src/share/vm/gc_implementation/g1/concurrentG1Refine.cpp

Tue, 20 Sep 2011 09:59:59 -0400

author
tonyp
date
Tue, 20 Sep 2011 09:59:59 -0400
changeset 3168
4f93f0d00802
parent 2716
c84ee870e0b9
child 3900
d2a62e0f25eb
child 3923
922993931b3d
permissions
-rw-r--r--

7059019: G1: add G1 support to the SA
Summary: Extend the SA to recognize the G1CollectedHeap and implement any code that's needed by our serviceability tools (jmap, jinfo, jstack, etc.) that depend on the SA.
Reviewed-by: never, poonam, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    30 #include "gc_implementation/g1/g1RemSet.hpp"
    31 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    32 #include "memory/space.inline.hpp"
    33 #include "runtime/atomic.hpp"
    34 #include "runtime/java.hpp"
    35 #include "utilities/copy.hpp"
    37 // Possible sizes for the card counts cache: odd primes that roughly double in size.
    38 // (See jvmtiTagMap.cpp).
    40 #define MAX_SIZE ((size_t) -1)
    42 size_t ConcurrentG1Refine::_cc_cache_sizes[] = {
    43           16381,    32771,    76831,    150001,   307261,
    44          614563,  1228891,  2457733,   4915219,  9830479,
    45        19660831, 39321619, 78643219, 157286461,  MAX_SIZE
    46   };
    48 ConcurrentG1Refine::ConcurrentG1Refine() :
    49   _card_counts(NULL), _card_epochs(NULL),
    50   _n_card_counts(0), _max_cards(0), _max_n_card_counts(0),
    51   _cache_size_index(0), _expand_card_counts(false),
    52   _hot_cache(NULL),
    53   _def_use_cache(false), _use_cache(false),
    54   // We initialize the epochs of the array to 0. By initializing
    55   // _n_periods to 1 and not 0 we automatically invalidate all the
    56   // entries on the array. Otherwise we might accidentally think that
    57   // we claimed a card that was in fact never set (see CR7033292).
    58   _n_periods(1),
    59   _threads(NULL), _n_threads(0)
    60 {
    62   // Ergomonically select initial concurrent refinement parameters
    63   if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) {
    64     FLAG_SET_DEFAULT(G1ConcRefinementGreenZone, MAX2<int>(ParallelGCThreads, 1));
    65   }
    66   set_green_zone(G1ConcRefinementGreenZone);
    68   if (FLAG_IS_DEFAULT(G1ConcRefinementYellowZone)) {
    69     FLAG_SET_DEFAULT(G1ConcRefinementYellowZone, green_zone() * 3);
    70   }
    71   set_yellow_zone(MAX2<int>(G1ConcRefinementYellowZone, green_zone()));
    73   if (FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) {
    74     FLAG_SET_DEFAULT(G1ConcRefinementRedZone, yellow_zone() * 2);
    75   }
    76   set_red_zone(MAX2<int>(G1ConcRefinementRedZone, yellow_zone()));
    77   _n_worker_threads = thread_num();
    78   // We need one extra thread to do the young gen rset size sampling.
    79   _n_threads = _n_worker_threads + 1;
    80   reset_threshold_step();
    82   _threads = NEW_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _n_threads);
    83   int worker_id_offset = (int)DirtyCardQueueSet::num_par_ids();
    84   ConcurrentG1RefineThread *next = NULL;
    85   for (int i = _n_threads - 1; i >= 0; i--) {
    86     ConcurrentG1RefineThread* t = new ConcurrentG1RefineThread(this, next, worker_id_offset, i);
    87     assert(t != NULL, "Conc refine should have been created");
    88     assert(t->cg1r() == this, "Conc refine thread should refer to this");
    89     _threads[i] = t;
    90     next = t;
    91   }
    92 }
    94 void ConcurrentG1Refine::reset_threshold_step() {
    95   if (FLAG_IS_DEFAULT(G1ConcRefinementThresholdStep)) {
    96     _thread_threshold_step = (yellow_zone() - green_zone()) / (worker_thread_num() + 1);
    97   } else {
    98     _thread_threshold_step = G1ConcRefinementThresholdStep;
    99   }
   100 }
   102 int ConcurrentG1Refine::thread_num() {
   103   return MAX2<int>((G1ConcRefinementThreads > 0) ? G1ConcRefinementThreads : ParallelGCThreads, 1);
   104 }
   106 void ConcurrentG1Refine::init() {
   107   if (G1ConcRSLogCacheSize > 0) {
   108     _g1h = G1CollectedHeap::heap();
   110     _max_cards = _g1h->max_capacity() >> CardTableModRefBS::card_shift;
   111     _max_n_card_counts = _max_cards * G1MaxHotCardCountSizePercent / 100;
   113     size_t max_card_num = ((size_t)1 << (sizeof(unsigned)*BitsPerByte-1)) - 1;
   114     guarantee(_max_cards < max_card_num, "card_num representation");
   116     // We need _n_card_counts to be less than _max_n_card_counts here
   117     // so that the expansion call (below) actually allocates the
   118     // _counts and _epochs arrays.
   119     assert(_n_card_counts == 0, "pre-condition");
   120     assert(_max_n_card_counts > 0, "pre-condition");
   122     // Find the index into cache size array that is of a size that's
   123     // large enough to hold desired_sz.
   124     size_t desired_sz = _max_cards / InitialCacheFraction;
   125     int desired_sz_index = 0;
   126     while (_cc_cache_sizes[desired_sz_index] < desired_sz) {
   127       desired_sz_index += 1;
   128       assert(desired_sz_index <  MAX_CC_CACHE_INDEX, "invariant");
   129     }
   130     assert(desired_sz_index <  MAX_CC_CACHE_INDEX, "invariant");
   132     // If the desired_sz value is between two sizes then
   133     // _cc_cache_sizes[desired_sz_index-1] < desired_sz <= _cc_cache_sizes[desired_sz_index]
   134     // we will start with the lower size in the optimistic expectation that
   135     // we will not need to expand up. Note desired_sz_index could also be 0.
   136     if (desired_sz_index > 0 &&
   137         _cc_cache_sizes[desired_sz_index] > desired_sz) {
   138       desired_sz_index -= 1;
   139     }
   141     if (!expand_card_count_cache(desired_sz_index)) {
   142       // Allocation was unsuccessful - exit
   143       vm_exit_during_initialization("Could not reserve enough space for card count cache");
   144     }
   145     assert(_n_card_counts > 0, "post-condition");
   146     assert(_cache_size_index == desired_sz_index, "post-condition");
   148     Copy::fill_to_bytes(&_card_counts[0],
   149                         _n_card_counts * sizeof(CardCountCacheEntry));
   150     Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
   152     ModRefBarrierSet* bs = _g1h->mr_bs();
   153     guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
   154     _ct_bs = (CardTableModRefBS*)bs;
   155     _ct_bot = _ct_bs->byte_for_const(_g1h->reserved_region().start());
   157     _def_use_cache = true;
   158     _use_cache = true;
   159     _hot_cache_size = (1 << G1ConcRSLogCacheSize);
   160     _hot_cache = NEW_C_HEAP_ARRAY(jbyte*, _hot_cache_size);
   161     _n_hot = 0;
   162     _hot_cache_idx = 0;
   164     // For refining the cards in the hot cache in parallel
   165     int n_workers = (ParallelGCThreads > 0 ?
   166                         _g1h->workers()->total_workers() : 1);
   167     _hot_cache_par_chunk_size = MAX2(1, _hot_cache_size / n_workers);
   168     _hot_cache_par_claimed_idx = 0;
   169   }
   170 }
   172 void ConcurrentG1Refine::stop() {
   173   if (_threads != NULL) {
   174     for (int i = 0; i < _n_threads; i++) {
   175       _threads[i]->stop();
   176     }
   177   }
   178 }
   180 void ConcurrentG1Refine::reinitialize_threads() {
   181   reset_threshold_step();
   182   if (_threads != NULL) {
   183     for (int i = 0; i < _n_threads; i++) {
   184       _threads[i]->initialize();
   185     }
   186   }
   187 }
   189 ConcurrentG1Refine::~ConcurrentG1Refine() {
   190   if (G1ConcRSLogCacheSize > 0) {
   191     // Please see the comment in allocate_card_count_cache
   192     // for why we call os::malloc() and os::free() directly.
   193     assert(_card_counts != NULL, "Logic");
   194     os::free(_card_counts);
   195     assert(_card_epochs != NULL, "Logic");
   196     os::free(_card_epochs);
   198     assert(_hot_cache != NULL, "Logic");
   199     FREE_C_HEAP_ARRAY(jbyte*, _hot_cache);
   200   }
   201   if (_threads != NULL) {
   202     for (int i = 0; i < _n_threads; i++) {
   203       delete _threads[i];
   204     }
   205     FREE_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _threads);
   206   }
   207 }
   209 void ConcurrentG1Refine::threads_do(ThreadClosure *tc) {
   210   if (_threads != NULL) {
   211     for (int i = 0; i < _n_threads; i++) {
   212       tc->do_thread(_threads[i]);
   213     }
   214   }
   215 }
   217 bool ConcurrentG1Refine::is_young_card(jbyte* card_ptr) {
   218   HeapWord* start = _ct_bs->addr_for(card_ptr);
   219   HeapRegion* r = _g1h->heap_region_containing(start);
   220   if (r != NULL && r->is_young()) {
   221     return true;
   222   }
   223   // This card is not associated with a heap region
   224   // so can't be young.
   225   return false;
   226 }
   228 jbyte* ConcurrentG1Refine::add_card_count(jbyte* card_ptr, int* count, bool* defer) {
   229   unsigned new_card_num = ptr_2_card_num(card_ptr);
   230   unsigned bucket = hash(new_card_num);
   231   assert(0 <= bucket && bucket < _n_card_counts, "Bounds");
   233   CardCountCacheEntry* count_ptr = &_card_counts[bucket];
   234   CardEpochCacheEntry* epoch_ptr = &_card_epochs[bucket];
   236   // We have to construct a new entry if we haven't updated the counts
   237   // during the current period, or if the count was updated for a
   238   // different card number.
   239   unsigned int new_epoch = (unsigned int) _n_periods;
   240   julong new_epoch_entry = make_epoch_entry(new_card_num, new_epoch);
   242   while (true) {
   243     // Fetch the previous epoch value
   244     julong prev_epoch_entry = epoch_ptr->_value;
   245     julong cas_res;
   247     if (extract_epoch(prev_epoch_entry) != new_epoch) {
   248       // This entry has not yet been updated during this period.
   249       // Note: we update the epoch value atomically to ensure
   250       // that there is only one winner that updates the cached
   251       // card_ptr value even though all the refine threads share
   252       // the same epoch value.
   254       cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
   255                                          (volatile jlong*)&epoch_ptr->_value,
   256                                          (jlong) prev_epoch_entry);
   258       if (cas_res == prev_epoch_entry) {
   259         // We have successfully won the race to update the
   260         // epoch and card_num value. Make it look like the
   261         // count and eviction count were previously cleared.
   262         count_ptr->_count = 1;
   263         count_ptr->_evict_count = 0;
   264         *count = 0;
   265         // We can defer the processing of card_ptr
   266         *defer = true;
   267         return card_ptr;
   268       }
   269       // We did not win the race to update the epoch field, so some other
   270       // thread must have done it. The value that gets returned by CAS
   271       // should be the new epoch value.
   272       assert(extract_epoch(cas_res) == new_epoch, "unexpected epoch");
   273       // We could 'continue' here or just re-read the previous epoch value
   274       prev_epoch_entry = epoch_ptr->_value;
   275     }
   277     // The epoch entry for card_ptr has been updated during this period.
   278     unsigned old_card_num = extract_card_num(prev_epoch_entry);
   280     // The card count that will be returned to caller
   281     *count = count_ptr->_count;
   283     // Are we updating the count for the same card?
   284     if (new_card_num == old_card_num) {
   285       // Same card - just update the count. We could have more than one
   286       // thread racing to update count for the current card. It should be
   287       // OK not to use a CAS as the only penalty should be some missed
   288       // increments of the count which delays identifying the card as "hot".
   290       if (*count < max_jubyte) count_ptr->_count++;
   291       // We can defer the processing of card_ptr
   292       *defer = true;
   293       return card_ptr;
   294     }
   296     // Different card - evict old card info
   297     if (count_ptr->_evict_count < max_jubyte) count_ptr->_evict_count++;
   298     if (count_ptr->_evict_count > G1CardCountCacheExpandThreshold) {
   299       // Trigger a resize the next time we clear
   300       _expand_card_counts = true;
   301     }
   303     cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
   304                                        (volatile jlong*)&epoch_ptr->_value,
   305                                        (jlong) prev_epoch_entry);
   307     if (cas_res == prev_epoch_entry) {
   308       // We successfully updated the card num value in the epoch entry
   309       count_ptr->_count = 0; // initialize counter for new card num
   310       jbyte* old_card_ptr = card_num_2_ptr(old_card_num);
   312       // Even though the region containg the card at old_card_num was not
   313       // in the young list when old_card_num was recorded in the epoch
   314       // cache it could have been added to the free list and subsequently
   315       // added to the young list in the intervening time. See CR 6817995.
   316       // We do not deal with this case here - it will be handled in
   317       // HeapRegion::oops_on_card_seq_iterate_careful after it has been
   318       // determined that the region containing the card has been allocated
   319       // to, and it's safe to check the young type of the region.
   321       // We do not want to defer processing of card_ptr in this case
   322       // (we need to refine old_card_ptr and card_ptr)
   323       *defer = false;
   324       return old_card_ptr;
   325     }
   326     // Someone else beat us - try again.
   327   }
   328 }
   330 jbyte* ConcurrentG1Refine::cache_insert(jbyte* card_ptr, bool* defer) {
   331   int count;
   332   jbyte* cached_ptr = add_card_count(card_ptr, &count, defer);
   333   assert(cached_ptr != NULL, "bad cached card ptr");
   335   // We've just inserted a card pointer into the card count cache
   336   // and got back the card that we just inserted or (evicted) the
   337   // previous contents of that count slot.
   339   // The card we got back could be in a young region. When the
   340   // returned card (if evicted) was originally inserted, we had
   341   // determined that its containing region was not young. However
   342   // it is possible for the region to be freed during a cleanup
   343   // pause, then reallocated and tagged as young which will result
   344   // in the returned card residing in a young region.
   345   //
   346   // We do not deal with this case here - the change from non-young
   347   // to young could be observed at any time - it will be handled in
   348   // HeapRegion::oops_on_card_seq_iterate_careful after it has been
   349   // determined that the region containing the card has been allocated
   350   // to.
   352   // The card pointer we obtained from card count cache is not hot
   353   // so do not store it in the cache; return it for immediate
   354   // refining.
   355   if (count < G1ConcRSHotCardLimit) {
   356     return cached_ptr;
   357   }
   359   // Otherwise, the pointer we got from the _card_counts cache is hot.
   360   jbyte* res = NULL;
   361   MutexLockerEx x(HotCardCache_lock, Mutex::_no_safepoint_check_flag);
   362   if (_n_hot == _hot_cache_size) {
   363     res = _hot_cache[_hot_cache_idx];
   364     _n_hot--;
   365   }
   366   // Now _n_hot < _hot_cache_size, and we can insert at _hot_cache_idx.
   367   _hot_cache[_hot_cache_idx] = cached_ptr;
   368   _hot_cache_idx++;
   369   if (_hot_cache_idx == _hot_cache_size) _hot_cache_idx = 0;
   370   _n_hot++;
   372   // The card obtained from the hot card cache could be in a young
   373   // region. See above on how this can happen.
   375   return res;
   376 }
   378 void ConcurrentG1Refine::clean_up_cache(int worker_i,
   379                                         G1RemSet* g1rs,
   380                                         DirtyCardQueue* into_cset_dcq) {
   381   assert(!use_cache(), "cache should be disabled");
   382   int start_idx;
   384   while ((start_idx = _hot_cache_par_claimed_idx) < _n_hot) { // read once
   385     int end_idx = start_idx + _hot_cache_par_chunk_size;
   387     if (start_idx ==
   388         Atomic::cmpxchg(end_idx, &_hot_cache_par_claimed_idx, start_idx)) {
   389       // The current worker has successfully claimed the chunk [start_idx..end_idx)
   390       end_idx = MIN2(end_idx, _n_hot);
   391       for (int i = start_idx; i < end_idx; i++) {
   392         jbyte* entry = _hot_cache[i];
   393         if (entry != NULL) {
   394           if (g1rs->concurrentRefineOneCard(entry, worker_i, true)) {
   395             // 'entry' contains references that point into the current
   396             // collection set. We need to record 'entry' in the DCQS
   397             // that's used for that purpose.
   398             //
   399             // The only time we care about recording cards that contain
   400             // references that point into the collection set is during
   401             // RSet updating while within an evacuation pause.
   402             // In this case worker_i should be the id of a GC worker thread
   403             assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
   404             assert(worker_i < (int) (ParallelGCThreads == 0 ? 1 : ParallelGCThreads), "incorrect worker id");
   405             into_cset_dcq->enqueue(entry);
   406           }
   407         }
   408       }
   409     }
   410   }
   411 }
   413 // The arrays used to hold the card counts and the epochs must have
   414 // a 1:1 correspondence. Hence they are allocated and freed together
   415 // Returns true if the allocations of both the counts and epochs
   416 // were successful; false otherwise.
   417 bool ConcurrentG1Refine::allocate_card_count_cache(size_t n,
   418                                                    CardCountCacheEntry** counts,
   419                                                    CardEpochCacheEntry** epochs) {
   420   // We call the allocation/free routines directly for the counts
   421   // and epochs arrays. The NEW_C_HEAP_ARRAY/FREE_C_HEAP_ARRAY
   422   // macros call AllocateHeap and FreeHeap respectively.
   423   // AllocateHeap will call vm_exit_out_of_memory in the event
   424   // of an allocation failure and abort the JVM. With the
   425   // _counts/epochs arrays we only need to abort the JVM if the
   426   // initial allocation of these arrays fails.
   427   //
   428   // Additionally AllocateHeap/FreeHeap do some tracing of
   429   // allocate/free calls so calling one without calling the
   430   // other can cause inconsistencies in the tracing. So we
   431   // call neither.
   433   assert(*counts == NULL, "out param");
   434   assert(*epochs == NULL, "out param");
   436   size_t counts_size = n * sizeof(CardCountCacheEntry);
   437   size_t epochs_size = n * sizeof(CardEpochCacheEntry);
   439   *counts = (CardCountCacheEntry*) os::malloc(counts_size);
   440   if (*counts == NULL) {
   441     // allocation was unsuccessful
   442     return false;
   443   }
   445   *epochs = (CardEpochCacheEntry*) os::malloc(epochs_size);
   446   if (*epochs == NULL) {
   447     // allocation was unsuccessful - free counts array
   448     assert(*counts != NULL, "must be");
   449     os::free(*counts);
   450     *counts = NULL;
   451     return false;
   452   }
   454   // We successfully allocated both counts and epochs
   455   return true;
   456 }
   458 // Returns true if the card counts/epochs cache was
   459 // successfully expanded; false otherwise.
   460 bool ConcurrentG1Refine::expand_card_count_cache(int cache_size_idx) {
   461   // Can we expand the card count and epoch tables?
   462   if (_n_card_counts < _max_n_card_counts) {
   463     assert(cache_size_idx >= 0 && cache_size_idx  < MAX_CC_CACHE_INDEX, "oob");
   465     size_t cache_size = _cc_cache_sizes[cache_size_idx];
   466     // Make sure we don't go bigger than we will ever need
   467     cache_size = MIN2(cache_size, _max_n_card_counts);
   469     // Should we expand the card count and card epoch tables?
   470     if (cache_size > _n_card_counts) {
   471       // We have been asked to allocate new, larger, arrays for
   472       // the card counts and the epochs. Attempt the allocation
   473       // of both before we free the existing arrays in case
   474       // the allocation is unsuccessful...
   475       CardCountCacheEntry* counts = NULL;
   476       CardEpochCacheEntry* epochs = NULL;
   478       if (allocate_card_count_cache(cache_size, &counts, &epochs)) {
   479         // Allocation was successful.
   480         // We can just free the old arrays; we're
   481         // not interested in preserving the contents
   482         if (_card_counts != NULL) os::free(_card_counts);
   483         if (_card_epochs != NULL) os::free(_card_epochs);
   485         // Cache the size of the arrays and the index that got us there.
   486         _n_card_counts = cache_size;
   487         _cache_size_index = cache_size_idx;
   489         _card_counts = counts;
   490         _card_epochs = epochs;
   492         // We successfully allocated/expanded the caches.
   493         return true;
   494       }
   495     }
   496   }
   498   // We did not successfully expand the caches.
   499   return false;
   500 }
   502 void ConcurrentG1Refine::clear_and_record_card_counts() {
   503   if (G1ConcRSLogCacheSize == 0) return;
   505 #ifndef PRODUCT
   506   double start = os::elapsedTime();
   507 #endif
   509   if (_expand_card_counts) {
   510     int new_idx = _cache_size_index + 1;
   512     if (expand_card_count_cache(new_idx)) {
   513       // Allocation was successful and  _n_card_counts has
   514       // been updated to the new size. We only need to clear
   515       // the epochs so we don't read a bogus epoch value
   516       // when inserting a card into the hot card cache.
   517       Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
   518     }
   519     _expand_card_counts = false;
   520   }
   522   int this_epoch = (int) _n_periods;
   523   assert((this_epoch+1) <= max_jint, "to many periods");
   524   // Update epoch
   525   _n_periods++;
   527 #ifndef PRODUCT
   528   double elapsed = os::elapsedTime() - start;
   529   _g1h->g1_policy()->record_cc_clear_time(elapsed * 1000.0);
   530 #endif
   531 }
   533 void ConcurrentG1Refine::print_worker_threads_on(outputStream* st) const {
   534   for (int i = 0; i < _n_threads; ++i) {
   535     _threads[i]->print_on(st);
   536     st->cr();
   537   }
   538 }

mercurial