src/cpu/x86/vm/x86_32.ad

Tue, 26 Nov 2013 18:38:19 -0800

author
goetz
date
Tue, 26 Nov 2013 18:38:19 -0800
changeset 6489
50fdb38839eb
parent 6478
044b28168e20
child 6506
f040cf9fc9c0
permissions
-rw-r--r--

8028515: PPPC64 (part 113.2): opto: Introduce LoadFence/StoreFence.
Summary: Use new nodes for loadFence/storeFence intrinsics in C2.
Reviewed-by: kvn, dholmes

     1 //
     2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    78 // allocator, and only shows up in the encodings.
    79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    81 // Ok so here's the trick FPR1 is really st(0) except in the midst
    82 // of emission of assembly for a machnode. During the emission the fpu stack
    83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    84 // the stack will not have this element so FPR1 == st(0) from the
    85 // oopMap viewpoint. This same weirdness with numbering causes
    86 // instruction encoding to have to play games with the register
    87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    88 // where it does flt->flt moves to see an example
    89 //
    90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
    97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
    98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
    99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   105 // Specify priority of register selection within phases of register
   106 // allocation.  Highest priority is first.  A useful heuristic is to
   107 // give registers a low priority when they are required by machine
   108 // instructions, like EAX and EDX.  Registers which are used as
   109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   110 // For the Intel integer registers, the equivalent Long pairs are
   111 // EDX:EAX, EBX:ECX, and EDI:EBP.
   112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   115                     FPR6L, FPR6H, FPR7L, FPR7H );
   118 //----------Architecture Description Register Classes--------------------------
   119 // Several register classes are automatically defined based upon information in
   120 // this architecture description.
   121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   125 //
   126 // Class for all registers
   127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   128 // Class for general registers
   129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   130 // Class for general registers which may be used for implicit null checks on win95
   131 // Also safe for use by tailjump. We don't want to allocate in rbp,
   132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   133 // Class of "X" registers
   134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
   135 // Class of registers that can appear in an address with no offset.
   136 // EBP and ESP require an extra instruction byte for zero offset.
   137 // Used in fast-unlock
   138 reg_class p_reg(EDX, EDI, ESI, EBX);
   139 // Class for general registers not including ECX
   140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   141 // Class for general registers not including EAX
   142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   143 // Class for general registers not including EAX or EBX.
   144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   145 // Class of EAX (for multiply and divide operations)
   146 reg_class eax_reg(EAX);
   147 // Class of EBX (for atomic add)
   148 reg_class ebx_reg(EBX);
   149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   150 reg_class ecx_reg(ECX);
   151 // Class of EDX (for multiply and divide operations)
   152 reg_class edx_reg(EDX);
   153 // Class of EDI (for synchronization)
   154 reg_class edi_reg(EDI);
   155 // Class of ESI (for synchronization)
   156 reg_class esi_reg(ESI);
   157 // Singleton class for interpreter's stack pointer
   158 reg_class ebp_reg(EBP);
   159 // Singleton class for stack pointer
   160 reg_class sp_reg(ESP);
   161 // Singleton class for instruction pointer
   162 // reg_class ip_reg(EIP);
   163 // Class of integer register pairs
   164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   165 // Class of integer register pairs that aligns with calling convention
   166 reg_class eadx_reg( EAX,EDX );
   167 reg_class ebcx_reg( ECX,EBX );
   168 // Not AX or DX, used in divides
   169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   171 // Floating point registers.  Notice FPR0 is not a choice.
   172 // FPR0 is not ever allocated; we use clever encodings to fake
   173 // a 2-address instructions out of Intels FP stack.
   174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   178                       FPR7L,FPR7H );
   180 reg_class fp_flt_reg0( FPR1L );
   181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
   182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
   183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   186 %}
   189 //----------SOURCE BLOCK-------------------------------------------------------
   190 // This is a block of C++ code which provides values, functions, and
   191 // definitions necessary in the rest of the architecture description
   192 source_hpp %{
   193 // Must be visible to the DFA in dfa_x86_32.cpp
   194 extern bool is_operand_hi32_zero(Node* n);
   195 %}
   197 source %{
   198 #define   RELOC_IMM32    Assembler::imm_operand
   199 #define   RELOC_DISP32   Assembler::disp32_operand
   201 #define __ _masm.
   203 // How to find the high register of a Long pair, given the low register
   204 #define   HIGH_FROM_LOW(x) ((x)+2)
   206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   208 // fast versions of NegF/NegD and AbsF/AbsD.
   210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   213   // of 128-bits operands for SSE instructions.
   214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   215   // Store the value to a 128-bits operand.
   216   operand[0] = lo;
   217   operand[1] = hi;
   218   return operand;
   219 }
   221 // Buffer for 128-bits masks used by SSE instructions.
   222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   224 // Static initialization during VM startup.
   225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   230 // Offset hacking within calls.
   231 static int pre_call_resets_size() {
   232   int size = 0;
   233   Compile* C = Compile::current();
   234   if (C->in_24_bit_fp_mode()) {
   235     size += 6; // fldcw
   236   }
   237   if (C->max_vector_size() > 16) {
   238     size += 3; // vzeroupper
   239   }
   240   return size;
   241 }
   243 static int preserve_SP_size() {
   244   return 2;  // op, rm(reg/reg)
   245 }
   247 // !!!!! Special hack to get all type of calls to specify the byte offset
   248 //       from the start of the call to the point where the return address
   249 //       will point.
   250 int MachCallStaticJavaNode::ret_addr_offset() {
   251   int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
   252   if (_method_handle_invoke)
   253     offset += preserve_SP_size();
   254   return offset;
   255 }
   257 int MachCallDynamicJavaNode::ret_addr_offset() {
   258   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
   259 }
   261 static int sizeof_FFree_Float_Stack_All = -1;
   263 int MachCallRuntimeNode::ret_addr_offset() {
   264   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   265   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
   266 }
   268 // Indicate if the safepoint node needs the polling page as an input.
   269 // Since x86 does have absolute addressing, it doesn't.
   270 bool SafePointNode::needs_polling_address_input() {
   271   return false;
   272 }
   274 //
   275 // Compute padding required for nodes which need alignment
   276 //
   278 // The address of the call instruction needs to be 4-byte aligned to
   279 // ensure that it does not span a cache line so that it can be patched.
   280 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   281   current_offset += pre_call_resets_size();  // skip fldcw, if any
   282   current_offset += 1;      // skip call opcode byte
   283   return round_to(current_offset, alignment_required()) - current_offset;
   284 }
   286 // The address of the call instruction needs to be 4-byte aligned to
   287 // ensure that it does not span a cache line so that it can be patched.
   288 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   289   current_offset += pre_call_resets_size();  // skip fldcw, if any
   290   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   291   current_offset += 1;      // skip call opcode byte
   292   return round_to(current_offset, alignment_required()) - current_offset;
   293 }
   295 // The address of the call instruction needs to be 4-byte aligned to
   296 // ensure that it does not span a cache line so that it can be patched.
   297 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   298   current_offset += pre_call_resets_size();  // skip fldcw, if any
   299   current_offset += 5;      // skip MOV instruction
   300   current_offset += 1;      // skip call opcode byte
   301   return round_to(current_offset, alignment_required()) - current_offset;
   302 }
   304 // EMIT_RM()
   305 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   306   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   307   cbuf.insts()->emit_int8(c);
   308 }
   310 // EMIT_CC()
   311 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   312   unsigned char c = (unsigned char)( f1 | f2 );
   313   cbuf.insts()->emit_int8(c);
   314 }
   316 // EMIT_OPCODE()
   317 void emit_opcode(CodeBuffer &cbuf, int code) {
   318   cbuf.insts()->emit_int8((unsigned char) code);
   319 }
   321 // EMIT_OPCODE() w/ relocation information
   322 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   323   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   324   emit_opcode(cbuf, code);
   325 }
   327 // EMIT_D8()
   328 void emit_d8(CodeBuffer &cbuf, int d8) {
   329   cbuf.insts()->emit_int8((unsigned char) d8);
   330 }
   332 // EMIT_D16()
   333 void emit_d16(CodeBuffer &cbuf, int d16) {
   334   cbuf.insts()->emit_int16(d16);
   335 }
   337 // EMIT_D32()
   338 void emit_d32(CodeBuffer &cbuf, int d32) {
   339   cbuf.insts()->emit_int32(d32);
   340 }
   342 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   343 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   344         int format) {
   345   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   346   cbuf.insts()->emit_int32(d32);
   347 }
   349 // emit 32 bit value and construct relocation entry from RelocationHolder
   350 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   351         int format) {
   352 #ifdef ASSERT
   353   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   354     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   355   }
   356 #endif
   357   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   358   cbuf.insts()->emit_int32(d32);
   359 }
   361 // Access stack slot for load or store
   362 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   363   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   364   if( -128 <= disp && disp <= 127 ) {
   365     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   366     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   367     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   368   } else {
   369     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   370     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   371     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   372   }
   373 }
   375    // rRegI ereg, memory mem) %{    // emit_reg_mem
   376 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
   377   // There is no index & no scale, use form without SIB byte
   378   if ((index == 0x4) &&
   379       (scale == 0) && (base != ESP_enc)) {
   380     // If no displacement, mode is 0x0; unless base is [EBP]
   381     if ( (displace == 0) && (base != EBP_enc) ) {
   382       emit_rm(cbuf, 0x0, reg_encoding, base);
   383     }
   384     else {                    // If 8-bit displacement, mode 0x1
   385       if ((displace >= -128) && (displace <= 127)
   386           && (disp_reloc == relocInfo::none) ) {
   387         emit_rm(cbuf, 0x1, reg_encoding, base);
   388         emit_d8(cbuf, displace);
   389       }
   390       else {                  // If 32-bit displacement
   391         if (base == -1) { // Special flag for absolute address
   392           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   393           // (manual lies; no SIB needed here)
   394           if ( disp_reloc != relocInfo::none ) {
   395             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   396           } else {
   397             emit_d32      (cbuf, displace);
   398           }
   399         }
   400         else {                // Normal base + offset
   401           emit_rm(cbuf, 0x2, reg_encoding, base);
   402           if ( disp_reloc != relocInfo::none ) {
   403             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   404           } else {
   405             emit_d32      (cbuf, displace);
   406           }
   407         }
   408       }
   409     }
   410   }
   411   else {                      // Else, encode with the SIB byte
   412     // If no displacement, mode is 0x0; unless base is [EBP]
   413     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   414       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   415       emit_rm(cbuf, scale, index, base);
   416     }
   417     else {                    // If 8-bit displacement, mode 0x1
   418       if ((displace >= -128) && (displace <= 127)
   419           && (disp_reloc == relocInfo::none) ) {
   420         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   421         emit_rm(cbuf, scale, index, base);
   422         emit_d8(cbuf, displace);
   423       }
   424       else {                  // If 32-bit displacement
   425         if (base == 0x04 ) {
   426           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   427           emit_rm(cbuf, scale, index, 0x04);
   428         } else {
   429           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   430           emit_rm(cbuf, scale, index, base);
   431         }
   432         if ( disp_reloc != relocInfo::none ) {
   433           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   434         } else {
   435           emit_d32      (cbuf, displace);
   436         }
   437       }
   438     }
   439   }
   440 }
   443 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   444   if( dst_encoding == src_encoding ) {
   445     // reg-reg copy, use an empty encoding
   446   } else {
   447     emit_opcode( cbuf, 0x8B );
   448     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   449   }
   450 }
   452 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   453   Label exit;
   454   __ jccb(Assembler::noParity, exit);
   455   __ pushf();
   456   //
   457   // comiss/ucomiss instructions set ZF,PF,CF flags and
   458   // zero OF,AF,SF for NaN values.
   459   // Fixup flags by zeroing ZF,PF so that compare of NaN
   460   // values returns 'less than' result (CF is set).
   461   // Leave the rest of flags unchanged.
   462   //
   463   //    7 6 5 4 3 2 1 0
   464   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   465   //    0 0 1 0 1 0 1 1   (0x2B)
   466   //
   467   __ andl(Address(rsp, 0), 0xffffff2b);
   468   __ popf();
   469   __ bind(exit);
   470 }
   472 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   473   Label done;
   474   __ movl(dst, -1);
   475   __ jcc(Assembler::parity, done);
   476   __ jcc(Assembler::below, done);
   477   __ setb(Assembler::notEqual, dst);
   478   __ movzbl(dst, dst);
   479   __ bind(done);
   480 }
   483 //=============================================================================
   484 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   486 int Compile::ConstantTable::calculate_table_base_offset() const {
   487   return 0;  // absolute addressing, no offset
   488 }
   490 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
   491 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
   492   ShouldNotReachHere();
   493 }
   495 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   496   // Empty encoding
   497 }
   499 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   500   return 0;
   501 }
   503 #ifndef PRODUCT
   504 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   505   st->print("# MachConstantBaseNode (empty encoding)");
   506 }
   507 #endif
   510 //=============================================================================
   511 #ifndef PRODUCT
   512 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   513   Compile* C = ra_->C;
   515   int framesize = C->frame_slots() << LogBytesPerInt;
   516   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   517   // Remove wordSize for return addr which is already pushed.
   518   framesize -= wordSize;
   520   if (C->need_stack_bang(framesize)) {
   521     framesize -= wordSize;
   522     st->print("# stack bang");
   523     st->print("\n\t");
   524     st->print("PUSH   EBP\t# Save EBP");
   525     if (framesize) {
   526       st->print("\n\t");
   527       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   528     }
   529   } else {
   530     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   531     st->print("\n\t");
   532     framesize -= wordSize;
   533     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   534   }
   536   if (VerifyStackAtCalls) {
   537     st->print("\n\t");
   538     framesize -= wordSize;
   539     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   540   }
   542   if( C->in_24_bit_fp_mode() ) {
   543     st->print("\n\t");
   544     st->print("FLDCW  \t# load 24 bit fpu control word");
   545   }
   546   if (UseSSE >= 2 && VerifyFPU) {
   547     st->print("\n\t");
   548     st->print("# verify FPU stack (must be clean on entry)");
   549   }
   551 #ifdef ASSERT
   552   if (VerifyStackAtCalls) {
   553     st->print("\n\t");
   554     st->print("# stack alignment check");
   555   }
   556 #endif
   557   st->cr();
   558 }
   559 #endif
   562 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   563   Compile* C = ra_->C;
   564   MacroAssembler _masm(&cbuf);
   566   int framesize = C->frame_slots() << LogBytesPerInt;
   568   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
   570   C->set_frame_complete(cbuf.insts_size());
   572   if (C->has_mach_constant_base_node()) {
   573     // NOTE: We set the table base offset here because users might be
   574     // emitted before MachConstantBaseNode.
   575     Compile::ConstantTable& constant_table = C->constant_table();
   576     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   577   }
   578 }
   580 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   581   return MachNode::size(ra_); // too many variables; just compute it the hard way
   582 }
   584 int MachPrologNode::reloc() const {
   585   return 0; // a large enough number
   586 }
   588 //=============================================================================
   589 #ifndef PRODUCT
   590 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   591   Compile *C = ra_->C;
   592   int framesize = C->frame_slots() << LogBytesPerInt;
   593   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   594   // Remove two words for return addr and rbp,
   595   framesize -= 2*wordSize;
   597   if (C->max_vector_size() > 16) {
   598     st->print("VZEROUPPER");
   599     st->cr(); st->print("\t");
   600   }
   601   if (C->in_24_bit_fp_mode()) {
   602     st->print("FLDCW  standard control word");
   603     st->cr(); st->print("\t");
   604   }
   605   if (framesize) {
   606     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   607     st->cr(); st->print("\t");
   608   }
   609   st->print_cr("POPL   EBP"); st->print("\t");
   610   if (do_polling() && C->is_method_compilation()) {
   611     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   612     st->cr(); st->print("\t");
   613   }
   614 }
   615 #endif
   617 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   618   Compile *C = ra_->C;
   620   if (C->max_vector_size() > 16) {
   621     // Clear upper bits of YMM registers when current compiled code uses
   622     // wide vectors to avoid AVX <-> SSE transition penalty during call.
   623     MacroAssembler masm(&cbuf);
   624     masm.vzeroupper();
   625   }
   626   // If method set FPU control word, restore to standard control word
   627   if (C->in_24_bit_fp_mode()) {
   628     MacroAssembler masm(&cbuf);
   629     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   630   }
   632   int framesize = C->frame_slots() << LogBytesPerInt;
   633   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   634   // Remove two words for return addr and rbp,
   635   framesize -= 2*wordSize;
   637   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   639   if (framesize >= 128) {
   640     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   641     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   642     emit_d32(cbuf, framesize);
   643   } else if (framesize) {
   644     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   645     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   646     emit_d8(cbuf, framesize);
   647   }
   649   emit_opcode(cbuf, 0x58 | EBP_enc);
   651   if (do_polling() && C->is_method_compilation()) {
   652     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   653     emit_opcode(cbuf,0x85);
   654     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   655     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   656   }
   657 }
   659 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   660   Compile *C = ra_->C;
   661   // If method set FPU control word, restore to standard control word
   662   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   663   if (C->max_vector_size() > 16) size += 3; // vzeroupper
   664   if (do_polling() && C->is_method_compilation()) size += 6;
   666   int framesize = C->frame_slots() << LogBytesPerInt;
   667   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   668   // Remove two words for return addr and rbp,
   669   framesize -= 2*wordSize;
   671   size++; // popl rbp,
   673   if (framesize >= 128) {
   674     size += 6;
   675   } else {
   676     size += framesize ? 3 : 0;
   677   }
   678   return size;
   679 }
   681 int MachEpilogNode::reloc() const {
   682   return 0; // a large enough number
   683 }
   685 const Pipeline * MachEpilogNode::pipeline() const {
   686   return MachNode::pipeline_class();
   687 }
   689 int MachEpilogNode::safepoint_offset() const { return 0; }
   691 //=============================================================================
   693 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   694 static enum RC rc_class( OptoReg::Name reg ) {
   696   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   697   if (OptoReg::is_stack(reg)) return rc_stack;
   699   VMReg r = OptoReg::as_VMReg(reg);
   700   if (r->is_Register()) return rc_int;
   701   if (r->is_FloatRegister()) {
   702     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   703     return rc_float;
   704   }
   705   assert(r->is_XMMRegister(), "must be");
   706   return rc_xmm;
   707 }
   709 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   710                         int opcode, const char *op_str, int size, outputStream* st ) {
   711   if( cbuf ) {
   712     emit_opcode  (*cbuf, opcode );
   713     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
   714 #ifndef PRODUCT
   715   } else if( !do_size ) {
   716     if( size != 0 ) st->print("\n\t");
   717     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   718       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   719       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   720     } else { // FLD, FST, PUSH, POP
   721       st->print("%s [ESP + #%d]",op_str,offset);
   722     }
   723 #endif
   724   }
   725   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   726   return size+3+offset_size;
   727 }
   729 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   730 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   731                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   732   if (cbuf) {
   733     MacroAssembler _masm(cbuf);
   734     if (reg_lo+1 == reg_hi) { // double move?
   735       if (is_load) {
   736         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   737       } else {
   738         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   739       }
   740     } else {
   741       if (is_load) {
   742         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   743       } else {
   744         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   745       }
   746     }
   747 #ifndef PRODUCT
   748   } else if (!do_size) {
   749     if (size != 0) st->print("\n\t");
   750     if (reg_lo+1 == reg_hi) { // double move?
   751       if (is_load) st->print("%s %s,[ESP + #%d]",
   752                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   753                               Matcher::regName[reg_lo], offset);
   754       else         st->print("MOVSD  [ESP + #%d],%s",
   755                               offset, Matcher::regName[reg_lo]);
   756     } else {
   757       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   758                               Matcher::regName[reg_lo], offset);
   759       else         st->print("MOVSS  [ESP + #%d],%s",
   760                               offset, Matcher::regName[reg_lo]);
   761     }
   762 #endif
   763   }
   764   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   765   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
   766   return size+5+offset_size;
   767 }
   770 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   771                             int src_hi, int dst_hi, int size, outputStream* st ) {
   772   if (cbuf) {
   773     MacroAssembler _masm(cbuf);
   774     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   775       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   776                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   777     } else {
   778       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   779                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   780     }
   781 #ifndef PRODUCT
   782   } else if (!do_size) {
   783     if (size != 0) st->print("\n\t");
   784     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   785       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   786         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   787       } else {
   788         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   789       }
   790     } else {
   791       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   792         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   793       } else {
   794         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   795       }
   796     }
   797 #endif
   798   }
   799   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
   800   // Only MOVAPS SSE prefix uses 1 byte.
   801   int sz = 4;
   802   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   803       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   804   return size + sz;
   805 }
   807 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   808                             int src_hi, int dst_hi, int size, outputStream* st ) {
   809   // 32-bit
   810   if (cbuf) {
   811     MacroAssembler _masm(cbuf);
   812     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   813              as_Register(Matcher::_regEncode[src_lo]));
   814 #ifndef PRODUCT
   815   } else if (!do_size) {
   816     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   817 #endif
   818   }
   819   return 4;
   820 }
   823 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   824                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   825   // 32-bit
   826   if (cbuf) {
   827     MacroAssembler _masm(cbuf);
   828     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   829              as_XMMRegister(Matcher::_regEncode[src_lo]));
   830 #ifndef PRODUCT
   831   } else if (!do_size) {
   832     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   833 #endif
   834   }
   835   return 4;
   836 }
   838 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   839   if( cbuf ) {
   840     emit_opcode(*cbuf, 0x8B );
   841     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   842 #ifndef PRODUCT
   843   } else if( !do_size ) {
   844     if( size != 0 ) st->print("\n\t");
   845     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   846 #endif
   847   }
   848   return size+2;
   849 }
   851 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   852                                  int offset, int size, outputStream* st ) {
   853   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   854     if( cbuf ) {
   855       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   856       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   857 #ifndef PRODUCT
   858     } else if( !do_size ) {
   859       if( size != 0 ) st->print("\n\t");
   860       st->print("FLD    %s",Matcher::regName[src_lo]);
   861 #endif
   862     }
   863     size += 2;
   864   }
   866   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   867   const char *op_str;
   868   int op;
   869   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   870     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   871     op = 0xDD;
   872   } else {                   // 32-bit store
   873     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   874     op = 0xD9;
   875     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   876   }
   878   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   879 }
   881 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
   882 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   883                           int src_hi, int dst_hi, uint ireg, outputStream* st);
   885 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
   886                             int stack_offset, int reg, uint ireg, outputStream* st);
   888 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
   889                                      int dst_offset, uint ireg, outputStream* st) {
   890   int calc_size = 0;
   891   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   892   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   893   switch (ireg) {
   894   case Op_VecS:
   895     calc_size = 3+src_offset_size + 3+dst_offset_size;
   896     break;
   897   case Op_VecD:
   898     calc_size = 3+src_offset_size + 3+dst_offset_size;
   899     src_offset += 4;
   900     dst_offset += 4;
   901     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   902     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   903     calc_size += 3+src_offset_size + 3+dst_offset_size;
   904     break;
   905   case Op_VecX:
   906     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   907     break;
   908   case Op_VecY:
   909     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   910     break;
   911   default:
   912     ShouldNotReachHere();
   913   }
   914   if (cbuf) {
   915     MacroAssembler _masm(cbuf);
   916     int offset = __ offset();
   917     switch (ireg) {
   918     case Op_VecS:
   919       __ pushl(Address(rsp, src_offset));
   920       __ popl (Address(rsp, dst_offset));
   921       break;
   922     case Op_VecD:
   923       __ pushl(Address(rsp, src_offset));
   924       __ popl (Address(rsp, dst_offset));
   925       __ pushl(Address(rsp, src_offset+4));
   926       __ popl (Address(rsp, dst_offset+4));
   927       break;
   928     case Op_VecX:
   929       __ movdqu(Address(rsp, -16), xmm0);
   930       __ movdqu(xmm0, Address(rsp, src_offset));
   931       __ movdqu(Address(rsp, dst_offset), xmm0);
   932       __ movdqu(xmm0, Address(rsp, -16));
   933       break;
   934     case Op_VecY:
   935       __ vmovdqu(Address(rsp, -32), xmm0);
   936       __ vmovdqu(xmm0, Address(rsp, src_offset));
   937       __ vmovdqu(Address(rsp, dst_offset), xmm0);
   938       __ vmovdqu(xmm0, Address(rsp, -32));
   939       break;
   940     default:
   941       ShouldNotReachHere();
   942     }
   943     int size = __ offset() - offset;
   944     assert(size == calc_size, "incorrect size calculattion");
   945     return size;
   946 #ifndef PRODUCT
   947   } else if (!do_size) {
   948     switch (ireg) {
   949     case Op_VecS:
   950       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
   951                 "popl    [rsp + #%d]",
   952                 src_offset, dst_offset);
   953       break;
   954     case Op_VecD:
   955       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
   956                 "popq    [rsp + #%d]\n\t"
   957                 "pushl   [rsp + #%d]\n\t"
   958                 "popq    [rsp + #%d]",
   959                 src_offset, dst_offset, src_offset+4, dst_offset+4);
   960       break;
   961      case Op_VecX:
   962       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
   963                 "movdqu  xmm0, [rsp + #%d]\n\t"
   964                 "movdqu  [rsp + #%d], xmm0\n\t"
   965                 "movdqu  xmm0, [rsp - #16]",
   966                 src_offset, dst_offset);
   967       break;
   968     case Op_VecY:
   969       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
   970                 "vmovdqu xmm0, [rsp + #%d]\n\t"
   971                 "vmovdqu [rsp + #%d], xmm0\n\t"
   972                 "vmovdqu xmm0, [rsp - #32]",
   973                 src_offset, dst_offset);
   974       break;
   975     default:
   976       ShouldNotReachHere();
   977     }
   978 #endif
   979   }
   980   return calc_size;
   981 }
   983 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   984   // Get registers to move
   985   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   986   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   987   OptoReg::Name dst_second = ra_->get_reg_second(this );
   988   OptoReg::Name dst_first = ra_->get_reg_first(this );
   990   enum RC src_second_rc = rc_class(src_second);
   991   enum RC src_first_rc = rc_class(src_first);
   992   enum RC dst_second_rc = rc_class(dst_second);
   993   enum RC dst_first_rc = rc_class(dst_first);
   995   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   997   // Generate spill code!
   998   int size = 0;
  1000   if( src_first == dst_first && src_second == dst_second )
  1001     return size;            // Self copy, no move
  1003   if (bottom_type()->isa_vect() != NULL) {
  1004     uint ireg = ideal_reg();
  1005     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
  1006     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
  1007     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
  1008     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1009       // mem -> mem
  1010       int src_offset = ra_->reg2offset(src_first);
  1011       int dst_offset = ra_->reg2offset(dst_first);
  1012       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
  1013     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1014       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
  1015     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1016       int stack_offset = ra_->reg2offset(dst_first);
  1017       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
  1018     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
  1019       int stack_offset = ra_->reg2offset(src_first);
  1020       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
  1021     } else {
  1022       ShouldNotReachHere();
  1026   // --------------------------------------
  1027   // Check for mem-mem move.  push/pop to move.
  1028   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1029     if( src_second == dst_first ) { // overlapping stack copy ranges
  1030       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
  1031       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1032       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1033       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
  1035     // move low bits
  1036     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
  1037     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
  1038     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
  1039       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1040       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1042     return size;
  1045   // --------------------------------------
  1046   // Check for integer reg-reg copy
  1047   if( src_first_rc == rc_int && dst_first_rc == rc_int )
  1048     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
  1050   // Check for integer store
  1051   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
  1052     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
  1054   // Check for integer load
  1055   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
  1056     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
  1058   // Check for integer reg-xmm reg copy
  1059   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
  1060     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1061             "no 64 bit integer-float reg moves" );
  1062     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1064   // --------------------------------------
  1065   // Check for float reg-reg copy
  1066   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1067     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1068             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1069     if( cbuf ) {
  1071       // Note the mucking with the register encode to compensate for the 0/1
  1072       // indexing issue mentioned in a comment in the reg_def sections
  1073       // for FPR registers many lines above here.
  1075       if( src_first != FPR1L_num ) {
  1076         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1077         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1078         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1079         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1080      } else {
  1081         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1082         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1084 #ifndef PRODUCT
  1085     } else if( !do_size ) {
  1086       if( size != 0 ) st->print("\n\t");
  1087       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1088       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1089 #endif
  1091     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1094   // Check for float store
  1095   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1096     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1099   // Check for float load
  1100   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1101     int offset = ra_->reg2offset(src_first);
  1102     const char *op_str;
  1103     int op;
  1104     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1105       op_str = "FLD_D";
  1106       op = 0xDD;
  1107     } else {                   // 32-bit load
  1108       op_str = "FLD_S";
  1109       op = 0xD9;
  1110       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1112     if( cbuf ) {
  1113       emit_opcode  (*cbuf, op );
  1114       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
  1115       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1116       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1117 #ifndef PRODUCT
  1118     } else if( !do_size ) {
  1119       if( size != 0 ) st->print("\n\t");
  1120       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1121 #endif
  1123     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1124     return size + 3+offset_size+2;
  1127   // Check for xmm reg-reg copy
  1128   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1129     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1130             (src_first+1 == src_second && dst_first+1 == dst_second),
  1131             "no non-adjacent float-moves" );
  1132     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1135   // Check for xmm reg-integer reg copy
  1136   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1137     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1138             "no 64 bit float-integer reg moves" );
  1139     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1142   // Check for xmm store
  1143   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1144     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1147   // Check for float xmm load
  1148   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1149     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1152   // Copy from float reg to xmm reg
  1153   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1154     // copy to the top of stack from floating point reg
  1155     // and use LEA to preserve flags
  1156     if( cbuf ) {
  1157       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1158       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1159       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1160       emit_d8(*cbuf,0xF8);
  1161 #ifndef PRODUCT
  1162     } else if( !do_size ) {
  1163       if( size != 0 ) st->print("\n\t");
  1164       st->print("LEA    ESP,[ESP-8]");
  1165 #endif
  1167     size += 4;
  1169     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1171     // Copy from the temp memory to the xmm reg.
  1172     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1174     if( cbuf ) {
  1175       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1176       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1177       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1178       emit_d8(*cbuf,0x08);
  1179 #ifndef PRODUCT
  1180     } else if( !do_size ) {
  1181       if( size != 0 ) st->print("\n\t");
  1182       st->print("LEA    ESP,[ESP+8]");
  1183 #endif
  1185     size += 4;
  1186     return size;
  1189   assert( size > 0, "missed a case" );
  1191   // --------------------------------------------------------------------
  1192   // Check for second bits still needing moving.
  1193   if( src_second == dst_second )
  1194     return size;               // Self copy; no move
  1195   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1197   // Check for second word int-int move
  1198   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1199     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1201   // Check for second word integer store
  1202   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1203     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1205   // Check for second word integer load
  1206   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1207     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1210   Unimplemented();
  1213 #ifndef PRODUCT
  1214 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
  1215   implementation( NULL, ra_, false, st );
  1217 #endif
  1219 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1220   implementation( &cbuf, ra_, false, NULL );
  1223 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1224   return implementation( NULL, ra_, true, NULL );
  1228 //=============================================================================
  1229 #ifndef PRODUCT
  1230 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1231   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1232   int reg = ra_->get_reg_first(this);
  1233   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1235 #endif
  1237 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1238   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1239   int reg = ra_->get_encode(this);
  1240   if( offset >= 128 ) {
  1241     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1242     emit_rm(cbuf, 0x2, reg, 0x04);
  1243     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1244     emit_d32(cbuf, offset);
  1246   else {
  1247     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1248     emit_rm(cbuf, 0x1, reg, 0x04);
  1249     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1250     emit_d8(cbuf, offset);
  1254 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1255   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1256   if( offset >= 128 ) {
  1257     return 7;
  1259   else {
  1260     return 4;
  1264 //=============================================================================
  1265 #ifndef PRODUCT
  1266 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1267   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1268   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1269   st->print_cr("\tNOP");
  1270   st->print_cr("\tNOP");
  1271   if( !OptoBreakpoint )
  1272     st->print_cr("\tNOP");
  1274 #endif
  1276 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1277   MacroAssembler masm(&cbuf);
  1278 #ifdef ASSERT
  1279   uint insts_size = cbuf.insts_size();
  1280 #endif
  1281   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1282   masm.jump_cc(Assembler::notEqual,
  1283                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1284   /* WARNING these NOPs are critical so that verified entry point is properly
  1285      aligned for patching by NativeJump::patch_verified_entry() */
  1286   int nops_cnt = 2;
  1287   if( !OptoBreakpoint ) // Leave space for int3
  1288      nops_cnt += 1;
  1289   masm.nop(nops_cnt);
  1291   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1294 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1295   return OptoBreakpoint ? 11 : 12;
  1299 //=============================================================================
  1300 uint size_exception_handler() {
  1301   // NativeCall instruction size is the same as NativeJump.
  1302   // exception handler starts out as jump and can be patched to
  1303   // a call be deoptimization.  (4932387)
  1304   // Note that this value is also credited (in output.cpp) to
  1305   // the size of the code section.
  1306   return NativeJump::instruction_size;
  1309 // Emit exception handler code.  Stuff framesize into a register
  1310 // and call a VM stub routine.
  1311 int emit_exception_handler(CodeBuffer& cbuf) {
  1313   // Note that the code buffer's insts_mark is always relative to insts.
  1314   // That's why we must use the macroassembler to generate a handler.
  1315   MacroAssembler _masm(&cbuf);
  1316   address base =
  1317   __ start_a_stub(size_exception_handler());
  1318   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1319   int offset = __ offset();
  1320   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1321   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1322   __ end_a_stub();
  1323   return offset;
  1326 uint size_deopt_handler() {
  1327   // NativeCall instruction size is the same as NativeJump.
  1328   // exception handler starts out as jump and can be patched to
  1329   // a call be deoptimization.  (4932387)
  1330   // Note that this value is also credited (in output.cpp) to
  1331   // the size of the code section.
  1332   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1335 // Emit deopt handler code.
  1336 int emit_deopt_handler(CodeBuffer& cbuf) {
  1338   // Note that the code buffer's insts_mark is always relative to insts.
  1339   // That's why we must use the macroassembler to generate a handler.
  1340   MacroAssembler _masm(&cbuf);
  1341   address base =
  1342   __ start_a_stub(size_exception_handler());
  1343   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1344   int offset = __ offset();
  1345   InternalAddress here(__ pc());
  1346   __ pushptr(here.addr());
  1348   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1349   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1350   __ end_a_stub();
  1351   return offset;
  1354 int Matcher::regnum_to_fpu_offset(int regnum) {
  1355   return regnum - 32; // The FP registers are in the second chunk
  1358 // This is UltraSparc specific, true just means we have fast l2f conversion
  1359 const bool Matcher::convL2FSupported(void) {
  1360   return true;
  1363 // Is this branch offset short enough that a short branch can be used?
  1364 //
  1365 // NOTE: If the platform does not provide any short branch variants, then
  1366 //       this method should return false for offset 0.
  1367 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1368   // The passed offset is relative to address of the branch.
  1369   // On 86 a branch displacement is calculated relative to address
  1370   // of a next instruction.
  1371   offset -= br_size;
  1373   // the short version of jmpConUCF2 contains multiple branches,
  1374   // making the reach slightly less
  1375   if (rule == jmpConUCF2_rule)
  1376     return (-126 <= offset && offset <= 125);
  1377   return (-128 <= offset && offset <= 127);
  1380 const bool Matcher::isSimpleConstant64(jlong value) {
  1381   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1382   return false;
  1385 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1386 const bool Matcher::init_array_count_is_in_bytes = false;
  1388 // Threshold size for cleararray.
  1389 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1391 // Needs 2 CMOV's for longs.
  1392 const int Matcher::long_cmove_cost() { return 1; }
  1394 // No CMOVF/CMOVD with SSE/SSE2
  1395 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1397 // Does the CPU require late expand (see block.cpp for description of late expand)?
  1398 const bool Matcher::require_postalloc_expand = false;
  1400 // Should the Matcher clone shifts on addressing modes, expecting them to
  1401 // be subsumed into complex addressing expressions or compute them into
  1402 // registers?  True for Intel but false for most RISCs
  1403 const bool Matcher::clone_shift_expressions = true;
  1405 // Do we need to mask the count passed to shift instructions or does
  1406 // the cpu only look at the lower 5/6 bits anyway?
  1407 const bool Matcher::need_masked_shift_count = false;
  1409 bool Matcher::narrow_oop_use_complex_address() {
  1410   ShouldNotCallThis();
  1411   return true;
  1414 bool Matcher::narrow_klass_use_complex_address() {
  1415   ShouldNotCallThis();
  1416   return true;
  1420 // Is it better to copy float constants, or load them directly from memory?
  1421 // Intel can load a float constant from a direct address, requiring no
  1422 // extra registers.  Most RISCs will have to materialize an address into a
  1423 // register first, so they would do better to copy the constant from stack.
  1424 const bool Matcher::rematerialize_float_constants = true;
  1426 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1427 // needed.  Else we split the double into 2 integer pieces and move it
  1428 // piece-by-piece.  Only happens when passing doubles into C code as the
  1429 // Java calling convention forces doubles to be aligned.
  1430 const bool Matcher::misaligned_doubles_ok = true;
  1433 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1434   // Get the memory operand from the node
  1435   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1436   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1437   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1438   uint opcnt     = 1;                 // First operand
  1439   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1440   while( idx >= skipped+num_edges ) {
  1441     skipped += num_edges;
  1442     opcnt++;                          // Bump operand count
  1443     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1444     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1447   MachOper *memory = node->_opnds[opcnt];
  1448   MachOper *new_memory = NULL;
  1449   switch (memory->opcode()) {
  1450   case DIRECT:
  1451   case INDOFFSET32X:
  1452     // No transformation necessary.
  1453     return;
  1454   case INDIRECT:
  1455     new_memory = new (C) indirect_win95_safeOper( );
  1456     break;
  1457   case INDOFFSET8:
  1458     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1459     break;
  1460   case INDOFFSET32:
  1461     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1462     break;
  1463   case INDINDEXOFFSET:
  1464     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1465     break;
  1466   case INDINDEXSCALE:
  1467     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1468     break;
  1469   case INDINDEXSCALEOFFSET:
  1470     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1471     break;
  1472   case LOAD_LONG_INDIRECT:
  1473   case LOAD_LONG_INDOFFSET32:
  1474     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1475     return;
  1476   default:
  1477     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1478     return;
  1480   node->_opnds[opcnt] = new_memory;
  1483 // Advertise here if the CPU requires explicit rounding operations
  1484 // to implement the UseStrictFP mode.
  1485 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1487 // Are floats conerted to double when stored to stack during deoptimization?
  1488 // On x32 it is stored with convertion only when FPU is used for floats.
  1489 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1491 // Do ints take an entire long register or just half?
  1492 const bool Matcher::int_in_long = false;
  1494 // Return whether or not this register is ever used as an argument.  This
  1495 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1496 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1497 // arguments in those registers not be available to the callee.
  1498 bool Matcher::can_be_java_arg( int reg ) {
  1499   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1500   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
  1501   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1502   return false;
  1505 bool Matcher::is_spillable_arg( int reg ) {
  1506   return can_be_java_arg(reg);
  1509 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1510   // Use hardware integer DIV instruction when
  1511   // it is faster than a code which use multiply.
  1512   // Only when constant divisor fits into 32 bit
  1513   // (min_jint is excluded to get only correct
  1514   // positive 32 bit values from negative).
  1515   return VM_Version::has_fast_idiv() &&
  1516          (divisor == (int)divisor && divisor != min_jint);
  1519 // Register for DIVI projection of divmodI
  1520 RegMask Matcher::divI_proj_mask() {
  1521   return EAX_REG_mask();
  1524 // Register for MODI projection of divmodI
  1525 RegMask Matcher::modI_proj_mask() {
  1526   return EDX_REG_mask();
  1529 // Register for DIVL projection of divmodL
  1530 RegMask Matcher::divL_proj_mask() {
  1531   ShouldNotReachHere();
  1532   return RegMask();
  1535 // Register for MODL projection of divmodL
  1536 RegMask Matcher::modL_proj_mask() {
  1537   ShouldNotReachHere();
  1538   return RegMask();
  1541 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1542   return EBP_REG_mask();
  1545 const RegMask Matcher::mathExactI_result_proj_mask() {
  1546   return EAX_REG_mask();
  1549 const RegMask Matcher::mathExactL_result_proj_mask() {
  1550   ShouldNotReachHere();
  1551   return RegMask();
  1554 const RegMask Matcher::mathExactI_flags_proj_mask() {
  1555   return INT_FLAGS_mask();
  1558 // Returns true if the high 32 bits of the value is known to be zero.
  1559 bool is_operand_hi32_zero(Node* n) {
  1560   int opc = n->Opcode();
  1561   if (opc == Op_AndL) {
  1562     Node* o2 = n->in(2);
  1563     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1564       return true;
  1567   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1568     return true;
  1570   return false;
  1573 %}
  1575 //----------ENCODING BLOCK-----------------------------------------------------
  1576 // This block specifies the encoding classes used by the compiler to output
  1577 // byte streams.  Encoding classes generate functions which are called by
  1578 // Machine Instruction Nodes in order to generate the bit encoding of the
  1579 // instruction.  Operands specify their base encoding interface with the
  1580 // interface keyword.  There are currently supported four interfaces,
  1581 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1582 // operand to generate a function which returns its register number when
  1583 // queried.   CONST_INTER causes an operand to generate a function which
  1584 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1585 // operand to generate four functions which return the Base Register, the
  1586 // Index Register, the Scale Value, and the Offset Value of the operand when
  1587 // queried.  COND_INTER causes an operand to generate six functions which
  1588 // return the encoding code (ie - encoding bits for the instruction)
  1589 // associated with each basic boolean condition for a conditional instruction.
  1590 // Instructions specify two basic values for encoding.  They use the
  1591 // ins_encode keyword to specify their encoding class (which must be one of
  1592 // the class names specified in the encoding block), and they use the
  1593 // opcode keyword to specify, in order, their primary, secondary, and
  1594 // tertiary opcode.  Only the opcode sections which a particular instruction
  1595 // needs for encoding need to be specified.
  1596 encode %{
  1597   // Build emit functions for each basic byte or larger field in the intel
  1598   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1599   // code in the enc_class source block.  Emit functions will live in the
  1600   // main source block for now.  In future, we can generalize this by
  1601   // adding a syntax that specifies the sizes of fields in an order,
  1602   // so that the adlc can build the emit functions automagically
  1604   // Emit primary opcode
  1605   enc_class OpcP %{
  1606     emit_opcode(cbuf, $primary);
  1607   %}
  1609   // Emit secondary opcode
  1610   enc_class OpcS %{
  1611     emit_opcode(cbuf, $secondary);
  1612   %}
  1614   // Emit opcode directly
  1615   enc_class Opcode(immI d8) %{
  1616     emit_opcode(cbuf, $d8$$constant);
  1617   %}
  1619   enc_class SizePrefix %{
  1620     emit_opcode(cbuf,0x66);
  1621   %}
  1623   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1624     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1625   %}
  1627   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
  1628     emit_opcode(cbuf,$opcode$$constant);
  1629     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1630   %}
  1632   enc_class mov_r32_imm0( rRegI dst ) %{
  1633     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1634     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1635   %}
  1637   enc_class cdq_enc %{
  1638     // Full implementation of Java idiv and irem; checks for
  1639     // special case as described in JVM spec., p.243 & p.271.
  1640     //
  1641     //         normal case                           special case
  1642     //
  1643     // input : rax,: dividend                         min_int
  1644     //         reg: divisor                          -1
  1645     //
  1646     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1647     //         rdx: remainder (= rax, irem reg)       0
  1648     //
  1649     //  Code sequnce:
  1650     //
  1651     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1652     //  0F 85 0B 00 00 00    jne         normal_case
  1653     //  33 D2                xor         rdx,edx
  1654     //  83 F9 FF             cmp         rcx,0FFh
  1655     //  0F 84 03 00 00 00    je          done
  1656     //                  normal_case:
  1657     //  99                   cdq
  1658     //  F7 F9                idiv        rax,ecx
  1659     //                  done:
  1660     //
  1661     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1662     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1663     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1664     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1665     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1666     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1667     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1668     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1669     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1670     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1671     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1672     // normal_case:
  1673     emit_opcode(cbuf,0x99);                                         // cdq
  1674     // idiv (note: must be emitted by the user of this rule)
  1675     // normal:
  1676   %}
  1678   // Dense encoding for older common ops
  1679   enc_class Opc_plus(immI opcode, rRegI reg) %{
  1680     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1681   %}
  1684   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1685   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1686     // Check for 8-bit immediate, and set sign extend bit in opcode
  1687     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1688       emit_opcode(cbuf, $primary | 0x02);
  1690     else {                          // If 32-bit immediate
  1691       emit_opcode(cbuf, $primary);
  1693   %}
  1695   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
  1696     // Emit primary opcode and set sign-extend bit
  1697     // Check for 8-bit immediate, and set sign extend bit in opcode
  1698     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1699       emit_opcode(cbuf, $primary | 0x02);    }
  1700     else {                          // If 32-bit immediate
  1701       emit_opcode(cbuf, $primary);
  1703     // Emit r/m byte with secondary opcode, after primary opcode.
  1704     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1705   %}
  1707   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1708     // Check for 8-bit immediate, and set sign extend bit in opcode
  1709     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1710       $$$emit8$imm$$constant;
  1712     else {                          // If 32-bit immediate
  1713       // Output immediate
  1714       $$$emit32$imm$$constant;
  1716   %}
  1718   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1719     // Emit primary opcode and set sign-extend bit
  1720     // Check for 8-bit immediate, and set sign extend bit in opcode
  1721     int con = (int)$imm$$constant; // Throw away top bits
  1722     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1723     // Emit r/m byte with secondary opcode, after primary opcode.
  1724     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1725     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1726     else                               emit_d32(cbuf,con);
  1727   %}
  1729   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1730     // Emit primary opcode and set sign-extend bit
  1731     // Check for 8-bit immediate, and set sign extend bit in opcode
  1732     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1733     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1734     // Emit r/m byte with tertiary opcode, after primary opcode.
  1735     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1736     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1737     else                               emit_d32(cbuf,con);
  1738   %}
  1740   enc_class OpcSReg (rRegI dst) %{    // BSWAP
  1741     emit_cc(cbuf, $secondary, $dst$$reg );
  1742   %}
  1744   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1745     int destlo = $dst$$reg;
  1746     int desthi = HIGH_FROM_LOW(destlo);
  1747     // bswap lo
  1748     emit_opcode(cbuf, 0x0F);
  1749     emit_cc(cbuf, 0xC8, destlo);
  1750     // bswap hi
  1751     emit_opcode(cbuf, 0x0F);
  1752     emit_cc(cbuf, 0xC8, desthi);
  1753     // xchg lo and hi
  1754     emit_opcode(cbuf, 0x87);
  1755     emit_rm(cbuf, 0x3, destlo, desthi);
  1756   %}
  1758   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1759     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1760   %}
  1762   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1763     $$$emit8$primary;
  1764     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1765   %}
  1767   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1768     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1769     emit_d8(cbuf, op >> 8 );
  1770     emit_d8(cbuf, op & 255);
  1771   %}
  1773   // emulate a CMOV with a conditional branch around a MOV
  1774   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1775     // Invert sense of branch from sense of CMOV
  1776     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1777     emit_d8( cbuf, $brOffs$$constant );
  1778   %}
  1780   enc_class enc_PartialSubtypeCheck( ) %{
  1781     Register Redi = as_Register(EDI_enc); // result register
  1782     Register Reax = as_Register(EAX_enc); // super class
  1783     Register Recx = as_Register(ECX_enc); // killed
  1784     Register Resi = as_Register(ESI_enc); // sub class
  1785     Label miss;
  1787     MacroAssembler _masm(&cbuf);
  1788     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1789                                      NULL, &miss,
  1790                                      /*set_cond_codes:*/ true);
  1791     if ($primary) {
  1792       __ xorptr(Redi, Redi);
  1794     __ bind(miss);
  1795   %}
  1797   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1798     MacroAssembler masm(&cbuf);
  1799     int start = masm.offset();
  1800     if (UseSSE >= 2) {
  1801       if (VerifyFPU) {
  1802         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1804     } else {
  1805       // External c_calling_convention expects the FPU stack to be 'clean'.
  1806       // Compiled code leaves it dirty.  Do cleanup now.
  1807       masm.empty_FPU_stack();
  1809     if (sizeof_FFree_Float_Stack_All == -1) {
  1810       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1811     } else {
  1812       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1814   %}
  1816   enc_class Verify_FPU_For_Leaf %{
  1817     if( VerifyFPU ) {
  1818       MacroAssembler masm(&cbuf);
  1819       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1821   %}
  1823   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1824     // This is the instruction starting address for relocation info.
  1825     cbuf.set_insts_mark();
  1826     $$$emit8$primary;
  1827     // CALL directly to the runtime
  1828     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1829                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1831     if (UseSSE >= 2) {
  1832       MacroAssembler _masm(&cbuf);
  1833       BasicType rt = tf()->return_type();
  1835       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1836         // A C runtime call where the return value is unused.  In SSE2+
  1837         // mode the result needs to be removed from the FPU stack.  It's
  1838         // likely that this function call could be removed by the
  1839         // optimizer if the C function is a pure function.
  1840         __ ffree(0);
  1841       } else if (rt == T_FLOAT) {
  1842         __ lea(rsp, Address(rsp, -4));
  1843         __ fstp_s(Address(rsp, 0));
  1844         __ movflt(xmm0, Address(rsp, 0));
  1845         __ lea(rsp, Address(rsp,  4));
  1846       } else if (rt == T_DOUBLE) {
  1847         __ lea(rsp, Address(rsp, -8));
  1848         __ fstp_d(Address(rsp, 0));
  1849         __ movdbl(xmm0, Address(rsp, 0));
  1850         __ lea(rsp, Address(rsp,  8));
  1853   %}
  1856   enc_class pre_call_resets %{
  1857     // If method sets FPU control word restore it here
  1858     debug_only(int off0 = cbuf.insts_size());
  1859     if (ra_->C->in_24_bit_fp_mode()) {
  1860       MacroAssembler _masm(&cbuf);
  1861       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1863     if (ra_->C->max_vector_size() > 16) {
  1864       // Clear upper bits of YMM registers when current compiled code uses
  1865       // wide vectors to avoid AVX <-> SSE transition penalty during call.
  1866       MacroAssembler _masm(&cbuf);
  1867       __ vzeroupper();
  1869     debug_only(int off1 = cbuf.insts_size());
  1870     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
  1871   %}
  1873   enc_class post_call_FPU %{
  1874     // If method sets FPU control word do it here also
  1875     if (Compile::current()->in_24_bit_fp_mode()) {
  1876       MacroAssembler masm(&cbuf);
  1877       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1879   %}
  1881   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1882     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1883     // who we intended to call.
  1884     cbuf.set_insts_mark();
  1885     $$$emit8$primary;
  1886     if (!_method) {
  1887       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1888                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1889     } else if (_optimized_virtual) {
  1890       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1891                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1892     } else {
  1893       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1894                      static_call_Relocation::spec(), RELOC_IMM32 );
  1896     if (_method) {  // Emit stub for static call.
  1897       CompiledStaticCall::emit_to_interp_stub(cbuf);
  1899   %}
  1901   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1902     MacroAssembler _masm(&cbuf);
  1903     __ ic_call((address)$meth$$method);
  1904   %}
  1906   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1907     int disp = in_bytes(Method::from_compiled_offset());
  1908     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1910     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
  1911     cbuf.set_insts_mark();
  1912     $$$emit8$primary;
  1913     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1914     emit_d8(cbuf, disp);             // Displacement
  1916   %}
  1918 //   Following encoding is no longer used, but may be restored if calling
  1919 //   convention changes significantly.
  1920 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1921 //
  1922 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1923 //     // int ic_reg     = Matcher::inline_cache_reg();
  1924 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1925 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1926 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1927 //
  1928 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1929 //     // // so we load it immediately before the call
  1930 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1931 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1932 //
  1933 //     // xor rbp,ebp
  1934 //     emit_opcode(cbuf, 0x33);
  1935 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1936 //
  1937 //     // CALL to interpreter.
  1938 //     cbuf.set_insts_mark();
  1939 //     $$$emit8$primary;
  1940 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1941 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1942 //   %}
  1944   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1945     $$$emit8$primary;
  1946     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1947     $$$emit8$shift$$constant;
  1948   %}
  1950   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
  1951     // Load immediate does not have a zero or sign extended version
  1952     // for 8-bit immediates
  1953     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1954     $$$emit32$src$$constant;
  1955   %}
  1957   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
  1958     // Load immediate does not have a zero or sign extended version
  1959     // for 8-bit immediates
  1960     emit_opcode(cbuf, $primary + $dst$$reg);
  1961     $$$emit32$src$$constant;
  1962   %}
  1964   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1965     // Load immediate does not have a zero or sign extended version
  1966     // for 8-bit immediates
  1967     int dst_enc = $dst$$reg;
  1968     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1969     if (src_con == 0) {
  1970       // xor dst, dst
  1971       emit_opcode(cbuf, 0x33);
  1972       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1973     } else {
  1974       emit_opcode(cbuf, $primary + dst_enc);
  1975       emit_d32(cbuf, src_con);
  1977   %}
  1979   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1980     // Load immediate does not have a zero or sign extended version
  1981     // for 8-bit immediates
  1982     int dst_enc = $dst$$reg + 2;
  1983     int src_con = ((julong)($src$$constant)) >> 32;
  1984     if (src_con == 0) {
  1985       // xor dst, dst
  1986       emit_opcode(cbuf, 0x33);
  1987       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1988     } else {
  1989       emit_opcode(cbuf, $primary + dst_enc);
  1990       emit_d32(cbuf, src_con);
  1992   %}
  1995   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1996   enc_class enc_Copy( rRegI dst, rRegI src ) %{
  1997     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1998   %}
  2000   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
  2001     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2002   %}
  2004   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  2005     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2006   %}
  2008   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2009     $$$emit8$primary;
  2010     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2011   %}
  2013   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2014     $$$emit8$secondary;
  2015     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2016   %}
  2018   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2019     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2020   %}
  2022   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2023     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2024   %}
  2026   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
  2027     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2028   %}
  2030   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2031     // Output immediate
  2032     $$$emit32$src$$constant;
  2033   %}
  2035   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  2036     // Output Float immediate bits
  2037     jfloat jf = $src$$constant;
  2038     int    jf_as_bits = jint_cast( jf );
  2039     emit_d32(cbuf, jf_as_bits);
  2040   %}
  2042   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  2043     // Output Float immediate bits
  2044     jfloat jf = $src$$constant;
  2045     int    jf_as_bits = jint_cast( jf );
  2046     emit_d32(cbuf, jf_as_bits);
  2047   %}
  2049   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2050     // Output immediate
  2051     $$$emit16$src$$constant;
  2052   %}
  2054   enc_class Con_d32(immI src) %{
  2055     emit_d32(cbuf,$src$$constant);
  2056   %}
  2058   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2059     // Output immediate memory reference
  2060     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2061     emit_d32(cbuf, 0x00);
  2062   %}
  2064   enc_class lock_prefix( ) %{
  2065     if( os::is_MP() )
  2066       emit_opcode(cbuf,0xF0);         // [Lock]
  2067   %}
  2069   // Cmp-xchg long value.
  2070   // Note: we need to swap rbx, and rcx before and after the
  2071   //       cmpxchg8 instruction because the instruction uses
  2072   //       rcx as the high order word of the new value to store but
  2073   //       our register encoding uses rbx,.
  2074   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2076     // XCHG  rbx,ecx
  2077     emit_opcode(cbuf,0x87);
  2078     emit_opcode(cbuf,0xD9);
  2079     // [Lock]
  2080     if( os::is_MP() )
  2081       emit_opcode(cbuf,0xF0);
  2082     // CMPXCHG8 [Eptr]
  2083     emit_opcode(cbuf,0x0F);
  2084     emit_opcode(cbuf,0xC7);
  2085     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2086     // XCHG  rbx,ecx
  2087     emit_opcode(cbuf,0x87);
  2088     emit_opcode(cbuf,0xD9);
  2089   %}
  2091   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2092     // [Lock]
  2093     if( os::is_MP() )
  2094       emit_opcode(cbuf,0xF0);
  2096     // CMPXCHG [Eptr]
  2097     emit_opcode(cbuf,0x0F);
  2098     emit_opcode(cbuf,0xB1);
  2099     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2100   %}
  2102   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2103     int res_encoding = $res$$reg;
  2105     // MOV  res,0
  2106     emit_opcode( cbuf, 0xB8 + res_encoding);
  2107     emit_d32( cbuf, 0 );
  2108     // JNE,s  fail
  2109     emit_opcode(cbuf,0x75);
  2110     emit_d8(cbuf, 5 );
  2111     // MOV  res,1
  2112     emit_opcode( cbuf, 0xB8 + res_encoding);
  2113     emit_d32( cbuf, 1 );
  2114     // fail:
  2115   %}
  2117   enc_class set_instruction_start( ) %{
  2118     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2119   %}
  2121   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
  2122     int reg_encoding = $ereg$$reg;
  2123     int base  = $mem$$base;
  2124     int index = $mem$$index;
  2125     int scale = $mem$$scale;
  2126     int displace = $mem$$disp;
  2127     relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2128     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2129   %}
  2131   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2132     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2133     int base  = $mem$$base;
  2134     int index = $mem$$index;
  2135     int scale = $mem$$scale;
  2136     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2137     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
  2138     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
  2139   %}
  2141   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2142     int r1, r2;
  2143     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2144     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2145     emit_opcode(cbuf,0x0F);
  2146     emit_opcode(cbuf,$tertiary);
  2147     emit_rm(cbuf, 0x3, r1, r2);
  2148     emit_d8(cbuf,$cnt$$constant);
  2149     emit_d8(cbuf,$primary);
  2150     emit_rm(cbuf, 0x3, $secondary, r1);
  2151     emit_d8(cbuf,$cnt$$constant);
  2152   %}
  2154   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2155     emit_opcode( cbuf, 0x8B ); // Move
  2156     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2157     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2158       emit_d8(cbuf,$primary);
  2159       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2160       emit_d8(cbuf,$cnt$$constant-32);
  2162     emit_d8(cbuf,$primary);
  2163     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2164     emit_d8(cbuf,31);
  2165   %}
  2167   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2168     int r1, r2;
  2169     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2170     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2172     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2173     emit_rm(cbuf, 0x3, r1, r2);
  2174     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2175       emit_opcode(cbuf,$primary);
  2176       emit_rm(cbuf, 0x3, $secondary, r1);
  2177       emit_d8(cbuf,$cnt$$constant-32);
  2179     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2180     emit_rm(cbuf, 0x3, r2, r2);
  2181   %}
  2183   // Clone of RegMem but accepts an extra parameter to access each
  2184   // half of a double in memory; it never needs relocation info.
  2185   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
  2186     emit_opcode(cbuf,$opcode$$constant);
  2187     int reg_encoding = $rm_reg$$reg;
  2188     int base     = $mem$$base;
  2189     int index    = $mem$$index;
  2190     int scale    = $mem$$scale;
  2191     int displace = $mem$$disp + $disp_for_half$$constant;
  2192     relocInfo::relocType disp_reloc = relocInfo::none;
  2193     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2194   %}
  2196   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2197   //
  2198   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2199   // and it never needs relocation information.
  2200   // Frequently used to move data between FPU's Stack Top and memory.
  2201   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2202     int rm_byte_opcode = $rm_opcode$$constant;
  2203     int base     = $mem$$base;
  2204     int index    = $mem$$index;
  2205     int scale    = $mem$$scale;
  2206     int displace = $mem$$disp;
  2207     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
  2208     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
  2209   %}
  2211   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2212     int rm_byte_opcode = $rm_opcode$$constant;
  2213     int base     = $mem$$base;
  2214     int index    = $mem$$index;
  2215     int scale    = $mem$$scale;
  2216     int displace = $mem$$disp;
  2217     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2218     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  2219   %}
  2221   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
  2222     int reg_encoding = $dst$$reg;
  2223     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2224     int index        = 0x04;            // 0x04 indicates no index
  2225     int scale        = 0x00;            // 0x00 indicates no scale
  2226     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2227     relocInfo::relocType disp_reloc = relocInfo::none;
  2228     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2229   %}
  2231   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
  2232     // Compare dst,src
  2233     emit_opcode(cbuf,0x3B);
  2234     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2235     // jmp dst < src around move
  2236     emit_opcode(cbuf,0x7C);
  2237     emit_d8(cbuf,2);
  2238     // move dst,src
  2239     emit_opcode(cbuf,0x8B);
  2240     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2241   %}
  2243   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
  2244     // Compare dst,src
  2245     emit_opcode(cbuf,0x3B);
  2246     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2247     // jmp dst > src around move
  2248     emit_opcode(cbuf,0x7F);
  2249     emit_d8(cbuf,2);
  2250     // move dst,src
  2251     emit_opcode(cbuf,0x8B);
  2252     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2253   %}
  2255   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2256     // If src is FPR1, we can just FST to store it.
  2257     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2258     int reg_encoding = 0x2; // Just store
  2259     int base  = $mem$$base;
  2260     int index = $mem$$index;
  2261     int scale = $mem$$scale;
  2262     int displace = $mem$$disp;
  2263     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2264     if( $src$$reg != FPR1L_enc ) {
  2265       reg_encoding = 0x3;  // Store & pop
  2266       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2267       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2269     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2270     emit_opcode(cbuf,$primary);
  2271     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2272   %}
  2274   enc_class neg_reg(rRegI dst) %{
  2275     // NEG $dst
  2276     emit_opcode(cbuf,0xF7);
  2277     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2278   %}
  2280   enc_class setLT_reg(eCXRegI dst) %{
  2281     // SETLT $dst
  2282     emit_opcode(cbuf,0x0F);
  2283     emit_opcode(cbuf,0x9C);
  2284     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2285   %}
  2287   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2288     int tmpReg = $tmp$$reg;
  2290     // SUB $p,$q
  2291     emit_opcode(cbuf,0x2B);
  2292     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2293     // SBB $tmp,$tmp
  2294     emit_opcode(cbuf,0x1B);
  2295     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2296     // AND $tmp,$y
  2297     emit_opcode(cbuf,0x23);
  2298     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2299     // ADD $p,$tmp
  2300     emit_opcode(cbuf,0x03);
  2301     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2302   %}
  2304   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2305     // TEST shift,32
  2306     emit_opcode(cbuf,0xF7);
  2307     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2308     emit_d32(cbuf,0x20);
  2309     // JEQ,s small
  2310     emit_opcode(cbuf, 0x74);
  2311     emit_d8(cbuf, 0x04);
  2312     // MOV    $dst.hi,$dst.lo
  2313     emit_opcode( cbuf, 0x8B );
  2314     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2315     // CLR    $dst.lo
  2316     emit_opcode(cbuf, 0x33);
  2317     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2318 // small:
  2319     // SHLD   $dst.hi,$dst.lo,$shift
  2320     emit_opcode(cbuf,0x0F);
  2321     emit_opcode(cbuf,0xA5);
  2322     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2323     // SHL    $dst.lo,$shift"
  2324     emit_opcode(cbuf,0xD3);
  2325     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2326   %}
  2328   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2329     // TEST shift,32
  2330     emit_opcode(cbuf,0xF7);
  2331     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2332     emit_d32(cbuf,0x20);
  2333     // JEQ,s small
  2334     emit_opcode(cbuf, 0x74);
  2335     emit_d8(cbuf, 0x04);
  2336     // MOV    $dst.lo,$dst.hi
  2337     emit_opcode( cbuf, 0x8B );
  2338     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2339     // CLR    $dst.hi
  2340     emit_opcode(cbuf, 0x33);
  2341     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2342 // small:
  2343     // SHRD   $dst.lo,$dst.hi,$shift
  2344     emit_opcode(cbuf,0x0F);
  2345     emit_opcode(cbuf,0xAD);
  2346     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2347     // SHR    $dst.hi,$shift"
  2348     emit_opcode(cbuf,0xD3);
  2349     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2350   %}
  2352   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2353     // TEST shift,32
  2354     emit_opcode(cbuf,0xF7);
  2355     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2356     emit_d32(cbuf,0x20);
  2357     // JEQ,s small
  2358     emit_opcode(cbuf, 0x74);
  2359     emit_d8(cbuf, 0x05);
  2360     // MOV    $dst.lo,$dst.hi
  2361     emit_opcode( cbuf, 0x8B );
  2362     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2363     // SAR    $dst.hi,31
  2364     emit_opcode(cbuf, 0xC1);
  2365     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2366     emit_d8(cbuf, 0x1F );
  2367 // small:
  2368     // SHRD   $dst.lo,$dst.hi,$shift
  2369     emit_opcode(cbuf,0x0F);
  2370     emit_opcode(cbuf,0xAD);
  2371     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2372     // SAR    $dst.hi,$shift"
  2373     emit_opcode(cbuf,0xD3);
  2374     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2375   %}
  2378   // ----------------- Encodings for floating point unit -----------------
  2379   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2380   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2381     $$$emit8$primary;
  2382     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2383   %}
  2385   // Pop argument in FPR0 with FSTP ST(0)
  2386   enc_class PopFPU() %{
  2387     emit_opcode( cbuf, 0xDD );
  2388     emit_d8( cbuf, 0xD8 );
  2389   %}
  2391   // !!!!! equivalent to Pop_Reg_F
  2392   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2393     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2394     emit_d8( cbuf, 0xD8+$dst$$reg );
  2395   %}
  2397   enc_class Push_Reg_DPR( regDPR dst ) %{
  2398     emit_opcode( cbuf, 0xD9 );
  2399     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2400   %}
  2402   enc_class strictfp_bias1( regDPR dst ) %{
  2403     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2404     emit_opcode( cbuf, 0x2D );
  2405     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2406     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2407     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2408   %}
  2410   enc_class strictfp_bias2( regDPR dst ) %{
  2411     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2412     emit_opcode( cbuf, 0x2D );
  2413     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2414     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2415     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2416   %}
  2418   // Special case for moving an integer register to a stack slot.
  2419   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2420     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2421   %}
  2423   // Special case for moving a register to a stack slot.
  2424   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2425     // Opcode already emitted
  2426     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2427     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2428     emit_d32(cbuf, $dst$$disp);   // Displacement
  2429   %}
  2431   // Push the integer in stackSlot 'src' onto FP-stack
  2432   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2433     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2434   %}
  2436   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2437   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2438     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2439   %}
  2441   // Same as Pop_Mem_F except for opcode
  2442   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2443   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2444     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2445   %}
  2447   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2448     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2449     emit_d8( cbuf, 0xD8+$dst$$reg );
  2450   %}
  2452   enc_class Push_Reg_FPR( regFPR dst ) %{
  2453     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2454     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2455   %}
  2457   // Push FPU's float to a stack-slot, and pop FPU-stack
  2458   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2459     int pop = 0x02;
  2460     if ($src$$reg != FPR1L_enc) {
  2461       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2462       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2463       pop = 0x03;
  2465     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2466   %}
  2468   // Push FPU's double to a stack-slot, and pop FPU-stack
  2469   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2470     int pop = 0x02;
  2471     if ($src$$reg != FPR1L_enc) {
  2472       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2473       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2474       pop = 0x03;
  2476     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2477   %}
  2479   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2480   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2481     int pop = 0xD0 - 1; // -1 since we skip FLD
  2482     if ($src$$reg != FPR1L_enc) {
  2483       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2484       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2485       pop = 0xD8;
  2487     emit_opcode( cbuf, 0xDD );
  2488     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2489   %}
  2492   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2493     // load dst in FPR0
  2494     emit_opcode( cbuf, 0xD9 );
  2495     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2496     if ($src$$reg != FPR1L_enc) {
  2497       // fincstp
  2498       emit_opcode (cbuf, 0xD9);
  2499       emit_opcode (cbuf, 0xF7);
  2500       // swap src with FPR1:
  2501       // FXCH FPR1 with src
  2502       emit_opcode(cbuf, 0xD9);
  2503       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2504       // fdecstp
  2505       emit_opcode (cbuf, 0xD9);
  2506       emit_opcode (cbuf, 0xF6);
  2508   %}
  2510   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2511     MacroAssembler _masm(&cbuf);
  2512     __ subptr(rsp, 8);
  2513     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2514     __ fld_d(Address(rsp, 0));
  2515     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2516     __ fld_d(Address(rsp, 0));
  2517   %}
  2519   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2520     MacroAssembler _masm(&cbuf);
  2521     __ subptr(rsp, 4);
  2522     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2523     __ fld_s(Address(rsp, 0));
  2524     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2525     __ fld_s(Address(rsp, 0));
  2526   %}
  2528   enc_class Push_ResultD(regD dst) %{
  2529     MacroAssembler _masm(&cbuf);
  2530     __ fstp_d(Address(rsp, 0));
  2531     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2532     __ addptr(rsp, 8);
  2533   %}
  2535   enc_class Push_ResultF(regF dst, immI d8) %{
  2536     MacroAssembler _masm(&cbuf);
  2537     __ fstp_s(Address(rsp, 0));
  2538     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2539     __ addptr(rsp, $d8$$constant);
  2540   %}
  2542   enc_class Push_SrcD(regD src) %{
  2543     MacroAssembler _masm(&cbuf);
  2544     __ subptr(rsp, 8);
  2545     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2546     __ fld_d(Address(rsp, 0));
  2547   %}
  2549   enc_class push_stack_temp_qword() %{
  2550     MacroAssembler _masm(&cbuf);
  2551     __ subptr(rsp, 8);
  2552   %}
  2554   enc_class pop_stack_temp_qword() %{
  2555     MacroAssembler _masm(&cbuf);
  2556     __ addptr(rsp, 8);
  2557   %}
  2559   enc_class push_xmm_to_fpr1(regD src) %{
  2560     MacroAssembler _masm(&cbuf);
  2561     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2562     __ fld_d(Address(rsp, 0));
  2563   %}
  2565   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2566     if ($src$$reg != FPR1L_enc) {
  2567       // fincstp
  2568       emit_opcode (cbuf, 0xD9);
  2569       emit_opcode (cbuf, 0xF7);
  2570       // FXCH FPR1 with src
  2571       emit_opcode(cbuf, 0xD9);
  2572       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2573       // fdecstp
  2574       emit_opcode (cbuf, 0xD9);
  2575       emit_opcode (cbuf, 0xF6);
  2577     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2578     // // FSTP   FPR$dst$$reg
  2579     // emit_opcode( cbuf, 0xDD );
  2580     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2581   %}
  2583   enc_class fnstsw_sahf_skip_parity() %{
  2584     // fnstsw ax
  2585     emit_opcode( cbuf, 0xDF );
  2586     emit_opcode( cbuf, 0xE0 );
  2587     // sahf
  2588     emit_opcode( cbuf, 0x9E );
  2589     // jnp  ::skip
  2590     emit_opcode( cbuf, 0x7B );
  2591     emit_opcode( cbuf, 0x05 );
  2592   %}
  2594   enc_class emitModDPR() %{
  2595     // fprem must be iterative
  2596     // :: loop
  2597     // fprem
  2598     emit_opcode( cbuf, 0xD9 );
  2599     emit_opcode( cbuf, 0xF8 );
  2600     // wait
  2601     emit_opcode( cbuf, 0x9b );
  2602     // fnstsw ax
  2603     emit_opcode( cbuf, 0xDF );
  2604     emit_opcode( cbuf, 0xE0 );
  2605     // sahf
  2606     emit_opcode( cbuf, 0x9E );
  2607     // jp  ::loop
  2608     emit_opcode( cbuf, 0x0F );
  2609     emit_opcode( cbuf, 0x8A );
  2610     emit_opcode( cbuf, 0xF4 );
  2611     emit_opcode( cbuf, 0xFF );
  2612     emit_opcode( cbuf, 0xFF );
  2613     emit_opcode( cbuf, 0xFF );
  2614   %}
  2616   enc_class fpu_flags() %{
  2617     // fnstsw_ax
  2618     emit_opcode( cbuf, 0xDF);
  2619     emit_opcode( cbuf, 0xE0);
  2620     // test ax,0x0400
  2621     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2622     emit_opcode( cbuf, 0xA9 );
  2623     emit_d16   ( cbuf, 0x0400 );
  2624     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2625     // // test rax,0x0400
  2626     // emit_opcode( cbuf, 0xA9 );
  2627     // emit_d32   ( cbuf, 0x00000400 );
  2628     //
  2629     // jz exit (no unordered comparison)
  2630     emit_opcode( cbuf, 0x74 );
  2631     emit_d8    ( cbuf, 0x02 );
  2632     // mov ah,1 - treat as LT case (set carry flag)
  2633     emit_opcode( cbuf, 0xB4 );
  2634     emit_d8    ( cbuf, 0x01 );
  2635     // sahf
  2636     emit_opcode( cbuf, 0x9E);
  2637   %}
  2639   enc_class cmpF_P6_fixup() %{
  2640     // Fixup the integer flags in case comparison involved a NaN
  2641     //
  2642     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2643     emit_opcode( cbuf, 0x7B );
  2644     emit_d8    ( cbuf, 0x03 );
  2645     // MOV AH,1 - treat as LT case (set carry flag)
  2646     emit_opcode( cbuf, 0xB4 );
  2647     emit_d8    ( cbuf, 0x01 );
  2648     // SAHF
  2649     emit_opcode( cbuf, 0x9E);
  2650     // NOP     // target for branch to avoid branch to branch
  2651     emit_opcode( cbuf, 0x90);
  2652   %}
  2654 //     fnstsw_ax();
  2655 //     sahf();
  2656 //     movl(dst, nan_result);
  2657 //     jcc(Assembler::parity, exit);
  2658 //     movl(dst, less_result);
  2659 //     jcc(Assembler::below, exit);
  2660 //     movl(dst, equal_result);
  2661 //     jcc(Assembler::equal, exit);
  2662 //     movl(dst, greater_result);
  2664 // less_result     =  1;
  2665 // greater_result  = -1;
  2666 // equal_result    = 0;
  2667 // nan_result      = -1;
  2669   enc_class CmpF_Result(rRegI dst) %{
  2670     // fnstsw_ax();
  2671     emit_opcode( cbuf, 0xDF);
  2672     emit_opcode( cbuf, 0xE0);
  2673     // sahf
  2674     emit_opcode( cbuf, 0x9E);
  2675     // movl(dst, nan_result);
  2676     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2677     emit_d32( cbuf, -1 );
  2678     // jcc(Assembler::parity, exit);
  2679     emit_opcode( cbuf, 0x7A );
  2680     emit_d8    ( cbuf, 0x13 );
  2681     // movl(dst, less_result);
  2682     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2683     emit_d32( cbuf, -1 );
  2684     // jcc(Assembler::below, exit);
  2685     emit_opcode( cbuf, 0x72 );
  2686     emit_d8    ( cbuf, 0x0C );
  2687     // movl(dst, equal_result);
  2688     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2689     emit_d32( cbuf, 0 );
  2690     // jcc(Assembler::equal, exit);
  2691     emit_opcode( cbuf, 0x74 );
  2692     emit_d8    ( cbuf, 0x05 );
  2693     // movl(dst, greater_result);
  2694     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2695     emit_d32( cbuf, 1 );
  2696   %}
  2699   // Compare the longs and set flags
  2700   // BROKEN!  Do Not use as-is
  2701   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2702     // CMP    $src1.hi,$src2.hi
  2703     emit_opcode( cbuf, 0x3B );
  2704     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2705     // JNE,s  done
  2706     emit_opcode(cbuf,0x75);
  2707     emit_d8(cbuf, 2 );
  2708     // CMP    $src1.lo,$src2.lo
  2709     emit_opcode( cbuf, 0x3B );
  2710     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2711 // done:
  2712   %}
  2714   enc_class convert_int_long( regL dst, rRegI src ) %{
  2715     // mov $dst.lo,$src
  2716     int dst_encoding = $dst$$reg;
  2717     int src_encoding = $src$$reg;
  2718     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2719     // mov $dst.hi,$src
  2720     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2721     // sar $dst.hi,31
  2722     emit_opcode( cbuf, 0xC1 );
  2723     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2724     emit_d8(cbuf, 0x1F );
  2725   %}
  2727   enc_class convert_long_double( eRegL src ) %{
  2728     // push $src.hi
  2729     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2730     // push $src.lo
  2731     emit_opcode(cbuf, 0x50+$src$$reg  );
  2732     // fild 64-bits at [SP]
  2733     emit_opcode(cbuf,0xdf);
  2734     emit_d8(cbuf, 0x6C);
  2735     emit_d8(cbuf, 0x24);
  2736     emit_d8(cbuf, 0x00);
  2737     // pop stack
  2738     emit_opcode(cbuf, 0x83); // add  SP, #8
  2739     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2740     emit_d8(cbuf, 0x8);
  2741   %}
  2743   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2744     // IMUL   EDX:EAX,$src1
  2745     emit_opcode( cbuf, 0xF7 );
  2746     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2747     // SAR    EDX,$cnt-32
  2748     int shift_count = ((int)$cnt$$constant) - 32;
  2749     if (shift_count > 0) {
  2750       emit_opcode(cbuf, 0xC1);
  2751       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2752       emit_d8(cbuf, shift_count);
  2754   %}
  2756   // this version doesn't have add sp, 8
  2757   enc_class convert_long_double2( eRegL src ) %{
  2758     // push $src.hi
  2759     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2760     // push $src.lo
  2761     emit_opcode(cbuf, 0x50+$src$$reg  );
  2762     // fild 64-bits at [SP]
  2763     emit_opcode(cbuf,0xdf);
  2764     emit_d8(cbuf, 0x6C);
  2765     emit_d8(cbuf, 0x24);
  2766     emit_d8(cbuf, 0x00);
  2767   %}
  2769   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2770     // Basic idea: long = (long)int * (long)int
  2771     // IMUL EDX:EAX, src
  2772     emit_opcode( cbuf, 0xF7 );
  2773     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2774   %}
  2776   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2777     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2778     // MUL EDX:EAX, src
  2779     emit_opcode( cbuf, 0xF7 );
  2780     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2781   %}
  2783   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
  2784     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2785     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2786     // MOV    $tmp,$src.lo
  2787     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2788     // IMUL   $tmp,EDX
  2789     emit_opcode( cbuf, 0x0F );
  2790     emit_opcode( cbuf, 0xAF );
  2791     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2792     // MOV    EDX,$src.hi
  2793     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2794     // IMUL   EDX,EAX
  2795     emit_opcode( cbuf, 0x0F );
  2796     emit_opcode( cbuf, 0xAF );
  2797     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2798     // ADD    $tmp,EDX
  2799     emit_opcode( cbuf, 0x03 );
  2800     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2801     // MUL   EDX:EAX,$src.lo
  2802     emit_opcode( cbuf, 0xF7 );
  2803     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2804     // ADD    EDX,ESI
  2805     emit_opcode( cbuf, 0x03 );
  2806     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2807   %}
  2809   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
  2810     // Basic idea: lo(result) = lo(src * y_lo)
  2811     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2812     // IMUL   $tmp,EDX,$src
  2813     emit_opcode( cbuf, 0x6B );
  2814     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2815     emit_d8( cbuf, (int)$src$$constant );
  2816     // MOV    EDX,$src
  2817     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2818     emit_d32( cbuf, (int)$src$$constant );
  2819     // MUL   EDX:EAX,EDX
  2820     emit_opcode( cbuf, 0xF7 );
  2821     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2822     // ADD    EDX,ESI
  2823     emit_opcode( cbuf, 0x03 );
  2824     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2825   %}
  2827   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2828     // PUSH src1.hi
  2829     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2830     // PUSH src1.lo
  2831     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2832     // PUSH src2.hi
  2833     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2834     // PUSH src2.lo
  2835     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2836     // CALL directly to the runtime
  2837     cbuf.set_insts_mark();
  2838     emit_opcode(cbuf,0xE8);       // Call into runtime
  2839     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2840     // Restore stack
  2841     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2842     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2843     emit_d8(cbuf, 4*4);
  2844   %}
  2846   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2847     // PUSH src1.hi
  2848     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2849     // PUSH src1.lo
  2850     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2851     // PUSH src2.hi
  2852     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2853     // PUSH src2.lo
  2854     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2855     // CALL directly to the runtime
  2856     cbuf.set_insts_mark();
  2857     emit_opcode(cbuf,0xE8);       // Call into runtime
  2858     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2859     // Restore stack
  2860     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2861     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2862     emit_d8(cbuf, 4*4);
  2863   %}
  2865   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
  2866     // MOV   $tmp,$src.lo
  2867     emit_opcode(cbuf, 0x8B);
  2868     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2869     // OR    $tmp,$src.hi
  2870     emit_opcode(cbuf, 0x0B);
  2871     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2872   %}
  2874   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2875     // CMP    $src1.lo,$src2.lo
  2876     emit_opcode( cbuf, 0x3B );
  2877     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2878     // JNE,s  skip
  2879     emit_cc(cbuf, 0x70, 0x5);
  2880     emit_d8(cbuf,2);
  2881     // CMP    $src1.hi,$src2.hi
  2882     emit_opcode( cbuf, 0x3B );
  2883     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2884   %}
  2886   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
  2887     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2888     emit_opcode( cbuf, 0x3B );
  2889     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2890     // MOV    $tmp,$src1.hi
  2891     emit_opcode( cbuf, 0x8B );
  2892     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2893     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2894     emit_opcode( cbuf, 0x1B );
  2895     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2896   %}
  2898   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
  2899     // XOR    $tmp,$tmp
  2900     emit_opcode(cbuf,0x33);  // XOR
  2901     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2902     // CMP    $tmp,$src.lo
  2903     emit_opcode( cbuf, 0x3B );
  2904     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2905     // SBB    $tmp,$src.hi
  2906     emit_opcode( cbuf, 0x1B );
  2907     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2908   %}
  2910  // Sniff, sniff... smells like Gnu Superoptimizer
  2911   enc_class neg_long( eRegL dst ) %{
  2912     emit_opcode(cbuf,0xF7);    // NEG hi
  2913     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2914     emit_opcode(cbuf,0xF7);    // NEG lo
  2915     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2916     emit_opcode(cbuf,0x83);    // SBB hi,0
  2917     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2918     emit_d8    (cbuf,0 );
  2919   %}
  2922   // Because the transitions from emitted code to the runtime
  2923   // monitorenter/exit helper stubs are so slow it's critical that
  2924   // we inline both the stack-locking fast-path and the inflated fast path.
  2925   //
  2926   // See also: cmpFastLock and cmpFastUnlock.
  2927   //
  2928   // What follows is a specialized inline transliteration of the code
  2929   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2930   // another option would be to emit TrySlowEnter and TrySlowExit methods
  2931   // at startup-time.  These methods would accept arguments as
  2932   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2933   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2934   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2935   // In practice, however, the # of lock sites is bounded and is usually small.
  2936   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2937   // if the processor uses simple bimodal branch predictors keyed by EIP
  2938   // Since the helper routines would be called from multiple synchronization
  2939   // sites.
  2940   //
  2941   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2942   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2943   // to those specialized methods.  That'd give us a mostly platform-independent
  2944   // implementation that the JITs could optimize and inline at their pleasure.
  2945   // Done correctly, the only time we'd need to cross to native could would be
  2946   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2947   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2948   // (b) explicit barriers or fence operations.
  2949   //
  2950   // TODO:
  2951   //
  2952   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2953   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2954   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2955   //    the lock operators would typically be faster than reifying Self.
  2956   //
  2957   // *  Ideally I'd define the primitives as:
  2958   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  2959   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  2960   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  2961   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  2962   //    Furthermore the register assignments are overconstrained, possibly resulting in
  2963   //    sub-optimal code near the synchronization site.
  2964   //
  2965   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  2966   //    Alternately, use a better sp-proximity test.
  2967   //
  2968   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  2969   //    Either one is sufficient to uniquely identify a thread.
  2970   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  2971   //
  2972   // *  Intrinsify notify() and notifyAll() for the common cases where the
  2973   //    object is locked by the calling thread but the waitlist is empty.
  2974   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  2975   //
  2976   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  2977   //    But beware of excessive branch density on AMD Opterons.
  2978   //
  2979   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  2980   //    or failure of the fast-path.  If the fast-path fails then we pass
  2981   //    control to the slow-path, typically in C.  In Fast_Lock and
  2982   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  2983   //    will emit a conditional branch immediately after the node.
  2984   //    So we have branches to branches and lots of ICC.ZF games.
  2985   //    Instead, it might be better to have C2 pass a "FailureLabel"
  2986   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  2987   //    will drop through the node.  ICC.ZF is undefined at exit.
  2988   //    In the case of failure, the node will branch directly to the
  2989   //    FailureLabel
  2992   // obj: object to lock
  2993   // box: on-stack box address (displaced header location) - KILLED
  2994   // rax,: tmp -- KILLED
  2995   // scr: tmp -- KILLED
  2996   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  2998     Register objReg = as_Register($obj$$reg);
  2999     Register boxReg = as_Register($box$$reg);
  3000     Register tmpReg = as_Register($tmp$$reg);
  3001     Register scrReg = as_Register($scr$$reg);
  3003     // Ensure the register assignents are disjoint
  3004     guarantee (objReg != boxReg, "") ;
  3005     guarantee (objReg != tmpReg, "") ;
  3006     guarantee (objReg != scrReg, "") ;
  3007     guarantee (boxReg != tmpReg, "") ;
  3008     guarantee (boxReg != scrReg, "") ;
  3009     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3011     MacroAssembler masm(&cbuf);
  3013     if (_counters != NULL) {
  3014       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3016     if (EmitSync & 1) {
  3017         // set box->dhw = unused_mark (3)
  3018         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3019         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3020         masm.cmpptr (rsp, (int32_t)0) ;                        
  3021     } else 
  3022     if (EmitSync & 2) { 
  3023         Label DONE_LABEL ;           
  3024         if (UseBiasedLocking) {
  3025            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3026            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3029         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3030         masm.orptr (tmpReg, 0x1);
  3031         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3032         if (os::is_MP()) { masm.lock();  }
  3033         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3034         masm.jcc(Assembler::equal, DONE_LABEL);
  3035         // Recursive locking
  3036         masm.subptr(tmpReg, rsp);
  3037         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3038         masm.movptr(Address(boxReg, 0), tmpReg);
  3039         masm.bind(DONE_LABEL) ; 
  3040     } else {  
  3041       // Possible cases that we'll encounter in fast_lock 
  3042       // ------------------------------------------------
  3043       // * Inflated
  3044       //    -- unlocked
  3045       //    -- Locked
  3046       //       = by self
  3047       //       = by other
  3048       // * biased
  3049       //    -- by Self
  3050       //    -- by other
  3051       // * neutral
  3052       // * stack-locked
  3053       //    -- by self
  3054       //       = sp-proximity test hits
  3055       //       = sp-proximity test generates false-negative
  3056       //    -- by other
  3057       //
  3059       Label IsInflated, DONE_LABEL, PopDone ;
  3061       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3062       // order to reduce the number of conditional branches in the most common cases.
  3063       // Beware -- there's a subtle invariant that fetch of the markword
  3064       // at [FETCH], below, will never observe a biased encoding (*101b).
  3065       // If this invariant is not held we risk exclusion (safety) failure.
  3066       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3067         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3070       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3071       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3072       masm.jccb  (Assembler::notZero, IsInflated) ;
  3074       // Attempt stack-locking ...
  3075       masm.orptr (tmpReg, 0x1);
  3076       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3077       if (os::is_MP()) { masm.lock();  }
  3078       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3079       if (_counters != NULL) {
  3080         masm.cond_inc32(Assembler::equal,
  3081                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3083       masm.jccb (Assembler::equal, DONE_LABEL);
  3085       // Recursive locking
  3086       masm.subptr(tmpReg, rsp);
  3087       masm.andptr(tmpReg, 0xFFFFF003 );
  3088       masm.movptr(Address(boxReg, 0), tmpReg);
  3089       if (_counters != NULL) {
  3090         masm.cond_inc32(Assembler::equal,
  3091                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3093       masm.jmp  (DONE_LABEL) ;
  3095       masm.bind (IsInflated) ;
  3097       // The object is inflated.
  3098       //
  3099       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3100       //   Use markOopDesc::monitor_value instead of "2".
  3101       //   use markOop::unused_mark() instead of "3".
  3102       // The tmpReg value is an objectMonitor reference ORed with
  3103       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3104       // objectmonitor pointer by masking off the "2" bit or we can just
  3105       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3106       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3107       //
  3108       // I use the latter as it avoids AGI stalls.
  3109       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3110       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3111       //
  3112       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3114       // boxReg refers to the on-stack BasicLock in the current frame.
  3115       // We'd like to write:
  3116       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3117       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3118       // additional latency as we have another ST in the store buffer that must drain.
  3120       if (EmitSync & 8192) { 
  3121          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3122          masm.get_thread (scrReg) ; 
  3123          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3124          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3125          if (os::is_MP()) { masm.lock(); } 
  3126          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3127       } else 
  3128       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3129          masm.movptr(scrReg, boxReg) ; 
  3130          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3132          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3133          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3134             // prefetchw [eax + Offset(_owner)-2]
  3135             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3138          if ((EmitSync & 64) == 0) {
  3139            // Optimistic form: consider XORL tmpReg,tmpReg
  3140            masm.movptr(tmpReg, NULL_WORD) ; 
  3141          } else { 
  3142            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3143            // Test-And-CAS instead of CAS
  3144            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3145            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3146            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3149          // Appears unlocked - try to swing _owner from null to non-null.
  3150          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3151          // to CAS the register containing Self into m->Owner.
  3152          // But we don't have enough registers, so instead we can either try to CAS
  3153          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3154          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3155          // (rsp or the address of the box) into  m->owner is harmless.
  3156          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3157          if (os::is_MP()) { masm.lock();  }
  3158          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3159          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3160          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3161          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3162          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3163          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3165          // If the CAS fails we can either retry or pass control to the slow-path.  
  3166          // We use the latter tactic.  
  3167          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3168          // If the CAS was successful ...
  3169          //   Self has acquired the lock
  3170          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3171          // Intentional fall-through into DONE_LABEL ...
  3172       } else {
  3173          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3174          masm.movptr(boxReg, tmpReg) ; 
  3176          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3177          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3178             // prefetchw [eax + Offset(_owner)-2]
  3179             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3182          if ((EmitSync & 64) == 0) {
  3183            // Optimistic form
  3184            masm.xorptr  (tmpReg, tmpReg) ; 
  3185          } else { 
  3186            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3187            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3188            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3189            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3192          // Appears unlocked - try to swing _owner from null to non-null.
  3193          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3194          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3195          masm.get_thread (scrReg) ;
  3196          if (os::is_MP()) { masm.lock(); }
  3197          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3199          // If the CAS fails we can either retry or pass control to the slow-path.
  3200          // We use the latter tactic.
  3201          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3202          // If the CAS was successful ...
  3203          //   Self has acquired the lock
  3204          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3205          // Intentional fall-through into DONE_LABEL ...
  3208       // DONE_LABEL is a hot target - we'd really like to place it at the
  3209       // start of cache line by padding with NOPs.
  3210       // See the AMD and Intel software optimization manuals for the
  3211       // most efficient "long" NOP encodings.
  3212       // Unfortunately none of our alignment mechanisms suffice.
  3213       masm.bind(DONE_LABEL);
  3215       // Avoid branch-to-branch on AMD processors
  3216       // This appears to be superstition.
  3217       if (EmitSync & 32) masm.nop() ;
  3220       // At DONE_LABEL the icc ZFlag is set as follows ...
  3221       // Fast_Unlock uses the same protocol.
  3222       // ZFlag == 1 -> Success
  3223       // ZFlag == 0 -> Failure - force control through the slow-path
  3225   %}
  3227   // obj: object to unlock
  3228   // box: box address (displaced header location), killed.  Must be EAX.
  3229   // rbx,: killed tmp; cannot be obj nor box.
  3230   //
  3231   // Some commentary on balanced locking:
  3232   //
  3233   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3234   // Methods that don't have provably balanced locking are forced to run in the
  3235   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3236   // The interpreter provides two properties:
  3237   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3238   //      objects acquired the current activation (frame).  Recall that the
  3239   //      interpreter maintains an on-stack list of locks currently held by
  3240   //      a frame.
  3241   // I2:  If a method attempts to unlock an object that is not held by the
  3242   //      the frame the interpreter throws IMSX.
  3243   //
  3244   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3245   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3246   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3247   // is still locked by A().
  3248   //
  3249   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3250   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3251   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3252   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3254   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3256     Register objReg = as_Register($obj$$reg);
  3257     Register boxReg = as_Register($box$$reg);
  3258     Register tmpReg = as_Register($tmp$$reg);
  3260     guarantee (objReg != boxReg, "") ;
  3261     guarantee (objReg != tmpReg, "") ;
  3262     guarantee (boxReg != tmpReg, "") ;
  3263     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3264     MacroAssembler masm(&cbuf);
  3266     if (EmitSync & 4) {
  3267       // Disable - inhibit all inlining.  Force control through the slow-path
  3268       masm.cmpptr (rsp, 0) ; 
  3269     } else 
  3270     if (EmitSync & 8) {
  3271       Label DONE_LABEL ;
  3272       if (UseBiasedLocking) {
  3273          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3275       // classic stack-locking code ...
  3276       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3277       masm.testptr(tmpReg, tmpReg) ;
  3278       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3279       if (os::is_MP()) { masm.lock(); }
  3280       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3281       masm.bind(DONE_LABEL);
  3282     } else {
  3283       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3285       // Critically, the biased locking test must have precedence over
  3286       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3287       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3288          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3291       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3292       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3293       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3295       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3296       masm.jccb  (Assembler::zero, Stacked) ;
  3298       masm.bind  (Inflated) ;
  3299       // It's inflated.
  3300       // Despite our balanced locking property we still check that m->_owner == Self
  3301       // as java routines or native JNI code called by this thread might
  3302       // have released the lock.
  3303       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3304       // state in _succ so we can avoid fetching EntryList|cxq.
  3305       //
  3306       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3307       // such as recursive enter and exit -- but we have to be wary of
  3308       // I$ bloat, T$ effects and BP$ effects.
  3309       //
  3310       // If there's no contention try a 1-0 exit.  That is, exit without
  3311       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3312       // we detect and recover from the race that the 1-0 exit admits.
  3313       //
  3314       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3315       // before it STs null into _owner, releasing the lock.  Updates
  3316       // to data protected by the critical section must be visible before
  3317       // we drop the lock (and thus before any other thread could acquire
  3318       // the lock and observe the fields protected by the lock).
  3319       // IA32's memory-model is SPO, so STs are ordered with respect to
  3320       // each other and there's no need for an explicit barrier (fence).
  3321       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3323       masm.get_thread (boxReg) ;
  3324       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3325         // prefetchw [ebx + Offset(_owner)-2]
  3326         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3329       // Note that we could employ various encoding schemes to reduce
  3330       // the number of loads below (currently 4) to just 2 or 3.
  3331       // Refer to the comments in synchronizer.cpp.
  3332       // In practice the chain of fetches doesn't seem to impact performance, however.
  3333       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3334          // Attempt to reduce branch density - AMD's branch predictor.
  3335          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3336          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3337          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3338          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3339          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3340          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3341          masm.jmpb  (DONE_LABEL) ; 
  3342       } else { 
  3343          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3344          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3345          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3346          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3347          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3348          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3349          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3350          masm.jmpb  (DONE_LABEL) ; 
  3353       // The Following code fragment (EmitSync & 65536) improves the performance of
  3354       // contended applications and contended synchronization microbenchmarks.
  3355       // Unfortunately the emission of the code - even though not executed - causes regressions
  3356       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3357       // with an equal number of never-executed NOPs results in the same regression.
  3358       // We leave it off by default.
  3360       if ((EmitSync & 65536) != 0) {
  3361          Label LSuccess, LGoSlowPath ;
  3363          masm.bind  (CheckSucc) ;
  3365          // Optional pre-test ... it's safe to elide this
  3366          if ((EmitSync & 16) == 0) { 
  3367             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3368             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3371          // We have a classic Dekker-style idiom:
  3372          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3373          // There are a number of ways to implement the barrier:
  3374          // (1) lock:andl &m->_owner, 0
  3375          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3376          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3377          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3378          // (2) If supported, an explicit MFENCE is appealing.
  3379          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3380          //     particularly if the write-buffer is full as might be the case if
  3381          //     if stores closely precede the fence or fence-equivalent instruction.
  3382          //     In more modern implementations MFENCE appears faster, however.
  3383          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3384          //     The $lines underlying the top-of-stack should be in M-state.
  3385          //     The locked add instruction is serializing, of course.
  3386          // (4) Use xchg, which is serializing
  3387          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3388          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3389          //     The integer condition codes will tell us if succ was 0.
  3390          //     Since _succ and _owner should reside in the same $line and
  3391          //     we just stored into _owner, it's likely that the $line
  3392          //     remains in M-state for the lock:orl.
  3393          //
  3394          // We currently use (3), although it's likely that switching to (2)
  3395          // is correct for the future.
  3397          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3398          if (os::is_MP()) { 
  3399             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3400               masm.mfence();
  3401             } else { 
  3402               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3405          // Ratify _succ remains non-null
  3406          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3407          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3409          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3410          if (os::is_MP()) { masm.lock(); }
  3411          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3412          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3413          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3414          // Now install Self over rsp.  This is safe as we're transitioning from
  3415          // non-null to non=null
  3416          masm.get_thread (boxReg) ;
  3417          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3418          // Intentional fall-through into LGoSlowPath ...
  3420          masm.bind  (LGoSlowPath) ; 
  3421          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3422          masm.jmpb  (DONE_LABEL) ; 
  3424          masm.bind  (LSuccess) ; 
  3425          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3426          masm.jmpb  (DONE_LABEL) ; 
  3429       masm.bind (Stacked) ;
  3430       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3431       // It must be stack-locked.
  3432       // Try to reset the header to displaced header.
  3433       // The "box" value on the stack is stable, so we can reload
  3434       // and be assured we observe the same value as above.
  3435       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3436       if (os::is_MP()) {   masm.lock();    }
  3437       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3438       // Intention fall-thru into DONE_LABEL
  3441       // DONE_LABEL is a hot target - we'd really like to place it at the
  3442       // start of cache line by padding with NOPs.
  3443       // See the AMD and Intel software optimization manuals for the
  3444       // most efficient "long" NOP encodings.
  3445       // Unfortunately none of our alignment mechanisms suffice.
  3446       if ((EmitSync & 65536) == 0) {
  3447          masm.bind (CheckSucc) ;
  3449       masm.bind(DONE_LABEL);
  3451       // Avoid branch to branch on AMD processors
  3452       if (EmitSync & 32768) { masm.nop() ; }
  3454   %}
  3457   enc_class enc_pop_rdx() %{
  3458     emit_opcode(cbuf,0x5A);
  3459   %}
  3461   enc_class enc_rethrow() %{
  3462     cbuf.set_insts_mark();
  3463     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3464     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3465                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3466   %}
  3469   // Convert a double to an int.  Java semantics require we do complex
  3470   // manglelations in the corner cases.  So we set the rounding mode to
  3471   // 'zero', store the darned double down as an int, and reset the
  3472   // rounding mode to 'nearest'.  The hardware throws an exception which
  3473   // patches up the correct value directly to the stack.
  3474   enc_class DPR2I_encoding( regDPR src ) %{
  3475     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3476     // exceptions here, so that a NAN or other corner-case value will
  3477     // thrown an exception (but normal values get converted at full speed).
  3478     // However, I2C adapters and other float-stack manglers leave pending
  3479     // invalid-op exceptions hanging.  We would have to clear them before
  3480     // enabling them and that is more expensive than just testing for the
  3481     // invalid value Intel stores down in the corner cases.
  3482     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3483     emit_opcode(cbuf,0x2D);
  3484     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3485     // Allocate a word
  3486     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3487     emit_opcode(cbuf,0xEC);
  3488     emit_d8(cbuf,0x04);
  3489     // Encoding assumes a double has been pushed into FPR0.
  3490     // Store down the double as an int, popping the FPU stack
  3491     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3492     emit_opcode(cbuf,0x1C);
  3493     emit_d8(cbuf,0x24);
  3494     // Restore the rounding mode; mask the exception
  3495     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3496     emit_opcode(cbuf,0x2D);
  3497     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3498         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3499         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3501     // Load the converted int; adjust CPU stack
  3502     emit_opcode(cbuf,0x58);       // POP EAX
  3503     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3504     emit_d32   (cbuf,0x80000000); //         0x80000000
  3505     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3506     emit_d8    (cbuf,0x07);       // Size of slow_call
  3507     // Push src onto stack slow-path
  3508     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3509     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3510     // CALL directly to the runtime
  3511     cbuf.set_insts_mark();
  3512     emit_opcode(cbuf,0xE8);       // Call into runtime
  3513     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3514     // Carry on here...
  3515   %}
  3517   enc_class DPR2L_encoding( regDPR src ) %{
  3518     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3519     emit_opcode(cbuf,0x2D);
  3520     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3521     // Allocate a word
  3522     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3523     emit_opcode(cbuf,0xEC);
  3524     emit_d8(cbuf,0x08);
  3525     // Encoding assumes a double has been pushed into FPR0.
  3526     // Store down the double as a long, popping the FPU stack
  3527     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3528     emit_opcode(cbuf,0x3C);
  3529     emit_d8(cbuf,0x24);
  3530     // Restore the rounding mode; mask the exception
  3531     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3532     emit_opcode(cbuf,0x2D);
  3533     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3534         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3535         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3537     // Load the converted int; adjust CPU stack
  3538     emit_opcode(cbuf,0x58);       // POP EAX
  3539     emit_opcode(cbuf,0x5A);       // POP EDX
  3540     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3541     emit_d8    (cbuf,0xFA);       // rdx
  3542     emit_d32   (cbuf,0x80000000); //         0x80000000
  3543     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3544     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3545     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3546     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3547     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3548     emit_d8    (cbuf,0x07);       // Size of slow_call
  3549     // Push src onto stack slow-path
  3550     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3551     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3552     // CALL directly to the runtime
  3553     cbuf.set_insts_mark();
  3554     emit_opcode(cbuf,0xE8);       // Call into runtime
  3555     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3556     // Carry on here...
  3557   %}
  3559   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  3560     // Operand was loaded from memory into fp ST (stack top)
  3561     // FMUL   ST,$src  /* D8 C8+i */
  3562     emit_opcode(cbuf, 0xD8);
  3563     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  3564   %}
  3566   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  3567     // FADDP  ST,src2  /* D8 C0+i */
  3568     emit_opcode(cbuf, 0xD8);
  3569     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3570     //could use FADDP  src2,fpST  /* DE C0+i */
  3571   %}
  3573   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  3574     // FADDP  src2,ST  /* DE C0+i */
  3575     emit_opcode(cbuf, 0xDE);
  3576     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3577   %}
  3579   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  3580     // Operand has been loaded into fp ST (stack top)
  3581       // FSUB   ST,$src1
  3582       emit_opcode(cbuf, 0xD8);
  3583       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  3585       // FDIV
  3586       emit_opcode(cbuf, 0xD8);
  3587       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  3588   %}
  3590   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  3591     // Operand was loaded from memory into fp ST (stack top)
  3592     // FADD   ST,$src  /* D8 C0+i */
  3593     emit_opcode(cbuf, 0xD8);
  3594     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3596     // FMUL  ST,src2  /* D8 C*+i */
  3597     emit_opcode(cbuf, 0xD8);
  3598     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3599   %}
  3602   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3603     // Operand was loaded from memory into fp ST (stack top)
  3604     // FADD   ST,$src  /* D8 C0+i */
  3605     emit_opcode(cbuf, 0xD8);
  3606     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3608     // FMULP  src2,ST  /* DE C8+i */
  3609     emit_opcode(cbuf, 0xDE);
  3610     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3611   %}
  3613   // Atomically load the volatile long
  3614   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3615     emit_opcode(cbuf,0xDF);
  3616     int rm_byte_opcode = 0x05;
  3617     int base     = $mem$$base;
  3618     int index    = $mem$$index;
  3619     int scale    = $mem$$scale;
  3620     int displace = $mem$$disp;
  3621     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3622     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3623     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3624   %}
  3626   // Volatile Store Long.  Must be atomic, so move it into
  3627   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3628   // target address before the store (for null-ptr checks)
  3629   // so the memory operand is used twice in the encoding.
  3630   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3631     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3632     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3633     emit_opcode(cbuf,0xDF);
  3634     int rm_byte_opcode = 0x07;
  3635     int base     = $mem$$base;
  3636     int index    = $mem$$index;
  3637     int scale    = $mem$$scale;
  3638     int displace = $mem$$disp;
  3639     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3640     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3641   %}
  3643   // Safepoint Poll.  This polls the safepoint page, and causes an
  3644   // exception if it is not readable. Unfortunately, it kills the condition code
  3645   // in the process
  3646   // We current use TESTL [spp],EDI
  3647   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3649   enc_class Safepoint_Poll() %{
  3650     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3651     emit_opcode(cbuf,0x85);
  3652     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3653     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3654   %}
  3655 %}
  3658 //----------FRAME--------------------------------------------------------------
  3659 // Definition of frame structure and management information.
  3660 //
  3661 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3662 //                             |   (to get allocators register number
  3663 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3664 //  r   CALLER     |        |
  3665 //  o     |        +--------+      pad to even-align allocators stack-slot
  3666 //  w     V        |  pad0  |        numbers; owned by CALLER
  3667 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3668 //  h     ^        |   in   |  5
  3669 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3670 //  |     |        |        |  3
  3671 //  |     |        +--------+
  3672 //  V     |        | old out|      Empty on Intel, window on Sparc
  3673 //        |    old |preserve|      Must be even aligned.
  3674 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3675 //        |        |   in   |  3   area for Intel ret address
  3676 //     Owned by    |preserve|      Empty on Sparc.
  3677 //       SELF      +--------+
  3678 //        |        |  pad2  |  2   pad to align old SP
  3679 //        |        +--------+  1
  3680 //        |        | locks  |  0
  3681 //        |        +--------+----> OptoReg::stack0(), even aligned
  3682 //        |        |  pad1  | 11   pad to align new SP
  3683 //        |        +--------+
  3684 //        |        |        | 10
  3685 //        |        | spills |  9   spills
  3686 //        V        |        |  8   (pad0 slot for callee)
  3687 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3688 //        ^        |  out   |  7
  3689 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3690 //     Owned by    +--------+
  3691 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3692 //        |    new |preserve|      Must be even-aligned.
  3693 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3694 //        |        |        |
  3695 //
  3696 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3697 //         known from SELF's arguments and the Java calling convention.
  3698 //         Region 6-7 is determined per call site.
  3699 // Note 2: If the calling convention leaves holes in the incoming argument
  3700 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3701 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3702 //         incoming area, as the Java calling convention is completely under
  3703 //         the control of the AD file.  Doubles can be sorted and packed to
  3704 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3705 //         varargs C calling conventions.
  3706 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3707 //         even aligned with pad0 as needed.
  3708 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3709 //         region 6-11 is even aligned; it may be padded out more so that
  3710 //         the region from SP to FP meets the minimum stack alignment.
  3712 frame %{
  3713   // What direction does stack grow in (assumed to be same for C & Java)
  3714   stack_direction(TOWARDS_LOW);
  3716   // These three registers define part of the calling convention
  3717   // between compiled code and the interpreter.
  3718   inline_cache_reg(EAX);                // Inline Cache Register
  3719   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3721   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3722   cisc_spilling_operand_name(indOffset32);
  3724   // Number of stack slots consumed by locking an object
  3725   sync_stack_slots(1);
  3727   // Compiled code's Frame Pointer
  3728   frame_pointer(ESP);
  3729   // Interpreter stores its frame pointer in a register which is
  3730   // stored to the stack by I2CAdaptors.
  3731   // I2CAdaptors convert from interpreted java to compiled java.
  3732   interpreter_frame_pointer(EBP);
  3734   // Stack alignment requirement
  3735   // Alignment size in bytes (128-bit -> 16 bytes)
  3736   stack_alignment(StackAlignmentInBytes);
  3738   // Number of stack slots between incoming argument block and the start of
  3739   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3740   // EPILOG must remove this many slots.  Intel needs one slot for
  3741   // return address and one for rbp, (must save rbp)
  3742   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3744   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3745   // for calls to C.  Supports the var-args backing area for register parms.
  3746   varargs_C_out_slots_killed(0);
  3748   // The after-PROLOG location of the return address.  Location of
  3749   // return address specifies a type (REG or STACK) and a number
  3750   // representing the register number (i.e. - use a register name) or
  3751   // stack slot.
  3752   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3753   // Otherwise, it is above the locks and verification slot and alignment word
  3754   return_addr(STACK - 1 +
  3755               round_to((Compile::current()->in_preserve_stack_slots() +
  3756                         Compile::current()->fixed_slots()),
  3757                        stack_alignment_in_slots()));
  3759   // Body of function which returns an integer array locating
  3760   // arguments either in registers or in stack slots.  Passed an array
  3761   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3762   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3763   // arguments for a CALLEE.  Incoming stack arguments are
  3764   // automatically biased by the preserve_stack_slots field above.
  3765   calling_convention %{
  3766     // No difference between ingoing/outgoing just pass false
  3767     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3768   %}
  3771   // Body of function which returns an integer array locating
  3772   // arguments either in registers or in stack slots.  Passed an array
  3773   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3774   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3775   // arguments for a CALLEE.  Incoming stack arguments are
  3776   // automatically biased by the preserve_stack_slots field above.
  3777   c_calling_convention %{
  3778     // This is obviously always outgoing
  3779     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3780   %}
  3782   // Location of C & interpreter return values
  3783   c_return_value %{
  3784     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3785     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3786     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3788     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3789     // that C functions return float and double results in XMM0.
  3790     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3791       return OptoRegPair(XMM0b_num,XMM0_num);
  3792     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3793       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3795     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3796   %}
  3798   // Location of return values
  3799   return_value %{
  3800     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3801     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3802     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3803     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3804       return OptoRegPair(XMM0b_num,XMM0_num);
  3805     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3806       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3807     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3808   %}
  3810 %}
  3812 //----------ATTRIBUTES---------------------------------------------------------
  3813 //----------Operand Attributes-------------------------------------------------
  3814 op_attrib op_cost(0);        // Required cost attribute
  3816 //----------Instruction Attributes---------------------------------------------
  3817 ins_attrib ins_cost(100);       // Required cost attribute
  3818 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3819 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3820                                 // non-matching short branch variant of some
  3821                                                             // long branch?
  3822 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3823                                 // specifies the alignment that some part of the instruction (not
  3824                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3825                                 // function must be provided for the instruction
  3827 //----------OPERANDS-----------------------------------------------------------
  3828 // Operand definitions must precede instruction definitions for correct parsing
  3829 // in the ADLC because operands constitute user defined types which are used in
  3830 // instruction definitions.
  3832 //----------Simple Operands----------------------------------------------------
  3833 // Immediate Operands
  3834 // Integer Immediate
  3835 operand immI() %{
  3836   match(ConI);
  3838   op_cost(10);
  3839   format %{ %}
  3840   interface(CONST_INTER);
  3841 %}
  3843 // Constant for test vs zero
  3844 operand immI0() %{
  3845   predicate(n->get_int() == 0);
  3846   match(ConI);
  3848   op_cost(0);
  3849   format %{ %}
  3850   interface(CONST_INTER);
  3851 %}
  3853 // Constant for increment
  3854 operand immI1() %{
  3855   predicate(n->get_int() == 1);
  3856   match(ConI);
  3858   op_cost(0);
  3859   format %{ %}
  3860   interface(CONST_INTER);
  3861 %}
  3863 // Constant for decrement
  3864 operand immI_M1() %{
  3865   predicate(n->get_int() == -1);
  3866   match(ConI);
  3868   op_cost(0);
  3869   format %{ %}
  3870   interface(CONST_INTER);
  3871 %}
  3873 // Valid scale values for addressing modes
  3874 operand immI2() %{
  3875   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3876   match(ConI);
  3878   format %{ %}
  3879   interface(CONST_INTER);
  3880 %}
  3882 operand immI8() %{
  3883   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3884   match(ConI);
  3886   op_cost(5);
  3887   format %{ %}
  3888   interface(CONST_INTER);
  3889 %}
  3891 operand immI16() %{
  3892   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3893   match(ConI);
  3895   op_cost(10);
  3896   format %{ %}
  3897   interface(CONST_INTER);
  3898 %}
  3900 // Constant for long shifts
  3901 operand immI_32() %{
  3902   predicate( n->get_int() == 32 );
  3903   match(ConI);
  3905   op_cost(0);
  3906   format %{ %}
  3907   interface(CONST_INTER);
  3908 %}
  3910 operand immI_1_31() %{
  3911   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3912   match(ConI);
  3914   op_cost(0);
  3915   format %{ %}
  3916   interface(CONST_INTER);
  3917 %}
  3919 operand immI_32_63() %{
  3920   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3921   match(ConI);
  3922   op_cost(0);
  3924   format %{ %}
  3925   interface(CONST_INTER);
  3926 %}
  3928 operand immI_1() %{
  3929   predicate( n->get_int() == 1 );
  3930   match(ConI);
  3932   op_cost(0);
  3933   format %{ %}
  3934   interface(CONST_INTER);
  3935 %}
  3937 operand immI_2() %{
  3938   predicate( n->get_int() == 2 );
  3939   match(ConI);
  3941   op_cost(0);
  3942   format %{ %}
  3943   interface(CONST_INTER);
  3944 %}
  3946 operand immI_3() %{
  3947   predicate( n->get_int() == 3 );
  3948   match(ConI);
  3950   op_cost(0);
  3951   format %{ %}
  3952   interface(CONST_INTER);
  3953 %}
  3955 // Pointer Immediate
  3956 operand immP() %{
  3957   match(ConP);
  3959   op_cost(10);
  3960   format %{ %}
  3961   interface(CONST_INTER);
  3962 %}
  3964 // NULL Pointer Immediate
  3965 operand immP0() %{
  3966   predicate( n->get_ptr() == 0 );
  3967   match(ConP);
  3968   op_cost(0);
  3970   format %{ %}
  3971   interface(CONST_INTER);
  3972 %}
  3974 // Long Immediate
  3975 operand immL() %{
  3976   match(ConL);
  3978   op_cost(20);
  3979   format %{ %}
  3980   interface(CONST_INTER);
  3981 %}
  3983 // Long Immediate zero
  3984 operand immL0() %{
  3985   predicate( n->get_long() == 0L );
  3986   match(ConL);
  3987   op_cost(0);
  3989   format %{ %}
  3990   interface(CONST_INTER);
  3991 %}
  3993 // Long Immediate zero
  3994 operand immL_M1() %{
  3995   predicate( n->get_long() == -1L );
  3996   match(ConL);
  3997   op_cost(0);
  3999   format %{ %}
  4000   interface(CONST_INTER);
  4001 %}
  4003 // Long immediate from 0 to 127.
  4004 // Used for a shorter form of long mul by 10.
  4005 operand immL_127() %{
  4006   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4007   match(ConL);
  4008   op_cost(0);
  4010   format %{ %}
  4011   interface(CONST_INTER);
  4012 %}
  4014 // Long Immediate: low 32-bit mask
  4015 operand immL_32bits() %{
  4016   predicate(n->get_long() == 0xFFFFFFFFL);
  4017   match(ConL);
  4018   op_cost(0);
  4020   format %{ %}
  4021   interface(CONST_INTER);
  4022 %}
  4024 // Long Immediate: low 32-bit mask
  4025 operand immL32() %{
  4026   predicate(n->get_long() == (int)(n->get_long()));
  4027   match(ConL);
  4028   op_cost(20);
  4030   format %{ %}
  4031   interface(CONST_INTER);
  4032 %}
  4034 //Double Immediate zero
  4035 operand immDPR0() %{
  4036   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4037   // bug that generates code such that NaNs compare equal to 0.0
  4038   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4039   match(ConD);
  4041   op_cost(5);
  4042   format %{ %}
  4043   interface(CONST_INTER);
  4044 %}
  4046 // Double Immediate one
  4047 operand immDPR1() %{
  4048   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4049   match(ConD);
  4051   op_cost(5);
  4052   format %{ %}
  4053   interface(CONST_INTER);
  4054 %}
  4056 // Double Immediate
  4057 operand immDPR() %{
  4058   predicate(UseSSE<=1);
  4059   match(ConD);
  4061   op_cost(5);
  4062   format %{ %}
  4063   interface(CONST_INTER);
  4064 %}
  4066 operand immD() %{
  4067   predicate(UseSSE>=2);
  4068   match(ConD);
  4070   op_cost(5);
  4071   format %{ %}
  4072   interface(CONST_INTER);
  4073 %}
  4075 // Double Immediate zero
  4076 operand immD0() %{
  4077   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4078   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4079   // compare equal to -0.0.
  4080   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4081   match(ConD);
  4083   format %{ %}
  4084   interface(CONST_INTER);
  4085 %}
  4087 // Float Immediate zero
  4088 operand immFPR0() %{
  4089   predicate(UseSSE == 0 && n->getf() == 0.0F);
  4090   match(ConF);
  4092   op_cost(5);
  4093   format %{ %}
  4094   interface(CONST_INTER);
  4095 %}
  4097 // Float Immediate one
  4098 operand immFPR1() %{
  4099   predicate(UseSSE == 0 && n->getf() == 1.0F);
  4100   match(ConF);
  4102   op_cost(5);
  4103   format %{ %}
  4104   interface(CONST_INTER);
  4105 %}
  4107 // Float Immediate
  4108 operand immFPR() %{
  4109   predicate( UseSSE == 0 );
  4110   match(ConF);
  4112   op_cost(5);
  4113   format %{ %}
  4114   interface(CONST_INTER);
  4115 %}
  4117 // Float Immediate
  4118 operand immF() %{
  4119   predicate(UseSSE >= 1);
  4120   match(ConF);
  4122   op_cost(5);
  4123   format %{ %}
  4124   interface(CONST_INTER);
  4125 %}
  4127 // Float Immediate zero.  Zero and not -0.0
  4128 operand immF0() %{
  4129   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4130   match(ConF);
  4132   op_cost(5);
  4133   format %{ %}
  4134   interface(CONST_INTER);
  4135 %}
  4137 // Immediates for special shifts (sign extend)
  4139 // Constants for increment
  4140 operand immI_16() %{
  4141   predicate( n->get_int() == 16 );
  4142   match(ConI);
  4144   format %{ %}
  4145   interface(CONST_INTER);
  4146 %}
  4148 operand immI_24() %{
  4149   predicate( n->get_int() == 24 );
  4150   match(ConI);
  4152   format %{ %}
  4153   interface(CONST_INTER);
  4154 %}
  4156 // Constant for byte-wide masking
  4157 operand immI_255() %{
  4158   predicate( n->get_int() == 255 );
  4159   match(ConI);
  4161   format %{ %}
  4162   interface(CONST_INTER);
  4163 %}
  4165 // Constant for short-wide masking
  4166 operand immI_65535() %{
  4167   predicate(n->get_int() == 65535);
  4168   match(ConI);
  4170   format %{ %}
  4171   interface(CONST_INTER);
  4172 %}
  4174 // Register Operands
  4175 // Integer Register
  4176 operand rRegI() %{
  4177   constraint(ALLOC_IN_RC(int_reg));
  4178   match(RegI);
  4179   match(xRegI);
  4180   match(eAXRegI);
  4181   match(eBXRegI);
  4182   match(eCXRegI);
  4183   match(eDXRegI);
  4184   match(eDIRegI);
  4185   match(eSIRegI);
  4187   format %{ %}
  4188   interface(REG_INTER);
  4189 %}
  4191 // Subset of Integer Register
  4192 operand xRegI(rRegI reg) %{
  4193   constraint(ALLOC_IN_RC(int_x_reg));
  4194   match(reg);
  4195   match(eAXRegI);
  4196   match(eBXRegI);
  4197   match(eCXRegI);
  4198   match(eDXRegI);
  4200   format %{ %}
  4201   interface(REG_INTER);
  4202 %}
  4204 // Special Registers
  4205 operand eAXRegI(xRegI reg) %{
  4206   constraint(ALLOC_IN_RC(eax_reg));
  4207   match(reg);
  4208   match(rRegI);
  4210   format %{ "EAX" %}
  4211   interface(REG_INTER);
  4212 %}
  4214 // Special Registers
  4215 operand eBXRegI(xRegI reg) %{
  4216   constraint(ALLOC_IN_RC(ebx_reg));
  4217   match(reg);
  4218   match(rRegI);
  4220   format %{ "EBX" %}
  4221   interface(REG_INTER);
  4222 %}
  4224 operand eCXRegI(xRegI reg) %{
  4225   constraint(ALLOC_IN_RC(ecx_reg));
  4226   match(reg);
  4227   match(rRegI);
  4229   format %{ "ECX" %}
  4230   interface(REG_INTER);
  4231 %}
  4233 operand eDXRegI(xRegI reg) %{
  4234   constraint(ALLOC_IN_RC(edx_reg));
  4235   match(reg);
  4236   match(rRegI);
  4238   format %{ "EDX" %}
  4239   interface(REG_INTER);
  4240 %}
  4242 operand eDIRegI(xRegI reg) %{
  4243   constraint(ALLOC_IN_RC(edi_reg));
  4244   match(reg);
  4245   match(rRegI);
  4247   format %{ "EDI" %}
  4248   interface(REG_INTER);
  4249 %}
  4251 operand naxRegI() %{
  4252   constraint(ALLOC_IN_RC(nax_reg));
  4253   match(RegI);
  4254   match(eCXRegI);
  4255   match(eDXRegI);
  4256   match(eSIRegI);
  4257   match(eDIRegI);
  4259   format %{ %}
  4260   interface(REG_INTER);
  4261 %}
  4263 operand nadxRegI() %{
  4264   constraint(ALLOC_IN_RC(nadx_reg));
  4265   match(RegI);
  4266   match(eBXRegI);
  4267   match(eCXRegI);
  4268   match(eSIRegI);
  4269   match(eDIRegI);
  4271   format %{ %}
  4272   interface(REG_INTER);
  4273 %}
  4275 operand ncxRegI() %{
  4276   constraint(ALLOC_IN_RC(ncx_reg));
  4277   match(RegI);
  4278   match(eAXRegI);
  4279   match(eDXRegI);
  4280   match(eSIRegI);
  4281   match(eDIRegI);
  4283   format %{ %}
  4284   interface(REG_INTER);
  4285 %}
  4287 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4288 // //
  4289 operand eSIRegI(xRegI reg) %{
  4290    constraint(ALLOC_IN_RC(esi_reg));
  4291    match(reg);
  4292    match(rRegI);
  4294    format %{ "ESI" %}
  4295    interface(REG_INTER);
  4296 %}
  4298 // Pointer Register
  4299 operand anyRegP() %{
  4300   constraint(ALLOC_IN_RC(any_reg));
  4301   match(RegP);
  4302   match(eAXRegP);
  4303   match(eBXRegP);
  4304   match(eCXRegP);
  4305   match(eDIRegP);
  4306   match(eRegP);
  4308   format %{ %}
  4309   interface(REG_INTER);
  4310 %}
  4312 operand eRegP() %{
  4313   constraint(ALLOC_IN_RC(int_reg));
  4314   match(RegP);
  4315   match(eAXRegP);
  4316   match(eBXRegP);
  4317   match(eCXRegP);
  4318   match(eDIRegP);
  4320   format %{ %}
  4321   interface(REG_INTER);
  4322 %}
  4324 // On windows95, EBP is not safe to use for implicit null tests.
  4325 operand eRegP_no_EBP() %{
  4326   constraint(ALLOC_IN_RC(int_reg_no_rbp));
  4327   match(RegP);
  4328   match(eAXRegP);
  4329   match(eBXRegP);
  4330   match(eCXRegP);
  4331   match(eDIRegP);
  4333   op_cost(100);
  4334   format %{ %}
  4335   interface(REG_INTER);
  4336 %}
  4338 operand naxRegP() %{
  4339   constraint(ALLOC_IN_RC(nax_reg));
  4340   match(RegP);
  4341   match(eBXRegP);
  4342   match(eDXRegP);
  4343   match(eCXRegP);
  4344   match(eSIRegP);
  4345   match(eDIRegP);
  4347   format %{ %}
  4348   interface(REG_INTER);
  4349 %}
  4351 operand nabxRegP() %{
  4352   constraint(ALLOC_IN_RC(nabx_reg));
  4353   match(RegP);
  4354   match(eCXRegP);
  4355   match(eDXRegP);
  4356   match(eSIRegP);
  4357   match(eDIRegP);
  4359   format %{ %}
  4360   interface(REG_INTER);
  4361 %}
  4363 operand pRegP() %{
  4364   constraint(ALLOC_IN_RC(p_reg));
  4365   match(RegP);
  4366   match(eBXRegP);
  4367   match(eDXRegP);
  4368   match(eSIRegP);
  4369   match(eDIRegP);
  4371   format %{ %}
  4372   interface(REG_INTER);
  4373 %}
  4375 // Special Registers
  4376 // Return a pointer value
  4377 operand eAXRegP(eRegP reg) %{
  4378   constraint(ALLOC_IN_RC(eax_reg));
  4379   match(reg);
  4380   format %{ "EAX" %}
  4381   interface(REG_INTER);
  4382 %}
  4384 // Used in AtomicAdd
  4385 operand eBXRegP(eRegP reg) %{
  4386   constraint(ALLOC_IN_RC(ebx_reg));
  4387   match(reg);
  4388   format %{ "EBX" %}
  4389   interface(REG_INTER);
  4390 %}
  4392 // Tail-call (interprocedural jump) to interpreter
  4393 operand eCXRegP(eRegP reg) %{
  4394   constraint(ALLOC_IN_RC(ecx_reg));
  4395   match(reg);
  4396   format %{ "ECX" %}
  4397   interface(REG_INTER);
  4398 %}
  4400 operand eSIRegP(eRegP reg) %{
  4401   constraint(ALLOC_IN_RC(esi_reg));
  4402   match(reg);
  4403   format %{ "ESI" %}
  4404   interface(REG_INTER);
  4405 %}
  4407 // Used in rep stosw
  4408 operand eDIRegP(eRegP reg) %{
  4409   constraint(ALLOC_IN_RC(edi_reg));
  4410   match(reg);
  4411   format %{ "EDI" %}
  4412   interface(REG_INTER);
  4413 %}
  4415 operand eBPRegP() %{
  4416   constraint(ALLOC_IN_RC(ebp_reg));
  4417   match(RegP);
  4418   format %{ "EBP" %}
  4419   interface(REG_INTER);
  4420 %}
  4422 operand eRegL() %{
  4423   constraint(ALLOC_IN_RC(long_reg));
  4424   match(RegL);
  4425   match(eADXRegL);
  4427   format %{ %}
  4428   interface(REG_INTER);
  4429 %}
  4431 operand eADXRegL( eRegL reg ) %{
  4432   constraint(ALLOC_IN_RC(eadx_reg));
  4433   match(reg);
  4435   format %{ "EDX:EAX" %}
  4436   interface(REG_INTER);
  4437 %}
  4439 operand eBCXRegL( eRegL reg ) %{
  4440   constraint(ALLOC_IN_RC(ebcx_reg));
  4441   match(reg);
  4443   format %{ "EBX:ECX" %}
  4444   interface(REG_INTER);
  4445 %}
  4447 // Special case for integer high multiply
  4448 operand eADXRegL_low_only() %{
  4449   constraint(ALLOC_IN_RC(eadx_reg));
  4450   match(RegL);
  4452   format %{ "EAX" %}
  4453   interface(REG_INTER);
  4454 %}
  4456 // Flags register, used as output of compare instructions
  4457 operand eFlagsReg() %{
  4458   constraint(ALLOC_IN_RC(int_flags));
  4459   match(RegFlags);
  4461   format %{ "EFLAGS" %}
  4462   interface(REG_INTER);
  4463 %}
  4465 // Flags register, used as output of FLOATING POINT compare instructions
  4466 operand eFlagsRegU() %{
  4467   constraint(ALLOC_IN_RC(int_flags));
  4468   match(RegFlags);
  4470   format %{ "EFLAGS_U" %}
  4471   interface(REG_INTER);
  4472 %}
  4474 operand eFlagsRegUCF() %{
  4475   constraint(ALLOC_IN_RC(int_flags));
  4476   match(RegFlags);
  4477   predicate(false);
  4479   format %{ "EFLAGS_U_CF" %}
  4480   interface(REG_INTER);
  4481 %}
  4483 // Condition Code Register used by long compare
  4484 operand flagsReg_long_LTGE() %{
  4485   constraint(ALLOC_IN_RC(int_flags));
  4486   match(RegFlags);
  4487   format %{ "FLAGS_LTGE" %}
  4488   interface(REG_INTER);
  4489 %}
  4490 operand flagsReg_long_EQNE() %{
  4491   constraint(ALLOC_IN_RC(int_flags));
  4492   match(RegFlags);
  4493   format %{ "FLAGS_EQNE" %}
  4494   interface(REG_INTER);
  4495 %}
  4496 operand flagsReg_long_LEGT() %{
  4497   constraint(ALLOC_IN_RC(int_flags));
  4498   match(RegFlags);
  4499   format %{ "FLAGS_LEGT" %}
  4500   interface(REG_INTER);
  4501 %}
  4503 // Float register operands
  4504 operand regDPR() %{
  4505   predicate( UseSSE < 2 );
  4506   constraint(ALLOC_IN_RC(fp_dbl_reg));
  4507   match(RegD);
  4508   match(regDPR1);
  4509   match(regDPR2);
  4510   format %{ %}
  4511   interface(REG_INTER);
  4512 %}
  4514 operand regDPR1(regDPR reg) %{
  4515   predicate( UseSSE < 2 );
  4516   constraint(ALLOC_IN_RC(fp_dbl_reg0));
  4517   match(reg);
  4518   format %{ "FPR1" %}
  4519   interface(REG_INTER);
  4520 %}
  4522 operand regDPR2(regDPR reg) %{
  4523   predicate( UseSSE < 2 );
  4524   constraint(ALLOC_IN_RC(fp_dbl_reg1));
  4525   match(reg);
  4526   format %{ "FPR2" %}
  4527   interface(REG_INTER);
  4528 %}
  4530 operand regnotDPR1(regDPR reg) %{
  4531   predicate( UseSSE < 2 );
  4532   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
  4533   match(reg);
  4534   format %{ %}
  4535   interface(REG_INTER);
  4536 %}
  4538 // Float register operands
  4539 operand regFPR() %{
  4540   predicate( UseSSE < 2 );
  4541   constraint(ALLOC_IN_RC(fp_flt_reg));
  4542   match(RegF);
  4543   match(regFPR1);
  4544   format %{ %}
  4545   interface(REG_INTER);
  4546 %}
  4548 // Float register operands
  4549 operand regFPR1(regFPR reg) %{
  4550   predicate( UseSSE < 2 );
  4551   constraint(ALLOC_IN_RC(fp_flt_reg0));
  4552   match(reg);
  4553   format %{ "FPR1" %}
  4554   interface(REG_INTER);
  4555 %}
  4557 // XMM Float register operands
  4558 operand regF() %{
  4559   predicate( UseSSE>=1 );
  4560   constraint(ALLOC_IN_RC(float_reg));
  4561   match(RegF);
  4562   format %{ %}
  4563   interface(REG_INTER);
  4564 %}
  4566 // XMM Double register operands
  4567 operand regD() %{
  4568   predicate( UseSSE>=2 );
  4569   constraint(ALLOC_IN_RC(double_reg));
  4570   match(RegD);
  4571   format %{ %}
  4572   interface(REG_INTER);
  4573 %}
  4576 //----------Memory Operands----------------------------------------------------
  4577 // Direct Memory Operand
  4578 operand direct(immP addr) %{
  4579   match(addr);
  4581   format %{ "[$addr]" %}
  4582   interface(MEMORY_INTER) %{
  4583     base(0xFFFFFFFF);
  4584     index(0x4);
  4585     scale(0x0);
  4586     disp($addr);
  4587   %}
  4588 %}
  4590 // Indirect Memory Operand
  4591 operand indirect(eRegP reg) %{
  4592   constraint(ALLOC_IN_RC(int_reg));
  4593   match(reg);
  4595   format %{ "[$reg]" %}
  4596   interface(MEMORY_INTER) %{
  4597     base($reg);
  4598     index(0x4);
  4599     scale(0x0);
  4600     disp(0x0);
  4601   %}
  4602 %}
  4604 // Indirect Memory Plus Short Offset Operand
  4605 operand indOffset8(eRegP reg, immI8 off) %{
  4606   match(AddP reg off);
  4608   format %{ "[$reg + $off]" %}
  4609   interface(MEMORY_INTER) %{
  4610     base($reg);
  4611     index(0x4);
  4612     scale(0x0);
  4613     disp($off);
  4614   %}
  4615 %}
  4617 // Indirect Memory Plus Long Offset Operand
  4618 operand indOffset32(eRegP reg, immI off) %{
  4619   match(AddP reg off);
  4621   format %{ "[$reg + $off]" %}
  4622   interface(MEMORY_INTER) %{
  4623     base($reg);
  4624     index(0x4);
  4625     scale(0x0);
  4626     disp($off);
  4627   %}
  4628 %}
  4630 // Indirect Memory Plus Long Offset Operand
  4631 operand indOffset32X(rRegI reg, immP off) %{
  4632   match(AddP off reg);
  4634   format %{ "[$reg + $off]" %}
  4635   interface(MEMORY_INTER) %{
  4636     base($reg);
  4637     index(0x4);
  4638     scale(0x0);
  4639     disp($off);
  4640   %}
  4641 %}
  4643 // Indirect Memory Plus Index Register Plus Offset Operand
  4644 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
  4645   match(AddP (AddP reg ireg) off);
  4647   op_cost(10);
  4648   format %{"[$reg + $off + $ireg]" %}
  4649   interface(MEMORY_INTER) %{
  4650     base($reg);
  4651     index($ireg);
  4652     scale(0x0);
  4653     disp($off);
  4654   %}
  4655 %}
  4657 // Indirect Memory Plus Index Register Plus Offset Operand
  4658 operand indIndex(eRegP reg, rRegI ireg) %{
  4659   match(AddP reg ireg);
  4661   op_cost(10);
  4662   format %{"[$reg + $ireg]" %}
  4663   interface(MEMORY_INTER) %{
  4664     base($reg);
  4665     index($ireg);
  4666     scale(0x0);
  4667     disp(0x0);
  4668   %}
  4669 %}
  4671 // // -------------------------------------------------------------------------
  4672 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4673 // // -------------------------------------------------------------------------
  4674 // // Scaled Memory Operands
  4675 // // Indirect Memory Times Scale Plus Offset Operand
  4676 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
  4677 //   match(AddP off (LShiftI ireg scale));
  4678 //
  4679 //   op_cost(10);
  4680 //   format %{"[$off + $ireg << $scale]" %}
  4681 //   interface(MEMORY_INTER) %{
  4682 //     base(0x4);
  4683 //     index($ireg);
  4684 //     scale($scale);
  4685 //     disp($off);
  4686 //   %}
  4687 // %}
  4689 // Indirect Memory Times Scale Plus Index Register
  4690 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
  4691   match(AddP reg (LShiftI ireg scale));
  4693   op_cost(10);
  4694   format %{"[$reg + $ireg << $scale]" %}
  4695   interface(MEMORY_INTER) %{
  4696     base($reg);
  4697     index($ireg);
  4698     scale($scale);
  4699     disp(0x0);
  4700   %}
  4701 %}
  4703 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4704 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
  4705   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4707   op_cost(10);
  4708   format %{"[$reg + $off + $ireg << $scale]" %}
  4709   interface(MEMORY_INTER) %{
  4710     base($reg);
  4711     index($ireg);
  4712     scale($scale);
  4713     disp($off);
  4714   %}
  4715 %}
  4717 //----------Load Long Memory Operands------------------------------------------
  4718 // The load-long idiom will use it's address expression again after loading
  4719 // the first word of the long.  If the load-long destination overlaps with
  4720 // registers used in the addressing expression, the 2nd half will be loaded
  4721 // from a clobbered address.  Fix this by requiring that load-long use
  4722 // address registers that do not overlap with the load-long target.
  4724 // load-long support
  4725 operand load_long_RegP() %{
  4726   constraint(ALLOC_IN_RC(esi_reg));
  4727   match(RegP);
  4728   match(eSIRegP);
  4729   op_cost(100);
  4730   format %{  %}
  4731   interface(REG_INTER);
  4732 %}
  4734 // Indirect Memory Operand Long
  4735 operand load_long_indirect(load_long_RegP reg) %{
  4736   constraint(ALLOC_IN_RC(esi_reg));
  4737   match(reg);
  4739   format %{ "[$reg]" %}
  4740   interface(MEMORY_INTER) %{
  4741     base($reg);
  4742     index(0x4);
  4743     scale(0x0);
  4744     disp(0x0);
  4745   %}
  4746 %}
  4748 // Indirect Memory Plus Long Offset Operand
  4749 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4750   match(AddP reg off);
  4752   format %{ "[$reg + $off]" %}
  4753   interface(MEMORY_INTER) %{
  4754     base($reg);
  4755     index(0x4);
  4756     scale(0x0);
  4757     disp($off);
  4758   %}
  4759 %}
  4761 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4764 //----------Special Memory Operands--------------------------------------------
  4765 // Stack Slot Operand - This operand is used for loading and storing temporary
  4766 //                      values on the stack where a match requires a value to
  4767 //                      flow through memory.
  4768 operand stackSlotP(sRegP reg) %{
  4769   constraint(ALLOC_IN_RC(stack_slots));
  4770   // No match rule because this operand is only generated in matching
  4771   format %{ "[$reg]" %}
  4772   interface(MEMORY_INTER) %{
  4773     base(0x4);   // ESP
  4774     index(0x4);  // No Index
  4775     scale(0x0);  // No Scale
  4776     disp($reg);  // Stack Offset
  4777   %}
  4778 %}
  4780 operand stackSlotI(sRegI reg) %{
  4781   constraint(ALLOC_IN_RC(stack_slots));
  4782   // No match rule because this operand is only generated in matching
  4783   format %{ "[$reg]" %}
  4784   interface(MEMORY_INTER) %{
  4785     base(0x4);   // ESP
  4786     index(0x4);  // No Index
  4787     scale(0x0);  // No Scale
  4788     disp($reg);  // Stack Offset
  4789   %}
  4790 %}
  4792 operand stackSlotF(sRegF reg) %{
  4793   constraint(ALLOC_IN_RC(stack_slots));
  4794   // No match rule because this operand is only generated in matching
  4795   format %{ "[$reg]" %}
  4796   interface(MEMORY_INTER) %{
  4797     base(0x4);   // ESP
  4798     index(0x4);  // No Index
  4799     scale(0x0);  // No Scale
  4800     disp($reg);  // Stack Offset
  4801   %}
  4802 %}
  4804 operand stackSlotD(sRegD reg) %{
  4805   constraint(ALLOC_IN_RC(stack_slots));
  4806   // No match rule because this operand is only generated in matching
  4807   format %{ "[$reg]" %}
  4808   interface(MEMORY_INTER) %{
  4809     base(0x4);   // ESP
  4810     index(0x4);  // No Index
  4811     scale(0x0);  // No Scale
  4812     disp($reg);  // Stack Offset
  4813   %}
  4814 %}
  4816 operand stackSlotL(sRegL reg) %{
  4817   constraint(ALLOC_IN_RC(stack_slots));
  4818   // No match rule because this operand is only generated in matching
  4819   format %{ "[$reg]" %}
  4820   interface(MEMORY_INTER) %{
  4821     base(0x4);   // ESP
  4822     index(0x4);  // No Index
  4823     scale(0x0);  // No Scale
  4824     disp($reg);  // Stack Offset
  4825   %}
  4826 %}
  4828 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4829 // Indirect Memory Operand
  4830 operand indirect_win95_safe(eRegP_no_EBP reg)
  4831 %{
  4832   constraint(ALLOC_IN_RC(int_reg));
  4833   match(reg);
  4835   op_cost(100);
  4836   format %{ "[$reg]" %}
  4837   interface(MEMORY_INTER) %{
  4838     base($reg);
  4839     index(0x4);
  4840     scale(0x0);
  4841     disp(0x0);
  4842   %}
  4843 %}
  4845 // Indirect Memory Plus Short Offset Operand
  4846 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4847 %{
  4848   match(AddP reg off);
  4850   op_cost(100);
  4851   format %{ "[$reg + $off]" %}
  4852   interface(MEMORY_INTER) %{
  4853     base($reg);
  4854     index(0x4);
  4855     scale(0x0);
  4856     disp($off);
  4857   %}
  4858 %}
  4860 // Indirect Memory Plus Long Offset Operand
  4861 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4862 %{
  4863   match(AddP reg off);
  4865   op_cost(100);
  4866   format %{ "[$reg + $off]" %}
  4867   interface(MEMORY_INTER) %{
  4868     base($reg);
  4869     index(0x4);
  4870     scale(0x0);
  4871     disp($off);
  4872   %}
  4873 %}
  4875 // Indirect Memory Plus Index Register Plus Offset Operand
  4876 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
  4877 %{
  4878   match(AddP (AddP reg ireg) off);
  4880   op_cost(100);
  4881   format %{"[$reg + $off + $ireg]" %}
  4882   interface(MEMORY_INTER) %{
  4883     base($reg);
  4884     index($ireg);
  4885     scale(0x0);
  4886     disp($off);
  4887   %}
  4888 %}
  4890 // Indirect Memory Times Scale Plus Index Register
  4891 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
  4892 %{
  4893   match(AddP reg (LShiftI ireg scale));
  4895   op_cost(100);
  4896   format %{"[$reg + $ireg << $scale]" %}
  4897   interface(MEMORY_INTER) %{
  4898     base($reg);
  4899     index($ireg);
  4900     scale($scale);
  4901     disp(0x0);
  4902   %}
  4903 %}
  4905 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4906 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
  4907 %{
  4908   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4910   op_cost(100);
  4911   format %{"[$reg + $off + $ireg << $scale]" %}
  4912   interface(MEMORY_INTER) %{
  4913     base($reg);
  4914     index($ireg);
  4915     scale($scale);
  4916     disp($off);
  4917   %}
  4918 %}
  4920 //----------Conditional Branch Operands----------------------------------------
  4921 // Comparison Op  - This is the operation of the comparison, and is limited to
  4922 //                  the following set of codes:
  4923 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4924 //
  4925 // Other attributes of the comparison, such as unsignedness, are specified
  4926 // by the comparison instruction that sets a condition code flags register.
  4927 // That result is represented by a flags operand whose subtype is appropriate
  4928 // to the unsignedness (etc.) of the comparison.
  4929 //
  4930 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4931 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4932 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4934 // Comparision Code
  4935 operand cmpOp() %{
  4936   match(Bool);
  4938   format %{ "" %}
  4939   interface(COND_INTER) %{
  4940     equal(0x4, "e");
  4941     not_equal(0x5, "ne");
  4942     less(0xC, "l");
  4943     greater_equal(0xD, "ge");
  4944     less_equal(0xE, "le");
  4945     greater(0xF, "g");
  4946     overflow(0x0, "o");
  4947     no_overflow(0x1, "no");
  4948   %}
  4949 %}
  4951 // Comparison Code, unsigned compare.  Used by FP also, with
  4952 // C2 (unordered) turned into GT or LT already.  The other bits
  4953 // C0 and C3 are turned into Carry & Zero flags.
  4954 operand cmpOpU() %{
  4955   match(Bool);
  4957   format %{ "" %}
  4958   interface(COND_INTER) %{
  4959     equal(0x4, "e");
  4960     not_equal(0x5, "ne");
  4961     less(0x2, "b");
  4962     greater_equal(0x3, "nb");
  4963     less_equal(0x6, "be");
  4964     greater(0x7, "nbe");
  4965     overflow(0x0, "o");
  4966     no_overflow(0x1, "no");
  4967   %}
  4968 %}
  4970 // Floating comparisons that don't require any fixup for the unordered case
  4971 operand cmpOpUCF() %{
  4972   match(Bool);
  4973   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  4974             n->as_Bool()->_test._test == BoolTest::ge ||
  4975             n->as_Bool()->_test._test == BoolTest::le ||
  4976             n->as_Bool()->_test._test == BoolTest::gt);
  4977   format %{ "" %}
  4978   interface(COND_INTER) %{
  4979     equal(0x4, "e");
  4980     not_equal(0x5, "ne");
  4981     less(0x2, "b");
  4982     greater_equal(0x3, "nb");
  4983     less_equal(0x6, "be");
  4984     greater(0x7, "nbe");
  4985     overflow(0x0, "o");
  4986     no_overflow(0x1, "no");
  4987   %}
  4988 %}
  4991 // Floating comparisons that can be fixed up with extra conditional jumps
  4992 operand cmpOpUCF2() %{
  4993   match(Bool);
  4994   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  4995             n->as_Bool()->_test._test == BoolTest::eq);
  4996   format %{ "" %}
  4997   interface(COND_INTER) %{
  4998     equal(0x4, "e");
  4999     not_equal(0x5, "ne");
  5000     less(0x2, "b");
  5001     greater_equal(0x3, "nb");
  5002     less_equal(0x6, "be");
  5003     greater(0x7, "nbe");
  5004     overflow(0x0, "o");
  5005     no_overflow(0x1, "no");
  5006   %}
  5007 %}
  5009 // Comparison Code for FP conditional move
  5010 operand cmpOp_fcmov() %{
  5011   match(Bool);
  5013   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  5014             n->as_Bool()->_test._test != BoolTest::no_overflow);
  5015   format %{ "" %}
  5016   interface(COND_INTER) %{
  5017     equal        (0x0C8);
  5018     not_equal    (0x1C8);
  5019     less         (0x0C0);
  5020     greater_equal(0x1C0);
  5021     less_equal   (0x0D0);
  5022     greater      (0x1D0);
  5023     overflow(0x0, "o"); // not really supported by the instruction
  5024     no_overflow(0x1, "no"); // not really supported by the instruction
  5025   %}
  5026 %}
  5028 // Comparision Code used in long compares
  5029 operand cmpOp_commute() %{
  5030   match(Bool);
  5032   format %{ "" %}
  5033   interface(COND_INTER) %{
  5034     equal(0x4, "e");
  5035     not_equal(0x5, "ne");
  5036     less(0xF, "g");
  5037     greater_equal(0xE, "le");
  5038     less_equal(0xD, "ge");
  5039     greater(0xC, "l");
  5040     overflow(0x0, "o");
  5041     no_overflow(0x1, "no");
  5042   %}
  5043 %}
  5045 //----------OPERAND CLASSES----------------------------------------------------
  5046 // Operand Classes are groups of operands that are used as to simplify
  5047 // instruction definitions by not requiring the AD writer to specify separate
  5048 // instructions for every form of operand when the instruction accepts
  5049 // multiple operand types with the same basic encoding and format.  The classic
  5050 // case of this is memory operands.
  5052 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5053                indIndex, indIndexScale, indIndexScaleOffset);
  5055 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5056 // This means some kind of offset is always required and you cannot use
  5057 // an oop as the offset (done when working on static globals).
  5058 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5059                     indIndex, indIndexScale, indIndexScaleOffset);
  5062 //----------PIPELINE-----------------------------------------------------------
  5063 // Rules which define the behavior of the target architectures pipeline.
  5064 pipeline %{
  5066 //----------ATTRIBUTES---------------------------------------------------------
  5067 attributes %{
  5068   variable_size_instructions;        // Fixed size instructions
  5069   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5070   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5071   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5072   instruction_fetch_units = 1;       // of 16 bytes
  5074   // List of nop instructions
  5075   nops( MachNop );
  5076 %}
  5078 //----------RESOURCES----------------------------------------------------------
  5079 // Resources are the functional units available to the machine
  5081 // Generic P2/P3 pipeline
  5082 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5083 // 3 instructions decoded per cycle.
  5084 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5085 // 2 ALU op, only ALU0 handles mul/div instructions.
  5086 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5087            MS0, MS1, MEM = MS0 | MS1,
  5088            BR, FPU,
  5089            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5091 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5092 // Pipeline Description specifies the stages in the machine's pipeline
  5094 // Generic P2/P3 pipeline
  5095 pipe_desc(S0, S1, S2, S3, S4, S5);
  5097 //----------PIPELINE CLASSES---------------------------------------------------
  5098 // Pipeline Classes describe the stages in which input and output are
  5099 // referenced by the hardware pipeline.
  5101 // Naming convention: ialu or fpu
  5102 // Then: _reg
  5103 // Then: _reg if there is a 2nd register
  5104 // Then: _long if it's a pair of instructions implementing a long
  5105 // Then: _fat if it requires the big decoder
  5106 //   Or: _mem if it requires the big decoder and a memory unit.
  5108 // Integer ALU reg operation
  5109 pipe_class ialu_reg(rRegI dst) %{
  5110     single_instruction;
  5111     dst    : S4(write);
  5112     dst    : S3(read);
  5113     DECODE : S0;        // any decoder
  5114     ALU    : S3;        // any alu
  5115 %}
  5117 // Long ALU reg operation
  5118 pipe_class ialu_reg_long(eRegL dst) %{
  5119     instruction_count(2);
  5120     dst    : S4(write);
  5121     dst    : S3(read);
  5122     DECODE : S0(2);     // any 2 decoders
  5123     ALU    : S3(2);     // both alus
  5124 %}
  5126 // Integer ALU reg operation using big decoder
  5127 pipe_class ialu_reg_fat(rRegI dst) %{
  5128     single_instruction;
  5129     dst    : S4(write);
  5130     dst    : S3(read);
  5131     D0     : S0;        // big decoder only
  5132     ALU    : S3;        // any alu
  5133 %}
  5135 // Long ALU reg operation using big decoder
  5136 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5137     instruction_count(2);
  5138     dst    : S4(write);
  5139     dst    : S3(read);
  5140     D0     : S0(2);     // big decoder only; twice
  5141     ALU    : S3(2);     // any 2 alus
  5142 %}
  5144 // Integer ALU reg-reg operation
  5145 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
  5146     single_instruction;
  5147     dst    : S4(write);
  5148     src    : S3(read);
  5149     DECODE : S0;        // any decoder
  5150     ALU    : S3;        // any alu
  5151 %}
  5153 // Long ALU reg-reg operation
  5154 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5155     instruction_count(2);
  5156     dst    : S4(write);
  5157     src    : S3(read);
  5158     DECODE : S0(2);     // any 2 decoders
  5159     ALU    : S3(2);     // both alus
  5160 %}
  5162 // Integer ALU reg-reg operation
  5163 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
  5164     single_instruction;
  5165     dst    : S4(write);
  5166     src    : S3(read);
  5167     D0     : S0;        // big decoder only
  5168     ALU    : S3;        // any alu
  5169 %}
  5171 // Long ALU reg-reg operation
  5172 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5173     instruction_count(2);
  5174     dst    : S4(write);
  5175     src    : S3(read);
  5176     D0     : S0(2);     // big decoder only; twice
  5177     ALU    : S3(2);     // both alus
  5178 %}
  5180 // Integer ALU reg-mem operation
  5181 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
  5182     single_instruction;
  5183     dst    : S5(write);
  5184     mem    : S3(read);
  5185     D0     : S0;        // big decoder only
  5186     ALU    : S4;        // any alu
  5187     MEM    : S3;        // any mem
  5188 %}
  5190 // Long ALU reg-mem operation
  5191 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5192     instruction_count(2);
  5193     dst    : S5(write);
  5194     mem    : S3(read);
  5195     D0     : S0(2);     // big decoder only; twice
  5196     ALU    : S4(2);     // any 2 alus
  5197     MEM    : S3(2);     // both mems
  5198 %}
  5200 // Integer mem operation (prefetch)
  5201 pipe_class ialu_mem(memory mem)
  5202 %{
  5203     single_instruction;
  5204     mem    : S3(read);
  5205     D0     : S0;        // big decoder only
  5206     MEM    : S3;        // any mem
  5207 %}
  5209 // Integer Store to Memory
  5210 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
  5211     single_instruction;
  5212     mem    : S3(read);
  5213     src    : S5(read);
  5214     D0     : S0;        // big decoder only
  5215     ALU    : S4;        // any alu
  5216     MEM    : S3;
  5217 %}
  5219 // Long Store to Memory
  5220 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5221     instruction_count(2);
  5222     mem    : S3(read);
  5223     src    : S5(read);
  5224     D0     : S0(2);     // big decoder only; twice
  5225     ALU    : S4(2);     // any 2 alus
  5226     MEM    : S3(2);     // Both mems
  5227 %}
  5229 // Integer Store to Memory
  5230 pipe_class ialu_mem_imm(memory mem) %{
  5231     single_instruction;
  5232     mem    : S3(read);
  5233     D0     : S0;        // big decoder only
  5234     ALU    : S4;        // any alu
  5235     MEM    : S3;
  5236 %}
  5238 // Integer ALU0 reg-reg operation
  5239 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
  5240     single_instruction;
  5241     dst    : S4(write);
  5242     src    : S3(read);
  5243     D0     : S0;        // Big decoder only
  5244     ALU0   : S3;        // only alu0
  5245 %}
  5247 // Integer ALU0 reg-mem operation
  5248 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
  5249     single_instruction;
  5250     dst    : S5(write);
  5251     mem    : S3(read);
  5252     D0     : S0;        // big decoder only
  5253     ALU0   : S4;        // ALU0 only
  5254     MEM    : S3;        // any mem
  5255 %}
  5257 // Integer ALU reg-reg operation
  5258 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
  5259     single_instruction;
  5260     cr     : S4(write);
  5261     src1   : S3(read);
  5262     src2   : S3(read);
  5263     DECODE : S0;        // any decoder
  5264     ALU    : S3;        // any alu
  5265 %}
  5267 // Integer ALU reg-imm operation
  5268 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
  5269     single_instruction;
  5270     cr     : S4(write);
  5271     src1   : S3(read);
  5272     DECODE : S0;        // any decoder
  5273     ALU    : S3;        // any alu
  5274 %}
  5276 // Integer ALU reg-mem operation
  5277 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
  5278     single_instruction;
  5279     cr     : S4(write);
  5280     src1   : S3(read);
  5281     src2   : S3(read);
  5282     D0     : S0;        // big decoder only
  5283     ALU    : S4;        // any alu
  5284     MEM    : S3;
  5285 %}
  5287 // Conditional move reg-reg
  5288 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
  5289     instruction_count(4);
  5290     y      : S4(read);
  5291     q      : S3(read);
  5292     p      : S3(read);
  5293     DECODE : S0(4);     // any decoder
  5294 %}
  5296 // Conditional move reg-reg
  5297 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
  5298     single_instruction;
  5299     dst    : S4(write);
  5300     src    : S3(read);
  5301     cr     : S3(read);
  5302     DECODE : S0;        // any decoder
  5303 %}
  5305 // Conditional move reg-mem
  5306 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
  5307     single_instruction;
  5308     dst    : S4(write);
  5309     src    : S3(read);
  5310     cr     : S3(read);
  5311     DECODE : S0;        // any decoder
  5312     MEM    : S3;
  5313 %}
  5315 // Conditional move reg-reg long
  5316 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  5317     single_instruction;
  5318     dst    : S4(write);
  5319     src    : S3(read);
  5320     cr     : S3(read);
  5321     DECODE : S0(2);     // any 2 decoders
  5322 %}
  5324 // Conditional move double reg-reg
  5325 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  5326     single_instruction;
  5327     dst    : S4(write);
  5328     src    : S3(read);
  5329     cr     : S3(read);
  5330     DECODE : S0;        // any decoder
  5331 %}
  5333 // Float reg-reg operation
  5334 pipe_class fpu_reg(regDPR dst) %{
  5335     instruction_count(2);
  5336     dst    : S3(read);
  5337     DECODE : S0(2);     // any 2 decoders
  5338     FPU    : S3;
  5339 %}
  5341 // Float reg-reg operation
  5342 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  5343     instruction_count(2);
  5344     dst    : S4(write);
  5345     src    : S3(read);
  5346     DECODE : S0(2);     // any 2 decoders
  5347     FPU    : S3;
  5348 %}
  5350 // Float reg-reg operation
  5351 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  5352     instruction_count(3);
  5353     dst    : S4(write);
  5354     src1   : S3(read);
  5355     src2   : S3(read);
  5356     DECODE : S0(3);     // any 3 decoders
  5357     FPU    : S3(2);
  5358 %}
  5360 // Float reg-reg operation
  5361 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  5362     instruction_count(4);
  5363     dst    : S4(write);
  5364     src1   : S3(read);
  5365     src2   : S3(read);
  5366     src3   : S3(read);
  5367     DECODE : S0(4);     // any 3 decoders
  5368     FPU    : S3(2);
  5369 %}
  5371 // Float reg-reg operation
  5372 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  5373     instruction_count(4);
  5374     dst    : S4(write);
  5375     src1   : S3(read);
  5376     src2   : S3(read);
  5377     src3   : S3(read);
  5378     DECODE : S1(3);     // any 3 decoders
  5379     D0     : S0;        // Big decoder only
  5380     FPU    : S3(2);
  5381     MEM    : S3;
  5382 %}
  5384 // Float reg-mem operation
  5385 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  5386     instruction_count(2);
  5387     dst    : S5(write);
  5388     mem    : S3(read);
  5389     D0     : S0;        // big decoder only
  5390     DECODE : S1;        // any decoder for FPU POP
  5391     FPU    : S4;
  5392     MEM    : S3;        // any mem
  5393 %}
  5395 // Float reg-mem operation
  5396 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  5397     instruction_count(3);
  5398     dst    : S5(write);
  5399     src1   : S3(read);
  5400     mem    : S3(read);
  5401     D0     : S0;        // big decoder only
  5402     DECODE : S1(2);     // any decoder for FPU POP
  5403     FPU    : S4;
  5404     MEM    : S3;        // any mem
  5405 %}
  5407 // Float mem-reg operation
  5408 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  5409     instruction_count(2);
  5410     src    : S5(read);
  5411     mem    : S3(read);
  5412     DECODE : S0;        // any decoder for FPU PUSH
  5413     D0     : S1;        // big decoder only
  5414     FPU    : S4;
  5415     MEM    : S3;        // any mem
  5416 %}
  5418 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  5419     instruction_count(3);
  5420     src1   : S3(read);
  5421     src2   : S3(read);
  5422     mem    : S3(read);
  5423     DECODE : S0(2);     // any decoder for FPU PUSH
  5424     D0     : S1;        // big decoder only
  5425     FPU    : S4;
  5426     MEM    : S3;        // any mem
  5427 %}
  5429 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  5430     instruction_count(3);
  5431     src1   : S3(read);
  5432     src2   : S3(read);
  5433     mem    : S4(read);
  5434     DECODE : S0;        // any decoder for FPU PUSH
  5435     D0     : S0(2);     // big decoder only
  5436     FPU    : S4;
  5437     MEM    : S3(2);     // any mem
  5438 %}
  5440 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  5441     instruction_count(2);
  5442     src1   : S3(read);
  5443     dst    : S4(read);
  5444     D0     : S0(2);     // big decoder only
  5445     MEM    : S3(2);     // any mem
  5446 %}
  5448 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  5449     instruction_count(3);
  5450     src1   : S3(read);
  5451     src2   : S3(read);
  5452     dst    : S4(read);
  5453     D0     : S0(3);     // big decoder only
  5454     FPU    : S4;
  5455     MEM    : S3(3);     // any mem
  5456 %}
  5458 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  5459     instruction_count(3);
  5460     src1   : S4(read);
  5461     mem    : S4(read);
  5462     DECODE : S0;        // any decoder for FPU PUSH
  5463     D0     : S0(2);     // big decoder only
  5464     FPU    : S4;
  5465     MEM    : S3(2);     // any mem
  5466 %}
  5468 // Float load constant
  5469 pipe_class fpu_reg_con(regDPR dst) %{
  5470     instruction_count(2);
  5471     dst    : S5(write);
  5472     D0     : S0;        // big decoder only for the load
  5473     DECODE : S1;        // any decoder for FPU POP
  5474     FPU    : S4;
  5475     MEM    : S3;        // any mem
  5476 %}
  5478 // Float load constant
  5479 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  5480     instruction_count(3);
  5481     dst    : S5(write);
  5482     src    : S3(read);
  5483     D0     : S0;        // big decoder only for the load
  5484     DECODE : S1(2);     // any decoder for FPU POP
  5485     FPU    : S4;
  5486     MEM    : S3;        // any mem
  5487 %}
  5489 // UnConditional branch
  5490 pipe_class pipe_jmp( label labl ) %{
  5491     single_instruction;
  5492     BR   : S3;
  5493 %}
  5495 // Conditional branch
  5496 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  5497     single_instruction;
  5498     cr    : S1(read);
  5499     BR    : S3;
  5500 %}
  5502 // Allocation idiom
  5503 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  5504     instruction_count(1); force_serialization;
  5505     fixed_latency(6);
  5506     heap_ptr : S3(read);
  5507     DECODE   : S0(3);
  5508     D0       : S2;
  5509     MEM      : S3;
  5510     ALU      : S3(2);
  5511     dst      : S5(write);
  5512     BR       : S5;
  5513 %}
  5515 // Generic big/slow expanded idiom
  5516 pipe_class pipe_slow(  ) %{
  5517     instruction_count(10); multiple_bundles; force_serialization;
  5518     fixed_latency(100);
  5519     D0  : S0(2);
  5520     MEM : S3(2);
  5521 %}
  5523 // The real do-nothing guy
  5524 pipe_class empty( ) %{
  5525     instruction_count(0);
  5526 %}
  5528 // Define the class for the Nop node
  5529 define %{
  5530    MachNop = empty;
  5531 %}
  5533 %}
  5535 //----------INSTRUCTIONS-------------------------------------------------------
  5536 //
  5537 // match      -- States which machine-independent subtree may be replaced
  5538 //               by this instruction.
  5539 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5540 //               selection to identify a minimum cost tree of machine
  5541 //               instructions that matches a tree of machine-independent
  5542 //               instructions.
  5543 // format     -- A string providing the disassembly for this instruction.
  5544 //               The value of an instruction's operand may be inserted
  5545 //               by referring to it with a '$' prefix.
  5546 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5547 //               to within an encode class as $primary, $secondary, and $tertiary
  5548 //               respectively.  The primary opcode is commonly used to
  5549 //               indicate the type of machine instruction, while secondary
  5550 //               and tertiary are often used for prefix options or addressing
  5551 //               modes.
  5552 // ins_encode -- A list of encode classes with parameters. The encode class
  5553 //               name must have been defined in an 'enc_class' specification
  5554 //               in the encode section of the architecture description.
  5556 //----------BSWAP-Instruction--------------------------------------------------
  5557 instruct bytes_reverse_int(rRegI dst) %{
  5558   match(Set dst (ReverseBytesI dst));
  5560   format %{ "BSWAP  $dst" %}
  5561   opcode(0x0F, 0xC8);
  5562   ins_encode( OpcP, OpcSReg(dst) );
  5563   ins_pipe( ialu_reg );
  5564 %}
  5566 instruct bytes_reverse_long(eRegL dst) %{
  5567   match(Set dst (ReverseBytesL dst));
  5569   format %{ "BSWAP  $dst.lo\n\t"
  5570             "BSWAP  $dst.hi\n\t"
  5571             "XCHG   $dst.lo $dst.hi" %}
  5573   ins_cost(125);
  5574   ins_encode( bswap_long_bytes(dst) );
  5575   ins_pipe( ialu_reg_reg);
  5576 %}
  5578 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
  5579   match(Set dst (ReverseBytesUS dst));
  5580   effect(KILL cr);
  5582   format %{ "BSWAP  $dst\n\t" 
  5583             "SHR    $dst,16\n\t" %}
  5584   ins_encode %{
  5585     __ bswapl($dst$$Register);
  5586     __ shrl($dst$$Register, 16); 
  5587   %}
  5588   ins_pipe( ialu_reg );
  5589 %}
  5591 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
  5592   match(Set dst (ReverseBytesS dst));
  5593   effect(KILL cr);
  5595   format %{ "BSWAP  $dst\n\t" 
  5596             "SAR    $dst,16\n\t" %}
  5597   ins_encode %{
  5598     __ bswapl($dst$$Register);
  5599     __ sarl($dst$$Register, 16); 
  5600   %}
  5601   ins_pipe( ialu_reg );
  5602 %}
  5605 //---------- Zeros Count Instructions ------------------------------------------
  5607 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5608   predicate(UseCountLeadingZerosInstruction);
  5609   match(Set dst (CountLeadingZerosI src));
  5610   effect(KILL cr);
  5612   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5613   ins_encode %{
  5614     __ lzcntl($dst$$Register, $src$$Register);
  5615   %}
  5616   ins_pipe(ialu_reg);
  5617 %}
  5619 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
  5620   predicate(!UseCountLeadingZerosInstruction);
  5621   match(Set dst (CountLeadingZerosI src));
  5622   effect(KILL cr);
  5624   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5625             "JNZ    skip\n\t"
  5626             "MOV    $dst, -1\n"
  5627       "skip:\n\t"
  5628             "NEG    $dst\n\t"
  5629             "ADD    $dst, 31" %}
  5630   ins_encode %{
  5631     Register Rdst = $dst$$Register;
  5632     Register Rsrc = $src$$Register;
  5633     Label skip;
  5634     __ bsrl(Rdst, Rsrc);
  5635     __ jccb(Assembler::notZero, skip);
  5636     __ movl(Rdst, -1);
  5637     __ bind(skip);
  5638     __ negl(Rdst);
  5639     __ addl(Rdst, BitsPerInt - 1);
  5640   %}
  5641   ins_pipe(ialu_reg);
  5642 %}
  5644 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5645   predicate(UseCountLeadingZerosInstruction);
  5646   match(Set dst (CountLeadingZerosL src));
  5647   effect(TEMP dst, KILL cr);
  5649   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5650             "JNC    done\n\t"
  5651             "LZCNT  $dst, $src.lo\n\t"
  5652             "ADD    $dst, 32\n"
  5653       "done:" %}
  5654   ins_encode %{
  5655     Register Rdst = $dst$$Register;
  5656     Register Rsrc = $src$$Register;
  5657     Label done;
  5658     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5659     __ jccb(Assembler::carryClear, done);
  5660     __ lzcntl(Rdst, Rsrc);
  5661     __ addl(Rdst, BitsPerInt);
  5662     __ bind(done);
  5663   %}
  5664   ins_pipe(ialu_reg);
  5665 %}
  5667 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
  5668   predicate(!UseCountLeadingZerosInstruction);
  5669   match(Set dst (CountLeadingZerosL src));
  5670   effect(TEMP dst, KILL cr);
  5672   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5673             "JZ     msw_is_zero\n\t"
  5674             "ADD    $dst, 32\n\t"
  5675             "JMP    not_zero\n"
  5676       "msw_is_zero:\n\t"
  5677             "BSR    $dst, $src.lo\n\t"
  5678             "JNZ    not_zero\n\t"
  5679             "MOV    $dst, -1\n"
  5680       "not_zero:\n\t"
  5681             "NEG    $dst\n\t"
  5682             "ADD    $dst, 63\n" %}
  5683  ins_encode %{
  5684     Register Rdst = $dst$$Register;
  5685     Register Rsrc = $src$$Register;
  5686     Label msw_is_zero;
  5687     Label not_zero;
  5688     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5689     __ jccb(Assembler::zero, msw_is_zero);
  5690     __ addl(Rdst, BitsPerInt);
  5691     __ jmpb(not_zero);
  5692     __ bind(msw_is_zero);
  5693     __ bsrl(Rdst, Rsrc);
  5694     __ jccb(Assembler::notZero, not_zero);
  5695     __ movl(Rdst, -1);
  5696     __ bind(not_zero);
  5697     __ negl(Rdst);
  5698     __ addl(Rdst, BitsPerLong - 1);
  5699   %}
  5700   ins_pipe(ialu_reg);
  5701 %}
  5703 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5704   match(Set dst (CountTrailingZerosI src));
  5705   effect(KILL cr);
  5707   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5708             "JNZ    done\n\t"
  5709             "MOV    $dst, 32\n"
  5710       "done:" %}
  5711   ins_encode %{
  5712     Register Rdst = $dst$$Register;
  5713     Label done;
  5714     __ bsfl(Rdst, $src$$Register);
  5715     __ jccb(Assembler::notZero, done);
  5716     __ movl(Rdst, BitsPerInt);
  5717     __ bind(done);
  5718   %}
  5719   ins_pipe(ialu_reg);
  5720 %}
  5722 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5723   match(Set dst (CountTrailingZerosL src));
  5724   effect(TEMP dst, KILL cr);
  5726   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5727             "JNZ    done\n\t"
  5728             "BSF    $dst, $src.hi\n\t"
  5729             "JNZ    msw_not_zero\n\t"
  5730             "MOV    $dst, 32\n"
  5731       "msw_not_zero:\n\t"
  5732             "ADD    $dst, 32\n"
  5733       "done:" %}
  5734   ins_encode %{
  5735     Register Rdst = $dst$$Register;
  5736     Register Rsrc = $src$$Register;
  5737     Label msw_not_zero;
  5738     Label done;
  5739     __ bsfl(Rdst, Rsrc);
  5740     __ jccb(Assembler::notZero, done);
  5741     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5742     __ jccb(Assembler::notZero, msw_not_zero);
  5743     __ movl(Rdst, BitsPerInt);
  5744     __ bind(msw_not_zero);
  5745     __ addl(Rdst, BitsPerInt);
  5746     __ bind(done);
  5747   %}
  5748   ins_pipe(ialu_reg);
  5749 %}
  5752 //---------- Population Count Instructions -------------------------------------
  5754 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5755   predicate(UsePopCountInstruction);
  5756   match(Set dst (PopCountI src));
  5757   effect(KILL cr);
  5759   format %{ "POPCNT $dst, $src" %}
  5760   ins_encode %{
  5761     __ popcntl($dst$$Register, $src$$Register);
  5762   %}
  5763   ins_pipe(ialu_reg);
  5764 %}
  5766 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
  5767   predicate(UsePopCountInstruction);
  5768   match(Set dst (PopCountI (LoadI mem)));
  5769   effect(KILL cr);
  5771   format %{ "POPCNT $dst, $mem" %}
  5772   ins_encode %{
  5773     __ popcntl($dst$$Register, $mem$$Address);
  5774   %}
  5775   ins_pipe(ialu_reg);
  5776 %}
  5778 // Note: Long.bitCount(long) returns an int.
  5779 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  5780   predicate(UsePopCountInstruction);
  5781   match(Set dst (PopCountL src));
  5782   effect(KILL cr, TEMP tmp, TEMP dst);
  5784   format %{ "POPCNT $dst, $src.lo\n\t"
  5785             "POPCNT $tmp, $src.hi\n\t"
  5786             "ADD    $dst, $tmp" %}
  5787   ins_encode %{
  5788     __ popcntl($dst$$Register, $src$$Register);
  5789     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5790     __ addl($dst$$Register, $tmp$$Register);
  5791   %}
  5792   ins_pipe(ialu_reg);
  5793 %}
  5795 // Note: Long.bitCount(long) returns an int.
  5796 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
  5797   predicate(UsePopCountInstruction);
  5798   match(Set dst (PopCountL (LoadL mem)));
  5799   effect(KILL cr, TEMP tmp, TEMP dst);
  5801   format %{ "POPCNT $dst, $mem\n\t"
  5802             "POPCNT $tmp, $mem+4\n\t"
  5803             "ADD    $dst, $tmp" %}
  5804   ins_encode %{
  5805     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5806     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5807     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
  5808     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
  5809     __ addl($dst$$Register, $tmp$$Register);
  5810   %}
  5811   ins_pipe(ialu_reg);
  5812 %}
  5815 //----------Load/Store/Move Instructions---------------------------------------
  5816 //----------Load Instructions--------------------------------------------------
  5817 // Load Byte (8bit signed)
  5818 instruct loadB(xRegI dst, memory mem) %{
  5819   match(Set dst (LoadB mem));
  5821   ins_cost(125);
  5822   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5824   ins_encode %{
  5825     __ movsbl($dst$$Register, $mem$$Address);
  5826   %}
  5828   ins_pipe(ialu_reg_mem);
  5829 %}
  5831 // Load Byte (8bit signed) into Long Register
  5832 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5833   match(Set dst (ConvI2L (LoadB mem)));
  5834   effect(KILL cr);
  5836   ins_cost(375);
  5837   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5838             "MOV    $dst.hi,$dst.lo\n\t"
  5839             "SAR    $dst.hi,7" %}
  5841   ins_encode %{
  5842     __ movsbl($dst$$Register, $mem$$Address);
  5843     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5844     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5845   %}
  5847   ins_pipe(ialu_reg_mem);
  5848 %}
  5850 // Load Unsigned Byte (8bit UNsigned)
  5851 instruct loadUB(xRegI dst, memory mem) %{
  5852   match(Set dst (LoadUB mem));
  5854   ins_cost(125);
  5855   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5857   ins_encode %{
  5858     __ movzbl($dst$$Register, $mem$$Address);
  5859   %}
  5861   ins_pipe(ialu_reg_mem);
  5862 %}
  5864 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5865 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5866   match(Set dst (ConvI2L (LoadUB mem)));
  5867   effect(KILL cr);
  5869   ins_cost(250);
  5870   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5871             "XOR    $dst.hi,$dst.hi" %}
  5873   ins_encode %{
  5874     Register Rdst = $dst$$Register;
  5875     __ movzbl(Rdst, $mem$$Address);
  5876     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5877   %}
  5879   ins_pipe(ialu_reg_mem);
  5880 %}
  5882 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5883 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5884   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5885   effect(KILL cr);
  5887   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5888             "XOR    $dst.hi,$dst.hi\n\t"
  5889             "AND    $dst.lo,$mask" %}
  5890   ins_encode %{
  5891     Register Rdst = $dst$$Register;
  5892     __ movzbl(Rdst, $mem$$Address);
  5893     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5894     __ andl(Rdst, $mask$$constant);
  5895   %}
  5896   ins_pipe(ialu_reg_mem);
  5897 %}
  5899 // Load Short (16bit signed)
  5900 instruct loadS(rRegI dst, memory mem) %{
  5901   match(Set dst (LoadS mem));
  5903   ins_cost(125);
  5904   format %{ "MOVSX  $dst,$mem\t# short" %}
  5906   ins_encode %{
  5907     __ movswl($dst$$Register, $mem$$Address);
  5908   %}
  5910   ins_pipe(ialu_reg_mem);
  5911 %}
  5913 // Load Short (16 bit signed) to Byte (8 bit signed)
  5914 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5915   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5917   ins_cost(125);
  5918   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5919   ins_encode %{
  5920     __ movsbl($dst$$Register, $mem$$Address);
  5921   %}
  5922   ins_pipe(ialu_reg_mem);
  5923 %}
  5925 // Load Short (16bit signed) into Long Register
  5926 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5927   match(Set dst (ConvI2L (LoadS mem)));
  5928   effect(KILL cr);
  5930   ins_cost(375);
  5931   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5932             "MOV    $dst.hi,$dst.lo\n\t"
  5933             "SAR    $dst.hi,15" %}
  5935   ins_encode %{
  5936     __ movswl($dst$$Register, $mem$$Address);
  5937     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5938     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5939   %}
  5941   ins_pipe(ialu_reg_mem);
  5942 %}
  5944 // Load Unsigned Short/Char (16bit unsigned)
  5945 instruct loadUS(rRegI dst, memory mem) %{
  5946   match(Set dst (LoadUS mem));
  5948   ins_cost(125);
  5949   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5951   ins_encode %{
  5952     __ movzwl($dst$$Register, $mem$$Address);
  5953   %}
  5955   ins_pipe(ialu_reg_mem);
  5956 %}
  5958 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5959 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5960   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5962   ins_cost(125);
  5963   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  5964   ins_encode %{
  5965     __ movsbl($dst$$Register, $mem$$Address);
  5966   %}
  5967   ins_pipe(ialu_reg_mem);
  5968 %}
  5970 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  5971 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5972   match(Set dst (ConvI2L (LoadUS mem)));
  5973   effect(KILL cr);
  5975   ins_cost(250);
  5976   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  5977             "XOR    $dst.hi,$dst.hi" %}
  5979   ins_encode %{
  5980     __ movzwl($dst$$Register, $mem$$Address);
  5981     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5982   %}
  5984   ins_pipe(ialu_reg_mem);
  5985 %}
  5987 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  5988 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5989   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5990   effect(KILL cr);
  5992   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  5993             "XOR    $dst.hi,$dst.hi" %}
  5994   ins_encode %{
  5995     Register Rdst = $dst$$Register;
  5996     __ movzbl(Rdst, $mem$$Address);
  5997     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5998   %}
  5999   ins_pipe(ialu_reg_mem);
  6000 %}
  6002 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6003 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6004   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6005   effect(KILL cr);
  6007   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6008             "XOR    $dst.hi,$dst.hi\n\t"
  6009             "AND    $dst.lo,$mask" %}
  6010   ins_encode %{
  6011     Register Rdst = $dst$$Register;
  6012     __ movzwl(Rdst, $mem$$Address);
  6013     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6014     __ andl(Rdst, $mask$$constant);
  6015   %}
  6016   ins_pipe(ialu_reg_mem);
  6017 %}
  6019 // Load Integer
  6020 instruct loadI(rRegI dst, memory mem) %{
  6021   match(Set dst (LoadI mem));
  6023   ins_cost(125);
  6024   format %{ "MOV    $dst,$mem\t# int" %}
  6026   ins_encode %{
  6027     __ movl($dst$$Register, $mem$$Address);
  6028   %}
  6030   ins_pipe(ialu_reg_mem);
  6031 %}
  6033 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6034 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  6035   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6037   ins_cost(125);
  6038   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6039   ins_encode %{
  6040     __ movsbl($dst$$Register, $mem$$Address);
  6041   %}
  6042   ins_pipe(ialu_reg_mem);
  6043 %}
  6045 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6046 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
  6047   match(Set dst (AndI (LoadI mem) mask));
  6049   ins_cost(125);
  6050   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6051   ins_encode %{
  6052     __ movzbl($dst$$Register, $mem$$Address);
  6053   %}
  6054   ins_pipe(ialu_reg_mem);
  6055 %}
  6057 // Load Integer (32 bit signed) to Short (16 bit signed)
  6058 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
  6059   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6061   ins_cost(125);
  6062   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6063   ins_encode %{
  6064     __ movswl($dst$$Register, $mem$$Address);
  6065   %}
  6066   ins_pipe(ialu_reg_mem);
  6067 %}
  6069 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6070 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
  6071   match(Set dst (AndI (LoadI mem) mask));
  6073   ins_cost(125);
  6074   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6075   ins_encode %{
  6076     __ movzwl($dst$$Register, $mem$$Address);
  6077   %}
  6078   ins_pipe(ialu_reg_mem);
  6079 %}
  6081 // Load Integer into Long Register
  6082 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6083   match(Set dst (ConvI2L (LoadI mem)));
  6084   effect(KILL cr);
  6086   ins_cost(375);
  6087   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6088             "MOV    $dst.hi,$dst.lo\n\t"
  6089             "SAR    $dst.hi,31" %}
  6091   ins_encode %{
  6092     __ movl($dst$$Register, $mem$$Address);
  6093     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6094     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6095   %}
  6097   ins_pipe(ialu_reg_mem);
  6098 %}
  6100 // Load Integer with mask 0xFF into Long Register
  6101 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6102   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6103   effect(KILL cr);
  6105   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6106             "XOR    $dst.hi,$dst.hi" %}
  6107   ins_encode %{
  6108     Register Rdst = $dst$$Register;
  6109     __ movzbl(Rdst, $mem$$Address);
  6110     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6111   %}
  6112   ins_pipe(ialu_reg_mem);
  6113 %}
  6115 // Load Integer with mask 0xFFFF into Long Register
  6116 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6117   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6118   effect(KILL cr);
  6120   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6121             "XOR    $dst.hi,$dst.hi" %}
  6122   ins_encode %{
  6123     Register Rdst = $dst$$Register;
  6124     __ movzwl(Rdst, $mem$$Address);
  6125     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6126   %}
  6127   ins_pipe(ialu_reg_mem);
  6128 %}
  6130 // Load Integer with 32-bit mask into Long Register
  6131 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6132   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6133   effect(KILL cr);
  6135   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6136             "XOR    $dst.hi,$dst.hi\n\t"
  6137             "AND    $dst.lo,$mask" %}
  6138   ins_encode %{
  6139     Register Rdst = $dst$$Register;
  6140     __ movl(Rdst, $mem$$Address);
  6141     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6142     __ andl(Rdst, $mask$$constant);
  6143   %}
  6144   ins_pipe(ialu_reg_mem);
  6145 %}
  6147 // Load Unsigned Integer into Long Register
  6148 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
  6149   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  6150   effect(KILL cr);
  6152   ins_cost(250);
  6153   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6154             "XOR    $dst.hi,$dst.hi" %}
  6156   ins_encode %{
  6157     __ movl($dst$$Register, $mem$$Address);
  6158     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6159   %}
  6161   ins_pipe(ialu_reg_mem);
  6162 %}
  6164 // Load Long.  Cannot clobber address while loading, so restrict address
  6165 // register to ESI
  6166 instruct loadL(eRegL dst, load_long_memory mem) %{
  6167   predicate(!((LoadLNode*)n)->require_atomic_access());
  6168   match(Set dst (LoadL mem));
  6170   ins_cost(250);
  6171   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6172             "MOV    $dst.hi,$mem+4" %}
  6174   ins_encode %{
  6175     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
  6176     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
  6177     __ movl($dst$$Register, Amemlo);
  6178     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6179   %}
  6181   ins_pipe(ialu_reg_long_mem);
  6182 %}
  6184 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6185 // then store it down to the stack and reload on the int
  6186 // side.
  6187 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6188   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6189   match(Set dst (LoadL mem));
  6191   ins_cost(200);
  6192   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6193             "FISTp  $dst" %}
  6194   ins_encode(enc_loadL_volatile(mem,dst));
  6195   ins_pipe( fpu_reg_mem );
  6196 %}
  6198 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  6199   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6200   match(Set dst (LoadL mem));
  6201   effect(TEMP tmp);
  6202   ins_cost(180);
  6203   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6204             "MOVSD  $dst,$tmp" %}
  6205   ins_encode %{
  6206     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6207     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  6208   %}
  6209   ins_pipe( pipe_slow );
  6210 %}
  6212 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  6213   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6214   match(Set dst (LoadL mem));
  6215   effect(TEMP tmp);
  6216   ins_cost(160);
  6217   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6218             "MOVD   $dst.lo,$tmp\n\t"
  6219             "PSRLQ  $tmp,32\n\t"
  6220             "MOVD   $dst.hi,$tmp" %}
  6221   ins_encode %{
  6222     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6223     __ movdl($dst$$Register, $tmp$$XMMRegister);
  6224     __ psrlq($tmp$$XMMRegister, 32);
  6225     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  6226   %}
  6227   ins_pipe( pipe_slow );
  6228 %}
  6230 // Load Range
  6231 instruct loadRange(rRegI dst, memory mem) %{
  6232   match(Set dst (LoadRange mem));
  6234   ins_cost(125);
  6235   format %{ "MOV    $dst,$mem" %}
  6236   opcode(0x8B);
  6237   ins_encode( OpcP, RegMem(dst,mem));
  6238   ins_pipe( ialu_reg_mem );
  6239 %}
  6242 // Load Pointer
  6243 instruct loadP(eRegP dst, memory mem) %{
  6244   match(Set dst (LoadP mem));
  6246   ins_cost(125);
  6247   format %{ "MOV    $dst,$mem" %}
  6248   opcode(0x8B);
  6249   ins_encode( OpcP, RegMem(dst,mem));
  6250   ins_pipe( ialu_reg_mem );
  6251 %}
  6253 // Load Klass Pointer
  6254 instruct loadKlass(eRegP dst, memory mem) %{
  6255   match(Set dst (LoadKlass mem));
  6257   ins_cost(125);
  6258   format %{ "MOV    $dst,$mem" %}
  6259   opcode(0x8B);
  6260   ins_encode( OpcP, RegMem(dst,mem));
  6261   ins_pipe( ialu_reg_mem );
  6262 %}
  6264 // Load Double
  6265 instruct loadDPR(regDPR dst, memory mem) %{
  6266   predicate(UseSSE<=1);
  6267   match(Set dst (LoadD mem));
  6269   ins_cost(150);
  6270   format %{ "FLD_D  ST,$mem\n\t"
  6271             "FSTP   $dst" %}
  6272   opcode(0xDD);               /* DD /0 */
  6273   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6274               Pop_Reg_DPR(dst) );
  6275   ins_pipe( fpu_reg_mem );
  6276 %}
  6278 // Load Double to XMM
  6279 instruct loadD(regD dst, memory mem) %{
  6280   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6281   match(Set dst (LoadD mem));
  6282   ins_cost(145);
  6283   format %{ "MOVSD  $dst,$mem" %}
  6284   ins_encode %{
  6285     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6286   %}
  6287   ins_pipe( pipe_slow );
  6288 %}
  6290 instruct loadD_partial(regD dst, memory mem) %{
  6291   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6292   match(Set dst (LoadD mem));
  6293   ins_cost(145);
  6294   format %{ "MOVLPD $dst,$mem" %}
  6295   ins_encode %{
  6296     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6297   %}
  6298   ins_pipe( pipe_slow );
  6299 %}
  6301 // Load to XMM register (single-precision floating point)
  6302 // MOVSS instruction
  6303 instruct loadF(regF dst, memory mem) %{
  6304   predicate(UseSSE>=1);
  6305   match(Set dst (LoadF mem));
  6306   ins_cost(145);
  6307   format %{ "MOVSS  $dst,$mem" %}
  6308   ins_encode %{
  6309     __ movflt ($dst$$XMMRegister, $mem$$Address);
  6310   %}
  6311   ins_pipe( pipe_slow );
  6312 %}
  6314 // Load Float
  6315 instruct loadFPR(regFPR dst, memory mem) %{
  6316   predicate(UseSSE==0);
  6317   match(Set dst (LoadF mem));
  6319   ins_cost(150);
  6320   format %{ "FLD_S  ST,$mem\n\t"
  6321             "FSTP   $dst" %}
  6322   opcode(0xD9);               /* D9 /0 */
  6323   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6324               Pop_Reg_FPR(dst) );
  6325   ins_pipe( fpu_reg_mem );
  6326 %}
  6328 // Load Effective Address
  6329 instruct leaP8(eRegP dst, indOffset8 mem) %{
  6330   match(Set dst mem);
  6332   ins_cost(110);
  6333   format %{ "LEA    $dst,$mem" %}
  6334   opcode(0x8D);
  6335   ins_encode( OpcP, RegMem(dst,mem));
  6336   ins_pipe( ialu_reg_reg_fat );
  6337 %}
  6339 instruct leaP32(eRegP dst, indOffset32 mem) %{
  6340   match(Set dst mem);
  6342   ins_cost(110);
  6343   format %{ "LEA    $dst,$mem" %}
  6344   opcode(0x8D);
  6345   ins_encode( OpcP, RegMem(dst,mem));
  6346   ins_pipe( ialu_reg_reg_fat );
  6347 %}
  6349 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  6350   match(Set dst mem);
  6352   ins_cost(110);
  6353   format %{ "LEA    $dst,$mem" %}
  6354   opcode(0x8D);
  6355   ins_encode( OpcP, RegMem(dst,mem));
  6356   ins_pipe( ialu_reg_reg_fat );
  6357 %}
  6359 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  6360   match(Set dst mem);
  6362   ins_cost(110);
  6363   format %{ "LEA    $dst,$mem" %}
  6364   opcode(0x8D);
  6365   ins_encode( OpcP, RegMem(dst,mem));
  6366   ins_pipe( ialu_reg_reg_fat );
  6367 %}
  6369 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  6370   match(Set dst mem);
  6372   ins_cost(110);
  6373   format %{ "LEA    $dst,$mem" %}
  6374   opcode(0x8D);
  6375   ins_encode( OpcP, RegMem(dst,mem));
  6376   ins_pipe( ialu_reg_reg_fat );
  6377 %}
  6379 // Load Constant
  6380 instruct loadConI(rRegI dst, immI src) %{
  6381   match(Set dst src);
  6383   format %{ "MOV    $dst,$src" %}
  6384   ins_encode( LdImmI(dst, src) );
  6385   ins_pipe( ialu_reg_fat );
  6386 %}
  6388 // Load Constant zero
  6389 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
  6390   match(Set dst src);
  6391   effect(KILL cr);
  6393   ins_cost(50);
  6394   format %{ "XOR    $dst,$dst" %}
  6395   opcode(0x33);  /* + rd */
  6396   ins_encode( OpcP, RegReg( dst, dst ) );
  6397   ins_pipe( ialu_reg );
  6398 %}
  6400 instruct loadConP(eRegP dst, immP src) %{
  6401   match(Set dst src);
  6403   format %{ "MOV    $dst,$src" %}
  6404   opcode(0xB8);  /* + rd */
  6405   ins_encode( LdImmP(dst, src) );
  6406   ins_pipe( ialu_reg_fat );
  6407 %}
  6409 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  6410   match(Set dst src);
  6411   effect(KILL cr);
  6412   ins_cost(200);
  6413   format %{ "MOV    $dst.lo,$src.lo\n\t"
  6414             "MOV    $dst.hi,$src.hi" %}
  6415   opcode(0xB8);
  6416   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  6417   ins_pipe( ialu_reg_long_fat );
  6418 %}
  6420 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  6421   match(Set dst src);
  6422   effect(KILL cr);
  6423   ins_cost(150);
  6424   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  6425             "XOR    $dst.hi,$dst.hi" %}
  6426   opcode(0x33,0x33);
  6427   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  6428   ins_pipe( ialu_reg_long );
  6429 %}
  6431 // The instruction usage is guarded by predicate in operand immFPR().
  6432 instruct loadConFPR(regFPR dst, immFPR con) %{
  6433   match(Set dst con);
  6434   ins_cost(125);
  6435   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  6436             "FSTP   $dst" %}
  6437   ins_encode %{
  6438     __ fld_s($constantaddress($con));
  6439     __ fstp_d($dst$$reg);
  6440   %}
  6441   ins_pipe(fpu_reg_con);
  6442 %}
  6444 // The instruction usage is guarded by predicate in operand immFPR0().
  6445 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  6446   match(Set dst con);
  6447   ins_cost(125);
  6448   format %{ "FLDZ   ST\n\t"
  6449             "FSTP   $dst" %}
  6450   ins_encode %{
  6451     __ fldz();
  6452     __ fstp_d($dst$$reg);
  6453   %}
  6454   ins_pipe(fpu_reg_con);
  6455 %}
  6457 // The instruction usage is guarded by predicate in operand immFPR1().
  6458 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  6459   match(Set dst con);
  6460   ins_cost(125);
  6461   format %{ "FLD1   ST\n\t"
  6462             "FSTP   $dst" %}
  6463   ins_encode %{
  6464     __ fld1();
  6465     __ fstp_d($dst$$reg);
  6466   %}
  6467   ins_pipe(fpu_reg_con);
  6468 %}
  6470 // The instruction usage is guarded by predicate in operand immF().
  6471 instruct loadConF(regF dst, immF con) %{
  6472   match(Set dst con);
  6473   ins_cost(125);
  6474   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  6475   ins_encode %{
  6476     __ movflt($dst$$XMMRegister, $constantaddress($con));
  6477   %}
  6478   ins_pipe(pipe_slow);
  6479 %}
  6481 // The instruction usage is guarded by predicate in operand immF0().
  6482 instruct loadConF0(regF dst, immF0 src) %{
  6483   match(Set dst src);
  6484   ins_cost(100);
  6485   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6486   ins_encode %{
  6487     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  6488   %}
  6489   ins_pipe(pipe_slow);
  6490 %}
  6492 // The instruction usage is guarded by predicate in operand immDPR().
  6493 instruct loadConDPR(regDPR dst, immDPR con) %{
  6494   match(Set dst con);
  6495   ins_cost(125);
  6497   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  6498             "FSTP   $dst" %}
  6499   ins_encode %{
  6500     __ fld_d($constantaddress($con));
  6501     __ fstp_d($dst$$reg);
  6502   %}
  6503   ins_pipe(fpu_reg_con);
  6504 %}
  6506 // The instruction usage is guarded by predicate in operand immDPR0().
  6507 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  6508   match(Set dst con);
  6509   ins_cost(125);
  6511   format %{ "FLDZ   ST\n\t"
  6512             "FSTP   $dst" %}
  6513   ins_encode %{
  6514     __ fldz();
  6515     __ fstp_d($dst$$reg);
  6516   %}
  6517   ins_pipe(fpu_reg_con);
  6518 %}
  6520 // The instruction usage is guarded by predicate in operand immDPR1().
  6521 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  6522   match(Set dst con);
  6523   ins_cost(125);
  6525   format %{ "FLD1   ST\n\t"
  6526             "FSTP   $dst" %}
  6527   ins_encode %{
  6528     __ fld1();
  6529     __ fstp_d($dst$$reg);
  6530   %}
  6531   ins_pipe(fpu_reg_con);
  6532 %}
  6534 // The instruction usage is guarded by predicate in operand immD().
  6535 instruct loadConD(regD dst, immD con) %{
  6536   match(Set dst con);
  6537   ins_cost(125);
  6538   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  6539   ins_encode %{
  6540     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  6541   %}
  6542   ins_pipe(pipe_slow);
  6543 %}
  6545 // The instruction usage is guarded by predicate in operand immD0().
  6546 instruct loadConD0(regD dst, immD0 src) %{
  6547   match(Set dst src);
  6548   ins_cost(100);
  6549   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6550   ins_encode %{
  6551     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6552   %}
  6553   ins_pipe( pipe_slow );
  6554 %}
  6556 // Load Stack Slot
  6557 instruct loadSSI(rRegI dst, stackSlotI src) %{
  6558   match(Set dst src);
  6559   ins_cost(125);
  6561   format %{ "MOV    $dst,$src" %}
  6562   opcode(0x8B);
  6563   ins_encode( OpcP, RegMem(dst,src));
  6564   ins_pipe( ialu_reg_mem );
  6565 %}
  6567 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6568   match(Set dst src);
  6570   ins_cost(200);
  6571   format %{ "MOV    $dst,$src.lo\n\t"
  6572             "MOV    $dst+4,$src.hi" %}
  6573   opcode(0x8B, 0x8B);
  6574   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6575   ins_pipe( ialu_mem_long_reg );
  6576 %}
  6578 // Load Stack Slot
  6579 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6580   match(Set dst src);
  6581   ins_cost(125);
  6583   format %{ "MOV    $dst,$src" %}
  6584   opcode(0x8B);
  6585   ins_encode( OpcP, RegMem(dst,src));
  6586   ins_pipe( ialu_reg_mem );
  6587 %}
  6589 // Load Stack Slot
  6590 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6591   match(Set dst src);
  6592   ins_cost(125);
  6594   format %{ "FLD_S  $src\n\t"
  6595             "FSTP   $dst" %}
  6596   opcode(0xD9);               /* D9 /0, FLD m32real */
  6597   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6598               Pop_Reg_FPR(dst) );
  6599   ins_pipe( fpu_reg_mem );
  6600 %}
  6602 // Load Stack Slot
  6603 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6604   match(Set dst src);
  6605   ins_cost(125);
  6607   format %{ "FLD_D  $src\n\t"
  6608             "FSTP   $dst" %}
  6609   opcode(0xDD);               /* DD /0, FLD m64real */
  6610   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6611               Pop_Reg_DPR(dst) );
  6612   ins_pipe( fpu_reg_mem );
  6613 %}
  6615 // Prefetch instructions.
  6616 // Must be safe to execute with invalid address (cannot fault).
  6618 instruct prefetchr0( memory mem ) %{
  6619   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6620   match(PrefetchRead mem);
  6621   ins_cost(0);
  6622   size(0);
  6623   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6624   ins_encode();
  6625   ins_pipe(empty);
  6626 %}
  6628 instruct prefetchr( memory mem ) %{
  6629   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6630   match(PrefetchRead mem);
  6631   ins_cost(100);
  6633   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6634   ins_encode %{
  6635     __ prefetchr($mem$$Address);
  6636   %}
  6637   ins_pipe(ialu_mem);
  6638 %}
  6640 instruct prefetchrNTA( memory mem ) %{
  6641   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6642   match(PrefetchRead mem);
  6643   ins_cost(100);
  6645   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6646   ins_encode %{
  6647     __ prefetchnta($mem$$Address);
  6648   %}
  6649   ins_pipe(ialu_mem);
  6650 %}
  6652 instruct prefetchrT0( memory mem ) %{
  6653   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6654   match(PrefetchRead mem);
  6655   ins_cost(100);
  6657   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6658   ins_encode %{
  6659     __ prefetcht0($mem$$Address);
  6660   %}
  6661   ins_pipe(ialu_mem);
  6662 %}
  6664 instruct prefetchrT2( memory mem ) %{
  6665   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6666   match(PrefetchRead mem);
  6667   ins_cost(100);
  6669   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6670   ins_encode %{
  6671     __ prefetcht2($mem$$Address);
  6672   %}
  6673   ins_pipe(ialu_mem);
  6674 %}
  6676 instruct prefetchw0( memory mem ) %{
  6677   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6678   match(PrefetchWrite mem);
  6679   ins_cost(0);
  6680   size(0);
  6681   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6682   ins_encode();
  6683   ins_pipe(empty);
  6684 %}
  6686 instruct prefetchw( memory mem ) %{
  6687   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6688   match( PrefetchWrite mem );
  6689   ins_cost(100);
  6691   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6692   ins_encode %{
  6693     __ prefetchw($mem$$Address);
  6694   %}
  6695   ins_pipe(ialu_mem);
  6696 %}
  6698 instruct prefetchwNTA( memory mem ) %{
  6699   predicate(UseSSE>=1);
  6700   match(PrefetchWrite mem);
  6701   ins_cost(100);
  6703   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6704   ins_encode %{
  6705     __ prefetchnta($mem$$Address);
  6706   %}
  6707   ins_pipe(ialu_mem);
  6708 %}
  6710 // Prefetch instructions for allocation.
  6712 instruct prefetchAlloc0( memory mem ) %{
  6713   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6714   match(PrefetchAllocation mem);
  6715   ins_cost(0);
  6716   size(0);
  6717   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6718   ins_encode();
  6719   ins_pipe(empty);
  6720 %}
  6722 instruct prefetchAlloc( memory mem ) %{
  6723   predicate(AllocatePrefetchInstr==3);
  6724   match( PrefetchAllocation mem );
  6725   ins_cost(100);
  6727   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6728   ins_encode %{
  6729     __ prefetchw($mem$$Address);
  6730   %}
  6731   ins_pipe(ialu_mem);
  6732 %}
  6734 instruct prefetchAllocNTA( memory mem ) %{
  6735   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6736   match(PrefetchAllocation mem);
  6737   ins_cost(100);
  6739   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6740   ins_encode %{
  6741     __ prefetchnta($mem$$Address);
  6742   %}
  6743   ins_pipe(ialu_mem);
  6744 %}
  6746 instruct prefetchAllocT0( memory mem ) %{
  6747   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6748   match(PrefetchAllocation mem);
  6749   ins_cost(100);
  6751   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6752   ins_encode %{
  6753     __ prefetcht0($mem$$Address);
  6754   %}
  6755   ins_pipe(ialu_mem);
  6756 %}
  6758 instruct prefetchAllocT2( memory mem ) %{
  6759   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6760   match(PrefetchAllocation mem);
  6761   ins_cost(100);
  6763   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6764   ins_encode %{
  6765     __ prefetcht2($mem$$Address);
  6766   %}
  6767   ins_pipe(ialu_mem);
  6768 %}
  6770 //----------Store Instructions-------------------------------------------------
  6772 // Store Byte
  6773 instruct storeB(memory mem, xRegI src) %{
  6774   match(Set mem (StoreB mem src));
  6776   ins_cost(125);
  6777   format %{ "MOV8   $mem,$src" %}
  6778   opcode(0x88);
  6779   ins_encode( OpcP, RegMem( src, mem ) );
  6780   ins_pipe( ialu_mem_reg );
  6781 %}
  6783 // Store Char/Short
  6784 instruct storeC(memory mem, rRegI src) %{
  6785   match(Set mem (StoreC mem src));
  6787   ins_cost(125);
  6788   format %{ "MOV16  $mem,$src" %}
  6789   opcode(0x89, 0x66);
  6790   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6791   ins_pipe( ialu_mem_reg );
  6792 %}
  6794 // Store Integer
  6795 instruct storeI(memory mem, rRegI src) %{
  6796   match(Set mem (StoreI mem src));
  6798   ins_cost(125);
  6799   format %{ "MOV    $mem,$src" %}
  6800   opcode(0x89);
  6801   ins_encode( OpcP, RegMem( src, mem ) );
  6802   ins_pipe( ialu_mem_reg );
  6803 %}
  6805 // Store Long
  6806 instruct storeL(long_memory mem, eRegL src) %{
  6807   predicate(!((StoreLNode*)n)->require_atomic_access());
  6808   match(Set mem (StoreL mem src));
  6810   ins_cost(200);
  6811   format %{ "MOV    $mem,$src.lo\n\t"
  6812             "MOV    $mem+4,$src.hi" %}
  6813   opcode(0x89, 0x89);
  6814   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6815   ins_pipe( ialu_mem_long_reg );
  6816 %}
  6818 // Store Long to Integer
  6819 instruct storeL2I(memory mem, eRegL src) %{
  6820   match(Set mem (StoreI mem (ConvL2I src)));
  6822   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6823   ins_encode %{
  6824     __ movl($mem$$Address, $src$$Register);
  6825   %}
  6826   ins_pipe(ialu_mem_reg);
  6827 %}
  6829 // Volatile Store Long.  Must be atomic, so move it into
  6830 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6831 // target address before the store (for null-ptr checks)
  6832 // so the memory operand is used twice in the encoding.
  6833 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6834   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6835   match(Set mem (StoreL mem src));
  6836   effect( KILL cr );
  6837   ins_cost(400);
  6838   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6839             "FILD   $src\n\t"
  6840             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6841   opcode(0x3B);
  6842   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6843   ins_pipe( fpu_reg_mem );
  6844 %}
  6846 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6847   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6848   match(Set mem (StoreL mem src));
  6849   effect( TEMP tmp, KILL cr );
  6850   ins_cost(380);
  6851   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6852             "MOVSD  $tmp,$src\n\t"
  6853             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6854   ins_encode %{
  6855     __ cmpl(rax, $mem$$Address);
  6856     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6857     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6858   %}
  6859   ins_pipe( pipe_slow );
  6860 %}
  6862 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6863   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6864   match(Set mem (StoreL mem src));
  6865   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6866   ins_cost(360);
  6867   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6868             "MOVD   $tmp,$src.lo\n\t"
  6869             "MOVD   $tmp2,$src.hi\n\t"
  6870             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6871             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6872   ins_encode %{
  6873     __ cmpl(rax, $mem$$Address);
  6874     __ movdl($tmp$$XMMRegister, $src$$Register);
  6875     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6876     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6877     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6878   %}
  6879   ins_pipe( pipe_slow );
  6880 %}
  6882 // Store Pointer; for storing unknown oops and raw pointers
  6883 instruct storeP(memory mem, anyRegP src) %{
  6884   match(Set mem (StoreP mem src));
  6886   ins_cost(125);
  6887   format %{ "MOV    $mem,$src" %}
  6888   opcode(0x89);
  6889   ins_encode( OpcP, RegMem( src, mem ) );
  6890   ins_pipe( ialu_mem_reg );
  6891 %}
  6893 // Store Integer Immediate
  6894 instruct storeImmI(memory mem, immI src) %{
  6895   match(Set mem (StoreI mem src));
  6897   ins_cost(150);
  6898   format %{ "MOV    $mem,$src" %}
  6899   opcode(0xC7);               /* C7 /0 */
  6900   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6901   ins_pipe( ialu_mem_imm );
  6902 %}
  6904 // Store Short/Char Immediate
  6905 instruct storeImmI16(memory mem, immI16 src) %{
  6906   predicate(UseStoreImmI16);
  6907   match(Set mem (StoreC mem src));
  6909   ins_cost(150);
  6910   format %{ "MOV16  $mem,$src" %}
  6911   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  6912   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  6913   ins_pipe( ialu_mem_imm );
  6914 %}
  6916 // Store Pointer Immediate; null pointers or constant oops that do not
  6917 // need card-mark barriers.
  6918 instruct storeImmP(memory mem, immP src) %{
  6919   match(Set mem (StoreP mem src));
  6921   ins_cost(150);
  6922   format %{ "MOV    $mem,$src" %}
  6923   opcode(0xC7);               /* C7 /0 */
  6924   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6925   ins_pipe( ialu_mem_imm );
  6926 %}
  6928 // Store Byte Immediate
  6929 instruct storeImmB(memory mem, immI8 src) %{
  6930   match(Set mem (StoreB mem src));
  6932   ins_cost(150);
  6933   format %{ "MOV8   $mem,$src" %}
  6934   opcode(0xC6);               /* C6 /0 */
  6935   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6936   ins_pipe( ialu_mem_imm );
  6937 %}
  6939 // Store CMS card-mark Immediate
  6940 instruct storeImmCM(memory mem, immI8 src) %{
  6941   match(Set mem (StoreCM mem src));
  6943   ins_cost(150);
  6944   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  6945   opcode(0xC6);               /* C6 /0 */
  6946   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6947   ins_pipe( ialu_mem_imm );
  6948 %}
  6950 // Store Double
  6951 instruct storeDPR( memory mem, regDPR1 src) %{
  6952   predicate(UseSSE<=1);
  6953   match(Set mem (StoreD mem src));
  6955   ins_cost(100);
  6956   format %{ "FST_D  $mem,$src" %}
  6957   opcode(0xDD);       /* DD /2 */
  6958   ins_encode( enc_FPR_store(mem,src) );
  6959   ins_pipe( fpu_mem_reg );
  6960 %}
  6962 // Store double does rounding on x86
  6963 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  6964   predicate(UseSSE<=1);
  6965   match(Set mem (StoreD mem (RoundDouble src)));
  6967   ins_cost(100);
  6968   format %{ "FST_D  $mem,$src\t# round" %}
  6969   opcode(0xDD);       /* DD /2 */
  6970   ins_encode( enc_FPR_store(mem,src) );
  6971   ins_pipe( fpu_mem_reg );
  6972 %}
  6974 // Store XMM register to memory (double-precision floating points)
  6975 // MOVSD instruction
  6976 instruct storeD(memory mem, regD src) %{
  6977   predicate(UseSSE>=2);
  6978   match(Set mem (StoreD mem src));
  6979   ins_cost(95);
  6980   format %{ "MOVSD  $mem,$src" %}
  6981   ins_encode %{
  6982     __ movdbl($mem$$Address, $src$$XMMRegister);
  6983   %}
  6984   ins_pipe( pipe_slow );
  6985 %}
  6987 // Store XMM register to memory (single-precision floating point)
  6988 // MOVSS instruction
  6989 instruct storeF(memory mem, regF src) %{
  6990   predicate(UseSSE>=1);
  6991   match(Set mem (StoreF mem src));
  6992   ins_cost(95);
  6993   format %{ "MOVSS  $mem,$src" %}
  6994   ins_encode %{
  6995     __ movflt($mem$$Address, $src$$XMMRegister);
  6996   %}
  6997   ins_pipe( pipe_slow );
  6998 %}
  7000 // Store Float
  7001 instruct storeFPR( memory mem, regFPR1 src) %{
  7002   predicate(UseSSE==0);
  7003   match(Set mem (StoreF mem src));
  7005   ins_cost(100);
  7006   format %{ "FST_S  $mem,$src" %}
  7007   opcode(0xD9);       /* D9 /2 */
  7008   ins_encode( enc_FPR_store(mem,src) );
  7009   ins_pipe( fpu_mem_reg );
  7010 %}
  7012 // Store Float does rounding on x86
  7013 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  7014   predicate(UseSSE==0);
  7015   match(Set mem (StoreF mem (RoundFloat src)));
  7017   ins_cost(100);
  7018   format %{ "FST_S  $mem,$src\t# round" %}
  7019   opcode(0xD9);       /* D9 /2 */
  7020   ins_encode( enc_FPR_store(mem,src) );
  7021   ins_pipe( fpu_mem_reg );
  7022 %}
  7024 // Store Float does rounding on x86
  7025 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  7026   predicate(UseSSE<=1);
  7027   match(Set mem (StoreF mem (ConvD2F src)));
  7029   ins_cost(100);
  7030   format %{ "FST_S  $mem,$src\t# D-round" %}
  7031   opcode(0xD9);       /* D9 /2 */
  7032   ins_encode( enc_FPR_store(mem,src) );
  7033   ins_pipe( fpu_mem_reg );
  7034 %}
  7036 // Store immediate Float value (it is faster than store from FPU register)
  7037 // The instruction usage is guarded by predicate in operand immFPR().
  7038 instruct storeFPR_imm( memory mem, immFPR src) %{
  7039   match(Set mem (StoreF mem src));
  7041   ins_cost(50);
  7042   format %{ "MOV    $mem,$src\t# store float" %}
  7043   opcode(0xC7);               /* C7 /0 */
  7044   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  7045   ins_pipe( ialu_mem_imm );
  7046 %}
  7048 // Store immediate Float value (it is faster than store from XMM register)
  7049 // The instruction usage is guarded by predicate in operand immF().
  7050 instruct storeF_imm( memory mem, immF src) %{
  7051   match(Set mem (StoreF mem src));
  7053   ins_cost(50);
  7054   format %{ "MOV    $mem,$src\t# store float" %}
  7055   opcode(0xC7);               /* C7 /0 */
  7056   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7057   ins_pipe( ialu_mem_imm );
  7058 %}
  7060 // Store Integer to stack slot
  7061 instruct storeSSI(stackSlotI dst, rRegI src) %{
  7062   match(Set dst src);
  7064   ins_cost(100);
  7065   format %{ "MOV    $dst,$src" %}
  7066   opcode(0x89);
  7067   ins_encode( OpcPRegSS( dst, src ) );
  7068   ins_pipe( ialu_mem_reg );
  7069 %}
  7071 // Store Integer to stack slot
  7072 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7073   match(Set dst src);
  7075   ins_cost(100);
  7076   format %{ "MOV    $dst,$src" %}
  7077   opcode(0x89);
  7078   ins_encode( OpcPRegSS( dst, src ) );
  7079   ins_pipe( ialu_mem_reg );
  7080 %}
  7082 // Store Long to stack slot
  7083 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7084   match(Set dst src);
  7086   ins_cost(200);
  7087   format %{ "MOV    $dst,$src.lo\n\t"
  7088             "MOV    $dst+4,$src.hi" %}
  7089   opcode(0x89, 0x89);
  7090   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7091   ins_pipe( ialu_mem_long_reg );
  7092 %}
  7094 //----------MemBar Instructions-----------------------------------------------
  7095 // Memory barrier flavors
  7097 instruct membar_acquire() %{
  7098   match(MemBarAcquire);
  7099   match(LoadFence);
  7100   ins_cost(400);
  7102   size(0);
  7103   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7104   ins_encode();
  7105   ins_pipe(empty);
  7106 %}
  7108 instruct membar_acquire_lock() %{
  7109   match(MemBarAcquireLock);
  7110   ins_cost(0);
  7112   size(0);
  7113   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7114   ins_encode( );
  7115   ins_pipe(empty);
  7116 %}
  7118 instruct membar_release() %{
  7119   match(MemBarRelease);
  7120   match(StoreFence);
  7121   ins_cost(400);
  7123   size(0);
  7124   format %{ "MEMBAR-release ! (empty encoding)" %}
  7125   ins_encode( );
  7126   ins_pipe(empty);
  7127 %}
  7129 instruct membar_release_lock() %{
  7130   match(MemBarReleaseLock);
  7131   ins_cost(0);
  7133   size(0);
  7134   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7135   ins_encode( );
  7136   ins_pipe(empty);
  7137 %}
  7139 instruct membar_volatile(eFlagsReg cr) %{
  7140   match(MemBarVolatile);
  7141   effect(KILL cr);
  7142   ins_cost(400);
  7144   format %{ 
  7145     $$template
  7146     if (os::is_MP()) {
  7147       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7148     } else {
  7149       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7151   %}
  7152   ins_encode %{
  7153     __ membar(Assembler::StoreLoad);
  7154   %}
  7155   ins_pipe(pipe_slow);
  7156 %}
  7158 instruct unnecessary_membar_volatile() %{
  7159   match(MemBarVolatile);
  7160   predicate(Matcher::post_store_load_barrier(n));
  7161   ins_cost(0);
  7163   size(0);
  7164   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7165   ins_encode( );
  7166   ins_pipe(empty);
  7167 %}
  7169 instruct membar_storestore() %{
  7170   match(MemBarStoreStore);
  7171   ins_cost(0);
  7173   size(0);
  7174   format %{ "MEMBAR-storestore (empty encoding)" %}
  7175   ins_encode( );
  7176   ins_pipe(empty);
  7177 %}
  7179 //----------Move Instructions--------------------------------------------------
  7180 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7181   match(Set dst (CastX2P src));
  7182   format %{ "# X2P  $dst, $src" %}
  7183   ins_encode( /*empty encoding*/ );
  7184   ins_cost(0);
  7185   ins_pipe(empty);
  7186 %}
  7188 instruct castP2X(rRegI dst, eRegP src ) %{
  7189   match(Set dst (CastP2X src));
  7190   ins_cost(50);
  7191   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7192   ins_encode( enc_Copy( dst, src) );
  7193   ins_pipe( ialu_reg_reg );
  7194 %}
  7196 //----------Conditional Move---------------------------------------------------
  7197 // Conditional move
  7198 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
  7199   predicate(!VM_Version::supports_cmov() );
  7200   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7201   ins_cost(200);
  7202   format %{ "J$cop,us skip\t# signed cmove\n\t"
  7203             "MOV    $dst,$src\n"
  7204       "skip:" %}
  7205   ins_encode %{
  7206     Label Lskip;
  7207     // Invert sense of branch from sense of CMOV
  7208     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7209     __ movl($dst$$Register, $src$$Register);
  7210     __ bind(Lskip);
  7211   %}
  7212   ins_pipe( pipe_cmov_reg );
  7213 %}
  7215 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
  7216   predicate(!VM_Version::supports_cmov() );
  7217   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7218   ins_cost(200);
  7219   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  7220             "MOV    $dst,$src\n"
  7221       "skip:" %}
  7222   ins_encode %{
  7223     Label Lskip;
  7224     // Invert sense of branch from sense of CMOV
  7225     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7226     __ movl($dst$$Register, $src$$Register);
  7227     __ bind(Lskip);
  7228   %}
  7229   ins_pipe( pipe_cmov_reg );
  7230 %}
  7232 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
  7233   predicate(VM_Version::supports_cmov() );
  7234   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7235   ins_cost(200);
  7236   format %{ "CMOV$cop $dst,$src" %}
  7237   opcode(0x0F,0x40);
  7238   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7239   ins_pipe( pipe_cmov_reg );
  7240 %}
  7242 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
  7243   predicate(VM_Version::supports_cmov() );
  7244   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7245   ins_cost(200);
  7246   format %{ "CMOV$cop $dst,$src" %}
  7247   opcode(0x0F,0x40);
  7248   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7249   ins_pipe( pipe_cmov_reg );
  7250 %}
  7252 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
  7253   predicate(VM_Version::supports_cmov() );
  7254   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7255   ins_cost(200);
  7256   expand %{
  7257     cmovI_regU(cop, cr, dst, src);
  7258   %}
  7259 %}
  7261 // Conditional move
  7262 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
  7263   predicate(VM_Version::supports_cmov() );
  7264   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7265   ins_cost(250);
  7266   format %{ "CMOV$cop $dst,$src" %}
  7267   opcode(0x0F,0x40);
  7268   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7269   ins_pipe( pipe_cmov_mem );
  7270 %}
  7272 // Conditional move
  7273 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
  7274   predicate(VM_Version::supports_cmov() );
  7275   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7276   ins_cost(250);
  7277   format %{ "CMOV$cop $dst,$src" %}
  7278   opcode(0x0F,0x40);
  7279   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7280   ins_pipe( pipe_cmov_mem );
  7281 %}
  7283 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
  7284   predicate(VM_Version::supports_cmov() );
  7285   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7286   ins_cost(250);
  7287   expand %{
  7288     cmovI_memU(cop, cr, dst, src);
  7289   %}
  7290 %}
  7292 // Conditional move
  7293 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7294   predicate(VM_Version::supports_cmov() );
  7295   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7296   ins_cost(200);
  7297   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7298   opcode(0x0F,0x40);
  7299   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7300   ins_pipe( pipe_cmov_reg );
  7301 %}
  7303 // Conditional move (non-P6 version)
  7304 // Note:  a CMoveP is generated for  stubs and native wrappers
  7305 //        regardless of whether we are on a P6, so we
  7306 //        emulate a cmov here
  7307 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7308   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7309   ins_cost(300);
  7310   format %{ "Jn$cop   skip\n\t"
  7311           "MOV    $dst,$src\t# pointer\n"
  7312       "skip:" %}
  7313   opcode(0x8b);
  7314   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7315   ins_pipe( pipe_cmov_reg );
  7316 %}
  7318 // Conditional move
  7319 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7320   predicate(VM_Version::supports_cmov() );
  7321   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7322   ins_cost(200);
  7323   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7324   opcode(0x0F,0x40);
  7325   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7326   ins_pipe( pipe_cmov_reg );
  7327 %}
  7329 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7330   predicate(VM_Version::supports_cmov() );
  7331   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7332   ins_cost(200);
  7333   expand %{
  7334     cmovP_regU(cop, cr, dst, src);
  7335   %}
  7336 %}
  7338 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7339 // correctly meets the two pointer arguments; one is an incoming
  7340 // register but the other is a memory operand.  ALSO appears to
  7341 // be buggy with implicit null checks.
  7342 //
  7343 //// Conditional move
  7344 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7345 //  predicate(VM_Version::supports_cmov() );
  7346 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7347 //  ins_cost(250);
  7348 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7349 //  opcode(0x0F,0x40);
  7350 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7351 //  ins_pipe( pipe_cmov_mem );
  7352 //%}
  7353 //
  7354 //// Conditional move
  7355 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7356 //  predicate(VM_Version::supports_cmov() );
  7357 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7358 //  ins_cost(250);
  7359 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7360 //  opcode(0x0F,0x40);
  7361 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7362 //  ins_pipe( pipe_cmov_mem );
  7363 //%}
  7365 // Conditional move
  7366 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  7367   predicate(UseSSE<=1);
  7368   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7369   ins_cost(200);
  7370   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7371   opcode(0xDA);
  7372   ins_encode( enc_cmov_dpr(cop,src) );
  7373   ins_pipe( pipe_cmovDPR_reg );
  7374 %}
  7376 // Conditional move
  7377 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  7378   predicate(UseSSE==0);
  7379   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7380   ins_cost(200);
  7381   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7382   opcode(0xDA);
  7383   ins_encode( enc_cmov_dpr(cop,src) );
  7384   ins_pipe( pipe_cmovDPR_reg );
  7385 %}
  7387 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7388 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  7389   predicate(UseSSE<=1);
  7390   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7391   ins_cost(200);
  7392   format %{ "Jn$cop   skip\n\t"
  7393             "MOV    $dst,$src\t# double\n"
  7394       "skip:" %}
  7395   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7396   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  7397   ins_pipe( pipe_cmovDPR_reg );
  7398 %}
  7400 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7401 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  7402   predicate(UseSSE==0);
  7403   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7404   ins_cost(200);
  7405   format %{ "Jn$cop    skip\n\t"
  7406             "MOV    $dst,$src\t# float\n"
  7407       "skip:" %}
  7408   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7409   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  7410   ins_pipe( pipe_cmovDPR_reg );
  7411 %}
  7413 // No CMOVE with SSE/SSE2
  7414 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7415   predicate (UseSSE>=1);
  7416   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7417   ins_cost(200);
  7418   format %{ "Jn$cop   skip\n\t"
  7419             "MOVSS  $dst,$src\t# float\n"
  7420       "skip:" %}
  7421   ins_encode %{
  7422     Label skip;
  7423     // Invert sense of branch from sense of CMOV
  7424     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7425     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7426     __ bind(skip);
  7427   %}
  7428   ins_pipe( pipe_slow );
  7429 %}
  7431 // No CMOVE with SSE/SSE2
  7432 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7433   predicate (UseSSE>=2);
  7434   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7435   ins_cost(200);
  7436   format %{ "Jn$cop   skip\n\t"
  7437             "MOVSD  $dst,$src\t# float\n"
  7438       "skip:" %}
  7439   ins_encode %{
  7440     Label skip;
  7441     // Invert sense of branch from sense of CMOV
  7442     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7443     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7444     __ bind(skip);
  7445   %}
  7446   ins_pipe( pipe_slow );
  7447 %}
  7449 // unsigned version
  7450 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  7451   predicate (UseSSE>=1);
  7452   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7453   ins_cost(200);
  7454   format %{ "Jn$cop   skip\n\t"
  7455             "MOVSS  $dst,$src\t# float\n"
  7456       "skip:" %}
  7457   ins_encode %{
  7458     Label skip;
  7459     // Invert sense of branch from sense of CMOV
  7460     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7461     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7462     __ bind(skip);
  7463   %}
  7464   ins_pipe( pipe_slow );
  7465 %}
  7467 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  7468   predicate (UseSSE>=1);
  7469   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7470   ins_cost(200);
  7471   expand %{
  7472     fcmovF_regU(cop, cr, dst, src);
  7473   %}
  7474 %}
  7476 // unsigned version
  7477 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  7478   predicate (UseSSE>=2);
  7479   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7480   ins_cost(200);
  7481   format %{ "Jn$cop   skip\n\t"
  7482             "MOVSD  $dst,$src\t# float\n"
  7483       "skip:" %}
  7484   ins_encode %{
  7485     Label skip;
  7486     // Invert sense of branch from sense of CMOV
  7487     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7488     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7489     __ bind(skip);
  7490   %}
  7491   ins_pipe( pipe_slow );
  7492 %}
  7494 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  7495   predicate (UseSSE>=2);
  7496   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7497   ins_cost(200);
  7498   expand %{
  7499     fcmovD_regU(cop, cr, dst, src);
  7500   %}
  7501 %}
  7503 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7504   predicate(VM_Version::supports_cmov() );
  7505   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7506   ins_cost(200);
  7507   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7508             "CMOV$cop $dst.hi,$src.hi" %}
  7509   opcode(0x0F,0x40);
  7510   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7511   ins_pipe( pipe_cmov_reg_long );
  7512 %}
  7514 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7515   predicate(VM_Version::supports_cmov() );
  7516   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7517   ins_cost(200);
  7518   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7519             "CMOV$cop $dst.hi,$src.hi" %}
  7520   opcode(0x0F,0x40);
  7521   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7522   ins_pipe( pipe_cmov_reg_long );
  7523 %}
  7525 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7526   predicate(VM_Version::supports_cmov() );
  7527   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7528   ins_cost(200);
  7529   expand %{
  7530     cmovL_regU(cop, cr, dst, src);
  7531   %}
  7532 %}
  7534 //----------Arithmetic Instructions--------------------------------------------
  7535 //----------Addition Instructions----------------------------------------------
  7537 instruct addExactI_eReg(eAXRegI dst, rRegI src, eFlagsReg cr)
  7538 %{
  7539   match(AddExactI dst src);
  7540   effect(DEF cr);
  7542   format %{ "ADD    $dst, $src\t# addExact int" %}
  7543   ins_encode %{
  7544     __ addl($dst$$Register, $src$$Register);
  7545   %}
  7546   ins_pipe(ialu_reg_reg);
  7547 %}
  7549 instruct addExactI_eReg_imm(eAXRegI dst, immI src, eFlagsReg cr)
  7550 %{
  7551   match(AddExactI dst src);
  7552   effect(DEF cr);
  7554   format %{ "ADD    $dst, $src\t# addExact int" %}
  7555   ins_encode %{
  7556     __ addl($dst$$Register, $src$$constant);
  7557   %}
  7558   ins_pipe(ialu_reg_reg);
  7559 %}
  7561 instruct addExactI_eReg_mem(eAXRegI dst, memory src, eFlagsReg cr)
  7562 %{
  7563   match(AddExactI dst (LoadI src));
  7564   effect(DEF cr);
  7566   ins_cost(125);
  7567   format %{ "ADD    $dst,$src\t# addExact int" %}
  7568   ins_encode %{
  7569     __ addl($dst$$Register, $src$$Address);
  7570   %}
  7571   ins_pipe( ialu_reg_mem );
  7572 %}
  7575 // Integer Addition Instructions
  7576 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7577   match(Set dst (AddI dst src));
  7578   effect(KILL cr);
  7580   size(2);
  7581   format %{ "ADD    $dst,$src" %}
  7582   opcode(0x03);
  7583   ins_encode( OpcP, RegReg( dst, src) );
  7584   ins_pipe( ialu_reg_reg );
  7585 %}
  7587 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7588   match(Set dst (AddI dst src));
  7589   effect(KILL cr);
  7591   format %{ "ADD    $dst,$src" %}
  7592   opcode(0x81, 0x00); /* /0 id */
  7593   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7594   ins_pipe( ialu_reg );
  7595 %}
  7597 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
  7598   predicate(UseIncDec);
  7599   match(Set dst (AddI dst src));
  7600   effect(KILL cr);
  7602   size(1);
  7603   format %{ "INC    $dst" %}
  7604   opcode(0x40); /*  */
  7605   ins_encode( Opc_plus( primary, dst ) );
  7606   ins_pipe( ialu_reg );
  7607 %}
  7609 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
  7610   match(Set dst (AddI src0 src1));
  7611   ins_cost(110);
  7613   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7614   opcode(0x8D); /* 0x8D /r */
  7615   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7616   ins_pipe( ialu_reg_reg );
  7617 %}
  7619 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7620   match(Set dst (AddP src0 src1));
  7621   ins_cost(110);
  7623   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7624   opcode(0x8D); /* 0x8D /r */
  7625   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7626   ins_pipe( ialu_reg_reg );
  7627 %}
  7629 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
  7630   predicate(UseIncDec);
  7631   match(Set dst (AddI dst src));
  7632   effect(KILL cr);
  7634   size(1);
  7635   format %{ "DEC    $dst" %}
  7636   opcode(0x48); /*  */
  7637   ins_encode( Opc_plus( primary, dst ) );
  7638   ins_pipe( ialu_reg );
  7639 %}
  7641 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
  7642   match(Set dst (AddP dst src));
  7643   effect(KILL cr);
  7645   size(2);
  7646   format %{ "ADD    $dst,$src" %}
  7647   opcode(0x03);
  7648   ins_encode( OpcP, RegReg( dst, src) );
  7649   ins_pipe( ialu_reg_reg );
  7650 %}
  7652 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7653   match(Set dst (AddP dst src));
  7654   effect(KILL cr);
  7656   format %{ "ADD    $dst,$src" %}
  7657   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7658   // ins_encode( RegImm( dst, src) );
  7659   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7660   ins_pipe( ialu_reg );
  7661 %}
  7663 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7664   match(Set dst (AddI dst (LoadI src)));
  7665   effect(KILL cr);
  7667   ins_cost(125);
  7668   format %{ "ADD    $dst,$src" %}
  7669   opcode(0x03);
  7670   ins_encode( OpcP, RegMem( dst, src) );
  7671   ins_pipe( ialu_reg_mem );
  7672 %}
  7674 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7675   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7676   effect(KILL cr);
  7678   ins_cost(150);
  7679   format %{ "ADD    $dst,$src" %}
  7680   opcode(0x01);  /* Opcode 01 /r */
  7681   ins_encode( OpcP, RegMem( src, dst ) );
  7682   ins_pipe( ialu_mem_reg );
  7683 %}
  7685 // Add Memory with Immediate
  7686 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7687   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7688   effect(KILL cr);
  7690   ins_cost(125);
  7691   format %{ "ADD    $dst,$src" %}
  7692   opcode(0x81);               /* Opcode 81 /0 id */
  7693   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7694   ins_pipe( ialu_mem_imm );
  7695 %}
  7697 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7698   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7699   effect(KILL cr);
  7701   ins_cost(125);
  7702   format %{ "INC    $dst" %}
  7703   opcode(0xFF);               /* Opcode FF /0 */
  7704   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7705   ins_pipe( ialu_mem_imm );
  7706 %}
  7708 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7709   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7710   effect(KILL cr);
  7712   ins_cost(125);
  7713   format %{ "DEC    $dst" %}
  7714   opcode(0xFF);               /* Opcode FF /1 */
  7715   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7716   ins_pipe( ialu_mem_imm );
  7717 %}
  7720 instruct checkCastPP( eRegP dst ) %{
  7721   match(Set dst (CheckCastPP dst));
  7723   size(0);
  7724   format %{ "#checkcastPP of $dst" %}
  7725   ins_encode( /*empty encoding*/ );
  7726   ins_pipe( empty );
  7727 %}
  7729 instruct castPP( eRegP dst ) %{
  7730   match(Set dst (CastPP dst));
  7731   format %{ "#castPP of $dst" %}
  7732   ins_encode( /*empty encoding*/ );
  7733   ins_pipe( empty );
  7734 %}
  7736 instruct castII( rRegI dst ) %{
  7737   match(Set dst (CastII dst));
  7738   format %{ "#castII of $dst" %}
  7739   ins_encode( /*empty encoding*/ );
  7740   ins_cost(0);
  7741   ins_pipe( empty );
  7742 %}
  7745 // Load-locked - same as a regular pointer load when used with compare-swap
  7746 instruct loadPLocked(eRegP dst, memory mem) %{
  7747   match(Set dst (LoadPLocked mem));
  7749   ins_cost(125);
  7750   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7751   opcode(0x8B);
  7752   ins_encode( OpcP, RegMem(dst,mem));
  7753   ins_pipe( ialu_reg_mem );
  7754 %}
  7756 // Conditional-store of the updated heap-top.
  7757 // Used during allocation of the shared heap.
  7758 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7759 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7760   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7761   // EAX is killed if there is contention, but then it's also unused.
  7762   // In the common case of no contention, EAX holds the new oop address.
  7763   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7764   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7765   ins_pipe( pipe_cmpxchg );
  7766 %}
  7768 // Conditional-store of an int value.
  7769 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7770 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
  7771   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7772   effect(KILL oldval);
  7773   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7774   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7775   ins_pipe( pipe_cmpxchg );
  7776 %}
  7778 // Conditional-store of a long value.
  7779 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7780 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7781   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7782   effect(KILL oldval);
  7783   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7784             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7785             "XCHG   EBX,ECX"
  7786   %}
  7787   ins_encode %{
  7788     // Note: we need to swap rbx, and rcx before and after the
  7789     //       cmpxchg8 instruction because the instruction uses
  7790     //       rcx as the high order word of the new value to store but
  7791     //       our register encoding uses rbx.
  7792     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7793     if( os::is_MP() )
  7794       __ lock();
  7795     __ cmpxchg8($mem$$Address);
  7796     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7797   %}
  7798   ins_pipe( pipe_cmpxchg );
  7799 %}
  7801 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7803 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7804   predicate(VM_Version::supports_cx8());
  7805   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7806   effect(KILL cr, KILL oldval);
  7807   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7808             "MOV    $res,0\n\t"
  7809             "JNE,s  fail\n\t"
  7810             "MOV    $res,1\n"
  7811           "fail:" %}
  7812   ins_encode( enc_cmpxchg8(mem_ptr),
  7813               enc_flags_ne_to_boolean(res) );
  7814   ins_pipe( pipe_cmpxchg );
  7815 %}
  7817 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7818   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7819   effect(KILL cr, KILL oldval);
  7820   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7821             "MOV    $res,0\n\t"
  7822             "JNE,s  fail\n\t"
  7823             "MOV    $res,1\n"
  7824           "fail:" %}
  7825   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7826   ins_pipe( pipe_cmpxchg );
  7827 %}
  7829 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7830   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7831   effect(KILL cr, KILL oldval);
  7832   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7833             "MOV    $res,0\n\t"
  7834             "JNE,s  fail\n\t"
  7835             "MOV    $res,1\n"
  7836           "fail:" %}
  7837   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7838   ins_pipe( pipe_cmpxchg );
  7839 %}
  7841 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
  7842   predicate(n->as_LoadStore()->result_not_used());
  7843   match(Set dummy (GetAndAddI mem add));
  7844   effect(KILL cr);
  7845   format %{ "ADDL  [$mem],$add" %}
  7846   ins_encode %{
  7847     if (os::is_MP()) { __ lock(); }
  7848     __ addl($mem$$Address, $add$$constant);
  7849   %}
  7850   ins_pipe( pipe_cmpxchg );
  7851 %}
  7853 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
  7854   match(Set newval (GetAndAddI mem newval));
  7855   effect(KILL cr);
  7856   format %{ "XADDL  [$mem],$newval" %}
  7857   ins_encode %{
  7858     if (os::is_MP()) { __ lock(); }
  7859     __ xaddl($mem$$Address, $newval$$Register);
  7860   %}
  7861   ins_pipe( pipe_cmpxchg );
  7862 %}
  7864 instruct xchgI( memory mem, rRegI newval) %{
  7865   match(Set newval (GetAndSetI mem newval));
  7866   format %{ "XCHGL  $newval,[$mem]" %}
  7867   ins_encode %{
  7868     __ xchgl($newval$$Register, $mem$$Address);
  7869   %}
  7870   ins_pipe( pipe_cmpxchg );
  7871 %}
  7873 instruct xchgP( memory mem, pRegP newval) %{
  7874   match(Set newval (GetAndSetP mem newval));
  7875   format %{ "XCHGL  $newval,[$mem]" %}
  7876   ins_encode %{
  7877     __ xchgl($newval$$Register, $mem$$Address);
  7878   %}
  7879   ins_pipe( pipe_cmpxchg );
  7880 %}
  7882 //----------Subtraction Instructions-------------------------------------------
  7884 instruct subExactI_eReg(eAXRegI dst, rRegI src, eFlagsReg cr)
  7885 %{
  7886   match(SubExactI dst src);
  7887   effect(DEF cr);
  7889   format %{ "SUB    $dst, $src\t# subExact int" %}
  7890   ins_encode %{
  7891     __ subl($dst$$Register, $src$$Register);
  7892   %}
  7893   ins_pipe(ialu_reg_reg);
  7894 %}
  7896 instruct subExactI_eReg_imm(eAXRegI dst, immI src, eFlagsReg cr)
  7897 %{
  7898   match(SubExactI dst src);
  7899   effect(DEF cr);
  7901   format %{ "SUB    $dst, $src\t# subExact int" %}
  7902   ins_encode %{
  7903     __ subl($dst$$Register, $src$$constant);
  7904   %}
  7905   ins_pipe(ialu_reg_reg);
  7906 %}
  7908 instruct subExactI_eReg_mem(eAXRegI dst, memory src, eFlagsReg cr)
  7909 %{
  7910   match(SubExactI dst (LoadI src));
  7911   effect(DEF cr);
  7913   ins_cost(125);
  7914   format %{ "SUB    $dst,$src\t# subExact int" %}
  7915   ins_encode %{
  7916     __ subl($dst$$Register, $src$$Address);
  7917   %}
  7918   ins_pipe( ialu_reg_mem );
  7919 %}
  7921 // Integer Subtraction Instructions
  7922 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7923   match(Set dst (SubI dst src));
  7924   effect(KILL cr);
  7926   size(2);
  7927   format %{ "SUB    $dst,$src" %}
  7928   opcode(0x2B);
  7929   ins_encode( OpcP, RegReg( dst, src) );
  7930   ins_pipe( ialu_reg_reg );
  7931 %}
  7933 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7934   match(Set dst (SubI dst src));
  7935   effect(KILL cr);
  7937   format %{ "SUB    $dst,$src" %}
  7938   opcode(0x81,0x05);  /* Opcode 81 /5 */
  7939   // ins_encode( RegImm( dst, src) );
  7940   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7941   ins_pipe( ialu_reg );
  7942 %}
  7944 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7945   match(Set dst (SubI dst (LoadI src)));
  7946   effect(KILL cr);
  7948   ins_cost(125);
  7949   format %{ "SUB    $dst,$src" %}
  7950   opcode(0x2B);
  7951   ins_encode( OpcP, RegMem( dst, src) );
  7952   ins_pipe( ialu_reg_mem );
  7953 %}
  7955 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7956   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7957   effect(KILL cr);
  7959   ins_cost(150);
  7960   format %{ "SUB    $dst,$src" %}
  7961   opcode(0x29);  /* Opcode 29 /r */
  7962   ins_encode( OpcP, RegMem( src, dst ) );
  7963   ins_pipe( ialu_mem_reg );
  7964 %}
  7966 // Subtract from a pointer
  7967 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
  7968   match(Set dst (AddP dst (SubI zero src)));
  7969   effect(KILL cr);
  7971   size(2);
  7972   format %{ "SUB    $dst,$src" %}
  7973   opcode(0x2B);
  7974   ins_encode( OpcP, RegReg( dst, src) );
  7975   ins_pipe( ialu_reg_reg );
  7976 %}
  7978 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
  7979   match(Set dst (SubI zero dst));
  7980   effect(KILL cr);
  7982   size(2);
  7983   format %{ "NEG    $dst" %}
  7984   opcode(0xF7,0x03);  // Opcode F7 /3
  7985   ins_encode( OpcP, RegOpc( dst ) );
  7986   ins_pipe( ialu_reg );
  7987 %}
  7989 instruct negExactI_eReg(eAXRegI dst, eFlagsReg cr) %{
  7990   match(NegExactI dst);
  7991   effect(DEF cr);
  7993   format %{ "NEG    $dst\t# negExact int"%}
  7994   ins_encode %{
  7995     __ negl($dst$$Register);
  7996   %}
  7997   ins_pipe(ialu_reg);
  7998 %}
  8000 //----------Multiplication/Division Instructions-------------------------------
  8001 // Integer Multiplication Instructions
  8002 // Multiply Register
  8003 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8004   match(Set dst (MulI dst src));
  8005   effect(KILL cr);
  8007   size(3);
  8008   ins_cost(300);
  8009   format %{ "IMUL   $dst,$src" %}
  8010   opcode(0xAF, 0x0F);
  8011   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8012   ins_pipe( ialu_reg_reg_alu0 );
  8013 %}
  8015 // Multiply 32-bit Immediate
  8016 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
  8017   match(Set dst (MulI src imm));
  8018   effect(KILL cr);
  8020   ins_cost(300);
  8021   format %{ "IMUL   $dst,$src,$imm" %}
  8022   opcode(0x69);  /* 69 /r id */
  8023   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8024   ins_pipe( ialu_reg_reg_alu0 );
  8025 %}
  8027 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8028   match(Set dst src);
  8029   effect(KILL cr);
  8031   // Note that this is artificially increased to make it more expensive than loadConL
  8032   ins_cost(250);
  8033   format %{ "MOV    EAX,$src\t// low word only" %}
  8034   opcode(0xB8);
  8035   ins_encode( LdImmL_Lo(dst, src) );
  8036   ins_pipe( ialu_reg_fat );
  8037 %}
  8039 // Multiply by 32-bit Immediate, taking the shifted high order results
  8040 //  (special case for shift by 32)
  8041 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8042   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8043   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8044              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8045              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8046   effect(USE src1, KILL cr);
  8048   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8049   ins_cost(0*100 + 1*400 - 150);
  8050   format %{ "IMUL   EDX:EAX,$src1" %}
  8051   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8052   ins_pipe( pipe_slow );
  8053 %}
  8055 // Multiply by 32-bit Immediate, taking the shifted high order results
  8056 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8057   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8058   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8059              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8060              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8061   effect(USE src1, KILL cr);
  8063   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8064   ins_cost(1*100 + 1*400 - 150);
  8065   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8066             "SAR    EDX,$cnt-32" %}
  8067   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8068   ins_pipe( pipe_slow );
  8069 %}
  8071 // Multiply Memory 32-bit Immediate
  8072 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8073   match(Set dst (MulI (LoadI src) imm));
  8074   effect(KILL cr);
  8076   ins_cost(300);
  8077   format %{ "IMUL   $dst,$src,$imm" %}
  8078   opcode(0x69);  /* 69 /r id */
  8079   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8080   ins_pipe( ialu_reg_mem_alu0 );
  8081 %}
  8083 // Multiply Memory
  8084 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
  8085   match(Set dst (MulI dst (LoadI src)));
  8086   effect(KILL cr);
  8088   ins_cost(350);
  8089   format %{ "IMUL   $dst,$src" %}
  8090   opcode(0xAF, 0x0F);
  8091   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8092   ins_pipe( ialu_reg_mem_alu0 );
  8093 %}
  8095 // Multiply Register Int to Long
  8096 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8097   // Basic Idea: long = (long)int * (long)int
  8098   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8099   effect(DEF dst, USE src, USE src1, KILL flags);
  8101   ins_cost(300);
  8102   format %{ "IMUL   $dst,$src1" %}
  8104   ins_encode( long_int_multiply( dst, src1 ) );
  8105   ins_pipe( ialu_reg_reg_alu0 );
  8106 %}
  8108 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8109   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8110   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8111   effect(KILL flags);
  8113   ins_cost(300);
  8114   format %{ "MUL    $dst,$src1" %}
  8116   ins_encode( long_uint_multiply(dst, src1) );
  8117   ins_pipe( ialu_reg_reg_alu0 );
  8118 %}
  8120 // Multiply Register Long
  8121 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8122   match(Set dst (MulL dst src));
  8123   effect(KILL cr, TEMP tmp);
  8124   ins_cost(4*100+3*400);
  8125 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8126 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8127   format %{ "MOV    $tmp,$src.lo\n\t"
  8128             "IMUL   $tmp,EDX\n\t"
  8129             "MOV    EDX,$src.hi\n\t"
  8130             "IMUL   EDX,EAX\n\t"
  8131             "ADD    $tmp,EDX\n\t"
  8132             "MUL    EDX:EAX,$src.lo\n\t"
  8133             "ADD    EDX,$tmp" %}
  8134   ins_encode( long_multiply( dst, src, tmp ) );
  8135   ins_pipe( pipe_slow );
  8136 %}
  8138 // Multiply Register Long where the left operand's high 32 bits are zero
  8139 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8140   predicate(is_operand_hi32_zero(n->in(1)));
  8141   match(Set dst (MulL dst src));
  8142   effect(KILL cr, TEMP tmp);
  8143   ins_cost(2*100+2*400);
  8144 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8145 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8146   format %{ "MOV    $tmp,$src.hi\n\t"
  8147             "IMUL   $tmp,EAX\n\t"
  8148             "MUL    EDX:EAX,$src.lo\n\t"
  8149             "ADD    EDX,$tmp" %}
  8150   ins_encode %{
  8151     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8152     __ imull($tmp$$Register, rax);
  8153     __ mull($src$$Register);
  8154     __ addl(rdx, $tmp$$Register);
  8155   %}
  8156   ins_pipe( pipe_slow );
  8157 %}
  8159 // Multiply Register Long where the right operand's high 32 bits are zero
  8160 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8161   predicate(is_operand_hi32_zero(n->in(2)));
  8162   match(Set dst (MulL dst src));
  8163   effect(KILL cr, TEMP tmp);
  8164   ins_cost(2*100+2*400);
  8165 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8166 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8167   format %{ "MOV    $tmp,$src.lo\n\t"
  8168             "IMUL   $tmp,EDX\n\t"
  8169             "MUL    EDX:EAX,$src.lo\n\t"
  8170             "ADD    EDX,$tmp" %}
  8171   ins_encode %{
  8172     __ movl($tmp$$Register, $src$$Register);
  8173     __ imull($tmp$$Register, rdx);
  8174     __ mull($src$$Register);
  8175     __ addl(rdx, $tmp$$Register);
  8176   %}
  8177   ins_pipe( pipe_slow );
  8178 %}
  8180 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8181 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8182   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8183   match(Set dst (MulL dst src));
  8184   effect(KILL cr);
  8185   ins_cost(1*400);
  8186 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8187 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8188   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8189   ins_encode %{
  8190     __ mull($src$$Register);
  8191   %}
  8192   ins_pipe( pipe_slow );
  8193 %}
  8195 // Multiply Register Long by small constant
  8196 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
  8197   match(Set dst (MulL dst src));
  8198   effect(KILL cr, TEMP tmp);
  8199   ins_cost(2*100+2*400);
  8200   size(12);
  8201 // Basic idea: lo(result) = lo(src * EAX)
  8202 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8203   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8204             "MOV    EDX,$src\n\t"
  8205             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8206             "ADD    EDX,$tmp" %}
  8207   ins_encode( long_multiply_con( dst, src, tmp ) );
  8208   ins_pipe( pipe_slow );
  8209 %}
  8211 instruct mulExactI_eReg(eAXRegI dst, rRegI src, eFlagsReg cr)
  8212 %{
  8213   match(MulExactI dst src);
  8214   effect(DEF cr);
  8216   ins_cost(300);
  8217   format %{ "IMUL   $dst, $src\t# mulExact int" %}
  8218   ins_encode %{
  8219     __ imull($dst$$Register, $src$$Register);
  8220   %}
  8221   ins_pipe(ialu_reg_reg_alu0);
  8222 %}
  8224 instruct mulExactI_eReg_imm(eAXRegI dst, rRegI src, immI imm, eFlagsReg cr)
  8225 %{
  8226   match(MulExactI src imm);
  8227   effect(DEF cr);
  8229   ins_cost(300);
  8230   format %{ "IMUL   $dst, $src, $imm\t# mulExact int" %}
  8231   ins_encode %{
  8232     __ imull($dst$$Register, $src$$Register, $imm$$constant);
  8233   %}
  8234   ins_pipe(ialu_reg_reg_alu0);
  8235 %}
  8237 instruct mulExactI_eReg_mem(eAXRegI dst, memory src, eFlagsReg cr)
  8238 %{
  8239   match(MulExactI dst (LoadI src));
  8240   effect(DEF cr);
  8242   ins_cost(350);
  8243   format %{ "IMUL   $dst, $src\t# mulExact int" %}
  8244   ins_encode %{
  8245     __ imull($dst$$Register, $src$$Address);
  8246   %}
  8247   ins_pipe(ialu_reg_mem_alu0);
  8248 %}
  8251 // Integer DIV with Register
  8252 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8253   match(Set rax (DivI rax div));
  8254   effect(KILL rdx, KILL cr);
  8255   size(26);
  8256   ins_cost(30*100+10*100);
  8257   format %{ "CMP    EAX,0x80000000\n\t"
  8258             "JNE,s  normal\n\t"
  8259             "XOR    EDX,EDX\n\t"
  8260             "CMP    ECX,-1\n\t"
  8261             "JE,s   done\n"
  8262     "normal: CDQ\n\t"
  8263             "IDIV   $div\n\t"
  8264     "done:"        %}
  8265   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8266   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8267   ins_pipe( ialu_reg_reg_alu0 );
  8268 %}
  8270 // Divide Register Long
  8271 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8272   match(Set dst (DivL src1 src2));
  8273   effect( KILL cr, KILL cx, KILL bx );
  8274   ins_cost(10000);
  8275   format %{ "PUSH   $src1.hi\n\t"
  8276             "PUSH   $src1.lo\n\t"
  8277             "PUSH   $src2.hi\n\t"
  8278             "PUSH   $src2.lo\n\t"
  8279             "CALL   SharedRuntime::ldiv\n\t"
  8280             "ADD    ESP,16" %}
  8281   ins_encode( long_div(src1,src2) );
  8282   ins_pipe( pipe_slow );
  8283 %}
  8285 // Integer DIVMOD with Register, both quotient and mod results
  8286 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8287   match(DivModI rax div);
  8288   effect(KILL cr);
  8289   size(26);
  8290   ins_cost(30*100+10*100);
  8291   format %{ "CMP    EAX,0x80000000\n\t"
  8292             "JNE,s  normal\n\t"
  8293             "XOR    EDX,EDX\n\t"
  8294             "CMP    ECX,-1\n\t"
  8295             "JE,s   done\n"
  8296     "normal: CDQ\n\t"
  8297             "IDIV   $div\n\t"
  8298     "done:"        %}
  8299   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8300   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8301   ins_pipe( pipe_slow );
  8302 %}
  8304 // Integer MOD with Register
  8305 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8306   match(Set rdx (ModI rax div));
  8307   effect(KILL rax, KILL cr);
  8309   size(26);
  8310   ins_cost(300);
  8311   format %{ "CDQ\n\t"
  8312             "IDIV   $div" %}
  8313   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8314   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8315   ins_pipe( ialu_reg_reg_alu0 );
  8316 %}
  8318 // Remainder Register Long
  8319 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8320   match(Set dst (ModL src1 src2));
  8321   effect( KILL cr, KILL cx, KILL bx );
  8322   ins_cost(10000);
  8323   format %{ "PUSH   $src1.hi\n\t"
  8324             "PUSH   $src1.lo\n\t"
  8325             "PUSH   $src2.hi\n\t"
  8326             "PUSH   $src2.lo\n\t"
  8327             "CALL   SharedRuntime::lrem\n\t"
  8328             "ADD    ESP,16" %}
  8329   ins_encode( long_mod(src1,src2) );
  8330   ins_pipe( pipe_slow );
  8331 %}
  8333 // Divide Register Long (no special case since divisor != -1)
  8334 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  8335   match(Set dst (DivL dst imm));
  8336   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8337   ins_cost(1000);
  8338   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8339             "XOR    $tmp2,$tmp2\n\t"
  8340             "CMP    $tmp,EDX\n\t"
  8341             "JA,s   fast\n\t"
  8342             "MOV    $tmp2,EAX\n\t"
  8343             "MOV    EAX,EDX\n\t"
  8344             "MOV    EDX,0\n\t"
  8345             "JLE,s  pos\n\t"
  8346             "LNEG   EAX : $tmp2\n\t"
  8347             "DIV    $tmp # unsigned division\n\t"
  8348             "XCHG   EAX,$tmp2\n\t"
  8349             "DIV    $tmp\n\t"
  8350             "LNEG   $tmp2 : EAX\n\t"
  8351             "JMP,s  done\n"
  8352     "pos:\n\t"
  8353             "DIV    $tmp\n\t"
  8354             "XCHG   EAX,$tmp2\n"
  8355     "fast:\n\t"
  8356             "DIV    $tmp\n"
  8357     "done:\n\t"
  8358             "MOV    EDX,$tmp2\n\t"
  8359             "NEG    EDX:EAX # if $imm < 0" %}
  8360   ins_encode %{
  8361     int con = (int)$imm$$constant;
  8362     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8363     int pcon = (con > 0) ? con : -con;
  8364     Label Lfast, Lpos, Ldone;
  8366     __ movl($tmp$$Register, pcon);
  8367     __ xorl($tmp2$$Register,$tmp2$$Register);
  8368     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8369     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8371     __ movl($tmp2$$Register, $dst$$Register); // save
  8372     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8373     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8374     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8376     // Negative dividend.
  8377     // convert value to positive to use unsigned division
  8378     __ lneg($dst$$Register, $tmp2$$Register);
  8379     __ divl($tmp$$Register);
  8380     __ xchgl($dst$$Register, $tmp2$$Register);
  8381     __ divl($tmp$$Register);
  8382     // revert result back to negative
  8383     __ lneg($tmp2$$Register, $dst$$Register);
  8384     __ jmpb(Ldone);
  8386     __ bind(Lpos);
  8387     __ divl($tmp$$Register); // Use unsigned division
  8388     __ xchgl($dst$$Register, $tmp2$$Register);
  8389     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8391     __ bind(Lfast);
  8392     // fast path: src is positive
  8393     __ divl($tmp$$Register); // Use unsigned division
  8395     __ bind(Ldone);
  8396     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8397     if (con < 0) {
  8398       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8400   %}
  8401   ins_pipe( pipe_slow );
  8402 %}
  8404 // Remainder Register Long (remainder fit into 32 bits)
  8405 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  8406   match(Set dst (ModL dst imm));
  8407   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8408   ins_cost(1000);
  8409   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8410             "CMP    $tmp,EDX\n\t"
  8411             "JA,s   fast\n\t"
  8412             "MOV    $tmp2,EAX\n\t"
  8413             "MOV    EAX,EDX\n\t"
  8414             "MOV    EDX,0\n\t"
  8415             "JLE,s  pos\n\t"
  8416             "LNEG   EAX : $tmp2\n\t"
  8417             "DIV    $tmp # unsigned division\n\t"
  8418             "MOV    EAX,$tmp2\n\t"
  8419             "DIV    $tmp\n\t"
  8420             "NEG    EDX\n\t"
  8421             "JMP,s  done\n"
  8422     "pos:\n\t"
  8423             "DIV    $tmp\n\t"
  8424             "MOV    EAX,$tmp2\n"
  8425     "fast:\n\t"
  8426             "DIV    $tmp\n"
  8427     "done:\n\t"
  8428             "MOV    EAX,EDX\n\t"
  8429             "SAR    EDX,31\n\t" %}
  8430   ins_encode %{
  8431     int con = (int)$imm$$constant;
  8432     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8433     int pcon = (con > 0) ? con : -con;
  8434     Label  Lfast, Lpos, Ldone;
  8436     __ movl($tmp$$Register, pcon);
  8437     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8438     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8440     __ movl($tmp2$$Register, $dst$$Register); // save
  8441     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8442     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8443     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8445     // Negative dividend.
  8446     // convert value to positive to use unsigned division
  8447     __ lneg($dst$$Register, $tmp2$$Register);
  8448     __ divl($tmp$$Register);
  8449     __ movl($dst$$Register, $tmp2$$Register);
  8450     __ divl($tmp$$Register);
  8451     // revert remainder back to negative
  8452     __ negl(HIGH_FROM_LOW($dst$$Register));
  8453     __ jmpb(Ldone);
  8455     __ bind(Lpos);
  8456     __ divl($tmp$$Register);
  8457     __ movl($dst$$Register, $tmp2$$Register);
  8459     __ bind(Lfast);
  8460     // fast path: src is positive
  8461     __ divl($tmp$$Register);
  8463     __ bind(Ldone);
  8464     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8465     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8467   %}
  8468   ins_pipe( pipe_slow );
  8469 %}
  8471 // Integer Shift Instructions
  8472 // Shift Left by one
  8473 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8474   match(Set dst (LShiftI dst shift));
  8475   effect(KILL cr);
  8477   size(2);
  8478   format %{ "SHL    $dst,$shift" %}
  8479   opcode(0xD1, 0x4);  /* D1 /4 */
  8480   ins_encode( OpcP, RegOpc( dst ) );
  8481   ins_pipe( ialu_reg );
  8482 %}
  8484 // Shift Left by 8-bit immediate
  8485 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8486   match(Set dst (LShiftI dst shift));
  8487   effect(KILL cr);
  8489   size(3);
  8490   format %{ "SHL    $dst,$shift" %}
  8491   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8492   ins_encode( RegOpcImm( dst, shift) );
  8493   ins_pipe( ialu_reg );
  8494 %}
  8496 // Shift Left by variable
  8497 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8498   match(Set dst (LShiftI dst shift));
  8499   effect(KILL cr);
  8501   size(2);
  8502   format %{ "SHL    $dst,$shift" %}
  8503   opcode(0xD3, 0x4);  /* D3 /4 */
  8504   ins_encode( OpcP, RegOpc( dst ) );
  8505   ins_pipe( ialu_reg_reg );
  8506 %}
  8508 // Arithmetic shift right by one
  8509 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8510   match(Set dst (RShiftI dst shift));
  8511   effect(KILL cr);
  8513   size(2);
  8514   format %{ "SAR    $dst,$shift" %}
  8515   opcode(0xD1, 0x7);  /* D1 /7 */
  8516   ins_encode( OpcP, RegOpc( dst ) );
  8517   ins_pipe( ialu_reg );
  8518 %}
  8520 // Arithmetic shift right by one
  8521 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8522   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8523   effect(KILL cr);
  8524   format %{ "SAR    $dst,$shift" %}
  8525   opcode(0xD1, 0x7);  /* D1 /7 */
  8526   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8527   ins_pipe( ialu_mem_imm );
  8528 %}
  8530 // Arithmetic Shift Right by 8-bit immediate
  8531 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8532   match(Set dst (RShiftI dst shift));
  8533   effect(KILL cr);
  8535   size(3);
  8536   format %{ "SAR    $dst,$shift" %}
  8537   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8538   ins_encode( RegOpcImm( dst, shift ) );
  8539   ins_pipe( ialu_mem_imm );
  8540 %}
  8542 // Arithmetic Shift Right by 8-bit immediate
  8543 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8544   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8545   effect(KILL cr);
  8547   format %{ "SAR    $dst,$shift" %}
  8548   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8549   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8550   ins_pipe( ialu_mem_imm );
  8551 %}
  8553 // Arithmetic Shift Right by variable
  8554 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8555   match(Set dst (RShiftI dst shift));
  8556   effect(KILL cr);
  8558   size(2);
  8559   format %{ "SAR    $dst,$shift" %}
  8560   opcode(0xD3, 0x7);  /* D3 /7 */
  8561   ins_encode( OpcP, RegOpc( dst ) );
  8562   ins_pipe( ialu_reg_reg );
  8563 %}
  8565 // Logical shift right by one
  8566 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8567   match(Set dst (URShiftI dst shift));
  8568   effect(KILL cr);
  8570   size(2);
  8571   format %{ "SHR    $dst,$shift" %}
  8572   opcode(0xD1, 0x5);  /* D1 /5 */
  8573   ins_encode( OpcP, RegOpc( dst ) );
  8574   ins_pipe( ialu_reg );
  8575 %}
  8577 // Logical Shift Right by 8-bit immediate
  8578 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8579   match(Set dst (URShiftI dst shift));
  8580   effect(KILL cr);
  8582   size(3);
  8583   format %{ "SHR    $dst,$shift" %}
  8584   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8585   ins_encode( RegOpcImm( dst, shift) );
  8586   ins_pipe( ialu_reg );
  8587 %}
  8590 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8591 // This idiom is used by the compiler for the i2b bytecode.
  8592 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
  8593   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8595   size(3);
  8596   format %{ "MOVSX  $dst,$src :8" %}
  8597   ins_encode %{
  8598     __ movsbl($dst$$Register, $src$$Register);
  8599   %}
  8600   ins_pipe(ialu_reg_reg);
  8601 %}
  8603 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8604 // This idiom is used by the compiler the i2s bytecode.
  8605 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
  8606   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8608   size(3);
  8609   format %{ "MOVSX  $dst,$src :16" %}
  8610   ins_encode %{
  8611     __ movswl($dst$$Register, $src$$Register);
  8612   %}
  8613   ins_pipe(ialu_reg_reg);
  8614 %}
  8617 // Logical Shift Right by variable
  8618 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8619   match(Set dst (URShiftI dst shift));
  8620   effect(KILL cr);
  8622   size(2);
  8623   format %{ "SHR    $dst,$shift" %}
  8624   opcode(0xD3, 0x5);  /* D3 /5 */
  8625   ins_encode( OpcP, RegOpc( dst ) );
  8626   ins_pipe( ialu_reg_reg );
  8627 %}
  8630 //----------Logical Instructions-----------------------------------------------
  8631 //----------Integer Logical Instructions---------------------------------------
  8632 // And Instructions
  8633 // And Register with Register
  8634 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8635   match(Set dst (AndI dst src));
  8636   effect(KILL cr);
  8638   size(2);
  8639   format %{ "AND    $dst,$src" %}
  8640   opcode(0x23);
  8641   ins_encode( OpcP, RegReg( dst, src) );
  8642   ins_pipe( ialu_reg_reg );
  8643 %}
  8645 // And Register with Immediate
  8646 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8647   match(Set dst (AndI dst src));
  8648   effect(KILL cr);
  8650   format %{ "AND    $dst,$src" %}
  8651   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8652   // ins_encode( RegImm( dst, src) );
  8653   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8654   ins_pipe( ialu_reg );
  8655 %}
  8657 // And Register with Memory
  8658 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8659   match(Set dst (AndI dst (LoadI src)));
  8660   effect(KILL cr);
  8662   ins_cost(125);
  8663   format %{ "AND    $dst,$src" %}
  8664   opcode(0x23);
  8665   ins_encode( OpcP, RegMem( dst, src) );
  8666   ins_pipe( ialu_reg_mem );
  8667 %}
  8669 // And Memory with Register
  8670 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8671   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8672   effect(KILL cr);
  8674   ins_cost(150);
  8675   format %{ "AND    $dst,$src" %}
  8676   opcode(0x21);  /* Opcode 21 /r */
  8677   ins_encode( OpcP, RegMem( src, dst ) );
  8678   ins_pipe( ialu_mem_reg );
  8679 %}
  8681 // And Memory with Immediate
  8682 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8683   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8684   effect(KILL cr);
  8686   ins_cost(125);
  8687   format %{ "AND    $dst,$src" %}
  8688   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8689   // ins_encode( MemImm( dst, src) );
  8690   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8691   ins_pipe( ialu_mem_imm );
  8692 %}
  8694 // Or Instructions
  8695 // Or Register with Register
  8696 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8697   match(Set dst (OrI dst src));
  8698   effect(KILL cr);
  8700   size(2);
  8701   format %{ "OR     $dst,$src" %}
  8702   opcode(0x0B);
  8703   ins_encode( OpcP, RegReg( dst, src) );
  8704   ins_pipe( ialu_reg_reg );
  8705 %}
  8707 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
  8708   match(Set dst (OrI dst (CastP2X src)));
  8709   effect(KILL cr);
  8711   size(2);
  8712   format %{ "OR     $dst,$src" %}
  8713   opcode(0x0B);
  8714   ins_encode( OpcP, RegReg( dst, src) );
  8715   ins_pipe( ialu_reg_reg );
  8716 %}
  8719 // Or Register with Immediate
  8720 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8721   match(Set dst (OrI dst src));
  8722   effect(KILL cr);
  8724   format %{ "OR     $dst,$src" %}
  8725   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8726   // ins_encode( RegImm( dst, src) );
  8727   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8728   ins_pipe( ialu_reg );
  8729 %}
  8731 // Or Register with Memory
  8732 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8733   match(Set dst (OrI dst (LoadI src)));
  8734   effect(KILL cr);
  8736   ins_cost(125);
  8737   format %{ "OR     $dst,$src" %}
  8738   opcode(0x0B);
  8739   ins_encode( OpcP, RegMem( dst, src) );
  8740   ins_pipe( ialu_reg_mem );
  8741 %}
  8743 // Or Memory with Register
  8744 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8745   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8746   effect(KILL cr);
  8748   ins_cost(150);
  8749   format %{ "OR     $dst,$src" %}
  8750   opcode(0x09);  /* Opcode 09 /r */
  8751   ins_encode( OpcP, RegMem( src, dst ) );
  8752   ins_pipe( ialu_mem_reg );
  8753 %}
  8755 // Or Memory with Immediate
  8756 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8757   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8758   effect(KILL cr);
  8760   ins_cost(125);
  8761   format %{ "OR     $dst,$src" %}
  8762   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8763   // ins_encode( MemImm( dst, src) );
  8764   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8765   ins_pipe( ialu_mem_imm );
  8766 %}
  8768 // ROL/ROR
  8769 // ROL expand
  8770 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8771   effect(USE_DEF dst, USE shift, KILL cr);
  8773   format %{ "ROL    $dst, $shift" %}
  8774   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8775   ins_encode( OpcP, RegOpc( dst ));
  8776   ins_pipe( ialu_reg );
  8777 %}
  8779 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8780   effect(USE_DEF dst, USE shift, KILL cr);
  8782   format %{ "ROL    $dst, $shift" %}
  8783   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8784   ins_encode( RegOpcImm(dst, shift) );
  8785   ins_pipe(ialu_reg);
  8786 %}
  8788 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8789   effect(USE_DEF dst, USE shift, KILL cr);
  8791   format %{ "ROL    $dst, $shift" %}
  8792   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8793   ins_encode(OpcP, RegOpc(dst));
  8794   ins_pipe( ialu_reg_reg );
  8795 %}
  8796 // end of ROL expand
  8798 // ROL 32bit by one once
  8799 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8800   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8802   expand %{
  8803     rolI_eReg_imm1(dst, lshift, cr);
  8804   %}
  8805 %}
  8807 // ROL 32bit var by imm8 once
  8808 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8809   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8810   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8812   expand %{
  8813     rolI_eReg_imm8(dst, lshift, cr);
  8814   %}
  8815 %}
  8817 // ROL 32bit var by var once
  8818 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8819   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8821   expand %{
  8822     rolI_eReg_CL(dst, shift, cr);
  8823   %}
  8824 %}
  8826 // ROL 32bit var by var once
  8827 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8828   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8830   expand %{
  8831     rolI_eReg_CL(dst, shift, cr);
  8832   %}
  8833 %}
  8835 // ROR expand
  8836 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8837   effect(USE_DEF dst, USE shift, KILL cr);
  8839   format %{ "ROR    $dst, $shift" %}
  8840   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8841   ins_encode( OpcP, RegOpc( dst ) );
  8842   ins_pipe( ialu_reg );
  8843 %}
  8845 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8846   effect (USE_DEF dst, USE shift, KILL cr);
  8848   format %{ "ROR    $dst, $shift" %}
  8849   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8850   ins_encode( RegOpcImm(dst, shift) );
  8851   ins_pipe( ialu_reg );
  8852 %}
  8854 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8855   effect(USE_DEF dst, USE shift, KILL cr);
  8857   format %{ "ROR    $dst, $shift" %}
  8858   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8859   ins_encode(OpcP, RegOpc(dst));
  8860   ins_pipe( ialu_reg_reg );
  8861 %}
  8862 // end of ROR expand
  8864 // ROR right once
  8865 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8866   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8868   expand %{
  8869     rorI_eReg_imm1(dst, rshift, cr);
  8870   %}
  8871 %}
  8873 // ROR 32bit by immI8 once
  8874 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8875   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8876   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8878   expand %{
  8879     rorI_eReg_imm8(dst, rshift, cr);
  8880   %}
  8881 %}
  8883 // ROR 32bit var by var once
  8884 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8885   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8887   expand %{
  8888     rorI_eReg_CL(dst, shift, cr);
  8889   %}
  8890 %}
  8892 // ROR 32bit var by var once
  8893 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8894   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8896   expand %{
  8897     rorI_eReg_CL(dst, shift, cr);
  8898   %}
  8899 %}
  8901 // Xor Instructions
  8902 // Xor Register with Register
  8903 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8904   match(Set dst (XorI dst src));
  8905   effect(KILL cr);
  8907   size(2);
  8908   format %{ "XOR    $dst,$src" %}
  8909   opcode(0x33);
  8910   ins_encode( OpcP, RegReg( dst, src) );
  8911   ins_pipe( ialu_reg_reg );
  8912 %}
  8914 // Xor Register with Immediate -1
  8915 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
  8916   match(Set dst (XorI dst imm));  
  8918   size(2);
  8919   format %{ "NOT    $dst" %}  
  8920   ins_encode %{
  8921      __ notl($dst$$Register);
  8922   %}
  8923   ins_pipe( ialu_reg );
  8924 %}
  8926 // Xor Register with Immediate
  8927 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8928   match(Set dst (XorI dst src));
  8929   effect(KILL cr);
  8931   format %{ "XOR    $dst,$src" %}
  8932   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8933   // ins_encode( RegImm( dst, src) );
  8934   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8935   ins_pipe( ialu_reg );
  8936 %}
  8938 // Xor Register with Memory
  8939 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8940   match(Set dst (XorI dst (LoadI src)));
  8941   effect(KILL cr);
  8943   ins_cost(125);
  8944   format %{ "XOR    $dst,$src" %}
  8945   opcode(0x33);
  8946   ins_encode( OpcP, RegMem(dst, src) );
  8947   ins_pipe( ialu_reg_mem );
  8948 %}
  8950 // Xor Memory with Register
  8951 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8952   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8953   effect(KILL cr);
  8955   ins_cost(150);
  8956   format %{ "XOR    $dst,$src" %}
  8957   opcode(0x31);  /* Opcode 31 /r */
  8958   ins_encode( OpcP, RegMem( src, dst ) );
  8959   ins_pipe( ialu_mem_reg );
  8960 %}
  8962 // Xor Memory with Immediate
  8963 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8964   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8965   effect(KILL cr);
  8967   ins_cost(125);
  8968   format %{ "XOR    $dst,$src" %}
  8969   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8970   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8971   ins_pipe( ialu_mem_imm );
  8972 %}
  8974 //----------Convert Int to Boolean---------------------------------------------
  8976 instruct movI_nocopy(rRegI dst, rRegI src) %{
  8977   effect( DEF dst, USE src );
  8978   format %{ "MOV    $dst,$src" %}
  8979   ins_encode( enc_Copy( dst, src) );
  8980   ins_pipe( ialu_reg_reg );
  8981 %}
  8983 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8984   effect( USE_DEF dst, USE src, KILL cr );
  8986   size(4);
  8987   format %{ "NEG    $dst\n\t"
  8988             "ADC    $dst,$src" %}
  8989   ins_encode( neg_reg(dst),
  8990               OpcRegReg(0x13,dst,src) );
  8991   ins_pipe( ialu_reg_reg_long );
  8992 %}
  8994 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8995   match(Set dst (Conv2B src));
  8997   expand %{
  8998     movI_nocopy(dst,src);
  8999     ci2b(dst,src,cr);
  9000   %}
  9001 %}
  9003 instruct movP_nocopy(rRegI dst, eRegP src) %{
  9004   effect( DEF dst, USE src );
  9005   format %{ "MOV    $dst,$src" %}
  9006   ins_encode( enc_Copy( dst, src) );
  9007   ins_pipe( ialu_reg_reg );
  9008 %}
  9010 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
  9011   effect( USE_DEF dst, USE src, KILL cr );
  9012   format %{ "NEG    $dst\n\t"
  9013             "ADC    $dst,$src" %}
  9014   ins_encode( neg_reg(dst),
  9015               OpcRegReg(0x13,dst,src) );
  9016   ins_pipe( ialu_reg_reg_long );
  9017 %}
  9019 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
  9020   match(Set dst (Conv2B src));
  9022   expand %{
  9023     movP_nocopy(dst,src);
  9024     cp2b(dst,src,cr);
  9025   %}
  9026 %}
  9028 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
  9029   match(Set dst (CmpLTMask p q));
  9030   effect(KILL cr);
  9031   ins_cost(400);
  9033   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9034   format %{ "XOR    $dst,$dst\n\t"
  9035             "CMP    $p,$q\n\t"
  9036             "SETlt  $dst\n\t"
  9037             "NEG    $dst" %}
  9038   ins_encode %{
  9039     Register Rp = $p$$Register;
  9040     Register Rq = $q$$Register;
  9041     Register Rd = $dst$$Register;
  9042     Label done;
  9043     __ xorl(Rd, Rd);
  9044     __ cmpl(Rp, Rq);
  9045     __ setb(Assembler::less, Rd);
  9046     __ negl(Rd);
  9047   %}
  9049   ins_pipe(pipe_slow);
  9050 %}
  9052 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
  9053   match(Set dst (CmpLTMask dst zero));
  9054   effect(DEF dst, KILL cr);
  9055   ins_cost(100);
  9057   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
  9058   ins_encode %{
  9059   __ sarl($dst$$Register, 31);
  9060   %}
  9061   ins_pipe(ialu_reg);
  9062 %}
  9064 /* better to save a register than avoid a branch */
  9065 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  9066   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9067   effect(KILL cr);
  9068   ins_cost(400);
  9069   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
  9070             "JGE    done\n\t"
  9071             "ADD    $p,$y\n"
  9072             "done:  " %}
  9073   ins_encode %{
  9074     Register Rp = $p$$Register;
  9075     Register Rq = $q$$Register;
  9076     Register Ry = $y$$Register;
  9077     Label done;
  9078     __ subl(Rp, Rq);
  9079     __ jccb(Assembler::greaterEqual, done);
  9080     __ addl(Rp, Ry);
  9081     __ bind(done);
  9082   %}
  9084   ins_pipe(pipe_cmplt);
  9085 %}
  9087 /* better to save a register than avoid a branch */
  9088 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  9089   match(Set y (AndI (CmpLTMask p q) y));
  9090   effect(KILL cr);
  9092   ins_cost(300);
  9094   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
  9095             "JLT      done\n\t"
  9096             "XORL     $y, $y\n"
  9097             "done:  " %}
  9098   ins_encode %{
  9099     Register Rp = $p$$Register;
  9100     Register Rq = $q$$Register;
  9101     Register Ry = $y$$Register;
  9102     Label done;
  9103     __ cmpl(Rp, Rq);
  9104     __ jccb(Assembler::less, done);
  9105     __ xorl(Ry, Ry);
  9106     __ bind(done);
  9107   %}
  9109   ins_pipe(pipe_cmplt);
  9110 %}
  9112 /* If I enable this, I encourage spilling in the inner loop of compress.
  9113 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
  9114   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9115 */
  9117 //----------Long Instructions------------------------------------------------
  9118 // Add Long Register with Register
  9119 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9120   match(Set dst (AddL dst src));
  9121   effect(KILL cr);
  9122   ins_cost(200);
  9123   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9124             "ADC    $dst.hi,$src.hi" %}
  9125   opcode(0x03, 0x13);
  9126   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9127   ins_pipe( ialu_reg_reg_long );
  9128 %}
  9130 // Add Long Register with Immediate
  9131 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9132   match(Set dst (AddL dst src));
  9133   effect(KILL cr);
  9134   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9135             "ADC    $dst.hi,$src.hi" %}
  9136   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9137   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9138   ins_pipe( ialu_reg_long );
  9139 %}
  9141 // Add Long Register with Memory
  9142 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9143   match(Set dst (AddL dst (LoadL mem)));
  9144   effect(KILL cr);
  9145   ins_cost(125);
  9146   format %{ "ADD    $dst.lo,$mem\n\t"
  9147             "ADC    $dst.hi,$mem+4" %}
  9148   opcode(0x03, 0x13);
  9149   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9150   ins_pipe( ialu_reg_long_mem );
  9151 %}
  9153 // Subtract Long Register with Register.
  9154 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9155   match(Set dst (SubL dst src));
  9156   effect(KILL cr);
  9157   ins_cost(200);
  9158   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9159             "SBB    $dst.hi,$src.hi" %}
  9160   opcode(0x2B, 0x1B);
  9161   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9162   ins_pipe( ialu_reg_reg_long );
  9163 %}
  9165 // Subtract Long Register with Immediate
  9166 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9167   match(Set dst (SubL dst src));
  9168   effect(KILL cr);
  9169   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9170             "SBB    $dst.hi,$src.hi" %}
  9171   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9172   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9173   ins_pipe( ialu_reg_long );
  9174 %}
  9176 // Subtract Long Register with Memory
  9177 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9178   match(Set dst (SubL dst (LoadL mem)));
  9179   effect(KILL cr);
  9180   ins_cost(125);
  9181   format %{ "SUB    $dst.lo,$mem\n\t"
  9182             "SBB    $dst.hi,$mem+4" %}
  9183   opcode(0x2B, 0x1B);
  9184   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9185   ins_pipe( ialu_reg_long_mem );
  9186 %}
  9188 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9189   match(Set dst (SubL zero dst));
  9190   effect(KILL cr);
  9191   ins_cost(300);
  9192   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9193   ins_encode( neg_long(dst) );
  9194   ins_pipe( ialu_reg_reg_long );
  9195 %}
  9197 // And Long Register with Register
  9198 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9199   match(Set dst (AndL dst src));
  9200   effect(KILL cr);
  9201   format %{ "AND    $dst.lo,$src.lo\n\t"
  9202             "AND    $dst.hi,$src.hi" %}
  9203   opcode(0x23,0x23);
  9204   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9205   ins_pipe( ialu_reg_reg_long );
  9206 %}
  9208 // And Long Register with Immediate
  9209 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9210   match(Set dst (AndL dst src));
  9211   effect(KILL cr);
  9212   format %{ "AND    $dst.lo,$src.lo\n\t"
  9213             "AND    $dst.hi,$src.hi" %}
  9214   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9215   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9216   ins_pipe( ialu_reg_long );
  9217 %}
  9219 // And Long Register with Memory
  9220 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9221   match(Set dst (AndL dst (LoadL mem)));
  9222   effect(KILL cr);
  9223   ins_cost(125);
  9224   format %{ "AND    $dst.lo,$mem\n\t"
  9225             "AND    $dst.hi,$mem+4" %}
  9226   opcode(0x23, 0x23);
  9227   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9228   ins_pipe( ialu_reg_long_mem );
  9229 %}
  9231 // Or Long Register with Register
  9232 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9233   match(Set dst (OrL dst src));
  9234   effect(KILL cr);
  9235   format %{ "OR     $dst.lo,$src.lo\n\t"
  9236             "OR     $dst.hi,$src.hi" %}
  9237   opcode(0x0B,0x0B);
  9238   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9239   ins_pipe( ialu_reg_reg_long );
  9240 %}
  9242 // Or Long Register with Immediate
  9243 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9244   match(Set dst (OrL dst src));
  9245   effect(KILL cr);
  9246   format %{ "OR     $dst.lo,$src.lo\n\t"
  9247             "OR     $dst.hi,$src.hi" %}
  9248   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9249   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9250   ins_pipe( ialu_reg_long );
  9251 %}
  9253 // Or Long Register with Memory
  9254 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9255   match(Set dst (OrL dst (LoadL mem)));
  9256   effect(KILL cr);
  9257   ins_cost(125);
  9258   format %{ "OR     $dst.lo,$mem\n\t"
  9259             "OR     $dst.hi,$mem+4" %}
  9260   opcode(0x0B,0x0B);
  9261   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9262   ins_pipe( ialu_reg_long_mem );
  9263 %}
  9265 // Xor Long Register with Register
  9266 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9267   match(Set dst (XorL dst src));
  9268   effect(KILL cr);
  9269   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9270             "XOR    $dst.hi,$src.hi" %}
  9271   opcode(0x33,0x33);
  9272   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9273   ins_pipe( ialu_reg_reg_long );
  9274 %}
  9276 // Xor Long Register with Immediate -1
  9277 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9278   match(Set dst (XorL dst imm));  
  9279   format %{ "NOT    $dst.lo\n\t"
  9280             "NOT    $dst.hi" %}
  9281   ins_encode %{
  9282      __ notl($dst$$Register);
  9283      __ notl(HIGH_FROM_LOW($dst$$Register));
  9284   %}
  9285   ins_pipe( ialu_reg_long );
  9286 %}
  9288 // Xor Long Register with Immediate
  9289 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9290   match(Set dst (XorL dst src));
  9291   effect(KILL cr);
  9292   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9293             "XOR    $dst.hi,$src.hi" %}
  9294   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9295   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9296   ins_pipe( ialu_reg_long );
  9297 %}
  9299 // Xor Long Register with Memory
  9300 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9301   match(Set dst (XorL dst (LoadL mem)));
  9302   effect(KILL cr);
  9303   ins_cost(125);
  9304   format %{ "XOR    $dst.lo,$mem\n\t"
  9305             "XOR    $dst.hi,$mem+4" %}
  9306   opcode(0x33,0x33);
  9307   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9308   ins_pipe( ialu_reg_long_mem );
  9309 %}
  9311 // Shift Left Long by 1
  9312 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9313   predicate(UseNewLongLShift);
  9314   match(Set dst (LShiftL dst cnt));
  9315   effect(KILL cr);
  9316   ins_cost(100);
  9317   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9318             "ADC    $dst.hi,$dst.hi" %}
  9319   ins_encode %{
  9320     __ addl($dst$$Register,$dst$$Register);
  9321     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9322   %}
  9323   ins_pipe( ialu_reg_long );
  9324 %}
  9326 // Shift Left Long by 2
  9327 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9328   predicate(UseNewLongLShift);
  9329   match(Set dst (LShiftL dst cnt));
  9330   effect(KILL cr);
  9331   ins_cost(100);
  9332   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9333             "ADC    $dst.hi,$dst.hi\n\t" 
  9334             "ADD    $dst.lo,$dst.lo\n\t"
  9335             "ADC    $dst.hi,$dst.hi" %}
  9336   ins_encode %{
  9337     __ addl($dst$$Register,$dst$$Register);
  9338     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9339     __ addl($dst$$Register,$dst$$Register);
  9340     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9341   %}
  9342   ins_pipe( ialu_reg_long );
  9343 %}
  9345 // Shift Left Long by 3
  9346 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9347   predicate(UseNewLongLShift);
  9348   match(Set dst (LShiftL dst cnt));
  9349   effect(KILL cr);
  9350   ins_cost(100);
  9351   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9352             "ADC    $dst.hi,$dst.hi\n\t" 
  9353             "ADD    $dst.lo,$dst.lo\n\t"
  9354             "ADC    $dst.hi,$dst.hi\n\t" 
  9355             "ADD    $dst.lo,$dst.lo\n\t"
  9356             "ADC    $dst.hi,$dst.hi" %}
  9357   ins_encode %{
  9358     __ addl($dst$$Register,$dst$$Register);
  9359     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9360     __ addl($dst$$Register,$dst$$Register);
  9361     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9362     __ addl($dst$$Register,$dst$$Register);
  9363     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9364   %}
  9365   ins_pipe( ialu_reg_long );
  9366 %}
  9368 // Shift Left Long by 1-31
  9369 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9370   match(Set dst (LShiftL dst cnt));
  9371   effect(KILL cr);
  9372   ins_cost(200);
  9373   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9374             "SHL    $dst.lo,$cnt" %}
  9375   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9376   ins_encode( move_long_small_shift(dst,cnt) );
  9377   ins_pipe( ialu_reg_long );
  9378 %}
  9380 // Shift Left Long by 32-63
  9381 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9382   match(Set dst (LShiftL dst cnt));
  9383   effect(KILL cr);
  9384   ins_cost(300);
  9385   format %{ "MOV    $dst.hi,$dst.lo\n"
  9386           "\tSHL    $dst.hi,$cnt-32\n"
  9387           "\tXOR    $dst.lo,$dst.lo" %}
  9388   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9389   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9390   ins_pipe( ialu_reg_long );
  9391 %}
  9393 // Shift Left Long by variable
  9394 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9395   match(Set dst (LShiftL dst shift));
  9396   effect(KILL cr);
  9397   ins_cost(500+200);
  9398   size(17);
  9399   format %{ "TEST   $shift,32\n\t"
  9400             "JEQ,s  small\n\t"
  9401             "MOV    $dst.hi,$dst.lo\n\t"
  9402             "XOR    $dst.lo,$dst.lo\n"
  9403     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9404             "SHL    $dst.lo,$shift" %}
  9405   ins_encode( shift_left_long( dst, shift ) );
  9406   ins_pipe( pipe_slow );
  9407 %}
  9409 // Shift Right Long by 1-31
  9410 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9411   match(Set dst (URShiftL dst cnt));
  9412   effect(KILL cr);
  9413   ins_cost(200);
  9414   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9415             "SHR    $dst.hi,$cnt" %}
  9416   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9417   ins_encode( move_long_small_shift(dst,cnt) );
  9418   ins_pipe( ialu_reg_long );
  9419 %}
  9421 // Shift Right Long by 32-63
  9422 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9423   match(Set dst (URShiftL dst cnt));
  9424   effect(KILL cr);
  9425   ins_cost(300);
  9426   format %{ "MOV    $dst.lo,$dst.hi\n"
  9427           "\tSHR    $dst.lo,$cnt-32\n"
  9428           "\tXOR    $dst.hi,$dst.hi" %}
  9429   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9430   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9431   ins_pipe( ialu_reg_long );
  9432 %}
  9434 // Shift Right Long by variable
  9435 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9436   match(Set dst (URShiftL dst shift));
  9437   effect(KILL cr);
  9438   ins_cost(600);
  9439   size(17);
  9440   format %{ "TEST   $shift,32\n\t"
  9441             "JEQ,s  small\n\t"
  9442             "MOV    $dst.lo,$dst.hi\n\t"
  9443             "XOR    $dst.hi,$dst.hi\n"
  9444     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9445             "SHR    $dst.hi,$shift" %}
  9446   ins_encode( shift_right_long( dst, shift ) );
  9447   ins_pipe( pipe_slow );
  9448 %}
  9450 // Shift Right Long by 1-31
  9451 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9452   match(Set dst (RShiftL dst cnt));
  9453   effect(KILL cr);
  9454   ins_cost(200);
  9455   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9456             "SAR    $dst.hi,$cnt" %}
  9457   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9458   ins_encode( move_long_small_shift(dst,cnt) );
  9459   ins_pipe( ialu_reg_long );
  9460 %}
  9462 // Shift Right Long by 32-63
  9463 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9464   match(Set dst (RShiftL dst cnt));
  9465   effect(KILL cr);
  9466   ins_cost(300);
  9467   format %{ "MOV    $dst.lo,$dst.hi\n"
  9468           "\tSAR    $dst.lo,$cnt-32\n"
  9469           "\tSAR    $dst.hi,31" %}
  9470   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9471   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9472   ins_pipe( ialu_reg_long );
  9473 %}
  9475 // Shift Right arithmetic Long by variable
  9476 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9477   match(Set dst (RShiftL dst shift));
  9478   effect(KILL cr);
  9479   ins_cost(600);
  9480   size(18);
  9481   format %{ "TEST   $shift,32\n\t"
  9482             "JEQ,s  small\n\t"
  9483             "MOV    $dst.lo,$dst.hi\n\t"
  9484             "SAR    $dst.hi,31\n"
  9485     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9486             "SAR    $dst.hi,$shift" %}
  9487   ins_encode( shift_right_arith_long( dst, shift ) );
  9488   ins_pipe( pipe_slow );
  9489 %}
  9492 //----------Double Instructions------------------------------------------------
  9493 // Double Math
  9495 // Compare & branch
  9497 // P6 version of float compare, sets condition codes in EFLAGS
  9498 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9499   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9500   match(Set cr (CmpD src1 src2));
  9501   effect(KILL rax);
  9502   ins_cost(150);
  9503   format %{ "FLD    $src1\n\t"
  9504             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9505             "JNP    exit\n\t"
  9506             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9507             "SAHF\n"
  9508      "exit:\tNOP               // avoid branch to branch" %}
  9509   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9510   ins_encode( Push_Reg_DPR(src1),
  9511               OpcP, RegOpc(src2),
  9512               cmpF_P6_fixup );
  9513   ins_pipe( pipe_slow );
  9514 %}
  9516 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9517   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9518   match(Set cr (CmpD src1 src2));
  9519   ins_cost(150);
  9520   format %{ "FLD    $src1\n\t"
  9521             "FUCOMIP ST,$src2  // P6 instruction" %}
  9522   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9523   ins_encode( Push_Reg_DPR(src1),
  9524               OpcP, RegOpc(src2));
  9525   ins_pipe( pipe_slow );
  9526 %}
  9528 // Compare & branch
  9529 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9530   predicate(UseSSE<=1);
  9531   match(Set cr (CmpD src1 src2));
  9532   effect(KILL rax);
  9533   ins_cost(200);
  9534   format %{ "FLD    $src1\n\t"
  9535             "FCOMp  $src2\n\t"
  9536             "FNSTSW AX\n\t"
  9537             "TEST   AX,0x400\n\t"
  9538             "JZ,s   flags\n\t"
  9539             "MOV    AH,1\t# unordered treat as LT\n"
  9540     "flags:\tSAHF" %}
  9541   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9542   ins_encode( Push_Reg_DPR(src1),
  9543               OpcP, RegOpc(src2),
  9544               fpu_flags);
  9545   ins_pipe( pipe_slow );
  9546 %}
  9548 // Compare vs zero into -1,0,1
  9549 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9550   predicate(UseSSE<=1);
  9551   match(Set dst (CmpD3 src1 zero));
  9552   effect(KILL cr, KILL rax);
  9553   ins_cost(280);
  9554   format %{ "FTSTD  $dst,$src1" %}
  9555   opcode(0xE4, 0xD9);
  9556   ins_encode( Push_Reg_DPR(src1),
  9557               OpcS, OpcP, PopFPU,
  9558               CmpF_Result(dst));
  9559   ins_pipe( pipe_slow );
  9560 %}
  9562 // Compare into -1,0,1
  9563 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9564   predicate(UseSSE<=1);
  9565   match(Set dst (CmpD3 src1 src2));
  9566   effect(KILL cr, KILL rax);
  9567   ins_cost(300);
  9568   format %{ "FCMPD  $dst,$src1,$src2" %}
  9569   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9570   ins_encode( Push_Reg_DPR(src1),
  9571               OpcP, RegOpc(src2),
  9572               CmpF_Result(dst));
  9573   ins_pipe( pipe_slow );
  9574 %}
  9576 // float compare and set condition codes in EFLAGS by XMM regs
  9577 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9578   predicate(UseSSE>=2);
  9579   match(Set cr (CmpD src1 src2));
  9580   ins_cost(145);
  9581   format %{ "UCOMISD $src1,$src2\n\t"
  9582             "JNP,s   exit\n\t"
  9583             "PUSHF\t# saw NaN, set CF\n\t"
  9584             "AND     [rsp], #0xffffff2b\n\t"
  9585             "POPF\n"
  9586     "exit:" %}
  9587   ins_encode %{
  9588     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9589     emit_cmpfp_fixup(_masm);
  9590   %}
  9591   ins_pipe( pipe_slow );
  9592 %}
  9594 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9595   predicate(UseSSE>=2);
  9596   match(Set cr (CmpD src1 src2));
  9597   ins_cost(100);
  9598   format %{ "UCOMISD $src1,$src2" %}
  9599   ins_encode %{
  9600     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9601   %}
  9602   ins_pipe( pipe_slow );
  9603 %}
  9605 // float compare and set condition codes in EFLAGS by XMM regs
  9606 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9607   predicate(UseSSE>=2);
  9608   match(Set cr (CmpD src1 (LoadD src2)));
  9609   ins_cost(145);
  9610   format %{ "UCOMISD $src1,$src2\n\t"
  9611             "JNP,s   exit\n\t"
  9612             "PUSHF\t# saw NaN, set CF\n\t"
  9613             "AND     [rsp], #0xffffff2b\n\t"
  9614             "POPF\n"
  9615     "exit:" %}
  9616   ins_encode %{
  9617     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9618     emit_cmpfp_fixup(_masm);
  9619   %}
  9620   ins_pipe( pipe_slow );
  9621 %}
  9623 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9624   predicate(UseSSE>=2);
  9625   match(Set cr (CmpD src1 (LoadD src2)));
  9626   ins_cost(100);
  9627   format %{ "UCOMISD $src1,$src2" %}
  9628   ins_encode %{
  9629     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9630   %}
  9631   ins_pipe( pipe_slow );
  9632 %}
  9634 // Compare into -1,0,1 in XMM
  9635 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9636   predicate(UseSSE>=2);
  9637   match(Set dst (CmpD3 src1 src2));
  9638   effect(KILL cr);
  9639   ins_cost(255);
  9640   format %{ "UCOMISD $src1, $src2\n\t"
  9641             "MOV     $dst, #-1\n\t"
  9642             "JP,s    done\n\t"
  9643             "JB,s    done\n\t"
  9644             "SETNE   $dst\n\t"
  9645             "MOVZB   $dst, $dst\n"
  9646     "done:" %}
  9647   ins_encode %{
  9648     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9649     emit_cmpfp3(_masm, $dst$$Register);
  9650   %}
  9651   ins_pipe( pipe_slow );
  9652 %}
  9654 // Compare into -1,0,1 in XMM and memory
  9655 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9656   predicate(UseSSE>=2);
  9657   match(Set dst (CmpD3 src1 (LoadD src2)));
  9658   effect(KILL cr);
  9659   ins_cost(275);
  9660   format %{ "UCOMISD $src1, $src2\n\t"
  9661             "MOV     $dst, #-1\n\t"
  9662             "JP,s    done\n\t"
  9663             "JB,s    done\n\t"
  9664             "SETNE   $dst\n\t"
  9665             "MOVZB   $dst, $dst\n"
  9666     "done:" %}
  9667   ins_encode %{
  9668     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9669     emit_cmpfp3(_masm, $dst$$Register);
  9670   %}
  9671   ins_pipe( pipe_slow );
  9672 %}
  9675 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9676   predicate (UseSSE <=1);
  9677   match(Set dst (SubD dst src));
  9679   format %{ "FLD    $src\n\t"
  9680             "DSUBp  $dst,ST" %}
  9681   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9682   ins_cost(150);
  9683   ins_encode( Push_Reg_DPR(src),
  9684               OpcP, RegOpc(dst) );
  9685   ins_pipe( fpu_reg_reg );
  9686 %}
  9688 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9689   predicate (UseSSE <=1);
  9690   match(Set dst (RoundDouble (SubD src1 src2)));
  9691   ins_cost(250);
  9693   format %{ "FLD    $src2\n\t"
  9694             "DSUB   ST,$src1\n\t"
  9695             "FSTP_D $dst\t# D-round" %}
  9696   opcode(0xD8, 0x5);
  9697   ins_encode( Push_Reg_DPR(src2),
  9698               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9699   ins_pipe( fpu_mem_reg_reg );
  9700 %}
  9703 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9704   predicate (UseSSE <=1);
  9705   match(Set dst (SubD dst (LoadD src)));
  9706   ins_cost(150);
  9708   format %{ "FLD    $src\n\t"
  9709             "DSUBp  $dst,ST" %}
  9710   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9711   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9712               OpcP, RegOpc(dst) );
  9713   ins_pipe( fpu_reg_mem );
  9714 %}
  9716 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9717   predicate (UseSSE<=1);
  9718   match(Set dst (AbsD src));
  9719   ins_cost(100);
  9720   format %{ "FABS" %}
  9721   opcode(0xE1, 0xD9);
  9722   ins_encode( OpcS, OpcP );
  9723   ins_pipe( fpu_reg_reg );
  9724 %}
  9726 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9727   predicate(UseSSE<=1);
  9728   match(Set dst (NegD src));
  9729   ins_cost(100);
  9730   format %{ "FCHS" %}
  9731   opcode(0xE0, 0xD9);
  9732   ins_encode( OpcS, OpcP );
  9733   ins_pipe( fpu_reg_reg );
  9734 %}
  9736 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9737   predicate(UseSSE<=1);
  9738   match(Set dst (AddD dst src));
  9739   format %{ "FLD    $src\n\t"
  9740             "DADD   $dst,ST" %}
  9741   size(4);
  9742   ins_cost(150);
  9743   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9744   ins_encode( Push_Reg_DPR(src),
  9745               OpcP, RegOpc(dst) );
  9746   ins_pipe( fpu_reg_reg );
  9747 %}
  9750 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9751   predicate(UseSSE<=1);
  9752   match(Set dst (RoundDouble (AddD src1 src2)));
  9753   ins_cost(250);
  9755   format %{ "FLD    $src2\n\t"
  9756             "DADD   ST,$src1\n\t"
  9757             "FSTP_D $dst\t# D-round" %}
  9758   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9759   ins_encode( Push_Reg_DPR(src2),
  9760               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9761   ins_pipe( fpu_mem_reg_reg );
  9762 %}
  9765 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9766   predicate(UseSSE<=1);
  9767   match(Set dst (AddD dst (LoadD src)));
  9768   ins_cost(150);
  9770   format %{ "FLD    $src\n\t"
  9771             "DADDp  $dst,ST" %}
  9772   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9773   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9774               OpcP, RegOpc(dst) );
  9775   ins_pipe( fpu_reg_mem );
  9776 %}
  9778 // add-to-memory
  9779 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9780   predicate(UseSSE<=1);
  9781   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9782   ins_cost(150);
  9784   format %{ "FLD_D  $dst\n\t"
  9785             "DADD   ST,$src\n\t"
  9786             "FST_D  $dst" %}
  9787   opcode(0xDD, 0x0);
  9788   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9789               Opcode(0xD8), RegOpc(src),
  9790               set_instruction_start,
  9791               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9792   ins_pipe( fpu_reg_mem );
  9793 %}
  9795 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9796   predicate(UseSSE<=1);
  9797   match(Set dst (AddD dst con));
  9798   ins_cost(125);
  9799   format %{ "FLD1\n\t"
  9800             "DADDp  $dst,ST" %}
  9801   ins_encode %{
  9802     __ fld1();
  9803     __ faddp($dst$$reg);
  9804   %}
  9805   ins_pipe(fpu_reg);
  9806 %}
  9808 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9809   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9810   match(Set dst (AddD dst con));
  9811   ins_cost(200);
  9812   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9813             "DADDp  $dst,ST" %}
  9814   ins_encode %{
  9815     __ fld_d($constantaddress($con));
  9816     __ faddp($dst$$reg);
  9817   %}
  9818   ins_pipe(fpu_reg_mem);
  9819 %}
  9821 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9822   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9823   match(Set dst (RoundDouble (AddD src con)));
  9824   ins_cost(200);
  9825   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9826             "DADD   ST,$src\n\t"
  9827             "FSTP_D $dst\t# D-round" %}
  9828   ins_encode %{
  9829     __ fld_d($constantaddress($con));
  9830     __ fadd($src$$reg);
  9831     __ fstp_d(Address(rsp, $dst$$disp));
  9832   %}
  9833   ins_pipe(fpu_mem_reg_con);
  9834 %}
  9836 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9837   predicate(UseSSE<=1);
  9838   match(Set dst (MulD dst src));
  9839   format %{ "FLD    $src\n\t"
  9840             "DMULp  $dst,ST" %}
  9841   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9842   ins_cost(150);
  9843   ins_encode( Push_Reg_DPR(src),
  9844               OpcP, RegOpc(dst) );
  9845   ins_pipe( fpu_reg_reg );
  9846 %}
  9848 // Strict FP instruction biases argument before multiply then
  9849 // biases result to avoid double rounding of subnormals.
  9850 //
  9851 // scale arg1 by multiplying arg1 by 2^(-15360)
  9852 // load arg2
  9853 // multiply scaled arg1 by arg2
  9854 // rescale product by 2^(15360)
  9855 //
  9856 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9857   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9858   match(Set dst (MulD dst src));
  9859   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9861   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9862             "DMULp  $dst,ST\n\t"
  9863             "FLD    $src\n\t"
  9864             "DMULp  $dst,ST\n\t"
  9865             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9866             "DMULp  $dst,ST\n\t" %}
  9867   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9868   ins_encode( strictfp_bias1(dst),
  9869               Push_Reg_DPR(src),
  9870               OpcP, RegOpc(dst),
  9871               strictfp_bias2(dst) );
  9872   ins_pipe( fpu_reg_reg );
  9873 %}
  9875 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9876   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9877   match(Set dst (MulD dst con));
  9878   ins_cost(200);
  9879   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9880             "DMULp  $dst,ST" %}
  9881   ins_encode %{
  9882     __ fld_d($constantaddress($con));
  9883     __ fmulp($dst$$reg);
  9884   %}
  9885   ins_pipe(fpu_reg_mem);
  9886 %}
  9889 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9890   predicate( UseSSE<=1 );
  9891   match(Set dst (MulD dst (LoadD src)));
  9892   ins_cost(200);
  9893   format %{ "FLD_D  $src\n\t"
  9894             "DMULp  $dst,ST" %}
  9895   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9896   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9897               OpcP, RegOpc(dst) );
  9898   ins_pipe( fpu_reg_mem );
  9899 %}
  9901 //
  9902 // Cisc-alternate to reg-reg multiply
  9903 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9904   predicate( UseSSE<=1 );
  9905   match(Set dst (MulD src (LoadD mem)));
  9906   ins_cost(250);
  9907   format %{ "FLD_D  $mem\n\t"
  9908             "DMUL   ST,$src\n\t"
  9909             "FSTP_D $dst" %}
  9910   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9911   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9912               OpcReg_FPR(src),
  9913               Pop_Reg_DPR(dst) );
  9914   ins_pipe( fpu_reg_reg_mem );
  9915 %}
  9918 // MACRO3 -- addDPR a mulDPR
  9919 // This instruction is a '2-address' instruction in that the result goes
  9920 // back to src2.  This eliminates a move from the macro; possibly the
  9921 // register allocator will have to add it back (and maybe not).
  9922 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9923   predicate( UseSSE<=1 );
  9924   match(Set src2 (AddD (MulD src0 src1) src2));
  9925   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9926             "DMUL   ST,$src1\n\t"
  9927             "DADDp  $src2,ST" %}
  9928   ins_cost(250);
  9929   opcode(0xDD); /* LoadD DD /0 */
  9930   ins_encode( Push_Reg_FPR(src0),
  9931               FMul_ST_reg(src1),
  9932               FAddP_reg_ST(src2) );
  9933   ins_pipe( fpu_reg_reg_reg );
  9934 %}
  9937 // MACRO3 -- subDPR a mulDPR
  9938 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9939   predicate( UseSSE<=1 );
  9940   match(Set src2 (SubD (MulD src0 src1) src2));
  9941   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9942             "DMUL   ST,$src1\n\t"
  9943             "DSUBRp $src2,ST" %}
  9944   ins_cost(250);
  9945   ins_encode( Push_Reg_FPR(src0),
  9946               FMul_ST_reg(src1),
  9947               Opcode(0xDE), Opc_plus(0xE0,src2));
  9948   ins_pipe( fpu_reg_reg_reg );
  9949 %}
  9952 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9953   predicate( UseSSE<=1 );
  9954   match(Set dst (DivD dst src));
  9956   format %{ "FLD    $src\n\t"
  9957             "FDIVp  $dst,ST" %}
  9958   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9959   ins_cost(150);
  9960   ins_encode( Push_Reg_DPR(src),
  9961               OpcP, RegOpc(dst) );
  9962   ins_pipe( fpu_reg_reg );
  9963 %}
  9965 // Strict FP instruction biases argument before division then
  9966 // biases result, to avoid double rounding of subnormals.
  9967 //
  9968 // scale dividend by multiplying dividend by 2^(-15360)
  9969 // load divisor
  9970 // divide scaled dividend by divisor
  9971 // rescale quotient by 2^(15360)
  9972 //
  9973 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9974   predicate (UseSSE<=1);
  9975   match(Set dst (DivD dst src));
  9976   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9977   ins_cost(01);
  9979   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9980             "DMULp  $dst,ST\n\t"
  9981             "FLD    $src\n\t"
  9982             "FDIVp  $dst,ST\n\t"
  9983             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9984             "DMULp  $dst,ST\n\t" %}
  9985   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9986   ins_encode( strictfp_bias1(dst),
  9987               Push_Reg_DPR(src),
  9988               OpcP, RegOpc(dst),
  9989               strictfp_bias2(dst) );
  9990   ins_pipe( fpu_reg_reg );
  9991 %}
  9993 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9994   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9995   match(Set dst (RoundDouble (DivD src1 src2)));
  9997   format %{ "FLD    $src1\n\t"
  9998             "FDIV   ST,$src2\n\t"
  9999             "FSTP_D $dst\t# D-round" %}
 10000   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10001   ins_encode( Push_Reg_DPR(src1),
 10002               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
 10003   ins_pipe( fpu_mem_reg_reg );
 10004 %}
 10007 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
 10008   predicate(UseSSE<=1);
 10009   match(Set dst (ModD dst src));
 10010   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10012   format %{ "DMOD   $dst,$src" %}
 10013   ins_cost(250);
 10014   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10015               emitModDPR(),
 10016               Push_Result_Mod_DPR(src),
 10017               Pop_Reg_DPR(dst));
 10018   ins_pipe( pipe_slow );
 10019 %}
 10021 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
 10022   predicate(UseSSE>=2);
 10023   match(Set dst (ModD src0 src1));
 10024   effect(KILL rax, KILL cr);
 10026   format %{ "SUB    ESP,8\t # DMOD\n"
 10027           "\tMOVSD  [ESP+0],$src1\n"
 10028           "\tFLD_D  [ESP+0]\n"
 10029           "\tMOVSD  [ESP+0],$src0\n"
 10030           "\tFLD_D  [ESP+0]\n"
 10031      "loop:\tFPREM\n"
 10032           "\tFWAIT\n"
 10033           "\tFNSTSW AX\n"
 10034           "\tSAHF\n"
 10035           "\tJP     loop\n"
 10036           "\tFSTP_D [ESP+0]\n"
 10037           "\tMOVSD  $dst,[ESP+0]\n"
 10038           "\tADD    ESP,8\n"
 10039           "\tFSTP   ST0\t # Restore FPU Stack"
 10040     %}
 10041   ins_cost(250);
 10042   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
 10043   ins_pipe( pipe_slow );
 10044 %}
 10046 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
 10047   predicate (UseSSE<=1);
 10048   match(Set dst (SinD src));
 10049   ins_cost(1800);
 10050   format %{ "DSIN   $dst" %}
 10051   opcode(0xD9, 0xFE);
 10052   ins_encode( OpcP, OpcS );
 10053   ins_pipe( pipe_slow );
 10054 %}
 10056 instruct sinD_reg(regD dst, eFlagsReg cr) %{
 10057   predicate (UseSSE>=2);
 10058   match(Set dst (SinD dst));
 10059   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10060   ins_cost(1800);
 10061   format %{ "DSIN   $dst" %}
 10062   opcode(0xD9, 0xFE);
 10063   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
 10064   ins_pipe( pipe_slow );
 10065 %}
 10067 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
 10068   predicate (UseSSE<=1);
 10069   match(Set dst (CosD src));
 10070   ins_cost(1800);
 10071   format %{ "DCOS   $dst" %}
 10072   opcode(0xD9, 0xFF);
 10073   ins_encode( OpcP, OpcS );
 10074   ins_pipe( pipe_slow );
 10075 %}
 10077 instruct cosD_reg(regD dst, eFlagsReg cr) %{
 10078   predicate (UseSSE>=2);
 10079   match(Set dst (CosD dst));
 10080   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10081   ins_cost(1800);
 10082   format %{ "DCOS   $dst" %}
 10083   opcode(0xD9, 0xFF);
 10084   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
 10085   ins_pipe( pipe_slow );
 10086 %}
 10088 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
 10089   predicate (UseSSE<=1);
 10090   match(Set dst(TanD src));
 10091   format %{ "DTAN   $dst" %}
 10092   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10093               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10094   ins_pipe( pipe_slow );
 10095 %}
 10097 instruct tanD_reg(regD dst, eFlagsReg cr) %{
 10098   predicate (UseSSE>=2);
 10099   match(Set dst(TanD dst));
 10100   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10101   format %{ "DTAN   $dst" %}
 10102   ins_encode( Push_SrcD(dst),
 10103               Opcode(0xD9), Opcode(0xF2),    // fptan
 10104               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10105               Push_ResultD(dst) );
 10106   ins_pipe( pipe_slow );
 10107 %}
 10109 instruct atanDPR_reg(regDPR dst, regDPR src) %{
 10110   predicate (UseSSE<=1);
 10111   match(Set dst(AtanD dst src));
 10112   format %{ "DATA   $dst,$src" %}
 10113   opcode(0xD9, 0xF3);
 10114   ins_encode( Push_Reg_DPR(src),
 10115               OpcP, OpcS, RegOpc(dst) );
 10116   ins_pipe( pipe_slow );
 10117 %}
 10119 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
 10120   predicate (UseSSE>=2);
 10121   match(Set dst(AtanD dst src));
 10122   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10123   format %{ "DATA   $dst,$src" %}
 10124   opcode(0xD9, 0xF3);
 10125   ins_encode( Push_SrcD(src),
 10126               OpcP, OpcS, Push_ResultD(dst) );
 10127   ins_pipe( pipe_slow );
 10128 %}
 10130 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
 10131   predicate (UseSSE<=1);
 10132   match(Set dst (SqrtD src));
 10133   format %{ "DSQRT  $dst,$src" %}
 10134   opcode(0xFA, 0xD9);
 10135   ins_encode( Push_Reg_DPR(src),
 10136               OpcS, OpcP, Pop_Reg_DPR(dst) );
 10137   ins_pipe( pipe_slow );
 10138 %}
 10140 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10141   predicate (UseSSE<=1);
 10142   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10143   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
 10144   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
 10145   ins_encode %{
 10146     __ subptr(rsp, 8);
 10147     __ fld_s($X$$reg - 1);
 10148     __ fast_pow();
 10149     __ addptr(rsp, 8);
 10150   %}
 10151   ins_pipe( pipe_slow );
 10152 %}
 10154 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10155   predicate (UseSSE>=2);
 10156   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10157   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
 10158   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
 10159   ins_encode %{
 10160     __ subptr(rsp, 8);
 10161     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
 10162     __ fld_d(Address(rsp, 0));
 10163     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
 10164     __ fld_d(Address(rsp, 0));
 10165     __ fast_pow();
 10166     __ fstp_d(Address(rsp, 0));
 10167     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
 10168     __ addptr(rsp, 8);
 10169   %}
 10170   ins_pipe( pipe_slow );
 10171 %}
 10174 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10175   predicate (UseSSE<=1);
 10176   match(Set dpr1 (ExpD dpr1));
 10177   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
 10178   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
 10179   ins_encode %{
 10180     __ fast_exp();
 10181   %}
 10182   ins_pipe( pipe_slow );
 10183 %}
 10185 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10186   predicate (UseSSE>=2);
 10187   match(Set dst (ExpD src));
 10188   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
 10189   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
 10190   ins_encode %{
 10191     __ subptr(rsp, 8);
 10192     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10193     __ fld_d(Address(rsp, 0));
 10194     __ fast_exp();
 10195     __ fstp_d(Address(rsp, 0));
 10196     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
 10197     __ addptr(rsp, 8);
 10198   %}
 10199   ins_pipe( pipe_slow );
 10200 %}
 10202 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
 10203   predicate (UseSSE<=1);
 10204   // The source Double operand on FPU stack
 10205   match(Set dst (Log10D src));
 10206   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10207   // fxch         ; swap ST(0) with ST(1)
 10208   // fyl2x        ; compute log_10(2) * log_2(x)
 10209   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10210             "FXCH   \n\t"
 10211             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10212          %}
 10213   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10214               Opcode(0xD9), Opcode(0xC9),   // fxch
 10215               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10217   ins_pipe( pipe_slow );
 10218 %}
 10220 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
 10221   predicate (UseSSE>=2);
 10222   effect(KILL cr);
 10223   match(Set dst (Log10D src));
 10224   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10225   // fyl2x        ; compute log_10(2) * log_2(x)
 10226   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10227             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10228          %}
 10229   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10230               Push_SrcD(src),
 10231               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10232               Push_ResultD(dst));
 10234   ins_pipe( pipe_slow );
 10235 %}
 10237 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
 10238   predicate (UseSSE<=1);
 10239   // The source Double operand on FPU stack
 10240   match(Set dst (LogD src));
 10241   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10242   // fxch         ; swap ST(0) with ST(1)
 10243   // fyl2x        ; compute log_e(2) * log_2(x)
 10244   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10245             "FXCH   \n\t"
 10246             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10247          %}
 10248   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10249               Opcode(0xD9), Opcode(0xC9),   // fxch
 10250               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10252   ins_pipe( pipe_slow );
 10253 %}
 10255 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
 10256   predicate (UseSSE>=2);
 10257   effect(KILL cr);
 10258   // The source and result Double operands in XMM registers
 10259   match(Set dst (LogD src));
 10260   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10261   // fyl2x        ; compute log_e(2) * log_2(x)
 10262   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10263             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10264          %}
 10265   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10266               Push_SrcD(src),
 10267               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10268               Push_ResultD(dst));
 10269   ins_pipe( pipe_slow );
 10270 %}
 10272 //-------------Float Instructions-------------------------------
 10273 // Float Math
 10275 // Code for float compare:
 10276 //     fcompp();
 10277 //     fwait(); fnstsw_ax();
 10278 //     sahf();
 10279 //     movl(dst, unordered_result);
 10280 //     jcc(Assembler::parity, exit);
 10281 //     movl(dst, less_result);
 10282 //     jcc(Assembler::below, exit);
 10283 //     movl(dst, equal_result);
 10284 //     jcc(Assembler::equal, exit);
 10285 //     movl(dst, greater_result);
 10286 //   exit:
 10288 // P6 version of float compare, sets condition codes in EFLAGS
 10289 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10290   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10291   match(Set cr (CmpF src1 src2));
 10292   effect(KILL rax);
 10293   ins_cost(150);
 10294   format %{ "FLD    $src1\n\t"
 10295             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10296             "JNP    exit\n\t"
 10297             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10298             "SAHF\n"
 10299      "exit:\tNOP               // avoid branch to branch" %}
 10300   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10301   ins_encode( Push_Reg_DPR(src1),
 10302               OpcP, RegOpc(src2),
 10303               cmpF_P6_fixup );
 10304   ins_pipe( pipe_slow );
 10305 %}
 10307 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10308   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10309   match(Set cr (CmpF src1 src2));
 10310   ins_cost(100);
 10311   format %{ "FLD    $src1\n\t"
 10312             "FUCOMIP ST,$src2  // P6 instruction" %}
 10313   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10314   ins_encode( Push_Reg_DPR(src1),
 10315               OpcP, RegOpc(src2));
 10316   ins_pipe( pipe_slow );
 10317 %}
 10320 // Compare & branch
 10321 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10322   predicate(UseSSE == 0);
 10323   match(Set cr (CmpF src1 src2));
 10324   effect(KILL rax);
 10325   ins_cost(200);
 10326   format %{ "FLD    $src1\n\t"
 10327             "FCOMp  $src2\n\t"
 10328             "FNSTSW AX\n\t"
 10329             "TEST   AX,0x400\n\t"
 10330             "JZ,s   flags\n\t"
 10331             "MOV    AH,1\t# unordered treat as LT\n"
 10332     "flags:\tSAHF" %}
 10333   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10334   ins_encode( Push_Reg_DPR(src1),
 10335               OpcP, RegOpc(src2),
 10336               fpu_flags);
 10337   ins_pipe( pipe_slow );
 10338 %}
 10340 // Compare vs zero into -1,0,1
 10341 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10342   predicate(UseSSE == 0);
 10343   match(Set dst (CmpF3 src1 zero));
 10344   effect(KILL cr, KILL rax);
 10345   ins_cost(280);
 10346   format %{ "FTSTF  $dst,$src1" %}
 10347   opcode(0xE4, 0xD9);
 10348   ins_encode( Push_Reg_DPR(src1),
 10349               OpcS, OpcP, PopFPU,
 10350               CmpF_Result(dst));
 10351   ins_pipe( pipe_slow );
 10352 %}
 10354 // Compare into -1,0,1
 10355 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10356   predicate(UseSSE == 0);
 10357   match(Set dst (CmpF3 src1 src2));
 10358   effect(KILL cr, KILL rax);
 10359   ins_cost(300);
 10360   format %{ "FCMPF  $dst,$src1,$src2" %}
 10361   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10362   ins_encode( Push_Reg_DPR(src1),
 10363               OpcP, RegOpc(src2),
 10364               CmpF_Result(dst));
 10365   ins_pipe( pipe_slow );
 10366 %}
 10368 // float compare and set condition codes in EFLAGS by XMM regs
 10369 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10370   predicate(UseSSE>=1);
 10371   match(Set cr (CmpF src1 src2));
 10372   ins_cost(145);
 10373   format %{ "UCOMISS $src1,$src2\n\t"
 10374             "JNP,s   exit\n\t"
 10375             "PUSHF\t# saw NaN, set CF\n\t"
 10376             "AND     [rsp], #0xffffff2b\n\t"
 10377             "POPF\n"
 10378     "exit:" %}
 10379   ins_encode %{
 10380     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10381     emit_cmpfp_fixup(_masm);
 10382   %}
 10383   ins_pipe( pipe_slow );
 10384 %}
 10386 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10387   predicate(UseSSE>=1);
 10388   match(Set cr (CmpF src1 src2));
 10389   ins_cost(100);
 10390   format %{ "UCOMISS $src1,$src2" %}
 10391   ins_encode %{
 10392     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10393   %}
 10394   ins_pipe( pipe_slow );
 10395 %}
 10397 // float compare and set condition codes in EFLAGS by XMM regs
 10398 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10399   predicate(UseSSE>=1);
 10400   match(Set cr (CmpF src1 (LoadF src2)));
 10401   ins_cost(165);
 10402   format %{ "UCOMISS $src1,$src2\n\t"
 10403             "JNP,s   exit\n\t"
 10404             "PUSHF\t# saw NaN, set CF\n\t"
 10405             "AND     [rsp], #0xffffff2b\n\t"
 10406             "POPF\n"
 10407     "exit:" %}
 10408   ins_encode %{
 10409     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10410     emit_cmpfp_fixup(_masm);
 10411   %}
 10412   ins_pipe( pipe_slow );
 10413 %}
 10415 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10416   predicate(UseSSE>=1);
 10417   match(Set cr (CmpF src1 (LoadF src2)));
 10418   ins_cost(100);
 10419   format %{ "UCOMISS $src1,$src2" %}
 10420   ins_encode %{
 10421     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10422   %}
 10423   ins_pipe( pipe_slow );
 10424 %}
 10426 // Compare into -1,0,1 in XMM
 10427 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10428   predicate(UseSSE>=1);
 10429   match(Set dst (CmpF3 src1 src2));
 10430   effect(KILL cr);
 10431   ins_cost(255);
 10432   format %{ "UCOMISS $src1, $src2\n\t"
 10433             "MOV     $dst, #-1\n\t"
 10434             "JP,s    done\n\t"
 10435             "JB,s    done\n\t"
 10436             "SETNE   $dst\n\t"
 10437             "MOVZB   $dst, $dst\n"
 10438     "done:" %}
 10439   ins_encode %{
 10440     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10441     emit_cmpfp3(_masm, $dst$$Register);
 10442   %}
 10443   ins_pipe( pipe_slow );
 10444 %}
 10446 // Compare into -1,0,1 in XMM and memory
 10447 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10448   predicate(UseSSE>=1);
 10449   match(Set dst (CmpF3 src1 (LoadF src2)));
 10450   effect(KILL cr);
 10451   ins_cost(275);
 10452   format %{ "UCOMISS $src1, $src2\n\t"
 10453             "MOV     $dst, #-1\n\t"
 10454             "JP,s    done\n\t"
 10455             "JB,s    done\n\t"
 10456             "SETNE   $dst\n\t"
 10457             "MOVZB   $dst, $dst\n"
 10458     "done:" %}
 10459   ins_encode %{
 10460     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10461     emit_cmpfp3(_masm, $dst$$Register);
 10462   %}
 10463   ins_pipe( pipe_slow );
 10464 %}
 10466 // Spill to obtain 24-bit precision
 10467 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10468   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10469   match(Set dst (SubF src1 src2));
 10471   format %{ "FSUB   $dst,$src1 - $src2" %}
 10472   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10473   ins_encode( Push_Reg_FPR(src1),
 10474               OpcReg_FPR(src2),
 10475               Pop_Mem_FPR(dst) );
 10476   ins_pipe( fpu_mem_reg_reg );
 10477 %}
 10478 //
 10479 // This instruction does not round to 24-bits
 10480 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10481   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10482   match(Set dst (SubF dst src));
 10484   format %{ "FSUB   $dst,$src" %}
 10485   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10486   ins_encode( Push_Reg_FPR(src),
 10487               OpcP, RegOpc(dst) );
 10488   ins_pipe( fpu_reg_reg );
 10489 %}
 10491 // Spill to obtain 24-bit precision
 10492 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10493   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10494   match(Set dst (AddF src1 src2));
 10496   format %{ "FADD   $dst,$src1,$src2" %}
 10497   opcode(0xD8, 0x0); /* D8 C0+i */
 10498   ins_encode( Push_Reg_FPR(src2),
 10499               OpcReg_FPR(src1),
 10500               Pop_Mem_FPR(dst) );
 10501   ins_pipe( fpu_mem_reg_reg );
 10502 %}
 10503 //
 10504 // This instruction does not round to 24-bits
 10505 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10506   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10507   match(Set dst (AddF dst src));
 10509   format %{ "FLD    $src\n\t"
 10510             "FADDp  $dst,ST" %}
 10511   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10512   ins_encode( Push_Reg_FPR(src),
 10513               OpcP, RegOpc(dst) );
 10514   ins_pipe( fpu_reg_reg );
 10515 %}
 10517 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10518   predicate(UseSSE==0);
 10519   match(Set dst (AbsF src));
 10520   ins_cost(100);
 10521   format %{ "FABS" %}
 10522   opcode(0xE1, 0xD9);
 10523   ins_encode( OpcS, OpcP );
 10524   ins_pipe( fpu_reg_reg );
 10525 %}
 10527 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10528   predicate(UseSSE==0);
 10529   match(Set dst (NegF src));
 10530   ins_cost(100);
 10531   format %{ "FCHS" %}
 10532   opcode(0xE0, 0xD9);
 10533   ins_encode( OpcS, OpcP );
 10534   ins_pipe( fpu_reg_reg );
 10535 %}
 10537 // Cisc-alternate to addFPR_reg
 10538 // Spill to obtain 24-bit precision
 10539 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10540   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10541   match(Set dst (AddF src1 (LoadF src2)));
 10543   format %{ "FLD    $src2\n\t"
 10544             "FADD   ST,$src1\n\t"
 10545             "FSTP_S $dst" %}
 10546   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10547   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10548               OpcReg_FPR(src1),
 10549               Pop_Mem_FPR(dst) );
 10550   ins_pipe( fpu_mem_reg_mem );
 10551 %}
 10552 //
 10553 // Cisc-alternate to addFPR_reg
 10554 // This instruction does not round to 24-bits
 10555 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10556   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10557   match(Set dst (AddF dst (LoadF src)));
 10559   format %{ "FADD   $dst,$src" %}
 10560   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10561   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10562               OpcP, RegOpc(dst) );
 10563   ins_pipe( fpu_reg_mem );
 10564 %}
 10566 // // Following two instructions for _222_mpegaudio
 10567 // Spill to obtain 24-bit precision
 10568 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10569   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10570   match(Set dst (AddF src1 src2));
 10572   format %{ "FADD   $dst,$src1,$src2" %}
 10573   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10574   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10575               OpcReg_FPR(src2),
 10576               Pop_Mem_FPR(dst) );
 10577   ins_pipe( fpu_mem_reg_mem );
 10578 %}
 10580 // Cisc-spill variant
 10581 // Spill to obtain 24-bit precision
 10582 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10583   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10584   match(Set dst (AddF src1 (LoadF src2)));
 10586   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10587   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10588   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10589               set_instruction_start,
 10590               OpcP, RMopc_Mem(secondary,src1),
 10591               Pop_Mem_FPR(dst) );
 10592   ins_pipe( fpu_mem_mem_mem );
 10593 %}
 10595 // Spill to obtain 24-bit precision
 10596 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10597   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10598   match(Set dst (AddF src1 src2));
 10600   format %{ "FADD   $dst,$src1,$src2" %}
 10601   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10602   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10603               set_instruction_start,
 10604               OpcP, RMopc_Mem(secondary,src1),
 10605               Pop_Mem_FPR(dst) );
 10606   ins_pipe( fpu_mem_mem_mem );
 10607 %}
 10610 // Spill to obtain 24-bit precision
 10611 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10612   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10613   match(Set dst (AddF src con));
 10614   format %{ "FLD    $src\n\t"
 10615             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10616             "FSTP_S $dst"  %}
 10617   ins_encode %{
 10618     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10619     __ fadd_s($constantaddress($con));
 10620     __ fstp_s(Address(rsp, $dst$$disp));
 10621   %}
 10622   ins_pipe(fpu_mem_reg_con);
 10623 %}
 10624 //
 10625 // This instruction does not round to 24-bits
 10626 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10627   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10628   match(Set dst (AddF src con));
 10629   format %{ "FLD    $src\n\t"
 10630             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10631             "FSTP   $dst"  %}
 10632   ins_encode %{
 10633     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10634     __ fadd_s($constantaddress($con));
 10635     __ fstp_d($dst$$reg);
 10636   %}
 10637   ins_pipe(fpu_reg_reg_con);
 10638 %}
 10640 // Spill to obtain 24-bit precision
 10641 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10642   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10643   match(Set dst (MulF src1 src2));
 10645   format %{ "FLD    $src1\n\t"
 10646             "FMUL   $src2\n\t"
 10647             "FSTP_S $dst"  %}
 10648   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10649   ins_encode( Push_Reg_FPR(src1),
 10650               OpcReg_FPR(src2),
 10651               Pop_Mem_FPR(dst) );
 10652   ins_pipe( fpu_mem_reg_reg );
 10653 %}
 10654 //
 10655 // This instruction does not round to 24-bits
 10656 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10657   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10658   match(Set dst (MulF src1 src2));
 10660   format %{ "FLD    $src1\n\t"
 10661             "FMUL   $src2\n\t"
 10662             "FSTP_S $dst"  %}
 10663   opcode(0xD8, 0x1); /* D8 C8+i */
 10664   ins_encode( Push_Reg_FPR(src2),
 10665               OpcReg_FPR(src1),
 10666               Pop_Reg_FPR(dst) );
 10667   ins_pipe( fpu_reg_reg_reg );
 10668 %}
 10671 // Spill to obtain 24-bit precision
 10672 // Cisc-alternate to reg-reg multiply
 10673 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10674   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10675   match(Set dst (MulF src1 (LoadF src2)));
 10677   format %{ "FLD_S  $src2\n\t"
 10678             "FMUL   $src1\n\t"
 10679             "FSTP_S $dst"  %}
 10680   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10681   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10682               OpcReg_FPR(src1),
 10683               Pop_Mem_FPR(dst) );
 10684   ins_pipe( fpu_mem_reg_mem );
 10685 %}
 10686 //
 10687 // This instruction does not round to 24-bits
 10688 // Cisc-alternate to reg-reg multiply
 10689 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10690   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10691   match(Set dst (MulF src1 (LoadF src2)));
 10693   format %{ "FMUL   $dst,$src1,$src2" %}
 10694   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10695   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10696               OpcReg_FPR(src1),
 10697               Pop_Reg_FPR(dst) );
 10698   ins_pipe( fpu_reg_reg_mem );
 10699 %}
 10701 // Spill to obtain 24-bit precision
 10702 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10703   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10704   match(Set dst (MulF src1 src2));
 10706   format %{ "FMUL   $dst,$src1,$src2" %}
 10707   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10708   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10709               set_instruction_start,
 10710               OpcP, RMopc_Mem(secondary,src1),
 10711               Pop_Mem_FPR(dst) );
 10712   ins_pipe( fpu_mem_mem_mem );
 10713 %}
 10715 // Spill to obtain 24-bit precision
 10716 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10717   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10718   match(Set dst (MulF src con));
 10720   format %{ "FLD    $src\n\t"
 10721             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10722             "FSTP_S $dst"  %}
 10723   ins_encode %{
 10724     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10725     __ fmul_s($constantaddress($con));
 10726     __ fstp_s(Address(rsp, $dst$$disp));
 10727   %}
 10728   ins_pipe(fpu_mem_reg_con);
 10729 %}
 10730 //
 10731 // This instruction does not round to 24-bits
 10732 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10733   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10734   match(Set dst (MulF src con));
 10736   format %{ "FLD    $src\n\t"
 10737             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10738             "FSTP   $dst"  %}
 10739   ins_encode %{
 10740     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10741     __ fmul_s($constantaddress($con));
 10742     __ fstp_d($dst$$reg);
 10743   %}
 10744   ins_pipe(fpu_reg_reg_con);
 10745 %}
 10748 //
 10749 // MACRO1 -- subsume unshared load into mulFPR
 10750 // This instruction does not round to 24-bits
 10751 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10752   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10753   match(Set dst (MulF (LoadF mem1) src));
 10755   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10756             "FMUL   ST,$src\n\t"
 10757             "FSTP   $dst" %}
 10758   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10759   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10760               OpcReg_FPR(src),
 10761               Pop_Reg_FPR(dst) );
 10762   ins_pipe( fpu_reg_reg_mem );
 10763 %}
 10764 //
 10765 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10766 // This instruction does not round to 24-bits
 10767 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10768   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10769   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10770   ins_cost(95);
 10772   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10773             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10774             "FADD   ST,$src2\n\t"
 10775             "FSTP   $dst" %}
 10776   opcode(0xD9); /* LoadF D9 /0 */
 10777   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10778               FMul_ST_reg(src1),
 10779               FAdd_ST_reg(src2),
 10780               Pop_Reg_FPR(dst) );
 10781   ins_pipe( fpu_reg_mem_reg_reg );
 10782 %}
 10784 // MACRO3 -- addFPR a mulFPR
 10785 // This instruction does not round to 24-bits.  It is a '2-address'
 10786 // instruction in that the result goes back to src2.  This eliminates
 10787 // a move from the macro; possibly the register allocator will have
 10788 // to add it back (and maybe not).
 10789 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10790   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10791   match(Set src2 (AddF (MulF src0 src1) src2));
 10793   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10794             "FMUL   ST,$src1\n\t"
 10795             "FADDP  $src2,ST" %}
 10796   opcode(0xD9); /* LoadF D9 /0 */
 10797   ins_encode( Push_Reg_FPR(src0),
 10798               FMul_ST_reg(src1),
 10799               FAddP_reg_ST(src2) );
 10800   ins_pipe( fpu_reg_reg_reg );
 10801 %}
 10803 // MACRO4 -- divFPR subFPR
 10804 // This instruction does not round to 24-bits
 10805 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10806   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10807   match(Set dst (DivF (SubF src2 src1) src3));
 10809   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10810             "FSUB   ST,$src1\n\t"
 10811             "FDIV   ST,$src3\n\t"
 10812             "FSTP  $dst" %}
 10813   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10814   ins_encode( Push_Reg_FPR(src2),
 10815               subFPR_divFPR_encode(src1,src3),
 10816               Pop_Reg_FPR(dst) );
 10817   ins_pipe( fpu_reg_reg_reg_reg );
 10818 %}
 10820 // Spill to obtain 24-bit precision
 10821 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10822   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10823   match(Set dst (DivF src1 src2));
 10825   format %{ "FDIV   $dst,$src1,$src2" %}
 10826   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10827   ins_encode( Push_Reg_FPR(src1),
 10828               OpcReg_FPR(src2),
 10829               Pop_Mem_FPR(dst) );
 10830   ins_pipe( fpu_mem_reg_reg );
 10831 %}
 10832 //
 10833 // This instruction does not round to 24-bits
 10834 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10835   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10836   match(Set dst (DivF dst src));
 10838   format %{ "FDIV   $dst,$src" %}
 10839   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10840   ins_encode( Push_Reg_FPR(src),
 10841               OpcP, RegOpc(dst) );
 10842   ins_pipe( fpu_reg_reg );
 10843 %}
 10846 // Spill to obtain 24-bit precision
 10847 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10848   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10849   match(Set dst (ModF src1 src2));
 10850   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10852   format %{ "FMOD   $dst,$src1,$src2" %}
 10853   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10854               emitModDPR(),
 10855               Push_Result_Mod_DPR(src2),
 10856               Pop_Mem_FPR(dst));
 10857   ins_pipe( pipe_slow );
 10858 %}
 10859 //
 10860 // This instruction does not round to 24-bits
 10861 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10862   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10863   match(Set dst (ModF dst src));
 10864   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10866   format %{ "FMOD   $dst,$src" %}
 10867   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10868               emitModDPR(),
 10869               Push_Result_Mod_DPR(src),
 10870               Pop_Reg_FPR(dst));
 10871   ins_pipe( pipe_slow );
 10872 %}
 10874 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10875   predicate(UseSSE>=1);
 10876   match(Set dst (ModF src0 src1));
 10877   effect(KILL rax, KILL cr);
 10878   format %{ "SUB    ESP,4\t # FMOD\n"
 10879           "\tMOVSS  [ESP+0],$src1\n"
 10880           "\tFLD_S  [ESP+0]\n"
 10881           "\tMOVSS  [ESP+0],$src0\n"
 10882           "\tFLD_S  [ESP+0]\n"
 10883      "loop:\tFPREM\n"
 10884           "\tFWAIT\n"
 10885           "\tFNSTSW AX\n"
 10886           "\tSAHF\n"
 10887           "\tJP     loop\n"
 10888           "\tFSTP_S [ESP+0]\n"
 10889           "\tMOVSS  $dst,[ESP+0]\n"
 10890           "\tADD    ESP,4\n"
 10891           "\tFSTP   ST0\t # Restore FPU Stack"
 10892     %}
 10893   ins_cost(250);
 10894   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10895   ins_pipe( pipe_slow );
 10896 %}
 10899 //----------Arithmetic Conversion Instructions---------------------------------
 10900 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10902 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10903   predicate(UseSSE==0);
 10904   match(Set dst (RoundFloat src));
 10905   ins_cost(125);
 10906   format %{ "FST_S  $dst,$src\t# F-round" %}
 10907   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10908   ins_pipe( fpu_mem_reg );
 10909 %}
 10911 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10912   predicate(UseSSE<=1);
 10913   match(Set dst (RoundDouble src));
 10914   ins_cost(125);
 10915   format %{ "FST_D  $dst,$src\t# D-round" %}
 10916   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 10917   ins_pipe( fpu_mem_reg );
 10918 %}
 10920 // Force rounding to 24-bit precision and 6-bit exponent
 10921 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 10922   predicate(UseSSE==0);
 10923   match(Set dst (ConvD2F src));
 10924   format %{ "FST_S  $dst,$src\t# F-round" %}
 10925   expand %{
 10926     roundFloat_mem_reg(dst,src);
 10927   %}
 10928 %}
 10930 // Force rounding to 24-bit precision and 6-bit exponent
 10931 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 10932   predicate(UseSSE==1);
 10933   match(Set dst (ConvD2F src));
 10934   effect( KILL cr );
 10935   format %{ "SUB    ESP,4\n\t"
 10936             "FST_S  [ESP],$src\t# F-round\n\t"
 10937             "MOVSS  $dst,[ESP]\n\t"
 10938             "ADD ESP,4" %}
 10939   ins_encode %{
 10940     __ subptr(rsp, 4);
 10941     if ($src$$reg != FPR1L_enc) {
 10942       __ fld_s($src$$reg-1);
 10943       __ fstp_s(Address(rsp, 0));
 10944     } else {
 10945       __ fst_s(Address(rsp, 0));
 10947     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 10948     __ addptr(rsp, 4);
 10949   %}
 10950   ins_pipe( pipe_slow );
 10951 %}
 10953 // Force rounding double precision to single precision
 10954 instruct convD2F_reg(regF dst, regD src) %{
 10955   predicate(UseSSE>=2);
 10956   match(Set dst (ConvD2F src));
 10957   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 10958   ins_encode %{
 10959     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 10960   %}
 10961   ins_pipe( pipe_slow );
 10962 %}
 10964 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 10965   predicate(UseSSE==0);
 10966   match(Set dst (ConvF2D src));
 10967   format %{ "FST_S  $dst,$src\t# D-round" %}
 10968   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 10969   ins_pipe( fpu_reg_reg );
 10970 %}
 10972 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 10973   predicate(UseSSE==1);
 10974   match(Set dst (ConvF2D src));
 10975   format %{ "FST_D  $dst,$src\t# D-round" %}
 10976   expand %{
 10977     roundDouble_mem_reg(dst,src);
 10978   %}
 10979 %}
 10981 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 10982   predicate(UseSSE==1);
 10983   match(Set dst (ConvF2D src));
 10984   effect( KILL cr );
 10985   format %{ "SUB    ESP,4\n\t"
 10986             "MOVSS  [ESP] $src\n\t"
 10987             "FLD_S  [ESP]\n\t"
 10988             "ADD    ESP,4\n\t"
 10989             "FSTP   $dst\t# D-round" %}
 10990   ins_encode %{
 10991     __ subptr(rsp, 4);
 10992     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10993     __ fld_s(Address(rsp, 0));
 10994     __ addptr(rsp, 4);
 10995     __ fstp_d($dst$$reg);
 10996   %}
 10997   ins_pipe( pipe_slow );
 10998 %}
 11000 instruct convF2D_reg(regD dst, regF src) %{
 11001   predicate(UseSSE>=2);
 11002   match(Set dst (ConvF2D src));
 11003   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11004   ins_encode %{
 11005     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 11006   %}
 11007   ins_pipe( pipe_slow );
 11008 %}
 11010 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11011 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 11012   predicate(UseSSE<=1);
 11013   match(Set dst (ConvD2I src));
 11014   effect( KILL tmp, KILL cr );
 11015   format %{ "FLD    $src\t# Convert double to int \n\t"
 11016             "FLDCW  trunc mode\n\t"
 11017             "SUB    ESP,4\n\t"
 11018             "FISTp  [ESP + #0]\n\t"
 11019             "FLDCW  std/24-bit mode\n\t"
 11020             "POP    EAX\n\t"
 11021             "CMP    EAX,0x80000000\n\t"
 11022             "JNE,s  fast\n\t"
 11023             "FLD_D  $src\n\t"
 11024             "CALL   d2i_wrapper\n"
 11025       "fast:" %}
 11026   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 11027   ins_pipe( pipe_slow );
 11028 %}
 11030 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11031 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11032   predicate(UseSSE>=2);
 11033   match(Set dst (ConvD2I src));
 11034   effect( KILL tmp, KILL cr );
 11035   format %{ "CVTTSD2SI $dst, $src\n\t"
 11036             "CMP    $dst,0x80000000\n\t"
 11037             "JNE,s  fast\n\t"
 11038             "SUB    ESP, 8\n\t"
 11039             "MOVSD  [ESP], $src\n\t"
 11040             "FLD_D  [ESP]\n\t"
 11041             "ADD    ESP, 8\n\t"
 11042             "CALL   d2i_wrapper\n"
 11043       "fast:" %}
 11044   ins_encode %{
 11045     Label fast;
 11046     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 11047     __ cmpl($dst$$Register, 0x80000000);
 11048     __ jccb(Assembler::notEqual, fast);
 11049     __ subptr(rsp, 8);
 11050     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11051     __ fld_d(Address(rsp, 0));
 11052     __ addptr(rsp, 8);
 11053     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11054     __ bind(fast);
 11055   %}
 11056   ins_pipe( pipe_slow );
 11057 %}
 11059 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 11060   predicate(UseSSE<=1);
 11061   match(Set dst (ConvD2L src));
 11062   effect( KILL cr );
 11063   format %{ "FLD    $src\t# Convert double to long\n\t"
 11064             "FLDCW  trunc mode\n\t"
 11065             "SUB    ESP,8\n\t"
 11066             "FISTp  [ESP + #0]\n\t"
 11067             "FLDCW  std/24-bit mode\n\t"
 11068             "POP    EAX\n\t"
 11069             "POP    EDX\n\t"
 11070             "CMP    EDX,0x80000000\n\t"
 11071             "JNE,s  fast\n\t"
 11072             "TEST   EAX,EAX\n\t"
 11073             "JNE,s  fast\n\t"
 11074             "FLD    $src\n\t"
 11075             "CALL   d2l_wrapper\n"
 11076       "fast:" %}
 11077   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 11078   ins_pipe( pipe_slow );
 11079 %}
 11081 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11082 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11083   predicate (UseSSE>=2);
 11084   match(Set dst (ConvD2L src));
 11085   effect( KILL cr );
 11086   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11087             "MOVSD  [ESP],$src\n\t"
 11088             "FLD_D  [ESP]\n\t"
 11089             "FLDCW  trunc mode\n\t"
 11090             "FISTp  [ESP + #0]\n\t"
 11091             "FLDCW  std/24-bit mode\n\t"
 11092             "POP    EAX\n\t"
 11093             "POP    EDX\n\t"
 11094             "CMP    EDX,0x80000000\n\t"
 11095             "JNE,s  fast\n\t"
 11096             "TEST   EAX,EAX\n\t"
 11097             "JNE,s  fast\n\t"
 11098             "SUB    ESP,8\n\t"
 11099             "MOVSD  [ESP],$src\n\t"
 11100             "FLD_D  [ESP]\n\t"
 11101             "ADD    ESP,8\n\t"
 11102             "CALL   d2l_wrapper\n"
 11103       "fast:" %}
 11104   ins_encode %{
 11105     Label fast;
 11106     __ subptr(rsp, 8);
 11107     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11108     __ fld_d(Address(rsp, 0));
 11109     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11110     __ fistp_d(Address(rsp, 0));
 11111     // Restore the rounding mode, mask the exception
 11112     if (Compile::current()->in_24_bit_fp_mode()) {
 11113       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11114     } else {
 11115       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11117     // Load the converted long, adjust CPU stack
 11118     __ pop(rax);
 11119     __ pop(rdx);
 11120     __ cmpl(rdx, 0x80000000);
 11121     __ jccb(Assembler::notEqual, fast);
 11122     __ testl(rax, rax);
 11123     __ jccb(Assembler::notEqual, fast);
 11124     __ subptr(rsp, 8);
 11125     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11126     __ fld_d(Address(rsp, 0));
 11127     __ addptr(rsp, 8);
 11128     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11129     __ bind(fast);
 11130   %}
 11131   ins_pipe( pipe_slow );
 11132 %}
 11134 // Convert a double to an int.  Java semantics require we do complex
 11135 // manglations in the corner cases.  So we set the rounding mode to
 11136 // 'zero', store the darned double down as an int, and reset the
 11137 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11138 // if we would overflow or converted a NAN; we check for this and
 11139 // and go the slow path if needed.
 11140 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 11141   predicate(UseSSE==0);
 11142   match(Set dst (ConvF2I src));
 11143   effect( KILL tmp, KILL cr );
 11144   format %{ "FLD    $src\t# Convert float to int \n\t"
 11145             "FLDCW  trunc mode\n\t"
 11146             "SUB    ESP,4\n\t"
 11147             "FISTp  [ESP + #0]\n\t"
 11148             "FLDCW  std/24-bit mode\n\t"
 11149             "POP    EAX\n\t"
 11150             "CMP    EAX,0x80000000\n\t"
 11151             "JNE,s  fast\n\t"
 11152             "FLD    $src\n\t"
 11153             "CALL   d2i_wrapper\n"
 11154       "fast:" %}
 11155   // DPR2I_encoding works for FPR2I
 11156   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 11157   ins_pipe( pipe_slow );
 11158 %}
 11160 // Convert a float in xmm to an int reg.
 11161 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11162   predicate(UseSSE>=1);
 11163   match(Set dst (ConvF2I src));
 11164   effect( KILL tmp, KILL cr );
 11165   format %{ "CVTTSS2SI $dst, $src\n\t"
 11166             "CMP    $dst,0x80000000\n\t"
 11167             "JNE,s  fast\n\t"
 11168             "SUB    ESP, 4\n\t"
 11169             "MOVSS  [ESP], $src\n\t"
 11170             "FLD    [ESP]\n\t"
 11171             "ADD    ESP, 4\n\t"
 11172             "CALL   d2i_wrapper\n"
 11173       "fast:" %}
 11174   ins_encode %{
 11175     Label fast;
 11176     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 11177     __ cmpl($dst$$Register, 0x80000000);
 11178     __ jccb(Assembler::notEqual, fast);
 11179     __ subptr(rsp, 4);
 11180     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11181     __ fld_s(Address(rsp, 0));
 11182     __ addptr(rsp, 4);
 11183     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11184     __ bind(fast);
 11185   %}
 11186   ins_pipe( pipe_slow );
 11187 %}
 11189 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 11190   predicate(UseSSE==0);
 11191   match(Set dst (ConvF2L src));
 11192   effect( KILL cr );
 11193   format %{ "FLD    $src\t# Convert float to long\n\t"
 11194             "FLDCW  trunc mode\n\t"
 11195             "SUB    ESP,8\n\t"
 11196             "FISTp  [ESP + #0]\n\t"
 11197             "FLDCW  std/24-bit mode\n\t"
 11198             "POP    EAX\n\t"
 11199             "POP    EDX\n\t"
 11200             "CMP    EDX,0x80000000\n\t"
 11201             "JNE,s  fast\n\t"
 11202             "TEST   EAX,EAX\n\t"
 11203             "JNE,s  fast\n\t"
 11204             "FLD    $src\n\t"
 11205             "CALL   d2l_wrapper\n"
 11206       "fast:" %}
 11207   // DPR2L_encoding works for FPR2L
 11208   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 11209   ins_pipe( pipe_slow );
 11210 %}
 11212 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11213 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11214   predicate (UseSSE>=1);
 11215   match(Set dst (ConvF2L src));
 11216   effect( KILL cr );
 11217   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11218             "MOVSS  [ESP],$src\n\t"
 11219             "FLD_S  [ESP]\n\t"
 11220             "FLDCW  trunc mode\n\t"
 11221             "FISTp  [ESP + #0]\n\t"
 11222             "FLDCW  std/24-bit mode\n\t"
 11223             "POP    EAX\n\t"
 11224             "POP    EDX\n\t"
 11225             "CMP    EDX,0x80000000\n\t"
 11226             "JNE,s  fast\n\t"
 11227             "TEST   EAX,EAX\n\t"
 11228             "JNE,s  fast\n\t"
 11229             "SUB    ESP,4\t# Convert float to long\n\t"
 11230             "MOVSS  [ESP],$src\n\t"
 11231             "FLD_S  [ESP]\n\t"
 11232             "ADD    ESP,4\n\t"
 11233             "CALL   d2l_wrapper\n"
 11234       "fast:" %}
 11235   ins_encode %{
 11236     Label fast;
 11237     __ subptr(rsp, 8);
 11238     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11239     __ fld_s(Address(rsp, 0));
 11240     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11241     __ fistp_d(Address(rsp, 0));
 11242     // Restore the rounding mode, mask the exception
 11243     if (Compile::current()->in_24_bit_fp_mode()) {
 11244       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11245     } else {
 11246       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11248     // Load the converted long, adjust CPU stack
 11249     __ pop(rax);
 11250     __ pop(rdx);
 11251     __ cmpl(rdx, 0x80000000);
 11252     __ jccb(Assembler::notEqual, fast);
 11253     __ testl(rax, rax);
 11254     __ jccb(Assembler::notEqual, fast);
 11255     __ subptr(rsp, 4);
 11256     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11257     __ fld_s(Address(rsp, 0));
 11258     __ addptr(rsp, 4);
 11259     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11260     __ bind(fast);
 11261   %}
 11262   ins_pipe( pipe_slow );
 11263 %}
 11265 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 11266   predicate( UseSSE<=1 );
 11267   match(Set dst (ConvI2D src));
 11268   format %{ "FILD   $src\n\t"
 11269             "FSTP   $dst" %}
 11270   opcode(0xDB, 0x0);  /* DB /0 */
 11271   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11272   ins_pipe( fpu_reg_mem );
 11273 %}
 11275 instruct convI2D_reg(regD dst, rRegI src) %{
 11276   predicate( UseSSE>=2 && !UseXmmI2D );
 11277   match(Set dst (ConvI2D src));
 11278   format %{ "CVTSI2SD $dst,$src" %}
 11279   ins_encode %{
 11280     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11281   %}
 11282   ins_pipe( pipe_slow );
 11283 %}
 11285 instruct convI2D_mem(regD dst, memory mem) %{
 11286   predicate( UseSSE>=2 );
 11287   match(Set dst (ConvI2D (LoadI mem)));
 11288   format %{ "CVTSI2SD $dst,$mem" %}
 11289   ins_encode %{
 11290     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11291   %}
 11292   ins_pipe( pipe_slow );
 11293 %}
 11295 instruct convXI2D_reg(regD dst, rRegI src)
 11296 %{
 11297   predicate( UseSSE>=2 && UseXmmI2D );
 11298   match(Set dst (ConvI2D src));
 11300   format %{ "MOVD  $dst,$src\n\t"
 11301             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11302   ins_encode %{
 11303     __ movdl($dst$$XMMRegister, $src$$Register);
 11304     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11305   %}
 11306   ins_pipe(pipe_slow); // XXX
 11307 %}
 11309 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11310   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11311   match(Set dst (ConvI2D (LoadI mem)));
 11312   format %{ "FILD   $mem\n\t"
 11313             "FSTP   $dst" %}
 11314   opcode(0xDB);      /* DB /0 */
 11315   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11316               Pop_Reg_DPR(dst));
 11317   ins_pipe( fpu_reg_mem );
 11318 %}
 11320 // Convert a byte to a float; no rounding step needed.
 11321 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11322   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11323   match(Set dst (ConvI2F src));
 11324   format %{ "FILD   $src\n\t"
 11325             "FSTP   $dst" %}
 11327   opcode(0xDB, 0x0);  /* DB /0 */
 11328   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11329   ins_pipe( fpu_reg_mem );
 11330 %}
 11332 // In 24-bit mode, force exponent rounding by storing back out
 11333 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11334   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11335   match(Set dst (ConvI2F src));
 11336   ins_cost(200);
 11337   format %{ "FILD   $src\n\t"
 11338             "FSTP_S $dst" %}
 11339   opcode(0xDB, 0x0);  /* DB /0 */
 11340   ins_encode( Push_Mem_I(src),
 11341               Pop_Mem_FPR(dst));
 11342   ins_pipe( fpu_mem_mem );
 11343 %}
 11345 // In 24-bit mode, force exponent rounding by storing back out
 11346 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11347   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11348   match(Set dst (ConvI2F (LoadI mem)));
 11349   ins_cost(200);
 11350   format %{ "FILD   $mem\n\t"
 11351             "FSTP_S $dst" %}
 11352   opcode(0xDB);  /* DB /0 */
 11353   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11354               Pop_Mem_FPR(dst));
 11355   ins_pipe( fpu_mem_mem );
 11356 %}
 11358 // This instruction does not round to 24-bits
 11359 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11360   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11361   match(Set dst (ConvI2F src));
 11362   format %{ "FILD   $src\n\t"
 11363             "FSTP   $dst" %}
 11364   opcode(0xDB, 0x0);  /* DB /0 */
 11365   ins_encode( Push_Mem_I(src),
 11366               Pop_Reg_FPR(dst));
 11367   ins_pipe( fpu_reg_mem );
 11368 %}
 11370 // This instruction does not round to 24-bits
 11371 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11372   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11373   match(Set dst (ConvI2F (LoadI mem)));
 11374   format %{ "FILD   $mem\n\t"
 11375             "FSTP   $dst" %}
 11376   opcode(0xDB);      /* DB /0 */
 11377   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11378               Pop_Reg_FPR(dst));
 11379   ins_pipe( fpu_reg_mem );
 11380 %}
 11382 // Convert an int to a float in xmm; no rounding step needed.
 11383 instruct convI2F_reg(regF dst, rRegI src) %{
 11384   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11385   match(Set dst (ConvI2F src));
 11386   format %{ "CVTSI2SS $dst, $src" %}
 11387   ins_encode %{
 11388     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11389   %}
 11390   ins_pipe( pipe_slow );
 11391 %}
 11393  instruct convXI2F_reg(regF dst, rRegI src)
 11394 %{
 11395   predicate( UseSSE>=2 && UseXmmI2F );
 11396   match(Set dst (ConvI2F src));
 11398   format %{ "MOVD  $dst,$src\n\t"
 11399             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11400   ins_encode %{
 11401     __ movdl($dst$$XMMRegister, $src$$Register);
 11402     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11403   %}
 11404   ins_pipe(pipe_slow); // XXX
 11405 %}
 11407 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
 11408   match(Set dst (ConvI2L src));
 11409   effect(KILL cr);
 11410   ins_cost(375);
 11411   format %{ "MOV    $dst.lo,$src\n\t"
 11412             "MOV    $dst.hi,$src\n\t"
 11413             "SAR    $dst.hi,31" %}
 11414   ins_encode(convert_int_long(dst,src));
 11415   ins_pipe( ialu_reg_reg_long );
 11416 %}
 11418 // Zero-extend convert int to long
 11419 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11420   match(Set dst (AndL (ConvI2L src) mask) );
 11421   effect( KILL flags );
 11422   ins_cost(250);
 11423   format %{ "MOV    $dst.lo,$src\n\t"
 11424             "XOR    $dst.hi,$dst.hi" %}
 11425   opcode(0x33); // XOR
 11426   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11427   ins_pipe( ialu_reg_reg_long );
 11428 %}
 11430 // Zero-extend long
 11431 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11432   match(Set dst (AndL src mask) );
 11433   effect( KILL flags );
 11434   ins_cost(250);
 11435   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11436             "XOR    $dst.hi,$dst.hi\n\t" %}
 11437   opcode(0x33); // XOR
 11438   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11439   ins_pipe( ialu_reg_reg_long );
 11440 %}
 11442 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11443   predicate (UseSSE<=1);
 11444   match(Set dst (ConvL2D src));
 11445   effect( KILL cr );
 11446   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11447             "PUSH   $src.lo\n\t"
 11448             "FILD   ST,[ESP + #0]\n\t"
 11449             "ADD    ESP,8\n\t"
 11450             "FSTP_D $dst\t# D-round" %}
 11451   opcode(0xDF, 0x5);  /* DF /5 */
 11452   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11453   ins_pipe( pipe_slow );
 11454 %}
 11456 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11457   predicate (UseSSE>=2);
 11458   match(Set dst (ConvL2D src));
 11459   effect( KILL cr );
 11460   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11461             "PUSH   $src.lo\n\t"
 11462             "FILD_D [ESP]\n\t"
 11463             "FSTP_D [ESP]\n\t"
 11464             "MOVSD  $dst,[ESP]\n\t"
 11465             "ADD    ESP,8" %}
 11466   opcode(0xDF, 0x5);  /* DF /5 */
 11467   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11468   ins_pipe( pipe_slow );
 11469 %}
 11471 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11472   predicate (UseSSE>=1);
 11473   match(Set dst (ConvL2F src));
 11474   effect( KILL cr );
 11475   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11476             "PUSH   $src.lo\n\t"
 11477             "FILD_D [ESP]\n\t"
 11478             "FSTP_S [ESP]\n\t"
 11479             "MOVSS  $dst,[ESP]\n\t"
 11480             "ADD    ESP,8" %}
 11481   opcode(0xDF, 0x5);  /* DF /5 */
 11482   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11483   ins_pipe( pipe_slow );
 11484 %}
 11486 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11487   match(Set dst (ConvL2F src));
 11488   effect( KILL cr );
 11489   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11490             "PUSH   $src.lo\n\t"
 11491             "FILD   ST,[ESP + #0]\n\t"
 11492             "ADD    ESP,8\n\t"
 11493             "FSTP_S $dst\t# F-round" %}
 11494   opcode(0xDF, 0x5);  /* DF /5 */
 11495   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11496   ins_pipe( pipe_slow );
 11497 %}
 11499 instruct convL2I_reg( rRegI dst, eRegL src ) %{
 11500   match(Set dst (ConvL2I src));
 11501   effect( DEF dst, USE src );
 11502   format %{ "MOV    $dst,$src.lo" %}
 11503   ins_encode(enc_CopyL_Lo(dst,src));
 11504   ins_pipe( ialu_reg_reg );
 11505 %}
 11508 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 11509   match(Set dst (MoveF2I src));
 11510   effect( DEF dst, USE src );
 11511   ins_cost(100);
 11512   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11513   ins_encode %{
 11514     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11515   %}
 11516   ins_pipe( ialu_reg_mem );
 11517 %}
 11519 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11520   predicate(UseSSE==0);
 11521   match(Set dst (MoveF2I src));
 11522   effect( DEF dst, USE src );
 11524   ins_cost(125);
 11525   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11526   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11527   ins_pipe( fpu_mem_reg );
 11528 %}
 11530 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11531   predicate(UseSSE>=1);
 11532   match(Set dst (MoveF2I src));
 11533   effect( DEF dst, USE src );
 11535   ins_cost(95);
 11536   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11537   ins_encode %{
 11538     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11539   %}
 11540   ins_pipe( pipe_slow );
 11541 %}
 11543 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
 11544   predicate(UseSSE>=2);
 11545   match(Set dst (MoveF2I src));
 11546   effect( DEF dst, USE src );
 11547   ins_cost(85);
 11548   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11549   ins_encode %{
 11550     __ movdl($dst$$Register, $src$$XMMRegister);
 11551   %}
 11552   ins_pipe( pipe_slow );
 11553 %}
 11555 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 11556   match(Set dst (MoveI2F src));
 11557   effect( DEF dst, USE src );
 11559   ins_cost(100);
 11560   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11561   ins_encode %{
 11562     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11563   %}
 11564   ins_pipe( ialu_mem_reg );
 11565 %}
 11568 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11569   predicate(UseSSE==0);
 11570   match(Set dst (MoveI2F src));
 11571   effect(DEF dst, USE src);
 11573   ins_cost(125);
 11574   format %{ "FLD_S  $src\n\t"
 11575             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11576   opcode(0xD9);               /* D9 /0, FLD m32real */
 11577   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11578               Pop_Reg_FPR(dst) );
 11579   ins_pipe( fpu_reg_mem );
 11580 %}
 11582 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11583   predicate(UseSSE>=1);
 11584   match(Set dst (MoveI2F src));
 11585   effect( DEF dst, USE src );
 11587   ins_cost(95);
 11588   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11589   ins_encode %{
 11590     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11591   %}
 11592   ins_pipe( pipe_slow );
 11593 %}
 11595 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
 11596   predicate(UseSSE>=2);
 11597   match(Set dst (MoveI2F src));
 11598   effect( DEF dst, USE src );
 11600   ins_cost(85);
 11601   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11602   ins_encode %{
 11603     __ movdl($dst$$XMMRegister, $src$$Register);
 11604   %}
 11605   ins_pipe( pipe_slow );
 11606 %}
 11608 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11609   match(Set dst (MoveD2L src));
 11610   effect(DEF dst, USE src);
 11612   ins_cost(250);
 11613   format %{ "MOV    $dst.lo,$src\n\t"
 11614             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11615   opcode(0x8B, 0x8B);
 11616   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11617   ins_pipe( ialu_mem_long_reg );
 11618 %}
 11620 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11621   predicate(UseSSE<=1);
 11622   match(Set dst (MoveD2L src));
 11623   effect(DEF dst, USE src);
 11625   ins_cost(125);
 11626   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11627   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11628   ins_pipe( fpu_mem_reg );
 11629 %}
 11631 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11632   predicate(UseSSE>=2);
 11633   match(Set dst (MoveD2L src));
 11634   effect(DEF dst, USE src);
 11635   ins_cost(95);
 11636   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11637   ins_encode %{
 11638     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11639   %}
 11640   ins_pipe( pipe_slow );
 11641 %}
 11643 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11644   predicate(UseSSE>=2);
 11645   match(Set dst (MoveD2L src));
 11646   effect(DEF dst, USE src, TEMP tmp);
 11647   ins_cost(85);
 11648   format %{ "MOVD   $dst.lo,$src\n\t"
 11649             "PSHUFLW $tmp,$src,0x4E\n\t"
 11650             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11651   ins_encode %{
 11652     __ movdl($dst$$Register, $src$$XMMRegister);
 11653     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11654     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11655   %}
 11656   ins_pipe( pipe_slow );
 11657 %}
 11659 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11660   match(Set dst (MoveL2D src));
 11661   effect(DEF dst, USE src);
 11663   ins_cost(200);
 11664   format %{ "MOV    $dst,$src.lo\n\t"
 11665             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11666   opcode(0x89, 0x89);
 11667   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11668   ins_pipe( ialu_mem_long_reg );
 11669 %}
 11672 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11673   predicate(UseSSE<=1);
 11674   match(Set dst (MoveL2D src));
 11675   effect(DEF dst, USE src);
 11676   ins_cost(125);
 11678   format %{ "FLD_D  $src\n\t"
 11679             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11680   opcode(0xDD);               /* DD /0, FLD m64real */
 11681   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11682               Pop_Reg_DPR(dst) );
 11683   ins_pipe( fpu_reg_mem );
 11684 %}
 11687 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11688   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11689   match(Set dst (MoveL2D src));
 11690   effect(DEF dst, USE src);
 11692   ins_cost(95);
 11693   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11694   ins_encode %{
 11695     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11696   %}
 11697   ins_pipe( pipe_slow );
 11698 %}
 11700 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11701   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11702   match(Set dst (MoveL2D src));
 11703   effect(DEF dst, USE src);
 11705   ins_cost(95);
 11706   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11707   ins_encode %{
 11708     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11709   %}
 11710   ins_pipe( pipe_slow );
 11711 %}
 11713 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11714   predicate(UseSSE>=2);
 11715   match(Set dst (MoveL2D src));
 11716   effect(TEMP dst, USE src, TEMP tmp);
 11717   ins_cost(85);
 11718   format %{ "MOVD   $dst,$src.lo\n\t"
 11719             "MOVD   $tmp,$src.hi\n\t"
 11720             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11721   ins_encode %{
 11722     __ movdl($dst$$XMMRegister, $src$$Register);
 11723     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11724     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11725   %}
 11726   ins_pipe( pipe_slow );
 11727 %}
 11730 // =======================================================================
 11731 // fast clearing of an array
 11732 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11733   predicate(!UseFastStosb);
 11734   match(Set dummy (ClearArray cnt base));
 11735   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11736   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11737             "SHL    ECX,1\t# Convert doublewords to words\n\t"
 11738             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 11739   ins_encode %{ 
 11740     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11741   %}
 11742   ins_pipe( pipe_slow );
 11743 %}
 11745 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11746   predicate(UseFastStosb);
 11747   match(Set dummy (ClearArray cnt base));
 11748   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11749   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11750             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
 11751             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
 11752   ins_encode %{ 
 11753     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11754   %}
 11755   ins_pipe( pipe_slow );
 11756 %}
 11758 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 11759                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 11760   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11761   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11763   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 11764   ins_encode %{
 11765     __ string_compare($str1$$Register, $str2$$Register,
 11766                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11767                       $tmp1$$XMMRegister);
 11768   %}
 11769   ins_pipe( pipe_slow );
 11770 %}
 11772 // fast string equals
 11773 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 11774                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 11775   match(Set result (StrEquals (Binary str1 str2) cnt));
 11776   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 11778   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 11779   ins_encode %{
 11780     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 11781                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 11782                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11783   %}
 11784   ins_pipe( pipe_slow );
 11785 %}
 11787 // fast search of substring with known size.
 11788 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 11789                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 11790   predicate(UseSSE42Intrinsics);
 11791   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 11792   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 11794   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 11795   ins_encode %{
 11796     int icnt2 = (int)$int_cnt2$$constant;
 11797     if (icnt2 >= 8) {
 11798       // IndexOf for constant substrings with size >= 8 elements
 11799       // which don't need to be loaded through stack.
 11800       __ string_indexofC8($str1$$Register, $str2$$Register,
 11801                           $cnt1$$Register, $cnt2$$Register,
 11802                           icnt2, $result$$Register,
 11803                           $vec$$XMMRegister, $tmp$$Register);
 11804     } else {
 11805       // Small strings are loaded through stack if they cross page boundary.
 11806       __ string_indexof($str1$$Register, $str2$$Register,
 11807                         $cnt1$$Register, $cnt2$$Register,
 11808                         icnt2, $result$$Register,
 11809                         $vec$$XMMRegister, $tmp$$Register);
 11811   %}
 11812   ins_pipe( pipe_slow );
 11813 %}
 11815 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 11816                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 11817   predicate(UseSSE42Intrinsics);
 11818   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 11819   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 11821   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 11822   ins_encode %{
 11823     __ string_indexof($str1$$Register, $str2$$Register,
 11824                       $cnt1$$Register, $cnt2$$Register,
 11825                       (-1), $result$$Register,
 11826                       $vec$$XMMRegister, $tmp$$Register);
 11827   %}
 11828   ins_pipe( pipe_slow );
 11829 %}
 11831 // fast array equals
 11832 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 11833                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 11834 %{
 11835   match(Set result (AryEq ary1 ary2));
 11836   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 11837   //ins_cost(300);
 11839   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 11840   ins_encode %{
 11841     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 11842                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 11843                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11844   %}
 11845   ins_pipe( pipe_slow );
 11846 %}
 11848 // encode char[] to byte[] in ISO_8859_1
 11849 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
 11850                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
 11851                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
 11852   match(Set result (EncodeISOArray src (Binary dst len)));
 11853   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
 11855   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
 11856   ins_encode %{
 11857     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
 11858                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
 11859                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
 11860   %}
 11861   ins_pipe( pipe_slow );
 11862 %}
 11865 //----------Control Flow Instructions------------------------------------------
 11866 // Signed compare Instructions
 11867 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
 11868   match(Set cr (CmpI op1 op2));
 11869   effect( DEF cr, USE op1, USE op2 );
 11870   format %{ "CMP    $op1,$op2" %}
 11871   opcode(0x3B);  /* Opcode 3B /r */
 11872   ins_encode( OpcP, RegReg( op1, op2) );
 11873   ins_pipe( ialu_cr_reg_reg );
 11874 %}
 11876 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
 11877   match(Set cr (CmpI op1 op2));
 11878   effect( DEF cr, USE op1 );
 11879   format %{ "CMP    $op1,$op2" %}
 11880   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11881   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 11882   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11883   ins_pipe( ialu_cr_reg_imm );
 11884 %}
 11886 // Cisc-spilled version of cmpI_eReg
 11887 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
 11888   match(Set cr (CmpI op1 (LoadI op2)));
 11890   format %{ "CMP    $op1,$op2" %}
 11891   ins_cost(500);
 11892   opcode(0x3B);  /* Opcode 3B /r */
 11893   ins_encode( OpcP, RegMem( op1, op2) );
 11894   ins_pipe( ialu_cr_reg_mem );
 11895 %}
 11897 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
 11898   match(Set cr (CmpI src zero));
 11899   effect( DEF cr, USE src );
 11901   format %{ "TEST   $src,$src" %}
 11902   opcode(0x85);
 11903   ins_encode( OpcP, RegReg( src, src ) );
 11904   ins_pipe( ialu_cr_reg_imm );
 11905 %}
 11907 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
 11908   match(Set cr (CmpI (AndI src con) zero));
 11910   format %{ "TEST   $src,$con" %}
 11911   opcode(0xF7,0x00);
 11912   ins_encode( OpcP, RegOpc(src), Con32(con) );
 11913   ins_pipe( ialu_cr_reg_imm );
 11914 %}
 11916 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
 11917   match(Set cr (CmpI (AndI src mem) zero));
 11919   format %{ "TEST   $src,$mem" %}
 11920   opcode(0x85);
 11921   ins_encode( OpcP, RegMem( src, mem ) );
 11922   ins_pipe( ialu_cr_reg_mem );
 11923 %}
 11925 // Unsigned compare Instructions; really, same as signed except they
 11926 // produce an eFlagsRegU instead of eFlagsReg.
 11927 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
 11928   match(Set cr (CmpU op1 op2));
 11930   format %{ "CMPu   $op1,$op2" %}
 11931   opcode(0x3B);  /* Opcode 3B /r */
 11932   ins_encode( OpcP, RegReg( op1, op2) );
 11933   ins_pipe( ialu_cr_reg_reg );
 11934 %}
 11936 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
 11937   match(Set cr (CmpU op1 op2));
 11939   format %{ "CMPu   $op1,$op2" %}
 11940   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11941   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11942   ins_pipe( ialu_cr_reg_imm );
 11943 %}
 11945 // // Cisc-spilled version of cmpU_eReg
 11946 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
 11947   match(Set cr (CmpU op1 (LoadI op2)));
 11949   format %{ "CMPu   $op1,$op2" %}
 11950   ins_cost(500);
 11951   opcode(0x3B);  /* Opcode 3B /r */
 11952   ins_encode( OpcP, RegMem( op1, op2) );
 11953   ins_pipe( ialu_cr_reg_mem );
 11954 %}
 11956 // // Cisc-spilled version of cmpU_eReg
 11957 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
 11958 //  match(Set cr (CmpU (LoadI op1) op2));
 11959 //
 11960 //  format %{ "CMPu   $op1,$op2" %}
 11961 //  ins_cost(500);
 11962 //  opcode(0x39);  /* Opcode 39 /r */
 11963 //  ins_encode( OpcP, RegMem( op1, op2) );
 11964 //%}
 11966 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
 11967   match(Set cr (CmpU src zero));
 11969   format %{ "TESTu  $src,$src" %}
 11970   opcode(0x85);
 11971   ins_encode( OpcP, RegReg( src, src ) );
 11972   ins_pipe( ialu_cr_reg_imm );
 11973 %}
 11975 // Unsigned pointer compare Instructions
 11976 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 11977   match(Set cr (CmpP op1 op2));
 11979   format %{ "CMPu   $op1,$op2" %}
 11980   opcode(0x3B);  /* Opcode 3B /r */
 11981   ins_encode( OpcP, RegReg( op1, op2) );
 11982   ins_pipe( ialu_cr_reg_reg );
 11983 %}
 11985 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 11986   match(Set cr (CmpP op1 op2));
 11988   format %{ "CMPu   $op1,$op2" %}
 11989   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11990   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11991   ins_pipe( ialu_cr_reg_imm );
 11992 %}
 11994 // // Cisc-spilled version of cmpP_eReg
 11995 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 11996   match(Set cr (CmpP op1 (LoadP op2)));
 11998   format %{ "CMPu   $op1,$op2" %}
 11999   ins_cost(500);
 12000   opcode(0x3B);  /* Opcode 3B /r */
 12001   ins_encode( OpcP, RegMem( op1, op2) );
 12002   ins_pipe( ialu_cr_reg_mem );
 12003 %}
 12005 // // Cisc-spilled version of cmpP_eReg
 12006 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12007 //  match(Set cr (CmpP (LoadP op1) op2));
 12008 //
 12009 //  format %{ "CMPu   $op1,$op2" %}
 12010 //  ins_cost(500);
 12011 //  opcode(0x39);  /* Opcode 39 /r */
 12012 //  ins_encode( OpcP, RegMem( op1, op2) );
 12013 //%}
 12015 // Compare raw pointer (used in out-of-heap check).
 12016 // Only works because non-oop pointers must be raw pointers
 12017 // and raw pointers have no anti-dependencies.
 12018 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12019   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
 12020   match(Set cr (CmpP op1 (LoadP op2)));
 12022   format %{ "CMPu   $op1,$op2" %}
 12023   opcode(0x3B);  /* Opcode 3B /r */
 12024   ins_encode( OpcP, RegMem( op1, op2) );
 12025   ins_pipe( ialu_cr_reg_mem );
 12026 %}
 12028 //
 12029 // This will generate a signed flags result. This should be ok
 12030 // since any compare to a zero should be eq/neq.
 12031 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12032   match(Set cr (CmpP src zero));
 12034   format %{ "TEST   $src,$src" %}
 12035   opcode(0x85);
 12036   ins_encode( OpcP, RegReg( src, src ) );
 12037   ins_pipe( ialu_cr_reg_imm );
 12038 %}
 12040 // Cisc-spilled version of testP_reg
 12041 // This will generate a signed flags result. This should be ok
 12042 // since any compare to a zero should be eq/neq.
 12043 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12044   match(Set cr (CmpP (LoadP op) zero));
 12046   format %{ "TEST   $op,0xFFFFFFFF" %}
 12047   ins_cost(500);
 12048   opcode(0xF7);               /* Opcode F7 /0 */
 12049   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12050   ins_pipe( ialu_cr_reg_imm );
 12051 %}
 12053 // Yanked all unsigned pointer compare operations.
 12054 // Pointer compares are done with CmpP which is already unsigned.
 12056 //----------Max and Min--------------------------------------------------------
 12057 // Min Instructions
 12058 ////
 12059 //   *** Min and Max using the conditional move are slower than the
 12060 //   *** branch version on a Pentium III.
 12061 // // Conditional move for min
 12062 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 12063 //  effect( USE_DEF op2, USE op1, USE cr );
 12064 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12065 //  opcode(0x4C,0x0F);
 12066 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12067 //  ins_pipe( pipe_cmov_reg );
 12068 //%}
 12069 //
 12070 //// Min Register with Register (P6 version)
 12071 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
 12072 //  predicate(VM_Version::supports_cmov() );
 12073 //  match(Set op2 (MinI op1 op2));
 12074 //  ins_cost(200);
 12075 //  expand %{
 12076 //    eFlagsReg cr;
 12077 //    compI_eReg(cr,op1,op2);
 12078 //    cmovI_reg_lt(op2,op1,cr);
 12079 //  %}
 12080 //%}
 12082 // Min Register with Register (generic version)
 12083 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 12084   match(Set dst (MinI dst src));
 12085   effect(KILL flags);
 12086   ins_cost(300);
 12088   format %{ "MIN    $dst,$src" %}
 12089   opcode(0xCC);
 12090   ins_encode( min_enc(dst,src) );
 12091   ins_pipe( pipe_slow );
 12092 %}
 12094 // Max Register with Register
 12095 //   *** Min and Max using the conditional move are slower than the
 12096 //   *** branch version on a Pentium III.
 12097 // // Conditional move for max
 12098 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 12099 //  effect( USE_DEF op2, USE op1, USE cr );
 12100 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12101 //  opcode(0x4F,0x0F);
 12102 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12103 //  ins_pipe( pipe_cmov_reg );
 12104 //%}
 12105 //
 12106 // // Max Register with Register (P6 version)
 12107 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
 12108 //  predicate(VM_Version::supports_cmov() );
 12109 //  match(Set op2 (MaxI op1 op2));
 12110 //  ins_cost(200);
 12111 //  expand %{
 12112 //    eFlagsReg cr;
 12113 //    compI_eReg(cr,op1,op2);
 12114 //    cmovI_reg_gt(op2,op1,cr);
 12115 //  %}
 12116 //%}
 12118 // Max Register with Register (generic version)
 12119 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 12120   match(Set dst (MaxI dst src));
 12121   effect(KILL flags);
 12122   ins_cost(300);
 12124   format %{ "MAX    $dst,$src" %}
 12125   opcode(0xCC);
 12126   ins_encode( max_enc(dst,src) );
 12127   ins_pipe( pipe_slow );
 12128 %}
 12130 // ============================================================================
 12131 // Counted Loop limit node which represents exact final iterator value.
 12132 // Note: the resulting value should fit into integer range since
 12133 // counted loops have limit check on overflow.
 12134 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 12135   match(Set limit (LoopLimit (Binary init limit) stride));
 12136   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 12137   ins_cost(300);
 12139   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 12140   ins_encode %{
 12141     int strd = (int)$stride$$constant;
 12142     assert(strd != 1 && strd != -1, "sanity");
 12143     int m1 = (strd > 0) ? 1 : -1;
 12144     // Convert limit to long (EAX:EDX)
 12145     __ cdql();
 12146     // Convert init to long (init:tmp)
 12147     __ movl($tmp$$Register, $init$$Register);
 12148     __ sarl($tmp$$Register, 31);
 12149     // $limit - $init
 12150     __ subl($limit$$Register, $init$$Register);
 12151     __ sbbl($limit_hi$$Register, $tmp$$Register);
 12152     // + ($stride - 1)
 12153     if (strd > 0) {
 12154       __ addl($limit$$Register, (strd - 1));
 12155       __ adcl($limit_hi$$Register, 0);
 12156       __ movl($tmp$$Register, strd);
 12157     } else {
 12158       __ addl($limit$$Register, (strd + 1));
 12159       __ adcl($limit_hi$$Register, -1);
 12160       __ lneg($limit_hi$$Register, $limit$$Register);
 12161       __ movl($tmp$$Register, -strd);
 12163     // signed devision: (EAX:EDX) / pos_stride
 12164     __ idivl($tmp$$Register);
 12165     if (strd < 0) {
 12166       // restore sign
 12167       __ negl($tmp$$Register);
 12169     // (EAX) * stride
 12170     __ mull($tmp$$Register);
 12171     // + init (ignore upper bits)
 12172     __ addl($limit$$Register, $init$$Register);
 12173   %}
 12174   ins_pipe( pipe_slow );
 12175 %}
 12177 // ============================================================================
 12178 // Branch Instructions
 12179 // Jump Table
 12180 instruct jumpXtnd(rRegI switch_val) %{
 12181   match(Jump switch_val);
 12182   ins_cost(350);
 12183   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 12184   ins_encode %{
 12185     // Jump to Address(table_base + switch_reg)
 12186     Address index(noreg, $switch_val$$Register, Address::times_1);
 12187     __ jump(ArrayAddress($constantaddress, index));
 12188   %}
 12189   ins_pipe(pipe_jmp);
 12190 %}
 12192 // Jump Direct - Label defines a relative address from JMP+1
 12193 instruct jmpDir(label labl) %{
 12194   match(Goto);
 12195   effect(USE labl);
 12197   ins_cost(300);
 12198   format %{ "JMP    $labl" %}
 12199   size(5);
 12200   ins_encode %{
 12201     Label* L = $labl$$label;
 12202     __ jmp(*L, false); // Always long jump
 12203   %}
 12204   ins_pipe( pipe_jmp );
 12205 %}
 12207 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12208 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12209   match(If cop cr);
 12210   effect(USE labl);
 12212   ins_cost(300);
 12213   format %{ "J$cop    $labl" %}
 12214   size(6);
 12215   ins_encode %{
 12216     Label* L = $labl$$label;
 12217     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12218   %}
 12219   ins_pipe( pipe_jcc );
 12220 %}
 12222 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12223 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12224   match(CountedLoopEnd cop cr);
 12225   effect(USE labl);
 12227   ins_cost(300);
 12228   format %{ "J$cop    $labl\t# Loop end" %}
 12229   size(6);
 12230   ins_encode %{
 12231     Label* L = $labl$$label;
 12232     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12233   %}
 12234   ins_pipe( pipe_jcc );
 12235 %}
 12237 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12238 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12239   match(CountedLoopEnd cop cmp);
 12240   effect(USE labl);
 12242   ins_cost(300);
 12243   format %{ "J$cop,u  $labl\t# Loop end" %}
 12244   size(6);
 12245   ins_encode %{
 12246     Label* L = $labl$$label;
 12247     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12248   %}
 12249   ins_pipe( pipe_jcc );
 12250 %}
 12252 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12253   match(CountedLoopEnd cop cmp);
 12254   effect(USE labl);
 12256   ins_cost(200);
 12257   format %{ "J$cop,u  $labl\t# Loop end" %}
 12258   size(6);
 12259   ins_encode %{
 12260     Label* L = $labl$$label;
 12261     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12262   %}
 12263   ins_pipe( pipe_jcc );
 12264 %}
 12266 // Jump Direct Conditional - using unsigned comparison
 12267 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12268   match(If cop cmp);
 12269   effect(USE labl);
 12271   ins_cost(300);
 12272   format %{ "J$cop,u  $labl" %}
 12273   size(6);
 12274   ins_encode %{
 12275     Label* L = $labl$$label;
 12276     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12277   %}
 12278   ins_pipe(pipe_jcc);
 12279 %}
 12281 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12282   match(If cop cmp);
 12283   effect(USE labl);
 12285   ins_cost(200);
 12286   format %{ "J$cop,u  $labl" %}
 12287   size(6);
 12288   ins_encode %{
 12289     Label* L = $labl$$label;
 12290     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12291   %}
 12292   ins_pipe(pipe_jcc);
 12293 %}
 12295 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12296   match(If cop cmp);
 12297   effect(USE labl);
 12299   ins_cost(200);
 12300   format %{ $$template
 12301     if ($cop$$cmpcode == Assembler::notEqual) {
 12302       $$emit$$"JP,u   $labl\n\t"
 12303       $$emit$$"J$cop,u   $labl"
 12304     } else {
 12305       $$emit$$"JP,u   done\n\t"
 12306       $$emit$$"J$cop,u   $labl\n\t"
 12307       $$emit$$"done:"
 12309   %}
 12310   ins_encode %{
 12311     Label* l = $labl$$label;
 12312     if ($cop$$cmpcode == Assembler::notEqual) {
 12313       __ jcc(Assembler::parity, *l, false);
 12314       __ jcc(Assembler::notEqual, *l, false);
 12315     } else if ($cop$$cmpcode == Assembler::equal) {
 12316       Label done;
 12317       __ jccb(Assembler::parity, done);
 12318       __ jcc(Assembler::equal, *l, false);
 12319       __ bind(done);
 12320     } else {
 12321        ShouldNotReachHere();
 12323   %}
 12324   ins_pipe(pipe_jcc);
 12325 %}
 12327 // ============================================================================
 12328 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12329 // array for an instance of the superklass.  Set a hidden internal cache on a
 12330 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12331 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12332 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12333   match(Set result (PartialSubtypeCheck sub super));
 12334   effect( KILL rcx, KILL cr );
 12336   ins_cost(1100);  // slightly larger than the next version
 12337   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12338             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12339             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12340             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12341             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12342             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12343             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12344      "miss:\t" %}
 12346   opcode(0x1); // Force a XOR of EDI
 12347   ins_encode( enc_PartialSubtypeCheck() );
 12348   ins_pipe( pipe_slow );
 12349 %}
 12351 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12352   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12353   effect( KILL rcx, KILL result );
 12355   ins_cost(1000);
 12356   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12357             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12358             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12359             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12360             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12361             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12362      "miss:\t" %}
 12364   opcode(0x0);  // No need to XOR EDI
 12365   ins_encode( enc_PartialSubtypeCheck() );
 12366   ins_pipe( pipe_slow );
 12367 %}
 12369 // ============================================================================
 12370 // Branch Instructions -- short offset versions
 12371 //
 12372 // These instructions are used to replace jumps of a long offset (the default
 12373 // match) with jumps of a shorter offset.  These instructions are all tagged
 12374 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12375 // match rules in general matching.  Instead, the ADLC generates a conversion
 12376 // method in the MachNode which can be used to do in-place replacement of the
 12377 // long variant with the shorter variant.  The compiler will determine if a
 12378 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12379 // specific code section of the file.
 12381 // Jump Direct - Label defines a relative address from JMP+1
 12382 instruct jmpDir_short(label labl) %{
 12383   match(Goto);
 12384   effect(USE labl);
 12386   ins_cost(300);
 12387   format %{ "JMP,s  $labl" %}
 12388   size(2);
 12389   ins_encode %{
 12390     Label* L = $labl$$label;
 12391     __ jmpb(*L);
 12392   %}
 12393   ins_pipe( pipe_jmp );
 12394   ins_short_branch(1);
 12395 %}
 12397 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12398 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12399   match(If cop cr);
 12400   effect(USE labl);
 12402   ins_cost(300);
 12403   format %{ "J$cop,s  $labl" %}
 12404   size(2);
 12405   ins_encode %{
 12406     Label* L = $labl$$label;
 12407     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12408   %}
 12409   ins_pipe( pipe_jcc );
 12410   ins_short_branch(1);
 12411 %}
 12413 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12414 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12415   match(CountedLoopEnd cop cr);
 12416   effect(USE labl);
 12418   ins_cost(300);
 12419   format %{ "J$cop,s  $labl\t# Loop end" %}
 12420   size(2);
 12421   ins_encode %{
 12422     Label* L = $labl$$label;
 12423     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12424   %}
 12425   ins_pipe( pipe_jcc );
 12426   ins_short_branch(1);
 12427 %}
 12429 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12430 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12431   match(CountedLoopEnd cop cmp);
 12432   effect(USE labl);
 12434   ins_cost(300);
 12435   format %{ "J$cop,us $labl\t# Loop end" %}
 12436   size(2);
 12437   ins_encode %{
 12438     Label* L = $labl$$label;
 12439     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12440   %}
 12441   ins_pipe( pipe_jcc );
 12442   ins_short_branch(1);
 12443 %}
 12445 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12446   match(CountedLoopEnd cop cmp);
 12447   effect(USE labl);
 12449   ins_cost(300);
 12450   format %{ "J$cop,us $labl\t# Loop end" %}
 12451   size(2);
 12452   ins_encode %{
 12453     Label* L = $labl$$label;
 12454     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12455   %}
 12456   ins_pipe( pipe_jcc );
 12457   ins_short_branch(1);
 12458 %}
 12460 // Jump Direct Conditional - using unsigned comparison
 12461 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12462   match(If cop cmp);
 12463   effect(USE labl);
 12465   ins_cost(300);
 12466   format %{ "J$cop,us $labl" %}
 12467   size(2);
 12468   ins_encode %{
 12469     Label* L = $labl$$label;
 12470     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12471   %}
 12472   ins_pipe( pipe_jcc );
 12473   ins_short_branch(1);
 12474 %}
 12476 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12477   match(If cop cmp);
 12478   effect(USE labl);
 12480   ins_cost(300);
 12481   format %{ "J$cop,us $labl" %}
 12482   size(2);
 12483   ins_encode %{
 12484     Label* L = $labl$$label;
 12485     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12486   %}
 12487   ins_pipe( pipe_jcc );
 12488   ins_short_branch(1);
 12489 %}
 12491 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12492   match(If cop cmp);
 12493   effect(USE labl);
 12495   ins_cost(300);
 12496   format %{ $$template
 12497     if ($cop$$cmpcode == Assembler::notEqual) {
 12498       $$emit$$"JP,u,s   $labl\n\t"
 12499       $$emit$$"J$cop,u,s   $labl"
 12500     } else {
 12501       $$emit$$"JP,u,s   done\n\t"
 12502       $$emit$$"J$cop,u,s  $labl\n\t"
 12503       $$emit$$"done:"
 12505   %}
 12506   size(4);
 12507   ins_encode %{
 12508     Label* l = $labl$$label;
 12509     if ($cop$$cmpcode == Assembler::notEqual) {
 12510       __ jccb(Assembler::parity, *l);
 12511       __ jccb(Assembler::notEqual, *l);
 12512     } else if ($cop$$cmpcode == Assembler::equal) {
 12513       Label done;
 12514       __ jccb(Assembler::parity, done);
 12515       __ jccb(Assembler::equal, *l);
 12516       __ bind(done);
 12517     } else {
 12518        ShouldNotReachHere();
 12520   %}
 12521   ins_pipe(pipe_jcc);
 12522   ins_short_branch(1);
 12523 %}
 12525 // ============================================================================
 12526 // Long Compare
 12527 //
 12528 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12529 // is tricky.  The flavor of compare used depends on whether we are testing
 12530 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12531 // The GE test is the negated LT test.  The LE test can be had by commuting
 12532 // the operands (yielding a GE test) and then negating; negate again for the
 12533 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12534 // NE test is negated from that.
 12536 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12537 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12538 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12539 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12540 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12541 // foo match ends up with the wrong leaf.  One fix is to not match both
 12542 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12543 // both forms beat the trinary form of long-compare and both are very useful
 12544 // on Intel which has so few registers.
 12546 // Manifest a CmpL result in an integer register.  Very painful.
 12547 // This is the test to avoid.
 12548 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12549   match(Set dst (CmpL3 src1 src2));
 12550   effect( KILL flags );
 12551   ins_cost(1000);
 12552   format %{ "XOR    $dst,$dst\n\t"
 12553             "CMP    $src1.hi,$src2.hi\n\t"
 12554             "JLT,s  m_one\n\t"
 12555             "JGT,s  p_one\n\t"
 12556             "CMP    $src1.lo,$src2.lo\n\t"
 12557             "JB,s   m_one\n\t"
 12558             "JEQ,s  done\n"
 12559     "p_one:\tINC    $dst\n\t"
 12560             "JMP,s  done\n"
 12561     "m_one:\tDEC    $dst\n"
 12562      "done:" %}
 12563   ins_encode %{
 12564     Label p_one, m_one, done;
 12565     __ xorptr($dst$$Register, $dst$$Register);
 12566     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12567     __ jccb(Assembler::less,    m_one);
 12568     __ jccb(Assembler::greater, p_one);
 12569     __ cmpl($src1$$Register, $src2$$Register);
 12570     __ jccb(Assembler::below,   m_one);
 12571     __ jccb(Assembler::equal,   done);
 12572     __ bind(p_one);
 12573     __ incrementl($dst$$Register);
 12574     __ jmpb(done);
 12575     __ bind(m_one);
 12576     __ decrementl($dst$$Register);
 12577     __ bind(done);
 12578   %}
 12579   ins_pipe( pipe_slow );
 12580 %}
 12582 //======
 12583 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12584 // compares.  Can be used for LE or GT compares by reversing arguments.
 12585 // NOT GOOD FOR EQ/NE tests.
 12586 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12587   match( Set flags (CmpL src zero ));
 12588   ins_cost(100);
 12589   format %{ "TEST   $src.hi,$src.hi" %}
 12590   opcode(0x85);
 12591   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12592   ins_pipe( ialu_cr_reg_reg );
 12593 %}
 12595 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12596 // compares.  Can be used for LE or GT compares by reversing arguments.
 12597 // NOT GOOD FOR EQ/NE tests.
 12598 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12599   match( Set flags (CmpL src1 src2 ));
 12600   effect( TEMP tmp );
 12601   ins_cost(300);
 12602   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12603             "MOV    $tmp,$src1.hi\n\t"
 12604             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12605   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12606   ins_pipe( ialu_cr_reg_reg );
 12607 %}
 12609 // Long compares reg < zero/req OR reg >= zero/req.
 12610 // Just a wrapper for a normal branch, plus the predicate test.
 12611 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12612   match(If cmp flags);
 12613   effect(USE labl);
 12614   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12615   expand %{
 12616     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12617   %}
 12618 %}
 12620 // Compare 2 longs and CMOVE longs.
 12621 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12622   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12623   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12624   ins_cost(400);
 12625   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12626             "CMOV$cmp $dst.hi,$src.hi" %}
 12627   opcode(0x0F,0x40);
 12628   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12629   ins_pipe( pipe_cmov_reg_long );
 12630 %}
 12632 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12633   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12634   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12635   ins_cost(500);
 12636   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12637             "CMOV$cmp $dst.hi,$src.hi" %}
 12638   opcode(0x0F,0x40);
 12639   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12640   ins_pipe( pipe_cmov_reg_long );
 12641 %}
 12643 // Compare 2 longs and CMOVE ints.
 12644 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
 12645   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12646   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12647   ins_cost(200);
 12648   format %{ "CMOV$cmp $dst,$src" %}
 12649   opcode(0x0F,0x40);
 12650   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12651   ins_pipe( pipe_cmov_reg );
 12652 %}
 12654 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
 12655   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12656   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12657   ins_cost(250);
 12658   format %{ "CMOV$cmp $dst,$src" %}
 12659   opcode(0x0F,0x40);
 12660   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12661   ins_pipe( pipe_cmov_mem );
 12662 %}
 12664 // Compare 2 longs and CMOVE ints.
 12665 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12666   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12667   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12668   ins_cost(200);
 12669   format %{ "CMOV$cmp $dst,$src" %}
 12670   opcode(0x0F,0x40);
 12671   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12672   ins_pipe( pipe_cmov_reg );
 12673 %}
 12675 // Compare 2 longs and CMOVE doubles
 12676 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12677   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12678   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12679   ins_cost(200);
 12680   expand %{
 12681     fcmovDPR_regS(cmp,flags,dst,src);
 12682   %}
 12683 %}
 12685 // Compare 2 longs and CMOVE doubles
 12686 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12687   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12688   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12689   ins_cost(200);
 12690   expand %{
 12691     fcmovD_regS(cmp,flags,dst,src);
 12692   %}
 12693 %}
 12695 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12696   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12697   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12698   ins_cost(200);
 12699   expand %{
 12700     fcmovFPR_regS(cmp,flags,dst,src);
 12701   %}
 12702 %}
 12704 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12705   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12706   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12707   ins_cost(200);
 12708   expand %{
 12709     fcmovF_regS(cmp,flags,dst,src);
 12710   %}
 12711 %}
 12713 //======
 12714 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12715 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12716   match( Set flags (CmpL src zero ));
 12717   effect(TEMP tmp);
 12718   ins_cost(200);
 12719   format %{ "MOV    $tmp,$src.lo\n\t"
 12720             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12721   ins_encode( long_cmp_flags0( src, tmp ) );
 12722   ins_pipe( ialu_reg_reg_long );
 12723 %}
 12725 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12726 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12727   match( Set flags (CmpL src1 src2 ));
 12728   ins_cost(200+300);
 12729   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12730             "JNE,s  skip\n\t"
 12731             "CMP    $src1.hi,$src2.hi\n\t"
 12732      "skip:\t" %}
 12733   ins_encode( long_cmp_flags1( src1, src2 ) );
 12734   ins_pipe( ialu_cr_reg_reg );
 12735 %}
 12737 // Long compare reg == zero/reg OR reg != zero/reg
 12738 // Just a wrapper for a normal branch, plus the predicate test.
 12739 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12740   match(If cmp flags);
 12741   effect(USE labl);
 12742   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12743   expand %{
 12744     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12745   %}
 12746 %}
 12748 // Compare 2 longs and CMOVE longs.
 12749 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12750   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12751   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12752   ins_cost(400);
 12753   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12754             "CMOV$cmp $dst.hi,$src.hi" %}
 12755   opcode(0x0F,0x40);
 12756   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12757   ins_pipe( pipe_cmov_reg_long );
 12758 %}
 12760 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12761   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12762   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12763   ins_cost(500);
 12764   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12765             "CMOV$cmp $dst.hi,$src.hi" %}
 12766   opcode(0x0F,0x40);
 12767   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12768   ins_pipe( pipe_cmov_reg_long );
 12769 %}
 12771 // Compare 2 longs and CMOVE ints.
 12772 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
 12773   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12774   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12775   ins_cost(200);
 12776   format %{ "CMOV$cmp $dst,$src" %}
 12777   opcode(0x0F,0x40);
 12778   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12779   ins_pipe( pipe_cmov_reg );
 12780 %}
 12782 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
 12783   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12784   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12785   ins_cost(250);
 12786   format %{ "CMOV$cmp $dst,$src" %}
 12787   opcode(0x0F,0x40);
 12788   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12789   ins_pipe( pipe_cmov_mem );
 12790 %}
 12792 // Compare 2 longs and CMOVE ints.
 12793 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 12794   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12795   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12796   ins_cost(200);
 12797   format %{ "CMOV$cmp $dst,$src" %}
 12798   opcode(0x0F,0x40);
 12799   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12800   ins_pipe( pipe_cmov_reg );
 12801 %}
 12803 // Compare 2 longs and CMOVE doubles
 12804 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 12805   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12806   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12807   ins_cost(200);
 12808   expand %{
 12809     fcmovDPR_regS(cmp,flags,dst,src);
 12810   %}
 12811 %}
 12813 // Compare 2 longs and CMOVE doubles
 12814 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 12815   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12816   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12817   ins_cost(200);
 12818   expand %{
 12819     fcmovD_regS(cmp,flags,dst,src);
 12820   %}
 12821 %}
 12823 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 12824   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12825   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12826   ins_cost(200);
 12827   expand %{
 12828     fcmovFPR_regS(cmp,flags,dst,src);
 12829   %}
 12830 %}
 12832 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 12833   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12834   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12835   ins_cost(200);
 12836   expand %{
 12837     fcmovF_regS(cmp,flags,dst,src);
 12838   %}
 12839 %}
 12841 //======
 12842 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12843 // Same as cmpL_reg_flags_LEGT except must negate src
 12844 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12845   match( Set flags (CmpL src zero ));
 12846   effect( TEMP tmp );
 12847   ins_cost(300);
 12848   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 12849             "CMP    $tmp,$src.lo\n\t"
 12850             "SBB    $tmp,$src.hi\n\t" %}
 12851   ins_encode( long_cmp_flags3(src, tmp) );
 12852   ins_pipe( ialu_reg_reg_long );
 12853 %}
 12855 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12856 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 12857 // requires a commuted test to get the same result.
 12858 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12859   match( Set flags (CmpL src1 src2 ));
 12860   effect( TEMP tmp );
 12861   ins_cost(300);
 12862   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 12863             "MOV    $tmp,$src2.hi\n\t"
 12864             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 12865   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 12866   ins_pipe( ialu_cr_reg_reg );
 12867 %}
 12869 // Long compares reg < zero/req OR reg >= zero/req.
 12870 // Just a wrapper for a normal branch, plus the predicate test
 12871 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 12872   match(If cmp flags);
 12873   effect(USE labl);
 12874   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 12875   ins_cost(300);
 12876   expand %{
 12877     jmpCon(cmp,flags,labl);    // JGT or JLE...
 12878   %}
 12879 %}
 12881 // Compare 2 longs and CMOVE longs.
 12882 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 12883   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12884   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12885   ins_cost(400);
 12886   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12887             "CMOV$cmp $dst.hi,$src.hi" %}
 12888   opcode(0x0F,0x40);
 12889   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12890   ins_pipe( pipe_cmov_reg_long );
 12891 %}
 12893 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 12894   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12895   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12896   ins_cost(500);
 12897   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12898             "CMOV$cmp $dst.hi,$src.hi+4" %}
 12899   opcode(0x0F,0x40);
 12900   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12901   ins_pipe( pipe_cmov_reg_long );
 12902 %}
 12904 // Compare 2 longs and CMOVE ints.
 12905 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
 12906   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12907   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12908   ins_cost(200);
 12909   format %{ "CMOV$cmp $dst,$src" %}
 12910   opcode(0x0F,0x40);
 12911   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12912   ins_pipe( pipe_cmov_reg );
 12913 %}
 12915 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
 12916   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12917   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12918   ins_cost(250);
 12919   format %{ "CMOV$cmp $dst,$src" %}
 12920   opcode(0x0F,0x40);
 12921   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12922   ins_pipe( pipe_cmov_mem );
 12923 %}
 12925 // Compare 2 longs and CMOVE ptrs.
 12926 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 12927   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12928   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12929   ins_cost(200);
 12930   format %{ "CMOV$cmp $dst,$src" %}
 12931   opcode(0x0F,0x40);
 12932   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12933   ins_pipe( pipe_cmov_reg );
 12934 %}
 12936 // Compare 2 longs and CMOVE doubles
 12937 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 12938   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12939   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12940   ins_cost(200);
 12941   expand %{
 12942     fcmovDPR_regS(cmp,flags,dst,src);
 12943   %}
 12944 %}
 12946 // Compare 2 longs and CMOVE doubles
 12947 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 12948   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12949   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12950   ins_cost(200);
 12951   expand %{
 12952     fcmovD_regS(cmp,flags,dst,src);
 12953   %}
 12954 %}
 12956 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 12957   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12958   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12959   ins_cost(200);
 12960   expand %{
 12961     fcmovFPR_regS(cmp,flags,dst,src);
 12962   %}
 12963 %}
 12966 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 12967   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12968   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12969   ins_cost(200);
 12970   expand %{
 12971     fcmovF_regS(cmp,flags,dst,src);
 12972   %}
 12973 %}
 12976 // ============================================================================
 12977 // Procedure Call/Return Instructions
 12978 // Call Java Static Instruction
 12979 // Note: If this code changes, the corresponding ret_addr_offset() and
 12980 //       compute_padding() functions will have to be adjusted.
 12981 instruct CallStaticJavaDirect(method meth) %{
 12982   match(CallStaticJava);
 12983   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12984   effect(USE meth);
 12986   ins_cost(300);
 12987   format %{ "CALL,static " %}
 12988   opcode(0xE8); /* E8 cd */
 12989   ins_encode( pre_call_resets,
 12990               Java_Static_Call( meth ),
 12991               call_epilog,
 12992               post_call_FPU );
 12993   ins_pipe( pipe_slow );
 12994   ins_alignment(4);
 12995 %}
 12997 // Call Java Static Instruction (method handle version)
 12998 // Note: If this code changes, the corresponding ret_addr_offset() and
 12999 //       compute_padding() functions will have to be adjusted.
 13000 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 13001   match(CallStaticJava);
 13002   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13003   effect(USE meth);
 13004   // EBP is saved by all callees (for interpreter stack correction).
 13005   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13007   ins_cost(300);
 13008   format %{ "CALL,static/MethodHandle " %}
 13009   opcode(0xE8); /* E8 cd */
 13010   ins_encode( pre_call_resets,
 13011               preserve_SP,
 13012               Java_Static_Call( meth ),
 13013               restore_SP,
 13014               call_epilog,
 13015               post_call_FPU );
 13016   ins_pipe( pipe_slow );
 13017   ins_alignment(4);
 13018 %}
 13020 // Call Java Dynamic Instruction
 13021 // Note: If this code changes, the corresponding ret_addr_offset() and
 13022 //       compute_padding() functions will have to be adjusted.
 13023 instruct CallDynamicJavaDirect(method meth) %{
 13024   match(CallDynamicJava);
 13025   effect(USE meth);
 13027   ins_cost(300);
 13028   format %{ "MOV    EAX,(oop)-1\n\t"
 13029             "CALL,dynamic" %}
 13030   opcode(0xE8); /* E8 cd */
 13031   ins_encode( pre_call_resets,
 13032               Java_Dynamic_Call( meth ),
 13033               call_epilog,
 13034               post_call_FPU );
 13035   ins_pipe( pipe_slow );
 13036   ins_alignment(4);
 13037 %}
 13039 // Call Runtime Instruction
 13040 instruct CallRuntimeDirect(method meth) %{
 13041   match(CallRuntime );
 13042   effect(USE meth);
 13044   ins_cost(300);
 13045   format %{ "CALL,runtime " %}
 13046   opcode(0xE8); /* E8 cd */
 13047   // Use FFREEs to clear entries in float stack
 13048   ins_encode( pre_call_resets,
 13049               FFree_Float_Stack_All,
 13050               Java_To_Runtime( meth ),
 13051               post_call_FPU );
 13052   ins_pipe( pipe_slow );
 13053 %}
 13055 // Call runtime without safepoint
 13056 instruct CallLeafDirect(method meth) %{
 13057   match(CallLeaf);
 13058   effect(USE meth);
 13060   ins_cost(300);
 13061   format %{ "CALL_LEAF,runtime " %}
 13062   opcode(0xE8); /* E8 cd */
 13063   ins_encode( pre_call_resets,
 13064               FFree_Float_Stack_All,
 13065               Java_To_Runtime( meth ),
 13066               Verify_FPU_For_Leaf, post_call_FPU );
 13067   ins_pipe( pipe_slow );
 13068 %}
 13070 instruct CallLeafNoFPDirect(method meth) %{
 13071   match(CallLeafNoFP);
 13072   effect(USE meth);
 13074   ins_cost(300);
 13075   format %{ "CALL_LEAF_NOFP,runtime " %}
 13076   opcode(0xE8); /* E8 cd */
 13077   ins_encode(Java_To_Runtime(meth));
 13078   ins_pipe( pipe_slow );
 13079 %}
 13082 // Return Instruction
 13083 // Remove the return address & jump to it.
 13084 instruct Ret() %{
 13085   match(Return);
 13086   format %{ "RET" %}
 13087   opcode(0xC3);
 13088   ins_encode(OpcP);
 13089   ins_pipe( pipe_jmp );
 13090 %}
 13092 // Tail Call; Jump from runtime stub to Java code.
 13093 // Also known as an 'interprocedural jump'.
 13094 // Target of jump will eventually return to caller.
 13095 // TailJump below removes the return address.
 13096 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13097   match(TailCall jump_target method_oop );
 13098   ins_cost(300);
 13099   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13100   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13101   ins_encode( OpcP, RegOpc(jump_target) );
 13102   ins_pipe( pipe_jmp );
 13103 %}
 13106 // Tail Jump; remove the return address; jump to target.
 13107 // TailCall above leaves the return address around.
 13108 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13109   match( TailJump jump_target ex_oop );
 13110   ins_cost(300);
 13111   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13112             "JMP    $jump_target " %}
 13113   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13114   ins_encode( enc_pop_rdx,
 13115               OpcP, RegOpc(jump_target) );
 13116   ins_pipe( pipe_jmp );
 13117 %}
 13119 // Create exception oop: created by stack-crawling runtime code.
 13120 // Created exception is now available to this handler, and is setup
 13121 // just prior to jumping to this handler.  No code emitted.
 13122 instruct CreateException( eAXRegP ex_oop )
 13123 %{
 13124   match(Set ex_oop (CreateEx));
 13126   size(0);
 13127   // use the following format syntax
 13128   format %{ "# exception oop is in EAX; no code emitted" %}
 13129   ins_encode();
 13130   ins_pipe( empty );
 13131 %}
 13134 // Rethrow exception:
 13135 // The exception oop will come in the first argument position.
 13136 // Then JUMP (not call) to the rethrow stub code.
 13137 instruct RethrowException()
 13138 %{
 13139   match(Rethrow);
 13141   // use the following format syntax
 13142   format %{ "JMP    rethrow_stub" %}
 13143   ins_encode(enc_rethrow);
 13144   ins_pipe( pipe_jmp );
 13145 %}
 13147 // inlined locking and unlocking
 13150 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 13151   match( Set cr (FastLock object box) );
 13152   effect( TEMP tmp, TEMP scr, USE_KILL box );
 13153   ins_cost(300);
 13154   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 13155   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13156   ins_pipe( pipe_slow );
 13157 %}
 13159 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13160   match( Set cr (FastUnlock object box) );
 13161   effect( TEMP tmp, USE_KILL box );
 13162   ins_cost(300);
 13163   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 13164   ins_encode( Fast_Unlock(object,box,tmp) );
 13165   ins_pipe( pipe_slow );
 13166 %}
 13170 // ============================================================================
 13171 // Safepoint Instruction
 13172 instruct safePoint_poll(eFlagsReg cr) %{
 13173   match(SafePoint);
 13174   effect(KILL cr);
 13176   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13177   // On SPARC that might be acceptable as we can generate the address with
 13178   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13179   // putting additional pressure on the index-0 in the D$.  Because of
 13180   // alignment (just like the situation at hand) the lower indices tend
 13181   // to see more traffic.  It'd be better to change the polling address
 13182   // to offset 0 of the last $line in the polling page.
 13184   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13185   ins_cost(125);
 13186   size(6) ;
 13187   ins_encode( Safepoint_Poll() );
 13188   ins_pipe( ialu_reg_mem );
 13189 %}
 13192 // ============================================================================
 13193 // This name is KNOWN by the ADLC and cannot be changed.
 13194 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
 13195 // for this guy.
 13196 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
 13197   match(Set dst (ThreadLocal));
 13198   effect(DEF dst, KILL cr);
 13200   format %{ "MOV    $dst, Thread::current()" %}
 13201   ins_encode %{
 13202     Register dstReg = as_Register($dst$$reg);
 13203     __ get_thread(dstReg);
 13204   %}
 13205   ins_pipe( ialu_reg_fat );
 13206 %}
 13210 //----------PEEPHOLE RULES-----------------------------------------------------
 13211 // These must follow all instruction definitions as they use the names
 13212 // defined in the instructions definitions.
 13213 //
 13214 // peepmatch ( root_instr_name [preceding_instruction]* );
 13215 //
 13216 // peepconstraint %{
 13217 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13218 //  [, ...] );
 13219 // // instruction numbers are zero-based using left to right order in peepmatch
 13220 //
 13221 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13222 // // provide an instruction_number.operand_name for each operand that appears
 13223 // // in the replacement instruction's match rule
 13224 //
 13225 // ---------VM FLAGS---------------------------------------------------------
 13226 //
 13227 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13228 //
 13229 // Each peephole rule is given an identifying number starting with zero and
 13230 // increasing by one in the order seen by the parser.  An individual peephole
 13231 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13232 // on the command-line.
 13233 //
 13234 // ---------CURRENT LIMITATIONS----------------------------------------------
 13235 //
 13236 // Only match adjacent instructions in same basic block
 13237 // Only equality constraints
 13238 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13239 // Only one replacement instruction
 13240 //
 13241 // ---------EXAMPLE----------------------------------------------------------
 13242 //
 13243 // // pertinent parts of existing instructions in architecture description
 13244 // instruct movI(rRegI dst, rRegI src) %{
 13245 //   match(Set dst (CopyI src));
 13246 // %}
 13247 //
 13248 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
 13249 //   match(Set dst (AddI dst src));
 13250 //   effect(KILL cr);
 13251 // %}
 13252 //
 13253 // // Change (inc mov) to lea
 13254 // peephole %{
 13255 //   // increment preceeded by register-register move
 13256 //   peepmatch ( incI_eReg movI );
 13257 //   // require that the destination register of the increment
 13258 //   // match the destination register of the move
 13259 //   peepconstraint ( 0.dst == 1.dst );
 13260 //   // construct a replacement instruction that sets
 13261 //   // the destination to ( move's source register + one )
 13262 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13263 // %}
 13264 //
 13265 // Implementation no longer uses movX instructions since
 13266 // machine-independent system no longer uses CopyX nodes.
 13267 //
 13268 // peephole %{
 13269 //   peepmatch ( incI_eReg movI );
 13270 //   peepconstraint ( 0.dst == 1.dst );
 13271 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13272 // %}
 13273 //
 13274 // peephole %{
 13275 //   peepmatch ( decI_eReg movI );
 13276 //   peepconstraint ( 0.dst == 1.dst );
 13277 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13278 // %}
 13279 //
 13280 // peephole %{
 13281 //   peepmatch ( addI_eReg_imm movI );
 13282 //   peepconstraint ( 0.dst == 1.dst );
 13283 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13284 // %}
 13285 //
 13286 // peephole %{
 13287 //   peepmatch ( addP_eReg_imm movP );
 13288 //   peepconstraint ( 0.dst == 1.dst );
 13289 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13290 // %}
 13292 // // Change load of spilled value to only a spill
 13293 // instruct storeI(memory mem, rRegI src) %{
 13294 //   match(Set mem (StoreI mem src));
 13295 // %}
 13296 //
 13297 // instruct loadI(rRegI dst, memory mem) %{
 13298 //   match(Set dst (LoadI mem));
 13299 // %}
 13300 //
 13301 peephole %{
 13302   peepmatch ( loadI storeI );
 13303   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13304   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13305 %}
 13307 //----------SMARTSPILL RULES---------------------------------------------------
 13308 // These must follow all instruction definitions as they use the names
 13309 // defined in the instructions definitions.

mercurial