src/cpu/sparc/vm/sparc.ad

Tue, 26 Nov 2013 18:38:19 -0800

author
goetz
date
Tue, 26 Nov 2013 18:38:19 -0800
changeset 6489
50fdb38839eb
parent 6485
da862781b584
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8028515: PPPC64 (part 113.2): opto: Introduce LoadFence/StoreFence.
Summary: Use new nodes for loadFence/storeFence intrinsics in C2.
Reviewed-by: kvn, dholmes

     1 //
     2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedClassPointers) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
   563     } else {
   564       klass_load_size = 1*BytesPerInstWord;
   565     }
   566     if (Assembler::is_simm13(v_off)) {
   567       return klass_load_size +
   568              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   569              NativeCall::instruction_size);  // call; delay slot
   570     } else {
   571       return klass_load_size +
   572              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   573              NativeCall::instruction_size);  // call; delay slot
   574     }
   575   }
   576 }
   578 int MachCallRuntimeNode::ret_addr_offset() {
   579 #ifdef _LP64
   580   if (MacroAssembler::is_far_target(entry_point())) {
   581     return NativeFarCall::instruction_size;
   582   } else {
   583     return NativeCall::instruction_size;
   584   }
   585 #else
   586   return NativeCall::instruction_size;  // call; delay slot
   587 #endif
   588 }
   590 // Indicate if the safepoint node needs the polling page as an input.
   591 // Since Sparc does not have absolute addressing, it does.
   592 bool SafePointNode::needs_polling_address_input() {
   593   return true;
   594 }
   596 // emit an interrupt that is caught by the debugger (for debugging compiler)
   597 void emit_break(CodeBuffer &cbuf) {
   598   MacroAssembler _masm(&cbuf);
   599   __ breakpoint_trap();
   600 }
   602 #ifndef PRODUCT
   603 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   604   st->print("TA");
   605 }
   606 #endif
   608 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   609   emit_break(cbuf);
   610 }
   612 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   613   return MachNode::size(ra_);
   614 }
   616 // Traceable jump
   617 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   618   MacroAssembler _masm(&cbuf);
   619   Register rdest = reg_to_register_object(jump_target);
   620   __ JMP(rdest, 0);
   621   __ delayed()->nop();
   622 }
   624 // Traceable jump and set exception pc
   625 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   626   MacroAssembler _masm(&cbuf);
   627   Register rdest = reg_to_register_object(jump_target);
   628   __ JMP(rdest, 0);
   629   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   630 }
   632 void emit_nop(CodeBuffer &cbuf) {
   633   MacroAssembler _masm(&cbuf);
   634   __ nop();
   635 }
   637 void emit_illtrap(CodeBuffer &cbuf) {
   638   MacroAssembler _masm(&cbuf);
   639   __ illtrap(0);
   640 }
   643 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   644   assert(n->rule() != loadUB_rule, "");
   646   intptr_t offset = 0;
   647   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   648   const Node* addr = n->get_base_and_disp(offset, adr_type);
   649   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   650   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   652   atype = atype->add_offset(offset);
   653   assert(disp32 == offset, "wrong disp32");
   654   return atype->_offset;
   655 }
   658 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   659   assert(n->rule() != loadUB_rule, "");
   661   intptr_t offset = 0;
   662   Node* addr = n->in(2);
   663   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   664   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   665     Node* a = addr->in(2/*AddPNode::Address*/);
   666     Node* o = addr->in(3/*AddPNode::Offset*/);
   667     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   668     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   669     assert(atype->isa_oop_ptr(), "still an oop");
   670   }
   671   offset = atype->is_ptr()->_offset;
   672   if (offset != Type::OffsetBot)  offset += disp32;
   673   return offset;
   674 }
   676 static inline jdouble replicate_immI(int con, int count, int width) {
   677   // Load a constant replicated "count" times with width "width"
   678   assert(count*width == 8 && width <= 4, "sanity");
   679   int bit_width = width * 8;
   680   jlong val = con;
   681   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   682   for (int i = 0; i < count - 1; i++) {
   683     val |= (val << bit_width);
   684   }
   685   jdouble dval = *((jdouble*) &val);  // coerce to double type
   686   return dval;
   687 }
   689 static inline jdouble replicate_immF(float con) {
   690   // Replicate float con 2 times and pack into vector.
   691   int val = *((int*)&con);
   692   jlong lval = val;
   693   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   694   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   695   return dval;
   696 }
   698 // Standard Sparc opcode form2 field breakdown
   699 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   700   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   701   int op = (f30 << 30) |
   702            (f29 << 29) |
   703            (f25 << 25) |
   704            (f22 << 22) |
   705            (f20 << 20) |
   706            (f19 << 19) |
   707            (f0  <<  0);
   708   cbuf.insts()->emit_int32(op);
   709 }
   711 // Standard Sparc opcode form2 field breakdown
   712 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   713   f0 >>= 10;           // Drop 10 bits
   714   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   715   int op = (f30 << 30) |
   716            (f25 << 25) |
   717            (f22 << 22) |
   718            (f0  <<  0);
   719   cbuf.insts()->emit_int32(op);
   720 }
   722 // Standard Sparc opcode form3 field breakdown
   723 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   724   int op = (f30 << 30) |
   725            (f25 << 25) |
   726            (f19 << 19) |
   727            (f14 << 14) |
   728            (f5  <<  5) |
   729            (f0  <<  0);
   730   cbuf.insts()->emit_int32(op);
   731 }
   733 // Standard Sparc opcode form3 field breakdown
   734 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   735   simm13 &= (1<<13)-1; // Mask to 13 bits
   736   int op = (f30 << 30) |
   737            (f25 << 25) |
   738            (f19 << 19) |
   739            (f14 << 14) |
   740            (1   << 13) | // bit to indicate immediate-mode
   741            (simm13<<0);
   742   cbuf.insts()->emit_int32(op);
   743 }
   745 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   746   simm10 &= (1<<10)-1; // Mask to 10 bits
   747   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   748 }
   750 #ifdef ASSERT
   751 // Helper function for VerifyOops in emit_form3_mem_reg
   752 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   753   warning("VerifyOops encountered unexpected instruction:");
   754   n->dump(2);
   755   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   756 }
   757 #endif
   760 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   761                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   763 #ifdef ASSERT
   764   // The following code implements the +VerifyOops feature.
   765   // It verifies oop values which are loaded into or stored out of
   766   // the current method activation.  +VerifyOops complements techniques
   767   // like ScavengeALot, because it eagerly inspects oops in transit,
   768   // as they enter or leave the stack, as opposed to ScavengeALot,
   769   // which inspects oops "at rest", in the stack or heap, at safepoints.
   770   // For this reason, +VerifyOops can sometimes detect bugs very close
   771   // to their point of creation.  It can also serve as a cross-check
   772   // on the validity of oop maps, when used toegether with ScavengeALot.
   774   // It would be good to verify oops at other points, especially
   775   // when an oop is used as a base pointer for a load or store.
   776   // This is presently difficult, because it is hard to know when
   777   // a base address is biased or not.  (If we had such information,
   778   // it would be easy and useful to make a two-argument version of
   779   // verify_oop which unbiases the base, and performs verification.)
   781   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   782   bool is_verified_oop_base  = false;
   783   bool is_verified_oop_load  = false;
   784   bool is_verified_oop_store = false;
   785   int tmp_enc = -1;
   786   if (VerifyOops && src1_enc != R_SP_enc) {
   787     // classify the op, mainly for an assert check
   788     int st_op = 0, ld_op = 0;
   789     switch (primary) {
   790     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   791     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   792     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   793     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   794     case Assembler::std_op3:  st_op = Op_StoreL; break;
   795     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   796     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   798     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   799     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   800     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   801     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   802     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   803     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   804     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   805     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   806     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   807     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   808     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   810     default: ShouldNotReachHere();
   811     }
   812     if (tertiary == REGP_OP) {
   813       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   814       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   815       else                          ShouldNotReachHere();
   816       if (st_op) {
   817         // a store
   818         // inputs are (0:control, 1:memory, 2:address, 3:value)
   819         Node* n2 = n->in(3);
   820         if (n2 != NULL) {
   821           const Type* t = n2->bottom_type();
   822           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823         }
   824       } else {
   825         // a load
   826         const Type* t = n->bottom_type();
   827         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   828       }
   829     }
   831     if (ld_op) {
   832       // a Load
   833       // inputs are (0:control, 1:memory, 2:address)
   834       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   835           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   837           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   839           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   840           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   843           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   844           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   845           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   846           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   847           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   848           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   849           !(n->rule() == loadUB_rule)) {
   850         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   851       }
   852     } else if (st_op) {
   853       // a Store
   854       // inputs are (0:control, 1:memory, 2:address, 3:value)
   855       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   856           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   857           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   858           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   859           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   860           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   863       }
   864     }
   866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   867       Node* addr = n->in(2);
   868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   870         if (atype != NULL) {
   871           intptr_t offset = get_offset_from_base(n, atype, disp32);
   872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   873           if (offset != offset_2) {
   874             get_offset_from_base(n, atype, disp32);
   875             get_offset_from_base_2(n, atype, disp32);
   876           }
   877           assert(offset == offset_2, "different offsets");
   878           if (offset == disp32) {
   879             // we now know that src1 is a true oop pointer
   880             is_verified_oop_base = true;
   881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   882               if( primary == Assembler::ldd_op3 ) {
   883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   884               } else {
   885                 tmp_enc = dst_enc;
   886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   887                 assert(src1_enc != dst_enc, "");
   888               }
   889             }
   890           }
   891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   892                        || offset == oopDesc::mark_offset_in_bytes())) {
   893                       // loading the mark should not be allowed either, but
   894                       // we don't check this since it conflicts with InlineObjectHash
   895                       // usage of LoadINode to get the mark. We could keep the
   896                       // check if we create a new LoadMarkNode
   897             // but do not verify the object before its header is initialized
   898             ShouldNotReachHere();
   899           }
   900         }
   901       }
   902     }
   903   }
   904 #endif
   906   uint instr;
   907   instr = (Assembler::ldst_op << 30)
   908         | (dst_enc        << 25)
   909         | (primary        << 19)
   910         | (src1_enc       << 14);
   912   uint index = src2_enc;
   913   int disp = disp32;
   915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   916     disp += STACK_BIAS;
   918   // We should have a compiler bailout here rather than a guarantee.
   919   // Better yet would be some mechanism to handle variable-size matches correctly.
   920   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   922   if( disp == 0 ) {
   923     // use reg-reg form
   924     // bit 13 is already zero
   925     instr |= index;
   926   } else {
   927     // use reg-imm form
   928     instr |= 0x00002000;          // set bit 13 to one
   929     instr |= disp & 0x1FFF;
   930   }
   932   cbuf.insts()->emit_int32(instr);
   934 #ifdef ASSERT
   935   {
   936     MacroAssembler _masm(&cbuf);
   937     if (is_verified_oop_base) {
   938       __ verify_oop(reg_to_register_object(src1_enc));
   939     }
   940     if (is_verified_oop_store) {
   941       __ verify_oop(reg_to_register_object(dst_enc));
   942     }
   943     if (tmp_enc != -1) {
   944       __ mov(O7, reg_to_register_object(tmp_enc));
   945     }
   946     if (is_verified_oop_load) {
   947       __ verify_oop(reg_to_register_object(dst_enc));
   948     }
   949   }
   950 #endif
   951 }
   953 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   954   // The method which records debug information at every safepoint
   955   // expects the call to be the first instruction in the snippet as
   956   // it creates a PcDesc structure which tracks the offset of a call
   957   // from the start of the codeBlob. This offset is computed as
   958   // code_end() - code_begin() of the code which has been emitted
   959   // so far.
   960   // In this particular case we have skirted around the problem by
   961   // putting the "mov" instruction in the delay slot but the problem
   962   // may bite us again at some other point and a cleaner/generic
   963   // solution using relocations would be needed.
   964   MacroAssembler _masm(&cbuf);
   965   __ set_inst_mark();
   967   // We flush the current window just so that there is a valid stack copy
   968   // the fact that the current window becomes active again instantly is
   969   // not a problem there is nothing live in it.
   971 #ifdef ASSERT
   972   int startpos = __ offset();
   973 #endif /* ASSERT */
   975   __ call((address)entry_point, rtype);
   977   if (preserve_g2)   __ delayed()->mov(G2, L7);
   978   else __ delayed()->nop();
   980   if (preserve_g2)   __ mov(L7, G2);
   982 #ifdef ASSERT
   983   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   984 #ifdef _LP64
   985     // Trash argument dump slots.
   986     __ set(0xb0b8ac0db0b8ac0d, G1);
   987     __ mov(G1, G5);
   988     __ stx(G1, SP, STACK_BIAS + 0x80);
   989     __ stx(G1, SP, STACK_BIAS + 0x88);
   990     __ stx(G1, SP, STACK_BIAS + 0x90);
   991     __ stx(G1, SP, STACK_BIAS + 0x98);
   992     __ stx(G1, SP, STACK_BIAS + 0xA0);
   993     __ stx(G1, SP, STACK_BIAS + 0xA8);
   994 #else // _LP64
   995     // this is also a native call, so smash the first 7 stack locations,
   996     // and the various registers
   998     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   999     // while [SP+0x44..0x58] are the argument dump slots.
  1000     __ set((intptr_t)0xbaadf00d, G1);
  1001     __ mov(G1, G5);
  1002     __ sllx(G1, 32, G1);
  1003     __ or3(G1, G5, G1);
  1004     __ mov(G1, G5);
  1005     __ stx(G1, SP, 0x40);
  1006     __ stx(G1, SP, 0x48);
  1007     __ stx(G1, SP, 0x50);
  1008     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1009 #endif // _LP64
  1011 #endif /*ASSERT*/
  1014 //=============================================================================
  1015 // REQUIRED FUNCTIONALITY for encoding
  1016 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1017 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1020 //=============================================================================
  1021 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1023 int Compile::ConstantTable::calculate_table_base_offset() const {
  1024   if (UseRDPCForConstantTableBase) {
  1025     // The table base offset might be less but then it fits into
  1026     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1027     return Assembler::min_simm13();
  1028   } else {
  1029     int offset = -(size() / 2);
  1030     if (!Assembler::is_simm13(offset)) {
  1031       offset = Assembler::min_simm13();
  1033     return offset;
  1037 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1038 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1039   ShouldNotReachHere();
  1042 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1043   Compile* C = ra_->C;
  1044   Compile::ConstantTable& constant_table = C->constant_table();
  1045   MacroAssembler _masm(&cbuf);
  1047   Register r = as_Register(ra_->get_encode(this));
  1048   CodeSection* consts_section = __ code()->consts();
  1049   int consts_size = consts_section->align_at_start(consts_section->size());
  1050   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1052   if (UseRDPCForConstantTableBase) {
  1053     // For the following RDPC logic to work correctly the consts
  1054     // section must be allocated right before the insts section.  This
  1055     // assert checks for that.  The layout and the SECT_* constants
  1056     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1057     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1058     int insts_offset = __ offset();
  1060     // Layout:
  1061     //
  1062     // |----------- consts section ------------|----------- insts section -----------...
  1063     // |------ constant table -----|- padding -|------------------x----
  1064     //                                                            \ current PC (RDPC instruction)
  1065     // |<------------- consts_size ----------->|<- insts_offset ->|
  1066     //                                                            \ table base
  1067     // The table base offset is later added to the load displacement
  1068     // so it has to be negative.
  1069     int table_base_offset = -(consts_size + insts_offset);
  1070     int disp;
  1072     // If the displacement from the current PC to the constant table
  1073     // base fits into simm13 we set the constant table base to the
  1074     // current PC.
  1075     if (Assembler::is_simm13(table_base_offset)) {
  1076       constant_table.set_table_base_offset(table_base_offset);
  1077       disp = 0;
  1078     } else {
  1079       // Otherwise we set the constant table base offset to the
  1080       // maximum negative displacement of load instructions to keep
  1081       // the disp as small as possible:
  1082       //
  1083       // |<------------- consts_size ----------->|<- insts_offset ->|
  1084       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1085       //                                  \ table base
  1086       table_base_offset = Assembler::min_simm13();
  1087       constant_table.set_table_base_offset(table_base_offset);
  1088       disp = (consts_size + insts_offset) + table_base_offset;
  1091     __ rdpc(r);
  1093     if (disp != 0) {
  1094       assert(r != O7, "need temporary");
  1095       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1098   else {
  1099     // Materialize the constant table base.
  1100     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1101     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1102     AddressLiteral base(baseaddr, rspec);
  1103     __ set(base, r);
  1107 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1108   if (UseRDPCForConstantTableBase) {
  1109     // This is really the worst case but generally it's only 1 instruction.
  1110     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1111   } else {
  1112     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1116 #ifndef PRODUCT
  1117 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1118   char reg[128];
  1119   ra_->dump_register(this, reg);
  1120   if (UseRDPCForConstantTableBase) {
  1121     st->print("RDPC   %s\t! constant table base", reg);
  1122   } else {
  1123     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1126 #endif
  1129 //=============================================================================
  1131 #ifndef PRODUCT
  1132 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1133   Compile* C = ra_->C;
  1135   for (int i = 0; i < OptoPrologueNops; i++) {
  1136     st->print_cr("NOP"); st->print("\t");
  1139   if( VerifyThread ) {
  1140     st->print_cr("Verify_Thread"); st->print("\t");
  1143   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1145   // Calls to C2R adapters often do not accept exceptional returns.
  1146   // We require that their callers must bang for them.  But be careful, because
  1147   // some VM calls (such as call site linkage) can use several kilobytes of
  1148   // stack.  But the stack safety zone should account for that.
  1149   // See bugs 4446381, 4468289, 4497237.
  1150   if (C->need_stack_bang(framesize)) {
  1151     st->print_cr("! stack bang"); st->print("\t");
  1154   if (Assembler::is_simm13(-framesize)) {
  1155     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1156   } else {
  1157     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1158     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1159     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1163 #endif
  1165 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1166   Compile* C = ra_->C;
  1167   MacroAssembler _masm(&cbuf);
  1169   for (int i = 0; i < OptoPrologueNops; i++) {
  1170     __ nop();
  1173   __ verify_thread();
  1175   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1176   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1177   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1179   // Calls to C2R adapters often do not accept exceptional returns.
  1180   // We require that their callers must bang for them.  But be careful, because
  1181   // some VM calls (such as call site linkage) can use several kilobytes of
  1182   // stack.  But the stack safety zone should account for that.
  1183   // See bugs 4446381, 4468289, 4497237.
  1184   if (C->need_stack_bang(framesize)) {
  1185     __ generate_stack_overflow_check(framesize);
  1188   if (Assembler::is_simm13(-framesize)) {
  1189     __ save(SP, -framesize, SP);
  1190   } else {
  1191     __ sethi(-framesize & ~0x3ff, G3);
  1192     __ add(G3, -framesize & 0x3ff, G3);
  1193     __ save(SP, G3, SP);
  1195   C->set_frame_complete( __ offset() );
  1197   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1198     // NOTE: We set the table base offset here because users might be
  1199     // emitted before MachConstantBaseNode.
  1200     Compile::ConstantTable& constant_table = C->constant_table();
  1201     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1205 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1206   return MachNode::size(ra_);
  1209 int MachPrologNode::reloc() const {
  1210   return 10; // a large enough number
  1213 //=============================================================================
  1214 #ifndef PRODUCT
  1215 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1216   Compile* C = ra_->C;
  1218   if( do_polling() && ra_->C->is_method_compilation() ) {
  1219     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1220 #ifdef _LP64
  1221     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1222 #else
  1223     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1224 #endif
  1227   if( do_polling() )
  1228     st->print("RET\n\t");
  1230   st->print("RESTORE");
  1232 #endif
  1234 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1235   MacroAssembler _masm(&cbuf);
  1236   Compile* C = ra_->C;
  1238   __ verify_thread();
  1240   // If this does safepoint polling, then do it here
  1241   if( do_polling() && ra_->C->is_method_compilation() ) {
  1242     AddressLiteral polling_page(os::get_polling_page());
  1243     __ sethi(polling_page, L0);
  1244     __ relocate(relocInfo::poll_return_type);
  1245     __ ld_ptr( L0, 0, G0 );
  1248   // If this is a return, then stuff the restore in the delay slot
  1249   if( do_polling() ) {
  1250     __ ret();
  1251     __ delayed()->restore();
  1252   } else {
  1253     __ restore();
  1257 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1258   return MachNode::size(ra_);
  1261 int MachEpilogNode::reloc() const {
  1262   return 16; // a large enough number
  1265 const Pipeline * MachEpilogNode::pipeline() const {
  1266   return MachNode::pipeline_class();
  1269 int MachEpilogNode::safepoint_offset() const {
  1270   assert( do_polling(), "no return for this epilog node");
  1271   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1274 //=============================================================================
  1276 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1277 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1278 static enum RC rc_class( OptoReg::Name reg ) {
  1279   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1280   if (OptoReg::is_stack(reg)) return rc_stack;
  1281   VMReg r = OptoReg::as_VMReg(reg);
  1282   if (r->is_Register()) return rc_int;
  1283   assert(r->is_FloatRegister(), "must be");
  1284   return rc_float;
  1287 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1288   if( cbuf ) {
  1289     // Better yet would be some mechanism to handle variable-size matches correctly
  1290     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1291       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1292     } else {
  1293       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1296 #ifndef PRODUCT
  1297   else if( !do_size ) {
  1298     if( size != 0 ) st->print("\n\t");
  1299     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1300     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1302 #endif
  1303   return size+4;
  1306 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1307   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1308 #ifndef PRODUCT
  1309   else if( !do_size ) {
  1310     if( size != 0 ) st->print("\n\t");
  1311     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1313 #endif
  1314   return size+4;
  1317 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1318                                         PhaseRegAlloc *ra_,
  1319                                         bool do_size,
  1320                                         outputStream* st ) const {
  1321   // Get registers to move
  1322   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1323   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1324   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1325   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1327   enum RC src_second_rc = rc_class(src_second);
  1328   enum RC src_first_rc = rc_class(src_first);
  1329   enum RC dst_second_rc = rc_class(dst_second);
  1330   enum RC dst_first_rc = rc_class(dst_first);
  1332   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1334   // Generate spill code!
  1335   int size = 0;
  1337   if( src_first == dst_first && src_second == dst_second )
  1338     return size;            // Self copy, no move
  1340   // --------------------------------------
  1341   // Check for mem-mem move.  Load into unused float registers and fall into
  1342   // the float-store case.
  1343   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1344     int offset = ra_->reg2offset(src_first);
  1345     // Further check for aligned-adjacent pair, so we can use a double load
  1346     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1347       src_second    = OptoReg::Name(R_F31_num);
  1348       src_second_rc = rc_float;
  1349       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1350     } else {
  1351       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1353     src_first    = OptoReg::Name(R_F30_num);
  1354     src_first_rc = rc_float;
  1357   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1358     int offset = ra_->reg2offset(src_second);
  1359     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1360     src_second    = OptoReg::Name(R_F31_num);
  1361     src_second_rc = rc_float;
  1364   // --------------------------------------
  1365   // Check for float->int copy; requires a trip through memory
  1366   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1367     int offset = frame::register_save_words*wordSize;
  1368     if (cbuf) {
  1369       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1370       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1371       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1372       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1374 #ifndef PRODUCT
  1375     else if (!do_size) {
  1376       if (size != 0) st->print("\n\t");
  1377       st->print(  "SUB    R_SP,16,R_SP\n");
  1378       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1379       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1380       st->print("\tADD    R_SP,16,R_SP\n");
  1382 #endif
  1383     size += 16;
  1386   // Check for float->int copy on T4
  1387   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1388     // Further check for aligned-adjacent pair, so we can use a double move
  1389     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1390       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1391     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1393   // Check for int->float copy on T4
  1394   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1395     // Further check for aligned-adjacent pair, so we can use a double move
  1396     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1397       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1398     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1401   // --------------------------------------
  1402   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1403   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1404   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1405   // there.  Misaligned sources only come from native-long-returns (handled
  1406   // special below).
  1407 #ifndef _LP64
  1408   if( src_first_rc == rc_int &&     // source is already big-endian
  1409       src_second_rc != rc_bad &&    // 64-bit move
  1410       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1411     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1412     // Do the big-endian flop.
  1413     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1414     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1416 #endif
  1418   // --------------------------------------
  1419   // Check for integer reg-reg copy
  1420   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1421 #ifndef _LP64
  1422     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1423       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1424       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1425       //       operand contains the least significant word of the 64-bit value and vice versa.
  1426       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1427       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1428       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1429       if( cbuf ) {
  1430         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1431         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1432         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1433 #ifndef PRODUCT
  1434       } else if( !do_size ) {
  1435         if( size != 0 ) st->print("\n\t");
  1436         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1437         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1438         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1439 #endif
  1441       return size+12;
  1443     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1444       // returning a long value in I0/I1
  1445       // a SpillCopy must be able to target a return instruction's reg_class
  1446       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1447       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1448       //       operand contains the least significant word of the 64-bit value and vice versa.
  1449       OptoReg::Name tdest = dst_first;
  1451       if (src_first == dst_first) {
  1452         tdest = OptoReg::Name(R_O7_num);
  1453         size += 4;
  1456       if( cbuf ) {
  1457         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1458         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1459         // ShrL_reg_imm6
  1460         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1461         // ShrR_reg_imm6  src, 0, dst
  1462         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1463         if (tdest != dst_first) {
  1464           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1467 #ifndef PRODUCT
  1468       else if( !do_size ) {
  1469         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1470         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1471         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1472         if (tdest != dst_first) {
  1473           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1476 #endif // PRODUCT
  1477       return size+8;
  1479 #endif // !_LP64
  1480     // Else normal reg-reg copy
  1481     assert( src_second != dst_first, "smashed second before evacuating it" );
  1482     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1483     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1484     // This moves an aligned adjacent pair.
  1485     // See if we are done.
  1486     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1487       return size;
  1490   // Check for integer store
  1491   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1492     int offset = ra_->reg2offset(dst_first);
  1493     // Further check for aligned-adjacent pair, so we can use a double store
  1494     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1495       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1496     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1499   // Check for integer load
  1500   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1501     int offset = ra_->reg2offset(src_first);
  1502     // Further check for aligned-adjacent pair, so we can use a double load
  1503     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1504       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1505     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1508   // Check for float reg-reg copy
  1509   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1510     // Further check for aligned-adjacent pair, so we can use a double move
  1511     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1512       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1513     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1516   // Check for float store
  1517   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1518     int offset = ra_->reg2offset(dst_first);
  1519     // Further check for aligned-adjacent pair, so we can use a double store
  1520     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1521       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1522     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1525   // Check for float load
  1526   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1527     int offset = ra_->reg2offset(src_first);
  1528     // Further check for aligned-adjacent pair, so we can use a double load
  1529     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1530       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1531     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1534   // --------------------------------------------------------------------
  1535   // Check for hi bits still needing moving.  Only happens for misaligned
  1536   // arguments to native calls.
  1537   if( src_second == dst_second )
  1538     return size;               // Self copy; no move
  1539   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1541 #ifndef _LP64
  1542   // In the LP64 build, all registers can be moved as aligned/adjacent
  1543   // pairs, so there's never any need to move the high bits separately.
  1544   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1545   // all sorts of silly alignment problems.
  1547   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1548   // 32-bits of a 64-bit register, but are needed in low bits of another
  1549   // register (else it's a hi-bits-to-hi-bits copy which should have
  1550   // happened already as part of a 64-bit move)
  1551   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1552     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1553     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1554     // Shift src_second down to dst_second's low bits.
  1555     if( cbuf ) {
  1556       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1557 #ifndef PRODUCT
  1558     } else if( !do_size ) {
  1559       if( size != 0 ) st->print("\n\t");
  1560       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1561 #endif
  1563     return size+4;
  1566   // Check for high word integer store.  Must down-shift the hi bits
  1567   // into a temp register, then fall into the case of storing int bits.
  1568   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1569     // Shift src_second down to dst_second's low bits.
  1570     if( cbuf ) {
  1571       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1572 #ifndef PRODUCT
  1573     } else if( !do_size ) {
  1574       if( size != 0 ) st->print("\n\t");
  1575       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1576 #endif
  1578     size+=4;
  1579     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1582   // Check for high word integer load
  1583   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1584     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1586   // Check for high word integer store
  1587   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1588     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1590   // Check for high word float store
  1591   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1592     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1594 #endif // !_LP64
  1596   Unimplemented();
  1599 #ifndef PRODUCT
  1600 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1601   implementation( NULL, ra_, false, st );
  1603 #endif
  1605 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1606   implementation( &cbuf, ra_, false, NULL );
  1609 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1610   return implementation( NULL, ra_, true, NULL );
  1613 //=============================================================================
  1614 #ifndef PRODUCT
  1615 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1616   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1618 #endif
  1620 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1621   MacroAssembler _masm(&cbuf);
  1622   for(int i = 0; i < _count; i += 1) {
  1623     __ nop();
  1627 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1628   return 4 * _count;
  1632 //=============================================================================
  1633 #ifndef PRODUCT
  1634 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1635   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1636   int reg = ra_->get_reg_first(this);
  1637   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1639 #endif
  1641 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1642   MacroAssembler _masm(&cbuf);
  1643   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1644   int reg = ra_->get_encode(this);
  1646   if (Assembler::is_simm13(offset)) {
  1647      __ add(SP, offset, reg_to_register_object(reg));
  1648   } else {
  1649      __ set(offset, O7);
  1650      __ add(SP, O7, reg_to_register_object(reg));
  1654 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1655   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1656   assert(ra_ == ra_->C->regalloc(), "sanity");
  1657   return ra_->C->scratch_emit_size(this);
  1660 //=============================================================================
  1661 #ifndef PRODUCT
  1662 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1663   st->print_cr("\nUEP:");
  1664 #ifdef    _LP64
  1665   if (UseCompressedClassPointers) {
  1666     assert(Universe::heap() != NULL, "java heap should be initialized");
  1667     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1668     if (Universe::narrow_klass_base() != 0) {
  1669       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
  1670       if (Universe::narrow_klass_shift() != 0) {
  1671         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1673       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1674       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
  1675     } else {
  1676       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1678   } else {
  1679     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1681   st->print_cr("\tCMP    R_G5,R_G3" );
  1682   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1683 #else  // _LP64
  1684   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1685   st->print_cr("\tCMP    R_G5,R_G3" );
  1686   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1687 #endif // _LP64
  1689 #endif
  1691 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1692   MacroAssembler _masm(&cbuf);
  1693   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1694   Register temp_reg   = G3;
  1695   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1697   // Load klass from receiver
  1698   __ load_klass(O0, temp_reg);
  1699   // Compare against expected klass
  1700   __ cmp(temp_reg, G5_ic_reg);
  1701   // Branch to miss code, checks xcc or icc depending
  1702   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1705 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1706   return MachNode::size(ra_);
  1710 //=============================================================================
  1712 uint size_exception_handler() {
  1713   if (TraceJumps) {
  1714     return (400); // just a guess
  1716   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1719 uint size_deopt_handler() {
  1720   if (TraceJumps) {
  1721     return (400); // just a guess
  1723   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1726 // Emit exception handler code.
  1727 int emit_exception_handler(CodeBuffer& cbuf) {
  1728   Register temp_reg = G3;
  1729   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1730   MacroAssembler _masm(&cbuf);
  1732   address base =
  1733   __ start_a_stub(size_exception_handler());
  1734   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1736   int offset = __ offset();
  1738   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1739   __ delayed()->nop();
  1741   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1743   __ end_a_stub();
  1745   return offset;
  1748 int emit_deopt_handler(CodeBuffer& cbuf) {
  1749   // Can't use any of the current frame's registers as we may have deopted
  1750   // at a poll and everything (including G3) can be live.
  1751   Register temp_reg = L0;
  1752   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1753   MacroAssembler _masm(&cbuf);
  1755   address base =
  1756   __ start_a_stub(size_deopt_handler());
  1757   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1759   int offset = __ offset();
  1760   __ save_frame(0);
  1761   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1762   __ delayed()->restore();
  1764   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1766   __ end_a_stub();
  1767   return offset;
  1771 // Given a register encoding, produce a Integer Register object
  1772 static Register reg_to_register_object(int register_encoding) {
  1773   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1774   return as_Register(register_encoding);
  1777 // Given a register encoding, produce a single-precision Float Register object
  1778 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1779   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1780   return as_SingleFloatRegister(register_encoding);
  1783 // Given a register encoding, produce a double-precision Float Register object
  1784 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1785   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1786   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1787   return as_DoubleFloatRegister(register_encoding);
  1790 const bool Matcher::match_rule_supported(int opcode) {
  1791   if (!has_match_rule(opcode))
  1792     return false;
  1794   switch (opcode) {
  1795   case Op_CountLeadingZerosI:
  1796   case Op_CountLeadingZerosL:
  1797   case Op_CountTrailingZerosI:
  1798   case Op_CountTrailingZerosL:
  1799   case Op_PopCountI:
  1800   case Op_PopCountL:
  1801     if (!UsePopCountInstruction)
  1802       return false;
  1803   case Op_CompareAndSwapL:
  1804 #ifdef _LP64
  1805   case Op_CompareAndSwapP:
  1806 #endif
  1807     if (!VM_Version::supports_cx8())
  1808       return false;
  1809     break;
  1812   return true;  // Per default match rules are supported.
  1815 int Matcher::regnum_to_fpu_offset(int regnum) {
  1816   return regnum - 32; // The FP registers are in the second chunk
  1819 #ifdef ASSERT
  1820 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1821 #endif
  1823 // Vector width in bytes
  1824 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1825   assert(MaxVectorSize == 8, "");
  1826   return 8;
  1829 // Vector ideal reg
  1830 const int Matcher::vector_ideal_reg(int size) {
  1831   assert(MaxVectorSize == 8, "");
  1832   return Op_RegD;
  1835 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1836   fatal("vector shift is not supported");
  1837   return Node::NotAMachineReg;
  1840 // Limits on vector size (number of elements) loaded into vector.
  1841 const int Matcher::max_vector_size(const BasicType bt) {
  1842   assert(is_java_primitive(bt), "only primitive type vectors");
  1843   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1846 const int Matcher::min_vector_size(const BasicType bt) {
  1847   return max_vector_size(bt); // Same as max.
  1850 // SPARC doesn't support misaligned vectors store/load.
  1851 const bool Matcher::misaligned_vectors_ok() {
  1852   return false;
  1855 // USII supports fxtof through the whole range of number, USIII doesn't
  1856 const bool Matcher::convL2FSupported(void) {
  1857   return VM_Version::has_fast_fxtof();
  1860 // Is this branch offset short enough that a short branch can be used?
  1861 //
  1862 // NOTE: If the platform does not provide any short branch variants, then
  1863 //       this method should return false for offset 0.
  1864 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1865   // The passed offset is relative to address of the branch.
  1866   // Don't need to adjust the offset.
  1867   return UseCBCond && Assembler::is_simm12(offset);
  1870 const bool Matcher::isSimpleConstant64(jlong value) {
  1871   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1872   // Depends on optimizations in MacroAssembler::setx.
  1873   int hi = (int)(value >> 32);
  1874   int lo = (int)(value & ~0);
  1875   return (hi == 0) || (hi == -1) || (lo == 0);
  1878 // No scaling for the parameter the ClearArray node.
  1879 const bool Matcher::init_array_count_is_in_bytes = true;
  1881 // Threshold size for cleararray.
  1882 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1884 // No additional cost for CMOVL.
  1885 const int Matcher::long_cmove_cost() { return 0; }
  1887 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1888 const int Matcher::float_cmove_cost() {
  1889   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1892 // Does the CPU require late expand (see block.cpp for description of late expand)?
  1893 const bool Matcher::require_postalloc_expand = false;
  1895 // Should the Matcher clone shifts on addressing modes, expecting them to
  1896 // be subsumed into complex addressing expressions or compute them into
  1897 // registers?  True for Intel but false for most RISCs
  1898 const bool Matcher::clone_shift_expressions = false;
  1900 // Do we need to mask the count passed to shift instructions or does
  1901 // the cpu only look at the lower 5/6 bits anyway?
  1902 const bool Matcher::need_masked_shift_count = false;
  1904 bool Matcher::narrow_oop_use_complex_address() {
  1905   NOT_LP64(ShouldNotCallThis());
  1906   assert(UseCompressedOops, "only for compressed oops code");
  1907   return false;
  1910 bool Matcher::narrow_klass_use_complex_address() {
  1911   NOT_LP64(ShouldNotCallThis());
  1912   assert(UseCompressedClassPointers, "only for compressed klass code");
  1913   return false;
  1916 // Is it better to copy float constants, or load them directly from memory?
  1917 // Intel can load a float constant from a direct address, requiring no
  1918 // extra registers.  Most RISCs will have to materialize an address into a
  1919 // register first, so they would do better to copy the constant from stack.
  1920 const bool Matcher::rematerialize_float_constants = false;
  1922 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1923 // needed.  Else we split the double into 2 integer pieces and move it
  1924 // piece-by-piece.  Only happens when passing doubles into C code as the
  1925 // Java calling convention forces doubles to be aligned.
  1926 #ifdef _LP64
  1927 const bool Matcher::misaligned_doubles_ok = true;
  1928 #else
  1929 const bool Matcher::misaligned_doubles_ok = false;
  1930 #endif
  1932 // No-op on SPARC.
  1933 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1936 // Advertise here if the CPU requires explicit rounding operations
  1937 // to implement the UseStrictFP mode.
  1938 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1940 // Are floats conerted to double when stored to stack during deoptimization?
  1941 // Sparc does not handle callee-save floats.
  1942 bool Matcher::float_in_double() { return false; }
  1944 // Do ints take an entire long register or just half?
  1945 // Note that we if-def off of _LP64.
  1946 // The relevant question is how the int is callee-saved.  In _LP64
  1947 // the whole long is written but de-opt'ing will have to extract
  1948 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1949 #ifdef _LP64
  1950 const bool Matcher::int_in_long = true;
  1951 #else
  1952 const bool Matcher::int_in_long = false;
  1953 #endif
  1955 // Return whether or not this register is ever used as an argument.  This
  1956 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1957 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1958 // arguments in those registers not be available to the callee.
  1959 bool Matcher::can_be_java_arg( int reg ) {
  1960   // Standard sparc 6 args in registers
  1961   if( reg == R_I0_num ||
  1962       reg == R_I1_num ||
  1963       reg == R_I2_num ||
  1964       reg == R_I3_num ||
  1965       reg == R_I4_num ||
  1966       reg == R_I5_num ) return true;
  1967 #ifdef _LP64
  1968   // 64-bit builds can pass 64-bit pointers and longs in
  1969   // the high I registers
  1970   if( reg == R_I0H_num ||
  1971       reg == R_I1H_num ||
  1972       reg == R_I2H_num ||
  1973       reg == R_I3H_num ||
  1974       reg == R_I4H_num ||
  1975       reg == R_I5H_num ) return true;
  1977   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1978     return true;
  1981 #else
  1982   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1983   // Longs cannot be passed in O regs, because O regs become I regs
  1984   // after a 'save' and I regs get their high bits chopped off on
  1985   // interrupt.
  1986   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1987   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1988 #endif
  1989   // A few float args in registers
  1990   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1992   return false;
  1995 bool Matcher::is_spillable_arg( int reg ) {
  1996   return can_be_java_arg(reg);
  1999 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  2000   // Use hardware SDIVX instruction when it is
  2001   // faster than a code which use multiply.
  2002   return VM_Version::has_fast_idiv();
  2005 // Register for DIVI projection of divmodI
  2006 RegMask Matcher::divI_proj_mask() {
  2007   ShouldNotReachHere();
  2008   return RegMask();
  2011 // Register for MODI projection of divmodI
  2012 RegMask Matcher::modI_proj_mask() {
  2013   ShouldNotReachHere();
  2014   return RegMask();
  2017 // Register for DIVL projection of divmodL
  2018 RegMask Matcher::divL_proj_mask() {
  2019   ShouldNotReachHere();
  2020   return RegMask();
  2023 // Register for MODL projection of divmodL
  2024 RegMask Matcher::modL_proj_mask() {
  2025   ShouldNotReachHere();
  2026   return RegMask();
  2029 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2030   return L7_REGP_mask();
  2033 const RegMask Matcher::mathExactI_result_proj_mask() {
  2034   return G1_REGI_mask();
  2037 const RegMask Matcher::mathExactL_result_proj_mask() {
  2038   return G1_REGL_mask();
  2041 const RegMask Matcher::mathExactI_flags_proj_mask() {
  2042   return INT_FLAGS_mask();
  2046 %}
  2049 // The intptr_t operand types, defined by textual substitution.
  2050 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2051 #ifdef _LP64
  2052 #define immX      immL
  2053 #define immX13    immL13
  2054 #define immX13m7  immL13m7
  2055 #define iRegX     iRegL
  2056 #define g1RegX    g1RegL
  2057 #else
  2058 #define immX      immI
  2059 #define immX13    immI13
  2060 #define immX13m7  immI13m7
  2061 #define iRegX     iRegI
  2062 #define g1RegX    g1RegI
  2063 #endif
  2065 //----------ENCODING BLOCK-----------------------------------------------------
  2066 // This block specifies the encoding classes used by the compiler to output
  2067 // byte streams.  Encoding classes are parameterized macros used by
  2068 // Machine Instruction Nodes in order to generate the bit encoding of the
  2069 // instruction.  Operands specify their base encoding interface with the
  2070 // interface keyword.  There are currently supported four interfaces,
  2071 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2072 // operand to generate a function which returns its register number when
  2073 // queried.   CONST_INTER causes an operand to generate a function which
  2074 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2075 // operand to generate four functions which return the Base Register, the
  2076 // Index Register, the Scale Value, and the Offset Value of the operand when
  2077 // queried.  COND_INTER causes an operand to generate six functions which
  2078 // return the encoding code (ie - encoding bits for the instruction)
  2079 // associated with each basic boolean condition for a conditional instruction.
  2080 //
  2081 // Instructions specify two basic values for encoding.  Again, a function
  2082 // is available to check if the constant displacement is an oop. They use the
  2083 // ins_encode keyword to specify their encoding classes (which must be
  2084 // a sequence of enc_class names, and their parameters, specified in
  2085 // the encoding block), and they use the
  2086 // opcode keyword to specify, in order, their primary, secondary, and
  2087 // tertiary opcode.  Only the opcode sections which a particular instruction
  2088 // needs for encoding need to be specified.
  2089 encode %{
  2090   enc_class enc_untested %{
  2091 #ifdef ASSERT
  2092     MacroAssembler _masm(&cbuf);
  2093     __ untested("encoding");
  2094 #endif
  2095   %}
  2097   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2098     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2099                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2100   %}
  2102   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2103     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2104                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2105   %}
  2107   enc_class form3_mem_prefetch_read( memory mem ) %{
  2108     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2109                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2110   %}
  2112   enc_class form3_mem_prefetch_write( memory mem ) %{
  2113     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2114                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2115   %}
  2117   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2118     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2119     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2120     guarantee($mem$$index == R_G0_enc, "double index?");
  2121     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2122     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2123     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2124     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2125   %}
  2127   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2128     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2129     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2130     guarantee($mem$$index == R_G0_enc, "double index?");
  2131     // Load long with 2 instructions
  2132     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2133     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2134   %}
  2136   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2137   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2138     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2139     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2140   %}
  2142   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2143     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2144     if( $rs2$$reg != $rd$$reg )
  2145       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2146   %}
  2148   // Target lo half of long
  2149   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2150     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2151     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2152       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2153   %}
  2155   // Source lo half of long
  2156   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2157     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2158     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2159       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2160   %}
  2162   // Target hi half of long
  2163   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2164     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2165   %}
  2167   // Source lo half of long, and leave it sign extended.
  2168   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2169     // Sign extend low half
  2170     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2171   %}
  2173   // Source hi half of long, and leave it sign extended.
  2174   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2175     // Shift high half to low half
  2176     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2177   %}
  2179   // Source hi half of long
  2180   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2181     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2182     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2183       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2184   %}
  2186   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2187     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2188   %}
  2190   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2191     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2192     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2193   %}
  2195   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2196     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2197     // clear if nothing else is happening
  2198     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2199     // blt,a,pn done
  2200     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2201     // mov dst,-1 in delay slot
  2202     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2203   %}
  2205   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2206     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2207   %}
  2209   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2210     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2211   %}
  2213   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2214     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2215   %}
  2217   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2218     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2219   %}
  2221   enc_class move_return_pc_to_o1() %{
  2222     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2223   %}
  2225 #ifdef _LP64
  2226   /* %%% merge with enc_to_bool */
  2227   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2228     MacroAssembler _masm(&cbuf);
  2230     Register   src_reg = reg_to_register_object($src$$reg);
  2231     Register   dst_reg = reg_to_register_object($dst$$reg);
  2232     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2233   %}
  2234 #endif
  2236   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2237     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2238     MacroAssembler _masm(&cbuf);
  2240     Register   p_reg = reg_to_register_object($p$$reg);
  2241     Register   q_reg = reg_to_register_object($q$$reg);
  2242     Register   y_reg = reg_to_register_object($y$$reg);
  2243     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2245     __ subcc( p_reg, q_reg,   p_reg );
  2246     __ add  ( p_reg, y_reg, tmp_reg );
  2247     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2248   %}
  2250   enc_class form_d2i_helper(regD src, regF dst) %{
  2251     // fcmp %fcc0,$src,$src
  2252     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2253     // branch %fcc0 not-nan, predict taken
  2254     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2255     // fdtoi $src,$dst
  2256     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2257     // fitos $dst,$dst (if nan)
  2258     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2259     // clear $dst (if nan)
  2260     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2261     // carry on here...
  2262   %}
  2264   enc_class form_d2l_helper(regD src, regD dst) %{
  2265     // fcmp %fcc0,$src,$src  check for NAN
  2266     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2267     // branch %fcc0 not-nan, predict taken
  2268     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2269     // fdtox $src,$dst   convert in delay slot
  2270     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2271     // fxtod $dst,$dst  (if nan)
  2272     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2273     // clear $dst (if nan)
  2274     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2275     // carry on here...
  2276   %}
  2278   enc_class form_f2i_helper(regF src, regF dst) %{
  2279     // fcmps %fcc0,$src,$src
  2280     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2281     // branch %fcc0 not-nan, predict taken
  2282     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2283     // fstoi $src,$dst
  2284     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2285     // fitos $dst,$dst (if nan)
  2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2287     // clear $dst (if nan)
  2288     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2289     // carry on here...
  2290   %}
  2292   enc_class form_f2l_helper(regF src, regD dst) %{
  2293     // fcmps %fcc0,$src,$src
  2294     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2295     // branch %fcc0 not-nan, predict taken
  2296     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2297     // fstox $src,$dst
  2298     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2299     // fxtod $dst,$dst (if nan)
  2300     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2301     // clear $dst (if nan)
  2302     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2303     // carry on here...
  2304   %}
  2306   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2307   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2308   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2309   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2311   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2313   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2314   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2316   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2317     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2318   %}
  2320   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2321     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2322   %}
  2324   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2325     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2326   %}
  2328   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2329     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2330   %}
  2332   enc_class form3_convI2F(regF rs2, regF rd) %{
  2333     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2334   %}
  2336   // Encloding class for traceable jumps
  2337   enc_class form_jmpl(g3RegP dest) %{
  2338     emit_jmpl(cbuf, $dest$$reg);
  2339   %}
  2341   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2342     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2343   %}
  2345   enc_class form2_nop() %{
  2346     emit_nop(cbuf);
  2347   %}
  2349   enc_class form2_illtrap() %{
  2350     emit_illtrap(cbuf);
  2351   %}
  2354   // Compare longs and convert into -1, 0, 1.
  2355   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2356     // CMP $src1,$src2
  2357     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2358     // blt,a,pn done
  2359     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2360     // mov dst,-1 in delay slot
  2361     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2362     // bgt,a,pn done
  2363     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2364     // mov dst,1 in delay slot
  2365     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2366     // CLR    $dst
  2367     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2368   %}
  2370   enc_class enc_PartialSubtypeCheck() %{
  2371     MacroAssembler _masm(&cbuf);
  2372     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2373     __ delayed()->nop();
  2374   %}
  2376   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2377     MacroAssembler _masm(&cbuf);
  2378     Label* L = $labl$$label;
  2379     Assembler::Predict predict_taken =
  2380       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2382     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2383     __ delayed()->nop();
  2384   %}
  2386   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2387     MacroAssembler _masm(&cbuf);
  2388     Label* L = $labl$$label;
  2389     Assembler::Predict predict_taken =
  2390       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2392     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2393     __ delayed()->nop();
  2394   %}
  2396   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2397     int op = (Assembler::arith_op << 30) |
  2398              ($dst$$reg << 25) |
  2399              (Assembler::movcc_op3 << 19) |
  2400              (1 << 18) |                    // cc2 bit for 'icc'
  2401              ($cmp$$cmpcode << 14) |
  2402              (0 << 13) |                    // select register move
  2403              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2404              ($src$$reg << 0);
  2405     cbuf.insts()->emit_int32(op);
  2406   %}
  2408   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2409     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2410     int op = (Assembler::arith_op << 30) |
  2411              ($dst$$reg << 25) |
  2412              (Assembler::movcc_op3 << 19) |
  2413              (1 << 18) |                    // cc2 bit for 'icc'
  2414              ($cmp$$cmpcode << 14) |
  2415              (1 << 13) |                    // select immediate move
  2416              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2417              (simm11 << 0);
  2418     cbuf.insts()->emit_int32(op);
  2419   %}
  2421   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2422     int op = (Assembler::arith_op << 30) |
  2423              ($dst$$reg << 25) |
  2424              (Assembler::movcc_op3 << 19) |
  2425              (0 << 18) |                    // cc2 bit for 'fccX'
  2426              ($cmp$$cmpcode << 14) |
  2427              (0 << 13) |                    // select register move
  2428              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2429              ($src$$reg << 0);
  2430     cbuf.insts()->emit_int32(op);
  2431   %}
  2433   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2434     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2435     int op = (Assembler::arith_op << 30) |
  2436              ($dst$$reg << 25) |
  2437              (Assembler::movcc_op3 << 19) |
  2438              (0 << 18) |                    // cc2 bit for 'fccX'
  2439              ($cmp$$cmpcode << 14) |
  2440              (1 << 13) |                    // select immediate move
  2441              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2442              (simm11 << 0);
  2443     cbuf.insts()->emit_int32(op);
  2444   %}
  2446   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2447     int op = (Assembler::arith_op << 30) |
  2448              ($dst$$reg << 25) |
  2449              (Assembler::fpop2_op3 << 19) |
  2450              (0 << 18) |
  2451              ($cmp$$cmpcode << 14) |
  2452              (1 << 13) |                    // select register move
  2453              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2454              ($primary << 5) |              // select single, double or quad
  2455              ($src$$reg << 0);
  2456     cbuf.insts()->emit_int32(op);
  2457   %}
  2459   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2460     int op = (Assembler::arith_op << 30) |
  2461              ($dst$$reg << 25) |
  2462              (Assembler::fpop2_op3 << 19) |
  2463              (0 << 18) |
  2464              ($cmp$$cmpcode << 14) |
  2465              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2466              ($primary << 5) |              // select single, double or quad
  2467              ($src$$reg << 0);
  2468     cbuf.insts()->emit_int32(op);
  2469   %}
  2471   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2472   // the condition comes from opcode-field instead of an argument.
  2473   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2474     int op = (Assembler::arith_op << 30) |
  2475              ($dst$$reg << 25) |
  2476              (Assembler::movcc_op3 << 19) |
  2477              (1 << 18) |                    // cc2 bit for 'icc'
  2478              ($primary << 14) |
  2479              (0 << 13) |                    // select register move
  2480              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2481              ($src$$reg << 0);
  2482     cbuf.insts()->emit_int32(op);
  2483   %}
  2485   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2486     int op = (Assembler::arith_op << 30) |
  2487              ($dst$$reg << 25) |
  2488              (Assembler::movcc_op3 << 19) |
  2489              (6 << 16) |                    // cc2 bit for 'xcc'
  2490              ($primary << 14) |
  2491              (0 << 13) |                    // select register move
  2492              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2493              ($src$$reg << 0);
  2494     cbuf.insts()->emit_int32(op);
  2495   %}
  2497   enc_class Set13( immI13 src, iRegI rd ) %{
  2498     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2499   %}
  2501   enc_class SetHi22( immI src, iRegI rd ) %{
  2502     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2503   %}
  2505   enc_class Set32( immI src, iRegI rd ) %{
  2506     MacroAssembler _masm(&cbuf);
  2507     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2508   %}
  2510   enc_class call_epilog %{
  2511     if( VerifyStackAtCalls ) {
  2512       MacroAssembler _masm(&cbuf);
  2513       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2514       Register temp_reg = G3;
  2515       __ add(SP, framesize, temp_reg);
  2516       __ cmp(temp_reg, FP);
  2517       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2519   %}
  2521   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2522   // to G1 so the register allocator will not have to deal with the misaligned register
  2523   // pair.
  2524   enc_class adjust_long_from_native_call %{
  2525 #ifndef _LP64
  2526     if (returns_long()) {
  2527       //    sllx  O0,32,O0
  2528       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2529       //    srl   O1,0,O1
  2530       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2531       //    or    O0,O1,G1
  2532       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2534 #endif
  2535   %}
  2537   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2538     // CALL directly to the runtime
  2539     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2540     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2541                     /*preserve_g2=*/true);
  2542   %}
  2544   enc_class preserve_SP %{
  2545     MacroAssembler _masm(&cbuf);
  2546     __ mov(SP, L7_mh_SP_save);
  2547   %}
  2549   enc_class restore_SP %{
  2550     MacroAssembler _masm(&cbuf);
  2551     __ mov(L7_mh_SP_save, SP);
  2552   %}
  2554   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2555     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2556     // who we intended to call.
  2557     if (!_method) {
  2558       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2559     } else if (_optimized_virtual) {
  2560       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2561     } else {
  2562       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2564     if (_method) {  // Emit stub for static call.
  2565       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2567   %}
  2569   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2570     MacroAssembler _masm(&cbuf);
  2571     __ set_inst_mark();
  2572     int vtable_index = this->_vtable_index;
  2573     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2574     if (vtable_index < 0) {
  2575       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2576       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2577       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2578       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2579       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2580       __ ic_call((address)$meth$$method);
  2581     } else {
  2582       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2583       // Just go thru the vtable
  2584       // get receiver klass (receiver already checked for non-null)
  2585       // If we end up going thru a c2i adapter interpreter expects method in G5
  2586       int off = __ offset();
  2587       __ load_klass(O0, G3_scratch);
  2588       int klass_load_size;
  2589       if (UseCompressedClassPointers) {
  2590         assert(Universe::heap() != NULL, "java heap should be initialized");
  2591         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
  2592       } else {
  2593         klass_load_size = 1*BytesPerInstWord;
  2595       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2596       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2597       if (Assembler::is_simm13(v_off)) {
  2598         __ ld_ptr(G3, v_off, G5_method);
  2599       } else {
  2600         // Generate 2 instructions
  2601         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2602         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2603         // ld_ptr, set_hi, set
  2604         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2605                "Unexpected instruction size(s)");
  2606         __ ld_ptr(G3, G5_method, G5_method);
  2608       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2609       // However it may very well end up in handle_wrong_method if the
  2610       // method is abstract for the particular class.
  2611       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2612       // jump to target (either compiled code or c2iadapter)
  2613       __ jmpl(G3_scratch, G0, O7);
  2614       __ delayed()->nop();
  2616   %}
  2618   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2619     MacroAssembler _masm(&cbuf);
  2621     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2622     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2623                               // we might be calling a C2I adapter which needs it.
  2625     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2626     // Load nmethod
  2627     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2629     // CALL to compiled java, indirect the contents of G3
  2630     __ set_inst_mark();
  2631     __ callr(temp_reg, G0);
  2632     __ delayed()->nop();
  2633   %}
  2635 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2636     MacroAssembler _masm(&cbuf);
  2637     Register Rdividend = reg_to_register_object($src1$$reg);
  2638     Register Rdivisor = reg_to_register_object($src2$$reg);
  2639     Register Rresult = reg_to_register_object($dst$$reg);
  2641     __ sra(Rdivisor, 0, Rdivisor);
  2642     __ sra(Rdividend, 0, Rdividend);
  2643     __ sdivx(Rdividend, Rdivisor, Rresult);
  2644 %}
  2646 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2647     MacroAssembler _masm(&cbuf);
  2649     Register Rdividend = reg_to_register_object($src1$$reg);
  2650     int divisor = $imm$$constant;
  2651     Register Rresult = reg_to_register_object($dst$$reg);
  2653     __ sra(Rdividend, 0, Rdividend);
  2654     __ sdivx(Rdividend, divisor, Rresult);
  2655 %}
  2657 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2658     MacroAssembler _masm(&cbuf);
  2659     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2660     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2661     Register Rdst  = reg_to_register_object($dst$$reg);
  2663     __ sra( Rsrc1, 0, Rsrc1 );
  2664     __ sra( Rsrc2, 0, Rsrc2 );
  2665     __ mulx( Rsrc1, Rsrc2, Rdst );
  2666     __ srlx( Rdst, 32, Rdst );
  2667 %}
  2669 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2670     MacroAssembler _masm(&cbuf);
  2671     Register Rdividend = reg_to_register_object($src1$$reg);
  2672     Register Rdivisor = reg_to_register_object($src2$$reg);
  2673     Register Rresult = reg_to_register_object($dst$$reg);
  2674     Register Rscratch = reg_to_register_object($scratch$$reg);
  2676     assert(Rdividend != Rscratch, "");
  2677     assert(Rdivisor  != Rscratch, "");
  2679     __ sra(Rdividend, 0, Rdividend);
  2680     __ sra(Rdivisor, 0, Rdivisor);
  2681     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2682     __ mulx(Rscratch, Rdivisor, Rscratch);
  2683     __ sub(Rdividend, Rscratch, Rresult);
  2684 %}
  2686 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2687     MacroAssembler _masm(&cbuf);
  2689     Register Rdividend = reg_to_register_object($src1$$reg);
  2690     int divisor = $imm$$constant;
  2691     Register Rresult = reg_to_register_object($dst$$reg);
  2692     Register Rscratch = reg_to_register_object($scratch$$reg);
  2694     assert(Rdividend != Rscratch, "");
  2696     __ sra(Rdividend, 0, Rdividend);
  2697     __ sdivx(Rdividend, divisor, Rscratch);
  2698     __ mulx(Rscratch, divisor, Rscratch);
  2699     __ sub(Rdividend, Rscratch, Rresult);
  2700 %}
  2702 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2703     MacroAssembler _masm(&cbuf);
  2705     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2706     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2708     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2709 %}
  2711 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2712     MacroAssembler _masm(&cbuf);
  2714     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2715     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2717     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2718 %}
  2720 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2721     MacroAssembler _masm(&cbuf);
  2723     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2724     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2726     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2727 %}
  2729 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2730     MacroAssembler _masm(&cbuf);
  2732     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2733     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2735     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2736 %}
  2738 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2739     MacroAssembler _masm(&cbuf);
  2741     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2742     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2744     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2745 %}
  2747 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2748     MacroAssembler _masm(&cbuf);
  2750     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2751     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2753     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2754 %}
  2756 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2757     MacroAssembler _masm(&cbuf);
  2759     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2760     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2762     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2763 %}
  2765 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2766     MacroAssembler _masm(&cbuf);
  2768     Register Roop  = reg_to_register_object($oop$$reg);
  2769     Register Rbox  = reg_to_register_object($box$$reg);
  2770     Register Rscratch = reg_to_register_object($scratch$$reg);
  2771     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2773     assert(Roop  != Rscratch, "");
  2774     assert(Roop  != Rmark, "");
  2775     assert(Rbox  != Rscratch, "");
  2776     assert(Rbox  != Rmark, "");
  2778     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2779 %}
  2781 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2782     MacroAssembler _masm(&cbuf);
  2784     Register Roop  = reg_to_register_object($oop$$reg);
  2785     Register Rbox  = reg_to_register_object($box$$reg);
  2786     Register Rscratch = reg_to_register_object($scratch$$reg);
  2787     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2789     assert(Roop  != Rscratch, "");
  2790     assert(Roop  != Rmark, "");
  2791     assert(Rbox  != Rscratch, "");
  2792     assert(Rbox  != Rmark, "");
  2794     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2795   %}
  2797   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2798     MacroAssembler _masm(&cbuf);
  2799     Register Rmem = reg_to_register_object($mem$$reg);
  2800     Register Rold = reg_to_register_object($old$$reg);
  2801     Register Rnew = reg_to_register_object($new$$reg);
  2803     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2804     __ cmp( Rold, Rnew );
  2805   %}
  2807   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2808     Register Rmem = reg_to_register_object($mem$$reg);
  2809     Register Rold = reg_to_register_object($old$$reg);
  2810     Register Rnew = reg_to_register_object($new$$reg);
  2812     MacroAssembler _masm(&cbuf);
  2813     __ mov(Rnew, O7);
  2814     __ casx(Rmem, Rold, O7);
  2815     __ cmp( Rold, O7 );
  2816   %}
  2818   // raw int cas, used for compareAndSwap
  2819   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2820     Register Rmem = reg_to_register_object($mem$$reg);
  2821     Register Rold = reg_to_register_object($old$$reg);
  2822     Register Rnew = reg_to_register_object($new$$reg);
  2824     MacroAssembler _masm(&cbuf);
  2825     __ mov(Rnew, O7);
  2826     __ cas(Rmem, Rold, O7);
  2827     __ cmp( Rold, O7 );
  2828   %}
  2830   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2831     Register Rres = reg_to_register_object($res$$reg);
  2833     MacroAssembler _masm(&cbuf);
  2834     __ mov(1, Rres);
  2835     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2836   %}
  2838   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2839     Register Rres = reg_to_register_object($res$$reg);
  2841     MacroAssembler _masm(&cbuf);
  2842     __ mov(1, Rres);
  2843     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2844   %}
  2846   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2847     MacroAssembler _masm(&cbuf);
  2848     Register Rdst = reg_to_register_object($dst$$reg);
  2849     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2850                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2851     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2852                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2854     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2855     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2856   %}
  2859   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2860     Label Ldone, Lloop;
  2861     MacroAssembler _masm(&cbuf);
  2863     Register   str1_reg = reg_to_register_object($str1$$reg);
  2864     Register   str2_reg = reg_to_register_object($str2$$reg);
  2865     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2866     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2867     Register result_reg = reg_to_register_object($result$$reg);
  2869     assert(result_reg != str1_reg &&
  2870            result_reg != str2_reg &&
  2871            result_reg != cnt1_reg &&
  2872            result_reg != cnt2_reg ,
  2873            "need different registers");
  2875     // Compute the minimum of the string lengths(str1_reg) and the
  2876     // difference of the string lengths (stack)
  2878     // See if the lengths are different, and calculate min in str1_reg.
  2879     // Stash diff in O7 in case we need it for a tie-breaker.
  2880     Label Lskip;
  2881     __ subcc(cnt1_reg, cnt2_reg, O7);
  2882     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2883     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2884     // cnt2 is shorter, so use its count:
  2885     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2886     __ bind(Lskip);
  2888     // reallocate cnt1_reg, cnt2_reg, result_reg
  2889     // Note:  limit_reg holds the string length pre-scaled by 2
  2890     Register limit_reg =   cnt1_reg;
  2891     Register  chr2_reg =   cnt2_reg;
  2892     Register  chr1_reg = result_reg;
  2893     // str{12} are the base pointers
  2895     // Is the minimum length zero?
  2896     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2897     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2898     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2900     // Load first characters
  2901     __ lduh(str1_reg, 0, chr1_reg);
  2902     __ lduh(str2_reg, 0, chr2_reg);
  2904     // Compare first characters
  2905     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2906     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2907     assert(chr1_reg == result_reg, "result must be pre-placed");
  2908     __ delayed()->nop();
  2911       // Check after comparing first character to see if strings are equivalent
  2912       Label LSkip2;
  2913       // Check if the strings start at same location
  2914       __ cmp(str1_reg, str2_reg);
  2915       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2916       __ delayed()->nop();
  2918       // Check if the length difference is zero (in O7)
  2919       __ cmp(G0, O7);
  2920       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2921       __ delayed()->mov(G0, result_reg);  // result is zero
  2923       // Strings might not be equal
  2924       __ bind(LSkip2);
  2927     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2928     __ signx(limit_reg);
  2930     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2931     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2932     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2934     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2935     __ add(str1_reg, limit_reg, str1_reg);
  2936     __ add(str2_reg, limit_reg, str2_reg);
  2937     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2939     // Compare the rest of the characters
  2940     __ lduh(str1_reg, limit_reg, chr1_reg);
  2941     __ bind(Lloop);
  2942     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2943     __ lduh(str2_reg, limit_reg, chr2_reg);
  2944     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2945     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2946     assert(chr1_reg == result_reg, "result must be pre-placed");
  2947     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2948     // annul LDUH if branch is not taken to prevent access past end of string
  2949     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2950     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2952     // If strings are equal up to min length, return the length difference.
  2953     __ mov(O7, result_reg);
  2955     // Otherwise, return the difference between the first mismatched chars.
  2956     __ bind(Ldone);
  2957   %}
  2959 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2960     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2961     MacroAssembler _masm(&cbuf);
  2963     Register   str1_reg = reg_to_register_object($str1$$reg);
  2964     Register   str2_reg = reg_to_register_object($str2$$reg);
  2965     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2966     Register   tmp1_reg = O7;
  2967     Register result_reg = reg_to_register_object($result$$reg);
  2969     assert(result_reg != str1_reg &&
  2970            result_reg != str2_reg &&
  2971            result_reg !=  cnt_reg &&
  2972            result_reg != tmp1_reg ,
  2973            "need different registers");
  2975     __ cmp(str1_reg, str2_reg); //same char[] ?
  2976     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2977     __ delayed()->add(G0, 1, result_reg);
  2979     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2980     __ delayed()->add(G0, 1, result_reg); // count == 0
  2982     //rename registers
  2983     Register limit_reg =    cnt_reg;
  2984     Register  chr1_reg = result_reg;
  2985     Register  chr2_reg =   tmp1_reg;
  2987     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2988     __ signx(limit_reg);
  2990     //check for alignment and position the pointers to the ends
  2991     __ or3(str1_reg, str2_reg, chr1_reg);
  2992     __ andcc(chr1_reg, 0x3, chr1_reg);
  2993     // notZero means at least one not 4-byte aligned.
  2994     // We could optimize the case when both arrays are not aligned
  2995     // but it is not frequent case and it requires additional checks.
  2996     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2997     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2999     // Compare char[] arrays aligned to 4 bytes.
  3000     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  3001                           chr1_reg, chr2_reg, Ldone);
  3002     __ ba(Ldone);
  3003     __ delayed()->add(G0, 1, result_reg);
  3005     // char by char compare
  3006     __ bind(Lchar);
  3007     __ add(str1_reg, limit_reg, str1_reg);
  3008     __ add(str2_reg, limit_reg, str2_reg);
  3009     __ neg(limit_reg); //negate count
  3011     __ lduh(str1_reg, limit_reg, chr1_reg);
  3012     // Lchar_loop
  3013     __ bind(Lchar_loop);
  3014     __ lduh(str2_reg, limit_reg, chr2_reg);
  3015     __ cmp(chr1_reg, chr2_reg);
  3016     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3017     __ delayed()->mov(G0, result_reg); //not equal
  3018     __ inccc(limit_reg, sizeof(jchar));
  3019     // annul LDUH if branch is not taken to prevent access past end of string
  3020     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3021     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3023     __ add(G0, 1, result_reg);  //equal
  3025     __ bind(Ldone);
  3026   %}
  3028 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3029     Label Lvector, Ldone, Lloop;
  3030     MacroAssembler _masm(&cbuf);
  3032     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3033     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3034     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3035     Register   tmp2_reg = O7;
  3036     Register result_reg = reg_to_register_object($result$$reg);
  3038     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3039     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3041     // return true if the same array
  3042     __ cmp(ary1_reg, ary2_reg);
  3043     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3044     __ delayed()->add(G0, 1, result_reg); // equal
  3046     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3047     __ delayed()->mov(G0, result_reg);    // not equal
  3049     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3050     __ delayed()->mov(G0, result_reg);    // not equal
  3052     //load the lengths of arrays
  3053     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3054     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3056     // return false if the two arrays are not equal length
  3057     __ cmp(tmp1_reg, tmp2_reg);
  3058     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3059     __ delayed()->mov(G0, result_reg);     // not equal
  3061     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3062     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3064     // load array addresses
  3065     __ add(ary1_reg, base_offset, ary1_reg);
  3066     __ add(ary2_reg, base_offset, ary2_reg);
  3068     // renaming registers
  3069     Register chr1_reg  =  result_reg; // for characters in ary1
  3070     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3071     Register limit_reg =  tmp1_reg;   // length
  3073     // set byte count
  3074     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3076     // Compare char[] arrays aligned to 4 bytes.
  3077     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3078                           chr1_reg, chr2_reg, Ldone);
  3079     __ add(G0, 1, result_reg); // equals
  3081     __ bind(Ldone);
  3082   %}
  3084   enc_class enc_rethrow() %{
  3085     cbuf.set_insts_mark();
  3086     Register temp_reg = G3;
  3087     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3088     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3089     MacroAssembler _masm(&cbuf);
  3090 #ifdef ASSERT
  3091     __ save_frame(0);
  3092     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3093     __ sethi(last_rethrow_addrlit, L1);
  3094     Address addr(L1, last_rethrow_addrlit.low10());
  3095     __ rdpc(L2);
  3096     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3097     __ st_ptr(L2, addr);
  3098     __ restore();
  3099 #endif
  3100     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3101     __ delayed()->nop();
  3102   %}
  3104   enc_class emit_mem_nop() %{
  3105     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3106     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3107   %}
  3109   enc_class emit_fadd_nop() %{
  3110     // Generates the instruction FMOVS f31,f31
  3111     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3112   %}
  3114   enc_class emit_br_nop() %{
  3115     // Generates the instruction BPN,PN .
  3116     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3117   %}
  3119   enc_class enc_membar_acquire %{
  3120     MacroAssembler _masm(&cbuf);
  3121     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3122   %}
  3124   enc_class enc_membar_release %{
  3125     MacroAssembler _masm(&cbuf);
  3126     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3127   %}
  3129   enc_class enc_membar_volatile %{
  3130     MacroAssembler _masm(&cbuf);
  3131     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3132   %}
  3134 %}
  3136 //----------FRAME--------------------------------------------------------------
  3137 // Definition of frame structure and management information.
  3138 //
  3139 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3140 //                             |   (to get allocators register number
  3141 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3142 //  r   CALLER     |        |
  3143 //  o     |        +--------+      pad to even-align allocators stack-slot
  3144 //  w     V        |  pad0  |        numbers; owned by CALLER
  3145 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3146 //  h     ^        |   in   |  5
  3147 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3148 //  |     |        |        |  3
  3149 //  |     |        +--------+
  3150 //  V     |        | old out|      Empty on Intel, window on Sparc
  3151 //        |    old |preserve|      Must be even aligned.
  3152 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3153 //        |        |   in   |  3   area for Intel ret address
  3154 //     Owned by    |preserve|      Empty on Sparc.
  3155 //       SELF      +--------+
  3156 //        |        |  pad2  |  2   pad to align old SP
  3157 //        |        +--------+  1
  3158 //        |        | locks  |  0
  3159 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3160 //        |        |  pad1  | 11   pad to align new SP
  3161 //        |        +--------+
  3162 //        |        |        | 10
  3163 //        |        | spills |  9   spills
  3164 //        V        |        |  8   (pad0 slot for callee)
  3165 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3166 //        ^        |  out   |  7
  3167 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3168 //     Owned by    +--------+
  3169 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3170 //        |    new |preserve|      Must be even-aligned.
  3171 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3172 //        |        |        |
  3173 //
  3174 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3175 //         known from SELF's arguments and the Java calling convention.
  3176 //         Region 6-7 is determined per call site.
  3177 // Note 2: If the calling convention leaves holes in the incoming argument
  3178 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3179 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3180 //         incoming area, as the Java calling convention is completely under
  3181 //         the control of the AD file.  Doubles can be sorted and packed to
  3182 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3183 //         varargs C calling conventions.
  3184 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3185 //         even aligned with pad0 as needed.
  3186 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3187 //         region 6-11 is even aligned; it may be padded out more so that
  3188 //         the region from SP to FP meets the minimum stack alignment.
  3190 frame %{
  3191   // What direction does stack grow in (assumed to be same for native & Java)
  3192   stack_direction(TOWARDS_LOW);
  3194   // These two registers define part of the calling convention
  3195   // between compiled code and the interpreter.
  3196   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3197   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3199   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3200   cisc_spilling_operand_name(indOffset);
  3202   // Number of stack slots consumed by a Monitor enter
  3203 #ifdef _LP64
  3204   sync_stack_slots(2);
  3205 #else
  3206   sync_stack_slots(1);
  3207 #endif
  3209   // Compiled code's Frame Pointer
  3210   frame_pointer(R_SP);
  3212   // Stack alignment requirement
  3213   stack_alignment(StackAlignmentInBytes);
  3214   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3215   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3217   // Number of stack slots between incoming argument block and the start of
  3218   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3219   // EPILOG must remove this many slots.
  3220   in_preserve_stack_slots(0);
  3222   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3223   // for calls to C.  Supports the var-args backing area for register parms.
  3224   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3225 #ifdef _LP64
  3226   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3227   varargs_C_out_slots_killed(12);
  3228 #else
  3229   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3230   varargs_C_out_slots_killed( 7);
  3231 #endif
  3233   // The after-PROLOG location of the return address.  Location of
  3234   // return address specifies a type (REG or STACK) and a number
  3235   // representing the register number (i.e. - use a register name) or
  3236   // stack slot.
  3237   return_addr(REG R_I7);          // Ret Addr is in register I7
  3239   // Body of function which returns an OptoRegs array locating
  3240   // arguments either in registers or in stack slots for calling
  3241   // java
  3242   calling_convention %{
  3243     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3245   %}
  3247   // Body of function which returns an OptoRegs array locating
  3248   // arguments either in registers or in stack slots for callin
  3249   // C.
  3250   c_calling_convention %{
  3251     // This is obviously always outgoing
  3252     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3253   %}
  3255   // Location of native (C/C++) and interpreter return values.  This is specified to
  3256   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3257   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3258   // to and from the register pairs is done by the appropriate call and epilog
  3259   // opcodes.  This simplifies the register allocator.
  3260   c_return_value %{
  3261     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3262 #ifdef     _LP64
  3263     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3264     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3265     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3266     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3267 #else  // !_LP64
  3268     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3269     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3270     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3271     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3272 #endif
  3273     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3274                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3275   %}
  3277   // Location of compiled Java return values.  Same as C
  3278   return_value %{
  3279     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3280 #ifdef     _LP64
  3281     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3282     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3283     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3284     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3285 #else  // !_LP64
  3286     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3287     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3288     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3289     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3290 #endif
  3291     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3292                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3293   %}
  3295 %}
  3298 //----------ATTRIBUTES---------------------------------------------------------
  3299 //----------Operand Attributes-------------------------------------------------
  3300 op_attrib op_cost(1);          // Required cost attribute
  3302 //----------Instruction Attributes---------------------------------------------
  3303 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3304 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3305 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3306 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3307                                    // non-matching short branch variant of some
  3308                                                             // long branch?
  3310 //----------OPERANDS-----------------------------------------------------------
  3311 // Operand definitions must precede instruction definitions for correct parsing
  3312 // in the ADLC because operands constitute user defined types which are used in
  3313 // instruction definitions.
  3315 //----------Simple Operands----------------------------------------------------
  3316 // Immediate Operands
  3317 // Integer Immediate: 32-bit
  3318 operand immI() %{
  3319   match(ConI);
  3321   op_cost(0);
  3322   // formats are generated automatically for constants and base registers
  3323   format %{ %}
  3324   interface(CONST_INTER);
  3325 %}
  3327 // Integer Immediate: 8-bit
  3328 operand immI8() %{
  3329   predicate(Assembler::is_simm8(n->get_int()));
  3330   match(ConI);
  3331   op_cost(0);
  3332   format %{ %}
  3333   interface(CONST_INTER);
  3334 %}
  3336 // Integer Immediate: 13-bit
  3337 operand immI13() %{
  3338   predicate(Assembler::is_simm13(n->get_int()));
  3339   match(ConI);
  3340   op_cost(0);
  3342   format %{ %}
  3343   interface(CONST_INTER);
  3344 %}
  3346 // Integer Immediate: 13-bit minus 7
  3347 operand immI13m7() %{
  3348   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3349   match(ConI);
  3350   op_cost(0);
  3352   format %{ %}
  3353   interface(CONST_INTER);
  3354 %}
  3356 // Integer Immediate: 16-bit
  3357 operand immI16() %{
  3358   predicate(Assembler::is_simm16(n->get_int()));
  3359   match(ConI);
  3360   op_cost(0);
  3361   format %{ %}
  3362   interface(CONST_INTER);
  3363 %}
  3365 // Unsigned (positive) Integer Immediate: 13-bit
  3366 operand immU13() %{
  3367   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3368   match(ConI);
  3369   op_cost(0);
  3371   format %{ %}
  3372   interface(CONST_INTER);
  3373 %}
  3375 // Integer Immediate: 6-bit
  3376 operand immU6() %{
  3377   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3378   match(ConI);
  3379   op_cost(0);
  3380   format %{ %}
  3381   interface(CONST_INTER);
  3382 %}
  3384 // Integer Immediate: 11-bit
  3385 operand immI11() %{
  3386   predicate(Assembler::is_simm11(n->get_int()));
  3387   match(ConI);
  3388   op_cost(0);
  3389   format %{ %}
  3390   interface(CONST_INTER);
  3391 %}
  3393 // Integer Immediate: 5-bit
  3394 operand immI5() %{
  3395   predicate(Assembler::is_simm5(n->get_int()));
  3396   match(ConI);
  3397   op_cost(0);
  3398   format %{ %}
  3399   interface(CONST_INTER);
  3400 %}
  3402 // Integer Immediate: 0-bit
  3403 operand immI0() %{
  3404   predicate(n->get_int() == 0);
  3405   match(ConI);
  3406   op_cost(0);
  3408   format %{ %}
  3409   interface(CONST_INTER);
  3410 %}
  3412 // Integer Immediate: the value 10
  3413 operand immI10() %{
  3414   predicate(n->get_int() == 10);
  3415   match(ConI);
  3416   op_cost(0);
  3418   format %{ %}
  3419   interface(CONST_INTER);
  3420 %}
  3422 // Integer Immediate: the values 0-31
  3423 operand immU5() %{
  3424   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3425   match(ConI);
  3426   op_cost(0);
  3428   format %{ %}
  3429   interface(CONST_INTER);
  3430 %}
  3432 // Integer Immediate: the values 1-31
  3433 operand immI_1_31() %{
  3434   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3435   match(ConI);
  3436   op_cost(0);
  3438   format %{ %}
  3439   interface(CONST_INTER);
  3440 %}
  3442 // Integer Immediate: the values 32-63
  3443 operand immI_32_63() %{
  3444   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3445   match(ConI);
  3446   op_cost(0);
  3448   format %{ %}
  3449   interface(CONST_INTER);
  3450 %}
  3452 // Immediates for special shifts (sign extend)
  3454 // Integer Immediate: the value 16
  3455 operand immI_16() %{
  3456   predicate(n->get_int() == 16);
  3457   match(ConI);
  3458   op_cost(0);
  3460   format %{ %}
  3461   interface(CONST_INTER);
  3462 %}
  3464 // Integer Immediate: the value 24
  3465 operand immI_24() %{
  3466   predicate(n->get_int() == 24);
  3467   match(ConI);
  3468   op_cost(0);
  3470   format %{ %}
  3471   interface(CONST_INTER);
  3472 %}
  3474 // Integer Immediate: the value 255
  3475 operand immI_255() %{
  3476   predicate( n->get_int() == 255 );
  3477   match(ConI);
  3478   op_cost(0);
  3480   format %{ %}
  3481   interface(CONST_INTER);
  3482 %}
  3484 // Integer Immediate: the value 65535
  3485 operand immI_65535() %{
  3486   predicate(n->get_int() == 65535);
  3487   match(ConI);
  3488   op_cost(0);
  3490   format %{ %}
  3491   interface(CONST_INTER);
  3492 %}
  3494 // Long Immediate: the value FF
  3495 operand immL_FF() %{
  3496   predicate( n->get_long() == 0xFFL );
  3497   match(ConL);
  3498   op_cost(0);
  3500   format %{ %}
  3501   interface(CONST_INTER);
  3502 %}
  3504 // Long Immediate: the value FFFF
  3505 operand immL_FFFF() %{
  3506   predicate( n->get_long() == 0xFFFFL );
  3507   match(ConL);
  3508   op_cost(0);
  3510   format %{ %}
  3511   interface(CONST_INTER);
  3512 %}
  3514 // Pointer Immediate: 32 or 64-bit
  3515 operand immP() %{
  3516   match(ConP);
  3518   op_cost(5);
  3519   // formats are generated automatically for constants and base registers
  3520   format %{ %}
  3521   interface(CONST_INTER);
  3522 %}
  3524 #ifdef _LP64
  3525 // Pointer Immediate: 64-bit
  3526 operand immP_set() %{
  3527   predicate(!VM_Version::is_niagara_plus());
  3528   match(ConP);
  3530   op_cost(5);
  3531   // formats are generated automatically for constants and base registers
  3532   format %{ %}
  3533   interface(CONST_INTER);
  3534 %}
  3536 // Pointer Immediate: 64-bit
  3537 // From Niagara2 processors on a load should be better than materializing.
  3538 operand immP_load() %{
  3539   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3540   match(ConP);
  3542   op_cost(5);
  3543   // formats are generated automatically for constants and base registers
  3544   format %{ %}
  3545   interface(CONST_INTER);
  3546 %}
  3548 // Pointer Immediate: 64-bit
  3549 operand immP_no_oop_cheap() %{
  3550   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3551   match(ConP);
  3553   op_cost(5);
  3554   // formats are generated automatically for constants and base registers
  3555   format %{ %}
  3556   interface(CONST_INTER);
  3557 %}
  3558 #endif
  3560 operand immP13() %{
  3561   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3562   match(ConP);
  3563   op_cost(0);
  3565   format %{ %}
  3566   interface(CONST_INTER);
  3567 %}
  3569 operand immP0() %{
  3570   predicate(n->get_ptr() == 0);
  3571   match(ConP);
  3572   op_cost(0);
  3574   format %{ %}
  3575   interface(CONST_INTER);
  3576 %}
  3578 operand immP_poll() %{
  3579   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3580   match(ConP);
  3582   // formats are generated automatically for constants and base registers
  3583   format %{ %}
  3584   interface(CONST_INTER);
  3585 %}
  3587 // Pointer Immediate
  3588 operand immN()
  3589 %{
  3590   match(ConN);
  3592   op_cost(10);
  3593   format %{ %}
  3594   interface(CONST_INTER);
  3595 %}
  3597 operand immNKlass()
  3598 %{
  3599   match(ConNKlass);
  3601   op_cost(10);
  3602   format %{ %}
  3603   interface(CONST_INTER);
  3604 %}
  3606 // NULL Pointer Immediate
  3607 operand immN0()
  3608 %{
  3609   predicate(n->get_narrowcon() == 0);
  3610   match(ConN);
  3612   op_cost(0);
  3613   format %{ %}
  3614   interface(CONST_INTER);
  3615 %}
  3617 operand immL() %{
  3618   match(ConL);
  3619   op_cost(40);
  3620   // formats are generated automatically for constants and base registers
  3621   format %{ %}
  3622   interface(CONST_INTER);
  3623 %}
  3625 operand immL0() %{
  3626   predicate(n->get_long() == 0L);
  3627   match(ConL);
  3628   op_cost(0);
  3629   // formats are generated automatically for constants and base registers
  3630   format %{ %}
  3631   interface(CONST_INTER);
  3632 %}
  3634 // Integer Immediate: 5-bit
  3635 operand immL5() %{
  3636   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3637   match(ConL);
  3638   op_cost(0);
  3639   format %{ %}
  3640   interface(CONST_INTER);
  3641 %}
  3643 // Long Immediate: 13-bit
  3644 operand immL13() %{
  3645   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3646   match(ConL);
  3647   op_cost(0);
  3649   format %{ %}
  3650   interface(CONST_INTER);
  3651 %}
  3653 // Long Immediate: 13-bit minus 7
  3654 operand immL13m7() %{
  3655   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3656   match(ConL);
  3657   op_cost(0);
  3659   format %{ %}
  3660   interface(CONST_INTER);
  3661 %}
  3663 // Long Immediate: low 32-bit mask
  3664 operand immL_32bits() %{
  3665   predicate(n->get_long() == 0xFFFFFFFFL);
  3666   match(ConL);
  3667   op_cost(0);
  3669   format %{ %}
  3670   interface(CONST_INTER);
  3671 %}
  3673 // Long Immediate: cheap (materialize in <= 3 instructions)
  3674 operand immL_cheap() %{
  3675   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3676   match(ConL);
  3677   op_cost(0);
  3679   format %{ %}
  3680   interface(CONST_INTER);
  3681 %}
  3683 // Long Immediate: expensive (materialize in > 3 instructions)
  3684 operand immL_expensive() %{
  3685   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3686   match(ConL);
  3687   op_cost(0);
  3689   format %{ %}
  3690   interface(CONST_INTER);
  3691 %}
  3693 // Double Immediate
  3694 operand immD() %{
  3695   match(ConD);
  3697   op_cost(40);
  3698   format %{ %}
  3699   interface(CONST_INTER);
  3700 %}
  3702 operand immD0() %{
  3703 #ifdef _LP64
  3704   // on 64-bit architectures this comparision is faster
  3705   predicate(jlong_cast(n->getd()) == 0);
  3706 #else
  3707   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3708 #endif
  3709   match(ConD);
  3711   op_cost(0);
  3712   format %{ %}
  3713   interface(CONST_INTER);
  3714 %}
  3716 // Float Immediate
  3717 operand immF() %{
  3718   match(ConF);
  3720   op_cost(20);
  3721   format %{ %}
  3722   interface(CONST_INTER);
  3723 %}
  3725 // Float Immediate: 0
  3726 operand immF0() %{
  3727   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3728   match(ConF);
  3730   op_cost(0);
  3731   format %{ %}
  3732   interface(CONST_INTER);
  3733 %}
  3735 // Integer Register Operands
  3736 // Integer Register
  3737 operand iRegI() %{
  3738   constraint(ALLOC_IN_RC(int_reg));
  3739   match(RegI);
  3741   match(notemp_iRegI);
  3742   match(g1RegI);
  3743   match(o0RegI);
  3744   match(iRegIsafe);
  3746   format %{ %}
  3747   interface(REG_INTER);
  3748 %}
  3750 operand notemp_iRegI() %{
  3751   constraint(ALLOC_IN_RC(notemp_int_reg));
  3752   match(RegI);
  3754   match(o0RegI);
  3756   format %{ %}
  3757   interface(REG_INTER);
  3758 %}
  3760 operand o0RegI() %{
  3761   constraint(ALLOC_IN_RC(o0_regI));
  3762   match(iRegI);
  3764   format %{ %}
  3765   interface(REG_INTER);
  3766 %}
  3768 // Pointer Register
  3769 operand iRegP() %{
  3770   constraint(ALLOC_IN_RC(ptr_reg));
  3771   match(RegP);
  3773   match(lock_ptr_RegP);
  3774   match(g1RegP);
  3775   match(g2RegP);
  3776   match(g3RegP);
  3777   match(g4RegP);
  3778   match(i0RegP);
  3779   match(o0RegP);
  3780   match(o1RegP);
  3781   match(l7RegP);
  3783   format %{ %}
  3784   interface(REG_INTER);
  3785 %}
  3787 operand sp_ptr_RegP() %{
  3788   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3789   match(RegP);
  3790   match(iRegP);
  3792   format %{ %}
  3793   interface(REG_INTER);
  3794 %}
  3796 operand lock_ptr_RegP() %{
  3797   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3798   match(RegP);
  3799   match(i0RegP);
  3800   match(o0RegP);
  3801   match(o1RegP);
  3802   match(l7RegP);
  3804   format %{ %}
  3805   interface(REG_INTER);
  3806 %}
  3808 operand g1RegP() %{
  3809   constraint(ALLOC_IN_RC(g1_regP));
  3810   match(iRegP);
  3812   format %{ %}
  3813   interface(REG_INTER);
  3814 %}
  3816 operand g2RegP() %{
  3817   constraint(ALLOC_IN_RC(g2_regP));
  3818   match(iRegP);
  3820   format %{ %}
  3821   interface(REG_INTER);
  3822 %}
  3824 operand g3RegP() %{
  3825   constraint(ALLOC_IN_RC(g3_regP));
  3826   match(iRegP);
  3828   format %{ %}
  3829   interface(REG_INTER);
  3830 %}
  3832 operand g1RegI() %{
  3833   constraint(ALLOC_IN_RC(g1_regI));
  3834   match(iRegI);
  3836   format %{ %}
  3837   interface(REG_INTER);
  3838 %}
  3840 operand g3RegI() %{
  3841   constraint(ALLOC_IN_RC(g3_regI));
  3842   match(iRegI);
  3844   format %{ %}
  3845   interface(REG_INTER);
  3846 %}
  3848 operand g4RegI() %{
  3849   constraint(ALLOC_IN_RC(g4_regI));
  3850   match(iRegI);
  3852   format %{ %}
  3853   interface(REG_INTER);
  3854 %}
  3856 operand g4RegP() %{
  3857   constraint(ALLOC_IN_RC(g4_regP));
  3858   match(iRegP);
  3860   format %{ %}
  3861   interface(REG_INTER);
  3862 %}
  3864 operand i0RegP() %{
  3865   constraint(ALLOC_IN_RC(i0_regP));
  3866   match(iRegP);
  3868   format %{ %}
  3869   interface(REG_INTER);
  3870 %}
  3872 operand o0RegP() %{
  3873   constraint(ALLOC_IN_RC(o0_regP));
  3874   match(iRegP);
  3876   format %{ %}
  3877   interface(REG_INTER);
  3878 %}
  3880 operand o1RegP() %{
  3881   constraint(ALLOC_IN_RC(o1_regP));
  3882   match(iRegP);
  3884   format %{ %}
  3885   interface(REG_INTER);
  3886 %}
  3888 operand o2RegP() %{
  3889   constraint(ALLOC_IN_RC(o2_regP));
  3890   match(iRegP);
  3892   format %{ %}
  3893   interface(REG_INTER);
  3894 %}
  3896 operand o7RegP() %{
  3897   constraint(ALLOC_IN_RC(o7_regP));
  3898   match(iRegP);
  3900   format %{ %}
  3901   interface(REG_INTER);
  3902 %}
  3904 operand l7RegP() %{
  3905   constraint(ALLOC_IN_RC(l7_regP));
  3906   match(iRegP);
  3908   format %{ %}
  3909   interface(REG_INTER);
  3910 %}
  3912 operand o7RegI() %{
  3913   constraint(ALLOC_IN_RC(o7_regI));
  3914   match(iRegI);
  3916   format %{ %}
  3917   interface(REG_INTER);
  3918 %}
  3920 operand iRegN() %{
  3921   constraint(ALLOC_IN_RC(int_reg));
  3922   match(RegN);
  3924   format %{ %}
  3925   interface(REG_INTER);
  3926 %}
  3928 // Long Register
  3929 operand iRegL() %{
  3930   constraint(ALLOC_IN_RC(long_reg));
  3931   match(RegL);
  3933   format %{ %}
  3934   interface(REG_INTER);
  3935 %}
  3937 operand o2RegL() %{
  3938   constraint(ALLOC_IN_RC(o2_regL));
  3939   match(iRegL);
  3941   format %{ %}
  3942   interface(REG_INTER);
  3943 %}
  3945 operand o7RegL() %{
  3946   constraint(ALLOC_IN_RC(o7_regL));
  3947   match(iRegL);
  3949   format %{ %}
  3950   interface(REG_INTER);
  3951 %}
  3953 operand g1RegL() %{
  3954   constraint(ALLOC_IN_RC(g1_regL));
  3955   match(iRegL);
  3957   format %{ %}
  3958   interface(REG_INTER);
  3959 %}
  3961 operand g3RegL() %{
  3962   constraint(ALLOC_IN_RC(g3_regL));
  3963   match(iRegL);
  3965   format %{ %}
  3966   interface(REG_INTER);
  3967 %}
  3969 // Int Register safe
  3970 // This is 64bit safe
  3971 operand iRegIsafe() %{
  3972   constraint(ALLOC_IN_RC(long_reg));
  3974   match(iRegI);
  3976   format %{ %}
  3977   interface(REG_INTER);
  3978 %}
  3980 // Condition Code Flag Register
  3981 operand flagsReg() %{
  3982   constraint(ALLOC_IN_RC(int_flags));
  3983   match(RegFlags);
  3985   format %{ "ccr" %} // both ICC and XCC
  3986   interface(REG_INTER);
  3987 %}
  3989 // Condition Code Register, unsigned comparisons.
  3990 operand flagsRegU() %{
  3991   constraint(ALLOC_IN_RC(int_flags));
  3992   match(RegFlags);
  3994   format %{ "icc_U" %}
  3995   interface(REG_INTER);
  3996 %}
  3998 // Condition Code Register, pointer comparisons.
  3999 operand flagsRegP() %{
  4000   constraint(ALLOC_IN_RC(int_flags));
  4001   match(RegFlags);
  4003 #ifdef _LP64
  4004   format %{ "xcc_P" %}
  4005 #else
  4006   format %{ "icc_P" %}
  4007 #endif
  4008   interface(REG_INTER);
  4009 %}
  4011 // Condition Code Register, long comparisons.
  4012 operand flagsRegL() %{
  4013   constraint(ALLOC_IN_RC(int_flags));
  4014   match(RegFlags);
  4016   format %{ "xcc_L" %}
  4017   interface(REG_INTER);
  4018 %}
  4020 // Condition Code Register, floating comparisons, unordered same as "less".
  4021 operand flagsRegF() %{
  4022   constraint(ALLOC_IN_RC(float_flags));
  4023   match(RegFlags);
  4024   match(flagsRegF0);
  4026   format %{ %}
  4027   interface(REG_INTER);
  4028 %}
  4030 operand flagsRegF0() %{
  4031   constraint(ALLOC_IN_RC(float_flag0));
  4032   match(RegFlags);
  4034   format %{ %}
  4035   interface(REG_INTER);
  4036 %}
  4039 // Condition Code Flag Register used by long compare
  4040 operand flagsReg_long_LTGE() %{
  4041   constraint(ALLOC_IN_RC(int_flags));
  4042   match(RegFlags);
  4043   format %{ "icc_LTGE" %}
  4044   interface(REG_INTER);
  4045 %}
  4046 operand flagsReg_long_EQNE() %{
  4047   constraint(ALLOC_IN_RC(int_flags));
  4048   match(RegFlags);
  4049   format %{ "icc_EQNE" %}
  4050   interface(REG_INTER);
  4051 %}
  4052 operand flagsReg_long_LEGT() %{
  4053   constraint(ALLOC_IN_RC(int_flags));
  4054   match(RegFlags);
  4055   format %{ "icc_LEGT" %}
  4056   interface(REG_INTER);
  4057 %}
  4060 operand regD() %{
  4061   constraint(ALLOC_IN_RC(dflt_reg));
  4062   match(RegD);
  4064   match(regD_low);
  4066   format %{ %}
  4067   interface(REG_INTER);
  4068 %}
  4070 operand regF() %{
  4071   constraint(ALLOC_IN_RC(sflt_reg));
  4072   match(RegF);
  4074   format %{ %}
  4075   interface(REG_INTER);
  4076 %}
  4078 operand regD_low() %{
  4079   constraint(ALLOC_IN_RC(dflt_low_reg));
  4080   match(regD);
  4082   format %{ %}
  4083   interface(REG_INTER);
  4084 %}
  4086 // Special Registers
  4088 // Method Register
  4089 operand inline_cache_regP(iRegP reg) %{
  4090   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4091   match(reg);
  4092   format %{ %}
  4093   interface(REG_INTER);
  4094 %}
  4096 operand interpreter_method_oop_regP(iRegP reg) %{
  4097   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4098   match(reg);
  4099   format %{ %}
  4100   interface(REG_INTER);
  4101 %}
  4104 //----------Complex Operands---------------------------------------------------
  4105 // Indirect Memory Reference
  4106 operand indirect(sp_ptr_RegP reg) %{
  4107   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4108   match(reg);
  4110   op_cost(100);
  4111   format %{ "[$reg]" %}
  4112   interface(MEMORY_INTER) %{
  4113     base($reg);
  4114     index(0x0);
  4115     scale(0x0);
  4116     disp(0x0);
  4117   %}
  4118 %}
  4120 // Indirect with simm13 Offset
  4121 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4122   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4123   match(AddP reg offset);
  4125   op_cost(100);
  4126   format %{ "[$reg + $offset]" %}
  4127   interface(MEMORY_INTER) %{
  4128     base($reg);
  4129     index(0x0);
  4130     scale(0x0);
  4131     disp($offset);
  4132   %}
  4133 %}
  4135 // Indirect with simm13 Offset minus 7
  4136 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4137   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4138   match(AddP reg offset);
  4140   op_cost(100);
  4141   format %{ "[$reg + $offset]" %}
  4142   interface(MEMORY_INTER) %{
  4143     base($reg);
  4144     index(0x0);
  4145     scale(0x0);
  4146     disp($offset);
  4147   %}
  4148 %}
  4150 // Note:  Intel has a swapped version also, like this:
  4151 //operand indOffsetX(iRegI reg, immP offset) %{
  4152 //  constraint(ALLOC_IN_RC(int_reg));
  4153 //  match(AddP offset reg);
  4154 //
  4155 //  op_cost(100);
  4156 //  format %{ "[$reg + $offset]" %}
  4157 //  interface(MEMORY_INTER) %{
  4158 //    base($reg);
  4159 //    index(0x0);
  4160 //    scale(0x0);
  4161 //    disp($offset);
  4162 //  %}
  4163 //%}
  4164 //// However, it doesn't make sense for SPARC, since
  4165 // we have no particularly good way to embed oops in
  4166 // single instructions.
  4168 // Indirect with Register Index
  4169 operand indIndex(iRegP addr, iRegX index) %{
  4170   constraint(ALLOC_IN_RC(ptr_reg));
  4171   match(AddP addr index);
  4173   op_cost(100);
  4174   format %{ "[$addr + $index]" %}
  4175   interface(MEMORY_INTER) %{
  4176     base($addr);
  4177     index($index);
  4178     scale(0x0);
  4179     disp(0x0);
  4180   %}
  4181 %}
  4183 //----------Special Memory Operands--------------------------------------------
  4184 // Stack Slot Operand - This operand is used for loading and storing temporary
  4185 //                      values on the stack where a match requires a value to
  4186 //                      flow through memory.
  4187 operand stackSlotI(sRegI reg) %{
  4188   constraint(ALLOC_IN_RC(stack_slots));
  4189   op_cost(100);
  4190   //match(RegI);
  4191   format %{ "[$reg]" %}
  4192   interface(MEMORY_INTER) %{
  4193     base(0xE);   // R_SP
  4194     index(0x0);
  4195     scale(0x0);
  4196     disp($reg);  // Stack Offset
  4197   %}
  4198 %}
  4200 operand stackSlotP(sRegP reg) %{
  4201   constraint(ALLOC_IN_RC(stack_slots));
  4202   op_cost(100);
  4203   //match(RegP);
  4204   format %{ "[$reg]" %}
  4205   interface(MEMORY_INTER) %{
  4206     base(0xE);   // R_SP
  4207     index(0x0);
  4208     scale(0x0);
  4209     disp($reg);  // Stack Offset
  4210   %}
  4211 %}
  4213 operand stackSlotF(sRegF reg) %{
  4214   constraint(ALLOC_IN_RC(stack_slots));
  4215   op_cost(100);
  4216   //match(RegF);
  4217   format %{ "[$reg]" %}
  4218   interface(MEMORY_INTER) %{
  4219     base(0xE);   // R_SP
  4220     index(0x0);
  4221     scale(0x0);
  4222     disp($reg);  // Stack Offset
  4223   %}
  4224 %}
  4225 operand stackSlotD(sRegD reg) %{
  4226   constraint(ALLOC_IN_RC(stack_slots));
  4227   op_cost(100);
  4228   //match(RegD);
  4229   format %{ "[$reg]" %}
  4230   interface(MEMORY_INTER) %{
  4231     base(0xE);   // R_SP
  4232     index(0x0);
  4233     scale(0x0);
  4234     disp($reg);  // Stack Offset
  4235   %}
  4236 %}
  4237 operand stackSlotL(sRegL reg) %{
  4238   constraint(ALLOC_IN_RC(stack_slots));
  4239   op_cost(100);
  4240   //match(RegL);
  4241   format %{ "[$reg]" %}
  4242   interface(MEMORY_INTER) %{
  4243     base(0xE);   // R_SP
  4244     index(0x0);
  4245     scale(0x0);
  4246     disp($reg);  // Stack Offset
  4247   %}
  4248 %}
  4250 // Operands for expressing Control Flow
  4251 // NOTE:  Label is a predefined operand which should not be redefined in
  4252 //        the AD file.  It is generically handled within the ADLC.
  4254 //----------Conditional Branch Operands----------------------------------------
  4255 // Comparison Op  - This is the operation of the comparison, and is limited to
  4256 //                  the following set of codes:
  4257 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4258 //
  4259 // Other attributes of the comparison, such as unsignedness, are specified
  4260 // by the comparison instruction that sets a condition code flags register.
  4261 // That result is represented by a flags operand whose subtype is appropriate
  4262 // to the unsignedness (etc.) of the comparison.
  4263 //
  4264 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4265 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4266 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4268 operand cmpOp() %{
  4269   match(Bool);
  4271   format %{ "" %}
  4272   interface(COND_INTER) %{
  4273     equal(0x1);
  4274     not_equal(0x9);
  4275     less(0x3);
  4276     greater_equal(0xB);
  4277     less_equal(0x2);
  4278     greater(0xA);
  4279     overflow(0x7);
  4280     no_overflow(0xF);
  4281   %}
  4282 %}
  4284 // Comparison Op, unsigned
  4285 operand cmpOpU() %{
  4286   match(Bool);
  4287   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4288             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4290   format %{ "u" %}
  4291   interface(COND_INTER) %{
  4292     equal(0x1);
  4293     not_equal(0x9);
  4294     less(0x5);
  4295     greater_equal(0xD);
  4296     less_equal(0x4);
  4297     greater(0xC);
  4298     overflow(0x7);
  4299     no_overflow(0xF);
  4300   %}
  4301 %}
  4303 // Comparison Op, pointer (same as unsigned)
  4304 operand cmpOpP() %{
  4305   match(Bool);
  4306   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4307             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4309   format %{ "p" %}
  4310   interface(COND_INTER) %{
  4311     equal(0x1);
  4312     not_equal(0x9);
  4313     less(0x5);
  4314     greater_equal(0xD);
  4315     less_equal(0x4);
  4316     greater(0xC);
  4317     overflow(0x7);
  4318     no_overflow(0xF);
  4319   %}
  4320 %}
  4322 // Comparison Op, branch-register encoding
  4323 operand cmpOp_reg() %{
  4324   match(Bool);
  4325   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4326             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4328   format %{ "" %}
  4329   interface(COND_INTER) %{
  4330     equal        (0x1);
  4331     not_equal    (0x5);
  4332     less         (0x3);
  4333     greater_equal(0x7);
  4334     less_equal   (0x2);
  4335     greater      (0x6);
  4336     overflow(0x7); // not supported
  4337     no_overflow(0xF); // not supported
  4338   %}
  4339 %}
  4341 // Comparison Code, floating, unordered same as less
  4342 operand cmpOpF() %{
  4343   match(Bool);
  4344   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4345             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4347   format %{ "fl" %}
  4348   interface(COND_INTER) %{
  4349     equal(0x9);
  4350     not_equal(0x1);
  4351     less(0x3);
  4352     greater_equal(0xB);
  4353     less_equal(0xE);
  4354     greater(0x6);
  4356     overflow(0x7); // not supported
  4357     no_overflow(0xF); // not supported
  4358   %}
  4359 %}
  4361 // Used by long compare
  4362 operand cmpOp_commute() %{
  4363   match(Bool);
  4364   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4365             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4367   format %{ "" %}
  4368   interface(COND_INTER) %{
  4369     equal(0x1);
  4370     not_equal(0x9);
  4371     less(0xA);
  4372     greater_equal(0x2);
  4373     less_equal(0xB);
  4374     greater(0x3);
  4375     overflow(0x7);
  4376     no_overflow(0xF);
  4377   %}
  4378 %}
  4380 //----------OPERAND CLASSES----------------------------------------------------
  4381 // Operand Classes are groups of operands that are used to simplify
  4382 // instruction definitions by not requiring the AD writer to specify separate
  4383 // instructions for every form of operand when the instruction accepts
  4384 // multiple operand types with the same basic encoding and format.  The classic
  4385 // case of this is memory operands.
  4386 opclass memory( indirect, indOffset13, indIndex );
  4387 opclass indIndexMemory( indIndex );
  4389 //----------PIPELINE-----------------------------------------------------------
  4390 pipeline %{
  4392 //----------ATTRIBUTES---------------------------------------------------------
  4393 attributes %{
  4394   fixed_size_instructions;           // Fixed size instructions
  4395   branch_has_delay_slot;             // Branch has delay slot following
  4396   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4397   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4398   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4399   instruction_fetch_units = 1;       // of 16 bytes
  4401   // List of nop instructions
  4402   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4403 %}
  4405 //----------RESOURCES----------------------------------------------------------
  4406 // Resources are the functional units available to the machine
  4407 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4409 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4410 // Pipeline Description specifies the stages in the machine's pipeline
  4412 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4414 //----------PIPELINE CLASSES---------------------------------------------------
  4415 // Pipeline Classes describe the stages in which input and output are
  4416 // referenced by the hardware pipeline.
  4418 // Integer ALU reg-reg operation
  4419 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4420     single_instruction;
  4421     dst   : E(write);
  4422     src1  : R(read);
  4423     src2  : R(read);
  4424     IALU  : R;
  4425 %}
  4427 // Integer ALU reg-reg long operation
  4428 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4429     instruction_count(2);
  4430     dst   : E(write);
  4431     src1  : R(read);
  4432     src2  : R(read);
  4433     IALU  : R;
  4434     IALU  : R;
  4435 %}
  4437 // Integer ALU reg-reg long dependent operation
  4438 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4439     instruction_count(1); multiple_bundles;
  4440     dst   : E(write);
  4441     src1  : R(read);
  4442     src2  : R(read);
  4443     cr    : E(write);
  4444     IALU  : R(2);
  4445 %}
  4447 // Integer ALU reg-imm operaion
  4448 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4449     single_instruction;
  4450     dst   : E(write);
  4451     src1  : R(read);
  4452     IALU  : R;
  4453 %}
  4455 // Integer ALU reg-reg operation with condition code
  4456 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4457     single_instruction;
  4458     dst   : E(write);
  4459     cr    : E(write);
  4460     src1  : R(read);
  4461     src2  : R(read);
  4462     IALU  : R;
  4463 %}
  4465 // Integer ALU reg-imm operation with condition code
  4466 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4467     single_instruction;
  4468     dst   : E(write);
  4469     cr    : E(write);
  4470     src1  : R(read);
  4471     IALU  : R;
  4472 %}
  4474 // Integer ALU zero-reg operation
  4475 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4476     single_instruction;
  4477     dst   : E(write);
  4478     src2  : R(read);
  4479     IALU  : R;
  4480 %}
  4482 // Integer ALU zero-reg operation with condition code only
  4483 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4484     single_instruction;
  4485     cr    : E(write);
  4486     src   : R(read);
  4487     IALU  : R;
  4488 %}
  4490 // Integer ALU reg-reg operation with condition code only
  4491 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4492     single_instruction;
  4493     cr    : E(write);
  4494     src1  : R(read);
  4495     src2  : R(read);
  4496     IALU  : R;
  4497 %}
  4499 // Integer ALU reg-imm operation with condition code only
  4500 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4501     single_instruction;
  4502     cr    : E(write);
  4503     src1  : R(read);
  4504     IALU  : R;
  4505 %}
  4507 // Integer ALU reg-reg-zero operation with condition code only
  4508 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4509     single_instruction;
  4510     cr    : E(write);
  4511     src1  : R(read);
  4512     src2  : R(read);
  4513     IALU  : R;
  4514 %}
  4516 // Integer ALU reg-imm-zero operation with condition code only
  4517 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4518     single_instruction;
  4519     cr    : E(write);
  4520     src1  : R(read);
  4521     IALU  : R;
  4522 %}
  4524 // Integer ALU reg-reg operation with condition code, src1 modified
  4525 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4526     single_instruction;
  4527     cr    : E(write);
  4528     src1  : E(write);
  4529     src1  : R(read);
  4530     src2  : R(read);
  4531     IALU  : R;
  4532 %}
  4534 // Integer ALU reg-imm operation with condition code, src1 modified
  4535 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4536     single_instruction;
  4537     cr    : E(write);
  4538     src1  : E(write);
  4539     src1  : R(read);
  4540     IALU  : R;
  4541 %}
  4543 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4544     multiple_bundles;
  4545     dst   : E(write)+4;
  4546     cr    : E(write);
  4547     src1  : R(read);
  4548     src2  : R(read);
  4549     IALU  : R(3);
  4550     BR    : R(2);
  4551 %}
  4553 // Integer ALU operation
  4554 pipe_class ialu_none(iRegI dst) %{
  4555     single_instruction;
  4556     dst   : E(write);
  4557     IALU  : R;
  4558 %}
  4560 // Integer ALU reg operation
  4561 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4562     single_instruction; may_have_no_code;
  4563     dst   : E(write);
  4564     src   : R(read);
  4565     IALU  : R;
  4566 %}
  4568 // Integer ALU reg conditional operation
  4569 // This instruction has a 1 cycle stall, and cannot execute
  4570 // in the same cycle as the instruction setting the condition
  4571 // code. We kludge this by pretending to read the condition code
  4572 // 1 cycle earlier, and by marking the functional units as busy
  4573 // for 2 cycles with the result available 1 cycle later than
  4574 // is really the case.
  4575 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4576     single_instruction;
  4577     op2_out : C(write);
  4578     op1     : R(read);
  4579     cr      : R(read);       // This is really E, with a 1 cycle stall
  4580     BR      : R(2);
  4581     MS      : R(2);
  4582 %}
  4584 #ifdef _LP64
  4585 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4586     instruction_count(1); multiple_bundles;
  4587     dst     : C(write)+1;
  4588     src     : R(read)+1;
  4589     IALU    : R(1);
  4590     BR      : E(2);
  4591     MS      : E(2);
  4592 %}
  4593 #endif
  4595 // Integer ALU reg operation
  4596 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4597     single_instruction; may_have_no_code;
  4598     dst   : E(write);
  4599     src   : R(read);
  4600     IALU  : R;
  4601 %}
  4602 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4603     single_instruction; may_have_no_code;
  4604     dst   : E(write);
  4605     src   : R(read);
  4606     IALU  : R;
  4607 %}
  4609 // Two integer ALU reg operations
  4610 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4611     instruction_count(2);
  4612     dst   : E(write);
  4613     src   : R(read);
  4614     A0    : R;
  4615     A1    : R;
  4616 %}
  4618 // Two integer ALU reg operations
  4619 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4620     instruction_count(2); may_have_no_code;
  4621     dst   : E(write);
  4622     src   : R(read);
  4623     A0    : R;
  4624     A1    : R;
  4625 %}
  4627 // Integer ALU imm operation
  4628 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4629     single_instruction;
  4630     dst   : E(write);
  4631     IALU  : R;
  4632 %}
  4634 // Integer ALU reg-reg with carry operation
  4635 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4636     single_instruction;
  4637     dst   : E(write);
  4638     src1  : R(read);
  4639     src2  : R(read);
  4640     IALU  : R;
  4641 %}
  4643 // Integer ALU cc operation
  4644 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4645     single_instruction;
  4646     dst   : E(write);
  4647     cc    : R(read);
  4648     IALU  : R;
  4649 %}
  4651 // Integer ALU cc / second IALU operation
  4652 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4653     instruction_count(1); multiple_bundles;
  4654     dst   : E(write)+1;
  4655     src   : R(read);
  4656     IALU  : R;
  4657 %}
  4659 // Integer ALU cc / second IALU operation
  4660 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4661     instruction_count(1); multiple_bundles;
  4662     dst   : E(write)+1;
  4663     p     : R(read);
  4664     q     : R(read);
  4665     IALU  : R;
  4666 %}
  4668 // Integer ALU hi-lo-reg operation
  4669 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4670     instruction_count(1); multiple_bundles;
  4671     dst   : E(write)+1;
  4672     IALU  : R(2);
  4673 %}
  4675 // Float ALU hi-lo-reg operation (with temp)
  4676 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4677     instruction_count(1); multiple_bundles;
  4678     dst   : E(write)+1;
  4679     IALU  : R(2);
  4680 %}
  4682 // Long Constant
  4683 pipe_class loadConL( iRegL dst, immL src ) %{
  4684     instruction_count(2); multiple_bundles;
  4685     dst   : E(write)+1;
  4686     IALU  : R(2);
  4687     IALU  : R(2);
  4688 %}
  4690 // Pointer Constant
  4691 pipe_class loadConP( iRegP dst, immP src ) %{
  4692     instruction_count(0); multiple_bundles;
  4693     fixed_latency(6);
  4694 %}
  4696 // Polling Address
  4697 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4698 #ifdef _LP64
  4699     instruction_count(0); multiple_bundles;
  4700     fixed_latency(6);
  4701 #else
  4702     dst   : E(write);
  4703     IALU  : R;
  4704 #endif
  4705 %}
  4707 // Long Constant small
  4708 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4709     instruction_count(2);
  4710     dst   : E(write);
  4711     IALU  : R;
  4712     IALU  : R;
  4713 %}
  4715 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4716 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4717     instruction_count(1); multiple_bundles;
  4718     src   : R(read);
  4719     dst   : M(write)+1;
  4720     IALU  : R;
  4721     MS    : E;
  4722 %}
  4724 // Integer ALU nop operation
  4725 pipe_class ialu_nop() %{
  4726     single_instruction;
  4727     IALU  : R;
  4728 %}
  4730 // Integer ALU nop operation
  4731 pipe_class ialu_nop_A0() %{
  4732     single_instruction;
  4733     A0    : R;
  4734 %}
  4736 // Integer ALU nop operation
  4737 pipe_class ialu_nop_A1() %{
  4738     single_instruction;
  4739     A1    : R;
  4740 %}
  4742 // Integer Multiply reg-reg operation
  4743 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4744     single_instruction;
  4745     dst   : E(write);
  4746     src1  : R(read);
  4747     src2  : R(read);
  4748     MS    : R(5);
  4749 %}
  4751 // Integer Multiply reg-imm operation
  4752 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4753     single_instruction;
  4754     dst   : E(write);
  4755     src1  : R(read);
  4756     MS    : R(5);
  4757 %}
  4759 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4760     single_instruction;
  4761     dst   : E(write)+4;
  4762     src1  : R(read);
  4763     src2  : R(read);
  4764     MS    : R(6);
  4765 %}
  4767 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4768     single_instruction;
  4769     dst   : E(write)+4;
  4770     src1  : R(read);
  4771     MS    : R(6);
  4772 %}
  4774 // Integer Divide reg-reg
  4775 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4776     instruction_count(1); multiple_bundles;
  4777     dst   : E(write);
  4778     temp  : E(write);
  4779     src1  : R(read);
  4780     src2  : R(read);
  4781     temp  : R(read);
  4782     MS    : R(38);
  4783 %}
  4785 // Integer Divide reg-imm
  4786 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4787     instruction_count(1); multiple_bundles;
  4788     dst   : E(write);
  4789     temp  : E(write);
  4790     src1  : R(read);
  4791     temp  : R(read);
  4792     MS    : R(38);
  4793 %}
  4795 // Long Divide
  4796 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4797     dst  : E(write)+71;
  4798     src1 : R(read);
  4799     src2 : R(read)+1;
  4800     MS   : R(70);
  4801 %}
  4803 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4804     dst  : E(write)+71;
  4805     src1 : R(read);
  4806     MS   : R(70);
  4807 %}
  4809 // Floating Point Add Float
  4810 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4811     single_instruction;
  4812     dst   : X(write);
  4813     src1  : E(read);
  4814     src2  : E(read);
  4815     FA    : R;
  4816 %}
  4818 // Floating Point Add Double
  4819 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4820     single_instruction;
  4821     dst   : X(write);
  4822     src1  : E(read);
  4823     src2  : E(read);
  4824     FA    : R;
  4825 %}
  4827 // Floating Point Conditional Move based on integer flags
  4828 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4829     single_instruction;
  4830     dst   : X(write);
  4831     src   : E(read);
  4832     cr    : R(read);
  4833     FA    : R(2);
  4834     BR    : R(2);
  4835 %}
  4837 // Floating Point Conditional Move based on integer flags
  4838 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4839     single_instruction;
  4840     dst   : X(write);
  4841     src   : E(read);
  4842     cr    : R(read);
  4843     FA    : R(2);
  4844     BR    : R(2);
  4845 %}
  4847 // Floating Point Multiply Float
  4848 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4849     single_instruction;
  4850     dst   : X(write);
  4851     src1  : E(read);
  4852     src2  : E(read);
  4853     FM    : R;
  4854 %}
  4856 // Floating Point Multiply Double
  4857 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4858     single_instruction;
  4859     dst   : X(write);
  4860     src1  : E(read);
  4861     src2  : E(read);
  4862     FM    : R;
  4863 %}
  4865 // Floating Point Divide Float
  4866 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4867     single_instruction;
  4868     dst   : X(write);
  4869     src1  : E(read);
  4870     src2  : E(read);
  4871     FM    : R;
  4872     FDIV  : C(14);
  4873 %}
  4875 // Floating Point Divide Double
  4876 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4877     single_instruction;
  4878     dst   : X(write);
  4879     src1  : E(read);
  4880     src2  : E(read);
  4881     FM    : R;
  4882     FDIV  : C(17);
  4883 %}
  4885 // Floating Point Move/Negate/Abs Float
  4886 pipe_class faddF_reg(regF dst, regF src) %{
  4887     single_instruction;
  4888     dst   : W(write);
  4889     src   : E(read);
  4890     FA    : R(1);
  4891 %}
  4893 // Floating Point Move/Negate/Abs Double
  4894 pipe_class faddD_reg(regD dst, regD src) %{
  4895     single_instruction;
  4896     dst   : W(write);
  4897     src   : E(read);
  4898     FA    : R;
  4899 %}
  4901 // Floating Point Convert F->D
  4902 pipe_class fcvtF2D(regD dst, regF src) %{
  4903     single_instruction;
  4904     dst   : X(write);
  4905     src   : E(read);
  4906     FA    : R;
  4907 %}
  4909 // Floating Point Convert I->D
  4910 pipe_class fcvtI2D(regD dst, regF src) %{
  4911     single_instruction;
  4912     dst   : X(write);
  4913     src   : E(read);
  4914     FA    : R;
  4915 %}
  4917 // Floating Point Convert LHi->D
  4918 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4919     single_instruction;
  4920     dst   : X(write);
  4921     src   : E(read);
  4922     FA    : R;
  4923 %}
  4925 // Floating Point Convert L->D
  4926 pipe_class fcvtL2D(regD dst, regF src) %{
  4927     single_instruction;
  4928     dst   : X(write);
  4929     src   : E(read);
  4930     FA    : R;
  4931 %}
  4933 // Floating Point Convert L->F
  4934 pipe_class fcvtL2F(regD dst, regF src) %{
  4935     single_instruction;
  4936     dst   : X(write);
  4937     src   : E(read);
  4938     FA    : R;
  4939 %}
  4941 // Floating Point Convert D->F
  4942 pipe_class fcvtD2F(regD dst, regF src) %{
  4943     single_instruction;
  4944     dst   : X(write);
  4945     src   : E(read);
  4946     FA    : R;
  4947 %}
  4949 // Floating Point Convert I->L
  4950 pipe_class fcvtI2L(regD dst, regF src) %{
  4951     single_instruction;
  4952     dst   : X(write);
  4953     src   : E(read);
  4954     FA    : R;
  4955 %}
  4957 // Floating Point Convert D->F
  4958 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4959     instruction_count(1); multiple_bundles;
  4960     dst   : X(write)+6;
  4961     src   : E(read);
  4962     FA    : R;
  4963 %}
  4965 // Floating Point Convert D->L
  4966 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4967     instruction_count(1); multiple_bundles;
  4968     dst   : X(write)+6;
  4969     src   : E(read);
  4970     FA    : R;
  4971 %}
  4973 // Floating Point Convert F->I
  4974 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4975     instruction_count(1); multiple_bundles;
  4976     dst   : X(write)+6;
  4977     src   : E(read);
  4978     FA    : R;
  4979 %}
  4981 // Floating Point Convert F->L
  4982 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4983     instruction_count(1); multiple_bundles;
  4984     dst   : X(write)+6;
  4985     src   : E(read);
  4986     FA    : R;
  4987 %}
  4989 // Floating Point Convert I->F
  4990 pipe_class fcvtI2F(regF dst, regF src) %{
  4991     single_instruction;
  4992     dst   : X(write);
  4993     src   : E(read);
  4994     FA    : R;
  4995 %}
  4997 // Floating Point Compare
  4998 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4999     single_instruction;
  5000     cr    : X(write);
  5001     src1  : E(read);
  5002     src2  : E(read);
  5003     FA    : R;
  5004 %}
  5006 // Floating Point Compare
  5007 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5008     single_instruction;
  5009     cr    : X(write);
  5010     src1  : E(read);
  5011     src2  : E(read);
  5012     FA    : R;
  5013 %}
  5015 // Floating Add Nop
  5016 pipe_class fadd_nop() %{
  5017     single_instruction;
  5018     FA  : R;
  5019 %}
  5021 // Integer Store to Memory
  5022 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5023     single_instruction;
  5024     mem   : R(read);
  5025     src   : C(read);
  5026     MS    : R;
  5027 %}
  5029 // Integer Store to Memory
  5030 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5031     single_instruction;
  5032     mem   : R(read);
  5033     src   : C(read);
  5034     MS    : R;
  5035 %}
  5037 // Integer Store Zero to Memory
  5038 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5039     single_instruction;
  5040     mem   : R(read);
  5041     MS    : R;
  5042 %}
  5044 // Special Stack Slot Store
  5045 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5046     single_instruction;
  5047     stkSlot : R(read);
  5048     src     : C(read);
  5049     MS      : R;
  5050 %}
  5052 // Special Stack Slot Store
  5053 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5054     instruction_count(2); multiple_bundles;
  5055     stkSlot : R(read);
  5056     src     : C(read);
  5057     MS      : R(2);
  5058 %}
  5060 // Float Store
  5061 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5062     single_instruction;
  5063     mem : R(read);
  5064     src : C(read);
  5065     MS  : R;
  5066 %}
  5068 // Float Store
  5069 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5070     single_instruction;
  5071     mem : R(read);
  5072     MS  : R;
  5073 %}
  5075 // Double Store
  5076 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5077     instruction_count(1);
  5078     mem : R(read);
  5079     src : C(read);
  5080     MS  : R;
  5081 %}
  5083 // Double Store
  5084 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5085     single_instruction;
  5086     mem : R(read);
  5087     MS  : R;
  5088 %}
  5090 // Special Stack Slot Float Store
  5091 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5092     single_instruction;
  5093     stkSlot : R(read);
  5094     src     : C(read);
  5095     MS      : R;
  5096 %}
  5098 // Special Stack Slot Double Store
  5099 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5100     single_instruction;
  5101     stkSlot : R(read);
  5102     src     : C(read);
  5103     MS      : R;
  5104 %}
  5106 // Integer Load (when sign bit propagation not needed)
  5107 pipe_class iload_mem(iRegI dst, memory mem) %{
  5108     single_instruction;
  5109     mem : R(read);
  5110     dst : C(write);
  5111     MS  : R;
  5112 %}
  5114 // Integer Load from stack operand
  5115 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5116     single_instruction;
  5117     mem : R(read);
  5118     dst : C(write);
  5119     MS  : R;
  5120 %}
  5122 // Integer Load (when sign bit propagation or masking is needed)
  5123 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5124     single_instruction;
  5125     mem : R(read);
  5126     dst : M(write);
  5127     MS  : R;
  5128 %}
  5130 // Float Load
  5131 pipe_class floadF_mem(regF dst, memory mem) %{
  5132     single_instruction;
  5133     mem : R(read);
  5134     dst : M(write);
  5135     MS  : R;
  5136 %}
  5138 // Float Load
  5139 pipe_class floadD_mem(regD dst, memory mem) %{
  5140     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5141     mem : R(read);
  5142     dst : M(write);
  5143     MS  : R;
  5144 %}
  5146 // Float Load
  5147 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5148     single_instruction;
  5149     stkSlot : R(read);
  5150     dst : M(write);
  5151     MS  : R;
  5152 %}
  5154 // Float Load
  5155 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5156     single_instruction;
  5157     stkSlot : R(read);
  5158     dst : M(write);
  5159     MS  : R;
  5160 %}
  5162 // Memory Nop
  5163 pipe_class mem_nop() %{
  5164     single_instruction;
  5165     MS  : R;
  5166 %}
  5168 pipe_class sethi(iRegP dst, immI src) %{
  5169     single_instruction;
  5170     dst  : E(write);
  5171     IALU : R;
  5172 %}
  5174 pipe_class loadPollP(iRegP poll) %{
  5175     single_instruction;
  5176     poll : R(read);
  5177     MS   : R;
  5178 %}
  5180 pipe_class br(Universe br, label labl) %{
  5181     single_instruction_with_delay_slot;
  5182     BR  : R;
  5183 %}
  5185 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5186     single_instruction_with_delay_slot;
  5187     cr    : E(read);
  5188     BR    : R;
  5189 %}
  5191 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5192     single_instruction_with_delay_slot;
  5193     op1 : E(read);
  5194     BR  : R;
  5195     MS  : R;
  5196 %}
  5198 // Compare and branch
  5199 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5200     instruction_count(2); has_delay_slot;
  5201     cr    : E(write);
  5202     src1  : R(read);
  5203     src2  : R(read);
  5204     IALU  : R;
  5205     BR    : R;
  5206 %}
  5208 // Compare and branch
  5209 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5210     instruction_count(2); has_delay_slot;
  5211     cr    : E(write);
  5212     src1  : R(read);
  5213     IALU  : R;
  5214     BR    : R;
  5215 %}
  5217 // Compare and branch using cbcond
  5218 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5219     single_instruction;
  5220     src1  : E(read);
  5221     src2  : E(read);
  5222     IALU  : R;
  5223     BR    : R;
  5224 %}
  5226 // Compare and branch using cbcond
  5227 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5228     single_instruction;
  5229     src1  : E(read);
  5230     IALU  : R;
  5231     BR    : R;
  5232 %}
  5234 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5235     single_instruction_with_delay_slot;
  5236     cr    : E(read);
  5237     BR    : R;
  5238 %}
  5240 pipe_class br_nop() %{
  5241     single_instruction;
  5242     BR  : R;
  5243 %}
  5245 pipe_class simple_call(method meth) %{
  5246     instruction_count(2); multiple_bundles; force_serialization;
  5247     fixed_latency(100);
  5248     BR  : R(1);
  5249     MS  : R(1);
  5250     A0  : R(1);
  5251 %}
  5253 pipe_class compiled_call(method meth) %{
  5254     instruction_count(1); multiple_bundles; force_serialization;
  5255     fixed_latency(100);
  5256     MS  : R(1);
  5257 %}
  5259 pipe_class call(method meth) %{
  5260     instruction_count(0); multiple_bundles; force_serialization;
  5261     fixed_latency(100);
  5262 %}
  5264 pipe_class tail_call(Universe ignore, label labl) %{
  5265     single_instruction; has_delay_slot;
  5266     fixed_latency(100);
  5267     BR  : R(1);
  5268     MS  : R(1);
  5269 %}
  5271 pipe_class ret(Universe ignore) %{
  5272     single_instruction; has_delay_slot;
  5273     BR  : R(1);
  5274     MS  : R(1);
  5275 %}
  5277 pipe_class ret_poll(g3RegP poll) %{
  5278     instruction_count(3); has_delay_slot;
  5279     poll : E(read);
  5280     MS   : R;
  5281 %}
  5283 // The real do-nothing guy
  5284 pipe_class empty( ) %{
  5285     instruction_count(0);
  5286 %}
  5288 pipe_class long_memory_op() %{
  5289     instruction_count(0); multiple_bundles; force_serialization;
  5290     fixed_latency(25);
  5291     MS  : R(1);
  5292 %}
  5294 // Check-cast
  5295 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5296     array : R(read);
  5297     match  : R(read);
  5298     IALU   : R(2);
  5299     BR     : R(2);
  5300     MS     : R;
  5301 %}
  5303 // Convert FPU flags into +1,0,-1
  5304 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5305     src1  : E(read);
  5306     src2  : E(read);
  5307     dst   : E(write);
  5308     FA    : R;
  5309     MS    : R(2);
  5310     BR    : R(2);
  5311 %}
  5313 // Compare for p < q, and conditionally add y
  5314 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5315     p     : E(read);
  5316     q     : E(read);
  5317     y     : E(read);
  5318     IALU  : R(3)
  5319 %}
  5321 // Perform a compare, then move conditionally in a branch delay slot.
  5322 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5323     src2   : E(read);
  5324     srcdst : E(read);
  5325     IALU   : R;
  5326     BR     : R;
  5327 %}
  5329 // Define the class for the Nop node
  5330 define %{
  5331    MachNop = ialu_nop;
  5332 %}
  5334 %}
  5336 //----------INSTRUCTIONS-------------------------------------------------------
  5338 //------------Special Stack Slot instructions - no match rules-----------------
  5339 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5340   // No match rule to avoid chain rule match.
  5341   effect(DEF dst, USE src);
  5342   ins_cost(MEMORY_REF_COST);
  5343   size(4);
  5344   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5345   opcode(Assembler::ldf_op3);
  5346   ins_encode(simple_form3_mem_reg(src, dst));
  5347   ins_pipe(floadF_stk);
  5348 %}
  5350 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5351   // No match rule to avoid chain rule match.
  5352   effect(DEF dst, USE src);
  5353   ins_cost(MEMORY_REF_COST);
  5354   size(4);
  5355   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5356   opcode(Assembler::lddf_op3);
  5357   ins_encode(simple_form3_mem_reg(src, dst));
  5358   ins_pipe(floadD_stk);
  5359 %}
  5361 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5362   // No match rule to avoid chain rule match.
  5363   effect(DEF dst, USE src);
  5364   ins_cost(MEMORY_REF_COST);
  5365   size(4);
  5366   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5367   opcode(Assembler::stf_op3);
  5368   ins_encode(simple_form3_mem_reg(dst, src));
  5369   ins_pipe(fstoreF_stk_reg);
  5370 %}
  5372 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5373   // No match rule to avoid chain rule match.
  5374   effect(DEF dst, USE src);
  5375   ins_cost(MEMORY_REF_COST);
  5376   size(4);
  5377   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5378   opcode(Assembler::stdf_op3);
  5379   ins_encode(simple_form3_mem_reg(dst, src));
  5380   ins_pipe(fstoreD_stk_reg);
  5381 %}
  5383 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5384   effect(DEF dst, USE src);
  5385   ins_cost(MEMORY_REF_COST*2);
  5386   size(8);
  5387   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5388             "STW    R_G0,$dst.lo" %}
  5389   opcode(Assembler::stw_op3);
  5390   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5391   ins_pipe(lstoreI_stk_reg);
  5392 %}
  5394 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5395   // No match rule to avoid chain rule match.
  5396   effect(DEF dst, USE src);
  5397   ins_cost(MEMORY_REF_COST);
  5398   size(4);
  5399   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5400   opcode(Assembler::stx_op3);
  5401   ins_encode(simple_form3_mem_reg( dst, src ) );
  5402   ins_pipe(istore_stk_reg);
  5403 %}
  5405 //---------- Chain stack slots between similar types --------
  5407 // Load integer from stack slot
  5408 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5409   match(Set dst src);
  5410   ins_cost(MEMORY_REF_COST);
  5412   size(4);
  5413   format %{ "LDUW   $src,$dst\t!stk" %}
  5414   opcode(Assembler::lduw_op3);
  5415   ins_encode(simple_form3_mem_reg( src, dst ) );
  5416   ins_pipe(iload_mem);
  5417 %}
  5419 // Store integer to stack slot
  5420 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5421   match(Set dst src);
  5422   ins_cost(MEMORY_REF_COST);
  5424   size(4);
  5425   format %{ "STW    $src,$dst\t!stk" %}
  5426   opcode(Assembler::stw_op3);
  5427   ins_encode(simple_form3_mem_reg( dst, src ) );
  5428   ins_pipe(istore_mem_reg);
  5429 %}
  5431 // Load long from stack slot
  5432 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5433   match(Set dst src);
  5435   ins_cost(MEMORY_REF_COST);
  5436   size(4);
  5437   format %{ "LDX    $src,$dst\t! long" %}
  5438   opcode(Assembler::ldx_op3);
  5439   ins_encode(simple_form3_mem_reg( src, dst ) );
  5440   ins_pipe(iload_mem);
  5441 %}
  5443 // Store long to stack slot
  5444 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5445   match(Set dst src);
  5447   ins_cost(MEMORY_REF_COST);
  5448   size(4);
  5449   format %{ "STX    $src,$dst\t! long" %}
  5450   opcode(Assembler::stx_op3);
  5451   ins_encode(simple_form3_mem_reg( dst, src ) );
  5452   ins_pipe(istore_mem_reg);
  5453 %}
  5455 #ifdef _LP64
  5456 // Load pointer from stack slot, 64-bit encoding
  5457 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5458   match(Set dst src);
  5459   ins_cost(MEMORY_REF_COST);
  5460   size(4);
  5461   format %{ "LDX    $src,$dst\t!ptr" %}
  5462   opcode(Assembler::ldx_op3);
  5463   ins_encode(simple_form3_mem_reg( src, dst ) );
  5464   ins_pipe(iload_mem);
  5465 %}
  5467 // Store pointer to stack slot
  5468 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5469   match(Set dst src);
  5470   ins_cost(MEMORY_REF_COST);
  5471   size(4);
  5472   format %{ "STX    $src,$dst\t!ptr" %}
  5473   opcode(Assembler::stx_op3);
  5474   ins_encode(simple_form3_mem_reg( dst, src ) );
  5475   ins_pipe(istore_mem_reg);
  5476 %}
  5477 #else // _LP64
  5478 // Load pointer from stack slot, 32-bit encoding
  5479 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5480   match(Set dst src);
  5481   ins_cost(MEMORY_REF_COST);
  5482   format %{ "LDUW   $src,$dst\t!ptr" %}
  5483   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5484   ins_encode(simple_form3_mem_reg( src, dst ) );
  5485   ins_pipe(iload_mem);
  5486 %}
  5488 // Store pointer to stack slot
  5489 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5490   match(Set dst src);
  5491   ins_cost(MEMORY_REF_COST);
  5492   format %{ "STW    $src,$dst\t!ptr" %}
  5493   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5494   ins_encode(simple_form3_mem_reg( dst, src ) );
  5495   ins_pipe(istore_mem_reg);
  5496 %}
  5497 #endif // _LP64
  5499 //------------Special Nop instructions for bundling - no match rules-----------
  5500 // Nop using the A0 functional unit
  5501 instruct Nop_A0() %{
  5502   ins_cost(0);
  5504   format %{ "NOP    ! Alu Pipeline" %}
  5505   opcode(Assembler::or_op3, Assembler::arith_op);
  5506   ins_encode( form2_nop() );
  5507   ins_pipe(ialu_nop_A0);
  5508 %}
  5510 // Nop using the A1 functional unit
  5511 instruct Nop_A1( ) %{
  5512   ins_cost(0);
  5514   format %{ "NOP    ! Alu Pipeline" %}
  5515   opcode(Assembler::or_op3, Assembler::arith_op);
  5516   ins_encode( form2_nop() );
  5517   ins_pipe(ialu_nop_A1);
  5518 %}
  5520 // Nop using the memory functional unit
  5521 instruct Nop_MS( ) %{
  5522   ins_cost(0);
  5524   format %{ "NOP    ! Memory Pipeline" %}
  5525   ins_encode( emit_mem_nop );
  5526   ins_pipe(mem_nop);
  5527 %}
  5529 // Nop using the floating add functional unit
  5530 instruct Nop_FA( ) %{
  5531   ins_cost(0);
  5533   format %{ "NOP    ! Floating Add Pipeline" %}
  5534   ins_encode( emit_fadd_nop );
  5535   ins_pipe(fadd_nop);
  5536 %}
  5538 // Nop using the branch functional unit
  5539 instruct Nop_BR( ) %{
  5540   ins_cost(0);
  5542   format %{ "NOP    ! Branch Pipeline" %}
  5543   ins_encode( emit_br_nop );
  5544   ins_pipe(br_nop);
  5545 %}
  5547 //----------Load/Store/Move Instructions---------------------------------------
  5548 //----------Load Instructions--------------------------------------------------
  5549 // Load Byte (8bit signed)
  5550 instruct loadB(iRegI dst, memory mem) %{
  5551   match(Set dst (LoadB mem));
  5552   ins_cost(MEMORY_REF_COST);
  5554   size(4);
  5555   format %{ "LDSB   $mem,$dst\t! byte" %}
  5556   ins_encode %{
  5557     __ ldsb($mem$$Address, $dst$$Register);
  5558   %}
  5559   ins_pipe(iload_mask_mem);
  5560 %}
  5562 // Load Byte (8bit signed) into a Long Register
  5563 instruct loadB2L(iRegL dst, memory mem) %{
  5564   match(Set dst (ConvI2L (LoadB mem)));
  5565   ins_cost(MEMORY_REF_COST);
  5567   size(4);
  5568   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5569   ins_encode %{
  5570     __ ldsb($mem$$Address, $dst$$Register);
  5571   %}
  5572   ins_pipe(iload_mask_mem);
  5573 %}
  5575 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5576 instruct loadUB(iRegI dst, memory mem) %{
  5577   match(Set dst (LoadUB mem));
  5578   ins_cost(MEMORY_REF_COST);
  5580   size(4);
  5581   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5582   ins_encode %{
  5583     __ ldub($mem$$Address, $dst$$Register);
  5584   %}
  5585   ins_pipe(iload_mem);
  5586 %}
  5588 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5589 instruct loadUB2L(iRegL dst, memory mem) %{
  5590   match(Set dst (ConvI2L (LoadUB mem)));
  5591   ins_cost(MEMORY_REF_COST);
  5593   size(4);
  5594   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5595   ins_encode %{
  5596     __ ldub($mem$$Address, $dst$$Register);
  5597   %}
  5598   ins_pipe(iload_mem);
  5599 %}
  5601 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5602 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5603   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5604   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5606   size(2*4);
  5607   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5608             "AND    $dst,$mask,$dst" %}
  5609   ins_encode %{
  5610     __ ldub($mem$$Address, $dst$$Register);
  5611     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5612   %}
  5613   ins_pipe(iload_mem);
  5614 %}
  5616 // Load Short (16bit signed)
  5617 instruct loadS(iRegI dst, memory mem) %{
  5618   match(Set dst (LoadS mem));
  5619   ins_cost(MEMORY_REF_COST);
  5621   size(4);
  5622   format %{ "LDSH   $mem,$dst\t! short" %}
  5623   ins_encode %{
  5624     __ ldsh($mem$$Address, $dst$$Register);
  5625   %}
  5626   ins_pipe(iload_mask_mem);
  5627 %}
  5629 // Load Short (16 bit signed) to Byte (8 bit signed)
  5630 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5631   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5632   ins_cost(MEMORY_REF_COST);
  5634   size(4);
  5636   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5637   ins_encode %{
  5638     __ ldsb($mem$$Address, $dst$$Register, 1);
  5639   %}
  5640   ins_pipe(iload_mask_mem);
  5641 %}
  5643 // Load Short (16bit signed) into a Long Register
  5644 instruct loadS2L(iRegL dst, memory mem) %{
  5645   match(Set dst (ConvI2L (LoadS mem)));
  5646   ins_cost(MEMORY_REF_COST);
  5648   size(4);
  5649   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5650   ins_encode %{
  5651     __ ldsh($mem$$Address, $dst$$Register);
  5652   %}
  5653   ins_pipe(iload_mask_mem);
  5654 %}
  5656 // Load Unsigned Short/Char (16bit UNsigned)
  5657 instruct loadUS(iRegI dst, memory mem) %{
  5658   match(Set dst (LoadUS mem));
  5659   ins_cost(MEMORY_REF_COST);
  5661   size(4);
  5662   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5663   ins_encode %{
  5664     __ lduh($mem$$Address, $dst$$Register);
  5665   %}
  5666   ins_pipe(iload_mem);
  5667 %}
  5669 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5670 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5671   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5672   ins_cost(MEMORY_REF_COST);
  5674   size(4);
  5675   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5676   ins_encode %{
  5677     __ ldsb($mem$$Address, $dst$$Register, 1);
  5678   %}
  5679   ins_pipe(iload_mask_mem);
  5680 %}
  5682 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5683 instruct loadUS2L(iRegL dst, memory mem) %{
  5684   match(Set dst (ConvI2L (LoadUS mem)));
  5685   ins_cost(MEMORY_REF_COST);
  5687   size(4);
  5688   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5689   ins_encode %{
  5690     __ lduh($mem$$Address, $dst$$Register);
  5691   %}
  5692   ins_pipe(iload_mem);
  5693 %}
  5695 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5696 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5697   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5698   ins_cost(MEMORY_REF_COST);
  5700   size(4);
  5701   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5702   ins_encode %{
  5703     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5704   %}
  5705   ins_pipe(iload_mem);
  5706 %}
  5708 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5709 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5710   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5711   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5713   size(2*4);
  5714   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5715             "AND    $dst,$mask,$dst" %}
  5716   ins_encode %{
  5717     Register Rdst = $dst$$Register;
  5718     __ lduh($mem$$Address, Rdst);
  5719     __ and3(Rdst, $mask$$constant, Rdst);
  5720   %}
  5721   ins_pipe(iload_mem);
  5722 %}
  5724 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5725 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5726   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5727   effect(TEMP dst, TEMP tmp);
  5728   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5730   size((3+1)*4);  // set may use two instructions.
  5731   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5732             "SET    $mask,$tmp\n\t"
  5733             "AND    $dst,$tmp,$dst" %}
  5734   ins_encode %{
  5735     Register Rdst = $dst$$Register;
  5736     Register Rtmp = $tmp$$Register;
  5737     __ lduh($mem$$Address, Rdst);
  5738     __ set($mask$$constant, Rtmp);
  5739     __ and3(Rdst, Rtmp, Rdst);
  5740   %}
  5741   ins_pipe(iload_mem);
  5742 %}
  5744 // Load Integer
  5745 instruct loadI(iRegI dst, memory mem) %{
  5746   match(Set dst (LoadI mem));
  5747   ins_cost(MEMORY_REF_COST);
  5749   size(4);
  5750   format %{ "LDUW   $mem,$dst\t! int" %}
  5751   ins_encode %{
  5752     __ lduw($mem$$Address, $dst$$Register);
  5753   %}
  5754   ins_pipe(iload_mem);
  5755 %}
  5757 // Load Integer to Byte (8 bit signed)
  5758 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5759   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5760   ins_cost(MEMORY_REF_COST);
  5762   size(4);
  5764   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5765   ins_encode %{
  5766     __ ldsb($mem$$Address, $dst$$Register, 3);
  5767   %}
  5768   ins_pipe(iload_mask_mem);
  5769 %}
  5771 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5772 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5773   match(Set dst (AndI (LoadI mem) mask));
  5774   ins_cost(MEMORY_REF_COST);
  5776   size(4);
  5778   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5779   ins_encode %{
  5780     __ ldub($mem$$Address, $dst$$Register, 3);
  5781   %}
  5782   ins_pipe(iload_mask_mem);
  5783 %}
  5785 // Load Integer to Short (16 bit signed)
  5786 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5787   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5788   ins_cost(MEMORY_REF_COST);
  5790   size(4);
  5792   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5793   ins_encode %{
  5794     __ ldsh($mem$$Address, $dst$$Register, 2);
  5795   %}
  5796   ins_pipe(iload_mask_mem);
  5797 %}
  5799 // Load Integer to Unsigned Short (16 bit UNsigned)
  5800 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5801   match(Set dst (AndI (LoadI mem) mask));
  5802   ins_cost(MEMORY_REF_COST);
  5804   size(4);
  5806   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5807   ins_encode %{
  5808     __ lduh($mem$$Address, $dst$$Register, 2);
  5809   %}
  5810   ins_pipe(iload_mask_mem);
  5811 %}
  5813 // Load Integer into a Long Register
  5814 instruct loadI2L(iRegL dst, memory mem) %{
  5815   match(Set dst (ConvI2L (LoadI mem)));
  5816   ins_cost(MEMORY_REF_COST);
  5818   size(4);
  5819   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5820   ins_encode %{
  5821     __ ldsw($mem$$Address, $dst$$Register);
  5822   %}
  5823   ins_pipe(iload_mask_mem);
  5824 %}
  5826 // Load Integer with mask 0xFF into a Long Register
  5827 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5828   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5829   ins_cost(MEMORY_REF_COST);
  5831   size(4);
  5832   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5833   ins_encode %{
  5834     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5835   %}
  5836   ins_pipe(iload_mem);
  5837 %}
  5839 // Load Integer with mask 0xFFFF into a Long Register
  5840 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5841   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5842   ins_cost(MEMORY_REF_COST);
  5844   size(4);
  5845   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5846   ins_encode %{
  5847     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5848   %}
  5849   ins_pipe(iload_mem);
  5850 %}
  5852 // Load Integer with a 13-bit mask into a Long Register
  5853 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5854   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5855   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5857   size(2*4);
  5858   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5859             "AND    $dst,$mask,$dst" %}
  5860   ins_encode %{
  5861     Register Rdst = $dst$$Register;
  5862     __ lduw($mem$$Address, Rdst);
  5863     __ and3(Rdst, $mask$$constant, Rdst);
  5864   %}
  5865   ins_pipe(iload_mem);
  5866 %}
  5868 // Load Integer with a 32-bit mask into a Long Register
  5869 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5870   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5871   effect(TEMP dst, TEMP tmp);
  5872   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5874   size((3+1)*4);  // set may use two instructions.
  5875   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5876             "SET    $mask,$tmp\n\t"
  5877             "AND    $dst,$tmp,$dst" %}
  5878   ins_encode %{
  5879     Register Rdst = $dst$$Register;
  5880     Register Rtmp = $tmp$$Register;
  5881     __ lduw($mem$$Address, Rdst);
  5882     __ set($mask$$constant, Rtmp);
  5883     __ and3(Rdst, Rtmp, Rdst);
  5884   %}
  5885   ins_pipe(iload_mem);
  5886 %}
  5888 // Load Unsigned Integer into a Long Register
  5889 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5890   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5891   ins_cost(MEMORY_REF_COST);
  5893   size(4);
  5894   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5895   ins_encode %{
  5896     __ lduw($mem$$Address, $dst$$Register);
  5897   %}
  5898   ins_pipe(iload_mem);
  5899 %}
  5901 // Load Long - aligned
  5902 instruct loadL(iRegL dst, memory mem ) %{
  5903   match(Set dst (LoadL mem));
  5904   ins_cost(MEMORY_REF_COST);
  5906   size(4);
  5907   format %{ "LDX    $mem,$dst\t! long" %}
  5908   ins_encode %{
  5909     __ ldx($mem$$Address, $dst$$Register);
  5910   %}
  5911   ins_pipe(iload_mem);
  5912 %}
  5914 // Load Long - UNaligned
  5915 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5916   match(Set dst (LoadL_unaligned mem));
  5917   effect(KILL tmp);
  5918   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5919   size(16);
  5920   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5921           "\tLDUW   $mem  ,$dst\n"
  5922           "\tSLLX   #32, $dst, $dst\n"
  5923           "\tOR     $dst, R_O7, $dst" %}
  5924   opcode(Assembler::lduw_op3);
  5925   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5926   ins_pipe(iload_mem);
  5927 %}
  5929 // Load Range
  5930 instruct loadRange(iRegI dst, memory mem) %{
  5931   match(Set dst (LoadRange mem));
  5932   ins_cost(MEMORY_REF_COST);
  5934   size(4);
  5935   format %{ "LDUW   $mem,$dst\t! range" %}
  5936   opcode(Assembler::lduw_op3);
  5937   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5938   ins_pipe(iload_mem);
  5939 %}
  5941 // Load Integer into %f register (for fitos/fitod)
  5942 instruct loadI_freg(regF dst, memory mem) %{
  5943   match(Set dst (LoadI mem));
  5944   ins_cost(MEMORY_REF_COST);
  5945   size(4);
  5947   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5948   opcode(Assembler::ldf_op3);
  5949   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5950   ins_pipe(floadF_mem);
  5951 %}
  5953 // Load Pointer
  5954 instruct loadP(iRegP dst, memory mem) %{
  5955   match(Set dst (LoadP mem));
  5956   ins_cost(MEMORY_REF_COST);
  5957   size(4);
  5959 #ifndef _LP64
  5960   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5961   ins_encode %{
  5962     __ lduw($mem$$Address, $dst$$Register);
  5963   %}
  5964 #else
  5965   format %{ "LDX    $mem,$dst\t! ptr" %}
  5966   ins_encode %{
  5967     __ ldx($mem$$Address, $dst$$Register);
  5968   %}
  5969 #endif
  5970   ins_pipe(iload_mem);
  5971 %}
  5973 // Load Compressed Pointer
  5974 instruct loadN(iRegN dst, memory mem) %{
  5975   match(Set dst (LoadN mem));
  5976   ins_cost(MEMORY_REF_COST);
  5977   size(4);
  5979   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5980   ins_encode %{
  5981     __ lduw($mem$$Address, $dst$$Register);
  5982   %}
  5983   ins_pipe(iload_mem);
  5984 %}
  5986 // Load Klass Pointer
  5987 instruct loadKlass(iRegP dst, memory mem) %{
  5988   match(Set dst (LoadKlass mem));
  5989   ins_cost(MEMORY_REF_COST);
  5990   size(4);
  5992 #ifndef _LP64
  5993   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5994   ins_encode %{
  5995     __ lduw($mem$$Address, $dst$$Register);
  5996   %}
  5997 #else
  5998   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5999   ins_encode %{
  6000     __ ldx($mem$$Address, $dst$$Register);
  6001   %}
  6002 #endif
  6003   ins_pipe(iload_mem);
  6004 %}
  6006 // Load narrow Klass Pointer
  6007 instruct loadNKlass(iRegN dst, memory mem) %{
  6008   match(Set dst (LoadNKlass mem));
  6009   ins_cost(MEMORY_REF_COST);
  6010   size(4);
  6012   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6013   ins_encode %{
  6014     __ lduw($mem$$Address, $dst$$Register);
  6015   %}
  6016   ins_pipe(iload_mem);
  6017 %}
  6019 // Load Double
  6020 instruct loadD(regD dst, memory mem) %{
  6021   match(Set dst (LoadD mem));
  6022   ins_cost(MEMORY_REF_COST);
  6024   size(4);
  6025   format %{ "LDDF   $mem,$dst" %}
  6026   opcode(Assembler::lddf_op3);
  6027   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6028   ins_pipe(floadD_mem);
  6029 %}
  6031 // Load Double - UNaligned
  6032 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6033   match(Set dst (LoadD_unaligned mem));
  6034   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6035   size(8);
  6036   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6037           "\tLDF    $mem+4,$dst.lo\t!" %}
  6038   opcode(Assembler::ldf_op3);
  6039   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6040   ins_pipe(iload_mem);
  6041 %}
  6043 // Load Float
  6044 instruct loadF(regF dst, memory mem) %{
  6045   match(Set dst (LoadF mem));
  6046   ins_cost(MEMORY_REF_COST);
  6048   size(4);
  6049   format %{ "LDF    $mem,$dst" %}
  6050   opcode(Assembler::ldf_op3);
  6051   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6052   ins_pipe(floadF_mem);
  6053 %}
  6055 // Load Constant
  6056 instruct loadConI( iRegI dst, immI src ) %{
  6057   match(Set dst src);
  6058   ins_cost(DEFAULT_COST * 3/2);
  6059   format %{ "SET    $src,$dst" %}
  6060   ins_encode( Set32(src, dst) );
  6061   ins_pipe(ialu_hi_lo_reg);
  6062 %}
  6064 instruct loadConI13( iRegI dst, immI13 src ) %{
  6065   match(Set dst src);
  6067   size(4);
  6068   format %{ "MOV    $src,$dst" %}
  6069   ins_encode( Set13( src, dst ) );
  6070   ins_pipe(ialu_imm);
  6071 %}
  6073 #ifndef _LP64
  6074 instruct loadConP(iRegP dst, immP con) %{
  6075   match(Set dst con);
  6076   ins_cost(DEFAULT_COST * 3/2);
  6077   format %{ "SET    $con,$dst\t!ptr" %}
  6078   ins_encode %{
  6079     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6080       intptr_t val = $con$$constant;
  6081     if (constant_reloc == relocInfo::oop_type) {
  6082       __ set_oop_constant((jobject) val, $dst$$Register);
  6083     } else if (constant_reloc == relocInfo::metadata_type) {
  6084       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6085     } else {          // non-oop pointers, e.g. card mark base, heap top
  6086       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6087       __ set(val, $dst$$Register);
  6089   %}
  6090   ins_pipe(loadConP);
  6091 %}
  6092 #else
  6093 instruct loadConP_set(iRegP dst, immP_set con) %{
  6094   match(Set dst con);
  6095   ins_cost(DEFAULT_COST * 3/2);
  6096   format %{ "SET    $con,$dst\t! ptr" %}
  6097   ins_encode %{
  6098     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6099       intptr_t val = $con$$constant;
  6100     if (constant_reloc == relocInfo::oop_type) {
  6101       __ set_oop_constant((jobject) val, $dst$$Register);
  6102     } else if (constant_reloc == relocInfo::metadata_type) {
  6103       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6104     } else {          // non-oop pointers, e.g. card mark base, heap top
  6105       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6106       __ set(val, $dst$$Register);
  6108   %}
  6109   ins_pipe(loadConP);
  6110 %}
  6112 instruct loadConP_load(iRegP dst, immP_load con) %{
  6113   match(Set dst con);
  6114   ins_cost(MEMORY_REF_COST);
  6115   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6116   ins_encode %{
  6117     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6118     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6119   %}
  6120   ins_pipe(loadConP);
  6121 %}
  6123 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6124   match(Set dst con);
  6125   ins_cost(DEFAULT_COST * 3/2);
  6126   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6127   ins_encode %{
  6128     __ set($con$$constant, $dst$$Register);
  6129   %}
  6130   ins_pipe(loadConP);
  6131 %}
  6132 #endif // _LP64
  6134 instruct loadConP0(iRegP dst, immP0 src) %{
  6135   match(Set dst src);
  6137   size(4);
  6138   format %{ "CLR    $dst\t!ptr" %}
  6139   ins_encode %{
  6140     __ clr($dst$$Register);
  6141   %}
  6142   ins_pipe(ialu_imm);
  6143 %}
  6145 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6146   match(Set dst src);
  6147   ins_cost(DEFAULT_COST);
  6148   format %{ "SET    $src,$dst\t!ptr" %}
  6149   ins_encode %{
  6150     AddressLiteral polling_page(os::get_polling_page());
  6151     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6152   %}
  6153   ins_pipe(loadConP_poll);
  6154 %}
  6156 instruct loadConN0(iRegN dst, immN0 src) %{
  6157   match(Set dst src);
  6159   size(4);
  6160   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6161   ins_encode %{
  6162     __ clr($dst$$Register);
  6163   %}
  6164   ins_pipe(ialu_imm);
  6165 %}
  6167 instruct loadConN(iRegN dst, immN src) %{
  6168   match(Set dst src);
  6169   ins_cost(DEFAULT_COST * 3/2);
  6170   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6171   ins_encode %{
  6172     Register dst = $dst$$Register;
  6173     __ set_narrow_oop((jobject)$src$$constant, dst);
  6174   %}
  6175   ins_pipe(ialu_hi_lo_reg);
  6176 %}
  6178 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6179   match(Set dst src);
  6180   ins_cost(DEFAULT_COST * 3/2);
  6181   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6182   ins_encode %{
  6183     Register dst = $dst$$Register;
  6184     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6185   %}
  6186   ins_pipe(ialu_hi_lo_reg);
  6187 %}
  6189 // Materialize long value (predicated by immL_cheap).
  6190 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6191   match(Set dst con);
  6192   effect(KILL tmp);
  6193   ins_cost(DEFAULT_COST * 3);
  6194   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6195   ins_encode %{
  6196     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6197   %}
  6198   ins_pipe(loadConL);
  6199 %}
  6201 // Load long value from constant table (predicated by immL_expensive).
  6202 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6203   match(Set dst con);
  6204   ins_cost(MEMORY_REF_COST);
  6205   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6206   ins_encode %{
  6207       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6208     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6209   %}
  6210   ins_pipe(loadConL);
  6211 %}
  6213 instruct loadConL0( iRegL dst, immL0 src ) %{
  6214   match(Set dst src);
  6215   ins_cost(DEFAULT_COST);
  6216   size(4);
  6217   format %{ "CLR    $dst\t! long" %}
  6218   ins_encode( Set13( src, dst ) );
  6219   ins_pipe(ialu_imm);
  6220 %}
  6222 instruct loadConL13( iRegL dst, immL13 src ) %{
  6223   match(Set dst src);
  6224   ins_cost(DEFAULT_COST * 2);
  6226   size(4);
  6227   format %{ "MOV    $src,$dst\t! long" %}
  6228   ins_encode( Set13( src, dst ) );
  6229   ins_pipe(ialu_imm);
  6230 %}
  6232 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6233   match(Set dst con);
  6234   effect(KILL tmp);
  6235   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6236   ins_encode %{
  6237       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6238     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6239   %}
  6240   ins_pipe(loadConFD);
  6241 %}
  6243 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6244   match(Set dst con);
  6245   effect(KILL tmp);
  6246   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6247   ins_encode %{
  6248     // XXX This is a quick fix for 6833573.
  6249     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6250     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6251     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6252   %}
  6253   ins_pipe(loadConFD);
  6254 %}
  6256 // Prefetch instructions.
  6257 // Must be safe to execute with invalid address (cannot fault).
  6259 instruct prefetchr( memory mem ) %{
  6260   match( PrefetchRead mem );
  6261   ins_cost(MEMORY_REF_COST);
  6262   size(4);
  6264   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6265   opcode(Assembler::prefetch_op3);
  6266   ins_encode( form3_mem_prefetch_read( mem ) );
  6267   ins_pipe(iload_mem);
  6268 %}
  6270 instruct prefetchw( memory mem ) %{
  6271   match( PrefetchWrite mem );
  6272   ins_cost(MEMORY_REF_COST);
  6273   size(4);
  6275   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6276   opcode(Assembler::prefetch_op3);
  6277   ins_encode( form3_mem_prefetch_write( mem ) );
  6278   ins_pipe(iload_mem);
  6279 %}
  6281 // Prefetch instructions for allocation.
  6283 instruct prefetchAlloc( memory mem ) %{
  6284   predicate(AllocatePrefetchInstr == 0);
  6285   match( PrefetchAllocation mem );
  6286   ins_cost(MEMORY_REF_COST);
  6287   size(4);
  6289   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6290   opcode(Assembler::prefetch_op3);
  6291   ins_encode( form3_mem_prefetch_write( mem ) );
  6292   ins_pipe(iload_mem);
  6293 %}
  6295 // Use BIS instruction to prefetch for allocation.
  6296 // Could fault, need space at the end of TLAB.
  6297 instruct prefetchAlloc_bis( iRegP dst ) %{
  6298   predicate(AllocatePrefetchInstr == 1);
  6299   match( PrefetchAllocation dst );
  6300   ins_cost(MEMORY_REF_COST);
  6301   size(4);
  6303   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6304   ins_encode %{
  6305     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6306   %}
  6307   ins_pipe(istore_mem_reg);
  6308 %}
  6310 // Next code is used for finding next cache line address to prefetch.
  6311 #ifndef _LP64
  6312 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6313   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6314   ins_cost(DEFAULT_COST);
  6315   size(4);
  6317   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6318   ins_encode %{
  6319     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6320   %}
  6321   ins_pipe(ialu_reg_imm);
  6322 %}
  6323 #else
  6324 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6325   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6326   ins_cost(DEFAULT_COST);
  6327   size(4);
  6329   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6330   ins_encode %{
  6331     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6332   %}
  6333   ins_pipe(ialu_reg_imm);
  6334 %}
  6335 #endif
  6337 //----------Store Instructions-------------------------------------------------
  6338 // Store Byte
  6339 instruct storeB(memory mem, iRegI src) %{
  6340   match(Set mem (StoreB mem src));
  6341   ins_cost(MEMORY_REF_COST);
  6343   size(4);
  6344   format %{ "STB    $src,$mem\t! byte" %}
  6345   opcode(Assembler::stb_op3);
  6346   ins_encode(simple_form3_mem_reg( mem, src ) );
  6347   ins_pipe(istore_mem_reg);
  6348 %}
  6350 instruct storeB0(memory mem, immI0 src) %{
  6351   match(Set mem (StoreB mem src));
  6352   ins_cost(MEMORY_REF_COST);
  6354   size(4);
  6355   format %{ "STB    $src,$mem\t! byte" %}
  6356   opcode(Assembler::stb_op3);
  6357   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6358   ins_pipe(istore_mem_zero);
  6359 %}
  6361 instruct storeCM0(memory mem, immI0 src) %{
  6362   match(Set mem (StoreCM mem src));
  6363   ins_cost(MEMORY_REF_COST);
  6365   size(4);
  6366   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6367   opcode(Assembler::stb_op3);
  6368   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6369   ins_pipe(istore_mem_zero);
  6370 %}
  6372 // Store Char/Short
  6373 instruct storeC(memory mem, iRegI src) %{
  6374   match(Set mem (StoreC mem src));
  6375   ins_cost(MEMORY_REF_COST);
  6377   size(4);
  6378   format %{ "STH    $src,$mem\t! short" %}
  6379   opcode(Assembler::sth_op3);
  6380   ins_encode(simple_form3_mem_reg( mem, src ) );
  6381   ins_pipe(istore_mem_reg);
  6382 %}
  6384 instruct storeC0(memory mem, immI0 src) %{
  6385   match(Set mem (StoreC mem src));
  6386   ins_cost(MEMORY_REF_COST);
  6388   size(4);
  6389   format %{ "STH    $src,$mem\t! short" %}
  6390   opcode(Assembler::sth_op3);
  6391   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6392   ins_pipe(istore_mem_zero);
  6393 %}
  6395 // Store Integer
  6396 instruct storeI(memory mem, iRegI src) %{
  6397   match(Set mem (StoreI mem src));
  6398   ins_cost(MEMORY_REF_COST);
  6400   size(4);
  6401   format %{ "STW    $src,$mem" %}
  6402   opcode(Assembler::stw_op3);
  6403   ins_encode(simple_form3_mem_reg( mem, src ) );
  6404   ins_pipe(istore_mem_reg);
  6405 %}
  6407 // Store Long
  6408 instruct storeL(memory mem, iRegL src) %{
  6409   match(Set mem (StoreL mem src));
  6410   ins_cost(MEMORY_REF_COST);
  6411   size(4);
  6412   format %{ "STX    $src,$mem\t! long" %}
  6413   opcode(Assembler::stx_op3);
  6414   ins_encode(simple_form3_mem_reg( mem, src ) );
  6415   ins_pipe(istore_mem_reg);
  6416 %}
  6418 instruct storeI0(memory mem, immI0 src) %{
  6419   match(Set mem (StoreI mem src));
  6420   ins_cost(MEMORY_REF_COST);
  6422   size(4);
  6423   format %{ "STW    $src,$mem" %}
  6424   opcode(Assembler::stw_op3);
  6425   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6426   ins_pipe(istore_mem_zero);
  6427 %}
  6429 instruct storeL0(memory mem, immL0 src) %{
  6430   match(Set mem (StoreL mem src));
  6431   ins_cost(MEMORY_REF_COST);
  6433   size(4);
  6434   format %{ "STX    $src,$mem" %}
  6435   opcode(Assembler::stx_op3);
  6436   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6437   ins_pipe(istore_mem_zero);
  6438 %}
  6440 // Store Integer from float register (used after fstoi)
  6441 instruct storeI_Freg(memory mem, regF src) %{
  6442   match(Set mem (StoreI mem src));
  6443   ins_cost(MEMORY_REF_COST);
  6445   size(4);
  6446   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6447   opcode(Assembler::stf_op3);
  6448   ins_encode(simple_form3_mem_reg( mem, src ) );
  6449   ins_pipe(fstoreF_mem_reg);
  6450 %}
  6452 // Store Pointer
  6453 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6454   match(Set dst (StoreP dst src));
  6455   ins_cost(MEMORY_REF_COST);
  6456   size(4);
  6458 #ifndef _LP64
  6459   format %{ "STW    $src,$dst\t! ptr" %}
  6460   opcode(Assembler::stw_op3, 0, REGP_OP);
  6461 #else
  6462   format %{ "STX    $src,$dst\t! ptr" %}
  6463   opcode(Assembler::stx_op3, 0, REGP_OP);
  6464 #endif
  6465   ins_encode( form3_mem_reg( dst, src ) );
  6466   ins_pipe(istore_mem_spORreg);
  6467 %}
  6469 instruct storeP0(memory dst, immP0 src) %{
  6470   match(Set dst (StoreP dst src));
  6471   ins_cost(MEMORY_REF_COST);
  6472   size(4);
  6474 #ifndef _LP64
  6475   format %{ "STW    $src,$dst\t! ptr" %}
  6476   opcode(Assembler::stw_op3, 0, REGP_OP);
  6477 #else
  6478   format %{ "STX    $src,$dst\t! ptr" %}
  6479   opcode(Assembler::stx_op3, 0, REGP_OP);
  6480 #endif
  6481   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6482   ins_pipe(istore_mem_zero);
  6483 %}
  6485 // Store Compressed Pointer
  6486 instruct storeN(memory dst, iRegN src) %{
  6487    match(Set dst (StoreN dst src));
  6488    ins_cost(MEMORY_REF_COST);
  6489    size(4);
  6491    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6492    ins_encode %{
  6493      Register base = as_Register($dst$$base);
  6494      Register index = as_Register($dst$$index);
  6495      Register src = $src$$Register;
  6496      if (index != G0) {
  6497        __ stw(src, base, index);
  6498      } else {
  6499        __ stw(src, base, $dst$$disp);
  6501    %}
  6502    ins_pipe(istore_mem_spORreg);
  6503 %}
  6505 instruct storeNKlass(memory dst, iRegN src) %{
  6506    match(Set dst (StoreNKlass dst src));
  6507    ins_cost(MEMORY_REF_COST);
  6508    size(4);
  6510    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6511    ins_encode %{
  6512      Register base = as_Register($dst$$base);
  6513      Register index = as_Register($dst$$index);
  6514      Register src = $src$$Register;
  6515      if (index != G0) {
  6516        __ stw(src, base, index);
  6517      } else {
  6518        __ stw(src, base, $dst$$disp);
  6520    %}
  6521    ins_pipe(istore_mem_spORreg);
  6522 %}
  6524 instruct storeN0(memory dst, immN0 src) %{
  6525    match(Set dst (StoreN dst src));
  6526    ins_cost(MEMORY_REF_COST);
  6527    size(4);
  6529    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6530    ins_encode %{
  6531      Register base = as_Register($dst$$base);
  6532      Register index = as_Register($dst$$index);
  6533      if (index != G0) {
  6534        __ stw(0, base, index);
  6535      } else {
  6536        __ stw(0, base, $dst$$disp);
  6538    %}
  6539    ins_pipe(istore_mem_zero);
  6540 %}
  6542 // Store Double
  6543 instruct storeD( memory mem, regD src) %{
  6544   match(Set mem (StoreD mem src));
  6545   ins_cost(MEMORY_REF_COST);
  6547   size(4);
  6548   format %{ "STDF   $src,$mem" %}
  6549   opcode(Assembler::stdf_op3);
  6550   ins_encode(simple_form3_mem_reg( mem, src ) );
  6551   ins_pipe(fstoreD_mem_reg);
  6552 %}
  6554 instruct storeD0( memory mem, immD0 src) %{
  6555   match(Set mem (StoreD mem src));
  6556   ins_cost(MEMORY_REF_COST);
  6558   size(4);
  6559   format %{ "STX    $src,$mem" %}
  6560   opcode(Assembler::stx_op3);
  6561   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6562   ins_pipe(fstoreD_mem_zero);
  6563 %}
  6565 // Store Float
  6566 instruct storeF( memory mem, regF src) %{
  6567   match(Set mem (StoreF mem src));
  6568   ins_cost(MEMORY_REF_COST);
  6570   size(4);
  6571   format %{ "STF    $src,$mem" %}
  6572   opcode(Assembler::stf_op3);
  6573   ins_encode(simple_form3_mem_reg( mem, src ) );
  6574   ins_pipe(fstoreF_mem_reg);
  6575 %}
  6577 instruct storeF0( memory mem, immF0 src) %{
  6578   match(Set mem (StoreF mem src));
  6579   ins_cost(MEMORY_REF_COST);
  6581   size(4);
  6582   format %{ "STW    $src,$mem\t! storeF0" %}
  6583   opcode(Assembler::stw_op3);
  6584   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6585   ins_pipe(fstoreF_mem_zero);
  6586 %}
  6588 // Convert oop pointer into compressed form
  6589 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6590   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6591   match(Set dst (EncodeP src));
  6592   format %{ "encode_heap_oop $src, $dst" %}
  6593   ins_encode %{
  6594     __ encode_heap_oop($src$$Register, $dst$$Register);
  6595   %}
  6596   ins_pipe(ialu_reg);
  6597 %}
  6599 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6600   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6601   match(Set dst (EncodeP src));
  6602   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6603   ins_encode %{
  6604     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6605   %}
  6606   ins_pipe(ialu_reg);
  6607 %}
  6609 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6610   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6611             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6612   match(Set dst (DecodeN src));
  6613   format %{ "decode_heap_oop $src, $dst" %}
  6614   ins_encode %{
  6615     __ decode_heap_oop($src$$Register, $dst$$Register);
  6616   %}
  6617   ins_pipe(ialu_reg);
  6618 %}
  6620 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6621   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6622             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6623   match(Set dst (DecodeN src));
  6624   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6625   ins_encode %{
  6626     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6627   %}
  6628   ins_pipe(ialu_reg);
  6629 %}
  6631 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6632   match(Set dst (EncodePKlass src));
  6633   format %{ "encode_klass_not_null $src, $dst" %}
  6634   ins_encode %{
  6635     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6636   %}
  6637   ins_pipe(ialu_reg);
  6638 %}
  6640 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6641   match(Set dst (DecodeNKlass src));
  6642   format %{ "decode_klass_not_null $src, $dst" %}
  6643   ins_encode %{
  6644     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6645   %}
  6646   ins_pipe(ialu_reg);
  6647 %}
  6649 //----------MemBar Instructions-----------------------------------------------
  6650 // Memory barrier flavors
  6652 instruct membar_acquire() %{
  6653   match(MemBarAcquire);
  6654   match(LoadFence);
  6655   ins_cost(4*MEMORY_REF_COST);
  6657   size(0);
  6658   format %{ "MEMBAR-acquire" %}
  6659   ins_encode( enc_membar_acquire );
  6660   ins_pipe(long_memory_op);
  6661 %}
  6663 instruct membar_acquire_lock() %{
  6664   match(MemBarAcquireLock);
  6665   ins_cost(0);
  6667   size(0);
  6668   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6669   ins_encode( );
  6670   ins_pipe(empty);
  6671 %}
  6673 instruct membar_release() %{
  6674   match(MemBarRelease);
  6675   match(StoreFence);
  6676   ins_cost(4*MEMORY_REF_COST);
  6678   size(0);
  6679   format %{ "MEMBAR-release" %}
  6680   ins_encode( enc_membar_release );
  6681   ins_pipe(long_memory_op);
  6682 %}
  6684 instruct membar_release_lock() %{
  6685   match(MemBarReleaseLock);
  6686   ins_cost(0);
  6688   size(0);
  6689   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6690   ins_encode( );
  6691   ins_pipe(empty);
  6692 %}
  6694 instruct membar_volatile() %{
  6695   match(MemBarVolatile);
  6696   ins_cost(4*MEMORY_REF_COST);
  6698   size(4);
  6699   format %{ "MEMBAR-volatile" %}
  6700   ins_encode( enc_membar_volatile );
  6701   ins_pipe(long_memory_op);
  6702 %}
  6704 instruct unnecessary_membar_volatile() %{
  6705   match(MemBarVolatile);
  6706   predicate(Matcher::post_store_load_barrier(n));
  6707   ins_cost(0);
  6709   size(0);
  6710   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6711   ins_encode( );
  6712   ins_pipe(empty);
  6713 %}
  6715 instruct membar_storestore() %{
  6716   match(MemBarStoreStore);
  6717   ins_cost(0);
  6719   size(0);
  6720   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6721   ins_encode( );
  6722   ins_pipe(empty);
  6723 %}
  6725 //----------Register Move Instructions-----------------------------------------
  6726 instruct roundDouble_nop(regD dst) %{
  6727   match(Set dst (RoundDouble dst));
  6728   ins_cost(0);
  6729   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6730   ins_encode( );
  6731   ins_pipe(empty);
  6732 %}
  6735 instruct roundFloat_nop(regF dst) %{
  6736   match(Set dst (RoundFloat dst));
  6737   ins_cost(0);
  6738   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6739   ins_encode( );
  6740   ins_pipe(empty);
  6741 %}
  6744 // Cast Index to Pointer for unsafe natives
  6745 instruct castX2P(iRegX src, iRegP dst) %{
  6746   match(Set dst (CastX2P src));
  6748   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6749   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6750   ins_pipe(ialu_reg);
  6751 %}
  6753 // Cast Pointer to Index for unsafe natives
  6754 instruct castP2X(iRegP src, iRegX dst) %{
  6755   match(Set dst (CastP2X src));
  6757   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6758   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6759   ins_pipe(ialu_reg);
  6760 %}
  6762 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6763   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6764   match(Set stkSlot src);   // chain rule
  6765   ins_cost(MEMORY_REF_COST);
  6766   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6767   opcode(Assembler::stdf_op3);
  6768   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6769   ins_pipe(fstoreD_stk_reg);
  6770 %}
  6772 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6773   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6774   match(Set dst stkSlot);   // chain rule
  6775   ins_cost(MEMORY_REF_COST);
  6776   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6777   opcode(Assembler::lddf_op3);
  6778   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6779   ins_pipe(floadD_stk);
  6780 %}
  6782 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6783   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6784   match(Set stkSlot src);   // chain rule
  6785   ins_cost(MEMORY_REF_COST);
  6786   format %{ "STF   $src,$stkSlot\t!stk" %}
  6787   opcode(Assembler::stf_op3);
  6788   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6789   ins_pipe(fstoreF_stk_reg);
  6790 %}
  6792 //----------Conditional Move---------------------------------------------------
  6793 // Conditional move
  6794 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6795   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6796   ins_cost(150);
  6797   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6798   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6799   ins_pipe(ialu_reg);
  6800 %}
  6802 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6803   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6804   ins_cost(140);
  6805   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6806   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6807   ins_pipe(ialu_imm);
  6808 %}
  6810 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6811   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6812   ins_cost(150);
  6813   size(4);
  6814   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6815   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6816   ins_pipe(ialu_reg);
  6817 %}
  6819 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6820   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6821   ins_cost(140);
  6822   size(4);
  6823   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6824   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6825   ins_pipe(ialu_imm);
  6826 %}
  6828 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6829   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6830   ins_cost(150);
  6831   size(4);
  6832   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6833   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6834   ins_pipe(ialu_reg);
  6835 %}
  6837 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6838   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6839   ins_cost(140);
  6840   size(4);
  6841   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6842   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6843   ins_pipe(ialu_imm);
  6844 %}
  6846 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6847   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6848   ins_cost(150);
  6849   size(4);
  6850   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6851   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6852   ins_pipe(ialu_reg);
  6853 %}
  6855 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6856   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6857   ins_cost(140);
  6858   size(4);
  6859   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6860   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6861   ins_pipe(ialu_imm);
  6862 %}
  6864 // Conditional move for RegN. Only cmov(reg,reg).
  6865 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6866   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6867   ins_cost(150);
  6868   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6869   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6870   ins_pipe(ialu_reg);
  6871 %}
  6873 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6874 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6875   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6876   ins_cost(150);
  6877   size(4);
  6878   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6879   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6880   ins_pipe(ialu_reg);
  6881 %}
  6883 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6884 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6885   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6886   ins_cost(150);
  6887   size(4);
  6888   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6889   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6890   ins_pipe(ialu_reg);
  6891 %}
  6893 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6894   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6895   ins_cost(150);
  6896   size(4);
  6897   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6898   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6899   ins_pipe(ialu_reg);
  6900 %}
  6902 // Conditional move
  6903 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6904   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6905   ins_cost(150);
  6906   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6907   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6908   ins_pipe(ialu_reg);
  6909 %}
  6911 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6912   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6913   ins_cost(140);
  6914   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6915   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6916   ins_pipe(ialu_imm);
  6917 %}
  6919 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6920 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6921   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6922   ins_cost(150);
  6924   size(4);
  6925   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6926   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6927   ins_pipe(ialu_reg);
  6928 %}
  6930 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6931   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6932   ins_cost(150);
  6934   size(4);
  6935   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6936   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6937   ins_pipe(ialu_reg);
  6938 %}
  6940 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6941   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6942   ins_cost(140);
  6944   size(4);
  6945   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6946   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6947   ins_pipe(ialu_imm);
  6948 %}
  6950 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6951   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6952   ins_cost(140);
  6954   size(4);
  6955   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6956   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6957   ins_pipe(ialu_imm);
  6958 %}
  6960 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6961   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6962   ins_cost(150);
  6963   size(4);
  6964   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6965   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6966   ins_pipe(ialu_imm);
  6967 %}
  6969 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6970   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6971   ins_cost(140);
  6972   size(4);
  6973   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6974   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6975   ins_pipe(ialu_imm);
  6976 %}
  6978 // Conditional move
  6979 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6980   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6981   ins_cost(150);
  6982   opcode(0x101);
  6983   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6984   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6985   ins_pipe(int_conditional_float_move);
  6986 %}
  6988 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6989   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6990   ins_cost(150);
  6992   size(4);
  6993   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6994   opcode(0x101);
  6995   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6996   ins_pipe(int_conditional_float_move);
  6997 %}
  6999 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7000   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7001   ins_cost(150);
  7003   size(4);
  7004   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7005   opcode(0x101);
  7006   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7007   ins_pipe(int_conditional_float_move);
  7008 %}
  7010 // Conditional move,
  7011 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7012   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7013   ins_cost(150);
  7014   size(4);
  7015   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7016   opcode(0x1);
  7017   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7018   ins_pipe(int_conditional_double_move);
  7019 %}
  7021 // Conditional move
  7022 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7023   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7024   ins_cost(150);
  7025   size(4);
  7026   opcode(0x102);
  7027   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7028   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7029   ins_pipe(int_conditional_double_move);
  7030 %}
  7032 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7033   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7034   ins_cost(150);
  7036   size(4);
  7037   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7038   opcode(0x102);
  7039   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7040   ins_pipe(int_conditional_double_move);
  7041 %}
  7043 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7044   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7045   ins_cost(150);
  7047   size(4);
  7048   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7049   opcode(0x102);
  7050   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7051   ins_pipe(int_conditional_double_move);
  7052 %}
  7054 // Conditional move,
  7055 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7056   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7057   ins_cost(150);
  7058   size(4);
  7059   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7060   opcode(0x2);
  7061   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7062   ins_pipe(int_conditional_double_move);
  7063 %}
  7065 // Conditional move
  7066 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7067   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7068   ins_cost(150);
  7069   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7070   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7071   ins_pipe(ialu_reg);
  7072 %}
  7074 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7075   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7076   ins_cost(140);
  7077   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7078   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7079   ins_pipe(ialu_imm);
  7080 %}
  7082 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7083   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7084   ins_cost(150);
  7086   size(4);
  7087   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7088   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7089   ins_pipe(ialu_reg);
  7090 %}
  7093 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7094   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7095   ins_cost(150);
  7097   size(4);
  7098   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7099   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7100   ins_pipe(ialu_reg);
  7101 %}
  7104 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7105   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7106   ins_cost(150);
  7108   size(4);
  7109   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7110   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7111   ins_pipe(ialu_reg);
  7112 %}
  7116 //----------OS and Locking Instructions----------------------------------------
  7118 // This name is KNOWN by the ADLC and cannot be changed.
  7119 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7120 // for this guy.
  7121 instruct tlsLoadP(g2RegP dst) %{
  7122   match(Set dst (ThreadLocal));
  7124   size(0);
  7125   ins_cost(0);
  7126   format %{ "# TLS is in G2" %}
  7127   ins_encode( /*empty encoding*/ );
  7128   ins_pipe(ialu_none);
  7129 %}
  7131 instruct checkCastPP( iRegP dst ) %{
  7132   match(Set dst (CheckCastPP dst));
  7134   size(0);
  7135   format %{ "# checkcastPP of $dst" %}
  7136   ins_encode( /*empty encoding*/ );
  7137   ins_pipe(empty);
  7138 %}
  7141 instruct castPP( iRegP dst ) %{
  7142   match(Set dst (CastPP dst));
  7143   format %{ "# castPP of $dst" %}
  7144   ins_encode( /*empty encoding*/ );
  7145   ins_pipe(empty);
  7146 %}
  7148 instruct castII( iRegI dst ) %{
  7149   match(Set dst (CastII dst));
  7150   format %{ "# castII of $dst" %}
  7151   ins_encode( /*empty encoding*/ );
  7152   ins_cost(0);
  7153   ins_pipe(empty);
  7154 %}
  7156 //----------Arithmetic Instructions--------------------------------------------
  7157 // Addition Instructions
  7158 // Register Addition
  7159 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7160   match(Set dst (AddI src1 src2));
  7162   size(4);
  7163   format %{ "ADD    $src1,$src2,$dst" %}
  7164   ins_encode %{
  7165     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7166   %}
  7167   ins_pipe(ialu_reg_reg);
  7168 %}
  7170 // Immediate Addition
  7171 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7172   match(Set dst (AddI src1 src2));
  7174   size(4);
  7175   format %{ "ADD    $src1,$src2,$dst" %}
  7176   opcode(Assembler::add_op3, Assembler::arith_op);
  7177   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7178   ins_pipe(ialu_reg_imm);
  7179 %}
  7181 // Pointer Register Addition
  7182 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7183   match(Set dst (AddP src1 src2));
  7185   size(4);
  7186   format %{ "ADD    $src1,$src2,$dst" %}
  7187   opcode(Assembler::add_op3, Assembler::arith_op);
  7188   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7189   ins_pipe(ialu_reg_reg);
  7190 %}
  7192 // Pointer Immediate Addition
  7193 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7194   match(Set dst (AddP src1 src2));
  7196   size(4);
  7197   format %{ "ADD    $src1,$src2,$dst" %}
  7198   opcode(Assembler::add_op3, Assembler::arith_op);
  7199   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7200   ins_pipe(ialu_reg_imm);
  7201 %}
  7203 // Long Addition
  7204 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7205   match(Set dst (AddL src1 src2));
  7207   size(4);
  7208   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7209   opcode(Assembler::add_op3, Assembler::arith_op);
  7210   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7211   ins_pipe(ialu_reg_reg);
  7212 %}
  7214 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7215   match(Set dst (AddL src1 con));
  7217   size(4);
  7218   format %{ "ADD    $src1,$con,$dst" %}
  7219   opcode(Assembler::add_op3, Assembler::arith_op);
  7220   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7221   ins_pipe(ialu_reg_imm);
  7222 %}
  7224 //----------Conditional_store--------------------------------------------------
  7225 // Conditional-store of the updated heap-top.
  7226 // Used during allocation of the shared heap.
  7227 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7229 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7230 instruct loadPLocked(iRegP dst, memory mem) %{
  7231   match(Set dst (LoadPLocked mem));
  7232   ins_cost(MEMORY_REF_COST);
  7234 #ifndef _LP64
  7235   size(4);
  7236   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7237   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7238 #else
  7239   format %{ "LDX    $mem,$dst\t! ptr" %}
  7240   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7241 #endif
  7242   ins_encode( form3_mem_reg( mem, dst ) );
  7243   ins_pipe(iload_mem);
  7244 %}
  7246 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7247   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7248   effect( KILL newval );
  7249   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7250             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7251   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7252   ins_pipe( long_memory_op );
  7253 %}
  7255 // Conditional-store of an int value.
  7256 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7257   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7258   effect( KILL newval );
  7259   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7260             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7261   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7262   ins_pipe( long_memory_op );
  7263 %}
  7265 // Conditional-store of a long value.
  7266 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7267   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7268   effect( KILL newval );
  7269   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7270             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7271   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7272   ins_pipe( long_memory_op );
  7273 %}
  7275 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7277 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7278   predicate(VM_Version::supports_cx8());
  7279   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7280   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7281   format %{
  7282             "MOV    $newval,O7\n\t"
  7283             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7284             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7285             "MOV    1,$res\n\t"
  7286             "MOVne  xcc,R_G0,$res"
  7287   %}
  7288   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7289               enc_lflags_ne_to_boolean(res) );
  7290   ins_pipe( long_memory_op );
  7291 %}
  7294 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7295   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7296   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7297   format %{
  7298             "MOV    $newval,O7\n\t"
  7299             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7300             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7301             "MOV    1,$res\n\t"
  7302             "MOVne  icc,R_G0,$res"
  7303   %}
  7304   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7305               enc_iflags_ne_to_boolean(res) );
  7306   ins_pipe( long_memory_op );
  7307 %}
  7309 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7310 #ifdef _LP64
  7311   predicate(VM_Version::supports_cx8());
  7312 #endif
  7313   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7314   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7315   format %{
  7316             "MOV    $newval,O7\n\t"
  7317             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7318             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7319             "MOV    1,$res\n\t"
  7320             "MOVne  xcc,R_G0,$res"
  7321   %}
  7322 #ifdef _LP64
  7323   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7324               enc_lflags_ne_to_boolean(res) );
  7325 #else
  7326   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7327               enc_iflags_ne_to_boolean(res) );
  7328 #endif
  7329   ins_pipe( long_memory_op );
  7330 %}
  7332 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7333   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7334   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7335   format %{
  7336             "MOV    $newval,O7\n\t"
  7337             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7338             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7339             "MOV    1,$res\n\t"
  7340             "MOVne  icc,R_G0,$res"
  7341   %}
  7342   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7343               enc_iflags_ne_to_boolean(res) );
  7344   ins_pipe( long_memory_op );
  7345 %}
  7347 instruct xchgI( memory mem, iRegI newval) %{
  7348   match(Set newval (GetAndSetI mem newval));
  7349   format %{ "SWAP  [$mem],$newval" %}
  7350   size(4);
  7351   ins_encode %{
  7352     __ swap($mem$$Address, $newval$$Register);
  7353   %}
  7354   ins_pipe( long_memory_op );
  7355 %}
  7357 #ifndef _LP64
  7358 instruct xchgP( memory mem, iRegP newval) %{
  7359   match(Set newval (GetAndSetP mem newval));
  7360   format %{ "SWAP  [$mem],$newval" %}
  7361   size(4);
  7362   ins_encode %{
  7363     __ swap($mem$$Address, $newval$$Register);
  7364   %}
  7365   ins_pipe( long_memory_op );
  7366 %}
  7367 #endif
  7369 instruct xchgN( memory mem, iRegN newval) %{
  7370   match(Set newval (GetAndSetN mem newval));
  7371   format %{ "SWAP  [$mem],$newval" %}
  7372   size(4);
  7373   ins_encode %{
  7374     __ swap($mem$$Address, $newval$$Register);
  7375   %}
  7376   ins_pipe( long_memory_op );
  7377 %}
  7379 //---------------------
  7380 // Subtraction Instructions
  7381 // Register Subtraction
  7382 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7383   match(Set dst (SubI src1 src2));
  7385   size(4);
  7386   format %{ "SUB    $src1,$src2,$dst" %}
  7387   opcode(Assembler::sub_op3, Assembler::arith_op);
  7388   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7389   ins_pipe(ialu_reg_reg);
  7390 %}
  7392 // Immediate Subtraction
  7393 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7394   match(Set dst (SubI src1 src2));
  7396   size(4);
  7397   format %{ "SUB    $src1,$src2,$dst" %}
  7398   opcode(Assembler::sub_op3, Assembler::arith_op);
  7399   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7400   ins_pipe(ialu_reg_imm);
  7401 %}
  7403 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7404   match(Set dst (SubI zero src2));
  7406   size(4);
  7407   format %{ "NEG    $src2,$dst" %}
  7408   opcode(Assembler::sub_op3, Assembler::arith_op);
  7409   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7410   ins_pipe(ialu_zero_reg);
  7411 %}
  7413 // Long subtraction
  7414 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7415   match(Set dst (SubL src1 src2));
  7417   size(4);
  7418   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7419   opcode(Assembler::sub_op3, Assembler::arith_op);
  7420   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7421   ins_pipe(ialu_reg_reg);
  7422 %}
  7424 // Immediate Subtraction
  7425 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7426   match(Set dst (SubL src1 con));
  7428   size(4);
  7429   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7430   opcode(Assembler::sub_op3, Assembler::arith_op);
  7431   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7432   ins_pipe(ialu_reg_imm);
  7433 %}
  7435 // Long negation
  7436 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7437   match(Set dst (SubL zero src2));
  7439   size(4);
  7440   format %{ "NEG    $src2,$dst\t! long" %}
  7441   opcode(Assembler::sub_op3, Assembler::arith_op);
  7442   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7443   ins_pipe(ialu_zero_reg);
  7444 %}
  7446 // Multiplication Instructions
  7447 // Integer Multiplication
  7448 // Register Multiplication
  7449 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7450   match(Set dst (MulI src1 src2));
  7452   size(4);
  7453   format %{ "MULX   $src1,$src2,$dst" %}
  7454   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7455   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7456   ins_pipe(imul_reg_reg);
  7457 %}
  7459 // Immediate Multiplication
  7460 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7461   match(Set dst (MulI src1 src2));
  7463   size(4);
  7464   format %{ "MULX   $src1,$src2,$dst" %}
  7465   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7466   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7467   ins_pipe(imul_reg_imm);
  7468 %}
  7470 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7471   match(Set dst (MulL src1 src2));
  7472   ins_cost(DEFAULT_COST * 5);
  7473   size(4);
  7474   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7475   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7476   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7477   ins_pipe(mulL_reg_reg);
  7478 %}
  7480 // Immediate Multiplication
  7481 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7482   match(Set dst (MulL src1 src2));
  7483   ins_cost(DEFAULT_COST * 5);
  7484   size(4);
  7485   format %{ "MULX   $src1,$src2,$dst" %}
  7486   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7487   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7488   ins_pipe(mulL_reg_imm);
  7489 %}
  7491 // Integer Division
  7492 // Register Division
  7493 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7494   match(Set dst (DivI src1 src2));
  7495   ins_cost((2+71)*DEFAULT_COST);
  7497   format %{ "SRA     $src2,0,$src2\n\t"
  7498             "SRA     $src1,0,$src1\n\t"
  7499             "SDIVX   $src1,$src2,$dst" %}
  7500   ins_encode( idiv_reg( src1, src2, dst ) );
  7501   ins_pipe(sdiv_reg_reg);
  7502 %}
  7504 // Immediate Division
  7505 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7506   match(Set dst (DivI src1 src2));
  7507   ins_cost((2+71)*DEFAULT_COST);
  7509   format %{ "SRA     $src1,0,$src1\n\t"
  7510             "SDIVX   $src1,$src2,$dst" %}
  7511   ins_encode( idiv_imm( src1, src2, dst ) );
  7512   ins_pipe(sdiv_reg_imm);
  7513 %}
  7515 //----------Div-By-10-Expansion------------------------------------------------
  7516 // Extract hi bits of a 32x32->64 bit multiply.
  7517 // Expand rule only, not matched
  7518 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7519   effect( DEF dst, USE src1, USE src2 );
  7520   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7521             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7522   ins_encode( enc_mul_hi(dst,src1,src2));
  7523   ins_pipe(sdiv_reg_reg);
  7524 %}
  7526 // Magic constant, reciprocal of 10
  7527 instruct loadConI_x66666667(iRegIsafe dst) %{
  7528   effect( DEF dst );
  7530   size(8);
  7531   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7532   ins_encode( Set32(0x66666667, dst) );
  7533   ins_pipe(ialu_hi_lo_reg);
  7534 %}
  7536 // Register Shift Right Arithmetic Long by 32-63
  7537 instruct sra_31( iRegI dst, iRegI src ) %{
  7538   effect( DEF dst, USE src );
  7539   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7540   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7541   ins_pipe(ialu_reg_reg);
  7542 %}
  7544 // Arithmetic Shift Right by 8-bit immediate
  7545 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7546   effect( DEF dst, USE src );
  7547   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7548   opcode(Assembler::sra_op3, Assembler::arith_op);
  7549   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7550   ins_pipe(ialu_reg_imm);
  7551 %}
  7553 // Integer DIV with 10
  7554 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7555   match(Set dst (DivI src div));
  7556   ins_cost((6+6)*DEFAULT_COST);
  7557   expand %{
  7558     iRegIsafe tmp1;               // Killed temps;
  7559     iRegIsafe tmp2;               // Killed temps;
  7560     iRegI tmp3;                   // Killed temps;
  7561     iRegI tmp4;                   // Killed temps;
  7562     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7563     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7564     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7565     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7566     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7567   %}
  7568 %}
  7570 // Register Long Division
  7571 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7572   match(Set dst (DivL src1 src2));
  7573   ins_cost(DEFAULT_COST*71);
  7574   size(4);
  7575   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7576   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7577   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7578   ins_pipe(divL_reg_reg);
  7579 %}
  7581 // Register Long Division
  7582 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7583   match(Set dst (DivL src1 src2));
  7584   ins_cost(DEFAULT_COST*71);
  7585   size(4);
  7586   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7587   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7588   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7589   ins_pipe(divL_reg_imm);
  7590 %}
  7592 // Integer Remainder
  7593 // Register Remainder
  7594 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7595   match(Set dst (ModI src1 src2));
  7596   effect( KILL ccr, KILL temp);
  7598   format %{ "SREM   $src1,$src2,$dst" %}
  7599   ins_encode( irem_reg(src1, src2, dst, temp) );
  7600   ins_pipe(sdiv_reg_reg);
  7601 %}
  7603 // Immediate Remainder
  7604 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7605   match(Set dst (ModI src1 src2));
  7606   effect( KILL ccr, KILL temp);
  7608   format %{ "SREM   $src1,$src2,$dst" %}
  7609   ins_encode( irem_imm(src1, src2, dst, temp) );
  7610   ins_pipe(sdiv_reg_imm);
  7611 %}
  7613 // Register Long Remainder
  7614 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7615   effect(DEF dst, USE src1, USE src2);
  7616   size(4);
  7617   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7618   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7619   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7620   ins_pipe(divL_reg_reg);
  7621 %}
  7623 // Register Long Division
  7624 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7625   effect(DEF dst, USE src1, USE src2);
  7626   size(4);
  7627   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7628   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7629   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7630   ins_pipe(divL_reg_imm);
  7631 %}
  7633 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7634   effect(DEF dst, USE src1, USE src2);
  7635   size(4);
  7636   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7637   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7638   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7639   ins_pipe(mulL_reg_reg);
  7640 %}
  7642 // Immediate Multiplication
  7643 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7644   effect(DEF dst, USE src1, USE src2);
  7645   size(4);
  7646   format %{ "MULX   $src1,$src2,$dst" %}
  7647   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7648   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7649   ins_pipe(mulL_reg_imm);
  7650 %}
  7652 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7653   effect(DEF dst, USE src1, USE src2);
  7654   size(4);
  7655   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7656   opcode(Assembler::sub_op3, Assembler::arith_op);
  7657   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7658   ins_pipe(ialu_reg_reg);
  7659 %}
  7661 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7662   effect(DEF dst, USE src1, USE src2);
  7663   size(4);
  7664   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7665   opcode(Assembler::sub_op3, Assembler::arith_op);
  7666   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7667   ins_pipe(ialu_reg_reg);
  7668 %}
  7670 // Register Long Remainder
  7671 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7672   match(Set dst (ModL src1 src2));
  7673   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7674   expand %{
  7675     iRegL tmp1;
  7676     iRegL tmp2;
  7677     divL_reg_reg_1(tmp1, src1, src2);
  7678     mulL_reg_reg_1(tmp2, tmp1, src2);
  7679     subL_reg_reg_1(dst,  src1, tmp2);
  7680   %}
  7681 %}
  7683 // Register Long Remainder
  7684 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7685   match(Set dst (ModL src1 src2));
  7686   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7687   expand %{
  7688     iRegL tmp1;
  7689     iRegL tmp2;
  7690     divL_reg_imm13_1(tmp1, src1, src2);
  7691     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7692     subL_reg_reg_2  (dst,  src1, tmp2);
  7693   %}
  7694 %}
  7696 // Integer Shift Instructions
  7697 // Register Shift Left
  7698 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7699   match(Set dst (LShiftI src1 src2));
  7701   size(4);
  7702   format %{ "SLL    $src1,$src2,$dst" %}
  7703   opcode(Assembler::sll_op3, Assembler::arith_op);
  7704   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7705   ins_pipe(ialu_reg_reg);
  7706 %}
  7708 // Register Shift Left Immediate
  7709 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7710   match(Set dst (LShiftI src1 src2));
  7712   size(4);
  7713   format %{ "SLL    $src1,$src2,$dst" %}
  7714   opcode(Assembler::sll_op3, Assembler::arith_op);
  7715   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7716   ins_pipe(ialu_reg_imm);
  7717 %}
  7719 // Register Shift Left
  7720 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7721   match(Set dst (LShiftL src1 src2));
  7723   size(4);
  7724   format %{ "SLLX   $src1,$src2,$dst" %}
  7725   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7726   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7727   ins_pipe(ialu_reg_reg);
  7728 %}
  7730 // Register Shift Left Immediate
  7731 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7732   match(Set dst (LShiftL src1 src2));
  7734   size(4);
  7735   format %{ "SLLX   $src1,$src2,$dst" %}
  7736   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7737   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7738   ins_pipe(ialu_reg_imm);
  7739 %}
  7741 // Register Arithmetic Shift Right
  7742 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7743   match(Set dst (RShiftI src1 src2));
  7744   size(4);
  7745   format %{ "SRA    $src1,$src2,$dst" %}
  7746   opcode(Assembler::sra_op3, Assembler::arith_op);
  7747   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7748   ins_pipe(ialu_reg_reg);
  7749 %}
  7751 // Register Arithmetic Shift Right Immediate
  7752 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7753   match(Set dst (RShiftI src1 src2));
  7755   size(4);
  7756   format %{ "SRA    $src1,$src2,$dst" %}
  7757   opcode(Assembler::sra_op3, Assembler::arith_op);
  7758   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7759   ins_pipe(ialu_reg_imm);
  7760 %}
  7762 // Register Shift Right Arithmatic Long
  7763 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7764   match(Set dst (RShiftL src1 src2));
  7766   size(4);
  7767   format %{ "SRAX   $src1,$src2,$dst" %}
  7768   opcode(Assembler::srax_op3, Assembler::arith_op);
  7769   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7770   ins_pipe(ialu_reg_reg);
  7771 %}
  7773 // Register Shift Left Immediate
  7774 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7775   match(Set dst (RShiftL src1 src2));
  7777   size(4);
  7778   format %{ "SRAX   $src1,$src2,$dst" %}
  7779   opcode(Assembler::srax_op3, Assembler::arith_op);
  7780   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7781   ins_pipe(ialu_reg_imm);
  7782 %}
  7784 // Register Shift Right
  7785 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7786   match(Set dst (URShiftI src1 src2));
  7788   size(4);
  7789   format %{ "SRL    $src1,$src2,$dst" %}
  7790   opcode(Assembler::srl_op3, Assembler::arith_op);
  7791   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7792   ins_pipe(ialu_reg_reg);
  7793 %}
  7795 // Register Shift Right Immediate
  7796 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7797   match(Set dst (URShiftI src1 src2));
  7799   size(4);
  7800   format %{ "SRL    $src1,$src2,$dst" %}
  7801   opcode(Assembler::srl_op3, Assembler::arith_op);
  7802   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7803   ins_pipe(ialu_reg_imm);
  7804 %}
  7806 // Register Shift Right
  7807 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7808   match(Set dst (URShiftL src1 src2));
  7810   size(4);
  7811   format %{ "SRLX   $src1,$src2,$dst" %}
  7812   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7813   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7814   ins_pipe(ialu_reg_reg);
  7815 %}
  7817 // Register Shift Right Immediate
  7818 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7819   match(Set dst (URShiftL src1 src2));
  7821   size(4);
  7822   format %{ "SRLX   $src1,$src2,$dst" %}
  7823   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7824   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7825   ins_pipe(ialu_reg_imm);
  7826 %}
  7828 // Register Shift Right Immediate with a CastP2X
  7829 #ifdef _LP64
  7830 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7831   match(Set dst (URShiftL (CastP2X src1) src2));
  7832   size(4);
  7833   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7834   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7835   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7836   ins_pipe(ialu_reg_imm);
  7837 %}
  7838 #else
  7839 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7840   match(Set dst (URShiftI (CastP2X src1) src2));
  7841   size(4);
  7842   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7843   opcode(Assembler::srl_op3, Assembler::arith_op);
  7844   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7845   ins_pipe(ialu_reg_imm);
  7846 %}
  7847 #endif
  7850 //----------Floating Point Arithmetic Instructions-----------------------------
  7852 //  Add float single precision
  7853 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7854   match(Set dst (AddF src1 src2));
  7856   size(4);
  7857   format %{ "FADDS  $src1,$src2,$dst" %}
  7858   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7859   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7860   ins_pipe(faddF_reg_reg);
  7861 %}
  7863 //  Add float double precision
  7864 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7865   match(Set dst (AddD src1 src2));
  7867   size(4);
  7868   format %{ "FADDD  $src1,$src2,$dst" %}
  7869   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7870   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7871   ins_pipe(faddD_reg_reg);
  7872 %}
  7874 //  Sub float single precision
  7875 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7876   match(Set dst (SubF src1 src2));
  7878   size(4);
  7879   format %{ "FSUBS  $src1,$src2,$dst" %}
  7880   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7881   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7882   ins_pipe(faddF_reg_reg);
  7883 %}
  7885 //  Sub float double precision
  7886 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7887   match(Set dst (SubD src1 src2));
  7889   size(4);
  7890   format %{ "FSUBD  $src1,$src2,$dst" %}
  7891   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7892   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7893   ins_pipe(faddD_reg_reg);
  7894 %}
  7896 //  Mul float single precision
  7897 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7898   match(Set dst (MulF src1 src2));
  7900   size(4);
  7901   format %{ "FMULS  $src1,$src2,$dst" %}
  7902   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7903   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7904   ins_pipe(fmulF_reg_reg);
  7905 %}
  7907 //  Mul float double precision
  7908 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7909   match(Set dst (MulD src1 src2));
  7911   size(4);
  7912   format %{ "FMULD  $src1,$src2,$dst" %}
  7913   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7914   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7915   ins_pipe(fmulD_reg_reg);
  7916 %}
  7918 //  Div float single precision
  7919 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7920   match(Set dst (DivF src1 src2));
  7922   size(4);
  7923   format %{ "FDIVS  $src1,$src2,$dst" %}
  7924   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7925   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7926   ins_pipe(fdivF_reg_reg);
  7927 %}
  7929 //  Div float double precision
  7930 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7931   match(Set dst (DivD src1 src2));
  7933   size(4);
  7934   format %{ "FDIVD  $src1,$src2,$dst" %}
  7935   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7936   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7937   ins_pipe(fdivD_reg_reg);
  7938 %}
  7940 //  Absolute float double precision
  7941 instruct absD_reg(regD dst, regD src) %{
  7942   match(Set dst (AbsD src));
  7944   format %{ "FABSd  $src,$dst" %}
  7945   ins_encode(fabsd(dst, src));
  7946   ins_pipe(faddD_reg);
  7947 %}
  7949 //  Absolute float single precision
  7950 instruct absF_reg(regF dst, regF src) %{
  7951   match(Set dst (AbsF src));
  7953   format %{ "FABSs  $src,$dst" %}
  7954   ins_encode(fabss(dst, src));
  7955   ins_pipe(faddF_reg);
  7956 %}
  7958 instruct negF_reg(regF dst, regF src) %{
  7959   match(Set dst (NegF src));
  7961   size(4);
  7962   format %{ "FNEGs  $src,$dst" %}
  7963   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7964   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7965   ins_pipe(faddF_reg);
  7966 %}
  7968 instruct negD_reg(regD dst, regD src) %{
  7969   match(Set dst (NegD src));
  7971   format %{ "FNEGd  $src,$dst" %}
  7972   ins_encode(fnegd(dst, src));
  7973   ins_pipe(faddD_reg);
  7974 %}
  7976 //  Sqrt float double precision
  7977 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7978   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7980   size(4);
  7981   format %{ "FSQRTS $src,$dst" %}
  7982   ins_encode(fsqrts(dst, src));
  7983   ins_pipe(fdivF_reg_reg);
  7984 %}
  7986 //  Sqrt float double precision
  7987 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7988   match(Set dst (SqrtD src));
  7990   size(4);
  7991   format %{ "FSQRTD $src,$dst" %}
  7992   ins_encode(fsqrtd(dst, src));
  7993   ins_pipe(fdivD_reg_reg);
  7994 %}
  7996 //----------Logical Instructions-----------------------------------------------
  7997 // And Instructions
  7998 // Register And
  7999 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8000   match(Set dst (AndI src1 src2));
  8002   size(4);
  8003   format %{ "AND    $src1,$src2,$dst" %}
  8004   opcode(Assembler::and_op3, Assembler::arith_op);
  8005   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8006   ins_pipe(ialu_reg_reg);
  8007 %}
  8009 // Immediate And
  8010 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8011   match(Set dst (AndI src1 src2));
  8013   size(4);
  8014   format %{ "AND    $src1,$src2,$dst" %}
  8015   opcode(Assembler::and_op3, Assembler::arith_op);
  8016   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8017   ins_pipe(ialu_reg_imm);
  8018 %}
  8020 // Register And Long
  8021 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8022   match(Set dst (AndL src1 src2));
  8024   ins_cost(DEFAULT_COST);
  8025   size(4);
  8026   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8027   opcode(Assembler::and_op3, Assembler::arith_op);
  8028   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8029   ins_pipe(ialu_reg_reg);
  8030 %}
  8032 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8033   match(Set dst (AndL src1 con));
  8035   ins_cost(DEFAULT_COST);
  8036   size(4);
  8037   format %{ "AND    $src1,$con,$dst\t! long" %}
  8038   opcode(Assembler::and_op3, Assembler::arith_op);
  8039   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8040   ins_pipe(ialu_reg_imm);
  8041 %}
  8043 // Or Instructions
  8044 // Register Or
  8045 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8046   match(Set dst (OrI src1 src2));
  8048   size(4);
  8049   format %{ "OR     $src1,$src2,$dst" %}
  8050   opcode(Assembler::or_op3, Assembler::arith_op);
  8051   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8052   ins_pipe(ialu_reg_reg);
  8053 %}
  8055 // Immediate Or
  8056 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8057   match(Set dst (OrI src1 src2));
  8059   size(4);
  8060   format %{ "OR     $src1,$src2,$dst" %}
  8061   opcode(Assembler::or_op3, Assembler::arith_op);
  8062   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8063   ins_pipe(ialu_reg_imm);
  8064 %}
  8066 // Register Or Long
  8067 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8068   match(Set dst (OrL src1 src2));
  8070   ins_cost(DEFAULT_COST);
  8071   size(4);
  8072   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8073   opcode(Assembler::or_op3, Assembler::arith_op);
  8074   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8075   ins_pipe(ialu_reg_reg);
  8076 %}
  8078 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8079   match(Set dst (OrL src1 con));
  8080   ins_cost(DEFAULT_COST*2);
  8082   ins_cost(DEFAULT_COST);
  8083   size(4);
  8084   format %{ "OR     $src1,$con,$dst\t! long" %}
  8085   opcode(Assembler::or_op3, Assembler::arith_op);
  8086   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8087   ins_pipe(ialu_reg_imm);
  8088 %}
  8090 #ifndef _LP64
  8092 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8093 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8094   match(Set dst (OrI src1 (CastP2X src2)));
  8096   size(4);
  8097   format %{ "OR     $src1,$src2,$dst" %}
  8098   opcode(Assembler::or_op3, Assembler::arith_op);
  8099   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8100   ins_pipe(ialu_reg_reg);
  8101 %}
  8103 #else
  8105 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8106   match(Set dst (OrL src1 (CastP2X src2)));
  8108   ins_cost(DEFAULT_COST);
  8109   size(4);
  8110   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8111   opcode(Assembler::or_op3, Assembler::arith_op);
  8112   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8113   ins_pipe(ialu_reg_reg);
  8114 %}
  8116 #endif
  8118 // Xor Instructions
  8119 // Register Xor
  8120 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8121   match(Set dst (XorI src1 src2));
  8123   size(4);
  8124   format %{ "XOR    $src1,$src2,$dst" %}
  8125   opcode(Assembler::xor_op3, Assembler::arith_op);
  8126   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8127   ins_pipe(ialu_reg_reg);
  8128 %}
  8130 // Immediate Xor
  8131 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8132   match(Set dst (XorI src1 src2));
  8134   size(4);
  8135   format %{ "XOR    $src1,$src2,$dst" %}
  8136   opcode(Assembler::xor_op3, Assembler::arith_op);
  8137   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8138   ins_pipe(ialu_reg_imm);
  8139 %}
  8141 // Register Xor Long
  8142 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8143   match(Set dst (XorL src1 src2));
  8145   ins_cost(DEFAULT_COST);
  8146   size(4);
  8147   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8148   opcode(Assembler::xor_op3, Assembler::arith_op);
  8149   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8150   ins_pipe(ialu_reg_reg);
  8151 %}
  8153 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8154   match(Set dst (XorL src1 con));
  8156   ins_cost(DEFAULT_COST);
  8157   size(4);
  8158   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8159   opcode(Assembler::xor_op3, Assembler::arith_op);
  8160   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8161   ins_pipe(ialu_reg_imm);
  8162 %}
  8164 //----------Convert to Boolean-------------------------------------------------
  8165 // Nice hack for 32-bit tests but doesn't work for
  8166 // 64-bit pointers.
  8167 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8168   match(Set dst (Conv2B src));
  8169   effect( KILL ccr );
  8170   ins_cost(DEFAULT_COST*2);
  8171   format %{ "CMP    R_G0,$src\n\t"
  8172             "ADDX   R_G0,0,$dst" %}
  8173   ins_encode( enc_to_bool( src, dst ) );
  8174   ins_pipe(ialu_reg_ialu);
  8175 %}
  8177 #ifndef _LP64
  8178 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8179   match(Set dst (Conv2B src));
  8180   effect( KILL ccr );
  8181   ins_cost(DEFAULT_COST*2);
  8182   format %{ "CMP    R_G0,$src\n\t"
  8183             "ADDX   R_G0,0,$dst" %}
  8184   ins_encode( enc_to_bool( src, dst ) );
  8185   ins_pipe(ialu_reg_ialu);
  8186 %}
  8187 #else
  8188 instruct convP2B( iRegI dst, iRegP src ) %{
  8189   match(Set dst (Conv2B src));
  8190   ins_cost(DEFAULT_COST*2);
  8191   format %{ "MOV    $src,$dst\n\t"
  8192             "MOVRNZ $src,1,$dst" %}
  8193   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8194   ins_pipe(ialu_clr_and_mover);
  8195 %}
  8196 #endif
  8198 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8199   match(Set dst (CmpLTMask src zero));
  8200   effect(KILL ccr);
  8201   size(4);
  8202   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8203   ins_encode %{
  8204     __ sra($src$$Register, 31, $dst$$Register);
  8205   %}
  8206   ins_pipe(ialu_reg_imm);
  8207 %}
  8209 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8210   match(Set dst (CmpLTMask p q));
  8211   effect( KILL ccr );
  8212   ins_cost(DEFAULT_COST*4);
  8213   format %{ "CMP    $p,$q\n\t"
  8214             "MOV    #0,$dst\n\t"
  8215             "BLT,a  .+8\n\t"
  8216             "MOV    #-1,$dst" %}
  8217   ins_encode( enc_ltmask(p,q,dst) );
  8218   ins_pipe(ialu_reg_reg_ialu);
  8219 %}
  8221 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8222   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8223   effect(KILL ccr, TEMP tmp);
  8224   ins_cost(DEFAULT_COST*3);
  8226   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8227             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8228             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8229   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
  8230   ins_pipe(cadd_cmpltmask);
  8231 %}
  8233 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
  8234   match(Set p (AndI (CmpLTMask p q) y));
  8235   effect(KILL ccr);
  8236   ins_cost(DEFAULT_COST*3);
  8238   format %{ "CMP  $p,$q\n\t"
  8239             "MOV  $y,$p\n\t"
  8240             "MOVge G0,$p" %}
  8241   ins_encode %{
  8242     __ cmp($p$$Register, $q$$Register);
  8243     __ mov($y$$Register, $p$$Register);
  8244     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
  8245   %}
  8246   ins_pipe(ialu_reg_reg_ialu);
  8247 %}
  8249 //-----------------------------------------------------------------
  8250 // Direct raw moves between float and general registers using VIS3.
  8252 //  ins_pipe(faddF_reg);
  8253 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8254   predicate(UseVIS >= 3);
  8255   match(Set dst (MoveF2I src));
  8257   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8258   ins_encode %{
  8259     __ movstouw($src$$FloatRegister, $dst$$Register);
  8260   %}
  8261   ins_pipe(ialu_reg_reg);
  8262 %}
  8264 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8265   predicate(UseVIS >= 3);
  8266   match(Set dst (MoveI2F src));
  8268   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8269   ins_encode %{
  8270     __ movwtos($src$$Register, $dst$$FloatRegister);
  8271   %}
  8272   ins_pipe(ialu_reg_reg);
  8273 %}
  8275 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8276   predicate(UseVIS >= 3);
  8277   match(Set dst (MoveD2L src));
  8279   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8280   ins_encode %{
  8281     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8282   %}
  8283   ins_pipe(ialu_reg_reg);
  8284 %}
  8286 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8287   predicate(UseVIS >= 3);
  8288   match(Set dst (MoveL2D src));
  8290   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8291   ins_encode %{
  8292     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8293   %}
  8294   ins_pipe(ialu_reg_reg);
  8295 %}
  8298 // Raw moves between float and general registers using stack.
  8300 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8301   match(Set dst (MoveF2I src));
  8302   effect(DEF dst, USE src);
  8303   ins_cost(MEMORY_REF_COST);
  8305   size(4);
  8306   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8307   opcode(Assembler::lduw_op3);
  8308   ins_encode(simple_form3_mem_reg( src, dst ) );
  8309   ins_pipe(iload_mem);
  8310 %}
  8312 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8313   match(Set dst (MoveI2F src));
  8314   effect(DEF dst, USE src);
  8315   ins_cost(MEMORY_REF_COST);
  8317   size(4);
  8318   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8319   opcode(Assembler::ldf_op3);
  8320   ins_encode(simple_form3_mem_reg(src, dst));
  8321   ins_pipe(floadF_stk);
  8322 %}
  8324 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8325   match(Set dst (MoveD2L src));
  8326   effect(DEF dst, USE src);
  8327   ins_cost(MEMORY_REF_COST);
  8329   size(4);
  8330   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8331   opcode(Assembler::ldx_op3);
  8332   ins_encode(simple_form3_mem_reg( src, dst ) );
  8333   ins_pipe(iload_mem);
  8334 %}
  8336 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8337   match(Set dst (MoveL2D src));
  8338   effect(DEF dst, USE src);
  8339   ins_cost(MEMORY_REF_COST);
  8341   size(4);
  8342   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8343   opcode(Assembler::lddf_op3);
  8344   ins_encode(simple_form3_mem_reg(src, dst));
  8345   ins_pipe(floadD_stk);
  8346 %}
  8348 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8349   match(Set dst (MoveF2I src));
  8350   effect(DEF dst, USE src);
  8351   ins_cost(MEMORY_REF_COST);
  8353   size(4);
  8354   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8355   opcode(Assembler::stf_op3);
  8356   ins_encode(simple_form3_mem_reg(dst, src));
  8357   ins_pipe(fstoreF_stk_reg);
  8358 %}
  8360 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8361   match(Set dst (MoveI2F src));
  8362   effect(DEF dst, USE src);
  8363   ins_cost(MEMORY_REF_COST);
  8365   size(4);
  8366   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8367   opcode(Assembler::stw_op3);
  8368   ins_encode(simple_form3_mem_reg( dst, src ) );
  8369   ins_pipe(istore_mem_reg);
  8370 %}
  8372 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8373   match(Set dst (MoveD2L src));
  8374   effect(DEF dst, USE src);
  8375   ins_cost(MEMORY_REF_COST);
  8377   size(4);
  8378   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8379   opcode(Assembler::stdf_op3);
  8380   ins_encode(simple_form3_mem_reg(dst, src));
  8381   ins_pipe(fstoreD_stk_reg);
  8382 %}
  8384 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8385   match(Set dst (MoveL2D src));
  8386   effect(DEF dst, USE src);
  8387   ins_cost(MEMORY_REF_COST);
  8389   size(4);
  8390   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8391   opcode(Assembler::stx_op3);
  8392   ins_encode(simple_form3_mem_reg( dst, src ) );
  8393   ins_pipe(istore_mem_reg);
  8394 %}
  8397 //----------Arithmetic Conversion Instructions---------------------------------
  8398 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8400 instruct convD2F_reg(regF dst, regD src) %{
  8401   match(Set dst (ConvD2F src));
  8402   size(4);
  8403   format %{ "FDTOS  $src,$dst" %}
  8404   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8405   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8406   ins_pipe(fcvtD2F);
  8407 %}
  8410 // Convert a double to an int in a float register.
  8411 // If the double is a NAN, stuff a zero in instead.
  8412 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8413   effect(DEF dst, USE src, KILL fcc0);
  8414   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8415             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8416             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8417             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8418             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8419       "skip:" %}
  8420   ins_encode(form_d2i_helper(src,dst));
  8421   ins_pipe(fcvtD2I);
  8422 %}
  8424 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8425   match(Set dst (ConvD2I src));
  8426   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8427   expand %{
  8428     regF tmp;
  8429     convD2I_helper(tmp, src);
  8430     regF_to_stkI(dst, tmp);
  8431   %}
  8432 %}
  8434 instruct convD2I_reg(iRegI dst, regD src) %{
  8435   predicate(UseVIS >= 3);
  8436   match(Set dst (ConvD2I src));
  8437   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8438   expand %{
  8439     regF tmp;
  8440     convD2I_helper(tmp, src);
  8441     MoveF2I_reg_reg(dst, tmp);
  8442   %}
  8443 %}
  8446 // Convert a double to a long in a double register.
  8447 // If the double is a NAN, stuff a zero in instead.
  8448 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8449   effect(DEF dst, USE src, KILL fcc0);
  8450   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8451             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8452             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8453             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8454             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8455       "skip:" %}
  8456   ins_encode(form_d2l_helper(src,dst));
  8457   ins_pipe(fcvtD2L);
  8458 %}
  8460 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8461   match(Set dst (ConvD2L src));
  8462   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8463   expand %{
  8464     regD tmp;
  8465     convD2L_helper(tmp, src);
  8466     regD_to_stkL(dst, tmp);
  8467   %}
  8468 %}
  8470 instruct convD2L_reg(iRegL dst, regD src) %{
  8471   predicate(UseVIS >= 3);
  8472   match(Set dst (ConvD2L src));
  8473   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8474   expand %{
  8475     regD tmp;
  8476     convD2L_helper(tmp, src);
  8477     MoveD2L_reg_reg(dst, tmp);
  8478   %}
  8479 %}
  8482 instruct convF2D_reg(regD dst, regF src) %{
  8483   match(Set dst (ConvF2D src));
  8484   format %{ "FSTOD  $src,$dst" %}
  8485   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8486   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8487   ins_pipe(fcvtF2D);
  8488 %}
  8491 // Convert a float to an int in a float register.
  8492 // If the float is a NAN, stuff a zero in instead.
  8493 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8494   effect(DEF dst, USE src, KILL fcc0);
  8495   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8496             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8497             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8498             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8499             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8500       "skip:" %}
  8501   ins_encode(form_f2i_helper(src,dst));
  8502   ins_pipe(fcvtF2I);
  8503 %}
  8505 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8506   match(Set dst (ConvF2I src));
  8507   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8508   expand %{
  8509     regF tmp;
  8510     convF2I_helper(tmp, src);
  8511     regF_to_stkI(dst, tmp);
  8512   %}
  8513 %}
  8515 instruct convF2I_reg(iRegI dst, regF src) %{
  8516   predicate(UseVIS >= 3);
  8517   match(Set dst (ConvF2I src));
  8518   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8519   expand %{
  8520     regF tmp;
  8521     convF2I_helper(tmp, src);
  8522     MoveF2I_reg_reg(dst, tmp);
  8523   %}
  8524 %}
  8527 // Convert a float to a long in a float register.
  8528 // If the float is a NAN, stuff a zero in instead.
  8529 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8530   effect(DEF dst, USE src, KILL fcc0);
  8531   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8532             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8533             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8534             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8535             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8536       "skip:" %}
  8537   ins_encode(form_f2l_helper(src,dst));
  8538   ins_pipe(fcvtF2L);
  8539 %}
  8541 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8542   match(Set dst (ConvF2L src));
  8543   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8544   expand %{
  8545     regD tmp;
  8546     convF2L_helper(tmp, src);
  8547     regD_to_stkL(dst, tmp);
  8548   %}
  8549 %}
  8551 instruct convF2L_reg(iRegL dst, regF src) %{
  8552   predicate(UseVIS >= 3);
  8553   match(Set dst (ConvF2L src));
  8554   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8555   expand %{
  8556     regD tmp;
  8557     convF2L_helper(tmp, src);
  8558     MoveD2L_reg_reg(dst, tmp);
  8559   %}
  8560 %}
  8563 instruct convI2D_helper(regD dst, regF tmp) %{
  8564   effect(USE tmp, DEF dst);
  8565   format %{ "FITOD  $tmp,$dst" %}
  8566   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8567   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8568   ins_pipe(fcvtI2D);
  8569 %}
  8571 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8572   match(Set dst (ConvI2D src));
  8573   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8574   expand %{
  8575     regF tmp;
  8576     stkI_to_regF(tmp, src);
  8577     convI2D_helper(dst, tmp);
  8578   %}
  8579 %}
  8581 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8582   predicate(UseVIS >= 3);
  8583   match(Set dst (ConvI2D src));
  8584   expand %{
  8585     regF tmp;
  8586     MoveI2F_reg_reg(tmp, src);
  8587     convI2D_helper(dst, tmp);
  8588   %}
  8589 %}
  8591 instruct convI2D_mem(regD_low dst, memory mem) %{
  8592   match(Set dst (ConvI2D (LoadI mem)));
  8593   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8594   size(8);
  8595   format %{ "LDF    $mem,$dst\n\t"
  8596             "FITOD  $dst,$dst" %}
  8597   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8598   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8599   ins_pipe(floadF_mem);
  8600 %}
  8603 instruct convI2F_helper(regF dst, regF tmp) %{
  8604   effect(DEF dst, USE tmp);
  8605   format %{ "FITOS  $tmp,$dst" %}
  8606   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8607   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8608   ins_pipe(fcvtI2F);
  8609 %}
  8611 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8612   match(Set dst (ConvI2F src));
  8613   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8614   expand %{
  8615     regF tmp;
  8616     stkI_to_regF(tmp,src);
  8617     convI2F_helper(dst, tmp);
  8618   %}
  8619 %}
  8621 instruct convI2F_reg(regF dst, iRegI src) %{
  8622   predicate(UseVIS >= 3);
  8623   match(Set dst (ConvI2F src));
  8624   ins_cost(DEFAULT_COST);
  8625   expand %{
  8626     regF tmp;
  8627     MoveI2F_reg_reg(tmp, src);
  8628     convI2F_helper(dst, tmp);
  8629   %}
  8630 %}
  8632 instruct convI2F_mem( regF dst, memory mem ) %{
  8633   match(Set dst (ConvI2F (LoadI mem)));
  8634   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8635   size(8);
  8636   format %{ "LDF    $mem,$dst\n\t"
  8637             "FITOS  $dst,$dst" %}
  8638   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8639   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8640   ins_pipe(floadF_mem);
  8641 %}
  8644 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8645   match(Set dst (ConvI2L src));
  8646   size(4);
  8647   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8648   opcode(Assembler::sra_op3, Assembler::arith_op);
  8649   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8650   ins_pipe(ialu_reg_reg);
  8651 %}
  8653 // Zero-extend convert int to long
  8654 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8655   match(Set dst (AndL (ConvI2L src) mask) );
  8656   size(4);
  8657   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8658   opcode(Assembler::srl_op3, Assembler::arith_op);
  8659   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8660   ins_pipe(ialu_reg_reg);
  8661 %}
  8663 // Zero-extend long
  8664 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8665   match(Set dst (AndL src mask) );
  8666   size(4);
  8667   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8668   opcode(Assembler::srl_op3, Assembler::arith_op);
  8669   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8670   ins_pipe(ialu_reg_reg);
  8671 %}
  8674 //-----------
  8675 // Long to Double conversion using V8 opcodes.
  8676 // Still useful because cheetah traps and becomes
  8677 // amazingly slow for some common numbers.
  8679 // Magic constant, 0x43300000
  8680 instruct loadConI_x43300000(iRegI dst) %{
  8681   effect(DEF dst);
  8682   size(4);
  8683   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8684   ins_encode(SetHi22(0x43300000, dst));
  8685   ins_pipe(ialu_none);
  8686 %}
  8688 // Magic constant, 0x41f00000
  8689 instruct loadConI_x41f00000(iRegI dst) %{
  8690   effect(DEF dst);
  8691   size(4);
  8692   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8693   ins_encode(SetHi22(0x41f00000, dst));
  8694   ins_pipe(ialu_none);
  8695 %}
  8697 // Construct a double from two float halves
  8698 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8699   effect(DEF dst, USE src1, USE src2);
  8700   size(8);
  8701   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8702             "FMOVS  $src2.lo,$dst.lo" %}
  8703   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8704   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8705   ins_pipe(faddD_reg_reg);
  8706 %}
  8708 // Convert integer in high half of a double register (in the lower half of
  8709 // the double register file) to double
  8710 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8711   effect(DEF dst, USE src);
  8712   size(4);
  8713   format %{ "FITOD  $src,$dst" %}
  8714   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8715   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8716   ins_pipe(fcvtLHi2D);
  8717 %}
  8719 // Add float double precision
  8720 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8721   effect(DEF dst, USE src1, USE src2);
  8722   size(4);
  8723   format %{ "FADDD  $src1,$src2,$dst" %}
  8724   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8725   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8726   ins_pipe(faddD_reg_reg);
  8727 %}
  8729 // Sub float double precision
  8730 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8731   effect(DEF dst, USE src1, USE src2);
  8732   size(4);
  8733   format %{ "FSUBD  $src1,$src2,$dst" %}
  8734   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8735   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8736   ins_pipe(faddD_reg_reg);
  8737 %}
  8739 // Mul float double precision
  8740 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8741   effect(DEF dst, USE src1, USE src2);
  8742   size(4);
  8743   format %{ "FMULD  $src1,$src2,$dst" %}
  8744   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8745   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8746   ins_pipe(fmulD_reg_reg);
  8747 %}
  8749 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8750   match(Set dst (ConvL2D src));
  8751   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8753   expand %{
  8754     regD_low   tmpsrc;
  8755     iRegI      ix43300000;
  8756     iRegI      ix41f00000;
  8757     stackSlotL lx43300000;
  8758     stackSlotL lx41f00000;
  8759     regD_low   dx43300000;
  8760     regD       dx41f00000;
  8761     regD       tmp1;
  8762     regD_low   tmp2;
  8763     regD       tmp3;
  8764     regD       tmp4;
  8766     stkL_to_regD(tmpsrc, src);
  8768     loadConI_x43300000(ix43300000);
  8769     loadConI_x41f00000(ix41f00000);
  8770     regI_to_stkLHi(lx43300000, ix43300000);
  8771     regI_to_stkLHi(lx41f00000, ix41f00000);
  8772     stkL_to_regD(dx43300000, lx43300000);
  8773     stkL_to_regD(dx41f00000, lx41f00000);
  8775     convI2D_regDHi_regD(tmp1, tmpsrc);
  8776     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8777     subD_regD_regD(tmp3, tmp2, dx43300000);
  8778     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8779     addD_regD_regD(dst, tmp3, tmp4);
  8780   %}
  8781 %}
  8783 // Long to Double conversion using fast fxtof
  8784 instruct convL2D_helper(regD dst, regD tmp) %{
  8785   effect(DEF dst, USE tmp);
  8786   size(4);
  8787   format %{ "FXTOD  $tmp,$dst" %}
  8788   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8789   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8790   ins_pipe(fcvtL2D);
  8791 %}
  8793 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8794   predicate(VM_Version::has_fast_fxtof());
  8795   match(Set dst (ConvL2D src));
  8796   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8797   expand %{
  8798     regD tmp;
  8799     stkL_to_regD(tmp, src);
  8800     convL2D_helper(dst, tmp);
  8801   %}
  8802 %}
  8804 instruct convL2D_reg(regD dst, iRegL src) %{
  8805   predicate(UseVIS >= 3);
  8806   match(Set dst (ConvL2D src));
  8807   expand %{
  8808     regD tmp;
  8809     MoveL2D_reg_reg(tmp, src);
  8810     convL2D_helper(dst, tmp);
  8811   %}
  8812 %}
  8814 // Long to Float conversion using fast fxtof
  8815 instruct convL2F_helper(regF dst, regD tmp) %{
  8816   effect(DEF dst, USE tmp);
  8817   size(4);
  8818   format %{ "FXTOS  $tmp,$dst" %}
  8819   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8820   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8821   ins_pipe(fcvtL2F);
  8822 %}
  8824 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8825   match(Set dst (ConvL2F src));
  8826   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8827   expand %{
  8828     regD tmp;
  8829     stkL_to_regD(tmp, src);
  8830     convL2F_helper(dst, tmp);
  8831   %}
  8832 %}
  8834 instruct convL2F_reg(regF dst, iRegL src) %{
  8835   predicate(UseVIS >= 3);
  8836   match(Set dst (ConvL2F src));
  8837   ins_cost(DEFAULT_COST);
  8838   expand %{
  8839     regD tmp;
  8840     MoveL2D_reg_reg(tmp, src);
  8841     convL2F_helper(dst, tmp);
  8842   %}
  8843 %}
  8845 //-----------
  8847 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8848   match(Set dst (ConvL2I src));
  8849 #ifndef _LP64
  8850   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8851   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8852   ins_pipe(ialu_move_reg_I_to_L);
  8853 #else
  8854   size(4);
  8855   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8856   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8857   ins_pipe(ialu_reg);
  8858 #endif
  8859 %}
  8861 // Register Shift Right Immediate
  8862 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8863   match(Set dst (ConvL2I (RShiftL src cnt)));
  8865   size(4);
  8866   format %{ "SRAX   $src,$cnt,$dst" %}
  8867   opcode(Assembler::srax_op3, Assembler::arith_op);
  8868   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8869   ins_pipe(ialu_reg_imm);
  8870 %}
  8872 //----------Control Flow Instructions------------------------------------------
  8873 // Compare Instructions
  8874 // Compare Integers
  8875 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8876   match(Set icc (CmpI op1 op2));
  8877   effect( DEF icc, USE op1, USE op2 );
  8879   size(4);
  8880   format %{ "CMP    $op1,$op2" %}
  8881   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8882   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8883   ins_pipe(ialu_cconly_reg_reg);
  8884 %}
  8886 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8887   match(Set icc (CmpU op1 op2));
  8889   size(4);
  8890   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8891   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8892   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8893   ins_pipe(ialu_cconly_reg_reg);
  8894 %}
  8896 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8897   match(Set icc (CmpI op1 op2));
  8898   effect( DEF icc, USE op1 );
  8900   size(4);
  8901   format %{ "CMP    $op1,$op2" %}
  8902   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8903   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8904   ins_pipe(ialu_cconly_reg_imm);
  8905 %}
  8907 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8908   match(Set icc (CmpI (AndI op1 op2) zero));
  8910   size(4);
  8911   format %{ "BTST   $op2,$op1" %}
  8912   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8913   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8914   ins_pipe(ialu_cconly_reg_reg_zero);
  8915 %}
  8917 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8918   match(Set icc (CmpI (AndI op1 op2) zero));
  8920   size(4);
  8921   format %{ "BTST   $op2,$op1" %}
  8922   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8923   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8924   ins_pipe(ialu_cconly_reg_imm_zero);
  8925 %}
  8927 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8928   match(Set xcc (CmpL op1 op2));
  8929   effect( DEF xcc, USE op1, USE op2 );
  8931   size(4);
  8932   format %{ "CMP    $op1,$op2\t\t! long" %}
  8933   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8934   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8935   ins_pipe(ialu_cconly_reg_reg);
  8936 %}
  8938 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8939   match(Set xcc (CmpL op1 con));
  8940   effect( DEF xcc, USE op1, USE con );
  8942   size(4);
  8943   format %{ "CMP    $op1,$con\t\t! long" %}
  8944   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8945   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8946   ins_pipe(ialu_cconly_reg_reg);
  8947 %}
  8949 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8950   match(Set xcc (CmpL (AndL op1 op2) zero));
  8951   effect( DEF xcc, USE op1, USE op2 );
  8953   size(4);
  8954   format %{ "BTST   $op1,$op2\t\t! long" %}
  8955   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8956   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8957   ins_pipe(ialu_cconly_reg_reg);
  8958 %}
  8960 // useful for checking the alignment of a pointer:
  8961 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8962   match(Set xcc (CmpL (AndL op1 con) zero));
  8963   effect( DEF xcc, USE op1, USE con );
  8965   size(4);
  8966   format %{ "BTST   $op1,$con\t\t! long" %}
  8967   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8968   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8969   ins_pipe(ialu_cconly_reg_reg);
  8970 %}
  8972 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8973   match(Set icc (CmpU op1 op2));
  8975   size(4);
  8976   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8977   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8978   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8979   ins_pipe(ialu_cconly_reg_imm);
  8980 %}
  8982 // Compare Pointers
  8983 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8984   match(Set pcc (CmpP op1 op2));
  8986   size(4);
  8987   format %{ "CMP    $op1,$op2\t! ptr" %}
  8988   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8989   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8990   ins_pipe(ialu_cconly_reg_reg);
  8991 %}
  8993 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8994   match(Set pcc (CmpP op1 op2));
  8996   size(4);
  8997   format %{ "CMP    $op1,$op2\t! ptr" %}
  8998   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8999   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9000   ins_pipe(ialu_cconly_reg_imm);
  9001 %}
  9003 // Compare Narrow oops
  9004 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9005   match(Set icc (CmpN op1 op2));
  9007   size(4);
  9008   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9009   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9010   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9011   ins_pipe(ialu_cconly_reg_reg);
  9012 %}
  9014 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9015   match(Set icc (CmpN op1 op2));
  9017   size(4);
  9018   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9019   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9020   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9021   ins_pipe(ialu_cconly_reg_imm);
  9022 %}
  9024 //----------Max and Min--------------------------------------------------------
  9025 // Min Instructions
  9026 // Conditional move for min
  9027 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9028   effect( USE_DEF op2, USE op1, USE icc );
  9030   size(4);
  9031   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9032   opcode(Assembler::less);
  9033   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9034   ins_pipe(ialu_reg_flags);
  9035 %}
  9037 // Min Register with Register.
  9038 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9039   match(Set op2 (MinI op1 op2));
  9040   ins_cost(DEFAULT_COST*2);
  9041   expand %{
  9042     flagsReg icc;
  9043     compI_iReg(icc,op1,op2);
  9044     cmovI_reg_lt(op2,op1,icc);
  9045   %}
  9046 %}
  9048 // Max Instructions
  9049 // Conditional move for max
  9050 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9051   effect( USE_DEF op2, USE op1, USE icc );
  9052   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9053   opcode(Assembler::greater);
  9054   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9055   ins_pipe(ialu_reg_flags);
  9056 %}
  9058 // Max Register with Register
  9059 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9060   match(Set op2 (MaxI op1 op2));
  9061   ins_cost(DEFAULT_COST*2);
  9062   expand %{
  9063     flagsReg icc;
  9064     compI_iReg(icc,op1,op2);
  9065     cmovI_reg_gt(op2,op1,icc);
  9066   %}
  9067 %}
  9070 //----------Float Compares----------------------------------------------------
  9071 // Compare floating, generate condition code
  9072 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9073   match(Set fcc (CmpF src1 src2));
  9075   size(4);
  9076   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9077   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9078   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9079   ins_pipe(faddF_fcc_reg_reg_zero);
  9080 %}
  9082 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9083   match(Set fcc (CmpD src1 src2));
  9085   size(4);
  9086   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9087   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9088   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9089   ins_pipe(faddD_fcc_reg_reg_zero);
  9090 %}
  9093 // Compare floating, generate -1,0,1
  9094 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9095   match(Set dst (CmpF3 src1 src2));
  9096   effect(KILL fcc0);
  9097   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9098   format %{ "fcmpl  $dst,$src1,$src2" %}
  9099   // Primary = float
  9100   opcode( true );
  9101   ins_encode( floating_cmp( dst, src1, src2 ) );
  9102   ins_pipe( floating_cmp );
  9103 %}
  9105 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9106   match(Set dst (CmpD3 src1 src2));
  9107   effect(KILL fcc0);
  9108   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9109   format %{ "dcmpl  $dst,$src1,$src2" %}
  9110   // Primary = double (not float)
  9111   opcode( false );
  9112   ins_encode( floating_cmp( dst, src1, src2 ) );
  9113   ins_pipe( floating_cmp );
  9114 %}
  9116 //----------Branches---------------------------------------------------------
  9117 // Jump
  9118 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9119 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9120   match(Jump switch_val);
  9121   effect(TEMP table);
  9123   ins_cost(350);
  9125   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9126              "LD     [O7 + $switch_val], O7\n\t"
  9127              "JUMP   O7" %}
  9128   ins_encode %{
  9129     // Calculate table address into a register.
  9130     Register table_reg;
  9131     Register label_reg = O7;
  9132     // If we are calculating the size of this instruction don't trust
  9133     // zero offsets because they might change when
  9134     // MachConstantBaseNode decides to optimize the constant table
  9135     // base.
  9136     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9137       table_reg = $constanttablebase;
  9138     } else {
  9139       table_reg = O7;
  9140       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9141       __ add($constanttablebase, con_offset, table_reg);
  9144     // Jump to base address + switch value
  9145     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9146     __ jmp(label_reg, G0);
  9147     __ delayed()->nop();
  9148   %}
  9149   ins_pipe(ialu_reg_reg);
  9150 %}
  9152 // Direct Branch.  Use V8 version with longer range.
  9153 instruct branch(label labl) %{
  9154   match(Goto);
  9155   effect(USE labl);
  9157   size(8);
  9158   ins_cost(BRANCH_COST);
  9159   format %{ "BA     $labl" %}
  9160   ins_encode %{
  9161     Label* L = $labl$$label;
  9162     __ ba(*L);
  9163     __ delayed()->nop();
  9164   %}
  9165   ins_pipe(br);
  9166 %}
  9168 // Direct Branch, short with no delay slot
  9169 instruct branch_short(label labl) %{
  9170   match(Goto);
  9171   predicate(UseCBCond);
  9172   effect(USE labl);
  9174   size(4);
  9175   ins_cost(BRANCH_COST);
  9176   format %{ "BA     $labl\t! short branch" %}
  9177   ins_encode %{
  9178     Label* L = $labl$$label;
  9179     assert(__ use_cbcond(*L), "back to back cbcond");
  9180     __ ba_short(*L);
  9181   %}
  9182   ins_short_branch(1);
  9183   ins_avoid_back_to_back(1);
  9184   ins_pipe(cbcond_reg_imm);
  9185 %}
  9187 // Conditional Direct Branch
  9188 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9189   match(If cmp icc);
  9190   effect(USE labl);
  9192   size(8);
  9193   ins_cost(BRANCH_COST);
  9194   format %{ "BP$cmp   $icc,$labl" %}
  9195   // Prim = bits 24-22, Secnd = bits 31-30
  9196   ins_encode( enc_bp( labl, cmp, icc ) );
  9197   ins_pipe(br_cc);
  9198 %}
  9200 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9201   match(If cmp icc);
  9202   effect(USE labl);
  9204   ins_cost(BRANCH_COST);
  9205   format %{ "BP$cmp  $icc,$labl" %}
  9206   // Prim = bits 24-22, Secnd = bits 31-30
  9207   ins_encode( enc_bp( labl, cmp, icc ) );
  9208   ins_pipe(br_cc);
  9209 %}
  9211 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9212   match(If cmp pcc);
  9213   effect(USE labl);
  9215   size(8);
  9216   ins_cost(BRANCH_COST);
  9217   format %{ "BP$cmp  $pcc,$labl" %}
  9218   ins_encode %{
  9219     Label* L = $labl$$label;
  9220     Assembler::Predict predict_taken =
  9221       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9223     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9224     __ delayed()->nop();
  9225   %}
  9226   ins_pipe(br_cc);
  9227 %}
  9229 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9230   match(If cmp fcc);
  9231   effect(USE labl);
  9233   size(8);
  9234   ins_cost(BRANCH_COST);
  9235   format %{ "FBP$cmp $fcc,$labl" %}
  9236   ins_encode %{
  9237     Label* L = $labl$$label;
  9238     Assembler::Predict predict_taken =
  9239       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9241     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9242     __ delayed()->nop();
  9243   %}
  9244   ins_pipe(br_fcc);
  9245 %}
  9247 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9248   match(CountedLoopEnd cmp icc);
  9249   effect(USE labl);
  9251   size(8);
  9252   ins_cost(BRANCH_COST);
  9253   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9254   // Prim = bits 24-22, Secnd = bits 31-30
  9255   ins_encode( enc_bp( labl, cmp, icc ) );
  9256   ins_pipe(br_cc);
  9257 %}
  9259 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9260   match(CountedLoopEnd cmp icc);
  9261   effect(USE labl);
  9263   size(8);
  9264   ins_cost(BRANCH_COST);
  9265   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9266   // Prim = bits 24-22, Secnd = bits 31-30
  9267   ins_encode( enc_bp( labl, cmp, icc ) );
  9268   ins_pipe(br_cc);
  9269 %}
  9271 // Compare and branch instructions
  9272 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9273   match(If cmp (CmpI op1 op2));
  9274   effect(USE labl, KILL icc);
  9276   size(12);
  9277   ins_cost(BRANCH_COST);
  9278   format %{ "CMP    $op1,$op2\t! int\n\t"
  9279             "BP$cmp   $labl" %}
  9280   ins_encode %{
  9281     Label* L = $labl$$label;
  9282     Assembler::Predict predict_taken =
  9283       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9284     __ cmp($op1$$Register, $op2$$Register);
  9285     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9286     __ delayed()->nop();
  9287   %}
  9288   ins_pipe(cmp_br_reg_reg);
  9289 %}
  9291 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9292   match(If cmp (CmpI op1 op2));
  9293   effect(USE labl, KILL icc);
  9295   size(12);
  9296   ins_cost(BRANCH_COST);
  9297   format %{ "CMP    $op1,$op2\t! int\n\t"
  9298             "BP$cmp   $labl" %}
  9299   ins_encode %{
  9300     Label* L = $labl$$label;
  9301     Assembler::Predict predict_taken =
  9302       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9303     __ cmp($op1$$Register, $op2$$constant);
  9304     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9305     __ delayed()->nop();
  9306   %}
  9307   ins_pipe(cmp_br_reg_imm);
  9308 %}
  9310 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9311   match(If cmp (CmpU op1 op2));
  9312   effect(USE labl, KILL icc);
  9314   size(12);
  9315   ins_cost(BRANCH_COST);
  9316   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9317             "BP$cmp  $labl" %}
  9318   ins_encode %{
  9319     Label* L = $labl$$label;
  9320     Assembler::Predict predict_taken =
  9321       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9322     __ cmp($op1$$Register, $op2$$Register);
  9323     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9324     __ delayed()->nop();
  9325   %}
  9326   ins_pipe(cmp_br_reg_reg);
  9327 %}
  9329 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9330   match(If cmp (CmpU op1 op2));
  9331   effect(USE labl, KILL icc);
  9333   size(12);
  9334   ins_cost(BRANCH_COST);
  9335   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9336             "BP$cmp  $labl" %}
  9337   ins_encode %{
  9338     Label* L = $labl$$label;
  9339     Assembler::Predict predict_taken =
  9340       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9341     __ cmp($op1$$Register, $op2$$constant);
  9342     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9343     __ delayed()->nop();
  9344   %}
  9345   ins_pipe(cmp_br_reg_imm);
  9346 %}
  9348 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9349   match(If cmp (CmpL op1 op2));
  9350   effect(USE labl, KILL xcc);
  9352   size(12);
  9353   ins_cost(BRANCH_COST);
  9354   format %{ "CMP    $op1,$op2\t! long\n\t"
  9355             "BP$cmp   $labl" %}
  9356   ins_encode %{
  9357     Label* L = $labl$$label;
  9358     Assembler::Predict predict_taken =
  9359       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9360     __ cmp($op1$$Register, $op2$$Register);
  9361     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9362     __ delayed()->nop();
  9363   %}
  9364   ins_pipe(cmp_br_reg_reg);
  9365 %}
  9367 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9368   match(If cmp (CmpL op1 op2));
  9369   effect(USE labl, KILL xcc);
  9371   size(12);
  9372   ins_cost(BRANCH_COST);
  9373   format %{ "CMP    $op1,$op2\t! long\n\t"
  9374             "BP$cmp   $labl" %}
  9375   ins_encode %{
  9376     Label* L = $labl$$label;
  9377     Assembler::Predict predict_taken =
  9378       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9379     __ cmp($op1$$Register, $op2$$constant);
  9380     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9381     __ delayed()->nop();
  9382   %}
  9383   ins_pipe(cmp_br_reg_imm);
  9384 %}
  9386 // Compare Pointers and branch
  9387 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9388   match(If cmp (CmpP op1 op2));
  9389   effect(USE labl, KILL pcc);
  9391   size(12);
  9392   ins_cost(BRANCH_COST);
  9393   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9394             "B$cmp   $labl" %}
  9395   ins_encode %{
  9396     Label* L = $labl$$label;
  9397     Assembler::Predict predict_taken =
  9398       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9399     __ cmp($op1$$Register, $op2$$Register);
  9400     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9401     __ delayed()->nop();
  9402   %}
  9403   ins_pipe(cmp_br_reg_reg);
  9404 %}
  9406 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9407   match(If cmp (CmpP op1 null));
  9408   effect(USE labl, KILL pcc);
  9410   size(12);
  9411   ins_cost(BRANCH_COST);
  9412   format %{ "CMP    $op1,0\t! ptr\n\t"
  9413             "B$cmp   $labl" %}
  9414   ins_encode %{
  9415     Label* L = $labl$$label;
  9416     Assembler::Predict predict_taken =
  9417       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9418     __ cmp($op1$$Register, G0);
  9419     // bpr() is not used here since it has shorter distance.
  9420     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9421     __ delayed()->nop();
  9422   %}
  9423   ins_pipe(cmp_br_reg_reg);
  9424 %}
  9426 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9427   match(If cmp (CmpN op1 op2));
  9428   effect(USE labl, KILL icc);
  9430   size(12);
  9431   ins_cost(BRANCH_COST);
  9432   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9433             "BP$cmp   $labl" %}
  9434   ins_encode %{
  9435     Label* L = $labl$$label;
  9436     Assembler::Predict predict_taken =
  9437       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9438     __ cmp($op1$$Register, $op2$$Register);
  9439     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9440     __ delayed()->nop();
  9441   %}
  9442   ins_pipe(cmp_br_reg_reg);
  9443 %}
  9445 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9446   match(If cmp (CmpN op1 null));
  9447   effect(USE labl, KILL icc);
  9449   size(12);
  9450   ins_cost(BRANCH_COST);
  9451   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9452             "BP$cmp   $labl" %}
  9453   ins_encode %{
  9454     Label* L = $labl$$label;
  9455     Assembler::Predict predict_taken =
  9456       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9457     __ cmp($op1$$Register, G0);
  9458     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9459     __ delayed()->nop();
  9460   %}
  9461   ins_pipe(cmp_br_reg_reg);
  9462 %}
  9464 // Loop back branch
  9465 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9466   match(CountedLoopEnd cmp (CmpI op1 op2));
  9467   effect(USE labl, KILL icc);
  9469   size(12);
  9470   ins_cost(BRANCH_COST);
  9471   format %{ "CMP    $op1,$op2\t! int\n\t"
  9472             "BP$cmp   $labl\t! Loop end" %}
  9473   ins_encode %{
  9474     Label* L = $labl$$label;
  9475     Assembler::Predict predict_taken =
  9476       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9477     __ cmp($op1$$Register, $op2$$Register);
  9478     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9479     __ delayed()->nop();
  9480   %}
  9481   ins_pipe(cmp_br_reg_reg);
  9482 %}
  9484 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9485   match(CountedLoopEnd cmp (CmpI op1 op2));
  9486   effect(USE labl, KILL icc);
  9488   size(12);
  9489   ins_cost(BRANCH_COST);
  9490   format %{ "CMP    $op1,$op2\t! int\n\t"
  9491             "BP$cmp   $labl\t! Loop end" %}
  9492   ins_encode %{
  9493     Label* L = $labl$$label;
  9494     Assembler::Predict predict_taken =
  9495       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9496     __ cmp($op1$$Register, $op2$$constant);
  9497     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9498     __ delayed()->nop();
  9499   %}
  9500   ins_pipe(cmp_br_reg_imm);
  9501 %}
  9503 // Short compare and branch instructions
  9504 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9505   match(If cmp (CmpI op1 op2));
  9506   predicate(UseCBCond);
  9507   effect(USE labl, KILL icc);
  9509   size(4);
  9510   ins_cost(BRANCH_COST);
  9511   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9512   ins_encode %{
  9513     Label* L = $labl$$label;
  9514     assert(__ use_cbcond(*L), "back to back cbcond");
  9515     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9516   %}
  9517   ins_short_branch(1);
  9518   ins_avoid_back_to_back(1);
  9519   ins_pipe(cbcond_reg_reg);
  9520 %}
  9522 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9523   match(If cmp (CmpI op1 op2));
  9524   predicate(UseCBCond);
  9525   effect(USE labl, KILL icc);
  9527   size(4);
  9528   ins_cost(BRANCH_COST);
  9529   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9530   ins_encode %{
  9531     Label* L = $labl$$label;
  9532     assert(__ use_cbcond(*L), "back to back cbcond");
  9533     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9534   %}
  9535   ins_short_branch(1);
  9536   ins_avoid_back_to_back(1);
  9537   ins_pipe(cbcond_reg_imm);
  9538 %}
  9540 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9541   match(If cmp (CmpU op1 op2));
  9542   predicate(UseCBCond);
  9543   effect(USE labl, KILL icc);
  9545   size(4);
  9546   ins_cost(BRANCH_COST);
  9547   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9548   ins_encode %{
  9549     Label* L = $labl$$label;
  9550     assert(__ use_cbcond(*L), "back to back cbcond");
  9551     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9552   %}
  9553   ins_short_branch(1);
  9554   ins_avoid_back_to_back(1);
  9555   ins_pipe(cbcond_reg_reg);
  9556 %}
  9558 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9559   match(If cmp (CmpU op1 op2));
  9560   predicate(UseCBCond);
  9561   effect(USE labl, KILL icc);
  9563   size(4);
  9564   ins_cost(BRANCH_COST);
  9565   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9566   ins_encode %{
  9567     Label* L = $labl$$label;
  9568     assert(__ use_cbcond(*L), "back to back cbcond");
  9569     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9570   %}
  9571   ins_short_branch(1);
  9572   ins_avoid_back_to_back(1);
  9573   ins_pipe(cbcond_reg_imm);
  9574 %}
  9576 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9577   match(If cmp (CmpL op1 op2));
  9578   predicate(UseCBCond);
  9579   effect(USE labl, KILL xcc);
  9581   size(4);
  9582   ins_cost(BRANCH_COST);
  9583   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9584   ins_encode %{
  9585     Label* L = $labl$$label;
  9586     assert(__ use_cbcond(*L), "back to back cbcond");
  9587     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9588   %}
  9589   ins_short_branch(1);
  9590   ins_avoid_back_to_back(1);
  9591   ins_pipe(cbcond_reg_reg);
  9592 %}
  9594 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9595   match(If cmp (CmpL op1 op2));
  9596   predicate(UseCBCond);
  9597   effect(USE labl, KILL xcc);
  9599   size(4);
  9600   ins_cost(BRANCH_COST);
  9601   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9602   ins_encode %{
  9603     Label* L = $labl$$label;
  9604     assert(__ use_cbcond(*L), "back to back cbcond");
  9605     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9606   %}
  9607   ins_short_branch(1);
  9608   ins_avoid_back_to_back(1);
  9609   ins_pipe(cbcond_reg_imm);
  9610 %}
  9612 // Compare Pointers and branch
  9613 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9614   match(If cmp (CmpP op1 op2));
  9615   predicate(UseCBCond);
  9616   effect(USE labl, KILL pcc);
  9618   size(4);
  9619   ins_cost(BRANCH_COST);
  9620 #ifdef _LP64
  9621   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9622 #else
  9623   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9624 #endif
  9625   ins_encode %{
  9626     Label* L = $labl$$label;
  9627     assert(__ use_cbcond(*L), "back to back cbcond");
  9628     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9629   %}
  9630   ins_short_branch(1);
  9631   ins_avoid_back_to_back(1);
  9632   ins_pipe(cbcond_reg_reg);
  9633 %}
  9635 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9636   match(If cmp (CmpP op1 null));
  9637   predicate(UseCBCond);
  9638   effect(USE labl, KILL pcc);
  9640   size(4);
  9641   ins_cost(BRANCH_COST);
  9642 #ifdef _LP64
  9643   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9644 #else
  9645   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9646 #endif
  9647   ins_encode %{
  9648     Label* L = $labl$$label;
  9649     assert(__ use_cbcond(*L), "back to back cbcond");
  9650     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9651   %}
  9652   ins_short_branch(1);
  9653   ins_avoid_back_to_back(1);
  9654   ins_pipe(cbcond_reg_reg);
  9655 %}
  9657 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9658   match(If cmp (CmpN op1 op2));
  9659   predicate(UseCBCond);
  9660   effect(USE labl, KILL icc);
  9662   size(4);
  9663   ins_cost(BRANCH_COST);
  9664   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9665   ins_encode %{
  9666     Label* L = $labl$$label;
  9667     assert(__ use_cbcond(*L), "back to back cbcond");
  9668     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9669   %}
  9670   ins_short_branch(1);
  9671   ins_avoid_back_to_back(1);
  9672   ins_pipe(cbcond_reg_reg);
  9673 %}
  9675 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9676   match(If cmp (CmpN op1 null));
  9677   predicate(UseCBCond);
  9678   effect(USE labl, KILL icc);
  9680   size(4);
  9681   ins_cost(BRANCH_COST);
  9682   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9683   ins_encode %{
  9684     Label* L = $labl$$label;
  9685     assert(__ use_cbcond(*L), "back to back cbcond");
  9686     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9687   %}
  9688   ins_short_branch(1);
  9689   ins_avoid_back_to_back(1);
  9690   ins_pipe(cbcond_reg_reg);
  9691 %}
  9693 // Loop back branch
  9694 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9695   match(CountedLoopEnd cmp (CmpI op1 op2));
  9696   predicate(UseCBCond);
  9697   effect(USE labl, KILL icc);
  9699   size(4);
  9700   ins_cost(BRANCH_COST);
  9701   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9702   ins_encode %{
  9703     Label* L = $labl$$label;
  9704     assert(__ use_cbcond(*L), "back to back cbcond");
  9705     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9706   %}
  9707   ins_short_branch(1);
  9708   ins_avoid_back_to_back(1);
  9709   ins_pipe(cbcond_reg_reg);
  9710 %}
  9712 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9713   match(CountedLoopEnd cmp (CmpI op1 op2));
  9714   predicate(UseCBCond);
  9715   effect(USE labl, KILL icc);
  9717   size(4);
  9718   ins_cost(BRANCH_COST);
  9719   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9720   ins_encode %{
  9721     Label* L = $labl$$label;
  9722     assert(__ use_cbcond(*L), "back to back cbcond");
  9723     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9724   %}
  9725   ins_short_branch(1);
  9726   ins_avoid_back_to_back(1);
  9727   ins_pipe(cbcond_reg_imm);
  9728 %}
  9730 // Branch-on-register tests all 64 bits.  We assume that values
  9731 // in 64-bit registers always remains zero or sign extended
  9732 // unless our code munges the high bits.  Interrupts can chop
  9733 // the high order bits to zero or sign at any time.
  9734 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9735   match(If cmp (CmpI op1 zero));
  9736   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9737   effect(USE labl);
  9739   size(8);
  9740   ins_cost(BRANCH_COST);
  9741   format %{ "BR$cmp   $op1,$labl" %}
  9742   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9743   ins_pipe(br_reg);
  9744 %}
  9746 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9747   match(If cmp (CmpP op1 null));
  9748   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9749   effect(USE labl);
  9751   size(8);
  9752   ins_cost(BRANCH_COST);
  9753   format %{ "BR$cmp   $op1,$labl" %}
  9754   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9755   ins_pipe(br_reg);
  9756 %}
  9758 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9759   match(If cmp (CmpL op1 zero));
  9760   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9761   effect(USE labl);
  9763   size(8);
  9764   ins_cost(BRANCH_COST);
  9765   format %{ "BR$cmp   $op1,$labl" %}
  9766   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9767   ins_pipe(br_reg);
  9768 %}
  9771 // ============================================================================
  9772 // Long Compare
  9773 //
  9774 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9775 // is tricky.  The flavor of compare used depends on whether we are testing
  9776 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9777 // The GE test is the negated LT test.  The LE test can be had by commuting
  9778 // the operands (yielding a GE test) and then negating; negate again for the
  9779 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9780 // NE test is negated from that.
  9782 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9783 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9784 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9785 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9786 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9787 // foo match ends up with the wrong leaf.  One fix is to not match both
  9788 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9789 // both forms beat the trinary form of long-compare and both are very useful
  9790 // on Intel which has so few registers.
  9792 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9793   match(If cmp xcc);
  9794   effect(USE labl);
  9796   size(8);
  9797   ins_cost(BRANCH_COST);
  9798   format %{ "BP$cmp   $xcc,$labl" %}
  9799   ins_encode %{
  9800     Label* L = $labl$$label;
  9801     Assembler::Predict predict_taken =
  9802       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9804     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9805     __ delayed()->nop();
  9806   %}
  9807   ins_pipe(br_cc);
  9808 %}
  9810 // Manifest a CmpL3 result in an integer register.  Very painful.
  9811 // This is the test to avoid.
  9812 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9813   match(Set dst (CmpL3 src1 src2) );
  9814   effect( KILL ccr );
  9815   ins_cost(6*DEFAULT_COST);
  9816   size(24);
  9817   format %{ "CMP    $src1,$src2\t\t! long\n"
  9818           "\tBLT,a,pn done\n"
  9819           "\tMOV    -1,$dst\t! delay slot\n"
  9820           "\tBGT,a,pn done\n"
  9821           "\tMOV    1,$dst\t! delay slot\n"
  9822           "\tCLR    $dst\n"
  9823     "done:"     %}
  9824   ins_encode( cmpl_flag(src1,src2,dst) );
  9825   ins_pipe(cmpL_reg);
  9826 %}
  9828 // Conditional move
  9829 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9830   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9831   ins_cost(150);
  9832   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9833   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9834   ins_pipe(ialu_reg);
  9835 %}
  9837 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9838   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9839   ins_cost(140);
  9840   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9841   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9842   ins_pipe(ialu_imm);
  9843 %}
  9845 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9846   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9847   ins_cost(150);
  9848   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9849   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9850   ins_pipe(ialu_reg);
  9851 %}
  9853 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9854   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9855   ins_cost(140);
  9856   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9857   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9858   ins_pipe(ialu_imm);
  9859 %}
  9861 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9862   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9863   ins_cost(150);
  9864   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9865   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9866   ins_pipe(ialu_reg);
  9867 %}
  9869 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9870   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9871   ins_cost(150);
  9872   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9873   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9874   ins_pipe(ialu_reg);
  9875 %}
  9877 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9878   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9879   ins_cost(140);
  9880   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9881   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9882   ins_pipe(ialu_imm);
  9883 %}
  9885 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9886   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9887   ins_cost(150);
  9888   opcode(0x101);
  9889   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9890   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9891   ins_pipe(int_conditional_float_move);
  9892 %}
  9894 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9895   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9896   ins_cost(150);
  9897   opcode(0x102);
  9898   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9899   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9900   ins_pipe(int_conditional_float_move);
  9901 %}
  9903 // ============================================================================
  9904 // Safepoint Instruction
  9905 instruct safePoint_poll(iRegP poll) %{
  9906   match(SafePoint poll);
  9907   effect(USE poll);
  9909   size(4);
  9910 #ifdef _LP64
  9911   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9912 #else
  9913   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9914 #endif
  9915   ins_encode %{
  9916     __ relocate(relocInfo::poll_type);
  9917     __ ld_ptr($poll$$Register, 0, G0);
  9918   %}
  9919   ins_pipe(loadPollP);
  9920 %}
  9922 // ============================================================================
  9923 // Call Instructions
  9924 // Call Java Static Instruction
  9925 instruct CallStaticJavaDirect( method meth ) %{
  9926   match(CallStaticJava);
  9927   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9928   effect(USE meth);
  9930   size(8);
  9931   ins_cost(CALL_COST);
  9932   format %{ "CALL,static  ; NOP ==> " %}
  9933   ins_encode( Java_Static_Call( meth ), call_epilog );
  9934   ins_pipe(simple_call);
  9935 %}
  9937 // Call Java Static Instruction (method handle version)
  9938 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9939   match(CallStaticJava);
  9940   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9941   effect(USE meth, KILL l7_mh_SP_save);
  9943   size(16);
  9944   ins_cost(CALL_COST);
  9945   format %{ "CALL,static/MethodHandle" %}
  9946   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9947   ins_pipe(simple_call);
  9948 %}
  9950 // Call Java Dynamic Instruction
  9951 instruct CallDynamicJavaDirect( method meth ) %{
  9952   match(CallDynamicJava);
  9953   effect(USE meth);
  9955   ins_cost(CALL_COST);
  9956   format %{ "SET    (empty),R_G5\n\t"
  9957             "CALL,dynamic  ; NOP ==> " %}
  9958   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9959   ins_pipe(call);
  9960 %}
  9962 // Call Runtime Instruction
  9963 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9964   match(CallRuntime);
  9965   effect(USE meth, KILL l7);
  9966   ins_cost(CALL_COST);
  9967   format %{ "CALL,runtime" %}
  9968   ins_encode( Java_To_Runtime( meth ),
  9969               call_epilog, adjust_long_from_native_call );
  9970   ins_pipe(simple_call);
  9971 %}
  9973 // Call runtime without safepoint - same as CallRuntime
  9974 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9975   match(CallLeaf);
  9976   effect(USE meth, KILL l7);
  9977   ins_cost(CALL_COST);
  9978   format %{ "CALL,runtime leaf" %}
  9979   ins_encode( Java_To_Runtime( meth ),
  9980               call_epilog,
  9981               adjust_long_from_native_call );
  9982   ins_pipe(simple_call);
  9983 %}
  9985 // Call runtime without safepoint - same as CallLeaf
  9986 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9987   match(CallLeafNoFP);
  9988   effect(USE meth, KILL l7);
  9989   ins_cost(CALL_COST);
  9990   format %{ "CALL,runtime leaf nofp" %}
  9991   ins_encode( Java_To_Runtime( meth ),
  9992               call_epilog,
  9993               adjust_long_from_native_call );
  9994   ins_pipe(simple_call);
  9995 %}
  9997 // Tail Call; Jump from runtime stub to Java code.
  9998 // Also known as an 'interprocedural jump'.
  9999 // Target of jump will eventually return to caller.
 10000 // TailJump below removes the return address.
 10001 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10002   match(TailCall jump_target method_oop );
 10004   ins_cost(CALL_COST);
 10005   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10006   ins_encode(form_jmpl(jump_target));
 10007   ins_pipe(tail_call);
 10008 %}
 10011 // Return Instruction
 10012 instruct Ret() %{
 10013   match(Return);
 10015   // The epilogue node did the ret already.
 10016   size(0);
 10017   format %{ "! return" %}
 10018   ins_encode();
 10019   ins_pipe(empty);
 10020 %}
 10023 // Tail Jump; remove the return address; jump to target.
 10024 // TailCall above leaves the return address around.
 10025 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10026 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10027 // "restore" before this instruction (in Epilogue), we need to materialize it
 10028 // in %i0.
 10029 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10030   match( TailJump jump_target ex_oop );
 10031   ins_cost(CALL_COST);
 10032   format %{ "! discard R_O7\n\t"
 10033             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10034   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10035   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10036   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10037   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10038   ins_pipe(tail_call);
 10039 %}
 10041 // Create exception oop: created by stack-crawling runtime code.
 10042 // Created exception is now available to this handler, and is setup
 10043 // just prior to jumping to this handler.  No code emitted.
 10044 instruct CreateException( o0RegP ex_oop )
 10045 %{
 10046   match(Set ex_oop (CreateEx));
 10047   ins_cost(0);
 10049   size(0);
 10050   // use the following format syntax
 10051   format %{ "! exception oop is in R_O0; no code emitted" %}
 10052   ins_encode();
 10053   ins_pipe(empty);
 10054 %}
 10057 // Rethrow exception:
 10058 // The exception oop will come in the first argument position.
 10059 // Then JUMP (not call) to the rethrow stub code.
 10060 instruct RethrowException()
 10061 %{
 10062   match(Rethrow);
 10063   ins_cost(CALL_COST);
 10065   // use the following format syntax
 10066   format %{ "Jmp    rethrow_stub" %}
 10067   ins_encode(enc_rethrow);
 10068   ins_pipe(tail_call);
 10069 %}
 10072 // Die now
 10073 instruct ShouldNotReachHere( )
 10074 %{
 10075   match(Halt);
 10076   ins_cost(CALL_COST);
 10078   size(4);
 10079   // Use the following format syntax
 10080   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10081   ins_encode( form2_illtrap() );
 10082   ins_pipe(tail_call);
 10083 %}
 10085 // ============================================================================
 10086 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10087 // array for an instance of the superklass.  Set a hidden internal cache on a
 10088 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10089 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10090 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10091   match(Set index (PartialSubtypeCheck sub super));
 10092   effect( KILL pcc, KILL o7 );
 10093   ins_cost(DEFAULT_COST*10);
 10094   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10095   ins_encode( enc_PartialSubtypeCheck() );
 10096   ins_pipe(partial_subtype_check_pipe);
 10097 %}
 10099 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10100   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10101   effect( KILL idx, KILL o7 );
 10102   ins_cost(DEFAULT_COST*10);
 10103   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10104   ins_encode( enc_PartialSubtypeCheck() );
 10105   ins_pipe(partial_subtype_check_pipe);
 10106 %}
 10109 // ============================================================================
 10110 // inlined locking and unlocking
 10112 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10113   match(Set pcc (FastLock object box));
 10115   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10116   ins_cost(100);
 10118   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10119   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10120   ins_pipe(long_memory_op);
 10121 %}
 10124 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10125   match(Set pcc (FastUnlock object box));
 10126   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10127   ins_cost(100);
 10129   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10130   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10131   ins_pipe(long_memory_op);
 10132 %}
 10134 // The encodings are generic.
 10135 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10136   predicate(!use_block_zeroing(n->in(2)) );
 10137   match(Set dummy (ClearArray cnt base));
 10138   effect(TEMP temp, KILL ccr);
 10139   ins_cost(300);
 10140   format %{ "MOV    $cnt,$temp\n"
 10141     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10142     "        BRge   loop\t\t! Clearing loop\n"
 10143     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10145   ins_encode %{
 10146     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10147     Register nof_bytes_arg    = $cnt$$Register;
 10148     Register nof_bytes_tmp    = $temp$$Register;
 10149     Register base_pointer_arg = $base$$Register;
 10151     Label loop;
 10152     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10154     // Loop and clear, walking backwards through the array.
 10155     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10156     __ bind(loop);
 10157     __ deccc(nof_bytes_tmp, 8);
 10158     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10159     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10160     // %%%% this mini-loop must not cross a cache boundary!
 10161   %}
 10162   ins_pipe(long_memory_op);
 10163 %}
 10165 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10166   predicate(use_block_zeroing(n->in(2)));
 10167   match(Set dummy (ClearArray cnt base));
 10168   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10169   ins_cost(300);
 10170   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10172   ins_encode %{
 10174     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10175     Register to    = $base$$Register;
 10176     Register count = $cnt$$Register;
 10178     Label Ldone;
 10179     __ nop(); // Separate short branches
 10180     // Use BIS for zeroing (temp is not used).
 10181     __ bis_zeroing(to, count, G0, Ldone);
 10182     __ bind(Ldone);
 10184   %}
 10185   ins_pipe(long_memory_op);
 10186 %}
 10188 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10189   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10190   match(Set dummy (ClearArray cnt base));
 10191   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10192   ins_cost(300);
 10193   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10195   ins_encode %{
 10197     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10198     Register to    = $base$$Register;
 10199     Register count = $cnt$$Register;
 10200     Register temp  = $tmp$$Register;
 10202     Label Ldone;
 10203     __ nop(); // Separate short branches
 10204     // Use BIS for zeroing
 10205     __ bis_zeroing(to, count, temp, Ldone);
 10206     __ bind(Ldone);
 10208   %}
 10209   ins_pipe(long_memory_op);
 10210 %}
 10212 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10213                         o7RegI tmp, flagsReg ccr) %{
 10214   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10215   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10216   ins_cost(300);
 10217   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10218   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10219   ins_pipe(long_memory_op);
 10220 %}
 10222 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10223                        o7RegI tmp, flagsReg ccr) %{
 10224   match(Set result (StrEquals (Binary str1 str2) cnt));
 10225   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10226   ins_cost(300);
 10227   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10228   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10229   ins_pipe(long_memory_op);
 10230 %}
 10232 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10233                       o7RegI tmp2, flagsReg ccr) %{
 10234   match(Set result (AryEq ary1 ary2));
 10235   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10236   ins_cost(300);
 10237   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10238   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10239   ins_pipe(long_memory_op);
 10240 %}
 10243 //---------- Zeros Count Instructions ------------------------------------------
 10245 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10246   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10247   match(Set dst (CountLeadingZerosI src));
 10248   effect(TEMP dst, TEMP tmp, KILL cr);
 10250   // x |= (x >> 1);
 10251   // x |= (x >> 2);
 10252   // x |= (x >> 4);
 10253   // x |= (x >> 8);
 10254   // x |= (x >> 16);
 10255   // return (WORDBITS - popc(x));
 10256   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10257             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10258             "OR      $dst,$tmp,$dst\n\t"
 10259             "SRL     $dst,2,$tmp\n\t"
 10260             "OR      $dst,$tmp,$dst\n\t"
 10261             "SRL     $dst,4,$tmp\n\t"
 10262             "OR      $dst,$tmp,$dst\n\t"
 10263             "SRL     $dst,8,$tmp\n\t"
 10264             "OR      $dst,$tmp,$dst\n\t"
 10265             "SRL     $dst,16,$tmp\n\t"
 10266             "OR      $dst,$tmp,$dst\n\t"
 10267             "POPC    $dst,$dst\n\t"
 10268             "MOV     32,$tmp\n\t"
 10269             "SUB     $tmp,$dst,$dst" %}
 10270   ins_encode %{
 10271     Register Rdst = $dst$$Register;
 10272     Register Rsrc = $src$$Register;
 10273     Register Rtmp = $tmp$$Register;
 10274     __ srl(Rsrc, 1,    Rtmp);
 10275     __ srl(Rsrc, 0,    Rdst);
 10276     __ or3(Rdst, Rtmp, Rdst);
 10277     __ srl(Rdst, 2,    Rtmp);
 10278     __ or3(Rdst, Rtmp, Rdst);
 10279     __ srl(Rdst, 4,    Rtmp);
 10280     __ or3(Rdst, Rtmp, Rdst);
 10281     __ srl(Rdst, 8,    Rtmp);
 10282     __ or3(Rdst, Rtmp, Rdst);
 10283     __ srl(Rdst, 16,   Rtmp);
 10284     __ or3(Rdst, Rtmp, Rdst);
 10285     __ popc(Rdst, Rdst);
 10286     __ mov(BitsPerInt, Rtmp);
 10287     __ sub(Rtmp, Rdst, Rdst);
 10288   %}
 10289   ins_pipe(ialu_reg);
 10290 %}
 10292 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10293   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10294   match(Set dst (CountLeadingZerosL src));
 10295   effect(TEMP dst, TEMP tmp, KILL cr);
 10297   // x |= (x >> 1);
 10298   // x |= (x >> 2);
 10299   // x |= (x >> 4);
 10300   // x |= (x >> 8);
 10301   // x |= (x >> 16);
 10302   // x |= (x >> 32);
 10303   // return (WORDBITS - popc(x));
 10304   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10305             "OR      $src,$tmp,$dst\n\t"
 10306             "SRLX    $dst,2,$tmp\n\t"
 10307             "OR      $dst,$tmp,$dst\n\t"
 10308             "SRLX    $dst,4,$tmp\n\t"
 10309             "OR      $dst,$tmp,$dst\n\t"
 10310             "SRLX    $dst,8,$tmp\n\t"
 10311             "OR      $dst,$tmp,$dst\n\t"
 10312             "SRLX    $dst,16,$tmp\n\t"
 10313             "OR      $dst,$tmp,$dst\n\t"
 10314             "SRLX    $dst,32,$tmp\n\t"
 10315             "OR      $dst,$tmp,$dst\n\t"
 10316             "POPC    $dst,$dst\n\t"
 10317             "MOV     64,$tmp\n\t"
 10318             "SUB     $tmp,$dst,$dst" %}
 10319   ins_encode %{
 10320     Register Rdst = $dst$$Register;
 10321     Register Rsrc = $src$$Register;
 10322     Register Rtmp = $tmp$$Register;
 10323     __ srlx(Rsrc, 1,    Rtmp);
 10324     __ or3( Rsrc, Rtmp, Rdst);
 10325     __ srlx(Rdst, 2,    Rtmp);
 10326     __ or3( Rdst, Rtmp, Rdst);
 10327     __ srlx(Rdst, 4,    Rtmp);
 10328     __ or3( Rdst, Rtmp, Rdst);
 10329     __ srlx(Rdst, 8,    Rtmp);
 10330     __ or3( Rdst, Rtmp, Rdst);
 10331     __ srlx(Rdst, 16,   Rtmp);
 10332     __ or3( Rdst, Rtmp, Rdst);
 10333     __ srlx(Rdst, 32,   Rtmp);
 10334     __ or3( Rdst, Rtmp, Rdst);
 10335     __ popc(Rdst, Rdst);
 10336     __ mov(BitsPerLong, Rtmp);
 10337     __ sub(Rtmp, Rdst, Rdst);
 10338   %}
 10339   ins_pipe(ialu_reg);
 10340 %}
 10342 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10343   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10344   match(Set dst (CountTrailingZerosI src));
 10345   effect(TEMP dst, KILL cr);
 10347   // return popc(~x & (x - 1));
 10348   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10349             "ANDN    $dst,$src,$dst\n\t"
 10350             "SRL     $dst,R_G0,$dst\n\t"
 10351             "POPC    $dst,$dst" %}
 10352   ins_encode %{
 10353     Register Rdst = $dst$$Register;
 10354     Register Rsrc = $src$$Register;
 10355     __ sub(Rsrc, 1, Rdst);
 10356     __ andn(Rdst, Rsrc, Rdst);
 10357     __ srl(Rdst, G0, Rdst);
 10358     __ popc(Rdst, Rdst);
 10359   %}
 10360   ins_pipe(ialu_reg);
 10361 %}
 10363 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10364   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10365   match(Set dst (CountTrailingZerosL src));
 10366   effect(TEMP dst, KILL cr);
 10368   // return popc(~x & (x - 1));
 10369   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10370             "ANDN    $dst,$src,$dst\n\t"
 10371             "POPC    $dst,$dst" %}
 10372   ins_encode %{
 10373     Register Rdst = $dst$$Register;
 10374     Register Rsrc = $src$$Register;
 10375     __ sub(Rsrc, 1, Rdst);
 10376     __ andn(Rdst, Rsrc, Rdst);
 10377     __ popc(Rdst, Rdst);
 10378   %}
 10379   ins_pipe(ialu_reg);
 10380 %}
 10383 //---------- Population Count Instructions -------------------------------------
 10385 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10386   predicate(UsePopCountInstruction);
 10387   match(Set dst (PopCountI src));
 10389   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10390             "POPC   $dst, $dst" %}
 10391   ins_encode %{
 10392     __ srl($src$$Register, G0, $dst$$Register);
 10393     __ popc($dst$$Register, $dst$$Register);
 10394   %}
 10395   ins_pipe(ialu_reg);
 10396 %}
 10398 // Note: Long.bitCount(long) returns an int.
 10399 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10400   predicate(UsePopCountInstruction);
 10401   match(Set dst (PopCountL src));
 10403   format %{ "POPC   $src, $dst" %}
 10404   ins_encode %{
 10405     __ popc($src$$Register, $dst$$Register);
 10406   %}
 10407   ins_pipe(ialu_reg);
 10408 %}
 10411 // ============================================================================
 10412 //------------Bytes reverse--------------------------------------------------
 10414 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10415   match(Set dst (ReverseBytesI src));
 10417   // Op cost is artificially doubled to make sure that load or store
 10418   // instructions are preferred over this one which requires a spill
 10419   // onto a stack slot.
 10420   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10421   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10423   ins_encode %{
 10424     __ set($src$$disp + STACK_BIAS, O7);
 10425     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10426   %}
 10427   ins_pipe( iload_mem );
 10428 %}
 10430 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10431   match(Set dst (ReverseBytesL src));
 10433   // Op cost is artificially doubled to make sure that load or store
 10434   // instructions are preferred over this one which requires a spill
 10435   // onto a stack slot.
 10436   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10437   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10439   ins_encode %{
 10440     __ set($src$$disp + STACK_BIAS, O7);
 10441     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10442   %}
 10443   ins_pipe( iload_mem );
 10444 %}
 10446 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10447   match(Set dst (ReverseBytesUS src));
 10449   // Op cost is artificially doubled to make sure that load or store
 10450   // instructions are preferred over this one which requires a spill
 10451   // onto a stack slot.
 10452   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10453   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10455   ins_encode %{
 10456     // the value was spilled as an int so bias the load
 10457     __ set($src$$disp + STACK_BIAS + 2, O7);
 10458     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10459   %}
 10460   ins_pipe( iload_mem );
 10461 %}
 10463 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10464   match(Set dst (ReverseBytesS src));
 10466   // Op cost is artificially doubled to make sure that load or store
 10467   // instructions are preferred over this one which requires a spill
 10468   // onto a stack slot.
 10469   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10470   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10472   ins_encode %{
 10473     // the value was spilled as an int so bias the load
 10474     __ set($src$$disp + STACK_BIAS + 2, O7);
 10475     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10476   %}
 10477   ins_pipe( iload_mem );
 10478 %}
 10480 // Load Integer reversed byte order
 10481 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10482   match(Set dst (ReverseBytesI (LoadI src)));
 10484   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10485   size(4);
 10486   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10488   ins_encode %{
 10489     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10490   %}
 10491   ins_pipe(iload_mem);
 10492 %}
 10494 // Load Long - aligned and reversed
 10495 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10496   match(Set dst (ReverseBytesL (LoadL src)));
 10498   ins_cost(MEMORY_REF_COST);
 10499   size(4);
 10500   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10502   ins_encode %{
 10503     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10504   %}
 10505   ins_pipe(iload_mem);
 10506 %}
 10508 // Load unsigned short / char reversed byte order
 10509 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10510   match(Set dst (ReverseBytesUS (LoadUS src)));
 10512   ins_cost(MEMORY_REF_COST);
 10513   size(4);
 10514   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10516   ins_encode %{
 10517     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10518   %}
 10519   ins_pipe(iload_mem);
 10520 %}
 10522 // Load short reversed byte order
 10523 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10524   match(Set dst (ReverseBytesS (LoadS src)));
 10526   ins_cost(MEMORY_REF_COST);
 10527   size(4);
 10528   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10530   ins_encode %{
 10531     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10532   %}
 10533   ins_pipe(iload_mem);
 10534 %}
 10536 // Store Integer reversed byte order
 10537 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10538   match(Set dst (StoreI dst (ReverseBytesI src)));
 10540   ins_cost(MEMORY_REF_COST);
 10541   size(4);
 10542   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10544   ins_encode %{
 10545     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10546   %}
 10547   ins_pipe(istore_mem_reg);
 10548 %}
 10550 // Store Long reversed byte order
 10551 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10552   match(Set dst (StoreL dst (ReverseBytesL src)));
 10554   ins_cost(MEMORY_REF_COST);
 10555   size(4);
 10556   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10558   ins_encode %{
 10559     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10560   %}
 10561   ins_pipe(istore_mem_reg);
 10562 %}
 10564 // Store unsighed short/char reversed byte order
 10565 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10566   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10568   ins_cost(MEMORY_REF_COST);
 10569   size(4);
 10570   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10572   ins_encode %{
 10573     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10574   %}
 10575   ins_pipe(istore_mem_reg);
 10576 %}
 10578 // Store short reversed byte order
 10579 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10580   match(Set dst (StoreC dst (ReverseBytesS src)));
 10582   ins_cost(MEMORY_REF_COST);
 10583   size(4);
 10584   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10586   ins_encode %{
 10587     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10588   %}
 10589   ins_pipe(istore_mem_reg);
 10590 %}
 10592 // ====================VECTOR INSTRUCTIONS=====================================
 10594 // Load Aligned Packed values into a Double Register
 10595 instruct loadV8(regD dst, memory mem) %{
 10596   predicate(n->as_LoadVector()->memory_size() == 8);
 10597   match(Set dst (LoadVector mem));
 10598   ins_cost(MEMORY_REF_COST);
 10599   size(4);
 10600   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10601   ins_encode %{
 10602     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10603   %}
 10604   ins_pipe(floadD_mem);
 10605 %}
 10607 // Store Vector in Double register to memory
 10608 instruct storeV8(memory mem, regD src) %{
 10609   predicate(n->as_StoreVector()->memory_size() == 8);
 10610   match(Set mem (StoreVector mem src));
 10611   ins_cost(MEMORY_REF_COST);
 10612   size(4);
 10613   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10614   ins_encode %{
 10615     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10616   %}
 10617   ins_pipe(fstoreD_mem_reg);
 10618 %}
 10620 // Store Zero into vector in memory
 10621 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10622   predicate(n->as_StoreVector()->memory_size() == 8);
 10623   match(Set mem (StoreVector mem (ReplicateB zero)));
 10624   ins_cost(MEMORY_REF_COST);
 10625   size(4);
 10626   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10627   ins_encode %{
 10628     __ stx(G0, $mem$$Address);
 10629   %}
 10630   ins_pipe(fstoreD_mem_zero);
 10631 %}
 10633 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10634   predicate(n->as_StoreVector()->memory_size() == 8);
 10635   match(Set mem (StoreVector mem (ReplicateS zero)));
 10636   ins_cost(MEMORY_REF_COST);
 10637   size(4);
 10638   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10639   ins_encode %{
 10640     __ stx(G0, $mem$$Address);
 10641   %}
 10642   ins_pipe(fstoreD_mem_zero);
 10643 %}
 10645 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10646   predicate(n->as_StoreVector()->memory_size() == 8);
 10647   match(Set mem (StoreVector mem (ReplicateI zero)));
 10648   ins_cost(MEMORY_REF_COST);
 10649   size(4);
 10650   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10651   ins_encode %{
 10652     __ stx(G0, $mem$$Address);
 10653   %}
 10654   ins_pipe(fstoreD_mem_zero);
 10655 %}
 10657 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10658   predicate(n->as_StoreVector()->memory_size() == 8);
 10659   match(Set mem (StoreVector mem (ReplicateF zero)));
 10660   ins_cost(MEMORY_REF_COST);
 10661   size(4);
 10662   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10663   ins_encode %{
 10664     __ stx(G0, $mem$$Address);
 10665   %}
 10666   ins_pipe(fstoreD_mem_zero);
 10667 %}
 10669 // Replicate scalar to packed byte values into Double register
 10670 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10671   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10672   match(Set dst (ReplicateB src));
 10673   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10674   format %{ "SLLX  $src,56,$tmp\n\t"
 10675             "SRLX  $tmp, 8,$tmp2\n\t"
 10676             "OR    $tmp,$tmp2,$tmp\n\t"
 10677             "SRLX  $tmp,16,$tmp2\n\t"
 10678             "OR    $tmp,$tmp2,$tmp\n\t"
 10679             "SRLX  $tmp,32,$tmp2\n\t"
 10680             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10681             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10682   ins_encode %{
 10683     Register Rsrc = $src$$Register;
 10684     Register Rtmp = $tmp$$Register;
 10685     Register Rtmp2 = $tmp2$$Register;
 10686     __ sllx(Rsrc,    56, Rtmp);
 10687     __ srlx(Rtmp,     8, Rtmp2);
 10688     __ or3 (Rtmp, Rtmp2, Rtmp);
 10689     __ srlx(Rtmp,    16, Rtmp2);
 10690     __ or3 (Rtmp, Rtmp2, Rtmp);
 10691     __ srlx(Rtmp,    32, Rtmp2);
 10692     __ or3 (Rtmp, Rtmp2, Rtmp);
 10693     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10694   %}
 10695   ins_pipe(ialu_reg);
 10696 %}
 10698 // Replicate scalar to packed byte values into Double stack
 10699 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10700   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10701   match(Set dst (ReplicateB src));
 10702   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10703   format %{ "SLLX  $src,56,$tmp\n\t"
 10704             "SRLX  $tmp, 8,$tmp2\n\t"
 10705             "OR    $tmp,$tmp2,$tmp\n\t"
 10706             "SRLX  $tmp,16,$tmp2\n\t"
 10707             "OR    $tmp,$tmp2,$tmp\n\t"
 10708             "SRLX  $tmp,32,$tmp2\n\t"
 10709             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10710             "STX   $tmp,$dst\t! regL to stkD" %}
 10711   ins_encode %{
 10712     Register Rsrc = $src$$Register;
 10713     Register Rtmp = $tmp$$Register;
 10714     Register Rtmp2 = $tmp2$$Register;
 10715     __ sllx(Rsrc,    56, Rtmp);
 10716     __ srlx(Rtmp,     8, Rtmp2);
 10717     __ or3 (Rtmp, Rtmp2, Rtmp);
 10718     __ srlx(Rtmp,    16, Rtmp2);
 10719     __ or3 (Rtmp, Rtmp2, Rtmp);
 10720     __ srlx(Rtmp,    32, Rtmp2);
 10721     __ or3 (Rtmp, Rtmp2, Rtmp);
 10722     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10723     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10724   %}
 10725   ins_pipe(ialu_reg);
 10726 %}
 10728 // Replicate scalar constant to packed byte values in Double register
 10729 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10730   predicate(n->as_Vector()->length() == 8);
 10731   match(Set dst (ReplicateB con));
 10732   effect(KILL tmp);
 10733   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10734   ins_encode %{
 10735     // XXX This is a quick fix for 6833573.
 10736     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10737     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10738     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10739   %}
 10740   ins_pipe(loadConFD);
 10741 %}
 10743 // Replicate scalar to packed char/short values into Double register
 10744 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10745   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10746   match(Set dst (ReplicateS src));
 10747   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10748   format %{ "SLLX  $src,48,$tmp\n\t"
 10749             "SRLX  $tmp,16,$tmp2\n\t"
 10750             "OR    $tmp,$tmp2,$tmp\n\t"
 10751             "SRLX  $tmp,32,$tmp2\n\t"
 10752             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10753             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10754   ins_encode %{
 10755     Register Rsrc = $src$$Register;
 10756     Register Rtmp = $tmp$$Register;
 10757     Register Rtmp2 = $tmp2$$Register;
 10758     __ sllx(Rsrc,    48, Rtmp);
 10759     __ srlx(Rtmp,    16, Rtmp2);
 10760     __ or3 (Rtmp, Rtmp2, Rtmp);
 10761     __ srlx(Rtmp,    32, Rtmp2);
 10762     __ or3 (Rtmp, Rtmp2, Rtmp);
 10763     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10764   %}
 10765   ins_pipe(ialu_reg);
 10766 %}
 10768 // Replicate scalar to packed char/short values into Double stack
 10769 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10770   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10771   match(Set dst (ReplicateS src));
 10772   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10773   format %{ "SLLX  $src,48,$tmp\n\t"
 10774             "SRLX  $tmp,16,$tmp2\n\t"
 10775             "OR    $tmp,$tmp2,$tmp\n\t"
 10776             "SRLX  $tmp,32,$tmp2\n\t"
 10777             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10778             "STX   $tmp,$dst\t! regL to stkD" %}
 10779   ins_encode %{
 10780     Register Rsrc = $src$$Register;
 10781     Register Rtmp = $tmp$$Register;
 10782     Register Rtmp2 = $tmp2$$Register;
 10783     __ sllx(Rsrc,    48, Rtmp);
 10784     __ srlx(Rtmp,    16, Rtmp2);
 10785     __ or3 (Rtmp, Rtmp2, Rtmp);
 10786     __ srlx(Rtmp,    32, Rtmp2);
 10787     __ or3 (Rtmp, Rtmp2, Rtmp);
 10788     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10789     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10790   %}
 10791   ins_pipe(ialu_reg);
 10792 %}
 10794 // Replicate scalar constant to packed char/short values in Double register
 10795 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10796   predicate(n->as_Vector()->length() == 4);
 10797   match(Set dst (ReplicateS con));
 10798   effect(KILL tmp);
 10799   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10800   ins_encode %{
 10801     // XXX This is a quick fix for 6833573.
 10802     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10803     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10804     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10805   %}
 10806   ins_pipe(loadConFD);
 10807 %}
 10809 // Replicate scalar to packed int values into Double register
 10810 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10811   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10812   match(Set dst (ReplicateI src));
 10813   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10814   format %{ "SLLX  $src,32,$tmp\n\t"
 10815             "SRLX  $tmp,32,$tmp2\n\t"
 10816             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10817             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10818   ins_encode %{
 10819     Register Rsrc = $src$$Register;
 10820     Register Rtmp = $tmp$$Register;
 10821     Register Rtmp2 = $tmp2$$Register;
 10822     __ sllx(Rsrc,    32, Rtmp);
 10823     __ srlx(Rtmp,    32, Rtmp2);
 10824     __ or3 (Rtmp, Rtmp2, Rtmp);
 10825     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10826   %}
 10827   ins_pipe(ialu_reg);
 10828 %}
 10830 // Replicate scalar to packed int values into Double stack
 10831 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10832   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10833   match(Set dst (ReplicateI src));
 10834   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10835   format %{ "SLLX  $src,32,$tmp\n\t"
 10836             "SRLX  $tmp,32,$tmp2\n\t"
 10837             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10838             "STX   $tmp,$dst\t! regL to stkD" %}
 10839   ins_encode %{
 10840     Register Rsrc = $src$$Register;
 10841     Register Rtmp = $tmp$$Register;
 10842     Register Rtmp2 = $tmp2$$Register;
 10843     __ sllx(Rsrc,    32, Rtmp);
 10844     __ srlx(Rtmp,    32, Rtmp2);
 10845     __ or3 (Rtmp, Rtmp2, Rtmp);
 10846     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10847     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10848   %}
 10849   ins_pipe(ialu_reg);
 10850 %}
 10852 // Replicate scalar zero constant to packed int values in Double register
 10853 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10854   predicate(n->as_Vector()->length() == 2);
 10855   match(Set dst (ReplicateI con));
 10856   effect(KILL tmp);
 10857   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10858   ins_encode %{
 10859     // XXX This is a quick fix for 6833573.
 10860     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10861     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10862     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10863   %}
 10864   ins_pipe(loadConFD);
 10865 %}
 10867 // Replicate scalar to packed float values into Double stack
 10868 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10869   predicate(n->as_Vector()->length() == 2);
 10870   match(Set dst (ReplicateF src));
 10871   ins_cost(MEMORY_REF_COST*2);
 10872   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10873             "STF    $src,$dst.lo" %}
 10874   opcode(Assembler::stf_op3);
 10875   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10876   ins_pipe(fstoreF_stk_reg);
 10877 %}
 10879 // Replicate scalar zero constant to packed float values in Double register
 10880 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10881   predicate(n->as_Vector()->length() == 2);
 10882   match(Set dst (ReplicateF con));
 10883   effect(KILL tmp);
 10884   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10885   ins_encode %{
 10886     // XXX This is a quick fix for 6833573.
 10887     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10888     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10889     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10890   %}
 10891   ins_pipe(loadConFD);
 10892 %}
 10894 //----------PEEPHOLE RULES-----------------------------------------------------
 10895 // These must follow all instruction definitions as they use the names
 10896 // defined in the instructions definitions.
 10897 //
 10898 // peepmatch ( root_instr_name [preceding_instruction]* );
 10899 //
 10900 // peepconstraint %{
 10901 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10902 //  [, ...] );
 10903 // // instruction numbers are zero-based using left to right order in peepmatch
 10904 //
 10905 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10906 // // provide an instruction_number.operand_name for each operand that appears
 10907 // // in the replacement instruction's match rule
 10908 //
 10909 // ---------VM FLAGS---------------------------------------------------------
 10910 //
 10911 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10912 //
 10913 // Each peephole rule is given an identifying number starting with zero and
 10914 // increasing by one in the order seen by the parser.  An individual peephole
 10915 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10916 // on the command-line.
 10917 //
 10918 // ---------CURRENT LIMITATIONS----------------------------------------------
 10919 //
 10920 // Only match adjacent instructions in same basic block
 10921 // Only equality constraints
 10922 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10923 // Only one replacement instruction
 10924 //
 10925 // ---------EXAMPLE----------------------------------------------------------
 10926 //
 10927 // // pertinent parts of existing instructions in architecture description
 10928 // instruct movI(eRegI dst, eRegI src) %{
 10929 //   match(Set dst (CopyI src));
 10930 // %}
 10931 //
 10932 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10933 //   match(Set dst (AddI dst src));
 10934 //   effect(KILL cr);
 10935 // %}
 10936 //
 10937 // // Change (inc mov) to lea
 10938 // peephole %{
 10939 //   // increment preceeded by register-register move
 10940 //   peepmatch ( incI_eReg movI );
 10941 //   // require that the destination register of the increment
 10942 //   // match the destination register of the move
 10943 //   peepconstraint ( 0.dst == 1.dst );
 10944 //   // construct a replacement instruction that sets
 10945 //   // the destination to ( move's source register + one )
 10946 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10947 // %}
 10948 //
 10950 // // Change load of spilled value to only a spill
 10951 // instruct storeI(memory mem, eRegI src) %{
 10952 //   match(Set mem (StoreI mem src));
 10953 // %}
 10954 //
 10955 // instruct loadI(eRegI dst, memory mem) %{
 10956 //   match(Set dst (LoadI mem));
 10957 // %}
 10958 //
 10959 // peephole %{
 10960 //   peepmatch ( loadI storeI );
 10961 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10962 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10963 // %}
 10965 //----------SMARTSPILL RULES---------------------------------------------------
 10966 // These must follow all instruction definitions as they use the names
 10967 // defined in the instructions definitions.
 10968 //
 10969 // SPARC will probably not have any of these rules due to RISC instruction set.
 10971 //----------PIPELINE-----------------------------------------------------------
 10972 // Rules which define the behavior of the target architectures pipeline.

mercurial