------------------
  3401 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3402   const Type* return_type = TypeInt::BOOL;
  3403   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3404   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3405   bool expect_prim = false;     // most of these guys expect to work on refs
  3407   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3409   Node* mirror = argument(0);
  3410   Node* obj    = top();
  3412   switch (id) {
  3413   case vmIntrinsics::_isInstance:
  3414     // nothing is an instance of a primitive type
  3415     prim_return_value = intcon(0);
  3416     obj = argument(1);
  3417     break;
  3418   case vmIntrinsics::_getModifiers:
  3419     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3420     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3421     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3422     break;
  3423   case vmIntrinsics::_isInterface:
  3424     prim_return_value = intcon(0);
  3425     break;
  3426   case vmIntrinsics::_isArray:
  3427     prim_return_value = intcon(0);
  3428     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3429     break;
  3430   case vmIntrinsics::_isPrimitive:
  3431     prim_return_value = intcon(1);
  3432     expect_prim = true;  // obviously
  3433     break;
  3434   case vmIntrinsics::_getSuperclass:
  3435     prim_return_value = null();
  3436     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3437     break;
  3438   case vmIntrinsics::_getComponentType:
  3439     prim_return_value = null();
  3440     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3441     break;
  3442   case vmIntrinsics::_getClassAccessFlags:
  3443     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3444     return_type = TypeInt::INT;  // not bool!  6297094
  3445     break;
  3446   default:
  3447     fatal_unexpected_iid(id);
  3448     break;
  3451   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3452   if (mirror_con == NULL)  return false;  // cannot happen?
  3454 #ifndef PRODUCT
  3455   if (C->print_intrinsics() || C->print_inlining()) {
  3456     ciType* k = mirror_con->java_mirror_type();
  3457     if (k) {
  3458       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3459       k->print_name();
  3460       tty->cr();
  3463 #endif
  3465   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3466   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3467   record_for_igvn(region);
  3468   PhiNode* phi = new (C) PhiNode(region, return_type);
  3470   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3471   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3472   // if it is. See bug 4774291.
  3474   // For Reflection.getClassAccessFlags(), the null check occurs in
  3475   // the wrong place; see inline_unsafe_access(), above, for a similar
  3476   // situation.
  3477   mirror = null_check(mirror);
  3478   // If mirror or obj is dead, only null-path is taken.
  3479   if (stopped())  return true;
  3481   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3483   // Now load the mirror's klass metaobject, and null-check it.
  3484   // Side-effects region with the control path if the klass is null.
  3485   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3486   // If kls is null, we have a primitive mirror.
  3487   phi->init_req(_prim_path, prim_return_value);
  3488   if (stopped()) { set_result(region, phi); return true; }
  3489   bool safe_for_replace = (region->in(_prim_path) == top());
  3491   Node* p;  // handy temp
  3492   Node* null_ctl;
  3494   // Now that we have the non-null klass, we can perform the real query.
  3495   // For constant classes, the query will constant-fold in LoadNode::Value.
  3496   Node* query_value = top();
  3497   switch (id) {
  3498   case vmIntrinsics::_isInstance:
  3499     // nothing is an instance of a primitive type
  3500     query_value = gen_instanceof(obj, kls, safe_for_replace);
  3501     break;
  3503   case vmIntrinsics::_getModifiers:
  3504     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3505     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3506     break;
  3508   case vmIntrinsics::_isInterface:
  3509     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3510     if (generate_interface_guard(kls, region) != NULL)
  3511       // A guard was added.  If the guard is taken, it was an interface.
  3512       phi->add_req(intcon(1));
  3513     // If we fall through, it's a plain class.
  3514     query_value = intcon(0);
  3515     break;
  3517   case vmIntrinsics::_isArray:
  3518     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3519     if (generate_array_guard(kls, region) != NULL)
  3520       // A guard was added.  If the guard is taken, it was an array.
  3521       phi->add_req(intcon(1));
  3522     // If we fall through, it's a plain class.
  3523     query_value = intcon(0);
  3524     break;
  3526   case vmIntrinsics::_isPrimitive:
  3527     query_value = intcon(0); // "normal" path produces false
  3528     break;
  3530   case vmIntrinsics::_getSuperclass:
  3531     // The rules here are somewhat unfortunate, but we can still do better
  3532     // with random logic than with a JNI call.
  3533     // Interfaces store null or Object as _super, but must report null.
  3534     // Arrays store an intermediate super as _super, but must report Object.
  3535     // Other types can report the actual _super.
  3536     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3537     if (generate_interface_guard(kls, region) != NULL)
  3538       // A guard was added.  If the guard is taken, it was an interface.
  3539       phi->add_req(null());
  3540     if (generate_array_guard(kls, region) != NULL)
  3541       // A guard was added.  If the guard is taken, it was an array.
  3542       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3543     // If we fall through, it's a plain class.  Get its _super.
  3544     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3545     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3546     null_ctl = top();
  3547     kls = null_check_oop(kls, &null_ctl);
  3548     if (null_ctl != top()) {
  3549       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3550       region->add_req(null_ctl);
  3551       phi   ->add_req(null());
  3553     if (!stopped()) {
  3554       query_value = load_mirror_from_klass(kls);
  3556     break;
  3558   case vmIntrinsics::_getComponentType:
  3559     if (generate_array_guard(kls, region) != NULL) {
  3560       // Be sure to pin the oop load to the guard edge just created:
  3561       Node* is_array_ctrl = region->in(region->req()-1);
  3562       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3563       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3564       phi->add_req(cmo);
  3566     query_value = null();  // non-array case is null
  3567     break;
  3569   case vmIntrinsics::_getClassAccessFlags:
  3570     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3571     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3572     break;
  3574   default:
  3575     fatal_unexpected_iid(id);
  3576     break;
  3579   // Fall-through is the normal case of a query to a real class.
  3580   phi->init_req(1, query_value);
  3581   region->init_req(1, control());
  3583   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3584   set_result(region, phi);
  3585   return true;
  3588 //--------------------------inline_native_subtype_check------------------------
  3589 // This intrinsic takes the JNI calls out of the heart of
  3590 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3591 bool LibraryCallKit::inline_native_subtype_check() {
  3592   // Pull both arguments off the stack.
  3593   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3594   args[0] = argument(0);
  3595   args[1] = argument(1);
  3596   Node* klasses[2];             // corresponding Klasses: superk, subk
  3597   klasses[0] = klasses[1] = top();
  3599   enum {
  3600     // A full decision tree on {superc is prim, subc is prim}:
  3601     _prim_0_path = 1,           // {P,N} => false
  3602                                 // {P,P} & superc!=subc => false
  3603     _prim_same_path,            // {P,P} & superc==subc => true
  3604     _prim_1_path,               // {N,P} => false
  3605     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3606     _both_ref_path,             // {N,N} & subtype check loses => false
  3607     PATH_LIMIT
  3608   };
  3610   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3611   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3612   record_for_igvn(region);
  3614   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3615   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3616   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3618   // First null-check both mirrors and load each mirror's klass metaobject.
  3619   int which_arg;
  3620   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3621     Node* arg = args[which_arg];
  3622     arg = null_check(arg);
  3623     if (stopped())  break;
  3624     args[which_arg] = arg;
  3626     Node* p = basic_plus_adr(arg, class_klass_offset);
  3627     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3628     klasses[which_arg] = _gvn.transform(kls);
  3631   // Having loaded both klasses, test each for null.
  3632   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3633   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3634     Node* kls = klasses[which_arg];
  3635     Node* null_ctl = top();
  3636     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3637     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3638     region->init_req(prim_path, null_ctl);
  3639     if (stopped())  break;
  3640     klasses[which_arg] = kls;
  3643   if (!stopped()) {
  3644     // now we have two reference types, in klasses[0..1]
  3645     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3646     Node* superk = klasses[0];  // the receiver
  3647     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3648     // now we have a successful reference subtype check
  3649     region->set_req(_ref_subtype_path, control());
  3652   // If both operands are primitive (both klasses null), then
  3653   // we must return true when they are identical primitives.
  3654   // It is convenient to test this after the first null klass check.
  3655   set_control(region->in(_prim_0_path)); // go back to first null check
  3656   if (!stopped()) {
  3657     // Since superc is primitive, make a guard for the superc==subc case.
  3658     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3659     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3660     generate_guard(bol_eq, region, PROB_FAIR);
  3661     if (region->req() == PATH_LIMIT+1) {
  3662       // A guard was added.  If the added guard is taken, superc==subc.
  3663       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3664       region->del_req(PATH_LIMIT);
  3666     region->set_req(_prim_0_path, control()); // Not equal after all.
  3669   // these are the only paths that produce 'true':
  3670   phi->set_req(_prim_same_path,   intcon(1));
  3671   phi->set_req(_ref_subtype_path, intcon(1));
  3673   // pull together the cases:
  3674   assert(region->req() == PATH_LIMIT, "sane region");
  3675   for (uint i = 1; i < region->req(); i++) {
  3676     Node* ctl = region->in(i);
  3677     if (ctl == NULL || ctl == top()) {
  3678       region->set_req(i, top());
  3679       phi   ->set_req(i, top());
  3680     } else if (phi->in(i) == NULL) {
  3681       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3685   set_control(_gvn.transform(region));
  3686   set_result(_gvn.transform(phi));
  3687   return true;
  3690 //---------------------generate_array_guard_common------------------------
  3691 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3692                                                   bool obj_array, bool not_array) {
  3693   // If obj_array/non_array==false/false:
  3694   // Branch around if the given klass is in fact an array (either obj or prim).
  3695   // If obj_array/non_array==false/true:
  3696   // Branch around if the given klass is not an array klass of any kind.
  3697   // If obj_array/non_array==true/true:
  3698   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3699   // If obj_array/non_array==true/false:
  3700   // Branch around if the kls is an oop array (Object[] or subtype)
  3701   //
  3702   // Like generate_guard, adds a new path onto the region.
  3703   jint  layout_con = 0;
  3704   Node* layout_val = get_layout_helper(kls, layout_con);
  3705   if (layout_val == NULL) {
  3706     bool query = (obj_array
  3707                   ? Klass::layout_helper_is_objArray(layout_con)
  3708                   : Klass::layout_helper_is_array(layout_con));
  3709     if (query == not_array) {
  3710       return NULL;                       // never a branch
  3711     } else {                             // always a branch
  3712       Node* always_branch = control();
  3713       if (region != NULL)
  3714         region->add_req(always_branch);
  3715       set_control(top());
  3716       return always_branch;
  3719   // Now test the correct condition.
  3720   jint  nval = (obj_array
  3721                 ? ((jint)Klass::_lh_array_tag_type_value
  3722                    <<    Klass::_lh_array_tag_shift)
  3723                 : Klass::_lh_neutral_value);
  3724   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3725   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3726   // invert the test if we are looking for a non-array
  3727   if (not_array)  btest = BoolTest(btest).negate();
  3728   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3729   return generate_fair_guard(bol, region);
  3733 //-----------------------inline_native_newArray--------------------------
  3734 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3735 bool LibraryCallKit::inline_native_newArray() {
  3736   Node* mirror    = argument(0);
  3737   Node* count_val = argument(1);
  3739   mirror = null_check(mirror);
  3740   // If mirror or obj is dead, only null-path is taken.
  3741   if (stopped())  return true;
  3743   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3744   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3745   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3746                                           TypeInstPtr::NOTNULL);
  3747   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3748   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3749                                           TypePtr::BOTTOM);
  3751   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3752   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3753                                                   result_reg, _slow_path);
  3754   Node* normal_ctl   = control();
  3755   Node* no_array_ctl = result_reg->in(_slow_path);
  3757   // Generate code for the slow case.  We make a call to newArray().
  3758   set_control(no_array_ctl);
  3759   if (!stopped()) {
  3760     // Either the input type is void.class, or else the
  3761     // array klass has not yet been cached.  Either the
  3762     // ensuing call will throw an exception, or else it
  3763     // will cache the array klass for next time.
  3764     PreserveJVMState pjvms(this);
  3765     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3766     Node* slow_result = set_results_for_java_call(slow_call);
  3767     // this->control() comes from set_results_for_java_call
  3768     result_reg->set_req(_slow_path, control());
  3769     result_val->set_req(_slow_path, slow_result);
  3770     result_io ->set_req(_slow_path, i_o());
  3771     result_mem->set_req(_slow_path, reset_memory());
  3774   set_control(normal_ctl);
  3775   if (!stopped()) {
  3776     // Normal case:  The array type has been cached in the java.lang.Class.
  3777     // The following call works fine even if the array type is polymorphic.
  3778     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3779     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3780     result_reg->init_req(_normal_path, control());
  3781     result_val->init_req(_normal_path, obj);
  3782     result_io ->init_req(_normal_path, i_o());
  3783     result_mem->init_req(_normal_path, reset_memory());
  3786   // Return the combined state.
  3787   set_i_o(        _gvn.transform(result_io)  );
  3788   set_all_memory( _gvn.transform(result_mem));
  3790   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3791   set_result(result_reg, result_val);
  3792   return true;
  3795 //----------------------inline_native_getLength--------------------------
  3796 // public static native int java.lang.reflect.Array.getLength(Object array);
  3797 bool LibraryCallKit::inline_native_getLength() {
  3798   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3800   Node* array = null_check(argument(0));
  3801   // If array is dead, only null-path is taken.
  3802   if (stopped())  return true;
  3804   // Deoptimize if it is a non-array.
  3805   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3807   if (non_array != NULL) {
  3808     PreserveJVMState pjvms(this);
  3809     set_control(non_array);
  3810     uncommon_trap(Deoptimization::Reason_intrinsic,
  3811                   Deoptimization::Action_maybe_recompile);
  3814   // If control is dead, only non-array-path is taken.
  3815   if (stopped())  return true;
  3817   // The works fine even if the array type is polymorphic.
  3818   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3819   Node* result = load_array_length(array);
  3821   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3822   set_result(result);
  3823   return true;
  3826 //------------------------inline_array_copyOf----------------------------
  3827 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3828 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3829 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3830   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3832   // Get the arguments.
  3833   Node* original          = argument(0);
  3834   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3835   Node* end               = is_copyOfRange? argument(2): argument(1);
  3836   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3838   Node* newcopy;
  3840   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3841   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3842   { PreserveReexecuteState preexecs(this);
  3843     jvms()->set_should_reexecute(true);
  3845     array_type_mirror = null_check(array_type_mirror);
  3846     original          = null_check(original);
  3848     // Check if a null path was taken unconditionally.
  3849     if (stopped())  return true;
  3851     Node* orig_length = load_array_length(original);
  3853     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3854     klass_node = null_check(klass_node);
  3856     RegionNode* bailout = new (C) RegionNode(1);
  3857     record_for_igvn(bailout);
  3859     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3860     // Bail out if that is so.
  3861     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3862     if (not_objArray != NULL) {
  3863       // Improve the klass node's type from the new optimistic assumption:
  3864       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3865       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3866       Node* cast = new (C) CastPPNode(klass_node, akls);
  3867       cast->init_req(0, control());
  3868       klass_node = _gvn.transform(cast);
  3871     // Bail out if either start or end is negative.
  3872     generate_negative_guard(start, bailout, &start);
  3873     generate_negative_guard(end,   bailout, &end);
  3875     Node* length = end;
  3876     if (_gvn.type(start) != TypeInt::ZERO) {
  3877       length = _gvn.transform(new (C) SubINode(end, start));
  3880     // Bail out if length is negative.
  3881     // Without this the new_array would throw
  3882     // NegativeArraySizeException but IllegalArgumentException is what
  3883     // should be thrown
  3884     generate_negative_guard(length, bailout, &length);
  3886     if (bailout->req() > 1) {
  3887       PreserveJVMState pjvms(this);
  3888       set_control(_gvn.transform(bailout));
  3889       uncommon_trap(Deoptimization::Reason_intrinsic,
  3890                     Deoptimization::Action_maybe_recompile);
  3893     if (!stopped()) {
  3894       // How many elements will we copy from the original?
  3895       // The answer is MinI(orig_length - start, length).
  3896       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3897       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3899       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3901       // Generate a direct call to the right arraycopy function(s).
  3902       // We know the copy is disjoint but we might not know if the
  3903       // oop stores need checking.
  3904       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3905       // This will fail a store-check if x contains any non-nulls.
  3906       bool disjoint_bases = true;
  3907       // if start > orig_length then the length of the copy may be
  3908       // negative.
  3909       bool length_never_negative = !is_copyOfRange;
  3910       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3911                          original, start, newcopy, intcon(0), moved,
  3912                          disjoint_bases, length_never_negative);
  3914   } // original reexecute is set back here
  3916   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3917   if (!stopped()) {
  3918     set_result(newcopy);
  3920   return true;
  3924 //----------------------generate_virtual_guard---------------------------
  3925 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3926 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3927                                              RegionNode* slow_region) {
  3928   ciMethod* method = callee();
  3929   int vtable_index = method->vtable_index();
  3930   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3931          err_msg_res("bad index %d", vtable_index));
  3932   // Get the Method* out of the appropriate vtable entry.
  3933   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3934                      vtable_index*vtableEntry::size()) * wordSize +
  3935                      vtableEntry::method_offset_in_bytes();
  3936   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3937   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3939   // Compare the target method with the expected method (e.g., Object.hashCode).
  3940   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3942   Node* native_call = makecon(native_call_addr);
  3943   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  3944   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  3946   return generate_slow_guard(test_native, slow_region);
  3949 //-----------------------generate_method_call----------------------------
  3950 // Use generate_method_call to make a slow-call to the real
  3951 // method if the fast path fails.  An alternative would be to
  3952 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3953 // This only works for expanding the current library call,
  3954 // not another intrinsic.  (E.g., don't use this for making an
  3955 // arraycopy call inside of the copyOf intrinsic.)
  3956 CallJavaNode*
  3957 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3958   // When compiling the intrinsic method itself, do not use this technique.
  3959   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3961   ciMethod* method = callee();
  3962   // ensure the JVMS we have will be correct for this call
  3963   guarantee(method_id == method->intrinsic_id(), "must match");
  3965   const TypeFunc* tf = TypeFunc::make(method);
  3966   CallJavaNode* slow_call;
  3967   if (is_static) {
  3968     assert(!is_virtual, "");
  3969     slow_call = new(C) CallStaticJavaNode(C, tf,
  3970                            SharedRuntime::get_resolve_static_call_stub(),
  3971                            method, bci());
  3972   } else if (is_virtual) {
  3973     null_check_receiver();
  3974     int vtable_index = Method::invalid_vtable_index;
  3975     if (UseInlineCaches) {
  3976       // Suppress the vtable call
  3977     } else {
  3978       // hashCode and clone are not a miranda methods,
  3979       // so the vtable index is fixed.
  3980       // No need to use the linkResolver to get it.
  3981        vtable_index = method->vtable_index();
  3982        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3983               err_msg_res("bad index %d", vtable_index));
  3985     slow_call = new(C) CallDynamicJavaNode(tf,
  3986                           SharedRuntime::get_resolve_virtual_call_stub(),
  3987                           method, vtable_index, bci());
  3988   } else {  // neither virtual nor static:  opt_virtual
  3989     null_check_receiver();
  3990     slow_call = new(C) CallStaticJavaNode(C, tf,
  3991                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3992                                 method, bci());
  3993     slow_call->set_optimized_virtual(true);
  3995   set_arguments_for_java_call(slow_call);
  3996   set_edges_for_java_call(slow_call);
  3997   return slow_call;
  4001 //------------------------------inline_native_hashcode--------------------
  4002 // Build special case code for calls to hashCode on an object.
  4003 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  4004   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  4005   assert(!(is_virtual && is_static), "either virtual, special, or static");
  4007   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  4009   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4010   PhiNode*    result_val = new(C) PhiNode(result_reg,
  4011                                           TypeInt::INT);
  4012   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  4013   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4014                                           TypePtr::BOTTOM);
  4015   Node* obj = NULL;
  4016   if (!is_static) {
  4017     // Check for hashing null object
  4018     obj = null_check_receiver();
  4019     if (stopped())  return true;        // unconditionally null
  4020     result_reg->init_req(_null_path, top());
  4021     result_val->init_req(_null_path, top());
  4022   } else {
  4023     // Do a null check, and return zero if null.
  4024     // System.identityHashCode(null) == 0
  4025     obj = argument(0);
  4026     Node* null_ctl = top();
  4027     obj = null_check_oop(obj, &null_ctl);
  4028     result_reg->init_req(_null_path, null_ctl);
  4029     result_val->init_req(_null_path, _gvn.intcon(0));
  4032   // Unconditionally null?  Then return right away.
  4033   if (stopped()) {
  4034     set_control( result_reg->in(_null_path));
  4035     if (!stopped())
  4036       set_result(result_val->in(_null_path));
  4037     return true;
  4040   // After null check, get the object's klass.
  4041   Node* obj_klass = load_object_klass(obj);
  4043   // This call may be virtual (invokevirtual) or bound (invokespecial).
  4044   // For each case we generate slightly different code.
  4046   // We only go to the fast case code if we pass a number of guards.  The
  4047   // paths which do not pass are accumulated in the slow_region.
  4048   RegionNode* slow_region = new (C) RegionNode(1);
  4049   record_for_igvn(slow_region);
  4051   // If this is a virtual call, we generate a funny guard.  We pull out
  4052   // the vtable entry corresponding to hashCode() from the target object.
  4053   // If the target method which we are calling happens to be the native
  4054   // Object hashCode() method, we pass the guard.  We do not need this
  4055   // guard for non-virtual calls -- the caller is known to be the native
  4056   // Object hashCode().
  4057   if (is_virtual) {
  4058     generate_virtual_guard(obj_klass, slow_region);
  4061   // Get the header out of the object, use LoadMarkNode when available
  4062   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  4063   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
  4065   // Test the header to see if it is unlocked.
  4066   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  4067   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  4068   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  4069   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  4070   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  4072   generate_slow_guard(test_unlocked, slow_region);
  4074   // Get the hash value and check to see that it has been properly assigned.
  4075   // We depend on hash_mask being at most 32 bits and avoid the use of
  4076   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  4077   // vm: see markOop.hpp.
  4078   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  4079   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  4080   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  4081   // This hack lets the hash bits live anywhere in the mark object now, as long
  4082   // as the shift drops the relevant bits into the low 32 bits.  Note that
  4083   // Java spec says that HashCode is an int so there's no point in capturing
  4084   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  4085   hshifted_header      = ConvX2I(hshifted_header);
  4086   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  4088   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  4089   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  4090   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  4092   generate_slow_guard(test_assigned, slow_region);
  4094   Node* init_mem = reset_memory();
  4095   // fill in the rest of the null path:
  4096   result_io ->init_req(_null_path, i_o());
  4097   result_mem->init_req(_null_path, init_mem);
  4099   result_val->init_req(_fast_path, hash_val);
  4100   result_reg->init_req(_fast_path, control());
  4101   result_io ->init_req(_fast_path, i_o());
  4102   result_mem->init_req(_fast_path, init_mem);
  4104   // Generate code for the slow case.  We make a call to hashCode().
  4105   set_control(_gvn.transform(slow_region));
  4106   if (!stopped()) {
  4107     // No need for PreserveJVMState, because we're using up the present state.
  4108     set_all_memory(init_mem);
  4109     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  4110     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4111     Node* slow_result = set_results_for_java_call(slow_call);
  4112     // this->control() comes from set_results_for_java_call
  4113     result_reg->init_req(_slow_path, control());
  4114     result_val->init_req(_slow_path, slow_result);
  4115     result_io  ->set_req(_slow_path, i_o());
  4116     result_mem ->set_req(_slow_path, reset_memory());
  4119   // Return the combined state.
  4120   set_i_o(        _gvn.transform(result_io)  );
  4121   set_all_memory( _gvn.transform(result_mem));
  4123   set_result(result_reg, result_val);
  4124   return true;
  4127 //---------------------------inline_native_getClass----------------------------
  4128 // public final native Class<?> java.lang.Object.getClass();
  4129 //
  4130 // Build special case code for calls to getClass on an object.
  4131 bool LibraryCallKit::inline_native_getClass() {
  4132   Node* obj = null_check_receiver();
  4133   if (stopped())  return true;
  4134   set_result(load_mirror_from_klass(load_object_klass(obj)));
  4135   return true;
  4138 //-----------------inline_native_Reflection_getCallerClass---------------------
  4139 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4140 //
  4141 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4142 //
  4143 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4144 // in that it must skip particular security frames and checks for
  4145 // caller sensitive methods.
  4146 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4147 #ifndef PRODUCT
  4148   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4149     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4151 #endif
  4153   if (!jvms()->has_method()) {
  4154 #ifndef PRODUCT
  4155     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4156       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4158 #endif
  4159     return false;
  4162   // Walk back up the JVM state to find the caller at the required
  4163   // depth.
  4164   JVMState* caller_jvms = jvms();
  4166   // Cf. JVM_GetCallerClass
  4167   // NOTE: Start the loop at depth 1 because the current JVM state does
  4168   // not include the Reflection.getCallerClass() frame.
  4169   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4170     ciMethod* m = caller_jvms->method();
  4171     switch (n) {
  4172     case 0:
  4173       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4174       break;
  4175     case 1:
  4176       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4177       if (!m->caller_sensitive()) {
  4178 #ifndef PRODUCT
  4179         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4180           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4182 #endif
  4183         return false;  // bail-out; let JVM_GetCallerClass do the work
  4185       break;
  4186     default:
  4187       if (!m->is_ignored_by_security_stack_walk()) {
  4188         // We have reached the desired frame; return the holder class.
  4189         // Acquire method holder as java.lang.Class and push as constant.
  4190         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4191         ciInstance* caller_mirror = caller_klass->java_mirror();
  4192         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4194 #ifndef PRODUCT
  4195         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4196           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4197           tty->print_cr("  JVM state at this point:");
  4198           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4199             ciMethod* m = jvms()->of_depth(i)->method();
  4200             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4203 #endif
  4204         return true;
  4206       break;
  4210 #ifndef PRODUCT
  4211   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4212     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4213     tty->print_cr("  JVM state at this point:");
  4214     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4215       ciMethod* m = jvms()->of_depth(i)->method();
  4216       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4219 #endif
  4221   return false;  // bail-out; let JVM_GetCallerClass do the work
  4224 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4225   Node* arg = argument(0);
  4226   Node* result;
  4228   switch (id) {
  4229   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4230   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4231   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4232   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4234   case vmIntrinsics::_doubleToLongBits: {
  4235     // two paths (plus control) merge in a wood
  4236     RegionNode *r = new (C) RegionNode(3);
  4237     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4239     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4240     // Build the boolean node
  4241     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4243     // Branch either way.
  4244     // NaN case is less traveled, which makes all the difference.
  4245     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4246     Node *opt_isnan = _gvn.transform(ifisnan);
  4247     assert( opt_isnan->is_If(), "Expect an IfNode");
  4248     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4249     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4251     set_control(iftrue);
  4253     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4254     Node *slow_result = longcon(nan_bits); // return NaN
  4255     phi->init_req(1, _gvn.transform( slow_result ));
  4256     r->init_req(1, iftrue);
  4258     // Else fall through
  4259     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4260     set_control(iffalse);
  4262     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4263     r->init_req(2, iffalse);
  4265     // Post merge
  4266     set_control(_gvn.transform(r));
  4267     record_for_igvn(r);
  4269     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4270     result = phi;
  4271     assert(result->bottom_type()->isa_long(), "must be");
  4272     break;
  4275   case vmIntrinsics::_floatToIntBits: {
  4276     // two paths (plus control) merge in a wood
  4277     RegionNode *r = new (C) RegionNode(3);
  4278     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4280     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4281     // Build the boolean node
  4282     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4284     // Branch either way.
  4285     // NaN case is less traveled, which makes all the difference.
  4286     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4287     Node *opt_isnan = _gvn.transform(ifisnan);
  4288     assert( opt_isnan->is_If(), "Expect an IfNode");
  4289     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4290     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4292     set_control(iftrue);
  4294     static const jint nan_bits = 0x7fc00000;
  4295     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4296     phi->init_req(1, _gvn.transform( slow_result ));
  4297     r->init_req(1, iftrue);
  4299     // Else fall through
  4300     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4301     set_control(iffalse);
  4303     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4304     r->init_req(2, iffalse);
  4306     // Post merge
  4307     set_control(_gvn.transform(r));
  4308     record_for_igvn(r);
  4310     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4311     result = phi;
  4312     assert(result->bottom_type()->isa_int(), "must be");
  4313     break;
  4316   default:
  4317     fatal_unexpected_iid(id);
  4318     break;
  4320   set_result(_gvn.transform(result));
  4321   return true;
  4324 #ifdef _LP64
  4325 #define XTOP ,top() /*additional argument*/
  4326 #else  //_LP64
  4327 #define XTOP        /*no additional argument*/
  4328 #endif //_LP64
  4330 //----------------------inline_unsafe_copyMemory-------------------------
  4331 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4332 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4333   if (callee()->is_static())  return false;  // caller must have the capability!
  4334   null_check_receiver();  // null-check receiver
  4335   if (stopped())  return true;
  4337   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4339   Node* src_ptr =         argument(1);   // type: oop
  4340   Node* src_off = ConvL2X(argument(2));  // type: long
  4341   Node* dst_ptr =         argument(4);   // type: oop
  4342   Node* dst_off = ConvL2X(argument(5));  // type: long
  4343   Node* size    = ConvL2X(argument(7));  // type: long
  4345   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4346          "fieldOffset must be byte-scaled");
  4348   Node* src = make_unsafe_address(src_ptr, src_off);
  4349   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4351   // Conservatively insert a memory barrier on all memory slices.
  4352   // Do not let writes of the copy source or destination float below the copy.
  4353   insert_mem_bar(Op_MemBarCPUOrder);
  4355   // Call it.  Note that the length argument is not scaled.
  4356   make_runtime_call(RC_LEAF|RC_NO_FP,
  4357                     OptoRuntime::fast_arraycopy_Type(),
  4358                     StubRoutines::unsafe_arraycopy(),
  4359                     "unsafe_arraycopy",
  4360                     TypeRawPtr::BOTTOM,
  4361                     src, dst, size XTOP);
  4363   // Do not let reads of the copy destination float above the copy.
  4364   insert_mem_bar(Op_MemBarCPUOrder);
  4366   return true;
  4369 //------------------------clone_coping-----------------------------------
  4370 // Helper function for inline_native_clone.
  4371 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4372   assert(obj_size != NULL, "");
  4373   Node* raw_obj = alloc_obj->in(1);
  4374   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4376   AllocateNode* alloc = NULL;
  4377   if (ReduceBulkZeroing) {
  4378     // We will be completely responsible for initializing this object -
  4379     // mark Initialize node as complete.
  4380     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4381     // The object was just allocated - there should be no any stores!
  4382     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4383     // Mark as complete_with_arraycopy so that on AllocateNode
  4384     // expansion, we know this AllocateNode is initialized by an array
  4385     // copy and a StoreStore barrier exists after the array copy.
  4386     alloc->initialization()->set_complete_with_arraycopy();
  4389   // Copy the fastest available way.
  4390   // TODO: generate fields copies for small objects instead.
  4391   Node* src  = obj;
  4392   Node* dest = alloc_obj;
  4393   Node* size = _gvn.transform(obj_size);
  4395   // Exclude the header but include array length to copy by 8 bytes words.
  4396   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4397   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4398                             instanceOopDesc::base_offset_in_bytes();
  4399   // base_off:
  4400   // 8  - 32-bit VM
  4401   // 12 - 64-bit VM, compressed klass
  4402   // 16 - 64-bit VM, normal klass
  4403   if (base_off % BytesPerLong != 0) {
  4404     assert(UseCompressedClassPointers, "");
  4405     if (is_array) {
  4406       // Exclude length to copy by 8 bytes words.
  4407       base_off += sizeof(int);
  4408     } else {
  4409       // Include klass to copy by 8 bytes words.
  4410       base_off = instanceOopDesc::klass_offset_in_bytes();
  4412     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4414   src  = basic_plus_adr(src,  base_off);
  4415   dest = basic_plus_adr(dest, base_off);
  4417   // Compute the length also, if needed:
  4418   Node* countx = size;
  4419   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4420   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4422   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4423   bool disjoint_bases = true;
  4424   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4425                                src, NULL, dest, NULL, countx,
  4426                                /*dest_uninitialized*/true);
  4428   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4429   if (card_mark) {
  4430     assert(!is_array, "");
  4431     // Put in store barrier for any and all oops we are sticking
  4432     // into this object.  (We could avoid this if we could prove
  4433     // that the object type contains no oop fields at all.)
  4434     Node* no_particular_value = NULL;
  4435     Node* no_particular_field = NULL;
  4436     int raw_adr_idx = Compile::AliasIdxRaw;
  4437     post_barrier(control(),
  4438                  memory(raw_adr_type),
  4439                  alloc_obj,
  4440                  no_particular_field,
  4441                  raw_adr_idx,
  4442                  no_particular_value,
  4443                  T_OBJECT,
  4444                  false);
  4447   // Do not let reads from the cloned object float above the arraycopy.
  4448   if (alloc != NULL) {
  4449     // Do not let stores that initialize this object be reordered with
  4450     // a subsequent store that would make this object accessible by
  4451     // other threads.
  4452     // Record what AllocateNode this StoreStore protects so that
  4453     // escape analysis can go from the MemBarStoreStoreNode to the
  4454     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4455     // based on the escape status of the AllocateNode.
  4456     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4457   } else {
  4458     insert_mem_bar(Op_MemBarCPUOrder);
  4462 //------------------------inline_native_clone----------------------------
  4463 // protected native Object java.lang.Object.clone();
  4464 //
  4465 // Here are the simple edge cases:
  4466 //  null receiver => normal trap
  4467 //  virtual and clone was overridden => slow path to out-of-line clone
  4468 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4469 //
  4470 // The general case has two steps, allocation and copying.
  4471 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4472 //
  4473 // Copying also has two cases, oop arrays and everything else.
  4474 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4475 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4476 //
  4477 // These steps fold up nicely if and when the cloned object's klass
  4478 // can be sharply typed as an object array, a type array, or an instance.
  4479 //
  4480 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4481   PhiNode* result_val;
  4483   // Set the reexecute bit for the interpreter to reexecute
  4484   // the bytecode that invokes Object.clone if deoptimization happens.
  4485   { PreserveReexecuteState preexecs(this);
  4486     jvms()->set_should_reexecute(true);
  4488     Node* obj = null_check_receiver();
  4489     if (stopped())  return true;
  4491     Node* obj_klass = load_object_klass(obj);
  4492     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4493     const TypeOopPtr*   toop   = ((tklass != NULL)
  4494                                 ? tklass->as_instance_type()
  4495                                 : TypeInstPtr::NOTNULL);
  4497     // Conservatively insert a memory barrier on all memory slices.
  4498     // Do not let writes into the original float below the clone.
  4499     insert_mem_bar(Op_MemBarCPUOrder);
  4501     // paths into result_reg:
  4502     enum {
  4503       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4504       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4505       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4506       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4507       PATH_LIMIT
  4508     };
  4509     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4510     result_val             = new(C) PhiNode(result_reg,
  4511                                             TypeInstPtr::NOTNULL);
  4512     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4513     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4514                                             TypePtr::BOTTOM);
  4515     record_for_igvn(result_reg);
  4517     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4518     int raw_adr_idx = Compile::AliasIdxRaw;
  4520     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4521     if (array_ctl != NULL) {
  4522       // It's an array.
  4523       PreserveJVMState pjvms(this);
  4524       set_control(array_ctl);
  4525       Node* obj_length = load_array_length(obj);
  4526       Node* obj_size  = NULL;
  4527       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4529       if (!use_ReduceInitialCardMarks()) {
  4530         // If it is an oop array, it requires very special treatment,
  4531         // because card marking is required on each card of the array.
  4532         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4533         if (is_obja != NULL) {
  4534           PreserveJVMState pjvms2(this);
  4535           set_control(is_obja);
  4536           // Generate a direct call to the right arraycopy function(s).
  4537           bool disjoint_bases = true;
  4538           bool length_never_negative = true;
  4539           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4540                              obj, intcon(0), alloc_obj, intcon(0),
  4541                              obj_length,
  4542                              disjoint_bases, length_never_negative);
  4543           result_reg->init_req(_objArray_path, control());
  4544           result_val->init_req(_objArray_path, alloc_obj);
  4545           result_i_o ->set_req(_objArray_path, i_o());
  4546           result_mem ->set_req(_objArray_path, reset_memory());
  4549       // Otherwise, there are no card marks to worry about.
  4550       // (We can dispense with card marks if we know the allocation
  4551       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4552       //  causes the non-eden paths to take compensating steps to
  4553       //  simulate a fresh allocation, so that no further
  4554       //  card marks are required in compiled code to initialize
  4555       //  the object.)
  4557       if (!stopped()) {
  4558         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4560         // Present the results of the copy.
  4561         result_reg->init_req(_array_path, control());
  4562         result_val->init_req(_array_path, alloc_obj);
  4563         result_i_o ->set_req(_array_path, i_o());
  4564         result_mem ->set_req(_array_path, reset_memory());
  4568     // We only go to the instance fast case code if we pass a number of guards.
  4569     // The paths which do not pass are accumulated in the slow_region.
  4570     RegionNode* slow_region = new (C) RegionNode(1);
  4571     record_for_igvn(slow_region);
  4572     if (!stopped()) {
  4573       // It's an instance (we did array above).  Make the slow-path tests.
  4574       // If this is a virtual call, we generate a funny guard.  We grab
  4575       // the vtable entry corresponding to clone() from the target object.
  4576       // If the target method which we are calling happens to be the
  4577       // Object clone() method, we pass the guard.  We do not need this
  4578       // guard for non-virtual calls; the caller is known to be the native
  4579       // Object clone().
  4580       if (is_virtual) {
  4581         generate_virtual_guard(obj_klass, slow_region);
  4584       // The object must be cloneable and must not have a finalizer.
  4585       // Both of these conditions may be checked in a single test.
  4586       // We could optimize the cloneable test further, but we don't care.
  4587       generate_access_flags_guard(obj_klass,
  4588                                   // Test both conditions:
  4589                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4590                                   // Must be cloneable but not finalizer:
  4591                                   JVM_ACC_IS_CLONEABLE,
  4592                                   slow_region);
  4595     if (!stopped()) {
  4596       // It's an instance, and it passed the slow-path tests.
  4597       PreserveJVMState pjvms(this);
  4598       Node* obj_size  = NULL;
  4599       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4601       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4603       // Present the results of the slow call.
  4604       result_reg->init_req(_instance_path, control());
  4605       result_val->init_req(_instance_path, alloc_obj);
  4606       result_i_o ->set_req(_instance_path, i_o());
  4607       result_mem ->set_req(_instance_path, reset_memory());
  4610     // Generate code for the slow case.  We make a call to clone().
  4611     set_control(_gvn.transform(slow_region));
  4612     if (!stopped()) {
  4613       PreserveJVMState pjvms(this);
  4614       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4615       Node* slow_result = set_results_for_java_call(slow_call);
  4616       // this->control() comes from set_results_for_java_call
  4617       result_reg->init_req(_slow_path, control());
  4618       result_val->init_req(_slow_path, slow_result);
  4619       result_i_o ->set_req(_slow_path, i_o());
  4620       result_mem ->set_req(_slow_path, reset_memory());
  4623     // Return the combined state.
  4624     set_control(    _gvn.transform(result_reg));
  4625     set_i_o(        _gvn.transform(result_i_o));
  4626     set_all_memory( _gvn.transform(result_mem));
  4627   } // original reexecute is set back here
  4629   set_result(_gvn.transform(result_val));
  4630   return true;
  4633 //------------------------------basictype2arraycopy----------------------------
  4634 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4635                                             Node* src_offset,
  4636                                             Node* dest_offset,
  4637                                             bool disjoint_bases,
  4638                                             const char* &name,
  4639                                             bool dest_uninitialized) {
  4640   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4641   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4643   bool aligned = false;
  4644   bool disjoint = disjoint_bases;
  4646   // if the offsets are the same, we can treat the memory regions as
  4647   // disjoint, because either the memory regions are in different arrays,
  4648   // or they are identical (which we can treat as disjoint.)  We can also
  4649   // treat a copy with a destination index  less that the source index
  4650   // as disjoint since a low->high copy will work correctly in this case.
  4651   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4652       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4653     // both indices are constants
  4654     int s_offs = src_offset_inttype->get_con();
  4655     int d_offs = dest_offset_inttype->get_con();
  4656     int element_size = type2aelembytes(t);
  4657     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4658               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4659     if (s_offs >= d_offs)  disjoint = true;
  4660   } else if (src_offset == dest_offset && src_offset != NULL) {
  4661     // This can occur if the offsets are identical non-constants.
  4662     disjoint = true;
  4665   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4669 //------------------------------inline_arraycopy-----------------------
  4670 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4671 //                                                      Object dest, int destPos,
  4672 //                                                      int length);
  4673 bool LibraryCallKit::inline_arraycopy() {
  4674   // Get the arguments.
  4675   Node* src         = argument(0);  // type: oop
  4676   Node* src_offset  = argument(1);  // type: int
  4677   Node* dest        = argument(2);  // type: oop
  4678   Node* dest_offset = argument(3);  // type: int
  4679   Node* length      = argument(4);  // type: int
  4681   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4682   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4683   // is.  The checks we choose to mandate at compile time are:
  4684   //
  4685   // (1) src and dest are arrays.
  4686   const Type* src_type  = src->Value(&_gvn);
  4687   const Type* dest_type = dest->Value(&_gvn);
  4688   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4689   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4691   // Do we have the type of src?
  4692   bool has_src = (top_src != NULL && top_src->klass() != NULL);
  4693   // Do we have the type of dest?
  4694   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4695   // Is the type for src from speculation?
  4696   bool src_spec = false;
  4697   // Is the type for dest from speculation?
  4698   bool dest_spec = false;
  4700   if (!has_src || !has_dest) {
  4701     // We don't have sufficient type information, let's see if
  4702     // speculative types can help. We need to have types for both src
  4703     // and dest so that it pays off.
  4705     // Do we already have or could we have type information for src
  4706     bool could_have_src = has_src;
  4707     // Do we already have or could we have type information for dest
  4708     bool could_have_dest = has_dest;
  4710     ciKlass* src_k = NULL;
  4711     if (!has_src) {
  4712       src_k = src_type->speculative_type();
  4713       if (src_k != NULL && src_k->is_array_klass()) {
  4714         could_have_src = true;
  4718     ciKlass* dest_k = NULL;
  4719     if (!has_dest) {
  4720       dest_k = dest_type->speculative_type();
  4721       if (dest_k != NULL && dest_k->is_array_klass()) {
  4722         could_have_dest = true;
  4726     if (could_have_src && could_have_dest) {
  4727       // This is going to pay off so emit the required guards
  4728       if (!has_src) {
  4729         src = maybe_cast_profiled_obj(src, src_k);
  4730         src_type  = _gvn.type(src);
  4731         top_src  = src_type->isa_aryptr();
  4732         has_src = (top_src != NULL && top_src->klass() != NULL);
  4733         src_spec = true;
  4735       if (!has_dest) {
  4736         dest = maybe_cast_profiled_obj(dest, dest_k);
  4737         dest_type  = _gvn.type(dest);
  4738         top_dest  = dest_type->isa_aryptr();
  4739         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4740         dest_spec = true;
  4745   if (!has_src || !has_dest) {
  4746     // Conservatively insert a memory barrier on all memory slices.
  4747     // Do not let writes into the source float below the arraycopy.
  4748     insert_mem_bar(Op_MemBarCPUOrder);
  4750     // Call StubRoutines::generic_arraycopy stub.
  4751     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4752                        src, src_offset, dest, dest_offset, length);
  4754     // Do not let reads from the destination float above the arraycopy.
  4755     // Since we cannot type the arrays, we don't know which slices
  4756     // might be affected.  We could restrict this barrier only to those
  4757     // memory slices which pertain to array elements--but don't bother.
  4758     if (!InsertMemBarAfterArraycopy)
  4759       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4760       insert_mem_bar(Op_MemBarCPUOrder);
  4761     return true;
  4764   // (2) src and dest arrays must have elements of the same BasicType
  4765   // Figure out the size and type of the elements we will be copying.
  4766   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4767   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4768   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4769   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4771   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4772     // The component types are not the same or are not recognized.  Punt.
  4773     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4774     generate_slow_arraycopy(TypePtr::BOTTOM,
  4775                             src, src_offset, dest, dest_offset, length,
  4776                             /*dest_uninitialized*/false);
  4777     return true;
  4780   if (src_elem == T_OBJECT) {
  4781     // If both arrays are object arrays then having the exact types
  4782     // for both will remove the need for a subtype check at runtime
  4783     // before the call and may make it possible to pick a faster copy
  4784     // routine (without a subtype check on every element)
  4785     // Do we have the exact type of src?
  4786     bool could_have_src = src_spec;
  4787     // Do we have the exact type of dest?
  4788     bool could_have_dest = dest_spec;
  4789     ciKlass* src_k = top_src->klass();
  4790     ciKlass* dest_k = top_dest->klass();
  4791     if (!src_spec) {
  4792       src_k = src_type->speculative_type();
  4793       if (src_k != NULL && src_k->is_array_klass()) {
  4794           could_have_src = true;
  4797     if (!dest_spec) {
  4798       dest_k = dest_type->speculative_type();
  4799       if (dest_k != NULL && dest_k->is_array_klass()) {
  4800         could_have_dest = true;
  4803     if (could_have_src && could_have_dest) {
  4804       // If we can have both exact types, emit the missing guards
  4805       if (could_have_src && !src_spec) {
  4806         src = maybe_cast_profiled_obj(src, src_k);
  4808       if (could_have_dest && !dest_spec) {
  4809         dest = maybe_cast_profiled_obj(dest, dest_k);
  4814   //---------------------------------------------------------------------------
  4815   // We will make a fast path for this call to arraycopy.
  4817   // We have the following tests left to perform:
  4818   //
  4819   // (3) src and dest must not be null.
  4820   // (4) src_offset must not be negative.
  4821   // (5) dest_offset must not be negative.
  4822   // (6) length must not be negative.
  4823   // (7) src_offset + length must not exceed length of src.
  4824   // (8) dest_offset + length must not exceed length of dest.
  4825   // (9) each element of an oop array must be assignable
  4827   RegionNode* slow_region = new (C) RegionNode(1);
  4828   record_for_igvn(slow_region);
  4830   // (3) operands must not be null
  4831   // We currently perform our null checks with the null_check routine.
  4832   // This means that the null exceptions will be reported in the caller
  4833   // rather than (correctly) reported inside of the native arraycopy call.
  4834   // This should be corrected, given time.  We do our null check with the
  4835   // stack pointer restored.
  4836   src  = null_check(src,  T_ARRAY);
  4837   dest = null_check(dest, T_ARRAY);
  4839   // (4) src_offset must not be negative.
  4840   generate_negative_guard(src_offset, slow_region);
  4842   // (5) dest_offset must not be negative.
  4843   generate_negative_guard(dest_offset, slow_region);
  4845   // (6) length must not be negative (moved to generate_arraycopy()).
  4846   // generate_negative_guard(length, slow_region);
  4848   // (7) src_offset + length must not exceed length of src.
  4849   generate_limit_guard(src_offset, length,
  4850                        load_array_length(src),
  4851                        slow_region);
  4853   // (8) dest_offset + length must not exceed length of dest.
  4854   generate_limit_guard(dest_offset, length,
  4855                        load_array_length(dest),
  4856                        slow_region);
  4858   // (9) each element of an oop array must be assignable
  4859   // The generate_arraycopy subroutine checks this.
  4861   // This is where the memory effects are placed:
  4862   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4863   generate_arraycopy(adr_type, dest_elem,
  4864                      src, src_offset, dest, dest_offset, length,
  4865                      false, false, slow_region);
  4867   return true;
  4870 //-----------------------------generate_arraycopy----------------------
  4871 // Generate an optimized call to arraycopy.
  4872 // Caller must guard against non-arrays.
  4873 // Caller must determine a common array basic-type for both arrays.
  4874 // Caller must validate offsets against array bounds.
  4875 // The slow_region has already collected guard failure paths
  4876 // (such as out of bounds length or non-conformable array types).
  4877 // The generated code has this shape, in general:
  4878 //
  4879 //     if (length == 0)  return   // via zero_path
  4880 //     slowval = -1
  4881 //     if (types unknown) {
  4882 //       slowval = call generic copy loop
  4883 //       if (slowval == 0)  return  // via checked_path
  4884 //     } else if (indexes in bounds) {
  4885 //       if ((is object array) && !(array type check)) {
  4886 //         slowval = call checked copy loop
  4887 //         if (slowval == 0)  return  // via checked_path
  4888 //       } else {
  4889 //         call bulk copy loop
  4890 //         return  // via fast_path
  4891 //       }
  4892 //     }
  4893 //     // adjust params for remaining work:
  4894 //     if (slowval != -1) {
  4895 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4896 //     }
  4897 //   slow_region:
  4898 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4899 //     return  // via slow_call_path
  4900 //
  4901 // This routine is used from several intrinsics:  System.arraycopy,
  4902 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4903 //
  4904 void
  4905 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4906                                    BasicType basic_elem_type,
  4907                                    Node* src,  Node* src_offset,
  4908                                    Node* dest, Node* dest_offset,
  4909                                    Node* copy_length,
  4910                                    bool disjoint_bases,
  4911                                    bool length_never_negative,
  4912                                    RegionNode* slow_region) {
  4914   if (slow_region == NULL) {
  4915     slow_region = new(C) RegionNode(1);
  4916     record_for_igvn(slow_region);
  4919   Node* original_dest      = dest;
  4920   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4921   bool  dest_uninitialized = false;
  4923   // See if this is the initialization of a newly-allocated array.
  4924   // If so, we will take responsibility here for initializing it to zero.
  4925   // (Note:  Because tightly_coupled_allocation performs checks on the
  4926   // out-edges of the dest, we need to avoid making derived pointers
  4927   // from it until we have checked its uses.)
  4928   if (ReduceBulkZeroing
  4929       && !ZeroTLAB              // pointless if already zeroed
  4930       && basic_elem_type != T_CONFLICT // avoid corner case
  4931       && !src->eqv_uncast(dest)
  4932       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4933           != NULL)
  4934       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4935       && alloc->maybe_set_complete(&_gvn)) {
  4936     // "You break it, you buy it."
  4937     InitializeNode* init = alloc->initialization();
  4938     assert(init->is_complete(), "we just did this");
  4939     init->set_complete_with_arraycopy();
  4940     assert(dest->is_CheckCastPP(), "sanity");
  4941     assert(dest->in(0)->in(0) == init, "dest pinned");
  4942     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4943     // From this point on, every exit path is responsible for
  4944     // initializing any non-copied parts of the object to zero.
  4945     // Also, if this flag is set we make sure that arraycopy interacts properly
  4946     // with G1, eliding pre-barriers. See CR 6627983.
  4947     dest_uninitialized = true;
  4948   } else {
  4949     // No zeroing elimination here.
  4950     alloc             = NULL;
  4951     //original_dest   = dest;
  4952     //dest_uninitialized = false;
  4955   // Results are placed here:
  4956   enum { fast_path        = 1,  // normal void-returning assembly stub
  4957          checked_path     = 2,  // special assembly stub with cleanup
  4958          slow_call_path   = 3,  // something went wrong; call the VM
  4959          zero_path        = 4,  // bypass when length of copy is zero
  4960          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4961          PATH_LIMIT       = 6
  4962   };
  4963   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4964   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4965   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4966   record_for_igvn(result_region);
  4967   _gvn.set_type_bottom(result_i_o);
  4968   _gvn.set_type_bottom(result_memory);
  4969   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4971   // The slow_control path:
  4972   Node* slow_control;
  4973   Node* slow_i_o = i_o();
  4974   Node* slow_mem = memory(adr_type);
  4975   debug_only(slow_control = (Node*) badAddress);
  4977   // Checked control path:
  4978   Node* checked_control = top();
  4979   Node* checked_mem     = NULL;
  4980   Node* checked_i_o     = NULL;
  4981   Node* checked_value   = NULL;
  4983   if (basic_elem_type == T_CONFLICT) {
  4984     assert(!dest_uninitialized, "");
  4985     Node* cv = generate_generic_arraycopy(adr_type,
  4986                                           src, src_offset, dest, dest_offset,
  4987                                           copy_length, dest_uninitialized);
  4988     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4989     checked_control = control();
  4990     checked_i_o     = i_o();
  4991     checked_mem     = memory(adr_type);
  4992     checked_value   = cv;
  4993     set_control(top());         // no fast path
  4996   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4997   if (not_pos != NULL) {
  4998     PreserveJVMState pjvms(this);
  4999     set_control(not_pos);
  5001     // (6) length must not be negative.
  5002     if (!length_never_negative) {
  5003       generate_negative_guard(copy_length, slow_region);
  5006     // copy_length is 0.
  5007     if (!stopped() && dest_uninitialized) {
  5008       Node* dest_length = alloc->in(AllocateNode::ALength);
  5009       if (copy_length->eqv_uncast(dest_length)
  5010           || _gvn.find_int_con(dest_length, 1) <= 0) {
  5011         // There is no zeroing to do. No need for a secondary raw memory barrier.
  5012       } else {
  5013         // Clear the whole thing since there are no source elements to copy.
  5014         generate_clear_array(adr_type, dest, basic_elem_type,
  5015                              intcon(0), NULL,
  5016                              alloc->in(AllocateNode::AllocSize));
  5017         // Use a secondary InitializeNode as raw memory barrier.
  5018         // Currently it is needed only on this path since other
  5019         // paths have stub or runtime calls as raw memory barriers.
  5020         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  5021                                                        Compile::AliasIdxRaw,
  5022                                                        top())->as_Initialize();
  5023         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  5027     // Present the results of the fast call.
  5028     result_region->init_req(zero_path, control());
  5029     result_i_o   ->init_req(zero_path, i_o());
  5030     result_memory->init_req(zero_path, memory(adr_type));
  5033   if (!stopped() && dest_uninitialized) {
  5034     // We have to initialize the *uncopied* part of the array to zero.
  5035     // The copy destination is the slice dest[off..off+len].  The other slices
  5036     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  5037     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  5038     Node* dest_length = alloc->in(AllocateNode::ALength);
  5039     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  5040                                                           copy_length));
  5042     // If there is a head section that needs zeroing, do it now.
  5043     if (find_int_con(dest_offset, -1) != 0) {
  5044       generate_clear_array(adr_type, dest, basic_elem_type,
  5045                            intcon(0), dest_offset,
  5046                            NULL);
  5049     // Next, perform a dynamic check on the tail length.
  5050     // It is often zero, and we can win big if we prove this.
  5051     // There are two wins:  Avoid generating the ClearArray
  5052     // with its attendant messy index arithmetic, and upgrade
  5053     // the copy to a more hardware-friendly word size of 64 bits.
  5054     Node* tail_ctl = NULL;
  5055     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  5056       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  5057       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  5058       tail_ctl = generate_slow_guard(bol_lt, NULL);
  5059       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  5062     // At this point, let's assume there is no tail.
  5063     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  5064       // There is no tail.  Try an upgrade to a 64-bit copy.
  5065       bool didit = false;
  5066       { PreserveJVMState pjvms(this);
  5067         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  5068                                          src, src_offset, dest, dest_offset,
  5069                                          dest_size, dest_uninitialized);
  5070         if (didit) {
  5071           // Present the results of the block-copying fast call.
  5072           result_region->init_req(bcopy_path, control());
  5073           result_i_o   ->init_req(bcopy_path, i_o());
  5074           result_memory->init_req(bcopy_path, memory(adr_type));
  5077       if (didit)
  5078         set_control(top());     // no regular fast path
  5081     // Clear the tail, if any.
  5082     if (tail_ctl != NULL) {
  5083       Node* notail_ctl = stopped() ? NULL : control();
  5084       set_control(tail_ctl);
  5085       if (notail_ctl == NULL) {
  5086         generate_clear_array(adr_type, dest, basic_elem_type,
  5087                              dest_tail, NULL,
  5088                              dest_size);
  5089       } else {
  5090         // Make a local merge.
  5091         Node* done_ctl = new(C) RegionNode(3);
  5092         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  5093         done_ctl->init_req(1, notail_ctl);
  5094         done_mem->init_req(1, memory(adr_type));
  5095         generate_clear_array(adr_type, dest, basic_elem_type,
  5096                              dest_tail, NULL,
  5097                              dest_size);
  5098         done_ctl->init_req(2, control());
  5099         done_mem->init_req(2, memory(adr_type));
  5100         set_control( _gvn.transform(done_ctl));
  5101         set_memory(  _gvn.transform(done_mem), adr_type );
  5106   BasicType copy_type = basic_elem_type;
  5107   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5108   if (!stopped() && copy_type == T_OBJECT) {
  5109     // If src and dest have compatible element types, we can copy bits.
  5110     // Types S[] and D[] are compatible if D is a supertype of S.
  5111     //
  5112     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5113     // which performs a fast optimistic per-oop check, and backs off
  5114     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5115     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5117     // Get the Klass* for both src and dest
  5118     Node* src_klass  = load_object_klass(src);
  5119     Node* dest_klass = load_object_klass(dest);
  5121     // Generate the subtype check.
  5122     // This might fold up statically, or then again it might not.
  5123     //
  5124     // Non-static example:  Copying List<String>.elements to a new String[].
  5125     // The backing store for a List<String> is always an Object[],
  5126     // but its elements are always type String, if the generic types
  5127     // are correct at the source level.
  5128     //
  5129     // Test S[] against D[], not S against D, because (probably)
  5130     // the secondary supertype cache is less busy for S[] than S.
  5131     // This usually only matters when D is an interface.
  5132     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5133     // Plug failing path into checked_oop_disjoint_arraycopy
  5134     if (not_subtype_ctrl != top()) {
  5135       PreserveJVMState pjvms(this);
  5136       set_control(not_subtype_ctrl);
  5137       // (At this point we can assume disjoint_bases, since types differ.)
  5138       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5139       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5140       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5141       Node* dest_elem_klass = _gvn.transform(n1);
  5142       Node* cv = generate_checkcast_arraycopy(adr_type,
  5143                                               dest_elem_klass,
  5144                                               src, src_offset, dest, dest_offset,
  5145                                               ConvI2X(copy_length), dest_uninitialized);
  5146       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5147       checked_control = control();
  5148       checked_i_o     = i_o();
  5149       checked_mem     = memory(adr_type);
  5150       checked_value   = cv;
  5152     // At this point we know we do not need type checks on oop stores.
  5154     // Let's see if we need card marks:
  5155     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5156       // If we do not need card marks, copy using the jint or jlong stub.
  5157       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5158       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5159              "sizes agree");
  5163   if (!stopped()) {
  5164     // Generate the fast path, if possible.
  5165     PreserveJVMState pjvms(this);
  5166     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5167                                  src, src_offset, dest, dest_offset,
  5168                                  ConvI2X(copy_length), dest_uninitialized);
  5170     // Present the results of the fast call.
  5171     result_region->init_req(fast_path, control());
  5172     result_i_o   ->init_req(fast_path, i_o());
  5173     result_memory->init_req(fast_path, memory(adr_type));
  5176   // Here are all the slow paths up to this point, in one bundle:
  5177   slow_control = top();
  5178   if (slow_region != NULL)
  5179     slow_control = _gvn.transform(slow_region);
  5180   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  5182   set_control(checked_control);
  5183   if (!stopped()) {
  5184     // Clean up after the checked call.
  5185     // The returned value is either 0 or -1^K,
  5186     // where K = number of partially transferred array elements.
  5187     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  5188     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  5189     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5191     // If it is 0, we are done, so transfer to the end.
  5192     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  5193     result_region->init_req(checked_path, checks_done);
  5194     result_i_o   ->init_req(checked_path, checked_i_o);
  5195     result_memory->init_req(checked_path, checked_mem);
  5197     // If it is not zero, merge into the slow call.
  5198     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  5199     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5200     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5201     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5202     record_for_igvn(slow_reg2);
  5203     slow_reg2  ->init_req(1, slow_control);
  5204     slow_i_o2  ->init_req(1, slow_i_o);
  5205     slow_mem2  ->init_req(1, slow_mem);
  5206     slow_reg2  ->init_req(2, control());
  5207     slow_i_o2  ->init_req(2, checked_i_o);
  5208     slow_mem2  ->init_req(2, checked_mem);
  5210     slow_control = _gvn.transform(slow_reg2);
  5211     slow_i_o     = _gvn.transform(slow_i_o2);
  5212     slow_mem     = _gvn.transform(slow_mem2);
  5214     if (alloc != NULL) {
  5215       // We'll restart from the very beginning, after zeroing the whole thing.
  5216       // This can cause double writes, but that's OK since dest is brand new.
  5217       // So we ignore the low 31 bits of the value returned from the stub.
  5218     } else {
  5219       // We must continue the copy exactly where it failed, or else
  5220       // another thread might see the wrong number of writes to dest.
  5221       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  5222       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5223       slow_offset->init_req(1, intcon(0));
  5224       slow_offset->init_req(2, checked_offset);
  5225       slow_offset  = _gvn.transform(slow_offset);
  5227       // Adjust the arguments by the conditionally incoming offset.
  5228       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5229       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5230       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5232       // Tweak the node variables to adjust the code produced below:
  5233       src_offset  = src_off_plus;
  5234       dest_offset = dest_off_plus;
  5235       copy_length = length_minus;
  5239   set_control(slow_control);
  5240   if (!stopped()) {
  5241     // Generate the slow path, if needed.
  5242     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5244     set_memory(slow_mem, adr_type);
  5245     set_i_o(slow_i_o);
  5247     if (dest_uninitialized) {
  5248       generate_clear_array(adr_type, dest, basic_elem_type,
  5249                            intcon(0), NULL,
  5250                            alloc->in(AllocateNode::AllocSize));
  5253     generate_slow_arraycopy(adr_type,
  5254                             src, src_offset, dest, dest_offset,
  5255                             copy_length, /*dest_uninitialized*/false);
  5257     result_region->init_req(slow_call_path, control());
  5258     result_i_o   ->init_req(slow_call_path, i_o());
  5259     result_memory->init_req(slow_call_path, memory(adr_type));
  5262   // Remove unused edges.
  5263   for (uint i = 1; i < result_region->req(); i++) {
  5264     if (result_region->in(i) == NULL)
  5265       result_region->init_req(i, top());
  5268   // Finished; return the combined state.
  5269   set_control( _gvn.transform(result_region));
  5270   set_i_o(     _gvn.transform(result_i_o)    );
  5271   set_memory(  _gvn.transform(result_memory), adr_type );
  5273   // The memory edges above are precise in order to model effects around
  5274   // array copies accurately to allow value numbering of field loads around
  5275   // arraycopy.  Such field loads, both before and after, are common in Java
  5276   // collections and similar classes involving header/array data structures.
  5277   //
  5278   // But with low number of register or when some registers are used or killed
  5279   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5280   // The next memory barrier is added to avoid it. If the arraycopy can be
  5281   // optimized away (which it can, sometimes) then we can manually remove
  5282   // the membar also.
  5283   //
  5284   // Do not let reads from the cloned object float above the arraycopy.
  5285   if (alloc != NULL) {
  5286     // Do not let stores that initialize this object be reordered with
  5287     // a subsequent store that would make this object accessible by
  5288     // other threads.
  5289     // Record what AllocateNode this StoreStore protects so that
  5290     // escape analysis can go from the MemBarStoreStoreNode to the
  5291     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5292     // based on the escape status of the AllocateNode.
  5293     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5294   } else if (InsertMemBarAfterArraycopy)
  5295     insert_mem_bar(Op_MemBarCPUOrder);
  5299 // Helper function which determines if an arraycopy immediately follows
  5300 // an allocation, with no intervening tests or other escapes for the object.
  5301 AllocateArrayNode*
  5302 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5303                                            RegionNode* slow_region) {
  5304   if (stopped())             return NULL;  // no fast path
  5305   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5307   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5308   if (alloc == NULL)  return NULL;
  5310   Node* rawmem = memory(Compile::AliasIdxRaw);
  5311   // Is the allocation's memory state untouched?
  5312   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5313     // Bail out if there have been raw-memory effects since the allocation.
  5314     // (Example:  There might have been a call or safepoint.)
  5315     return NULL;
  5317   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5318   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5319     return NULL;
  5322   // There must be no unexpected observers of this allocation.
  5323   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5324     Node* obs = ptr->fast_out(i);
  5325     if (obs != this->map()) {
  5326       return NULL;
  5330   // This arraycopy must unconditionally follow the allocation of the ptr.
  5331   Node* alloc_ctl = ptr->in(0);
  5332   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5334   Node* ctl = control();
  5335   while (ctl != alloc_ctl) {
  5336     // There may be guards which feed into the slow_region.
  5337     // Any other control flow means that we might not get a chance
  5338     // to finish initializing the allocated object.
  5339     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5340       IfNode* iff = ctl->in(0)->as_If();
  5341       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5342       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5343       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5344         ctl = iff->in(0);       // This test feeds the known slow_region.
  5345         continue;
  5347       // One more try:  Various low-level checks bottom out in
  5348       // uncommon traps.  If the debug-info of the trap omits
  5349       // any reference to the allocation, as we've already
  5350       // observed, then there can be no objection to the trap.
  5351       bool found_trap = false;
  5352       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5353         Node* obs = not_ctl->fast_out(j);
  5354         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5355             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5356           found_trap = true; break;
  5359       if (found_trap) {
  5360         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5361         continue;
  5364     return NULL;
  5367   // If we get this far, we have an allocation which immediately
  5368   // precedes the arraycopy, and we can take over zeroing the new object.
  5369   // The arraycopy will finish the initialization, and provide
  5370   // a new control state to which we will anchor the destination pointer.
  5372   return alloc;
  5375 // Helper for initialization of arrays, creating a ClearArray.
  5376 // It writes zero bits in [start..end), within the body of an array object.
  5377 // The memory effects are all chained onto the 'adr_type' alias category.
  5378 //
  5379 // Since the object is otherwise uninitialized, we are free
  5380 // to put a little "slop" around the edges of the cleared area,
  5381 // as long as it does not go back into the array's header,
  5382 // or beyond the array end within the heap.
  5383 //
  5384 // The lower edge can be rounded down to the nearest jint and the
  5385 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5386 //
  5387 // Arguments:
  5388 //   adr_type           memory slice where writes are generated
  5389 //   dest               oop of the destination array
  5390 //   basic_elem_type    element type of the destination
  5391 //   slice_idx          array index of first element to store
  5392 //   slice_len          number of elements to store (or NULL)
  5393 //   dest_size          total size in bytes of the array object
  5394 //
  5395 // Exactly one of slice_len or dest_size must be non-NULL.
  5396 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5397 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5398 void
  5399 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5400                                      Node* dest,
  5401                                      BasicType basic_elem_type,
  5402                                      Node* slice_idx,
  5403                                      Node* slice_len,
  5404                                      Node* dest_size) {
  5405   // one or the other but not both of slice_len and dest_size:
  5406   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5407   if (slice_len == NULL)  slice_len = top();
  5408   if (dest_size == NULL)  dest_size = top();
  5410   // operate on this memory slice:
  5411   Node* mem = memory(adr_type); // memory slice to operate on
  5413   // scaling and rounding of indexes:
  5414   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5415   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5416   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5417   int bump_bit  = (-1 << scale) & BytesPerInt;
  5419   // determine constant starts and ends
  5420   const intptr_t BIG_NEG = -128;
  5421   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5422   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5423   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5424   if (slice_len_con == 0) {
  5425     return;                     // nothing to do here
  5427   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5428   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5429   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5430     assert(end_con < 0, "not two cons");
  5431     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5432                        BytesPerLong);
  5435   if (start_con >= 0 && end_con >= 0) {
  5436     // Constant start and end.  Simple.
  5437     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5438                                        start_con, end_con, &_gvn);
  5439   } else if (start_con >= 0 && dest_size != top()) {
  5440     // Constant start, pre-rounded end after the tail of the array.
  5441     Node* end = dest_size;
  5442     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5443                                        start_con, end, &_gvn);
  5444   } else if (start_con >= 0 && slice_len != top()) {
  5445     // Constant start, non-constant end.  End needs rounding up.
  5446     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5447     intptr_t end_base  = abase + (slice_idx_con << scale);
  5448     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5449     Node*    end       = ConvI2X(slice_len);
  5450     if (scale != 0)
  5451       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5452     end_base += end_round;
  5453     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5454     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5455     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5456                                        start_con, end, &_gvn);
  5457   } else if (start_con < 0 && dest_size != top()) {
  5458     // Non-constant start, pre-rounded end after the tail of the array.
  5459     // This is almost certainly a "round-to-end" operation.
  5460     Node* start = slice_idx;
  5461     start = ConvI2X(start);
  5462     if (scale != 0)
  5463       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5464     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5465     if ((bump_bit | clear_low) != 0) {
  5466       int to_clear = (bump_bit | clear_low);
  5467       // Align up mod 8, then store a jint zero unconditionally
  5468       // just before the mod-8 boundary.
  5469       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5470           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5471         bump_bit = 0;
  5472         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5473       } else {
  5474         // Bump 'start' up to (or past) the next jint boundary:
  5475         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5476         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5478       // Round bumped 'start' down to jlong boundary in body of array.
  5479       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5480       if (bump_bit != 0) {
  5481         // Store a zero to the immediately preceding jint:
  5482         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5483         Node* p1 = basic_plus_adr(dest, x1);
  5484         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
  5485         mem = _gvn.transform(mem);
  5488     Node* end = dest_size; // pre-rounded
  5489     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5490                                        start, end, &_gvn);
  5491   } else {
  5492     // Non-constant start, unrounded non-constant end.
  5493     // (Nobody zeroes a random midsection of an array using this routine.)
  5494     ShouldNotReachHere();       // fix caller
  5497   // Done.
  5498   set_memory(mem, adr_type);
  5502 bool
  5503 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5504                                          BasicType basic_elem_type,
  5505                                          AllocateNode* alloc,
  5506                                          Node* src,  Node* src_offset,
  5507                                          Node* dest, Node* dest_offset,
  5508                                          Node* dest_size, bool dest_uninitialized) {
  5509   // See if there is an advantage from block transfer.
  5510   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5511   if (scale >= LogBytesPerLong)
  5512     return false;               // it is already a block transfer
  5514   // Look at the alignment of the starting offsets.
  5515   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5517   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5518   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5519   if (src_off_con < 0 || dest_off_con < 0)
  5520     // At present, we can only understand constants.
  5521     return false;
  5523   intptr_t src_off  = abase + (src_off_con  << scale);
  5524   intptr_t dest_off = abase + (dest_off_con << scale);
  5526   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5527     // Non-aligned; too bad.
  5528     // One more chance:  Pick off an initial 32-bit word.
  5529     // This is a common case, since abase can be odd mod 8.
  5530     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5531         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5532       Node* sptr = basic_plus_adr(src,  src_off);
  5533       Node* dptr = basic_plus_adr(dest, dest_off);
  5534       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  5535       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
  5536       src_off += BytesPerInt;
  5537       dest_off += BytesPerInt;
  5538     } else {
  5539       return false;
  5542   assert(src_off % BytesPerLong == 0, "");
  5543   assert(dest_off % BytesPerLong == 0, "");
  5545   // Do this copy by giant steps.
  5546   Node* sptr  = basic_plus_adr(src,  src_off);
  5547   Node* dptr  = basic_plus_adr(dest, dest_off);
  5548   Node* countx = dest_size;
  5549   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5550   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5552   bool disjoint_bases = true;   // since alloc != NULL
  5553   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5554                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5556   return true;
  5560 // Helper function; generates code for the slow case.
  5561 // We make a call to a runtime method which emulates the native method,
  5562 // but without the native wrapper overhead.
  5563 void
  5564 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5565                                         Node* src,  Node* src_offset,
  5566                                         Node* dest, Node* dest_offset,
  5567                                         Node* copy_length, bool dest_uninitialized) {
  5568   assert(!dest_uninitialized, "Invariant");
  5569   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5570                                  OptoRuntime::slow_arraycopy_Type(),
  5571                                  OptoRuntime::slow_arraycopy_Java(),
  5572                                  "slow_arraycopy", adr_type,
  5573                                  src, src_offset, dest, dest_offset,
  5574                                  copy_length);
  5576   // Handle exceptions thrown by this fellow:
  5577   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5580 // Helper function; generates code for cases requiring runtime checks.
  5581 Node*
  5582 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5583                                              Node* dest_elem_klass,
  5584                                              Node* src,  Node* src_offset,
  5585                                              Node* dest, Node* dest_offset,
  5586                                              Node* copy_length, bool dest_uninitialized) {
  5587   if (stopped())  return NULL;
  5589   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5590   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5591     return NULL;
  5594   // Pick out the parameters required to perform a store-check
  5595   // for the target array.  This is an optimistic check.  It will
  5596   // look in each non-null element's class, at the desired klass's
  5597   // super_check_offset, for the desired klass.
  5598   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5599   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5600   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
  5601   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5602   Node* check_value  = dest_elem_klass;
  5604   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5605   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5607   // (We know the arrays are never conjoint, because their types differ.)
  5608   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5609                                  OptoRuntime::checkcast_arraycopy_Type(),
  5610                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5611                                  // five arguments, of which two are
  5612                                  // intptr_t (jlong in LP64)
  5613                                  src_start, dest_start,
  5614                                  copy_length XTOP,
  5615                                  check_offset XTOP,
  5616                                  check_value);
  5618   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5622 // Helper function; generates code for cases requiring runtime checks.
  5623 Node*
  5624 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5625                                            Node* src,  Node* src_offset,
  5626                                            Node* dest, Node* dest_offset,
  5627                                            Node* copy_length, bool dest_uninitialized) {
  5628   assert(!dest_uninitialized, "Invariant");
  5629   if (stopped())  return NULL;
  5630   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5631   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5632     return NULL;
  5635   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5636                     OptoRuntime::generic_arraycopy_Type(),
  5637                     copyfunc_addr, "generic_arraycopy", adr_type,
  5638                     src, src_offset, dest, dest_offset, copy_length);
  5640   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5643 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5644 void
  5645 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5646                                              BasicType basic_elem_type,
  5647                                              bool disjoint_bases,
  5648                                              Node* src,  Node* src_offset,
  5649                                              Node* dest, Node* dest_offset,
  5650                                              Node* copy_length, bool dest_uninitialized) {
  5651   if (stopped())  return;               // nothing to do
  5653   Node* src_start  = src;
  5654   Node* dest_start = dest;
  5655   if (src_offset != NULL || dest_offset != NULL) {
  5656     assert(src_offset != NULL && dest_offset != NULL, "");
  5657     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5658     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5661   // Figure out which arraycopy runtime method to call.
  5662   const char* copyfunc_name = "arraycopy";
  5663   address     copyfunc_addr =
  5664       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5665                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5667   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5668   make_runtime_call(RC_LEAF|RC_NO_FP,
  5669                     OptoRuntime::fast_arraycopy_Type(),
  5670                     copyfunc_addr, copyfunc_name, adr_type,
  5671                     src_start, dest_start, copy_length XTOP);
  5674 //-------------inline_encodeISOArray-----------------------------------
  5675 // encode char[] to byte[] in ISO_8859_1
  5676 bool LibraryCallKit::inline_encodeISOArray() {
  5677   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5678   // no receiver since it is static method
  5679   Node *src         = argument(0);
  5680   Node *src_offset  = argument(1);
  5681   Node *dst         = argument(2);
  5682   Node *dst_offset  = argument(3);
  5683   Node *length      = argument(4);
  5685   const Type* src_type = src->Value(&_gvn);
  5686   const Type* dst_type = dst->Value(&_gvn);
  5687   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5688   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5689   if (top_src  == NULL || top_src->klass()  == NULL ||
  5690       top_dest == NULL || top_dest->klass() == NULL) {
  5691     // failed array check
  5692     return false;
  5695   // Figure out the size and type of the elements we will be copying.
  5696   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5697   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5698   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5699     return false;
  5701   Node* src_start = array_element_address(src, src_offset, src_elem);
  5702   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5703   // 'src_start' points to src array + scaled offset
  5704   // 'dst_start' points to dst array + scaled offset
  5706   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5707   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5708   enc = _gvn.transform(enc);
  5709   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5710   set_memory(res_mem, mtype);
  5711   set_result(enc);
  5712   return true;
  5715 /**
  5716  * Calculate CRC32 for byte.
  5717  * int java.util.zip.CRC32.update(int crc, int b)
  5718  */
  5719 bool LibraryCallKit::inline_updateCRC32() {
  5720   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5721   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5722   // no receiver since it is static method
  5723   Node* crc  = argument(0); // type: int
  5724   Node* b    = argument(1); // type: int
  5726   /*
  5727    *    int c = ~ crc;
  5728    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5729    *    b = b ^ (c >>> 8);
  5730    *    crc = ~b;
  5731    */
  5733   Node* M1 = intcon(-1);
  5734   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5735   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5736   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5738   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5739   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5740   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5741   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
  5743   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5744   result = _gvn.transform(new (C) XorINode(crc, result));
  5745   result = _gvn.transform(new (C) XorINode(result, M1));
  5746   set_result(result);
  5747   return true;
  5750 /**
  5751  * Calculate CRC32 for byte[] array.
  5752  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  5753  */
  5754 bool LibraryCallKit::inline_updateBytesCRC32() {
  5755   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5756   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  5757   // no receiver since it is static method
  5758   Node* crc     = argument(0); // type: int
  5759   Node* src     = argument(1); // type: oop
  5760   Node* offset  = argument(2); // type: int
  5761   Node* length  = argument(3); // type: int
  5763   const Type* src_type = src->Value(&_gvn);
  5764   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5765   if (top_src  == NULL || top_src->klass()  == NULL) {
  5766     // failed array check
  5767     return false;
  5770   // Figure out the size and type of the elements we will be copying.
  5771   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5772   if (src_elem != T_BYTE) {
  5773     return false;
  5776   // 'src_start' points to src array + scaled offset
  5777   Node* src_start = array_element_address(src, offset, src_elem);
  5779   // We assume that range check is done by caller.
  5780   // TODO: generate range check (offset+length < src.length) in debug VM.
  5782   // Call the stub.
  5783   address stubAddr = StubRoutines::updateBytesCRC32();
  5784   const char *stubName = "updateBytesCRC32";
  5786   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5787                                  stubAddr, stubName, TypePtr::BOTTOM,
  5788                                  crc, src_start, length);
  5789   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5790   set_result(result);
  5791   return true;
  5794 /**
  5795  * Calculate CRC32 for ByteBuffer.
  5796  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  5797  */
  5798 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  5799   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5800   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  5801   // no receiver since it is static method
  5802   Node* crc     = argument(0); // type: int
  5803   Node* src     = argument(1); // type: long
  5804   Node* offset  = argument(3); // type: int
  5805   Node* length  = argument(4); // type: int
  5807   src = ConvL2X(src);  // adjust Java long to machine word
  5808   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  5809   offset = ConvI2X(offset);
  5811   // 'src_start' points to src array + scaled offset
  5812   Node* src_start = basic_plus_adr(top(), base, offset);
  5814   // Call the stub.
  5815   address stubAddr = StubRoutines::updateBytesCRC32();
  5816   const char *stubName = "updateBytesCRC32";
  5818   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5819                                  stubAddr, stubName, TypePtr::BOTTOM,
  5820                                  crc, src_start, length);
  5821   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5822   set_result(result);
  5823   return true;
  5826 //----------------------------inline_reference_get----------------------------
  5827 // public T java.lang.ref.Reference.get();
  5828 bool LibraryCallKit::inline_reference_get() {
  5829   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5830   guarantee(referent_offset > 0, "should have already been set");
  5832   // Get the argument:
  5833   Node* reference_obj = null_check_receiver();
  5834   if (stopped()) return true;
  5836   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5838   ciInstanceKlass* klass = env()->Object_klass();
  5839   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5841   Node* no_ctrl = NULL;
  5842   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
  5844   // Use the pre-barrier to record the value in the referent field
  5845   pre_barrier(false /* do_load */,
  5846               control(),
  5847               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5848               result /* pre_val */,
  5849               T_OBJECT);
  5851   // Add memory barrier to prevent commoning reads from this field
  5852   // across safepoint since GC can change its value.
  5853   insert_mem_bar(Op_MemBarCPUOrder);
  5855   set_result(result);
  5856   return true;
  5860 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5861                                               bool is_exact=true, bool is_static=false) {
  5863   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5864   assert(tinst != NULL, "obj is null");
  5865   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5866   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5868   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5869                                                                           ciSymbol::make(fieldTypeString),
  5870                                                                           is_static);
  5871   if (field == NULL) return (Node *) NULL;
  5872   assert (field != NULL, "undefined field");
  5874   // Next code  copied from Parse::do_get_xxx():
  5876   // Compute address and memory type.
  5877   int offset  = field->offset_in_bytes();
  5878   bool is_vol = field->is_volatile();
  5879   ciType* field_klass = field->type();
  5880   assert(field_klass->is_loaded(), "should be loaded");
  5881   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5882   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5883   BasicType bt = field->layout_type();
  5885   // Build the resultant type of the load
  5886   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5888   // Build the load.
  5889   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
  5890   return loadedField;
  5894 //------------------------------inline_aescrypt_Block-----------------------
  5895 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5896   address stubAddr;
  5897   const char *stubName;
  5898   assert(UseAES, "need AES instruction support");
  5900   switch(id) {
  5901   case vmIntrinsics::_aescrypt_encryptBlock:
  5902     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5903     stubName = "aescrypt_encryptBlock";
  5904     break;
  5905   case vmIntrinsics::_aescrypt_decryptBlock:
  5906     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5907     stubName = "aescrypt_decryptBlock";
  5908     break;
  5910   if (stubAddr == NULL) return false;
  5912   Node* aescrypt_object = argument(0);
  5913   Node* src             = argument(1);
  5914   Node* src_offset      = argument(2);
  5915   Node* dest            = argument(3);
  5916   Node* dest_offset     = argument(4);
  5918   // (1) src and dest are arrays.
  5919   const Type* src_type = src->Value(&_gvn);
  5920   const Type* dest_type = dest->Value(&_gvn);
  5921   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5922   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5923   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5925   // for the quick and dirty code we will skip all the checks.
  5926   // we are just trying to get the call to be generated.
  5927   Node* src_start  = src;
  5928   Node* dest_start = dest;
  5929   if (src_offset != NULL || dest_offset != NULL) {
  5930     assert(src_offset != NULL && dest_offset != NULL, "");
  5931     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5932     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5935   // now need to get the start of its expanded key array
  5936   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5937   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5938   if (k_start == NULL) return false;
  5940   // Call the stub.
  5941   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5942                     stubAddr, stubName, TypePtr::BOTTOM,
  5943                     src_start, dest_start, k_start);
  5945   return true;
  5948 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5949 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5950   address stubAddr;
  5951   const char *stubName;
  5953   assert(UseAES, "need AES instruction support");
  5955   switch(id) {
  5956   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5957     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5958     stubName = "cipherBlockChaining_encryptAESCrypt";
  5959     break;
  5960   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5961     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5962     stubName = "cipherBlockChaining_decryptAESCrypt";
  5963     break;
  5965   if (stubAddr == NULL) return false;
  5967   Node* cipherBlockChaining_object = argument(0);
  5968   Node* src                        = argument(1);
  5969   Node* src_offset                 = argument(2);
  5970   Node* len                        = argument(3);
  5971   Node* dest                       = argument(4);
  5972   Node* dest_offset                = argument(5);
  5974   // (1) src and dest are arrays.
  5975   const Type* src_type = src->Value(&_gvn);
  5976   const Type* dest_type = dest->Value(&_gvn);
  5977   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5978   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5979   assert (top_src  != NULL && top_src->klass()  != NULL
  5980           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5982   // checks are the responsibility of the caller
  5983   Node* src_start  = src;
  5984   Node* dest_start = dest;
  5985   if (src_offset != NULL || dest_offset != NULL) {
  5986     assert(src_offset != NULL && dest_offset != NULL, "");
  5987     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5988     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5991   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  5992   // (because of the predicated logic executed earlier).
  5993   // so we cast it here safely.
  5994   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5996   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5997   if (embeddedCipherObj == NULL) return false;
  5999   // cast it to what we know it will be at runtime
  6000   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  6001   assert(tinst != NULL, "CBC obj is null");
  6002   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  6003   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6004   if (!klass_AESCrypt->is_loaded()) return false;
  6006   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6007   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  6008   const TypeOopPtr* xtype = aklass->as_instance_type();
  6009   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  6010   aescrypt_object = _gvn.transform(aescrypt_object);
  6012   // we need to get the start of the aescrypt_object's expanded key array
  6013   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6014   if (k_start == NULL) return false;
  6016   // similarly, get the start address of the r vector
  6017   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  6018   if (objRvec == NULL) return false;
  6019   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  6021   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  6022   make_runtime_call(RC_LEAF|RC_NO_FP,
  6023                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6024                     stubAddr, stubName, TypePtr::BOTTOM,
  6025                     src_start, dest_start, k_start, r_start, len);
  6027   // return is void so no result needs to be pushed
  6029   return true;
  6032 //------------------------------get_key_start_from_aescrypt_object-----------------------
  6033 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6034   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  6035   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6036   if (objAESCryptKey == NULL) return (Node *) NULL;
  6038   // now have the array, need to get the start address of the K array
  6039   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  6040   return k_start;
  6043 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  6044 // Return node representing slow path of predicate check.
  6045 // the pseudo code we want to emulate with this predicate is:
  6046 // for encryption:
  6047 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  6048 // for decryption:
  6049 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  6050 //    note cipher==plain is more conservative than the original java code but that's OK
  6051 //
  6052 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  6053   // First, check receiver for NULL since it is virtual method.
  6054   Node* objCBC = argument(0);
  6055   objCBC = null_check(objCBC);
  6057   if (stopped()) return NULL; // Always NULL
  6059   // Load embeddedCipher field of CipherBlockChaining object.
  6060   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6062   // get AESCrypt klass for instanceOf check
  6063   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  6064   // will have same classloader as CipherBlockChaining object
  6065   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  6066   assert(tinst != NULL, "CBCobj is null");
  6067   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  6069   // we want to do an instanceof comparison against the AESCrypt class
  6070   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6071   if (!klass_AESCrypt->is_loaded()) {
  6072     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  6073     Node* ctrl = control();
  6074     set_control(top()); // no regular fast path
  6075     return ctrl;
  6077   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6079   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  6080   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  6081   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6083   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6085   // for encryption, we are done
  6086   if (!decrypting)
  6087     return instof_false;  // even if it is NULL
  6089   // for decryption, we need to add a further check to avoid
  6090   // taking the intrinsic path when cipher and plain are the same
  6091   // see the original java code for why.
  6092   RegionNode* region = new(C) RegionNode(3);
  6093   region->init_req(1, instof_false);
  6094   Node* src = argument(1);
  6095   Node* dest = argument(4);
  6096   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  6097   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  6098   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  6099   region->init_req(2, src_dest_conjoint);
  6101   record_for_igvn(region);
  6102   return _gvn.transform(region);

mercurial