src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Tue, 20 Sep 2011 09:59:59 -0400

author
tonyp
date
Tue, 20 Sep 2011 09:59:59 -0400
changeset 3168
4f93f0d00802
parent 3120
af2ab04e0038
child 3169
663cb89032b1
permissions
-rw-r--r--

7059019: G1: add G1 support to the SA
Summary: Extend the SA to recognize the G1CollectedHeap and implement any code that's needed by our serviceability tools (jmap, jinfo, jstack, etc.) that depend on the SA.
Reviewed-by: never, poonam, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1MarkSweep.hpp"
    36 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    37 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    39 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    40 #include "gc_implementation/g1/vm_operations_g1.hpp"
    41 #include "gc_implementation/shared/isGCActiveMark.hpp"
    42 #include "memory/gcLocker.inline.hpp"
    43 #include "memory/genOopClosures.inline.hpp"
    44 #include "memory/generationSpec.hpp"
    45 #include "oops/oop.inline.hpp"
    46 #include "oops/oop.pcgc.inline.hpp"
    47 #include "runtime/aprofiler.hpp"
    48 #include "runtime/vmThread.hpp"
    50 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    52 // turn it on so that the contents of the young list (scan-only /
    53 // to-be-collected) are printed at "strategic" points before / during
    54 // / after the collection --- this is useful for debugging
    55 #define YOUNG_LIST_VERBOSE 0
    56 // CURRENT STATUS
    57 // This file is under construction.  Search for "FIXME".
    59 // INVARIANTS/NOTES
    60 //
    61 // All allocation activity covered by the G1CollectedHeap interface is
    62 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    63 // and allocate_new_tlab, which are the "entry" points to the
    64 // allocation code from the rest of the JVM.  (Note that this does not
    65 // apply to TLAB allocation, which is not part of this interface: it
    66 // is done by clients of this interface.)
    68 // Local to this file.
    70 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    71   SuspendibleThreadSet* _sts;
    72   G1RemSet* _g1rs;
    73   ConcurrentG1Refine* _cg1r;
    74   bool _concurrent;
    75 public:
    76   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    77                               G1RemSet* g1rs,
    78                               ConcurrentG1Refine* cg1r) :
    79     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    80   {}
    81   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    82     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    83     // This path is executed by the concurrent refine or mutator threads,
    84     // concurrently, and so we do not care if card_ptr contains references
    85     // that point into the collection set.
    86     assert(!oops_into_cset, "should be");
    88     if (_concurrent && _sts->should_yield()) {
    89       // Caller will actually yield.
    90       return false;
    91     }
    92     // Otherwise, we finished successfully; return true.
    93     return true;
    94   }
    95   void set_concurrent(bool b) { _concurrent = b; }
    96 };
    99 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   100   int _calls;
   101   G1CollectedHeap* _g1h;
   102   CardTableModRefBS* _ctbs;
   103   int _histo[256];
   104 public:
   105   ClearLoggedCardTableEntryClosure() :
   106     _calls(0)
   107   {
   108     _g1h = G1CollectedHeap::heap();
   109     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   110     for (int i = 0; i < 256; i++) _histo[i] = 0;
   111   }
   112   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   113     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   114       _calls++;
   115       unsigned char* ujb = (unsigned char*)card_ptr;
   116       int ind = (int)(*ujb);
   117       _histo[ind]++;
   118       *card_ptr = -1;
   119     }
   120     return true;
   121   }
   122   int calls() { return _calls; }
   123   void print_histo() {
   124     gclog_or_tty->print_cr("Card table value histogram:");
   125     for (int i = 0; i < 256; i++) {
   126       if (_histo[i] != 0) {
   127         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   128       }
   129     }
   130   }
   131 };
   133 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   134   int _calls;
   135   G1CollectedHeap* _g1h;
   136   CardTableModRefBS* _ctbs;
   137 public:
   138   RedirtyLoggedCardTableEntryClosure() :
   139     _calls(0)
   140   {
   141     _g1h = G1CollectedHeap::heap();
   142     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   143   }
   144   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   145     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   146       _calls++;
   147       *card_ptr = 0;
   148     }
   149     return true;
   150   }
   151   int calls() { return _calls; }
   152 };
   154 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   155 public:
   156   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   157     *card_ptr = CardTableModRefBS::dirty_card_val();
   158     return true;
   159   }
   160 };
   162 YoungList::YoungList(G1CollectedHeap* g1h)
   163   : _g1h(g1h), _head(NULL),
   164     _length(0),
   165     _last_sampled_rs_lengths(0),
   166     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   167 {
   168   guarantee( check_list_empty(false), "just making sure..." );
   169 }
   171 void YoungList::push_region(HeapRegion *hr) {
   172   assert(!hr->is_young(), "should not already be young");
   173   assert(hr->get_next_young_region() == NULL, "cause it should!");
   175   hr->set_next_young_region(_head);
   176   _head = hr;
   178   hr->set_young();
   179   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   180   ++_length;
   181 }
   183 void YoungList::add_survivor_region(HeapRegion* hr) {
   184   assert(hr->is_survivor(), "should be flagged as survivor region");
   185   assert(hr->get_next_young_region() == NULL, "cause it should!");
   187   hr->set_next_young_region(_survivor_head);
   188   if (_survivor_head == NULL) {
   189     _survivor_tail = hr;
   190   }
   191   _survivor_head = hr;
   193   ++_survivor_length;
   194 }
   196 void YoungList::empty_list(HeapRegion* list) {
   197   while (list != NULL) {
   198     HeapRegion* next = list->get_next_young_region();
   199     list->set_next_young_region(NULL);
   200     list->uninstall_surv_rate_group();
   201     list->set_not_young();
   202     list = next;
   203   }
   204 }
   206 void YoungList::empty_list() {
   207   assert(check_list_well_formed(), "young list should be well formed");
   209   empty_list(_head);
   210   _head = NULL;
   211   _length = 0;
   213   empty_list(_survivor_head);
   214   _survivor_head = NULL;
   215   _survivor_tail = NULL;
   216   _survivor_length = 0;
   218   _last_sampled_rs_lengths = 0;
   220   assert(check_list_empty(false), "just making sure...");
   221 }
   223 bool YoungList::check_list_well_formed() {
   224   bool ret = true;
   226   size_t length = 0;
   227   HeapRegion* curr = _head;
   228   HeapRegion* last = NULL;
   229   while (curr != NULL) {
   230     if (!curr->is_young()) {
   231       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   232                              "incorrectly tagged (y: %d, surv: %d)",
   233                              curr->bottom(), curr->end(),
   234                              curr->is_young(), curr->is_survivor());
   235       ret = false;
   236     }
   237     ++length;
   238     last = curr;
   239     curr = curr->get_next_young_region();
   240   }
   241   ret = ret && (length == _length);
   243   if (!ret) {
   244     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   245     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   246                            length, _length);
   247   }
   249   return ret;
   250 }
   252 bool YoungList::check_list_empty(bool check_sample) {
   253   bool ret = true;
   255   if (_length != 0) {
   256     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   257                   _length);
   258     ret = false;
   259   }
   260   if (check_sample && _last_sampled_rs_lengths != 0) {
   261     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   262     ret = false;
   263   }
   264   if (_head != NULL) {
   265     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   266     ret = false;
   267   }
   268   if (!ret) {
   269     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   270   }
   272   return ret;
   273 }
   275 void
   276 YoungList::rs_length_sampling_init() {
   277   _sampled_rs_lengths = 0;
   278   _curr               = _head;
   279 }
   281 bool
   282 YoungList::rs_length_sampling_more() {
   283   return _curr != NULL;
   284 }
   286 void
   287 YoungList::rs_length_sampling_next() {
   288   assert( _curr != NULL, "invariant" );
   289   size_t rs_length = _curr->rem_set()->occupied();
   291   _sampled_rs_lengths += rs_length;
   293   // The current region may not yet have been added to the
   294   // incremental collection set (it gets added when it is
   295   // retired as the current allocation region).
   296   if (_curr->in_collection_set()) {
   297     // Update the collection set policy information for this region
   298     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   299   }
   301   _curr = _curr->get_next_young_region();
   302   if (_curr == NULL) {
   303     _last_sampled_rs_lengths = _sampled_rs_lengths;
   304     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   305   }
   306 }
   308 void
   309 YoungList::reset_auxilary_lists() {
   310   guarantee( is_empty(), "young list should be empty" );
   311   assert(check_list_well_formed(), "young list should be well formed");
   313   // Add survivor regions to SurvRateGroup.
   314   _g1h->g1_policy()->note_start_adding_survivor_regions();
   315   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   317   for (HeapRegion* curr = _survivor_head;
   318        curr != NULL;
   319        curr = curr->get_next_young_region()) {
   320     _g1h->g1_policy()->set_region_survivors(curr);
   322     // The region is a non-empty survivor so let's add it to
   323     // the incremental collection set for the next evacuation
   324     // pause.
   325     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   326   }
   327   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   329   _head   = _survivor_head;
   330   _length = _survivor_length;
   331   if (_survivor_head != NULL) {
   332     assert(_survivor_tail != NULL, "cause it shouldn't be");
   333     assert(_survivor_length > 0, "invariant");
   334     _survivor_tail->set_next_young_region(NULL);
   335   }
   337   // Don't clear the survivor list handles until the start of
   338   // the next evacuation pause - we need it in order to re-tag
   339   // the survivor regions from this evacuation pause as 'young'
   340   // at the start of the next.
   342   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   344   assert(check_list_well_formed(), "young list should be well formed");
   345 }
   347 void YoungList::print() {
   348   HeapRegion* lists[] = {_head,   _survivor_head};
   349   const char* names[] = {"YOUNG", "SURVIVOR"};
   351   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   352     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   353     HeapRegion *curr = lists[list];
   354     if (curr == NULL)
   355       gclog_or_tty->print_cr("  empty");
   356     while (curr != NULL) {
   357       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   358                              "age: %4d, y: %d, surv: %d",
   359                              curr->bottom(), curr->end(),
   360                              curr->top(),
   361                              curr->prev_top_at_mark_start(),
   362                              curr->next_top_at_mark_start(),
   363                              curr->top_at_conc_mark_count(),
   364                              curr->age_in_surv_rate_group_cond(),
   365                              curr->is_young(),
   366                              curr->is_survivor());
   367       curr = curr->get_next_young_region();
   368     }
   369   }
   371   gclog_or_tty->print_cr("");
   372 }
   374 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   375 {
   376   // Claim the right to put the region on the dirty cards region list
   377   // by installing a self pointer.
   378   HeapRegion* next = hr->get_next_dirty_cards_region();
   379   if (next == NULL) {
   380     HeapRegion* res = (HeapRegion*)
   381       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   382                           NULL);
   383     if (res == NULL) {
   384       HeapRegion* head;
   385       do {
   386         // Put the region to the dirty cards region list.
   387         head = _dirty_cards_region_list;
   388         next = (HeapRegion*)
   389           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   390         if (next == head) {
   391           assert(hr->get_next_dirty_cards_region() == hr,
   392                  "hr->get_next_dirty_cards_region() != hr");
   393           if (next == NULL) {
   394             // The last region in the list points to itself.
   395             hr->set_next_dirty_cards_region(hr);
   396           } else {
   397             hr->set_next_dirty_cards_region(next);
   398           }
   399         }
   400       } while (next != head);
   401     }
   402   }
   403 }
   405 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   406 {
   407   HeapRegion* head;
   408   HeapRegion* hr;
   409   do {
   410     head = _dirty_cards_region_list;
   411     if (head == NULL) {
   412       return NULL;
   413     }
   414     HeapRegion* new_head = head->get_next_dirty_cards_region();
   415     if (head == new_head) {
   416       // The last region.
   417       new_head = NULL;
   418     }
   419     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   420                                           head);
   421   } while (hr != head);
   422   assert(hr != NULL, "invariant");
   423   hr->set_next_dirty_cards_region(NULL);
   424   return hr;
   425 }
   427 void G1CollectedHeap::stop_conc_gc_threads() {
   428   _cg1r->stop();
   429   _cmThread->stop();
   430 }
   432 #ifdef ASSERT
   433 // A region is added to the collection set as it is retired
   434 // so an address p can point to a region which will be in the
   435 // collection set but has not yet been retired.  This method
   436 // therefore is only accurate during a GC pause after all
   437 // regions have been retired.  It is used for debugging
   438 // to check if an nmethod has references to objects that can
   439 // be move during a partial collection.  Though it can be
   440 // inaccurate, it is sufficient for G1 because the conservative
   441 // implementation of is_scavengable() for G1 will indicate that
   442 // all nmethods must be scanned during a partial collection.
   443 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   444   HeapRegion* hr = heap_region_containing(p);
   445   return hr != NULL && hr->in_collection_set();
   446 }
   447 #endif
   449 // Returns true if the reference points to an object that
   450 // can move in an incremental collecction.
   451 bool G1CollectedHeap::is_scavengable(const void* p) {
   452   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   453   G1CollectorPolicy* g1p = g1h->g1_policy();
   454   HeapRegion* hr = heap_region_containing(p);
   455   if (hr == NULL) {
   456      // perm gen (or null)
   457      return false;
   458   } else {
   459     return !hr->isHumongous();
   460   }
   461 }
   463 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   464   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   465   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   467   // Count the dirty cards at the start.
   468   CountNonCleanMemRegionClosure count1(this);
   469   ct_bs->mod_card_iterate(&count1);
   470   int orig_count = count1.n();
   472   // First clear the logged cards.
   473   ClearLoggedCardTableEntryClosure clear;
   474   dcqs.set_closure(&clear);
   475   dcqs.apply_closure_to_all_completed_buffers();
   476   dcqs.iterate_closure_all_threads(false);
   477   clear.print_histo();
   479   // Now ensure that there's no dirty cards.
   480   CountNonCleanMemRegionClosure count2(this);
   481   ct_bs->mod_card_iterate(&count2);
   482   if (count2.n() != 0) {
   483     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   484                            count2.n(), orig_count);
   485   }
   486   guarantee(count2.n() == 0, "Card table should be clean.");
   488   RedirtyLoggedCardTableEntryClosure redirty;
   489   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   490   dcqs.apply_closure_to_all_completed_buffers();
   491   dcqs.iterate_closure_all_threads(false);
   492   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   493                          clear.calls(), orig_count);
   494   guarantee(redirty.calls() == clear.calls(),
   495             "Or else mechanism is broken.");
   497   CountNonCleanMemRegionClosure count3(this);
   498   ct_bs->mod_card_iterate(&count3);
   499   if (count3.n() != orig_count) {
   500     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   501                            orig_count, count3.n());
   502     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   503   }
   505   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   506 }
   508 // Private class members.
   510 G1CollectedHeap* G1CollectedHeap::_g1h;
   512 // Private methods.
   514 HeapRegion*
   515 G1CollectedHeap::new_region_try_secondary_free_list() {
   516   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   517   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   518     if (!_secondary_free_list.is_empty()) {
   519       if (G1ConcRegionFreeingVerbose) {
   520         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   521                                "secondary_free_list has "SIZE_FORMAT" entries",
   522                                _secondary_free_list.length());
   523       }
   524       // It looks as if there are free regions available on the
   525       // secondary_free_list. Let's move them to the free_list and try
   526       // again to allocate from it.
   527       append_secondary_free_list();
   529       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   530              "empty we should have moved at least one entry to the free_list");
   531       HeapRegion* res = _free_list.remove_head();
   532       if (G1ConcRegionFreeingVerbose) {
   533         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   534                                "allocated "HR_FORMAT" from secondary_free_list",
   535                                HR_FORMAT_PARAMS(res));
   536       }
   537       return res;
   538     }
   540     // Wait here until we get notifed either when (a) there are no
   541     // more free regions coming or (b) some regions have been moved on
   542     // the secondary_free_list.
   543     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   544   }
   546   if (G1ConcRegionFreeingVerbose) {
   547     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   548                            "could not allocate from secondary_free_list");
   549   }
   550   return NULL;
   551 }
   553 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   554   assert(!isHumongous(word_size) ||
   555                                   word_size <= (size_t) HeapRegion::GrainWords,
   556          "the only time we use this to allocate a humongous region is "
   557          "when we are allocating a single humongous region");
   559   HeapRegion* res;
   560   if (G1StressConcRegionFreeing) {
   561     if (!_secondary_free_list.is_empty()) {
   562       if (G1ConcRegionFreeingVerbose) {
   563         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   564                                "forced to look at the secondary_free_list");
   565       }
   566       res = new_region_try_secondary_free_list();
   567       if (res != NULL) {
   568         return res;
   569       }
   570     }
   571   }
   572   res = _free_list.remove_head_or_null();
   573   if (res == NULL) {
   574     if (G1ConcRegionFreeingVerbose) {
   575       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   576                              "res == NULL, trying the secondary_free_list");
   577     }
   578     res = new_region_try_secondary_free_list();
   579   }
   580   if (res == NULL && do_expand) {
   581     ergo_verbose1(ErgoHeapSizing,
   582                   "attempt heap expansion",
   583                   ergo_format_reason("region allocation request failed")
   584                   ergo_format_byte("allocation request"),
   585                   word_size * HeapWordSize);
   586     if (expand(word_size * HeapWordSize)) {
   587       // Even though the heap was expanded, it might not have reached
   588       // the desired size. So, we cannot assume that the allocation
   589       // will succeed.
   590       res = _free_list.remove_head_or_null();
   591     }
   592   }
   593   return res;
   594 }
   596 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
   597                                                           size_t word_size) {
   598   assert(isHumongous(word_size), "word_size should be humongous");
   599   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   601   size_t first = G1_NULL_HRS_INDEX;
   602   if (num_regions == 1) {
   603     // Only one region to allocate, no need to go through the slower
   604     // path. The caller will attempt the expasion if this fails, so
   605     // let's not try to expand here too.
   606     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   607     if (hr != NULL) {
   608       first = hr->hrs_index();
   609     } else {
   610       first = G1_NULL_HRS_INDEX;
   611     }
   612   } else {
   613     // We can't allocate humongous regions while cleanupComplete() is
   614     // running, since some of the regions we find to be empty might not
   615     // yet be added to the free list and it is not straightforward to
   616     // know which list they are on so that we can remove them. Note
   617     // that we only need to do this if we need to allocate more than
   618     // one region to satisfy the current humongous allocation
   619     // request. If we are only allocating one region we use the common
   620     // region allocation code (see above).
   621     wait_while_free_regions_coming();
   622     append_secondary_free_list_if_not_empty_with_lock();
   624     if (free_regions() >= num_regions) {
   625       first = _hrs.find_contiguous(num_regions);
   626       if (first != G1_NULL_HRS_INDEX) {
   627         for (size_t i = first; i < first + num_regions; ++i) {
   628           HeapRegion* hr = region_at(i);
   629           assert(hr->is_empty(), "sanity");
   630           assert(is_on_master_free_list(hr), "sanity");
   631           hr->set_pending_removal(true);
   632         }
   633         _free_list.remove_all_pending(num_regions);
   634       }
   635     }
   636   }
   637   return first;
   638 }
   640 HeapWord*
   641 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
   642                                                            size_t num_regions,
   643                                                            size_t word_size) {
   644   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   645   assert(isHumongous(word_size), "word_size should be humongous");
   646   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   648   // Index of last region in the series + 1.
   649   size_t last = first + num_regions;
   651   // We need to initialize the region(s) we just discovered. This is
   652   // a bit tricky given that it can happen concurrently with
   653   // refinement threads refining cards on these regions and
   654   // potentially wanting to refine the BOT as they are scanning
   655   // those cards (this can happen shortly after a cleanup; see CR
   656   // 6991377). So we have to set up the region(s) carefully and in
   657   // a specific order.
   659   // The word size sum of all the regions we will allocate.
   660   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
   661   assert(word_size <= word_size_sum, "sanity");
   663   // This will be the "starts humongous" region.
   664   HeapRegion* first_hr = region_at(first);
   665   // The header of the new object will be placed at the bottom of
   666   // the first region.
   667   HeapWord* new_obj = first_hr->bottom();
   668   // This will be the new end of the first region in the series that
   669   // should also match the end of the last region in the seriers.
   670   HeapWord* new_end = new_obj + word_size_sum;
   671   // This will be the new top of the first region that will reflect
   672   // this allocation.
   673   HeapWord* new_top = new_obj + word_size;
   675   // First, we need to zero the header of the space that we will be
   676   // allocating. When we update top further down, some refinement
   677   // threads might try to scan the region. By zeroing the header we
   678   // ensure that any thread that will try to scan the region will
   679   // come across the zero klass word and bail out.
   680   //
   681   // NOTE: It would not have been correct to have used
   682   // CollectedHeap::fill_with_object() and make the space look like
   683   // an int array. The thread that is doing the allocation will
   684   // later update the object header to a potentially different array
   685   // type and, for a very short period of time, the klass and length
   686   // fields will be inconsistent. This could cause a refinement
   687   // thread to calculate the object size incorrectly.
   688   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   690   // We will set up the first region as "starts humongous". This
   691   // will also update the BOT covering all the regions to reflect
   692   // that there is a single object that starts at the bottom of the
   693   // first region.
   694   first_hr->set_startsHumongous(new_top, new_end);
   696   // Then, if there are any, we will set up the "continues
   697   // humongous" regions.
   698   HeapRegion* hr = NULL;
   699   for (size_t i = first + 1; i < last; ++i) {
   700     hr = region_at(i);
   701     hr->set_continuesHumongous(first_hr);
   702   }
   703   // If we have "continues humongous" regions (hr != NULL), then the
   704   // end of the last one should match new_end.
   705   assert(hr == NULL || hr->end() == new_end, "sanity");
   707   // Up to this point no concurrent thread would have been able to
   708   // do any scanning on any region in this series. All the top
   709   // fields still point to bottom, so the intersection between
   710   // [bottom,top] and [card_start,card_end] will be empty. Before we
   711   // update the top fields, we'll do a storestore to make sure that
   712   // no thread sees the update to top before the zeroing of the
   713   // object header and the BOT initialization.
   714   OrderAccess::storestore();
   716   // Now that the BOT and the object header have been initialized,
   717   // we can update top of the "starts humongous" region.
   718   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   719          "new_top should be in this region");
   720   first_hr->set_top(new_top);
   721   if (_hr_printer.is_active()) {
   722     HeapWord* bottom = first_hr->bottom();
   723     HeapWord* end = first_hr->orig_end();
   724     if ((first + 1) == last) {
   725       // the series has a single humongous region
   726       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   727     } else {
   728       // the series has more than one humongous regions
   729       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   730     }
   731   }
   733   // Now, we will update the top fields of the "continues humongous"
   734   // regions. The reason we need to do this is that, otherwise,
   735   // these regions would look empty and this will confuse parts of
   736   // G1. For example, the code that looks for a consecutive number
   737   // of empty regions will consider them empty and try to
   738   // re-allocate them. We can extend is_empty() to also include
   739   // !continuesHumongous(), but it is easier to just update the top
   740   // fields here. The way we set top for all regions (i.e., top ==
   741   // end for all regions but the last one, top == new_top for the
   742   // last one) is actually used when we will free up the humongous
   743   // region in free_humongous_region().
   744   hr = NULL;
   745   for (size_t i = first + 1; i < last; ++i) {
   746     hr = region_at(i);
   747     if ((i + 1) == last) {
   748       // last continues humongous region
   749       assert(hr->bottom() < new_top && new_top <= hr->end(),
   750              "new_top should fall on this region");
   751       hr->set_top(new_top);
   752       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   753     } else {
   754       // not last one
   755       assert(new_top > hr->end(), "new_top should be above this region");
   756       hr->set_top(hr->end());
   757       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   758     }
   759   }
   760   // If we have continues humongous regions (hr != NULL), then the
   761   // end of the last one should match new_end and its top should
   762   // match new_top.
   763   assert(hr == NULL ||
   764          (hr->end() == new_end && hr->top() == new_top), "sanity");
   766   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   767   _summary_bytes_used += first_hr->used();
   768   _humongous_set.add(first_hr);
   770   return new_obj;
   771 }
   773 // If could fit into free regions w/o expansion, try.
   774 // Otherwise, if can expand, do so.
   775 // Otherwise, if using ex regions might help, try with ex given back.
   776 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   777   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   779   verify_region_sets_optional();
   781   size_t num_regions =
   782          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   783   size_t x_size = expansion_regions();
   784   size_t fs = _hrs.free_suffix();
   785   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
   786   if (first == G1_NULL_HRS_INDEX) {
   787     // The only thing we can do now is attempt expansion.
   788     if (fs + x_size >= num_regions) {
   789       // If the number of regions we're trying to allocate for this
   790       // object is at most the number of regions in the free suffix,
   791       // then the call to humongous_obj_allocate_find_first() above
   792       // should have succeeded and we wouldn't be here.
   793       //
   794       // We should only be trying to expand when the free suffix is
   795       // not sufficient for the object _and_ we have some expansion
   796       // room available.
   797       assert(num_regions > fs, "earlier allocation should have succeeded");
   799       ergo_verbose1(ErgoHeapSizing,
   800                     "attempt heap expansion",
   801                     ergo_format_reason("humongous allocation request failed")
   802                     ergo_format_byte("allocation request"),
   803                     word_size * HeapWordSize);
   804       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   805         // Even though the heap was expanded, it might not have
   806         // reached the desired size. So, we cannot assume that the
   807         // allocation will succeed.
   808         first = humongous_obj_allocate_find_first(num_regions, word_size);
   809       }
   810     }
   811   }
   813   HeapWord* result = NULL;
   814   if (first != G1_NULL_HRS_INDEX) {
   815     result =
   816       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   817     assert(result != NULL, "it should always return a valid result");
   818   }
   820   verify_region_sets_optional();
   822   return result;
   823 }
   825 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   826   assert_heap_not_locked_and_not_at_safepoint();
   827   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   829   unsigned int dummy_gc_count_before;
   830   return attempt_allocation(word_size, &dummy_gc_count_before);
   831 }
   833 HeapWord*
   834 G1CollectedHeap::mem_allocate(size_t word_size,
   835                               bool*  gc_overhead_limit_was_exceeded) {
   836   assert_heap_not_locked_and_not_at_safepoint();
   838   // Loop until the allocation is satisified, or unsatisfied after GC.
   839   for (int try_count = 1; /* we'll return */; try_count += 1) {
   840     unsigned int gc_count_before;
   842     HeapWord* result = NULL;
   843     if (!isHumongous(word_size)) {
   844       result = attempt_allocation(word_size, &gc_count_before);
   845     } else {
   846       result = attempt_allocation_humongous(word_size, &gc_count_before);
   847     }
   848     if (result != NULL) {
   849       return result;
   850     }
   852     // Create the garbage collection operation...
   853     VM_G1CollectForAllocation op(gc_count_before, word_size);
   854     // ...and get the VM thread to execute it.
   855     VMThread::execute(&op);
   857     if (op.prologue_succeeded() && op.pause_succeeded()) {
   858       // If the operation was successful we'll return the result even
   859       // if it is NULL. If the allocation attempt failed immediately
   860       // after a Full GC, it's unlikely we'll be able to allocate now.
   861       HeapWord* result = op.result();
   862       if (result != NULL && !isHumongous(word_size)) {
   863         // Allocations that take place on VM operations do not do any
   864         // card dirtying and we have to do it here. We only have to do
   865         // this for non-humongous allocations, though.
   866         dirty_young_block(result, word_size);
   867       }
   868       return result;
   869     } else {
   870       assert(op.result() == NULL,
   871              "the result should be NULL if the VM op did not succeed");
   872     }
   874     // Give a warning if we seem to be looping forever.
   875     if ((QueuedAllocationWarningCount > 0) &&
   876         (try_count % QueuedAllocationWarningCount == 0)) {
   877       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   878     }
   879   }
   881   ShouldNotReachHere();
   882   return NULL;
   883 }
   885 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   886                                            unsigned int *gc_count_before_ret) {
   887   // Make sure you read the note in attempt_allocation_humongous().
   889   assert_heap_not_locked_and_not_at_safepoint();
   890   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   891          "be called for humongous allocation requests");
   893   // We should only get here after the first-level allocation attempt
   894   // (attempt_allocation()) failed to allocate.
   896   // We will loop until a) we manage to successfully perform the
   897   // allocation or b) we successfully schedule a collection which
   898   // fails to perform the allocation. b) is the only case when we'll
   899   // return NULL.
   900   HeapWord* result = NULL;
   901   for (int try_count = 1; /* we'll return */; try_count += 1) {
   902     bool should_try_gc;
   903     unsigned int gc_count_before;
   905     {
   906       MutexLockerEx x(Heap_lock);
   908       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   909                                                       false /* bot_updates */);
   910       if (result != NULL) {
   911         return result;
   912       }
   914       // If we reach here, attempt_allocation_locked() above failed to
   915       // allocate a new region. So the mutator alloc region should be NULL.
   916       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   918       if (GC_locker::is_active_and_needs_gc()) {
   919         if (g1_policy()->can_expand_young_list()) {
   920           // No need for an ergo verbose message here,
   921           // can_expand_young_list() does this when it returns true.
   922           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   923                                                       false /* bot_updates */);
   924           if (result != NULL) {
   925             return result;
   926           }
   927         }
   928         should_try_gc = false;
   929       } else {
   930         // Read the GC count while still holding the Heap_lock.
   931         gc_count_before = SharedHeap::heap()->total_collections();
   932         should_try_gc = true;
   933       }
   934     }
   936     if (should_try_gc) {
   937       bool succeeded;
   938       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   939       if (result != NULL) {
   940         assert(succeeded, "only way to get back a non-NULL result");
   941         return result;
   942       }
   944       if (succeeded) {
   945         // If we get here we successfully scheduled a collection which
   946         // failed to allocate. No point in trying to allocate
   947         // further. We'll just return NULL.
   948         MutexLockerEx x(Heap_lock);
   949         *gc_count_before_ret = SharedHeap::heap()->total_collections();
   950         return NULL;
   951       }
   952     } else {
   953       GC_locker::stall_until_clear();
   954     }
   956     // We can reach here if we were unsuccessul in scheduling a
   957     // collection (because another thread beat us to it) or if we were
   958     // stalled due to the GC locker. In either can we should retry the
   959     // allocation attempt in case another thread successfully
   960     // performed a collection and reclaimed enough space. We do the
   961     // first attempt (without holding the Heap_lock) here and the
   962     // follow-on attempt will be at the start of the next loop
   963     // iteration (after taking the Heap_lock).
   964     result = _mutator_alloc_region.attempt_allocation(word_size,
   965                                                       false /* bot_updates */);
   966     if (result != NULL ){
   967       return result;
   968     }
   970     // Give a warning if we seem to be looping forever.
   971     if ((QueuedAllocationWarningCount > 0) &&
   972         (try_count % QueuedAllocationWarningCount == 0)) {
   973       warning("G1CollectedHeap::attempt_allocation_slow() "
   974               "retries %d times", try_count);
   975     }
   976   }
   978   ShouldNotReachHere();
   979   return NULL;
   980 }
   982 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
   983                                           unsigned int * gc_count_before_ret) {
   984   // The structure of this method has a lot of similarities to
   985   // attempt_allocation_slow(). The reason these two were not merged
   986   // into a single one is that such a method would require several "if
   987   // allocation is not humongous do this, otherwise do that"
   988   // conditional paths which would obscure its flow. In fact, an early
   989   // version of this code did use a unified method which was harder to
   990   // follow and, as a result, it had subtle bugs that were hard to
   991   // track down. So keeping these two methods separate allows each to
   992   // be more readable. It will be good to keep these two in sync as
   993   // much as possible.
   995   assert_heap_not_locked_and_not_at_safepoint();
   996   assert(isHumongous(word_size), "attempt_allocation_humongous() "
   997          "should only be called for humongous allocations");
   999   // We will loop until a) we manage to successfully perform the
  1000   // allocation or b) we successfully schedule a collection which
  1001   // fails to perform the allocation. b) is the only case when we'll
  1002   // return NULL.
  1003   HeapWord* result = NULL;
  1004   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1005     bool should_try_gc;
  1006     unsigned int gc_count_before;
  1009       MutexLockerEx x(Heap_lock);
  1011       // Given that humongous objects are not allocated in young
  1012       // regions, we'll first try to do the allocation without doing a
  1013       // collection hoping that there's enough space in the heap.
  1014       result = humongous_obj_allocate(word_size);
  1015       if (result != NULL) {
  1016         return result;
  1019       if (GC_locker::is_active_and_needs_gc()) {
  1020         should_try_gc = false;
  1021       } else {
  1022         // Read the GC count while still holding the Heap_lock.
  1023         gc_count_before = SharedHeap::heap()->total_collections();
  1024         should_try_gc = true;
  1028     if (should_try_gc) {
  1029       // If we failed to allocate the humongous object, we should try to
  1030       // do a collection pause (if we're allowed) in case it reclaims
  1031       // enough space for the allocation to succeed after the pause.
  1033       bool succeeded;
  1034       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1035       if (result != NULL) {
  1036         assert(succeeded, "only way to get back a non-NULL result");
  1037         return result;
  1040       if (succeeded) {
  1041         // If we get here we successfully scheduled a collection which
  1042         // failed to allocate. No point in trying to allocate
  1043         // further. We'll just return NULL.
  1044         MutexLockerEx x(Heap_lock);
  1045         *gc_count_before_ret = SharedHeap::heap()->total_collections();
  1046         return NULL;
  1048     } else {
  1049       GC_locker::stall_until_clear();
  1052     // We can reach here if we were unsuccessul in scheduling a
  1053     // collection (because another thread beat us to it) or if we were
  1054     // stalled due to the GC locker. In either can we should retry the
  1055     // allocation attempt in case another thread successfully
  1056     // performed a collection and reclaimed enough space.  Give a
  1057     // warning if we seem to be looping forever.
  1059     if ((QueuedAllocationWarningCount > 0) &&
  1060         (try_count % QueuedAllocationWarningCount == 0)) {
  1061       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1062               "retries %d times", try_count);
  1066   ShouldNotReachHere();
  1067   return NULL;
  1070 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1071                                        bool expect_null_mutator_alloc_region) {
  1072   assert_at_safepoint(true /* should_be_vm_thread */);
  1073   assert(_mutator_alloc_region.get() == NULL ||
  1074                                              !expect_null_mutator_alloc_region,
  1075          "the current alloc region was unexpectedly found to be non-NULL");
  1077   if (!isHumongous(word_size)) {
  1078     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1079                                                       false /* bot_updates */);
  1080   } else {
  1081     return humongous_obj_allocate(word_size);
  1084   ShouldNotReachHere();
  1087 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1088   ModRefBarrierSet* _mr_bs;
  1089 public:
  1090   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1091   bool doHeapRegion(HeapRegion* r) {
  1092     r->reset_gc_time_stamp();
  1093     if (r->continuesHumongous())
  1094       return false;
  1095     HeapRegionRemSet* hrrs = r->rem_set();
  1096     if (hrrs != NULL) hrrs->clear();
  1097     // You might think here that we could clear just the cards
  1098     // corresponding to the used region.  But no: if we leave a dirty card
  1099     // in a region we might allocate into, then it would prevent that card
  1100     // from being enqueued, and cause it to be missed.
  1101     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1102     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1103     return false;
  1105 };
  1108 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1109   ModRefBarrierSet* _mr_bs;
  1110 public:
  1111   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1112   bool doHeapRegion(HeapRegion* r) {
  1113     if (r->continuesHumongous()) return false;
  1114     if (r->used_region().word_size() != 0) {
  1115       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1117     return false;
  1119 };
  1121 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1122   G1CollectedHeap*   _g1h;
  1123   UpdateRSOopClosure _cl;
  1124   int                _worker_i;
  1125 public:
  1126   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1127     _cl(g1->g1_rem_set(), worker_i),
  1128     _worker_i(worker_i),
  1129     _g1h(g1)
  1130   { }
  1132   bool doHeapRegion(HeapRegion* r) {
  1133     if (!r->continuesHumongous()) {
  1134       _cl.set_from(r);
  1135       r->oop_iterate(&_cl);
  1137     return false;
  1139 };
  1141 class ParRebuildRSTask: public AbstractGangTask {
  1142   G1CollectedHeap* _g1;
  1143 public:
  1144   ParRebuildRSTask(G1CollectedHeap* g1)
  1145     : AbstractGangTask("ParRebuildRSTask"),
  1146       _g1(g1)
  1147   { }
  1149   void work(int i) {
  1150     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
  1151     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
  1152                                          HeapRegion::RebuildRSClaimValue);
  1154 };
  1156 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1157 private:
  1158   G1HRPrinter* _hr_printer;
  1159 public:
  1160   bool doHeapRegion(HeapRegion* hr) {
  1161     assert(!hr->is_young(), "not expecting to find young regions");
  1162     // We only generate output for non-empty regions.
  1163     if (!hr->is_empty()) {
  1164       if (!hr->isHumongous()) {
  1165         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1166       } else if (hr->startsHumongous()) {
  1167         if (hr->capacity() == (size_t) HeapRegion::GrainBytes) {
  1168           // single humongous region
  1169           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1170         } else {
  1171           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1173       } else {
  1174         assert(hr->continuesHumongous(), "only way to get here");
  1175         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1178     return false;
  1181   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1182     : _hr_printer(hr_printer) { }
  1183 };
  1185 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1186                                     bool clear_all_soft_refs,
  1187                                     size_t word_size) {
  1188   assert_at_safepoint(true /* should_be_vm_thread */);
  1190   if (GC_locker::check_active_before_gc()) {
  1191     return false;
  1194   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1195   ResourceMark rm;
  1197   if (PrintHeapAtGC) {
  1198     Universe::print_heap_before_gc();
  1201   verify_region_sets_optional();
  1203   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1204                            collector_policy()->should_clear_all_soft_refs();
  1206   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1209     IsGCActiveMark x;
  1211     // Timing
  1212     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
  1213     assert(!system_gc || explicit_gc, "invariant");
  1214     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1215     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1216     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
  1217                 PrintGC, true, gclog_or_tty);
  1219     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1220     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1222     double start = os::elapsedTime();
  1223     g1_policy()->record_full_collection_start();
  1225     wait_while_free_regions_coming();
  1226     append_secondary_free_list_if_not_empty_with_lock();
  1228     gc_prologue(true);
  1229     increment_total_collections(true /* full gc */);
  1231     size_t g1h_prev_used = used();
  1232     assert(used() == recalculate_used(), "Should be equal");
  1234     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1235       HandleMark hm;  // Discard invalid handles created during verification
  1236       gclog_or_tty->print(" VerifyBeforeGC:");
  1237       prepare_for_verify();
  1238       Universe::verify(/* allow dirty */ true,
  1239                        /* silent      */ false,
  1240                        /* option      */ VerifyOption_G1UsePrevMarking);
  1243     pre_full_gc_dump();
  1245     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1247     // We want to discover references, but not process them yet.
  1248     // This mode is disabled in
  1249     // instanceRefKlass::process_discovered_references if the
  1250     // generation does some collection work, or
  1251     // instanceRefKlass::enqueue_discovered_references if the
  1252     // generation returns without doing any work.
  1253     ref_processor()->disable_discovery();
  1254     ref_processor()->abandon_partial_discovery();
  1255     ref_processor()->verify_no_references_recorded();
  1257     // Abandon current iterations of concurrent marking and concurrent
  1258     // refinement, if any are in progress.
  1259     concurrent_mark()->abort();
  1261     // Make sure we'll choose a new allocation region afterwards.
  1262     release_mutator_alloc_region();
  1263     abandon_gc_alloc_regions();
  1264     g1_rem_set()->cleanupHRRS();
  1265     tear_down_region_lists();
  1267     // We should call this after we retire any currently active alloc
  1268     // regions so that all the ALLOC / RETIRE events are generated
  1269     // before the start GC event.
  1270     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1272     // We may have added regions to the current incremental collection
  1273     // set between the last GC or pause and now. We need to clear the
  1274     // incremental collection set and then start rebuilding it afresh
  1275     // after this full GC.
  1276     abandon_collection_set(g1_policy()->inc_cset_head());
  1277     g1_policy()->clear_incremental_cset();
  1278     g1_policy()->stop_incremental_cset_building();
  1280     empty_young_list();
  1281     g1_policy()->set_full_young_gcs(true);
  1283     // See the comment in G1CollectedHeap::ref_processing_init() about
  1284     // how reference processing currently works in G1.
  1286     // Temporarily make reference _discovery_ single threaded (non-MT).
  1287     ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
  1289     // Temporarily make refs discovery atomic
  1290     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
  1292     // Temporarily clear _is_alive_non_header
  1293     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
  1295     ref_processor()->enable_discovery();
  1296     ref_processor()->setup_policy(do_clear_all_soft_refs);
  1297     // Do collection work
  1299       HandleMark hm;  // Discard invalid handles created during gc
  1300       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
  1302     assert(free_regions() == 0, "we should not have added any free regions");
  1303     rebuild_region_lists();
  1305     _summary_bytes_used = recalculate_used();
  1307     ref_processor()->enqueue_discovered_references();
  1309     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1311     MemoryService::track_memory_usage();
  1313     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1314       HandleMark hm;  // Discard invalid handles created during verification
  1315       gclog_or_tty->print(" VerifyAfterGC:");
  1316       prepare_for_verify();
  1317       Universe::verify(/* allow dirty */ false,
  1318                        /* silent      */ false,
  1319                        /* option      */ VerifyOption_G1UsePrevMarking);
  1322     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1324     reset_gc_time_stamp();
  1325     // Since everything potentially moved, we will clear all remembered
  1326     // sets, and clear all cards.  Later we will rebuild remebered
  1327     // sets. We will also reset the GC time stamps of the regions.
  1328     PostMCRemSetClearClosure rs_clear(mr_bs());
  1329     heap_region_iterate(&rs_clear);
  1331     // Resize the heap if necessary.
  1332     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1334     if (_hr_printer.is_active()) {
  1335       // We should do this after we potentially resize the heap so
  1336       // that all the COMMIT / UNCOMMIT events are generated before
  1337       // the end GC event.
  1339       PostCompactionPrinterClosure cl(hr_printer());
  1340       heap_region_iterate(&cl);
  1342       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1345     if (_cg1r->use_cache()) {
  1346       _cg1r->clear_and_record_card_counts();
  1347       _cg1r->clear_hot_cache();
  1350     // Rebuild remembered sets of all regions.
  1352     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1353       ParRebuildRSTask rebuild_rs_task(this);
  1354       assert(check_heap_region_claim_values(
  1355              HeapRegion::InitialClaimValue), "sanity check");
  1356       set_par_threads(workers()->total_workers());
  1357       workers()->run_task(&rebuild_rs_task);
  1358       set_par_threads(0);
  1359       assert(check_heap_region_claim_values(
  1360              HeapRegion::RebuildRSClaimValue), "sanity check");
  1361       reset_heap_region_claim_values();
  1362     } else {
  1363       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1364       heap_region_iterate(&rebuild_rs);
  1367     if (PrintGC) {
  1368       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1371     if (true) { // FIXME
  1372       // Ask the permanent generation to adjust size for full collections
  1373       perm()->compute_new_size();
  1376     // Start a new incremental collection set for the next pause
  1377     assert(g1_policy()->collection_set() == NULL, "must be");
  1378     g1_policy()->start_incremental_cset_building();
  1380     // Clear the _cset_fast_test bitmap in anticipation of adding
  1381     // regions to the incremental collection set for the next
  1382     // evacuation pause.
  1383     clear_cset_fast_test();
  1385     init_mutator_alloc_region();
  1387     double end = os::elapsedTime();
  1388     g1_policy()->record_full_collection_end();
  1390 #ifdef TRACESPINNING
  1391     ParallelTaskTerminator::print_termination_counts();
  1392 #endif
  1394     gc_epilogue(true);
  1396     // Discard all rset updates
  1397     JavaThread::dirty_card_queue_set().abandon_logs();
  1398     assert(!G1DeferredRSUpdate
  1399            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1402   _young_list->reset_sampled_info();
  1403   // At this point there should be no regions in the
  1404   // entire heap tagged as young.
  1405   assert( check_young_list_empty(true /* check_heap */),
  1406     "young list should be empty at this point");
  1408   // Update the number of full collections that have been completed.
  1409   increment_full_collections_completed(false /* concurrent */);
  1411   _hrs.verify_optional();
  1412   verify_region_sets_optional();
  1414   if (PrintHeapAtGC) {
  1415     Universe::print_heap_after_gc();
  1417   g1mm()->update_counters();
  1418   post_full_gc_dump();
  1420   return true;
  1423 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1424   // do_collection() will return whether it succeeded in performing
  1425   // the GC. Currently, there is no facility on the
  1426   // do_full_collection() API to notify the caller than the collection
  1427   // did not succeed (e.g., because it was locked out by the GC
  1428   // locker). So, right now, we'll ignore the return value.
  1429   bool dummy = do_collection(true,                /* explicit_gc */
  1430                              clear_all_soft_refs,
  1431                              0                    /* word_size */);
  1434 // This code is mostly copied from TenuredGeneration.
  1435 void
  1436 G1CollectedHeap::
  1437 resize_if_necessary_after_full_collection(size_t word_size) {
  1438   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1440   // Include the current allocation, if any, and bytes that will be
  1441   // pre-allocated to support collections, as "used".
  1442   const size_t used_after_gc = used();
  1443   const size_t capacity_after_gc = capacity();
  1444   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1446   // This is enforced in arguments.cpp.
  1447   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1448          "otherwise the code below doesn't make sense");
  1450   // We don't have floating point command-line arguments
  1451   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1452   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1453   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1454   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1456   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1457   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1459   // We have to be careful here as these two calculations can overflow
  1460   // 32-bit size_t's.
  1461   double used_after_gc_d = (double) used_after_gc;
  1462   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1463   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1465   // Let's make sure that they are both under the max heap size, which
  1466   // by default will make them fit into a size_t.
  1467   double desired_capacity_upper_bound = (double) max_heap_size;
  1468   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1469                                     desired_capacity_upper_bound);
  1470   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1471                                     desired_capacity_upper_bound);
  1473   // We can now safely turn them into size_t's.
  1474   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1475   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1477   // This assert only makes sense here, before we adjust them
  1478   // with respect to the min and max heap size.
  1479   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1480          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1481                  "maximum_desired_capacity = "SIZE_FORMAT,
  1482                  minimum_desired_capacity, maximum_desired_capacity));
  1484   // Should not be greater than the heap max size. No need to adjust
  1485   // it with respect to the heap min size as it's a lower bound (i.e.,
  1486   // we'll try to make the capacity larger than it, not smaller).
  1487   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1488   // Should not be less than the heap min size. No need to adjust it
  1489   // with respect to the heap max size as it's an upper bound (i.e.,
  1490   // we'll try to make the capacity smaller than it, not greater).
  1491   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1493   if (capacity_after_gc < minimum_desired_capacity) {
  1494     // Don't expand unless it's significant
  1495     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1496     ergo_verbose4(ErgoHeapSizing,
  1497                   "attempt heap expansion",
  1498                   ergo_format_reason("capacity lower than "
  1499                                      "min desired capacity after Full GC")
  1500                   ergo_format_byte("capacity")
  1501                   ergo_format_byte("occupancy")
  1502                   ergo_format_byte_perc("min desired capacity"),
  1503                   capacity_after_gc, used_after_gc,
  1504                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1505     expand(expand_bytes);
  1507     // No expansion, now see if we want to shrink
  1508   } else if (capacity_after_gc > maximum_desired_capacity) {
  1509     // Capacity too large, compute shrinking size
  1510     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1511     ergo_verbose4(ErgoHeapSizing,
  1512                   "attempt heap shrinking",
  1513                   ergo_format_reason("capacity higher than "
  1514                                      "max desired capacity after Full GC")
  1515                   ergo_format_byte("capacity")
  1516                   ergo_format_byte("occupancy")
  1517                   ergo_format_byte_perc("max desired capacity"),
  1518                   capacity_after_gc, used_after_gc,
  1519                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1520     shrink(shrink_bytes);
  1525 HeapWord*
  1526 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1527                                            bool* succeeded) {
  1528   assert_at_safepoint(true /* should_be_vm_thread */);
  1530   *succeeded = true;
  1531   // Let's attempt the allocation first.
  1532   HeapWord* result =
  1533     attempt_allocation_at_safepoint(word_size,
  1534                                  false /* expect_null_mutator_alloc_region */);
  1535   if (result != NULL) {
  1536     assert(*succeeded, "sanity");
  1537     return result;
  1540   // In a G1 heap, we're supposed to keep allocation from failing by
  1541   // incremental pauses.  Therefore, at least for now, we'll favor
  1542   // expansion over collection.  (This might change in the future if we can
  1543   // do something smarter than full collection to satisfy a failed alloc.)
  1544   result = expand_and_allocate(word_size);
  1545   if (result != NULL) {
  1546     assert(*succeeded, "sanity");
  1547     return result;
  1550   // Expansion didn't work, we'll try to do a Full GC.
  1551   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1552                                     false, /* clear_all_soft_refs */
  1553                                     word_size);
  1554   if (!gc_succeeded) {
  1555     *succeeded = false;
  1556     return NULL;
  1559   // Retry the allocation
  1560   result = attempt_allocation_at_safepoint(word_size,
  1561                                   true /* expect_null_mutator_alloc_region */);
  1562   if (result != NULL) {
  1563     assert(*succeeded, "sanity");
  1564     return result;
  1567   // Then, try a Full GC that will collect all soft references.
  1568   gc_succeeded = do_collection(false, /* explicit_gc */
  1569                                true,  /* clear_all_soft_refs */
  1570                                word_size);
  1571   if (!gc_succeeded) {
  1572     *succeeded = false;
  1573     return NULL;
  1576   // Retry the allocation once more
  1577   result = attempt_allocation_at_safepoint(word_size,
  1578                                   true /* expect_null_mutator_alloc_region */);
  1579   if (result != NULL) {
  1580     assert(*succeeded, "sanity");
  1581     return result;
  1584   assert(!collector_policy()->should_clear_all_soft_refs(),
  1585          "Flag should have been handled and cleared prior to this point");
  1587   // What else?  We might try synchronous finalization later.  If the total
  1588   // space available is large enough for the allocation, then a more
  1589   // complete compaction phase than we've tried so far might be
  1590   // appropriate.
  1591   assert(*succeeded, "sanity");
  1592   return NULL;
  1595 // Attempting to expand the heap sufficiently
  1596 // to support an allocation of the given "word_size".  If
  1597 // successful, perform the allocation and return the address of the
  1598 // allocated block, or else "NULL".
  1600 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1601   assert_at_safepoint(true /* should_be_vm_thread */);
  1603   verify_region_sets_optional();
  1605   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1606   ergo_verbose1(ErgoHeapSizing,
  1607                 "attempt heap expansion",
  1608                 ergo_format_reason("allocation request failed")
  1609                 ergo_format_byte("allocation request"),
  1610                 word_size * HeapWordSize);
  1611   if (expand(expand_bytes)) {
  1612     _hrs.verify_optional();
  1613     verify_region_sets_optional();
  1614     return attempt_allocation_at_safepoint(word_size,
  1615                                  false /* expect_null_mutator_alloc_region */);
  1617   return NULL;
  1620 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1621                                              HeapWord* new_end) {
  1622   assert(old_end != new_end, "don't call this otherwise");
  1623   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1625   // Update the committed mem region.
  1626   _g1_committed.set_end(new_end);
  1627   // Tell the card table about the update.
  1628   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1629   // Tell the BOT about the update.
  1630   _bot_shared->resize(_g1_committed.word_size());
  1633 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1634   size_t old_mem_size = _g1_storage.committed_size();
  1635   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1636   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1637                                        HeapRegion::GrainBytes);
  1638   ergo_verbose2(ErgoHeapSizing,
  1639                 "expand the heap",
  1640                 ergo_format_byte("requested expansion amount")
  1641                 ergo_format_byte("attempted expansion amount"),
  1642                 expand_bytes, aligned_expand_bytes);
  1644   // First commit the memory.
  1645   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1646   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1647   if (successful) {
  1648     // Then propagate this update to the necessary data structures.
  1649     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1650     update_committed_space(old_end, new_end);
  1652     FreeRegionList expansion_list("Local Expansion List");
  1653     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1654     assert(mr.start() == old_end, "post-condition");
  1655     // mr might be a smaller region than what was requested if
  1656     // expand_by() was unable to allocate the HeapRegion instances
  1657     assert(mr.end() <= new_end, "post-condition");
  1659     size_t actual_expand_bytes = mr.byte_size();
  1660     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1661     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1662            "post-condition");
  1663     if (actual_expand_bytes < aligned_expand_bytes) {
  1664       // We could not expand _hrs to the desired size. In this case we
  1665       // need to shrink the committed space accordingly.
  1666       assert(mr.end() < new_end, "invariant");
  1668       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1669       // First uncommit the memory.
  1670       _g1_storage.shrink_by(diff_bytes);
  1671       // Then propagate this update to the necessary data structures.
  1672       update_committed_space(new_end, mr.end());
  1674     _free_list.add_as_tail(&expansion_list);
  1676     if (_hr_printer.is_active()) {
  1677       HeapWord* curr = mr.start();
  1678       while (curr < mr.end()) {
  1679         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1680         _hr_printer.commit(curr, curr_end);
  1681         curr = curr_end;
  1683       assert(curr == mr.end(), "post-condition");
  1685     g1_policy()->record_new_heap_size(n_regions());
  1686   } else {
  1687     ergo_verbose0(ErgoHeapSizing,
  1688                   "did not expand the heap",
  1689                   ergo_format_reason("heap expansion operation failed"));
  1690     // The expansion of the virtual storage space was unsuccessful.
  1691     // Let's see if it was because we ran out of swap.
  1692     if (G1ExitOnExpansionFailure &&
  1693         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1694       // We had head room...
  1695       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1698   return successful;
  1701 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1702   size_t old_mem_size = _g1_storage.committed_size();
  1703   size_t aligned_shrink_bytes =
  1704     ReservedSpace::page_align_size_down(shrink_bytes);
  1705   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1706                                          HeapRegion::GrainBytes);
  1707   size_t num_regions_deleted = 0;
  1708   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1709   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1710   assert(mr.end() == old_end, "post-condition");
  1712   ergo_verbose3(ErgoHeapSizing,
  1713                 "shrink the heap",
  1714                 ergo_format_byte("requested shrinking amount")
  1715                 ergo_format_byte("aligned shrinking amount")
  1716                 ergo_format_byte("attempted shrinking amount"),
  1717                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1718   if (mr.byte_size() > 0) {
  1719     if (_hr_printer.is_active()) {
  1720       HeapWord* curr = mr.end();
  1721       while (curr > mr.start()) {
  1722         HeapWord* curr_end = curr;
  1723         curr -= HeapRegion::GrainWords;
  1724         _hr_printer.uncommit(curr, curr_end);
  1726       assert(curr == mr.start(), "post-condition");
  1729     _g1_storage.shrink_by(mr.byte_size());
  1730     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1731     assert(mr.start() == new_end, "post-condition");
  1733     _expansion_regions += num_regions_deleted;
  1734     update_committed_space(old_end, new_end);
  1735     HeapRegionRemSet::shrink_heap(n_regions());
  1736     g1_policy()->record_new_heap_size(n_regions());
  1737   } else {
  1738     ergo_verbose0(ErgoHeapSizing,
  1739                   "did not shrink the heap",
  1740                   ergo_format_reason("heap shrinking operation failed"));
  1744 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1745   verify_region_sets_optional();
  1747   // We should only reach here at the end of a Full GC which means we
  1748   // should not not be holding to any GC alloc regions. The method
  1749   // below will make sure of that and do any remaining clean up.
  1750   abandon_gc_alloc_regions();
  1752   // Instead of tearing down / rebuilding the free lists here, we
  1753   // could instead use the remove_all_pending() method on free_list to
  1754   // remove only the ones that we need to remove.
  1755   tear_down_region_lists();  // We will rebuild them in a moment.
  1756   shrink_helper(shrink_bytes);
  1757   rebuild_region_lists();
  1759   _hrs.verify_optional();
  1760   verify_region_sets_optional();
  1763 // Public methods.
  1765 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1766 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1767 #endif // _MSC_VER
  1770 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1771   SharedHeap(policy_),
  1772   _g1_policy(policy_),
  1773   _dirty_card_queue_set(false),
  1774   _into_cset_dirty_card_queue_set(false),
  1775   _is_alive_closure(this),
  1776   _ref_processor(NULL),
  1777   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1778   _bot_shared(NULL),
  1779   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1780   _evac_failure_scan_stack(NULL) ,
  1781   _mark_in_progress(false),
  1782   _cg1r(NULL), _summary_bytes_used(0),
  1783   _refine_cte_cl(NULL),
  1784   _full_collection(false),
  1785   _free_list("Master Free List"),
  1786   _secondary_free_list("Secondary Free List"),
  1787   _humongous_set("Master Humongous Set"),
  1788   _free_regions_coming(false),
  1789   _young_list(new YoungList(this)),
  1790   _gc_time_stamp(0),
  1791   _retained_old_gc_alloc_region(NULL),
  1792   _surviving_young_words(NULL),
  1793   _full_collections_completed(0),
  1794   _in_cset_fast_test(NULL),
  1795   _in_cset_fast_test_base(NULL),
  1796   _dirty_cards_region_list(NULL) {
  1797   _g1h = this; // To catch bugs.
  1798   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1799     vm_exit_during_initialization("Failed necessary allocation.");
  1802   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1804   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1805   _task_queues = new RefToScanQueueSet(n_queues);
  1807   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1808   assert(n_rem_sets > 0, "Invariant.");
  1810   HeapRegionRemSetIterator** iter_arr =
  1811     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1812   for (int i = 0; i < n_queues; i++) {
  1813     iter_arr[i] = new HeapRegionRemSetIterator();
  1815   _rem_set_iterator = iter_arr;
  1817   for (int i = 0; i < n_queues; i++) {
  1818     RefToScanQueue* q = new RefToScanQueue();
  1819     q->initialize();
  1820     _task_queues->register_queue(i, q);
  1823   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1826 jint G1CollectedHeap::initialize() {
  1827   CollectedHeap::pre_initialize();
  1828   os::enable_vtime();
  1830   // Necessary to satisfy locking discipline assertions.
  1832   MutexLocker x(Heap_lock);
  1834   // We have to initialize the printer before committing the heap, as
  1835   // it will be used then.
  1836   _hr_printer.set_active(G1PrintHeapRegions);
  1838   // While there are no constraints in the GC code that HeapWordSize
  1839   // be any particular value, there are multiple other areas in the
  1840   // system which believe this to be true (e.g. oop->object_size in some
  1841   // cases incorrectly returns the size in wordSize units rather than
  1842   // HeapWordSize).
  1843   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1845   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1846   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1848   // Ensure that the sizes are properly aligned.
  1849   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1850   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1852   _cg1r = new ConcurrentG1Refine();
  1854   // Reserve the maximum.
  1855   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1856   // Includes the perm-gen.
  1858   // When compressed oops are enabled, the preferred heap base
  1859   // is calculated by subtracting the requested size from the
  1860   // 32Gb boundary and using the result as the base address for
  1861   // heap reservation. If the requested size is not aligned to
  1862   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1863   // into the ReservedHeapSpace constructor) then the actual
  1864   // base of the reserved heap may end up differing from the
  1865   // address that was requested (i.e. the preferred heap base).
  1866   // If this happens then we could end up using a non-optimal
  1867   // compressed oops mode.
  1869   // Since max_byte_size is aligned to the size of a heap region (checked
  1870   // above), we also need to align the perm gen size as it might not be.
  1871   const size_t total_reserved = max_byte_size +
  1872                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  1873   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  1875   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1877   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  1878                             UseLargePages, addr);
  1880   if (UseCompressedOops) {
  1881     if (addr != NULL && !heap_rs.is_reserved()) {
  1882       // Failed to reserve at specified address - the requested memory
  1883       // region is taken already, for example, by 'java' launcher.
  1884       // Try again to reserver heap higher.
  1885       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1887       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1888                                  UseLargePages, addr);
  1890       if (addr != NULL && !heap_rs0.is_reserved()) {
  1891         // Failed to reserve at specified address again - give up.
  1892         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1893         assert(addr == NULL, "");
  1895         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1896                                    UseLargePages, addr);
  1897         heap_rs = heap_rs1;
  1898       } else {
  1899         heap_rs = heap_rs0;
  1904   if (!heap_rs.is_reserved()) {
  1905     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1906     return JNI_ENOMEM;
  1909   // It is important to do this in a way such that concurrent readers can't
  1910   // temporarily think somethings in the heap.  (I've actually seen this
  1911   // happen in asserts: DLD.)
  1912   _reserved.set_word_size(0);
  1913   _reserved.set_start((HeapWord*)heap_rs.base());
  1914   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1916   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1918   // Create the gen rem set (and barrier set) for the entire reserved region.
  1919   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1920   set_barrier_set(rem_set()->bs());
  1921   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1922     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1923   } else {
  1924     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1925     return JNI_ENOMEM;
  1928   // Also create a G1 rem set.
  1929   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1930     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1931   } else {
  1932     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1933     return JNI_ENOMEM;
  1936   // Carve out the G1 part of the heap.
  1938   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1939   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1940                            g1_rs.size()/HeapWordSize);
  1941   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1943   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1945   _g1_storage.initialize(g1_rs, 0);
  1946   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1947   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  1948                   (HeapWord*) _g1_reserved.end(),
  1949                   _expansion_regions);
  1951   // 6843694 - ensure that the maximum region index can fit
  1952   // in the remembered set structures.
  1953   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1954   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1956   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1957   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  1958   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
  1959             "too many cards per region");
  1961   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  1963   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1964                                              heap_word_size(init_byte_size));
  1966   _g1h = this;
  1968    _in_cset_fast_test_length = max_regions();
  1969    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  1971    // We're biasing _in_cset_fast_test to avoid subtracting the
  1972    // beginning of the heap every time we want to index; basically
  1973    // it's the same with what we do with the card table.
  1974    _in_cset_fast_test = _in_cset_fast_test_base -
  1975                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  1977    // Clear the _cset_fast_test bitmap in anticipation of adding
  1978    // regions to the incremental collection set for the first
  1979    // evacuation pause.
  1980    clear_cset_fast_test();
  1982   // Create the ConcurrentMark data structure and thread.
  1983   // (Must do this late, so that "max_regions" is defined.)
  1984   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1985   _cmThread = _cm->cmThread();
  1987   // Initialize the from_card cache structure of HeapRegionRemSet.
  1988   HeapRegionRemSet::init_heap(max_regions());
  1990   // Now expand into the initial heap size.
  1991   if (!expand(init_byte_size)) {
  1992     vm_exit_during_initialization("Failed to allocate initial heap.");
  1993     return JNI_ENOMEM;
  1996   // Perform any initialization actions delegated to the policy.
  1997   g1_policy()->init();
  1999   g1_policy()->note_start_of_mark_thread();
  2001   _refine_cte_cl =
  2002     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2003                                     g1_rem_set(),
  2004                                     concurrent_g1_refine());
  2005   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2007   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2008                                                SATB_Q_FL_lock,
  2009                                                G1SATBProcessCompletedThreshold,
  2010                                                Shared_SATB_Q_lock);
  2012   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2013                                                 DirtyCardQ_FL_lock,
  2014                                                 concurrent_g1_refine()->yellow_zone(),
  2015                                                 concurrent_g1_refine()->red_zone(),
  2016                                                 Shared_DirtyCardQ_lock);
  2018   if (G1DeferredRSUpdate) {
  2019     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2020                                       DirtyCardQ_FL_lock,
  2021                                       -1, // never trigger processing
  2022                                       -1, // no limit on length
  2023                                       Shared_DirtyCardQ_lock,
  2024                                       &JavaThread::dirty_card_queue_set());
  2027   // Initialize the card queue set used to hold cards containing
  2028   // references into the collection set.
  2029   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2030                                              DirtyCardQ_FL_lock,
  2031                                              -1, // never trigger processing
  2032                                              -1, // no limit on length
  2033                                              Shared_DirtyCardQ_lock,
  2034                                              &JavaThread::dirty_card_queue_set());
  2036   // In case we're keeping closure specialization stats, initialize those
  2037   // counts and that mechanism.
  2038   SpecializationStats::clear();
  2040   // Do later initialization work for concurrent refinement.
  2041   _cg1r->init();
  2043   // Here we allocate the dummy full region that is required by the
  2044   // G1AllocRegion class. If we don't pass an address in the reserved
  2045   // space here, lots of asserts fire.
  2047   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2048                                              _g1_reserved.start());
  2049   // We'll re-use the same region whether the alloc region will
  2050   // require BOT updates or not and, if it doesn't, then a non-young
  2051   // region will complain that it cannot support allocations without
  2052   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2053   dummy_region->set_young();
  2054   // Make sure it's full.
  2055   dummy_region->set_top(dummy_region->end());
  2056   G1AllocRegion::setup(this, dummy_region);
  2058   init_mutator_alloc_region();
  2060   // Do create of the monitoring and management support so that
  2061   // values in the heap have been properly initialized.
  2062   _g1mm = new G1MonitoringSupport(this, &_g1_storage);
  2064   return JNI_OK;
  2067 void G1CollectedHeap::ref_processing_init() {
  2068   // Reference processing in G1 currently works as follows:
  2069   //
  2070   // * There is only one reference processor instance that
  2071   //   'spans' the entire heap. It is created by the code
  2072   //   below.
  2073   // * Reference discovery is not enabled during an incremental
  2074   //   pause (see 6484982).
  2075   // * Discoverered refs are not enqueued nor are they processed
  2076   //   during an incremental pause (see 6484982).
  2077   // * Reference discovery is enabled at initial marking.
  2078   // * Reference discovery is disabled and the discovered
  2079   //   references processed etc during remarking.
  2080   // * Reference discovery is MT (see below).
  2081   // * Reference discovery requires a barrier (see below).
  2082   // * Reference processing is currently not MT (see 6608385).
  2083   // * A full GC enables (non-MT) reference discovery and
  2084   //   processes any discovered references.
  2086   SharedHeap::ref_processing_init();
  2087   MemRegion mr = reserved_region();
  2088   _ref_processor =
  2089     new ReferenceProcessor(mr,    // span
  2090                            ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
  2091                            (int) ParallelGCThreads,   // degree of mt processing
  2092                            ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
  2093                            (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
  2094                            false,                     // Reference discovery is not atomic
  2095                            &_is_alive_closure,        // is alive closure for efficiency
  2096                            true);                     // Setting next fields of discovered
  2097                                                       // lists requires a barrier.
  2100 size_t G1CollectedHeap::capacity() const {
  2101   return _g1_committed.byte_size();
  2104 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2105                                                  DirtyCardQueue* into_cset_dcq,
  2106                                                  bool concurrent,
  2107                                                  int worker_i) {
  2108   // Clean cards in the hot card cache
  2109   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2111   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2112   int n_completed_buffers = 0;
  2113   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2114     n_completed_buffers++;
  2116   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2117                                                   (double) n_completed_buffers);
  2118   dcqs.clear_n_completed_buffers();
  2119   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2123 // Computes the sum of the storage used by the various regions.
  2125 size_t G1CollectedHeap::used() const {
  2126   assert(Heap_lock->owner() != NULL,
  2127          "Should be owned on this thread's behalf.");
  2128   size_t result = _summary_bytes_used;
  2129   // Read only once in case it is set to NULL concurrently
  2130   HeapRegion* hr = _mutator_alloc_region.get();
  2131   if (hr != NULL)
  2132     result += hr->used();
  2133   return result;
  2136 size_t G1CollectedHeap::used_unlocked() const {
  2137   size_t result = _summary_bytes_used;
  2138   return result;
  2141 class SumUsedClosure: public HeapRegionClosure {
  2142   size_t _used;
  2143 public:
  2144   SumUsedClosure() : _used(0) {}
  2145   bool doHeapRegion(HeapRegion* r) {
  2146     if (!r->continuesHumongous()) {
  2147       _used += r->used();
  2149     return false;
  2151   size_t result() { return _used; }
  2152 };
  2154 size_t G1CollectedHeap::recalculate_used() const {
  2155   SumUsedClosure blk;
  2156   heap_region_iterate(&blk);
  2157   return blk.result();
  2160 size_t G1CollectedHeap::unsafe_max_alloc() {
  2161   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2162   // otherwise, is there space in the current allocation region?
  2164   // We need to store the current allocation region in a local variable
  2165   // here. The problem is that this method doesn't take any locks and
  2166   // there may be other threads which overwrite the current allocation
  2167   // region field. attempt_allocation(), for example, sets it to NULL
  2168   // and this can happen *after* the NULL check here but before the call
  2169   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2170   // to be a problem in the optimized build, since the two loads of the
  2171   // current allocation region field are optimized away.
  2172   HeapRegion* hr = _mutator_alloc_region.get();
  2173   if (hr == NULL) {
  2174     return 0;
  2176   return hr->free();
  2179 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2180   return
  2181     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
  2182      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
  2185 #ifndef PRODUCT
  2186 void G1CollectedHeap::allocate_dummy_regions() {
  2187   // Let's fill up most of the region
  2188   size_t word_size = HeapRegion::GrainWords - 1024;
  2189   // And as a result the region we'll allocate will be humongous.
  2190   guarantee(isHumongous(word_size), "sanity");
  2192   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2193     // Let's use the existing mechanism for the allocation
  2194     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2195     if (dummy_obj != NULL) {
  2196       MemRegion mr(dummy_obj, word_size);
  2197       CollectedHeap::fill_with_object(mr);
  2198     } else {
  2199       // If we can't allocate once, we probably cannot allocate
  2200       // again. Let's get out of the loop.
  2201       break;
  2205 #endif // !PRODUCT
  2207 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
  2208   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2210   // We assume that if concurrent == true, then the caller is a
  2211   // concurrent thread that was joined the Suspendible Thread
  2212   // Set. If there's ever a cheap way to check this, we should add an
  2213   // assert here.
  2215   // We have already incremented _total_full_collections at the start
  2216   // of the GC, so total_full_collections() represents how many full
  2217   // collections have been started.
  2218   unsigned int full_collections_started = total_full_collections();
  2220   // Given that this method is called at the end of a Full GC or of a
  2221   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2222   // interrupt a concurrent cycle), the number of full collections
  2223   // completed should be either one (in the case where there was no
  2224   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2225   // behind the number of full collections started.
  2227   // This is the case for the inner caller, i.e. a Full GC.
  2228   assert(concurrent ||
  2229          (full_collections_started == _full_collections_completed + 1) ||
  2230          (full_collections_started == _full_collections_completed + 2),
  2231          err_msg("for inner caller (Full GC): full_collections_started = %u "
  2232                  "is inconsistent with _full_collections_completed = %u",
  2233                  full_collections_started, _full_collections_completed));
  2235   // This is the case for the outer caller, i.e. the concurrent cycle.
  2236   assert(!concurrent ||
  2237          (full_collections_started == _full_collections_completed + 1),
  2238          err_msg("for outer caller (concurrent cycle): "
  2239                  "full_collections_started = %u "
  2240                  "is inconsistent with _full_collections_completed = %u",
  2241                  full_collections_started, _full_collections_completed));
  2243   _full_collections_completed += 1;
  2245   // We need to clear the "in_progress" flag in the CM thread before
  2246   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2247   // is set) so that if a waiter requests another System.gc() it doesn't
  2248   // incorrectly see that a marking cyle is still in progress.
  2249   if (concurrent) {
  2250     _cmThread->clear_in_progress();
  2253   // This notify_all() will ensure that a thread that called
  2254   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2255   // and it's waiting for a full GC to finish will be woken up. It is
  2256   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2257   FullGCCount_lock->notify_all();
  2260 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2261   assert_at_safepoint(true /* should_be_vm_thread */);
  2262   GCCauseSetter gcs(this, cause);
  2263   switch (cause) {
  2264     case GCCause::_heap_inspection:
  2265     case GCCause::_heap_dump: {
  2266       HandleMark hm;
  2267       do_full_collection(false);         // don't clear all soft refs
  2268       break;
  2270     default: // XXX FIX ME
  2271       ShouldNotReachHere(); // Unexpected use of this function
  2275 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2276   // The caller doesn't have the Heap_lock
  2277   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  2279   unsigned int gc_count_before;
  2280   unsigned int full_gc_count_before;
  2282     MutexLocker ml(Heap_lock);
  2284     // Read the GC count while holding the Heap_lock
  2285     gc_count_before = SharedHeap::heap()->total_collections();
  2286     full_gc_count_before = SharedHeap::heap()->total_full_collections();
  2289   if (should_do_concurrent_full_gc(cause)) {
  2290     // Schedule an initial-mark evacuation pause that will start a
  2291     // concurrent cycle. We're setting word_size to 0 which means that
  2292     // we are not requesting a post-GC allocation.
  2293     VM_G1IncCollectionPause op(gc_count_before,
  2294                                0,     /* word_size */
  2295                                true,  /* should_initiate_conc_mark */
  2296                                g1_policy()->max_pause_time_ms(),
  2297                                cause);
  2298     VMThread::execute(&op);
  2299   } else {
  2300     if (cause == GCCause::_gc_locker
  2301         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2303       // Schedule a standard evacuation pause. We're setting word_size
  2304       // to 0 which means that we are not requesting a post-GC allocation.
  2305       VM_G1IncCollectionPause op(gc_count_before,
  2306                                  0,     /* word_size */
  2307                                  false, /* should_initiate_conc_mark */
  2308                                  g1_policy()->max_pause_time_ms(),
  2309                                  cause);
  2310       VMThread::execute(&op);
  2311     } else {
  2312       // Schedule a Full GC.
  2313       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2314       VMThread::execute(&op);
  2319 bool G1CollectedHeap::is_in(const void* p) const {
  2320   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
  2321   if (hr != NULL) {
  2322     return hr->is_in(p);
  2323   } else {
  2324     return _perm_gen->as_gen()->is_in(p);
  2328 // Iteration functions.
  2330 // Iterates an OopClosure over all ref-containing fields of objects
  2331 // within a HeapRegion.
  2333 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2334   MemRegion _mr;
  2335   OopClosure* _cl;
  2336 public:
  2337   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2338     : _mr(mr), _cl(cl) {}
  2339   bool doHeapRegion(HeapRegion* r) {
  2340     if (! r->continuesHumongous()) {
  2341       r->oop_iterate(_cl);
  2343     return false;
  2345 };
  2347 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2348   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2349   heap_region_iterate(&blk);
  2350   if (do_perm) {
  2351     perm_gen()->oop_iterate(cl);
  2355 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2356   IterateOopClosureRegionClosure blk(mr, cl);
  2357   heap_region_iterate(&blk);
  2358   if (do_perm) {
  2359     perm_gen()->oop_iterate(cl);
  2363 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2365 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2366   ObjectClosure* _cl;
  2367 public:
  2368   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2369   bool doHeapRegion(HeapRegion* r) {
  2370     if (! r->continuesHumongous()) {
  2371       r->object_iterate(_cl);
  2373     return false;
  2375 };
  2377 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2378   IterateObjectClosureRegionClosure blk(cl);
  2379   heap_region_iterate(&blk);
  2380   if (do_perm) {
  2381     perm_gen()->object_iterate(cl);
  2385 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2386   // FIXME: is this right?
  2387   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2390 // Calls a SpaceClosure on a HeapRegion.
  2392 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2393   SpaceClosure* _cl;
  2394 public:
  2395   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2396   bool doHeapRegion(HeapRegion* r) {
  2397     _cl->do_space(r);
  2398     return false;
  2400 };
  2402 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2403   SpaceClosureRegionClosure blk(cl);
  2404   heap_region_iterate(&blk);
  2407 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2408   _hrs.iterate(cl);
  2411 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2412                                                HeapRegionClosure* cl) const {
  2413   _hrs.iterate_from(r, cl);
  2416 void
  2417 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2418                                                  int worker,
  2419                                                  jint claim_value) {
  2420   const size_t regions = n_regions();
  2421   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
  2422   // try to spread out the starting points of the workers
  2423   const size_t start_index = regions / worker_num * (size_t) worker;
  2425   // each worker will actually look at all regions
  2426   for (size_t count = 0; count < regions; ++count) {
  2427     const size_t index = (start_index + count) % regions;
  2428     assert(0 <= index && index < regions, "sanity");
  2429     HeapRegion* r = region_at(index);
  2430     // we'll ignore "continues humongous" regions (we'll process them
  2431     // when we come across their corresponding "start humongous"
  2432     // region) and regions already claimed
  2433     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2434       continue;
  2436     // OK, try to claim it
  2437     if (r->claimHeapRegion(claim_value)) {
  2438       // success!
  2439       assert(!r->continuesHumongous(), "sanity");
  2440       if (r->startsHumongous()) {
  2441         // If the region is "starts humongous" we'll iterate over its
  2442         // "continues humongous" first; in fact we'll do them
  2443         // first. The order is important. In on case, calling the
  2444         // closure on the "starts humongous" region might de-allocate
  2445         // and clear all its "continues humongous" regions and, as a
  2446         // result, we might end up processing them twice. So, we'll do
  2447         // them first (notice: most closures will ignore them anyway) and
  2448         // then we'll do the "starts humongous" region.
  2449         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  2450           HeapRegion* chr = region_at(ch_index);
  2452           // if the region has already been claimed or it's not
  2453           // "continues humongous" we're done
  2454           if (chr->claim_value() == claim_value ||
  2455               !chr->continuesHumongous()) {
  2456             break;
  2459           // Noone should have claimed it directly. We can given
  2460           // that we claimed its "starts humongous" region.
  2461           assert(chr->claim_value() != claim_value, "sanity");
  2462           assert(chr->humongous_start_region() == r, "sanity");
  2464           if (chr->claimHeapRegion(claim_value)) {
  2465             // we should always be able to claim it; noone else should
  2466             // be trying to claim this region
  2468             bool res2 = cl->doHeapRegion(chr);
  2469             assert(!res2, "Should not abort");
  2471             // Right now, this holds (i.e., no closure that actually
  2472             // does something with "continues humongous" regions
  2473             // clears them). We might have to weaken it in the future,
  2474             // but let's leave these two asserts here for extra safety.
  2475             assert(chr->continuesHumongous(), "should still be the case");
  2476             assert(chr->humongous_start_region() == r, "sanity");
  2477           } else {
  2478             guarantee(false, "we should not reach here");
  2483       assert(!r->continuesHumongous(), "sanity");
  2484       bool res = cl->doHeapRegion(r);
  2485       assert(!res, "Should not abort");
  2490 class ResetClaimValuesClosure: public HeapRegionClosure {
  2491 public:
  2492   bool doHeapRegion(HeapRegion* r) {
  2493     r->set_claim_value(HeapRegion::InitialClaimValue);
  2494     return false;
  2496 };
  2498 void
  2499 G1CollectedHeap::reset_heap_region_claim_values() {
  2500   ResetClaimValuesClosure blk;
  2501   heap_region_iterate(&blk);
  2504 #ifdef ASSERT
  2505 // This checks whether all regions in the heap have the correct claim
  2506 // value. I also piggy-backed on this a check to ensure that the
  2507 // humongous_start_region() information on "continues humongous"
  2508 // regions is correct.
  2510 class CheckClaimValuesClosure : public HeapRegionClosure {
  2511 private:
  2512   jint _claim_value;
  2513   size_t _failures;
  2514   HeapRegion* _sh_region;
  2515 public:
  2516   CheckClaimValuesClosure(jint claim_value) :
  2517     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2518   bool doHeapRegion(HeapRegion* r) {
  2519     if (r->claim_value() != _claim_value) {
  2520       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2521                              "claim value = %d, should be %d",
  2522                              r->bottom(), r->end(), r->claim_value(),
  2523                              _claim_value);
  2524       ++_failures;
  2526     if (!r->isHumongous()) {
  2527       _sh_region = NULL;
  2528     } else if (r->startsHumongous()) {
  2529       _sh_region = r;
  2530     } else if (r->continuesHumongous()) {
  2531       if (r->humongous_start_region() != _sh_region) {
  2532         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2533                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2534                                r->bottom(), r->end(),
  2535                                r->humongous_start_region(),
  2536                                _sh_region);
  2537         ++_failures;
  2540     return false;
  2542   size_t failures() {
  2543     return _failures;
  2545 };
  2547 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2548   CheckClaimValuesClosure cl(claim_value);
  2549   heap_region_iterate(&cl);
  2550   return cl.failures() == 0;
  2552 #endif // ASSERT
  2554 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2555   HeapRegion* r = g1_policy()->collection_set();
  2556   while (r != NULL) {
  2557     HeapRegion* next = r->next_in_collection_set();
  2558     if (cl->doHeapRegion(r)) {
  2559       cl->incomplete();
  2560       return;
  2562     r = next;
  2566 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2567                                                   HeapRegionClosure *cl) {
  2568   if (r == NULL) {
  2569     // The CSet is empty so there's nothing to do.
  2570     return;
  2573   assert(r->in_collection_set(),
  2574          "Start region must be a member of the collection set.");
  2575   HeapRegion* cur = r;
  2576   while (cur != NULL) {
  2577     HeapRegion* next = cur->next_in_collection_set();
  2578     if (cl->doHeapRegion(cur) && false) {
  2579       cl->incomplete();
  2580       return;
  2582     cur = next;
  2584   cur = g1_policy()->collection_set();
  2585   while (cur != r) {
  2586     HeapRegion* next = cur->next_in_collection_set();
  2587     if (cl->doHeapRegion(cur) && false) {
  2588       cl->incomplete();
  2589       return;
  2591     cur = next;
  2595 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2596   return n_regions() > 0 ? region_at(0) : NULL;
  2600 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2601   Space* res = heap_region_containing(addr);
  2602   if (res == NULL)
  2603     res = perm_gen()->space_containing(addr);
  2604   return res;
  2607 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2608   Space* sp = space_containing(addr);
  2609   if (sp != NULL) {
  2610     return sp->block_start(addr);
  2612   return NULL;
  2615 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2616   Space* sp = space_containing(addr);
  2617   assert(sp != NULL, "block_size of address outside of heap");
  2618   return sp->block_size(addr);
  2621 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2622   Space* sp = space_containing(addr);
  2623   return sp->block_is_obj(addr);
  2626 bool G1CollectedHeap::supports_tlab_allocation() const {
  2627   return true;
  2630 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2631   return HeapRegion::GrainBytes;
  2634 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2635   // Return the remaining space in the cur alloc region, but not less than
  2636   // the min TLAB size.
  2638   // Also, this value can be at most the humongous object threshold,
  2639   // since we can't allow tlabs to grow big enough to accomodate
  2640   // humongous objects.
  2642   HeapRegion* hr = _mutator_alloc_region.get();
  2643   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2644   if (hr == NULL) {
  2645     return max_tlab_size;
  2646   } else {
  2647     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2651 size_t G1CollectedHeap::max_capacity() const {
  2652   return _g1_reserved.byte_size();
  2655 jlong G1CollectedHeap::millis_since_last_gc() {
  2656   // assert(false, "NYI");
  2657   return 0;
  2660 void G1CollectedHeap::prepare_for_verify() {
  2661   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2662     ensure_parsability(false);
  2664   g1_rem_set()->prepare_for_verify();
  2667 class VerifyLivenessOopClosure: public OopClosure {
  2668   G1CollectedHeap* _g1h;
  2669   VerifyOption _vo;
  2670 public:
  2671   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  2672     _g1h(g1h), _vo(vo)
  2673   { }
  2674   void do_oop(narrowOop *p) { do_oop_work(p); }
  2675   void do_oop(      oop *p) { do_oop_work(p); }
  2677   template <class T> void do_oop_work(T *p) {
  2678     oop obj = oopDesc::load_decode_heap_oop(p);
  2679     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  2680               "Dead object referenced by a not dead object");
  2682 };
  2684 class VerifyObjsInRegionClosure: public ObjectClosure {
  2685 private:
  2686   G1CollectedHeap* _g1h;
  2687   size_t _live_bytes;
  2688   HeapRegion *_hr;
  2689   VerifyOption _vo;
  2690 public:
  2691   // _vo == UsePrevMarking -> use "prev" marking information,
  2692   // _vo == UseNextMarking -> use "next" marking information,
  2693   // _vo == UseMarkWord    -> use mark word from object header.
  2694   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  2695     : _live_bytes(0), _hr(hr), _vo(vo) {
  2696     _g1h = G1CollectedHeap::heap();
  2698   void do_object(oop o) {
  2699     VerifyLivenessOopClosure isLive(_g1h, _vo);
  2700     assert(o != NULL, "Huh?");
  2701     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  2702       // If the object is alive according to the mark word,
  2703       // then verify that the marking information agrees.
  2704       // Note we can't verify the contra-positive of the
  2705       // above: if the object is dead (according to the mark
  2706       // word), it may not be marked, or may have been marked
  2707       // but has since became dead, or may have been allocated
  2708       // since the last marking.
  2709       if (_vo == VerifyOption_G1UseMarkWord) {
  2710         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  2713       o->oop_iterate(&isLive);
  2714       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2715         size_t obj_size = o->size();    // Make sure we don't overflow
  2716         _live_bytes += (obj_size * HeapWordSize);
  2720   size_t live_bytes() { return _live_bytes; }
  2721 };
  2723 class PrintObjsInRegionClosure : public ObjectClosure {
  2724   HeapRegion *_hr;
  2725   G1CollectedHeap *_g1;
  2726 public:
  2727   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2728     _g1 = G1CollectedHeap::heap();
  2729   };
  2731   void do_object(oop o) {
  2732     if (o != NULL) {
  2733       HeapWord *start = (HeapWord *) o;
  2734       size_t word_sz = o->size();
  2735       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2736                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2737                           (void*) o, word_sz,
  2738                           _g1->isMarkedPrev(o),
  2739                           _g1->isMarkedNext(o),
  2740                           _hr->obj_allocated_since_prev_marking(o));
  2741       HeapWord *end = start + word_sz;
  2742       HeapWord *cur;
  2743       int *val;
  2744       for (cur = start; cur < end; cur++) {
  2745         val = (int *) cur;
  2746         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2750 };
  2752 class VerifyRegionClosure: public HeapRegionClosure {
  2753 private:
  2754   bool         _allow_dirty;
  2755   bool         _par;
  2756   VerifyOption _vo;
  2757   bool         _failures;
  2758 public:
  2759   // _vo == UsePrevMarking -> use "prev" marking information,
  2760   // _vo == UseNextMarking -> use "next" marking information,
  2761   // _vo == UseMarkWord    -> use mark word from object header.
  2762   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
  2763     : _allow_dirty(allow_dirty),
  2764       _par(par),
  2765       _vo(vo),
  2766       _failures(false) {}
  2768   bool failures() {
  2769     return _failures;
  2772   bool doHeapRegion(HeapRegion* r) {
  2773     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2774               "Should be unclaimed at verify points.");
  2775     if (!r->continuesHumongous()) {
  2776       bool failures = false;
  2777       r->verify(_allow_dirty, _vo, &failures);
  2778       if (failures) {
  2779         _failures = true;
  2780       } else {
  2781         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  2782         r->object_iterate(&not_dead_yet_cl);
  2783         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  2784           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  2785                                  "max_live_bytes "SIZE_FORMAT" "
  2786                                  "< calculated "SIZE_FORMAT,
  2787                                  r->bottom(), r->end(),
  2788                                  r->max_live_bytes(),
  2789                                  not_dead_yet_cl.live_bytes());
  2790           _failures = true;
  2794     return false; // stop the region iteration if we hit a failure
  2796 };
  2798 class VerifyRootsClosure: public OopsInGenClosure {
  2799 private:
  2800   G1CollectedHeap* _g1h;
  2801   VerifyOption     _vo;
  2802   bool             _failures;
  2803 public:
  2804   // _vo == UsePrevMarking -> use "prev" marking information,
  2805   // _vo == UseNextMarking -> use "next" marking information,
  2806   // _vo == UseMarkWord    -> use mark word from object header.
  2807   VerifyRootsClosure(VerifyOption vo) :
  2808     _g1h(G1CollectedHeap::heap()),
  2809     _vo(vo),
  2810     _failures(false) { }
  2812   bool failures() { return _failures; }
  2814   template <class T> void do_oop_nv(T* p) {
  2815     T heap_oop = oopDesc::load_heap_oop(p);
  2816     if (!oopDesc::is_null(heap_oop)) {
  2817       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2818       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  2819         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2820                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2821         if (_vo == VerifyOption_G1UseMarkWord) {
  2822           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  2824         obj->print_on(gclog_or_tty);
  2825         _failures = true;
  2830   void do_oop(oop* p)       { do_oop_nv(p); }
  2831   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2832 };
  2834 // This is the task used for parallel heap verification.
  2836 class G1ParVerifyTask: public AbstractGangTask {
  2837 private:
  2838   G1CollectedHeap* _g1h;
  2839   bool             _allow_dirty;
  2840   VerifyOption     _vo;
  2841   bool             _failures;
  2843 public:
  2844   // _vo == UsePrevMarking -> use "prev" marking information,
  2845   // _vo == UseNextMarking -> use "next" marking information,
  2846   // _vo == UseMarkWord    -> use mark word from object header.
  2847   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
  2848     AbstractGangTask("Parallel verify task"),
  2849     _g1h(g1h),
  2850     _allow_dirty(allow_dirty),
  2851     _vo(vo),
  2852     _failures(false) { }
  2854   bool failures() {
  2855     return _failures;
  2858   void work(int worker_i) {
  2859     HandleMark hm;
  2860     VerifyRegionClosure blk(_allow_dirty, true, _vo);
  2861     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2862                                           HeapRegion::ParVerifyClaimValue);
  2863     if (blk.failures()) {
  2864       _failures = true;
  2867 };
  2869 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2870   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
  2873 void G1CollectedHeap::verify(bool allow_dirty,
  2874                              bool silent,
  2875                              VerifyOption vo) {
  2876   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2877     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  2878     VerifyRootsClosure rootsCl(vo);
  2879     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  2881     // We apply the relevant closures to all the oops in the
  2882     // system dictionary, the string table and the code cache.
  2883     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
  2885     process_strong_roots(true,      // activate StrongRootsScope
  2886                          true,      // we set "collecting perm gen" to true,
  2887                                     // so we don't reset the dirty cards in the perm gen.
  2888                          SharedHeap::ScanningOption(so),  // roots scanning options
  2889                          &rootsCl,
  2890                          &blobsCl,
  2891                          &rootsCl);
  2893     // If we're verifying after the marking phase of a Full GC then we can't
  2894     // treat the perm gen as roots into the G1 heap. Some of the objects in
  2895     // the perm gen may be dead and hence not marked. If one of these dead
  2896     // objects is considered to be a root then we may end up with a false
  2897     // "Root location <x> points to dead ob <y>" failure.
  2898     if (vo != VerifyOption_G1UseMarkWord) {
  2899       // Since we used "collecting_perm_gen" == true above, we will not have
  2900       // checked the refs from perm into the G1-collected heap. We check those
  2901       // references explicitly below. Whether the relevant cards are dirty
  2902       // is checked further below in the rem set verification.
  2903       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  2904       perm_gen()->oop_iterate(&rootsCl);
  2906     bool failures = rootsCl.failures();
  2908     if (vo != VerifyOption_G1UseMarkWord) {
  2909       // If we're verifying during a full GC then the region sets
  2910       // will have been torn down at the start of the GC. Therefore
  2911       // verifying the region sets will fail. So we only verify
  2912       // the region sets when not in a full GC.
  2913       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  2914       verify_region_sets();
  2917     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  2918     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2919       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2920              "sanity check");
  2922       G1ParVerifyTask task(this, allow_dirty, vo);
  2923       int n_workers = workers()->total_workers();
  2924       set_par_threads(n_workers);
  2925       workers()->run_task(&task);
  2926       set_par_threads(0);
  2927       if (task.failures()) {
  2928         failures = true;
  2931       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2932              "sanity check");
  2934       reset_heap_region_claim_values();
  2936       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2937              "sanity check");
  2938     } else {
  2939       VerifyRegionClosure blk(allow_dirty, false, vo);
  2940       heap_region_iterate(&blk);
  2941       if (blk.failures()) {
  2942         failures = true;
  2945     if (!silent) gclog_or_tty->print("RemSet ");
  2946     rem_set()->verify();
  2948     if (failures) {
  2949       gclog_or_tty->print_cr("Heap:");
  2950       print_on(gclog_or_tty, true /* extended */);
  2951       gclog_or_tty->print_cr("");
  2952 #ifndef PRODUCT
  2953       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  2954         concurrent_mark()->print_reachable("at-verification-failure",
  2955                                            vo, false /* all */);
  2957 #endif
  2958       gclog_or_tty->flush();
  2960     guarantee(!failures, "there should not have been any failures");
  2961   } else {
  2962     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2966 class PrintRegionClosure: public HeapRegionClosure {
  2967   outputStream* _st;
  2968 public:
  2969   PrintRegionClosure(outputStream* st) : _st(st) {}
  2970   bool doHeapRegion(HeapRegion* r) {
  2971     r->print_on(_st);
  2972     return false;
  2974 };
  2976 void G1CollectedHeap::print() const { print_on(tty); }
  2978 void G1CollectedHeap::print_on(outputStream* st) const {
  2979   print_on(st, PrintHeapAtGCExtended);
  2982 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  2983   st->print(" %-20s", "garbage-first heap");
  2984   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  2985             capacity()/K, used_unlocked()/K);
  2986   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  2987             _g1_storage.low_boundary(),
  2988             _g1_storage.high(),
  2989             _g1_storage.high_boundary());
  2990   st->cr();
  2991   st->print("  region size " SIZE_FORMAT "K, ",
  2992             HeapRegion::GrainBytes/K);
  2993   size_t young_regions = _young_list->length();
  2994   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  2995             young_regions, young_regions * HeapRegion::GrainBytes / K);
  2996   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  2997   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  2998             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  2999   st->cr();
  3000   perm()->as_gen()->print_on(st);
  3001   if (extended) {
  3002     st->cr();
  3003     print_on_extended(st);
  3007 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  3008   PrintRegionClosure blk(st);
  3009   heap_region_iterate(&blk);
  3012 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3013   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3014     workers()->print_worker_threads_on(st);
  3016   _cmThread->print_on(st);
  3017   st->cr();
  3018   _cm->print_worker_threads_on(st);
  3019   _cg1r->print_worker_threads_on(st);
  3020   st->cr();
  3023 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3024   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3025     workers()->threads_do(tc);
  3027   tc->do_thread(_cmThread);
  3028   _cg1r->threads_do(tc);
  3031 void G1CollectedHeap::print_tracing_info() const {
  3032   // We'll overload this to mean "trace GC pause statistics."
  3033   if (TraceGen0Time || TraceGen1Time) {
  3034     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3035     // to that.
  3036     g1_policy()->print_tracing_info();
  3038   if (G1SummarizeRSetStats) {
  3039     g1_rem_set()->print_summary_info();
  3041   if (G1SummarizeConcMark) {
  3042     concurrent_mark()->print_summary_info();
  3044   g1_policy()->print_yg_surv_rate_info();
  3045   SpecializationStats::print();
  3048 #ifndef PRODUCT
  3049 // Helpful for debugging RSet issues.
  3051 class PrintRSetsClosure : public HeapRegionClosure {
  3052 private:
  3053   const char* _msg;
  3054   size_t _occupied_sum;
  3056 public:
  3057   bool doHeapRegion(HeapRegion* r) {
  3058     HeapRegionRemSet* hrrs = r->rem_set();
  3059     size_t occupied = hrrs->occupied();
  3060     _occupied_sum += occupied;
  3062     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3063                            HR_FORMAT_PARAMS(r));
  3064     if (occupied == 0) {
  3065       gclog_or_tty->print_cr("  RSet is empty");
  3066     } else {
  3067       hrrs->print();
  3069     gclog_or_tty->print_cr("----------");
  3070     return false;
  3073   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3074     gclog_or_tty->cr();
  3075     gclog_or_tty->print_cr("========================================");
  3076     gclog_or_tty->print_cr(msg);
  3077     gclog_or_tty->cr();
  3080   ~PrintRSetsClosure() {
  3081     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3082     gclog_or_tty->print_cr("========================================");
  3083     gclog_or_tty->cr();
  3085 };
  3087 void G1CollectedHeap::print_cset_rsets() {
  3088   PrintRSetsClosure cl("Printing CSet RSets");
  3089   collection_set_iterate(&cl);
  3092 void G1CollectedHeap::print_all_rsets() {
  3093   PrintRSetsClosure cl("Printing All RSets");;
  3094   heap_region_iterate(&cl);
  3096 #endif // PRODUCT
  3098 G1CollectedHeap* G1CollectedHeap::heap() {
  3099   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3100          "not a garbage-first heap");
  3101   return _g1h;
  3104 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3105   // always_do_update_barrier = false;
  3106   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3107   // Call allocation profiler
  3108   AllocationProfiler::iterate_since_last_gc();
  3109   // Fill TLAB's and such
  3110   ensure_parsability(true);
  3113 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3114   // FIXME: what is this about?
  3115   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3116   // is set.
  3117   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3118                         "derived pointer present"));
  3119   // always_do_update_barrier = true;
  3122 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3123                                                unsigned int gc_count_before,
  3124                                                bool* succeeded) {
  3125   assert_heap_not_locked_and_not_at_safepoint();
  3126   g1_policy()->record_stop_world_start();
  3127   VM_G1IncCollectionPause op(gc_count_before,
  3128                              word_size,
  3129                              false, /* should_initiate_conc_mark */
  3130                              g1_policy()->max_pause_time_ms(),
  3131                              GCCause::_g1_inc_collection_pause);
  3132   VMThread::execute(&op);
  3134   HeapWord* result = op.result();
  3135   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3136   assert(result == NULL || ret_succeeded,
  3137          "the result should be NULL if the VM did not succeed");
  3138   *succeeded = ret_succeeded;
  3140   assert_heap_not_locked();
  3141   return result;
  3144 void
  3145 G1CollectedHeap::doConcurrentMark() {
  3146   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3147   if (!_cmThread->in_progress()) {
  3148     _cmThread->set_started();
  3149     CGC_lock->notify();
  3153 // <NEW PREDICTION>
  3155 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  3156                                                        bool young) {
  3157   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  3160 void G1CollectedHeap::check_if_region_is_too_expensive(double
  3161                                                            predicted_time_ms) {
  3162   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  3165 size_t G1CollectedHeap::pending_card_num() {
  3166   size_t extra_cards = 0;
  3167   JavaThread *curr = Threads::first();
  3168   while (curr != NULL) {
  3169     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3170     extra_cards += dcq.size();
  3171     curr = curr->next();
  3173   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3174   size_t buffer_size = dcqs.buffer_size();
  3175   size_t buffer_num = dcqs.completed_buffers_num();
  3176   return buffer_size * buffer_num + extra_cards;
  3179 size_t G1CollectedHeap::max_pending_card_num() {
  3180   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3181   size_t buffer_size = dcqs.buffer_size();
  3182   size_t buffer_num  = dcqs.completed_buffers_num();
  3183   int thread_num  = Threads::number_of_threads();
  3184   return (buffer_num + thread_num) * buffer_size;
  3187 size_t G1CollectedHeap::cards_scanned() {
  3188   return g1_rem_set()->cardsScanned();
  3191 void
  3192 G1CollectedHeap::setup_surviving_young_words() {
  3193   guarantee( _surviving_young_words == NULL, "pre-condition" );
  3194   size_t array_length = g1_policy()->young_cset_length();
  3195   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  3196   if (_surviving_young_words == NULL) {
  3197     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3198                           "Not enough space for young surv words summary.");
  3200   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  3201 #ifdef ASSERT
  3202   for (size_t i = 0;  i < array_length; ++i) {
  3203     assert( _surviving_young_words[i] == 0, "memset above" );
  3205 #endif // !ASSERT
  3208 void
  3209 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3210   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3211   size_t array_length = g1_policy()->young_cset_length();
  3212   for (size_t i = 0; i < array_length; ++i)
  3213     _surviving_young_words[i] += surv_young_words[i];
  3216 void
  3217 G1CollectedHeap::cleanup_surviving_young_words() {
  3218   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3219   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  3220   _surviving_young_words = NULL;
  3223 // </NEW PREDICTION>
  3225 #ifdef ASSERT
  3226 class VerifyCSetClosure: public HeapRegionClosure {
  3227 public:
  3228   bool doHeapRegion(HeapRegion* hr) {
  3229     // Here we check that the CSet region's RSet is ready for parallel
  3230     // iteration. The fields that we'll verify are only manipulated
  3231     // when the region is part of a CSet and is collected. Afterwards,
  3232     // we reset these fields when we clear the region's RSet (when the
  3233     // region is freed) so they are ready when the region is
  3234     // re-allocated. The only exception to this is if there's an
  3235     // evacuation failure and instead of freeing the region we leave
  3236     // it in the heap. In that case, we reset these fields during
  3237     // evacuation failure handling.
  3238     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3240     // Here's a good place to add any other checks we'd like to
  3241     // perform on CSet regions.
  3242     return false;
  3244 };
  3245 #endif // ASSERT
  3247 #if TASKQUEUE_STATS
  3248 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3249   st->print_raw_cr("GC Task Stats");
  3250   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3251   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3254 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3255   print_taskqueue_stats_hdr(st);
  3257   TaskQueueStats totals;
  3258   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3259   for (int i = 0; i < n; ++i) {
  3260     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3261     totals += task_queue(i)->stats;
  3263   st->print_raw("tot "); totals.print(st); st->cr();
  3265   DEBUG_ONLY(totals.verify());
  3268 void G1CollectedHeap::reset_taskqueue_stats() {
  3269   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3270   for (int i = 0; i < n; ++i) {
  3271     task_queue(i)->stats.reset();
  3274 #endif // TASKQUEUE_STATS
  3276 bool
  3277 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3278   assert_at_safepoint(true /* should_be_vm_thread */);
  3279   guarantee(!is_gc_active(), "collection is not reentrant");
  3281   if (GC_locker::check_active_before_gc()) {
  3282     return false;
  3285   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3286   ResourceMark rm;
  3288   if (PrintHeapAtGC) {
  3289     Universe::print_heap_before_gc();
  3292   verify_region_sets_optional();
  3293   verify_dirty_young_regions();
  3296     // This call will decide whether this pause is an initial-mark
  3297     // pause. If it is, during_initial_mark_pause() will return true
  3298     // for the duration of this pause.
  3299     g1_policy()->decide_on_conc_mark_initiation();
  3301     char verbose_str[128];
  3302     sprintf(verbose_str, "GC pause ");
  3303     if (g1_policy()->full_young_gcs()) {
  3304       strcat(verbose_str, "(young)");
  3305     } else {
  3306       strcat(verbose_str, "(partial)");
  3308     if (g1_policy()->during_initial_mark_pause()) {
  3309       strcat(verbose_str, " (initial-mark)");
  3310       // We are about to start a marking cycle, so we increment the
  3311       // full collection counter.
  3312       increment_total_full_collections();
  3315     // if PrintGCDetails is on, we'll print long statistics information
  3316     // in the collector policy code, so let's not print this as the output
  3317     // is messy if we do.
  3318     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  3319     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3320     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  3322     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3323     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3325     // If the secondary_free_list is not empty, append it to the
  3326     // free_list. No need to wait for the cleanup operation to finish;
  3327     // the region allocation code will check the secondary_free_list
  3328     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3329     // set, skip this step so that the region allocation code has to
  3330     // get entries from the secondary_free_list.
  3331     if (!G1StressConcRegionFreeing) {
  3332       append_secondary_free_list_if_not_empty_with_lock();
  3335     assert(check_young_list_well_formed(),
  3336       "young list should be well formed");
  3338     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3339       IsGCActiveMark x;
  3341       gc_prologue(false);
  3342       increment_total_collections(false /* full gc */);
  3343       increment_gc_time_stamp();
  3345       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3346         HandleMark hm;  // Discard invalid handles created during verification
  3347         gclog_or_tty->print(" VerifyBeforeGC:");
  3348         prepare_for_verify();
  3349         Universe::verify(/* allow dirty */ false,
  3350                          /* silent      */ false,
  3351                          /* option      */ VerifyOption_G1UsePrevMarking);
  3355       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3357       // Please see comment in G1CollectedHeap::ref_processing_init()
  3358       // to see how reference processing currently works in G1.
  3359       //
  3360       // We want to turn off ref discovery, if necessary, and turn it back on
  3361       // on again later if we do. XXX Dubious: why is discovery disabled?
  3362       bool was_enabled = ref_processor()->discovery_enabled();
  3363       if (was_enabled) ref_processor()->disable_discovery();
  3365       // Forget the current alloc region (we might even choose it to be part
  3366       // of the collection set!).
  3367       release_mutator_alloc_region();
  3369       // We should call this after we retire the mutator alloc
  3370       // region(s) so that all the ALLOC / RETIRE events are generated
  3371       // before the start GC event.
  3372       _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3374       // The elapsed time induced by the start time below deliberately elides
  3375       // the possible verification above.
  3376       double start_time_sec = os::elapsedTime();
  3377       size_t start_used_bytes = used();
  3379 #if YOUNG_LIST_VERBOSE
  3380       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3381       _young_list->print();
  3382       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3383 #endif // YOUNG_LIST_VERBOSE
  3385       g1_policy()->record_collection_pause_start(start_time_sec,
  3386                                                  start_used_bytes);
  3388 #if YOUNG_LIST_VERBOSE
  3389       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3390       _young_list->print();
  3391 #endif // YOUNG_LIST_VERBOSE
  3393       if (g1_policy()->during_initial_mark_pause()) {
  3394         concurrent_mark()->checkpointRootsInitialPre();
  3396       perm_gen()->save_marks();
  3398       // We must do this before any possible evacuation that should propagate
  3399       // marks.
  3400       if (mark_in_progress()) {
  3401         double start_time_sec = os::elapsedTime();
  3403         _cm->drainAllSATBBuffers();
  3404         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  3405         g1_policy()->record_satb_drain_time(finish_mark_ms);
  3407       // Record the number of elements currently on the mark stack, so we
  3408       // only iterate over these.  (Since evacuation may add to the mark
  3409       // stack, doing more exposes race conditions.)  If no mark is in
  3410       // progress, this will be zero.
  3411       _cm->set_oops_do_bound();
  3413       if (mark_in_progress()) {
  3414         concurrent_mark()->newCSet();
  3417 #if YOUNG_LIST_VERBOSE
  3418       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3419       _young_list->print();
  3420       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3421 #endif // YOUNG_LIST_VERBOSE
  3423       g1_policy()->choose_collection_set(target_pause_time_ms);
  3425       if (_hr_printer.is_active()) {
  3426         HeapRegion* hr = g1_policy()->collection_set();
  3427         while (hr != NULL) {
  3428           G1HRPrinter::RegionType type;
  3429           if (!hr->is_young()) {
  3430             type = G1HRPrinter::Old;
  3431           } else if (hr->is_survivor()) {
  3432             type = G1HRPrinter::Survivor;
  3433           } else {
  3434             type = G1HRPrinter::Eden;
  3436           _hr_printer.cset(hr);
  3437           hr = hr->next_in_collection_set();
  3441       // We have chosen the complete collection set. If marking is
  3442       // active then, we clear the region fields of any of the
  3443       // concurrent marking tasks whose region fields point into
  3444       // the collection set as these values will become stale. This
  3445       // will cause the owning marking threads to claim a new region
  3446       // when marking restarts.
  3447       if (mark_in_progress()) {
  3448         concurrent_mark()->reset_active_task_region_fields_in_cset();
  3451 #ifdef ASSERT
  3452       VerifyCSetClosure cl;
  3453       collection_set_iterate(&cl);
  3454 #endif // ASSERT
  3456       setup_surviving_young_words();
  3458       // Initialize the GC alloc regions.
  3459       init_gc_alloc_regions();
  3461       // Actually do the work...
  3462       evacuate_collection_set();
  3464       free_collection_set(g1_policy()->collection_set());
  3465       g1_policy()->clear_collection_set();
  3467       cleanup_surviving_young_words();
  3469       // Start a new incremental collection set for the next pause.
  3470       g1_policy()->start_incremental_cset_building();
  3472       // Clear the _cset_fast_test bitmap in anticipation of adding
  3473       // regions to the incremental collection set for the next
  3474       // evacuation pause.
  3475       clear_cset_fast_test();
  3477       _young_list->reset_sampled_info();
  3479       // Don't check the whole heap at this point as the
  3480       // GC alloc regions from this pause have been tagged
  3481       // as survivors and moved on to the survivor list.
  3482       // Survivor regions will fail the !is_young() check.
  3483       assert(check_young_list_empty(false /* check_heap */),
  3484         "young list should be empty");
  3486 #if YOUNG_LIST_VERBOSE
  3487       gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3488       _young_list->print();
  3489 #endif // YOUNG_LIST_VERBOSE
  3491       g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3492         _young_list->first_survivor_region(),
  3493         _young_list->last_survivor_region());
  3495       _young_list->reset_auxilary_lists();
  3497       if (evacuation_failed()) {
  3498         _summary_bytes_used = recalculate_used();
  3499       } else {
  3500         // The "used" of the the collection set have already been subtracted
  3501         // when they were freed.  Add in the bytes evacuated.
  3502         _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3505       if (g1_policy()->during_initial_mark_pause()) {
  3506         concurrent_mark()->checkpointRootsInitialPost();
  3507         set_marking_started();
  3508         // CAUTION: after the doConcurrentMark() call below,
  3509         // the concurrent marking thread(s) could be running
  3510         // concurrently with us. Make sure that anything after
  3511         // this point does not assume that we are the only GC thread
  3512         // running. Note: of course, the actual marking work will
  3513         // not start until the safepoint itself is released in
  3514         // ConcurrentGCThread::safepoint_desynchronize().
  3515         doConcurrentMark();
  3518       allocate_dummy_regions();
  3520 #if YOUNG_LIST_VERBOSE
  3521       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3522       _young_list->print();
  3523       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3524 #endif // YOUNG_LIST_VERBOSE
  3526       init_mutator_alloc_region();
  3529         size_t expand_bytes = g1_policy()->expansion_amount();
  3530         if (expand_bytes > 0) {
  3531           size_t bytes_before = capacity();
  3532           if (!expand(expand_bytes)) {
  3533             // We failed to expand the heap so let's verify that
  3534             // committed/uncommitted amount match the backing store
  3535             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3536             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3541       double end_time_sec = os::elapsedTime();
  3542       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3543       g1_policy()->record_pause_time_ms(pause_time_ms);
  3544       g1_policy()->record_collection_pause_end();
  3546       MemoryService::track_memory_usage();
  3548       // In prepare_for_verify() below we'll need to scan the deferred
  3549       // update buffers to bring the RSets up-to-date if
  3550       // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  3551       // the update buffers we'll probably need to scan cards on the
  3552       // regions we just allocated to (i.e., the GC alloc
  3553       // regions). However, during the last GC we called
  3554       // set_saved_mark() on all the GC alloc regions, so card
  3555       // scanning might skip the [saved_mark_word()...top()] area of
  3556       // those regions (i.e., the area we allocated objects into
  3557       // during the last GC). But it shouldn't. Given that
  3558       // saved_mark_word() is conditional on whether the GC time stamp
  3559       // on the region is current or not, by incrementing the GC time
  3560       // stamp here we invalidate all the GC time stamps on all the
  3561       // regions and saved_mark_word() will simply return top() for
  3562       // all the regions. This is a nicer way of ensuring this rather
  3563       // than iterating over the regions and fixing them. In fact, the
  3564       // GC time stamp increment here also ensures that
  3565       // saved_mark_word() will return top() between pauses, i.e.,
  3566       // during concurrent refinement. So we don't need the
  3567       // is_gc_active() check to decided which top to use when
  3568       // scanning cards (see CR 7039627).
  3569       increment_gc_time_stamp();
  3571       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3572         HandleMark hm;  // Discard invalid handles created during verification
  3573         gclog_or_tty->print(" VerifyAfterGC:");
  3574         prepare_for_verify();
  3575         Universe::verify(/* allow dirty */ true,
  3576                          /* silent      */ false,
  3577                          /* option      */ VerifyOption_G1UsePrevMarking);
  3580       if (was_enabled) ref_processor()->enable_discovery();
  3583         size_t expand_bytes = g1_policy()->expansion_amount();
  3584         if (expand_bytes > 0) {
  3585           size_t bytes_before = capacity();
  3586           // No need for an ergo verbose message here,
  3587           // expansion_amount() does this when it returns a value > 0.
  3588           if (!expand(expand_bytes)) {
  3589             // We failed to expand the heap so let's verify that
  3590             // committed/uncommitted amount match the backing store
  3591             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3592             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3597       // We should do this after we potentially expand the heap so
  3598       // that all the COMMIT events are generated before the end GC
  3599       // event, and after we retire the GC alloc regions so that all
  3600       // RETIRE events are generated before the end GC event.
  3601       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  3603       // We have to do this after we decide whether to expand the heap or not.
  3604       g1_policy()->print_heap_transition();
  3606       if (mark_in_progress()) {
  3607         concurrent_mark()->update_g1_committed();
  3610 #ifdef TRACESPINNING
  3611       ParallelTaskTerminator::print_termination_counts();
  3612 #endif
  3614       gc_epilogue(false);
  3617     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3618       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3619       print_tracing_info();
  3620       vm_exit(-1);
  3624   _hrs.verify_optional();
  3625   verify_region_sets_optional();
  3627   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3628   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3630   if (PrintHeapAtGC) {
  3631     Universe::print_heap_after_gc();
  3633   g1mm()->update_counters();
  3635   if (G1SummarizeRSetStats &&
  3636       (G1SummarizeRSetStatsPeriod > 0) &&
  3637       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3638     g1_rem_set()->print_summary_info();
  3641   return true;
  3644 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3646   size_t gclab_word_size;
  3647   switch (purpose) {
  3648     case GCAllocForSurvived:
  3649       gclab_word_size = YoungPLABSize;
  3650       break;
  3651     case GCAllocForTenured:
  3652       gclab_word_size = OldPLABSize;
  3653       break;
  3654     default:
  3655       assert(false, "unknown GCAllocPurpose");
  3656       gclab_word_size = OldPLABSize;
  3657       break;
  3659   return gclab_word_size;
  3662 void G1CollectedHeap::init_mutator_alloc_region() {
  3663   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  3664   _mutator_alloc_region.init();
  3667 void G1CollectedHeap::release_mutator_alloc_region() {
  3668   _mutator_alloc_region.release();
  3669   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  3672 void G1CollectedHeap::init_gc_alloc_regions() {
  3673   assert_at_safepoint(true /* should_be_vm_thread */);
  3675   _survivor_gc_alloc_region.init();
  3676   _old_gc_alloc_region.init();
  3677   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  3678   _retained_old_gc_alloc_region = NULL;
  3680   // We will discard the current GC alloc region if:
  3681   // a) it's in the collection set (it can happen!),
  3682   // b) it's already full (no point in using it),
  3683   // c) it's empty (this means that it was emptied during
  3684   // a cleanup and it should be on the free list now), or
  3685   // d) it's humongous (this means that it was emptied
  3686   // during a cleanup and was added to the free list, but
  3687   // has been subseqently used to allocate a humongous
  3688   // object that may be less than the region size).
  3689   if (retained_region != NULL &&
  3690       !retained_region->in_collection_set() &&
  3691       !(retained_region->top() == retained_region->end()) &&
  3692       !retained_region->is_empty() &&
  3693       !retained_region->isHumongous()) {
  3694     retained_region->set_saved_mark();
  3695     _old_gc_alloc_region.set(retained_region);
  3696     _hr_printer.reuse(retained_region);
  3700 void G1CollectedHeap::release_gc_alloc_regions() {
  3701   _survivor_gc_alloc_region.release();
  3702   // If we have an old GC alloc region to release, we'll save it in
  3703   // _retained_old_gc_alloc_region. If we don't
  3704   // _retained_old_gc_alloc_region will become NULL. This is what we
  3705   // want either way so no reason to check explicitly for either
  3706   // condition.
  3707   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  3710 void G1CollectedHeap::abandon_gc_alloc_regions() {
  3711   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  3712   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  3713   _retained_old_gc_alloc_region = NULL;
  3716 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3717   _drain_in_progress = false;
  3718   set_evac_failure_closure(cl);
  3719   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3722 void G1CollectedHeap::finalize_for_evac_failure() {
  3723   assert(_evac_failure_scan_stack != NULL &&
  3724          _evac_failure_scan_stack->length() == 0,
  3725          "Postcondition");
  3726   assert(!_drain_in_progress, "Postcondition");
  3727   delete _evac_failure_scan_stack;
  3728   _evac_failure_scan_stack = NULL;
  3731 // *** Sequential G1 Evacuation
  3733 class G1IsAliveClosure: public BoolObjectClosure {
  3734   G1CollectedHeap* _g1;
  3735 public:
  3736   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3737   void do_object(oop p) { assert(false, "Do not call."); }
  3738   bool do_object_b(oop p) {
  3739     // It is reachable if it is outside the collection set, or is inside
  3740     // and forwarded.
  3741     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3743 };
  3745 class G1KeepAliveClosure: public OopClosure {
  3746   G1CollectedHeap* _g1;
  3747 public:
  3748   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3749   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  3750   void do_oop(      oop* p) {
  3751     oop obj = *p;
  3752     if (_g1->obj_in_cs(obj)) {
  3753       assert( obj->is_forwarded(), "invariant" );
  3754       *p = obj->forwardee();
  3757 };
  3759 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3760 private:
  3761   G1CollectedHeap* _g1;
  3762   DirtyCardQueue *_dcq;
  3763   CardTableModRefBS* _ct_bs;
  3765 public:
  3766   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3767     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3769   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3770   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3771   template <class T> void do_oop_work(T* p) {
  3772     assert(_from->is_in_reserved(p), "paranoia");
  3773     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3774         !_from->is_survivor()) {
  3775       size_t card_index = _ct_bs->index_for(p);
  3776       if (_ct_bs->mark_card_deferred(card_index)) {
  3777         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3781 };
  3783 class RemoveSelfPointerClosure: public ObjectClosure {
  3784 private:
  3785   G1CollectedHeap* _g1;
  3786   ConcurrentMark* _cm;
  3787   HeapRegion* _hr;
  3788   size_t _prev_marked_bytes;
  3789   size_t _next_marked_bytes;
  3790   OopsInHeapRegionClosure *_cl;
  3791 public:
  3792   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
  3793                            OopsInHeapRegionClosure* cl) :
  3794     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3795     _next_marked_bytes(0), _cl(cl) {}
  3797   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3798   size_t next_marked_bytes() { return _next_marked_bytes; }
  3800   // <original comment>
  3801   // The original idea here was to coalesce evacuated and dead objects.
  3802   // However that caused complications with the block offset table (BOT).
  3803   // In particular if there were two TLABs, one of them partially refined.
  3804   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3805   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3806   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3807   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3808   // would point into middle of the filler object.
  3809   // The current approach is to not coalesce and leave the BOT contents intact.
  3810   // </original comment>
  3811   //
  3812   // We now reset the BOT when we start the object iteration over the
  3813   // region and refine its entries for every object we come across. So
  3814   // the above comment is not really relevant and we should be able
  3815   // to coalesce dead objects if we want to.
  3816   void do_object(oop obj) {
  3817     HeapWord* obj_addr = (HeapWord*) obj;
  3818     assert(_hr->is_in(obj_addr), "sanity");
  3819     size_t obj_size = obj->size();
  3820     _hr->update_bot_for_object(obj_addr, obj_size);
  3821     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3822       // The object failed to move.
  3823       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3824       _cm->markPrev(obj);
  3825       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3826       _prev_marked_bytes += (obj_size * HeapWordSize);
  3827       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3828         _cm->markAndGrayObjectIfNecessary(obj);
  3830       obj->set_mark(markOopDesc::prototype());
  3831       // While we were processing RSet buffers during the
  3832       // collection, we actually didn't scan any cards on the
  3833       // collection set, since we didn't want to update remebered
  3834       // sets with entries that point into the collection set, given
  3835       // that live objects fromthe collection set are about to move
  3836       // and such entries will be stale very soon. This change also
  3837       // dealt with a reliability issue which involved scanning a
  3838       // card in the collection set and coming across an array that
  3839       // was being chunked and looking malformed. The problem is
  3840       // that, if evacuation fails, we might have remembered set
  3841       // entries missing given that we skipped cards on the
  3842       // collection set. So, we'll recreate such entries now.
  3843       obj->oop_iterate(_cl);
  3844       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3845     } else {
  3846       // The object has been either evacuated or is dead. Fill it with a
  3847       // dummy object.
  3848       MemRegion mr((HeapWord*)obj, obj_size);
  3849       CollectedHeap::fill_with_object(mr);
  3850       _cm->clearRangeBothMaps(mr);
  3853 };
  3855 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3856   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
  3857   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3858   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3859   OopsInHeapRegionClosure *cl;
  3860   if (G1DeferredRSUpdate) {
  3861     cl = &deferred_update;
  3862   } else {
  3863     cl = &immediate_update;
  3865   HeapRegion* cur = g1_policy()->collection_set();
  3866   while (cur != NULL) {
  3867     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3868     assert(!cur->isHumongous(), "sanity");
  3870     if (cur->evacuation_failed()) {
  3871       assert(cur->in_collection_set(), "bad CS");
  3872       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
  3874       // In the common case we make sure that this is done when the
  3875       // region is freed so that it is "ready-to-go" when it's
  3876       // re-allocated. However, when evacuation failure happens, a
  3877       // region will remain in the heap and might ultimately be added
  3878       // to a CSet in the future. So we have to be careful here and
  3879       // make sure the region's RSet is ready for parallel iteration
  3880       // whenever this might be required in the future.
  3881       cur->rem_set()->reset_for_par_iteration();
  3882       cur->reset_bot();
  3883       cl->set_region(cur);
  3884       cur->object_iterate(&rspc);
  3886       // A number of manipulations to make the TAMS be the current top,
  3887       // and the marked bytes be the ones observed in the iteration.
  3888       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3889         // The comments below are the postconditions achieved by the
  3890         // calls.  Note especially the last such condition, which says that
  3891         // the count of marked bytes has been properly restored.
  3892         cur->note_start_of_marking(false);
  3893         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3894         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3895         // _next_marked_bytes == prev_marked_bytes.
  3896         cur->note_end_of_marking();
  3897         // _prev_top_at_mark_start == top(),
  3898         // _prev_marked_bytes == prev_marked_bytes
  3900       // If there is no mark in progress, we modified the _next variables
  3901       // above needlessly, but harmlessly.
  3902       if (_g1h->mark_in_progress()) {
  3903         cur->note_start_of_marking(false);
  3904         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3905         // _next_marked_bytes == next_marked_bytes.
  3908       // Now make sure the region has the right index in the sorted array.
  3909       g1_policy()->note_change_in_marked_bytes(cur);
  3911     cur = cur->next_in_collection_set();
  3913   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3915   // Now restore saved marks, if any.
  3916   if (_objs_with_preserved_marks != NULL) {
  3917     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3918     guarantee(_objs_with_preserved_marks->length() ==
  3919               _preserved_marks_of_objs->length(), "Both or none.");
  3920     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3921       oop obj   = _objs_with_preserved_marks->at(i);
  3922       markOop m = _preserved_marks_of_objs->at(i);
  3923       obj->set_mark(m);
  3925     // Delete the preserved marks growable arrays (allocated on the C heap).
  3926     delete _objs_with_preserved_marks;
  3927     delete _preserved_marks_of_objs;
  3928     _objs_with_preserved_marks = NULL;
  3929     _preserved_marks_of_objs = NULL;
  3933 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3934   _evac_failure_scan_stack->push(obj);
  3937 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3938   assert(_evac_failure_scan_stack != NULL, "precondition");
  3940   while (_evac_failure_scan_stack->length() > 0) {
  3941      oop obj = _evac_failure_scan_stack->pop();
  3942      _evac_failure_closure->set_region(heap_region_containing(obj));
  3943      obj->oop_iterate_backwards(_evac_failure_closure);
  3947 oop
  3948 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3949                                                oop old) {
  3950   assert(obj_in_cs(old),
  3951          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  3952                  (HeapWord*) old));
  3953   markOop m = old->mark();
  3954   oop forward_ptr = old->forward_to_atomic(old);
  3955   if (forward_ptr == NULL) {
  3956     // Forward-to-self succeeded.
  3957     if (_evac_failure_closure != cl) {
  3958       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3959       assert(!_drain_in_progress,
  3960              "Should only be true while someone holds the lock.");
  3961       // Set the global evac-failure closure to the current thread's.
  3962       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3963       set_evac_failure_closure(cl);
  3964       // Now do the common part.
  3965       handle_evacuation_failure_common(old, m);
  3966       // Reset to NULL.
  3967       set_evac_failure_closure(NULL);
  3968     } else {
  3969       // The lock is already held, and this is recursive.
  3970       assert(_drain_in_progress, "This should only be the recursive case.");
  3971       handle_evacuation_failure_common(old, m);
  3973     return old;
  3974   } else {
  3975     // Forward-to-self failed. Either someone else managed to allocate
  3976     // space for this object (old != forward_ptr) or they beat us in
  3977     // self-forwarding it (old == forward_ptr).
  3978     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  3979            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  3980                    "should not be in the CSet",
  3981                    (HeapWord*) old, (HeapWord*) forward_ptr));
  3982     return forward_ptr;
  3986 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3987   set_evacuation_failed(true);
  3989   preserve_mark_if_necessary(old, m);
  3991   HeapRegion* r = heap_region_containing(old);
  3992   if (!r->evacuation_failed()) {
  3993     r->set_evacuation_failed(true);
  3994     _hr_printer.evac_failure(r);
  3997   push_on_evac_failure_scan_stack(old);
  3999   if (!_drain_in_progress) {
  4000     // prevent recursion in copy_to_survivor_space()
  4001     _drain_in_progress = true;
  4002     drain_evac_failure_scan_stack();
  4003     _drain_in_progress = false;
  4007 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4008   assert(evacuation_failed(), "Oversaving!");
  4009   // We want to call the "for_promotion_failure" version only in the
  4010   // case of a promotion failure.
  4011   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4012     if (_objs_with_preserved_marks == NULL) {
  4013       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4014       _objs_with_preserved_marks =
  4015         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4016       _preserved_marks_of_objs =
  4017         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  4019     _objs_with_preserved_marks->push(obj);
  4020     _preserved_marks_of_objs->push(m);
  4024 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4025                                                   size_t word_size) {
  4026   if (purpose == GCAllocForSurvived) {
  4027     HeapWord* result = survivor_attempt_allocation(word_size);
  4028     if (result != NULL) {
  4029       return result;
  4030     } else {
  4031       // Let's try to allocate in the old gen in case we can fit the
  4032       // object there.
  4033       return old_attempt_allocation(word_size);
  4035   } else {
  4036     assert(purpose ==  GCAllocForTenured, "sanity");
  4037     HeapWord* result = old_attempt_allocation(word_size);
  4038     if (result != NULL) {
  4039       return result;
  4040     } else {
  4041       // Let's try to allocate in the survivors in case we can fit the
  4042       // object there.
  4043       return survivor_attempt_allocation(word_size);
  4047   ShouldNotReachHere();
  4048   // Trying to keep some compilers happy.
  4049   return NULL;
  4052 #ifndef PRODUCT
  4053 bool GCLabBitMapClosure::do_bit(size_t offset) {
  4054   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  4055   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  4056   return true;
  4058 #endif // PRODUCT
  4060 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4061   ParGCAllocBuffer(gclab_word_size),
  4062   _should_mark_objects(false),
  4063   _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  4064   _retired(false)
  4066   //_should_mark_objects is set to true when G1ParCopyHelper needs to
  4067   // mark the forwarded location of an evacuated object.
  4068   // We set _should_mark_objects to true if marking is active, i.e. when we
  4069   // need to propagate a mark, or during an initial mark pause, i.e. when we
  4070   // need to mark objects immediately reachable by the roots.
  4071   if (G1CollectedHeap::heap()->mark_in_progress() ||
  4072       G1CollectedHeap::heap()->g1_policy()->during_initial_mark_pause()) {
  4073     _should_mark_objects = true;
  4077 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  4078   : _g1h(g1h),
  4079     _refs(g1h->task_queue(queue_num)),
  4080     _dcq(&g1h->dirty_card_queue_set()),
  4081     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4082     _g1_rem(g1h->g1_rem_set()),
  4083     _hash_seed(17), _queue_num(queue_num),
  4084     _term_attempts(0),
  4085     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4086     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4087     _age_table(false),
  4088     _strong_roots_time(0), _term_time(0),
  4089     _alloc_buffer_waste(0), _undo_waste(0)
  4091   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4092   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4093   // non-young regions (where the age is -1)
  4094   // We also add a few elements at the beginning and at the end in
  4095   // an attempt to eliminate cache contention
  4096   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  4097   size_t array_length = PADDING_ELEM_NUM +
  4098                         real_length +
  4099                         PADDING_ELEM_NUM;
  4100   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  4101   if (_surviving_young_words_base == NULL)
  4102     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4103                           "Not enough space for young surv histo.");
  4104   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4105   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  4107   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4108   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4110   _start = os::elapsedTime();
  4113 void
  4114 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4116   st->print_raw_cr("GC Termination Stats");
  4117   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4118                    " ------waste (KiB)------");
  4119   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4120                    "  total   alloc    undo");
  4121   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4122                    " ------- ------- -------");
  4125 void
  4126 G1ParScanThreadState::print_termination_stats(int i,
  4127                                               outputStream* const st) const
  4129   const double elapsed_ms = elapsed_time() * 1000.0;
  4130   const double s_roots_ms = strong_roots_time() * 1000.0;
  4131   const double term_ms    = term_time() * 1000.0;
  4132   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4133                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4134                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4135                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4136                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4137                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4138                alloc_buffer_waste() * HeapWordSize / K,
  4139                undo_waste() * HeapWordSize / K);
  4142 #ifdef ASSERT
  4143 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4144   assert(ref != NULL, "invariant");
  4145   assert(UseCompressedOops, "sanity");
  4146   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4147   oop p = oopDesc::load_decode_heap_oop(ref);
  4148   assert(_g1h->is_in_g1_reserved(p),
  4149          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4150   return true;
  4153 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4154   assert(ref != NULL, "invariant");
  4155   if (has_partial_array_mask(ref)) {
  4156     // Must be in the collection set--it's already been copied.
  4157     oop p = clear_partial_array_mask(ref);
  4158     assert(_g1h->obj_in_cs(p),
  4159            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4160   } else {
  4161     oop p = oopDesc::load_decode_heap_oop(ref);
  4162     assert(_g1h->is_in_g1_reserved(p),
  4163            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4165   return true;
  4168 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4169   if (ref.is_narrow()) {
  4170     return verify_ref((narrowOop*) ref);
  4171   } else {
  4172     return verify_ref((oop*) ref);
  4175 #endif // ASSERT
  4177 void G1ParScanThreadState::trim_queue() {
  4178   StarTask ref;
  4179   do {
  4180     // Drain the overflow stack first, so other threads can steal.
  4181     while (refs()->pop_overflow(ref)) {
  4182       deal_with_reference(ref);
  4184     while (refs()->pop_local(ref)) {
  4185       deal_with_reference(ref);
  4187   } while (!refs()->is_empty());
  4190 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  4191   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4192   _par_scan_state(par_scan_state),
  4193   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4194   _mark_in_progress(_g1->mark_in_progress()) { }
  4196 template <class T> void G1ParCopyHelper::mark_object(T* p) {
  4197   // This is called from do_oop_work for objects that are not
  4198   // in the collection set. Objects in the collection set
  4199   // are marked after they have been evacuated.
  4201   T heap_oop = oopDesc::load_heap_oop(p);
  4202   if (!oopDesc::is_null(heap_oop)) {
  4203     oop obj = oopDesc::decode_heap_oop(heap_oop);
  4204     HeapWord* addr = (HeapWord*)obj;
  4205     if (_g1->is_in_g1_reserved(addr)) {
  4206       _cm->grayRoot(oop(addr));
  4211 oop G1ParCopyHelper::copy_to_survivor_space(oop old, bool should_mark_copy) {
  4212   size_t    word_sz = old->size();
  4213   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4214   // +1 to make the -1 indexes valid...
  4215   int       young_index = from_region->young_index_in_cset()+1;
  4216   assert( (from_region->is_young() && young_index > 0) ||
  4217           (!from_region->is_young() && young_index == 0), "invariant" );
  4218   G1CollectorPolicy* g1p = _g1->g1_policy();
  4219   markOop m = old->mark();
  4220   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4221                                            : m->age();
  4222   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4223                                                              word_sz);
  4224   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4225   oop       obj     = oop(obj_ptr);
  4227   if (obj_ptr == NULL) {
  4228     // This will either forward-to-self, or detect that someone else has
  4229     // installed a forwarding pointer.
  4230     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4231     return _g1->handle_evacuation_failure_par(cl, old);
  4234   // We're going to allocate linearly, so might as well prefetch ahead.
  4235   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4237   oop forward_ptr = old->forward_to_atomic(obj);
  4238   if (forward_ptr == NULL) {
  4239     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4240     if (g1p->track_object_age(alloc_purpose)) {
  4241       // We could simply do obj->incr_age(). However, this causes a
  4242       // performance issue. obj->incr_age() will first check whether
  4243       // the object has a displaced mark by checking its mark word;
  4244       // getting the mark word from the new location of the object
  4245       // stalls. So, given that we already have the mark word and we
  4246       // are about to install it anyway, it's better to increase the
  4247       // age on the mark word, when the object does not have a
  4248       // displaced mark word. We're not expecting many objects to have
  4249       // a displaced marked word, so that case is not optimized
  4250       // further (it could be...) and we simply call obj->incr_age().
  4252       if (m->has_displaced_mark_helper()) {
  4253         // in this case, we have to install the mark word first,
  4254         // otherwise obj looks to be forwarded (the old mark word,
  4255         // which contains the forward pointer, was copied)
  4256         obj->set_mark(m);
  4257         obj->incr_age();
  4258       } else {
  4259         m = m->incr_age();
  4260         obj->set_mark(m);
  4262       _par_scan_state->age_table()->add(obj, word_sz);
  4263     } else {
  4264       obj->set_mark(m);
  4267     // Mark the evacuated object or propagate "next" mark bit
  4268     if (should_mark_copy) {
  4269       if (!use_local_bitmaps ||
  4270           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  4271         // if we couldn't mark it on the local bitmap (this happens when
  4272         // the object was not allocated in the GCLab), we have to bite
  4273         // the bullet and do the standard parallel mark
  4274         _cm->markAndGrayObjectIfNecessary(obj);
  4277       if (_g1->isMarkedNext(old)) {
  4278         // Unmark the object's old location so that marking
  4279         // doesn't think the old object is alive.
  4280         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4284     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4285     surv_young_words[young_index] += word_sz;
  4287     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4288       arrayOop(old)->set_length(0);
  4289       oop* old_p = set_partial_array_mask(old);
  4290       _par_scan_state->push_on_queue(old_p);
  4291     } else {
  4292       // No point in using the slower heap_region_containing() method,
  4293       // given that we know obj is in the heap.
  4294       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4295       obj->oop_iterate_backwards(_scanner);
  4297   } else {
  4298     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4299     obj = forward_ptr;
  4301   return obj;
  4304 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4305 template <class T>
  4306 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4307 ::do_oop_work(T* p) {
  4308   oop obj = oopDesc::load_decode_heap_oop(p);
  4309   assert(barrier != G1BarrierRS || obj != NULL,
  4310          "Precondition: G1BarrierRS implies obj is nonNull");
  4312   // Marking:
  4313   // If the object is in the collection set, then the thread
  4314   // that copies the object should mark, or propagate the
  4315   // mark to, the evacuated object.
  4316   // If the object is not in the collection set then we
  4317   // should call the mark_object() method depending on the
  4318   // value of the template parameter do_mark_object (which will
  4319   // be true for root scanning closures during an initial mark
  4320   // pause).
  4321   // The mark_object() method first checks whether the object
  4322   // is marked and, if not, attempts to mark the object.
  4324   // here the null check is implicit in the cset_fast_test() test
  4325   if (_g1->in_cset_fast_test(obj)) {
  4326     if (obj->is_forwarded()) {
  4327       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  4328       // If we are a root scanning closure during an initial
  4329       // mark pause (i.e. do_mark_object will be true) then
  4330       // we also need to handle marking of roots in the
  4331       // event of an evacuation failure. In the event of an
  4332       // evacuation failure, the object is forwarded to itself
  4333       // and not copied so let's mark it here.
  4334       if (do_mark_object && obj->forwardee() == obj) {
  4335         mark_object(p);
  4337     } else {
  4338       // We need to mark the copied object if we're a root scanning
  4339       // closure during an initial mark pause (i.e. do_mark_object
  4340       // will be true), or the object is already marked and we need
  4341       // to propagate the mark to the evacuated copy.
  4342       bool should_mark_copy = do_mark_object ||
  4343                               _during_initial_mark ||
  4344                               (_mark_in_progress && !_g1->is_obj_ill(obj));
  4346       oop copy_oop = copy_to_survivor_space(obj, should_mark_copy);
  4347       oopDesc::encode_store_heap_oop(p, copy_oop);
  4349     // When scanning the RS, we only care about objs in CS.
  4350     if (barrier == G1BarrierRS) {
  4351       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4353   } else {
  4354     // The object is not in collection set. If we're a root scanning
  4355     // closure during an initial mark pause (i.e. do_mark_object will
  4356     // be true) then attempt to mark the object.
  4357     if (do_mark_object) {
  4358       mark_object(p);
  4362   if (barrier == G1BarrierEvac && obj != NULL) {
  4363     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4366   if (do_gen_barrier && obj != NULL) {
  4367     par_do_barrier(p);
  4371 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4372 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4374 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4375   assert(has_partial_array_mask(p), "invariant");
  4376   oop old = clear_partial_array_mask(p);
  4377   assert(old->is_objArray(), "must be obj array");
  4378   assert(old->is_forwarded(), "must be forwarded");
  4379   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4381   objArrayOop obj = objArrayOop(old->forwardee());
  4382   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4383   // Process ParGCArrayScanChunk elements now
  4384   // and push the remainder back onto queue
  4385   int start     = arrayOop(old)->length();
  4386   int end       = obj->length();
  4387   int remainder = end - start;
  4388   assert(start <= end, "just checking");
  4389   if (remainder > 2 * ParGCArrayScanChunk) {
  4390     // Test above combines last partial chunk with a full chunk
  4391     end = start + ParGCArrayScanChunk;
  4392     arrayOop(old)->set_length(end);
  4393     // Push remainder.
  4394     oop* old_p = set_partial_array_mask(old);
  4395     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  4396     _par_scan_state->push_on_queue(old_p);
  4397   } else {
  4398     // Restore length so that the heap remains parsable in
  4399     // case of evacuation failure.
  4400     arrayOop(old)->set_length(end);
  4402   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4403   // process our set of indices (include header in first chunk)
  4404   obj->oop_iterate_range(&_scanner, start, end);
  4407 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4408 protected:
  4409   G1CollectedHeap*              _g1h;
  4410   G1ParScanThreadState*         _par_scan_state;
  4411   RefToScanQueueSet*            _queues;
  4412   ParallelTaskTerminator*       _terminator;
  4414   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4415   RefToScanQueueSet*      queues()         { return _queues; }
  4416   ParallelTaskTerminator* terminator()     { return _terminator; }
  4418 public:
  4419   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4420                                 G1ParScanThreadState* par_scan_state,
  4421                                 RefToScanQueueSet* queues,
  4422                                 ParallelTaskTerminator* terminator)
  4423     : _g1h(g1h), _par_scan_state(par_scan_state),
  4424       _queues(queues), _terminator(terminator) {}
  4426   void do_void();
  4428 private:
  4429   inline bool offer_termination();
  4430 };
  4432 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4433   G1ParScanThreadState* const pss = par_scan_state();
  4434   pss->start_term_time();
  4435   const bool res = terminator()->offer_termination();
  4436   pss->end_term_time();
  4437   return res;
  4440 void G1ParEvacuateFollowersClosure::do_void() {
  4441   StarTask stolen_task;
  4442   G1ParScanThreadState* const pss = par_scan_state();
  4443   pss->trim_queue();
  4445   do {
  4446     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4447       assert(pss->verify_task(stolen_task), "sanity");
  4448       if (stolen_task.is_narrow()) {
  4449         pss->deal_with_reference((narrowOop*) stolen_task);
  4450       } else {
  4451         pss->deal_with_reference((oop*) stolen_task);
  4454       // We've just processed a reference and we might have made
  4455       // available new entries on the queues. So we have to make sure
  4456       // we drain the queues as necessary.
  4457       pss->trim_queue();
  4459   } while (!offer_termination());
  4461   pss->retire_alloc_buffers();
  4464 class G1ParTask : public AbstractGangTask {
  4465 protected:
  4466   G1CollectedHeap*       _g1h;
  4467   RefToScanQueueSet      *_queues;
  4468   ParallelTaskTerminator _terminator;
  4469   int _n_workers;
  4471   Mutex _stats_lock;
  4472   Mutex* stats_lock() { return &_stats_lock; }
  4474   size_t getNCards() {
  4475     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4476       / G1BlockOffsetSharedArray::N_bytes;
  4479 public:
  4480   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4481     : AbstractGangTask("G1 collection"),
  4482       _g1h(g1h),
  4483       _queues(task_queues),
  4484       _terminator(workers, _queues),
  4485       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  4486       _n_workers(workers)
  4487   {}
  4489   RefToScanQueueSet* queues() { return _queues; }
  4491   RefToScanQueue *work_queue(int i) {
  4492     return queues()->queue(i);
  4495   void work(int i) {
  4496     if (i >= _n_workers) return;  // no work needed this round
  4498     double start_time_ms = os::elapsedTime() * 1000.0;
  4499     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
  4501     ResourceMark rm;
  4502     HandleMark   hm;
  4504     G1ParScanThreadState            pss(_g1h, i);
  4505     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  4506     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  4507     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  4509     pss.set_evac_closure(&scan_evac_cl);
  4510     pss.set_evac_failure_closure(&evac_failure_cl);
  4511     pss.set_partial_scan_closure(&partial_scan_cl);
  4513     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  4514     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  4515     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  4516     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4518     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4519     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4520     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4522     OopsInHeapRegionClosure        *scan_root_cl;
  4523     OopsInHeapRegionClosure        *scan_perm_cl;
  4525     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4526       scan_root_cl = &scan_mark_root_cl;
  4527       scan_perm_cl = &scan_mark_perm_cl;
  4528     } else {
  4529       scan_root_cl = &only_scan_root_cl;
  4530       scan_perm_cl = &only_scan_perm_cl;
  4533     pss.start_strong_roots();
  4534     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4535                                   SharedHeap::SO_AllClasses,
  4536                                   scan_root_cl,
  4537                                   &push_heap_rs_cl,
  4538                                   scan_perm_cl,
  4539                                   i);
  4540     pss.end_strong_roots();
  4543       double start = os::elapsedTime();
  4544       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4545       evac.do_void();
  4546       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4547       double term_ms = pss.term_time()*1000.0;
  4548       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4549       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
  4551     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4552     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4554     // Clean up any par-expanded rem sets.
  4555     HeapRegionRemSet::par_cleanup();
  4557     if (ParallelGCVerbose) {
  4558       MutexLocker x(stats_lock());
  4559       pss.print_termination_stats(i);
  4562     assert(pss.refs()->is_empty(), "should be empty");
  4563     double end_time_ms = os::elapsedTime() * 1000.0;
  4564     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
  4566 };
  4568 // *** Common G1 Evacuation Stuff
  4570 // This method is run in a GC worker.
  4572 void
  4573 G1CollectedHeap::
  4574 g1_process_strong_roots(bool collecting_perm_gen,
  4575                         SharedHeap::ScanningOption so,
  4576                         OopClosure* scan_non_heap_roots,
  4577                         OopsInHeapRegionClosure* scan_rs,
  4578                         OopsInGenClosure* scan_perm,
  4579                         int worker_i) {
  4580   // First scan the strong roots, including the perm gen.
  4581   double ext_roots_start = os::elapsedTime();
  4582   double closure_app_time_sec = 0.0;
  4584   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4585   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4586   buf_scan_perm.set_generation(perm_gen());
  4588   // Walk the code cache w/o buffering, because StarTask cannot handle
  4589   // unaligned oop locations.
  4590   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  4592   process_strong_roots(false, // no scoping; this is parallel code
  4593                        collecting_perm_gen, so,
  4594                        &buf_scan_non_heap_roots,
  4595                        &eager_scan_code_roots,
  4596                        &buf_scan_perm);
  4598   // Now the ref_processor roots.
  4599   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4600     // We need to treat the discovered reference lists as roots and
  4601     // keep entries (which are added by the marking threads) on them
  4602     // live until they can be processed at the end of marking.
  4603     ref_processor()->weak_oops_do(&buf_scan_non_heap_roots);
  4606   // Finish up any enqueued closure apps (attributed as object copy time).
  4607   buf_scan_non_heap_roots.done();
  4608   buf_scan_perm.done();
  4610   double ext_roots_end = os::elapsedTime();
  4612   g1_policy()->reset_obj_copy_time(worker_i);
  4613   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  4614                                 buf_scan_non_heap_roots.closure_app_seconds();
  4615   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4617   double ext_root_time_ms =
  4618     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4620   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4622   // Scan strong roots in mark stack.
  4623   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4624     concurrent_mark()->oops_do(scan_non_heap_roots);
  4626   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4627   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4629   // Now scan the complement of the collection set.
  4630   if (scan_rs != NULL) {
  4631     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4634   _process_strong_tasks->all_tasks_completed();
  4637 void
  4638 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4639                                        OopClosure* non_root_closure) {
  4640   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4641   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4644 void G1CollectedHeap::evacuate_collection_set() {
  4645   set_evacuation_failed(false);
  4647   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4648   concurrent_g1_refine()->set_use_cache(false);
  4649   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  4651   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4652   set_par_threads(n_workers);
  4653   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4655   init_for_evac_failure(NULL);
  4657   rem_set()->prepare_for_younger_refs_iterate(true);
  4659   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4660   double start_par = os::elapsedTime();
  4661   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4662     // The individual threads will set their evac-failure closures.
  4663     StrongRootsScope srs(this);
  4664     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  4665     workers()->run_task(&g1_par_task);
  4666   } else {
  4667     StrongRootsScope srs(this);
  4668     g1_par_task.work(0);
  4671   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4672   g1_policy()->record_par_time(par_time);
  4673   set_par_threads(0);
  4675   // Weak root processing.
  4676   // Note: when JSR 292 is enabled and code blobs can contain
  4677   // non-perm oops then we will need to process the code blobs
  4678   // here too.
  4680     G1IsAliveClosure is_alive(this);
  4681     G1KeepAliveClosure keep_alive(this);
  4682     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4684   release_gc_alloc_regions();
  4685   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4687   concurrent_g1_refine()->clear_hot_cache();
  4688   concurrent_g1_refine()->set_use_cache(true);
  4690   finalize_for_evac_failure();
  4692   // Must do this before removing self-forwarding pointers, which clears
  4693   // the per-region evac-failure flags.
  4694   concurrent_mark()->complete_marking_in_collection_set();
  4696   if (evacuation_failed()) {
  4697     remove_self_forwarding_pointers();
  4698     if (PrintGCDetails) {
  4699       gclog_or_tty->print(" (to-space overflow)");
  4700     } else if (PrintGC) {
  4701       gclog_or_tty->print("--");
  4705   if (G1DeferredRSUpdate) {
  4706     RedirtyLoggedCardTableEntryFastClosure redirty;
  4707     dirty_card_queue_set().set_closure(&redirty);
  4708     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4710     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  4711     dcq.merge_bufferlists(&dirty_card_queue_set());
  4712     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4714   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4717 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  4718                                      size_t* pre_used,
  4719                                      FreeRegionList* free_list,
  4720                                      HumongousRegionSet* humongous_proxy_set,
  4721                                      HRRSCleanupTask* hrrs_cleanup_task,
  4722                                      bool par) {
  4723   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  4724     if (hr->isHumongous()) {
  4725       assert(hr->startsHumongous(), "we should only see starts humongous");
  4726       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  4727     } else {
  4728       free_region(hr, pre_used, free_list, par);
  4730   } else {
  4731     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  4735 void G1CollectedHeap::free_region(HeapRegion* hr,
  4736                                   size_t* pre_used,
  4737                                   FreeRegionList* free_list,
  4738                                   bool par) {
  4739   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  4740   assert(!hr->is_empty(), "the region should not be empty");
  4741   assert(free_list != NULL, "pre-condition");
  4743   *pre_used += hr->used();
  4744   hr->hr_clear(par, true /* clear_space */);
  4745   free_list->add_as_head(hr);
  4748 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  4749                                      size_t* pre_used,
  4750                                      FreeRegionList* free_list,
  4751                                      HumongousRegionSet* humongous_proxy_set,
  4752                                      bool par) {
  4753   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  4754   assert(free_list != NULL, "pre-condition");
  4755   assert(humongous_proxy_set != NULL, "pre-condition");
  4757   size_t hr_used = hr->used();
  4758   size_t hr_capacity = hr->capacity();
  4759   size_t hr_pre_used = 0;
  4760   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  4761   hr->set_notHumongous();
  4762   free_region(hr, &hr_pre_used, free_list, par);
  4764   size_t i = hr->hrs_index() + 1;
  4765   size_t num = 1;
  4766   while (i < n_regions()) {
  4767     HeapRegion* curr_hr = region_at(i);
  4768     if (!curr_hr->continuesHumongous()) {
  4769       break;
  4771     curr_hr->set_notHumongous();
  4772     free_region(curr_hr, &hr_pre_used, free_list, par);
  4773     num += 1;
  4774     i += 1;
  4776   assert(hr_pre_used == hr_used,
  4777          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  4778                  "should be the same", hr_pre_used, hr_used));
  4779   *pre_used += hr_pre_used;
  4782 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  4783                                        FreeRegionList* free_list,
  4784                                        HumongousRegionSet* humongous_proxy_set,
  4785                                        bool par) {
  4786   if (pre_used > 0) {
  4787     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  4788     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4789     assert(_summary_bytes_used >= pre_used,
  4790            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  4791                    "should be >= pre_used: "SIZE_FORMAT,
  4792                    _summary_bytes_used, pre_used));
  4793     _summary_bytes_used -= pre_used;
  4795   if (free_list != NULL && !free_list->is_empty()) {
  4796     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  4797     _free_list.add_as_head(free_list);
  4799   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  4800     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  4801     _humongous_set.update_from_proxy(humongous_proxy_set);
  4805 class G1ParCleanupCTTask : public AbstractGangTask {
  4806   CardTableModRefBS* _ct_bs;
  4807   G1CollectedHeap* _g1h;
  4808   HeapRegion* volatile _su_head;
  4809 public:
  4810   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  4811                      G1CollectedHeap* g1h) :
  4812     AbstractGangTask("G1 Par Cleanup CT Task"),
  4813     _ct_bs(ct_bs), _g1h(g1h) { }
  4815   void work(int i) {
  4816     HeapRegion* r;
  4817     while (r = _g1h->pop_dirty_cards_region()) {
  4818       clear_cards(r);
  4822   void clear_cards(HeapRegion* r) {
  4823     // Cards of the survivors should have already been dirtied.
  4824     if (!r->is_survivor()) {
  4825       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  4828 };
  4830 #ifndef PRODUCT
  4831 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  4832   G1CollectedHeap* _g1h;
  4833   CardTableModRefBS* _ct_bs;
  4834 public:
  4835   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  4836     : _g1h(g1h), _ct_bs(ct_bs) { }
  4837   virtual bool doHeapRegion(HeapRegion* r) {
  4838     if (r->is_survivor()) {
  4839       _g1h->verify_dirty_region(r);
  4840     } else {
  4841       _g1h->verify_not_dirty_region(r);
  4843     return false;
  4845 };
  4847 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  4848   // All of the region should be clean.
  4849   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  4850   MemRegion mr(hr->bottom(), hr->end());
  4851   ct_bs->verify_not_dirty_region(mr);
  4854 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  4855   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  4856   // dirty allocated blocks as they allocate them. The thread that
  4857   // retires each region and replaces it with a new one will do a
  4858   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  4859   // not dirty that area (one less thing to have to do while holding
  4860   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  4861   // is dirty.
  4862   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  4863   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  4864   ct_bs->verify_dirty_region(mr);
  4867 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  4868   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  4869   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  4870     verify_dirty_region(hr);
  4874 void G1CollectedHeap::verify_dirty_young_regions() {
  4875   verify_dirty_young_list(_young_list->first_region());
  4876   verify_dirty_young_list(_young_list->first_survivor_region());
  4878 #endif
  4880 void G1CollectedHeap::cleanUpCardTable() {
  4881   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4882   double start = os::elapsedTime();
  4884   // Iterate over the dirty cards region list.
  4885   G1ParCleanupCTTask cleanup_task(ct_bs, this);
  4887   if (ParallelGCThreads > 0) {
  4888     set_par_threads(workers()->total_workers());
  4889     workers()->run_task(&cleanup_task);
  4890     set_par_threads(0);
  4891   } else {
  4892     while (_dirty_cards_region_list) {
  4893       HeapRegion* r = _dirty_cards_region_list;
  4894       cleanup_task.clear_cards(r);
  4895       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  4896       if (_dirty_cards_region_list == r) {
  4897         // The last region.
  4898         _dirty_cards_region_list = NULL;
  4900       r->set_next_dirty_cards_region(NULL);
  4904   double elapsed = os::elapsedTime() - start;
  4905   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4906 #ifndef PRODUCT
  4907   if (G1VerifyCTCleanup || VerifyAfterGC) {
  4908     G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  4909     heap_region_iterate(&cleanup_verifier);
  4911 #endif
  4914 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4915   size_t pre_used = 0;
  4916   FreeRegionList local_free_list("Local List for CSet Freeing");
  4918   double young_time_ms     = 0.0;
  4919   double non_young_time_ms = 0.0;
  4921   // Since the collection set is a superset of the the young list,
  4922   // all we need to do to clear the young list is clear its
  4923   // head and length, and unlink any young regions in the code below
  4924   _young_list->clear();
  4926   G1CollectorPolicy* policy = g1_policy();
  4928   double start_sec = os::elapsedTime();
  4929   bool non_young = true;
  4931   HeapRegion* cur = cs_head;
  4932   int age_bound = -1;
  4933   size_t rs_lengths = 0;
  4935   while (cur != NULL) {
  4936     assert(!is_on_master_free_list(cur), "sanity");
  4938     if (non_young) {
  4939       if (cur->is_young()) {
  4940         double end_sec = os::elapsedTime();
  4941         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4942         non_young_time_ms += elapsed_ms;
  4944         start_sec = os::elapsedTime();
  4945         non_young = false;
  4947     } else {
  4948       double end_sec = os::elapsedTime();
  4949       double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4950       young_time_ms += elapsed_ms;
  4952       start_sec = os::elapsedTime();
  4953       non_young = true;
  4956     rs_lengths += cur->rem_set()->occupied();
  4958     HeapRegion* next = cur->next_in_collection_set();
  4959     assert(cur->in_collection_set(), "bad CS");
  4960     cur->set_next_in_collection_set(NULL);
  4961     cur->set_in_collection_set(false);
  4963     if (cur->is_young()) {
  4964       int index = cur->young_index_in_cset();
  4965       guarantee( index != -1, "invariant" );
  4966       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4967       size_t words_survived = _surviving_young_words[index];
  4968       cur->record_surv_words_in_group(words_survived);
  4970       // At this point the we have 'popped' cur from the collection set
  4971       // (linked via next_in_collection_set()) but it is still in the
  4972       // young list (linked via next_young_region()). Clear the
  4973       // _next_young_region field.
  4974       cur->set_next_young_region(NULL);
  4975     } else {
  4976       int index = cur->young_index_in_cset();
  4977       guarantee( index == -1, "invariant" );
  4980     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4981             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4982             "invariant" );
  4984     if (!cur->evacuation_failed()) {
  4985       // And the region is empty.
  4986       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
  4987       free_region(cur, &pre_used, &local_free_list, false /* par */);
  4988     } else {
  4989       cur->uninstall_surv_rate_group();
  4990       if (cur->is_young())
  4991         cur->set_young_index_in_cset(-1);
  4992       cur->set_not_young();
  4993       cur->set_evacuation_failed(false);
  4995     cur = next;
  4998   policy->record_max_rs_lengths(rs_lengths);
  4999   policy->cset_regions_freed();
  5001   double end_sec = os::elapsedTime();
  5002   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5003   if (non_young)
  5004     non_young_time_ms += elapsed_ms;
  5005   else
  5006     young_time_ms += elapsed_ms;
  5008   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5009                                     NULL /* humongous_proxy_set */,
  5010                                     false /* par */);
  5011   policy->record_young_free_cset_time_ms(young_time_ms);
  5012   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  5015 // This routine is similar to the above but does not record
  5016 // any policy statistics or update free lists; we are abandoning
  5017 // the current incremental collection set in preparation of a
  5018 // full collection. After the full GC we will start to build up
  5019 // the incremental collection set again.
  5020 // This is only called when we're doing a full collection
  5021 // and is immediately followed by the tearing down of the young list.
  5023 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5024   HeapRegion* cur = cs_head;
  5026   while (cur != NULL) {
  5027     HeapRegion* next = cur->next_in_collection_set();
  5028     assert(cur->in_collection_set(), "bad CS");
  5029     cur->set_next_in_collection_set(NULL);
  5030     cur->set_in_collection_set(false);
  5031     cur->set_young_index_in_cset(-1);
  5032     cur = next;
  5036 void G1CollectedHeap::set_free_regions_coming() {
  5037   if (G1ConcRegionFreeingVerbose) {
  5038     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5039                            "setting free regions coming");
  5042   assert(!free_regions_coming(), "pre-condition");
  5043   _free_regions_coming = true;
  5046 void G1CollectedHeap::reset_free_regions_coming() {
  5048     assert(free_regions_coming(), "pre-condition");
  5049     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5050     _free_regions_coming = false;
  5051     SecondaryFreeList_lock->notify_all();
  5054   if (G1ConcRegionFreeingVerbose) {
  5055     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5056                            "reset free regions coming");
  5060 void G1CollectedHeap::wait_while_free_regions_coming() {
  5061   // Most of the time we won't have to wait, so let's do a quick test
  5062   // first before we take the lock.
  5063   if (!free_regions_coming()) {
  5064     return;
  5067   if (G1ConcRegionFreeingVerbose) {
  5068     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5069                            "waiting for free regions");
  5073     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5074     while (free_regions_coming()) {
  5075       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5079   if (G1ConcRegionFreeingVerbose) {
  5080     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5081                            "done waiting for free regions");
  5085 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5086   assert(heap_lock_held_for_gc(),
  5087               "the heap lock should already be held by or for this thread");
  5088   _young_list->push_region(hr);
  5089   g1_policy()->set_region_short_lived(hr);
  5092 class NoYoungRegionsClosure: public HeapRegionClosure {
  5093 private:
  5094   bool _success;
  5095 public:
  5096   NoYoungRegionsClosure() : _success(true) { }
  5097   bool doHeapRegion(HeapRegion* r) {
  5098     if (r->is_young()) {
  5099       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5100                              r->bottom(), r->end());
  5101       _success = false;
  5103     return false;
  5105   bool success() { return _success; }
  5106 };
  5108 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5109   bool ret = _young_list->check_list_empty(check_sample);
  5111   if (check_heap) {
  5112     NoYoungRegionsClosure closure;
  5113     heap_region_iterate(&closure);
  5114     ret = ret && closure.success();
  5117   return ret;
  5120 void G1CollectedHeap::empty_young_list() {
  5121   assert(heap_lock_held_for_gc(),
  5122               "the heap lock should already be held by or for this thread");
  5124   _young_list->empty_list();
  5127 // Done at the start of full GC.
  5128 void G1CollectedHeap::tear_down_region_lists() {
  5129   _free_list.remove_all();
  5132 class RegionResetter: public HeapRegionClosure {
  5133   G1CollectedHeap* _g1h;
  5134   FreeRegionList _local_free_list;
  5136 public:
  5137   RegionResetter() : _g1h(G1CollectedHeap::heap()),
  5138                      _local_free_list("Local Free List for RegionResetter") { }
  5140   bool doHeapRegion(HeapRegion* r) {
  5141     if (r->continuesHumongous()) return false;
  5142     if (r->top() > r->bottom()) {
  5143       if (r->top() < r->end()) {
  5144         Copy::fill_to_words(r->top(),
  5145                           pointer_delta(r->end(), r->top()));
  5147     } else {
  5148       assert(r->is_empty(), "tautology");
  5149       _local_free_list.add_as_tail(r);
  5151     return false;
  5154   void update_free_lists() {
  5155     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
  5156                                             false /* par */);
  5158 };
  5160 // Done at the end of full GC.
  5161 void G1CollectedHeap::rebuild_region_lists() {
  5162   // This needs to go at the end of the full GC.
  5163   RegionResetter rs;
  5164   heap_region_iterate(&rs);
  5165   rs.update_free_lists();
  5168 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5169   _refine_cte_cl->set_concurrent(concurrent);
  5172 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5173   HeapRegion* hr = heap_region_containing(p);
  5174   if (hr == NULL) {
  5175     return is_in_permanent(p);
  5176   } else {
  5177     return hr->is_in(p);
  5181 // Methods for the mutator alloc region
  5183 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  5184                                                       bool force) {
  5185   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5186   assert(!force || g1_policy()->can_expand_young_list(),
  5187          "if force is true we should be able to expand the young list");
  5188   bool young_list_full = g1_policy()->is_young_list_full();
  5189   if (force || !young_list_full) {
  5190     HeapRegion* new_alloc_region = new_region(word_size,
  5191                                               false /* do_expand */);
  5192     if (new_alloc_region != NULL) {
  5193       g1_policy()->update_region_num(true /* next_is_young */);
  5194       set_region_short_lived_locked(new_alloc_region);
  5195       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  5196       g1mm()->update_eden_counters();
  5197       return new_alloc_region;
  5200   return NULL;
  5203 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  5204                                                   size_t allocated_bytes) {
  5205   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5206   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  5208   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  5209   _summary_bytes_used += allocated_bytes;
  5210   _hr_printer.retire(alloc_region);
  5213 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  5214                                                     bool force) {
  5215   return _g1h->new_mutator_alloc_region(word_size, force);
  5218 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  5219                                        size_t allocated_bytes) {
  5220   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  5223 // Methods for the GC alloc regions
  5225 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  5226                                                  size_t count,
  5227                                                  GCAllocPurpose ap) {
  5228   assert(FreeList_lock->owned_by_self(), "pre-condition");
  5230   if (count < g1_policy()->max_regions(ap)) {
  5231     HeapRegion* new_alloc_region = new_region(word_size,
  5232                                               true /* do_expand */);
  5233     if (new_alloc_region != NULL) {
  5234       // We really only need to do this for old regions given that we
  5235       // should never scan survivors. But it doesn't hurt to do it
  5236       // for survivors too.
  5237       new_alloc_region->set_saved_mark();
  5238       if (ap == GCAllocForSurvived) {
  5239         new_alloc_region->set_survivor();
  5240         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  5241       } else {
  5242         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  5244       return new_alloc_region;
  5245     } else {
  5246       g1_policy()->note_alloc_region_limit_reached(ap);
  5249   return NULL;
  5252 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  5253                                              size_t allocated_bytes,
  5254                                              GCAllocPurpose ap) {
  5255   alloc_region->note_end_of_copying();
  5256   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  5257   if (ap == GCAllocForSurvived) {
  5258     young_list()->add_survivor_region(alloc_region);
  5260   _hr_printer.retire(alloc_region);
  5263 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  5264                                                        bool force) {
  5265   assert(!force, "not supported for GC alloc regions");
  5266   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  5269 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  5270                                           size_t allocated_bytes) {
  5271   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  5272                                GCAllocForSurvived);
  5275 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  5276                                                   bool force) {
  5277   assert(!force, "not supported for GC alloc regions");
  5278   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  5281 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  5282                                      size_t allocated_bytes) {
  5283   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  5284                                GCAllocForTenured);
  5286 // Heap region set verification
  5288 class VerifyRegionListsClosure : public HeapRegionClosure {
  5289 private:
  5290   HumongousRegionSet* _humongous_set;
  5291   FreeRegionList*     _free_list;
  5292   size_t              _region_count;
  5294 public:
  5295   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
  5296                            FreeRegionList* free_list) :
  5297     _humongous_set(humongous_set), _free_list(free_list),
  5298     _region_count(0) { }
  5300   size_t region_count()      { return _region_count;      }
  5302   bool doHeapRegion(HeapRegion* hr) {
  5303     _region_count += 1;
  5305     if (hr->continuesHumongous()) {
  5306       return false;
  5309     if (hr->is_young()) {
  5310       // TODO
  5311     } else if (hr->startsHumongous()) {
  5312       _humongous_set->verify_next_region(hr);
  5313     } else if (hr->is_empty()) {
  5314       _free_list->verify_next_region(hr);
  5316     return false;
  5318 };
  5320 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
  5321                                              HeapWord* bottom) {
  5322   HeapWord* end = bottom + HeapRegion::GrainWords;
  5323   MemRegion mr(bottom, end);
  5324   assert(_g1_reserved.contains(mr), "invariant");
  5325   // This might return NULL if the allocation fails
  5326   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  5329 void G1CollectedHeap::verify_region_sets() {
  5330   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5332   // First, check the explicit lists.
  5333   _free_list.verify();
  5335     // Given that a concurrent operation might be adding regions to
  5336     // the secondary free list we have to take the lock before
  5337     // verifying it.
  5338     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5339     _secondary_free_list.verify();
  5341   _humongous_set.verify();
  5343   // If a concurrent region freeing operation is in progress it will
  5344   // be difficult to correctly attributed any free regions we come
  5345   // across to the correct free list given that they might belong to
  5346   // one of several (free_list, secondary_free_list, any local lists,
  5347   // etc.). So, if that's the case we will skip the rest of the
  5348   // verification operation. Alternatively, waiting for the concurrent
  5349   // operation to complete will have a non-trivial effect on the GC's
  5350   // operation (no concurrent operation will last longer than the
  5351   // interval between two calls to verification) and it might hide
  5352   // any issues that we would like to catch during testing.
  5353   if (free_regions_coming()) {
  5354     return;
  5357   // Make sure we append the secondary_free_list on the free_list so
  5358   // that all free regions we will come across can be safely
  5359   // attributed to the free_list.
  5360   append_secondary_free_list_if_not_empty_with_lock();
  5362   // Finally, make sure that the region accounting in the lists is
  5363   // consistent with what we see in the heap.
  5364   _humongous_set.verify_start();
  5365   _free_list.verify_start();
  5367   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
  5368   heap_region_iterate(&cl);
  5370   _humongous_set.verify_end();
  5371   _free_list.verify_end();

mercurial