src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Fri, 06 Mar 2009 13:50:14 -0800

author
iveresov
date
Fri, 06 Mar 2009 13:50:14 -0800
changeset 1051
4f360ec815ba
parent 1030
3698e8f47799
child 1053
ae1579717a57
permissions
-rw-r--r--

6720309: G1: don't synchronously update RSet during evacuation pauses
6720334: G1: don't update RSets of collection set regions during an evacuation pause
Summary: Introduced a deferred update mechanism for delaying the rset updates during the collection pause
Reviewed-by: apetrusenko, tonyp

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 // turn it on so that the contents of the young list (scan-only /
    29 // to-be-collected) are printed at "strategic" points before / during
    30 // / after the collection --- this is useful for debugging
    31 #define SCAN_ONLY_VERBOSE 0
    32 // CURRENT STATUS
    33 // This file is under construction.  Search for "FIXME".
    35 // INVARIANTS/NOTES
    36 //
    37 // All allocation activity covered by the G1CollectedHeap interface is
    38 //   serialized by acquiring the HeapLock.  This happens in
    39 //   mem_allocate_work, which all such allocation functions call.
    40 //   (Note that this does not apply to TLAB allocation, which is not part
    41 //   of this interface: it is done by clients of this interface.)
    43 // Local to this file.
    45 // Finds the first HeapRegion.
    46 // No longer used, but might be handy someday.
    48 class FindFirstRegionClosure: public HeapRegionClosure {
    49   HeapRegion* _a_region;
    50 public:
    51   FindFirstRegionClosure() : _a_region(NULL) {}
    52   bool doHeapRegion(HeapRegion* r) {
    53     _a_region = r;
    54     return true;
    55   }
    56   HeapRegion* result() { return _a_region; }
    57 };
    60 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    61   SuspendibleThreadSet* _sts;
    62   G1RemSet* _g1rs;
    63   ConcurrentG1Refine* _cg1r;
    64   bool _concurrent;
    65 public:
    66   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    67                               G1RemSet* g1rs,
    68                               ConcurrentG1Refine* cg1r) :
    69     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    70   {}
    71   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    72     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    73     if (_concurrent && _sts->should_yield()) {
    74       // Caller will actually yield.
    75       return false;
    76     }
    77     // Otherwise, we finished successfully; return true.
    78     return true;
    79   }
    80   void set_concurrent(bool b) { _concurrent = b; }
    81 };
    84 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    85   int _calls;
    86   G1CollectedHeap* _g1h;
    87   CardTableModRefBS* _ctbs;
    88   int _histo[256];
    89 public:
    90   ClearLoggedCardTableEntryClosure() :
    91     _calls(0)
    92   {
    93     _g1h = G1CollectedHeap::heap();
    94     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    95     for (int i = 0; i < 256; i++) _histo[i] = 0;
    96   }
    97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    98     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    99       _calls++;
   100       unsigned char* ujb = (unsigned char*)card_ptr;
   101       int ind = (int)(*ujb);
   102       _histo[ind]++;
   103       *card_ptr = -1;
   104     }
   105     return true;
   106   }
   107   int calls() { return _calls; }
   108   void print_histo() {
   109     gclog_or_tty->print_cr("Card table value histogram:");
   110     for (int i = 0; i < 256; i++) {
   111       if (_histo[i] != 0) {
   112         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   113       }
   114     }
   115   }
   116 };
   118 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   119   int _calls;
   120   G1CollectedHeap* _g1h;
   121   CardTableModRefBS* _ctbs;
   122 public:
   123   RedirtyLoggedCardTableEntryClosure() :
   124     _calls(0)
   125   {
   126     _g1h = G1CollectedHeap::heap();
   127     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   128   }
   129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   131       _calls++;
   132       *card_ptr = 0;
   133     }
   134     return true;
   135   }
   136   int calls() { return _calls; }
   137 };
   139 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   140 public:
   141   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   142     *card_ptr = CardTableModRefBS::dirty_card_val();
   143     return true;
   144   }
   145 };
   147 YoungList::YoungList(G1CollectedHeap* g1h)
   148   : _g1h(g1h), _head(NULL),
   149     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
   150     _length(0), _scan_only_length(0),
   151     _last_sampled_rs_lengths(0),
   152     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   153 {
   154   guarantee( check_list_empty(false), "just making sure..." );
   155 }
   157 void YoungList::push_region(HeapRegion *hr) {
   158   assert(!hr->is_young(), "should not already be young");
   159   assert(hr->get_next_young_region() == NULL, "cause it should!");
   161   hr->set_next_young_region(_head);
   162   _head = hr;
   164   hr->set_young();
   165   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   166   ++_length;
   167 }
   169 void YoungList::add_survivor_region(HeapRegion* hr) {
   170   assert(hr->is_survivor(), "should be flagged as survivor region");
   171   assert(hr->get_next_young_region() == NULL, "cause it should!");
   173   hr->set_next_young_region(_survivor_head);
   174   if (_survivor_head == NULL) {
   175     _survivor_tail = hr;
   176   }
   177   _survivor_head = hr;
   179   ++_survivor_length;
   180 }
   182 HeapRegion* YoungList::pop_region() {
   183   while (_head != NULL) {
   184     assert( length() > 0, "list should not be empty" );
   185     HeapRegion* ret = _head;
   186     _head = ret->get_next_young_region();
   187     ret->set_next_young_region(NULL);
   188     --_length;
   189     assert(ret->is_young(), "region should be very young");
   191     // Replace 'Survivor' region type with 'Young'. So the region will
   192     // be treated as a young region and will not be 'confused' with
   193     // newly created survivor regions.
   194     if (ret->is_survivor()) {
   195       ret->set_young();
   196     }
   198     if (!ret->is_scan_only()) {
   199       return ret;
   200     }
   202     // scan-only, we'll add it to the scan-only list
   203     if (_scan_only_tail == NULL) {
   204       guarantee( _scan_only_head == NULL, "invariant" );
   206       _scan_only_head = ret;
   207       _curr_scan_only = ret;
   208     } else {
   209       guarantee( _scan_only_head != NULL, "invariant" );
   210       _scan_only_tail->set_next_young_region(ret);
   211     }
   212     guarantee( ret->get_next_young_region() == NULL, "invariant" );
   213     _scan_only_tail = ret;
   215     // no need to be tagged as scan-only any more
   216     ret->set_young();
   218     ++_scan_only_length;
   219   }
   220   assert( length() == 0, "list should be empty" );
   221   return NULL;
   222 }
   224 void YoungList::empty_list(HeapRegion* list) {
   225   while (list != NULL) {
   226     HeapRegion* next = list->get_next_young_region();
   227     list->set_next_young_region(NULL);
   228     list->uninstall_surv_rate_group();
   229     list->set_not_young();
   230     list = next;
   231   }
   232 }
   234 void YoungList::empty_list() {
   235   assert(check_list_well_formed(), "young list should be well formed");
   237   empty_list(_head);
   238   _head = NULL;
   239   _length = 0;
   241   empty_list(_scan_only_head);
   242   _scan_only_head = NULL;
   243   _scan_only_tail = NULL;
   244   _scan_only_length = 0;
   245   _curr_scan_only = NULL;
   247   empty_list(_survivor_head);
   248   _survivor_head = NULL;
   249   _survivor_tail = NULL;
   250   _survivor_length = 0;
   252   _last_sampled_rs_lengths = 0;
   254   assert(check_list_empty(false), "just making sure...");
   255 }
   257 bool YoungList::check_list_well_formed() {
   258   bool ret = true;
   260   size_t length = 0;
   261   HeapRegion* curr = _head;
   262   HeapRegion* last = NULL;
   263   while (curr != NULL) {
   264     if (!curr->is_young() || curr->is_scan_only()) {
   265       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   266                              "incorrectly tagged (%d, %d)",
   267                              curr->bottom(), curr->end(),
   268                              curr->is_young(), curr->is_scan_only());
   269       ret = false;
   270     }
   271     ++length;
   272     last = curr;
   273     curr = curr->get_next_young_region();
   274   }
   275   ret = ret && (length == _length);
   277   if (!ret) {
   278     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   279     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   280                            length, _length);
   281   }
   283   bool scan_only_ret = true;
   284   length = 0;
   285   curr = _scan_only_head;
   286   last = NULL;
   287   while (curr != NULL) {
   288     if (!curr->is_young() || curr->is_scan_only()) {
   289       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
   290                              "incorrectly tagged (%d, %d)",
   291                              curr->bottom(), curr->end(),
   292                              curr->is_young(), curr->is_scan_only());
   293       scan_only_ret = false;
   294     }
   295     ++length;
   296     last = curr;
   297     curr = curr->get_next_young_region();
   298   }
   299   scan_only_ret = scan_only_ret && (length == _scan_only_length);
   301   if ( (last != _scan_only_tail) ||
   302        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
   303        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
   304      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
   305      scan_only_ret = false;
   306   }
   308   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
   309     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
   310     scan_only_ret = false;
   311    }
   313   if (!scan_only_ret) {
   314     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
   315     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
   316                   length, _scan_only_length);
   317   }
   319   return ret && scan_only_ret;
   320 }
   322 bool YoungList::check_list_empty(bool ignore_scan_only_list,
   323                                  bool check_sample) {
   324   bool ret = true;
   326   if (_length != 0) {
   327     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   328                   _length);
   329     ret = false;
   330   }
   331   if (check_sample && _last_sampled_rs_lengths != 0) {
   332     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   333     ret = false;
   334   }
   335   if (_head != NULL) {
   336     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   337     ret = false;
   338   }
   339   if (!ret) {
   340     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   341   }
   343   if (ignore_scan_only_list)
   344     return ret;
   346   bool scan_only_ret = true;
   347   if (_scan_only_length != 0) {
   348     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
   349                   _scan_only_length);
   350     scan_only_ret = false;
   351   }
   352   if (_scan_only_head != NULL) {
   353     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
   354      scan_only_ret = false;
   355   }
   356   if (_scan_only_tail != NULL) {
   357     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
   358     scan_only_ret = false;
   359   }
   360   if (!scan_only_ret) {
   361     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
   362   }
   364   return ret && scan_only_ret;
   365 }
   367 void
   368 YoungList::rs_length_sampling_init() {
   369   _sampled_rs_lengths = 0;
   370   _curr               = _head;
   371 }
   373 bool
   374 YoungList::rs_length_sampling_more() {
   375   return _curr != NULL;
   376 }
   378 void
   379 YoungList::rs_length_sampling_next() {
   380   assert( _curr != NULL, "invariant" );
   381   _sampled_rs_lengths += _curr->rem_set()->occupied();
   382   _curr = _curr->get_next_young_region();
   383   if (_curr == NULL) {
   384     _last_sampled_rs_lengths = _sampled_rs_lengths;
   385     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   386   }
   387 }
   389 void
   390 YoungList::reset_auxilary_lists() {
   391   // We could have just "moved" the scan-only list to the young list.
   392   // However, the scan-only list is ordered according to the region
   393   // age in descending order, so, by moving one entry at a time, we
   394   // ensure that it is recreated in ascending order.
   396   guarantee( is_empty(), "young list should be empty" );
   397   assert(check_list_well_formed(), "young list should be well formed");
   399   // Add survivor regions to SurvRateGroup.
   400   _g1h->g1_policy()->note_start_adding_survivor_regions();
   401   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   402   for (HeapRegion* curr = _survivor_head;
   403        curr != NULL;
   404        curr = curr->get_next_young_region()) {
   405     _g1h->g1_policy()->set_region_survivors(curr);
   406   }
   407   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   409   if (_survivor_head != NULL) {
   410     _head           = _survivor_head;
   411     _length         = _survivor_length + _scan_only_length;
   412     _survivor_tail->set_next_young_region(_scan_only_head);
   413   } else {
   414     _head           = _scan_only_head;
   415     _length         = _scan_only_length;
   416   }
   418   for (HeapRegion* curr = _scan_only_head;
   419        curr != NULL;
   420        curr = curr->get_next_young_region()) {
   421     curr->recalculate_age_in_surv_rate_group();
   422   }
   423   _scan_only_head   = NULL;
   424   _scan_only_tail   = NULL;
   425   _scan_only_length = 0;
   426   _curr_scan_only   = NULL;
   428   _survivor_head    = NULL;
   429   _survivor_tail   = NULL;
   430   _survivor_length  = 0;
   431   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   433   assert(check_list_well_formed(), "young list should be well formed");
   434 }
   436 void YoungList::print() {
   437   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
   438   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
   440   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   441     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   442     HeapRegion *curr = lists[list];
   443     if (curr == NULL)
   444       gclog_or_tty->print_cr("  empty");
   445     while (curr != NULL) {
   446       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   447                              "age: %4d, y: %d, s-o: %d, surv: %d",
   448                              curr->bottom(), curr->end(),
   449                              curr->top(),
   450                              curr->prev_top_at_mark_start(),
   451                              curr->next_top_at_mark_start(),
   452                              curr->top_at_conc_mark_count(),
   453                              curr->age_in_surv_rate_group_cond(),
   454                              curr->is_young(),
   455                              curr->is_scan_only(),
   456                              curr->is_survivor());
   457       curr = curr->get_next_young_region();
   458     }
   459   }
   461   gclog_or_tty->print_cr("");
   462 }
   464 void G1CollectedHeap::stop_conc_gc_threads() {
   465   _cg1r->cg1rThread()->stop();
   466   _czft->stop();
   467   _cmThread->stop();
   468 }
   471 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   472   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   473   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   475   // Count the dirty cards at the start.
   476   CountNonCleanMemRegionClosure count1(this);
   477   ct_bs->mod_card_iterate(&count1);
   478   int orig_count = count1.n();
   480   // First clear the logged cards.
   481   ClearLoggedCardTableEntryClosure clear;
   482   dcqs.set_closure(&clear);
   483   dcqs.apply_closure_to_all_completed_buffers();
   484   dcqs.iterate_closure_all_threads(false);
   485   clear.print_histo();
   487   // Now ensure that there's no dirty cards.
   488   CountNonCleanMemRegionClosure count2(this);
   489   ct_bs->mod_card_iterate(&count2);
   490   if (count2.n() != 0) {
   491     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   492                            count2.n(), orig_count);
   493   }
   494   guarantee(count2.n() == 0, "Card table should be clean.");
   496   RedirtyLoggedCardTableEntryClosure redirty;
   497   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   498   dcqs.apply_closure_to_all_completed_buffers();
   499   dcqs.iterate_closure_all_threads(false);
   500   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   501                          clear.calls(), orig_count);
   502   guarantee(redirty.calls() == clear.calls(),
   503             "Or else mechanism is broken.");
   505   CountNonCleanMemRegionClosure count3(this);
   506   ct_bs->mod_card_iterate(&count3);
   507   if (count3.n() != orig_count) {
   508     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   509                            orig_count, count3.n());
   510     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   511   }
   513   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   514 }
   516 // Private class members.
   518 G1CollectedHeap* G1CollectedHeap::_g1h;
   520 // Private methods.
   522 // Finds a HeapRegion that can be used to allocate a given size of block.
   525 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   526                                                  bool do_expand,
   527                                                  bool zero_filled) {
   528   ConcurrentZFThread::note_region_alloc();
   529   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   530   if (res == NULL && do_expand) {
   531     expand(word_size * HeapWordSize);
   532     res = alloc_free_region_from_lists(zero_filled);
   533     assert(res == NULL ||
   534            (!res->isHumongous() &&
   535             (!zero_filled ||
   536              res->zero_fill_state() == HeapRegion::Allocated)),
   537            "Alloc Regions must be zero filled (and non-H)");
   538   }
   539   if (res != NULL && res->is_empty()) _free_regions--;
   540   assert(res == NULL ||
   541          (!res->isHumongous() &&
   542           (!zero_filled ||
   543            res->zero_fill_state() == HeapRegion::Allocated)),
   544          "Non-young alloc Regions must be zero filled (and non-H)");
   546   if (G1TraceRegions) {
   547     if (res != NULL) {
   548       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   549                              "top "PTR_FORMAT,
   550                              res->hrs_index(), res->bottom(), res->end(), res->top());
   551     }
   552   }
   554   return res;
   555 }
   557 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   558                                                          size_t word_size,
   559                                                          bool zero_filled) {
   560   HeapRegion* alloc_region = NULL;
   561   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   562     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   563     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   564       alloc_region->set_survivor();
   565     }
   566     ++_gc_alloc_region_counts[purpose];
   567   } else {
   568     g1_policy()->note_alloc_region_limit_reached(purpose);
   569   }
   570   return alloc_region;
   571 }
   573 // If could fit into free regions w/o expansion, try.
   574 // Otherwise, if can expand, do so.
   575 // Otherwise, if using ex regions might help, try with ex given back.
   576 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   577   assert(regions_accounted_for(), "Region leakage!");
   579   // We can't allocate H regions while cleanupComplete is running, since
   580   // some of the regions we find to be empty might not yet be added to the
   581   // unclean list.  (If we're already at a safepoint, this call is
   582   // unnecessary, not to mention wrong.)
   583   if (!SafepointSynchronize::is_at_safepoint())
   584     wait_for_cleanup_complete();
   586   size_t num_regions =
   587     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   589   // Special case if < one region???
   591   // Remember the ft size.
   592   size_t x_size = expansion_regions();
   594   HeapWord* res = NULL;
   595   bool eliminated_allocated_from_lists = false;
   597   // Can the allocation potentially fit in the free regions?
   598   if (free_regions() >= num_regions) {
   599     res = _hrs->obj_allocate(word_size);
   600   }
   601   if (res == NULL) {
   602     // Try expansion.
   603     size_t fs = _hrs->free_suffix();
   604     if (fs + x_size >= num_regions) {
   605       expand((num_regions - fs) * HeapRegion::GrainBytes);
   606       res = _hrs->obj_allocate(word_size);
   607       assert(res != NULL, "This should have worked.");
   608     } else {
   609       // Expansion won't help.  Are there enough free regions if we get rid
   610       // of reservations?
   611       size_t avail = free_regions();
   612       if (avail >= num_regions) {
   613         res = _hrs->obj_allocate(word_size);
   614         if (res != NULL) {
   615           remove_allocated_regions_from_lists();
   616           eliminated_allocated_from_lists = true;
   617         }
   618       }
   619     }
   620   }
   621   if (res != NULL) {
   622     // Increment by the number of regions allocated.
   623     // FIXME: Assumes regions all of size GrainBytes.
   624 #ifndef PRODUCT
   625     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   626                                            HeapRegion::GrainWords));
   627 #endif
   628     if (!eliminated_allocated_from_lists)
   629       remove_allocated_regions_from_lists();
   630     _summary_bytes_used += word_size * HeapWordSize;
   631     _free_regions -= num_regions;
   632     _num_humongous_regions += (int) num_regions;
   633   }
   634   assert(regions_accounted_for(), "Region Leakage");
   635   return res;
   636 }
   638 HeapWord*
   639 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   640                                          bool permit_collection_pause) {
   641   HeapWord* res = NULL;
   642   HeapRegion* allocated_young_region = NULL;
   644   assert( SafepointSynchronize::is_at_safepoint() ||
   645           Heap_lock->owned_by_self(), "pre condition of the call" );
   647   if (isHumongous(word_size)) {
   648     // Allocation of a humongous object can, in a sense, complete a
   649     // partial region, if the previous alloc was also humongous, and
   650     // caused the test below to succeed.
   651     if (permit_collection_pause)
   652       do_collection_pause_if_appropriate(word_size);
   653     res = humongousObjAllocate(word_size);
   654     assert(_cur_alloc_region == NULL
   655            || !_cur_alloc_region->isHumongous(),
   656            "Prevent a regression of this bug.");
   658   } else {
   659     // We may have concurrent cleanup working at the time. Wait for it
   660     // to complete. In the future we would probably want to make the
   661     // concurrent cleanup truly concurrent by decoupling it from the
   662     // allocation.
   663     if (!SafepointSynchronize::is_at_safepoint())
   664       wait_for_cleanup_complete();
   665     // If we do a collection pause, this will be reset to a non-NULL
   666     // value.  If we don't, nulling here ensures that we allocate a new
   667     // region below.
   668     if (_cur_alloc_region != NULL) {
   669       // We're finished with the _cur_alloc_region.
   670       _summary_bytes_used += _cur_alloc_region->used();
   671       _cur_alloc_region = NULL;
   672     }
   673     assert(_cur_alloc_region == NULL, "Invariant.");
   674     // Completion of a heap region is perhaps a good point at which to do
   675     // a collection pause.
   676     if (permit_collection_pause)
   677       do_collection_pause_if_appropriate(word_size);
   678     // Make sure we have an allocation region available.
   679     if (_cur_alloc_region == NULL) {
   680       if (!SafepointSynchronize::is_at_safepoint())
   681         wait_for_cleanup_complete();
   682       bool next_is_young = should_set_young_locked();
   683       // If the next region is not young, make sure it's zero-filled.
   684       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   685       if (_cur_alloc_region != NULL) {
   686         _summary_bytes_used -= _cur_alloc_region->used();
   687         if (next_is_young) {
   688           set_region_short_lived_locked(_cur_alloc_region);
   689           allocated_young_region = _cur_alloc_region;
   690         }
   691       }
   692     }
   693     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   694            "Prevent a regression of this bug.");
   696     // Now retry the allocation.
   697     if (_cur_alloc_region != NULL) {
   698       res = _cur_alloc_region->allocate(word_size);
   699     }
   700   }
   702   // NOTE: fails frequently in PRT
   703   assert(regions_accounted_for(), "Region leakage!");
   705   if (res != NULL) {
   706     if (!SafepointSynchronize::is_at_safepoint()) {
   707       assert( permit_collection_pause, "invariant" );
   708       assert( Heap_lock->owned_by_self(), "invariant" );
   709       Heap_lock->unlock();
   710     }
   712     if (allocated_young_region != NULL) {
   713       HeapRegion* hr = allocated_young_region;
   714       HeapWord* bottom = hr->bottom();
   715       HeapWord* end = hr->end();
   716       MemRegion mr(bottom, end);
   717       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   718     }
   719   }
   721   assert( SafepointSynchronize::is_at_safepoint() ||
   722           (res == NULL && Heap_lock->owned_by_self()) ||
   723           (res != NULL && !Heap_lock->owned_by_self()),
   724           "post condition of the call" );
   726   return res;
   727 }
   729 HeapWord*
   730 G1CollectedHeap::mem_allocate(size_t word_size,
   731                               bool   is_noref,
   732                               bool   is_tlab,
   733                               bool* gc_overhead_limit_was_exceeded) {
   734   debug_only(check_for_valid_allocation_state());
   735   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   736   HeapWord* result = NULL;
   738   // Loop until the allocation is satisified,
   739   // or unsatisfied after GC.
   740   for (int try_count = 1; /* return or throw */; try_count += 1) {
   741     int gc_count_before;
   742     {
   743       Heap_lock->lock();
   744       result = attempt_allocation(word_size);
   745       if (result != NULL) {
   746         // attempt_allocation should have unlocked the heap lock
   747         assert(is_in(result), "result not in heap");
   748         return result;
   749       }
   750       // Read the gc count while the heap lock is held.
   751       gc_count_before = SharedHeap::heap()->total_collections();
   752       Heap_lock->unlock();
   753     }
   755     // Create the garbage collection operation...
   756     VM_G1CollectForAllocation op(word_size,
   757                                  gc_count_before);
   759     // ...and get the VM thread to execute it.
   760     VMThread::execute(&op);
   761     if (op.prologue_succeeded()) {
   762       result = op.result();
   763       assert(result == NULL || is_in(result), "result not in heap");
   764       return result;
   765     }
   767     // Give a warning if we seem to be looping forever.
   768     if ((QueuedAllocationWarningCount > 0) &&
   769         (try_count % QueuedAllocationWarningCount == 0)) {
   770       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   771               try_count);
   772     }
   773   }
   774 }
   776 void G1CollectedHeap::abandon_cur_alloc_region() {
   777   if (_cur_alloc_region != NULL) {
   778     // We're finished with the _cur_alloc_region.
   779     if (_cur_alloc_region->is_empty()) {
   780       _free_regions++;
   781       free_region(_cur_alloc_region);
   782     } else {
   783       _summary_bytes_used += _cur_alloc_region->used();
   784     }
   785     _cur_alloc_region = NULL;
   786   }
   787 }
   789 class PostMCRemSetClearClosure: public HeapRegionClosure {
   790   ModRefBarrierSet* _mr_bs;
   791 public:
   792   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   793   bool doHeapRegion(HeapRegion* r) {
   794     r->reset_gc_time_stamp();
   795     if (r->continuesHumongous())
   796       return false;
   797     HeapRegionRemSet* hrrs = r->rem_set();
   798     if (hrrs != NULL) hrrs->clear();
   799     // You might think here that we could clear just the cards
   800     // corresponding to the used region.  But no: if we leave a dirty card
   801     // in a region we might allocate into, then it would prevent that card
   802     // from being enqueued, and cause it to be missed.
   803     // Re: the performance cost: we shouldn't be doing full GC anyway!
   804     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   805     return false;
   806   }
   807 };
   810 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   811   ModRefBarrierSet* _mr_bs;
   812 public:
   813   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   814   bool doHeapRegion(HeapRegion* r) {
   815     if (r->continuesHumongous()) return false;
   816     if (r->used_region().word_size() != 0) {
   817       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   818     }
   819     return false;
   820   }
   821 };
   823 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
   824                                     size_t word_size) {
   825   ResourceMark rm;
   827   if (full && DisableExplicitGC) {
   828     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
   829     return;
   830   }
   832   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   833   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   835   if (GC_locker::is_active()) {
   836     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   837   }
   839   {
   840     IsGCActiveMark x;
   842     // Timing
   843     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   844     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   845     TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
   847     double start = os::elapsedTime();
   848     GCOverheadReporter::recordSTWStart(start);
   849     g1_policy()->record_full_collection_start();
   851     gc_prologue(true);
   852     increment_total_collections();
   854     size_t g1h_prev_used = used();
   855     assert(used() == recalculate_used(), "Should be equal");
   857     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   858       HandleMark hm;  // Discard invalid handles created during verification
   859       prepare_for_verify();
   860       gclog_or_tty->print(" VerifyBeforeGC:");
   861       Universe::verify(true);
   862     }
   863     assert(regions_accounted_for(), "Region leakage!");
   865     COMPILER2_PRESENT(DerivedPointerTable::clear());
   867     // We want to discover references, but not process them yet.
   868     // This mode is disabled in
   869     // instanceRefKlass::process_discovered_references if the
   870     // generation does some collection work, or
   871     // instanceRefKlass::enqueue_discovered_references if the
   872     // generation returns without doing any work.
   873     ref_processor()->disable_discovery();
   874     ref_processor()->abandon_partial_discovery();
   875     ref_processor()->verify_no_references_recorded();
   877     // Abandon current iterations of concurrent marking and concurrent
   878     // refinement, if any are in progress.
   879     concurrent_mark()->abort();
   881     // Make sure we'll choose a new allocation region afterwards.
   882     abandon_cur_alloc_region();
   883     assert(_cur_alloc_region == NULL, "Invariant.");
   884     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
   885     tear_down_region_lists();
   886     set_used_regions_to_need_zero_fill();
   887     if (g1_policy()->in_young_gc_mode()) {
   888       empty_young_list();
   889       g1_policy()->set_full_young_gcs(true);
   890     }
   892     // Temporarily make reference _discovery_ single threaded (non-MT).
   893     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   895     // Temporarily make refs discovery atomic
   896     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   898     // Temporarily clear _is_alive_non_header
   899     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   901     ref_processor()->enable_discovery();
   902     ref_processor()->setup_policy(clear_all_soft_refs);
   904     // Do collection work
   905     {
   906       HandleMark hm;  // Discard invalid handles created during gc
   907       G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
   908     }
   909     // Because freeing humongous regions may have added some unclean
   910     // regions, it is necessary to tear down again before rebuilding.
   911     tear_down_region_lists();
   912     rebuild_region_lists();
   914     _summary_bytes_used = recalculate_used();
   916     ref_processor()->enqueue_discovered_references();
   918     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   920     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
   921       HandleMark hm;  // Discard invalid handles created during verification
   922       gclog_or_tty->print(" VerifyAfterGC:");
   923       Universe::verify(false);
   924     }
   925     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   927     reset_gc_time_stamp();
   928     // Since everything potentially moved, we will clear all remembered
   929     // sets, and clear all cards.  Later we will also cards in the used
   930     // portion of the heap after the resizing (which could be a shrinking.)
   931     // We will also reset the GC time stamps of the regions.
   932     PostMCRemSetClearClosure rs_clear(mr_bs());
   933     heap_region_iterate(&rs_clear);
   935     // Resize the heap if necessary.
   936     resize_if_necessary_after_full_collection(full ? 0 : word_size);
   938     // Since everything potentially moved, we will clear all remembered
   939     // sets, but also dirty all cards corresponding to used regions.
   940     PostMCRemSetInvalidateClosure rs_invalidate(mr_bs());
   941     heap_region_iterate(&rs_invalidate);
   942     if (_cg1r->use_cache()) {
   943       _cg1r->clear_and_record_card_counts();
   944       _cg1r->clear_hot_cache();
   945     }
   947     if (PrintGC) {
   948       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
   949     }
   951     if (true) { // FIXME
   952       // Ask the permanent generation to adjust size for full collections
   953       perm()->compute_new_size();
   954     }
   956     double end = os::elapsedTime();
   957     GCOverheadReporter::recordSTWEnd(end);
   958     g1_policy()->record_full_collection_end();
   960 #ifdef TRACESPINNING
   961     ParallelTaskTerminator::print_termination_counts();
   962 #endif
   964     gc_epilogue(true);
   966     // Abandon concurrent refinement.  This must happen last: in the
   967     // dirty-card logging system, some cards may be dirty by weak-ref
   968     // processing, and may be enqueued.  But the whole card table is
   969     // dirtied, so this should abandon those logs, and set "do_traversal"
   970     // to true.
   971     concurrent_g1_refine()->set_pya_restart();
   972     assert(!G1DeferredRSUpdate
   973            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
   974     assert(regions_accounted_for(), "Region leakage!");
   975   }
   977   if (g1_policy()->in_young_gc_mode()) {
   978     _young_list->reset_sampled_info();
   979     assert( check_young_list_empty(false, false),
   980             "young list should be empty at this point");
   981   }
   982 }
   984 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
   985   do_collection(true, clear_all_soft_refs, 0);
   986 }
   988 // This code is mostly copied from TenuredGeneration.
   989 void
   990 G1CollectedHeap::
   991 resize_if_necessary_after_full_collection(size_t word_size) {
   992   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
   994   // Include the current allocation, if any, and bytes that will be
   995   // pre-allocated to support collections, as "used".
   996   const size_t used_after_gc = used();
   997   const size_t capacity_after_gc = capacity();
   998   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1000   // We don't have floating point command-line arguments
  1001   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  1002   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1003   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  1004   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1006   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  1007   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
  1009   // Don't shrink less than the initial size.
  1010   minimum_desired_capacity =
  1011     MAX2(minimum_desired_capacity,
  1012          collector_policy()->initial_heap_byte_size());
  1013   maximum_desired_capacity =
  1014     MAX2(maximum_desired_capacity,
  1015          collector_policy()->initial_heap_byte_size());
  1017   // We are failing here because minimum_desired_capacity is
  1018   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  1019   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
  1021   if (PrintGC && Verbose) {
  1022     const double free_percentage = ((double)free_after_gc) / capacity();
  1023     gclog_or_tty->print_cr("Computing new size after full GC ");
  1024     gclog_or_tty->print_cr("  "
  1025                            "  minimum_free_percentage: %6.2f",
  1026                            minimum_free_percentage);
  1027     gclog_or_tty->print_cr("  "
  1028                            "  maximum_free_percentage: %6.2f",
  1029                            maximum_free_percentage);
  1030     gclog_or_tty->print_cr("  "
  1031                            "  capacity: %6.1fK"
  1032                            "  minimum_desired_capacity: %6.1fK"
  1033                            "  maximum_desired_capacity: %6.1fK",
  1034                            capacity() / (double) K,
  1035                            minimum_desired_capacity / (double) K,
  1036                            maximum_desired_capacity / (double) K);
  1037     gclog_or_tty->print_cr("  "
  1038                            "   free_after_gc   : %6.1fK"
  1039                            "   used_after_gc   : %6.1fK",
  1040                            free_after_gc / (double) K,
  1041                            used_after_gc / (double) K);
  1042     gclog_or_tty->print_cr("  "
  1043                            "   free_percentage: %6.2f",
  1044                            free_percentage);
  1046   if (capacity() < minimum_desired_capacity) {
  1047     // Don't expand unless it's significant
  1048     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1049     expand(expand_bytes);
  1050     if (PrintGC && Verbose) {
  1051       gclog_or_tty->print_cr("    expanding:"
  1052                              "  minimum_desired_capacity: %6.1fK"
  1053                              "  expand_bytes: %6.1fK",
  1054                              minimum_desired_capacity / (double) K,
  1055                              expand_bytes / (double) K);
  1058     // No expansion, now see if we want to shrink
  1059   } else if (capacity() > maximum_desired_capacity) {
  1060     // Capacity too large, compute shrinking size
  1061     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1062     shrink(shrink_bytes);
  1063     if (PrintGC && Verbose) {
  1064       gclog_or_tty->print_cr("  "
  1065                              "  shrinking:"
  1066                              "  initSize: %.1fK"
  1067                              "  maximum_desired_capacity: %.1fK",
  1068                              collector_policy()->initial_heap_byte_size() / (double) K,
  1069                              maximum_desired_capacity / (double) K);
  1070       gclog_or_tty->print_cr("  "
  1071                              "  shrink_bytes: %.1fK",
  1072                              shrink_bytes / (double) K);
  1078 HeapWord*
  1079 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1080   HeapWord* result = NULL;
  1082   // In a G1 heap, we're supposed to keep allocation from failing by
  1083   // incremental pauses.  Therefore, at least for now, we'll favor
  1084   // expansion over collection.  (This might change in the future if we can
  1085   // do something smarter than full collection to satisfy a failed alloc.)
  1087   result = expand_and_allocate(word_size);
  1088   if (result != NULL) {
  1089     assert(is_in(result), "result not in heap");
  1090     return result;
  1093   // OK, I guess we have to try collection.
  1095   do_collection(false, false, word_size);
  1097   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1099   if (result != NULL) {
  1100     assert(is_in(result), "result not in heap");
  1101     return result;
  1104   // Try collecting soft references.
  1105   do_collection(false, true, word_size);
  1106   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1107   if (result != NULL) {
  1108     assert(is_in(result), "result not in heap");
  1109     return result;
  1112   // What else?  We might try synchronous finalization later.  If the total
  1113   // space available is large enough for the allocation, then a more
  1114   // complete compaction phase than we've tried so far might be
  1115   // appropriate.
  1116   return NULL;
  1119 // Attempting to expand the heap sufficiently
  1120 // to support an allocation of the given "word_size".  If
  1121 // successful, perform the allocation and return the address of the
  1122 // allocated block, or else "NULL".
  1124 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1125   size_t expand_bytes = word_size * HeapWordSize;
  1126   if (expand_bytes < MinHeapDeltaBytes) {
  1127     expand_bytes = MinHeapDeltaBytes;
  1129   expand(expand_bytes);
  1130   assert(regions_accounted_for(), "Region leakage!");
  1131   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1132   return result;
  1135 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1136   size_t pre_used = 0;
  1137   size_t cleared_h_regions = 0;
  1138   size_t freed_regions = 0;
  1139   UncleanRegionList local_list;
  1140   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1141                                     freed_regions, &local_list);
  1143   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1144                           &local_list);
  1145   return pre_used;
  1148 void
  1149 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1150                                                    size_t& pre_used,
  1151                                                    size_t& cleared_h,
  1152                                                    size_t& freed_regions,
  1153                                                    UncleanRegionList* list,
  1154                                                    bool par) {
  1155   assert(!hr->continuesHumongous(), "should have filtered these out");
  1156   size_t res = 0;
  1157   if (!hr->popular() && hr->used() > 0 && hr->garbage_bytes() == hr->used()) {
  1158     if (!hr->is_young()) {
  1159       if (G1PolicyVerbose > 0)
  1160         gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1161                                " during cleanup", hr, hr->used());
  1162       free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1167 // FIXME: both this and shrink could probably be more efficient by
  1168 // doing one "VirtualSpace::expand_by" call rather than several.
  1169 void G1CollectedHeap::expand(size_t expand_bytes) {
  1170   size_t old_mem_size = _g1_storage.committed_size();
  1171   // We expand by a minimum of 1K.
  1172   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1173   size_t aligned_expand_bytes =
  1174     ReservedSpace::page_align_size_up(expand_bytes);
  1175   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1176                                        HeapRegion::GrainBytes);
  1177   expand_bytes = aligned_expand_bytes;
  1178   while (expand_bytes > 0) {
  1179     HeapWord* base = (HeapWord*)_g1_storage.high();
  1180     // Commit more storage.
  1181     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1182     if (!successful) {
  1183         expand_bytes = 0;
  1184     } else {
  1185       expand_bytes -= HeapRegion::GrainBytes;
  1186       // Expand the committed region.
  1187       HeapWord* high = (HeapWord*) _g1_storage.high();
  1188       _g1_committed.set_end(high);
  1189       // Create a new HeapRegion.
  1190       MemRegion mr(base, high);
  1191       bool is_zeroed = !_g1_max_committed.contains(base);
  1192       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1194       // Now update max_committed if necessary.
  1195       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1197       // Add it to the HeapRegionSeq.
  1198       _hrs->insert(hr);
  1199       // Set the zero-fill state, according to whether it's already
  1200       // zeroed.
  1202         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1203         if (is_zeroed) {
  1204           hr->set_zero_fill_complete();
  1205           put_free_region_on_list_locked(hr);
  1206         } else {
  1207           hr->set_zero_fill_needed();
  1208           put_region_on_unclean_list_locked(hr);
  1211       _free_regions++;
  1212       // And we used up an expansion region to create it.
  1213       _expansion_regions--;
  1214       // Tell the cardtable about it.
  1215       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1216       // And the offset table as well.
  1217       _bot_shared->resize(_g1_committed.word_size());
  1220   if (Verbose && PrintGC) {
  1221     size_t new_mem_size = _g1_storage.committed_size();
  1222     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1223                            old_mem_size/K, aligned_expand_bytes/K,
  1224                            new_mem_size/K);
  1228 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1230   size_t old_mem_size = _g1_storage.committed_size();
  1231   size_t aligned_shrink_bytes =
  1232     ReservedSpace::page_align_size_down(shrink_bytes);
  1233   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1234                                          HeapRegion::GrainBytes);
  1235   size_t num_regions_deleted = 0;
  1236   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1238   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1239   if (mr.byte_size() > 0)
  1240     _g1_storage.shrink_by(mr.byte_size());
  1241   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1243   _g1_committed.set_end(mr.start());
  1244   _free_regions -= num_regions_deleted;
  1245   _expansion_regions += num_regions_deleted;
  1247   // Tell the cardtable about it.
  1248   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1250   // And the offset table as well.
  1251   _bot_shared->resize(_g1_committed.word_size());
  1253   HeapRegionRemSet::shrink_heap(n_regions());
  1255   if (Verbose && PrintGC) {
  1256     size_t new_mem_size = _g1_storage.committed_size();
  1257     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1258                            old_mem_size/K, aligned_shrink_bytes/K,
  1259                            new_mem_size/K);
  1263 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1264   release_gc_alloc_regions();
  1265   tear_down_region_lists();  // We will rebuild them in a moment.
  1266   shrink_helper(shrink_bytes);
  1267   rebuild_region_lists();
  1270 // Public methods.
  1272 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1273 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1274 #endif // _MSC_VER
  1277 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1278   SharedHeap(policy_),
  1279   _g1_policy(policy_),
  1280   _ref_processor(NULL),
  1281   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1282   _bot_shared(NULL),
  1283   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1284   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1285   _evac_failure_scan_stack(NULL) ,
  1286   _mark_in_progress(false),
  1287   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1288   _cur_alloc_region(NULL),
  1289   _refine_cte_cl(NULL),
  1290   _free_region_list(NULL), _free_region_list_size(0),
  1291   _free_regions(0),
  1292   _popular_object_boundary(NULL),
  1293   _cur_pop_hr_index(0),
  1294   _popular_regions_to_be_evacuated(NULL),
  1295   _pop_obj_rc_at_copy(),
  1296   _full_collection(false),
  1297   _unclean_region_list(),
  1298   _unclean_regions_coming(false),
  1299   _young_list(new YoungList(this)),
  1300   _gc_time_stamp(0),
  1301   _surviving_young_words(NULL),
  1302   _in_cset_fast_test(NULL),
  1303   _in_cset_fast_test_base(NULL)
  1305   _g1h = this; // To catch bugs.
  1306   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1307     vm_exit_during_initialization("Failed necessary allocation.");
  1309   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1310   _task_queues = new RefToScanQueueSet(n_queues);
  1312   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1313   assert(n_rem_sets > 0, "Invariant.");
  1315   HeapRegionRemSetIterator** iter_arr =
  1316     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1317   for (int i = 0; i < n_queues; i++) {
  1318     iter_arr[i] = new HeapRegionRemSetIterator();
  1320   _rem_set_iterator = iter_arr;
  1322   for (int i = 0; i < n_queues; i++) {
  1323     RefToScanQueue* q = new RefToScanQueue();
  1324     q->initialize();
  1325     _task_queues->register_queue(i, q);
  1328   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1329     _gc_alloc_regions[ap]       = NULL;
  1330     _gc_alloc_region_counts[ap] = 0;
  1332   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1335 jint G1CollectedHeap::initialize() {
  1336   os::enable_vtime();
  1338   // Necessary to satisfy locking discipline assertions.
  1340   MutexLocker x(Heap_lock);
  1342   // While there are no constraints in the GC code that HeapWordSize
  1343   // be any particular value, there are multiple other areas in the
  1344   // system which believe this to be true (e.g. oop->object_size in some
  1345   // cases incorrectly returns the size in wordSize units rather than
  1346   // HeapWordSize).
  1347   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1349   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1350   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1352   // Ensure that the sizes are properly aligned.
  1353   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1354   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1356   // We allocate this in any case, but only do no work if the command line
  1357   // param is off.
  1358   _cg1r = new ConcurrentG1Refine();
  1360   // Reserve the maximum.
  1361   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1362   // Includes the perm-gen.
  1363   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1364                         HeapRegion::GrainBytes,
  1365                         false /*ism*/);
  1367   if (!heap_rs.is_reserved()) {
  1368     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1369     return JNI_ENOMEM;
  1372   // It is important to do this in a way such that concurrent readers can't
  1373   // temporarily think somethings in the heap.  (I've actually seen this
  1374   // happen in asserts: DLD.)
  1375   _reserved.set_word_size(0);
  1376   _reserved.set_start((HeapWord*)heap_rs.base());
  1377   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1379   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1381   _num_humongous_regions = 0;
  1383   // Create the gen rem set (and barrier set) for the entire reserved region.
  1384   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1385   set_barrier_set(rem_set()->bs());
  1386   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1387     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1388   } else {
  1389     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1390     return JNI_ENOMEM;
  1393   // Also create a G1 rem set.
  1394   if (G1UseHRIntoRS) {
  1395     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1396       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1397     } else {
  1398       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1399       return JNI_ENOMEM;
  1401   } else {
  1402     _g1_rem_set = new StupidG1RemSet(this);
  1405   // Carve out the G1 part of the heap.
  1407   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1408   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1409                            g1_rs.size()/HeapWordSize);
  1410   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1412   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1414   _g1_storage.initialize(g1_rs, 0);
  1415   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1416   _g1_max_committed = _g1_committed;
  1417   _hrs = new HeapRegionSeq(_expansion_regions);
  1418   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1419   guarantee(_cur_alloc_region == NULL, "from constructor");
  1421   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1422                                              heap_word_size(init_byte_size));
  1424   _g1h = this;
  1426   // Create the ConcurrentMark data structure and thread.
  1427   // (Must do this late, so that "max_regions" is defined.)
  1428   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1429   _cmThread = _cm->cmThread();
  1431   // ...and the concurrent zero-fill thread, if necessary.
  1432   if (G1ConcZeroFill) {
  1433     _czft = new ConcurrentZFThread();
  1438   // Allocate the popular regions; take them off free lists.
  1439   size_t pop_byte_size = G1NumPopularRegions * HeapRegion::GrainBytes;
  1440   expand(pop_byte_size);
  1441   _popular_object_boundary =
  1442     _g1_reserved.start() + (G1NumPopularRegions * HeapRegion::GrainWords);
  1443   for (int i = 0; i < G1NumPopularRegions; i++) {
  1444     HeapRegion* hr = newAllocRegion(HeapRegion::GrainWords);
  1445     //    assert(hr != NULL && hr->bottom() < _popular_object_boundary,
  1446     //     "Should be enough, and all should be below boundary.");
  1447     hr->set_popular(true);
  1449   assert(_cur_pop_hr_index == 0, "Start allocating at the first region.");
  1451   // Initialize the from_card cache structure of HeapRegionRemSet.
  1452   HeapRegionRemSet::init_heap(max_regions());
  1454   // Now expand into the rest of the initial heap size.
  1455   expand(init_byte_size - pop_byte_size);
  1457   // Perform any initialization actions delegated to the policy.
  1458   g1_policy()->init();
  1460   g1_policy()->note_start_of_mark_thread();
  1462   _refine_cte_cl =
  1463     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1464                                     g1_rem_set(),
  1465                                     concurrent_g1_refine());
  1466   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1468   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1469                                                SATB_Q_FL_lock,
  1470                                                0,
  1471                                                Shared_SATB_Q_lock);
  1472   if (G1RSBarrierUseQueue) {
  1473     JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1474                                                   DirtyCardQ_FL_lock,
  1475                                                   G1DirtyCardQueueMax,
  1476                                                   Shared_DirtyCardQ_lock);
  1478   if (G1DeferredRSUpdate) {
  1479     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1480                                       DirtyCardQ_FL_lock,
  1481                                       0,
  1482                                       Shared_DirtyCardQ_lock,
  1483                                       &JavaThread::dirty_card_queue_set());
  1485   // In case we're keeping closure specialization stats, initialize those
  1486   // counts and that mechanism.
  1487   SpecializationStats::clear();
  1489   _gc_alloc_region_list = NULL;
  1491   // Do later initialization work for concurrent refinement.
  1492   _cg1r->init();
  1494   const char* group_names[] = { "CR", "ZF", "CM", "CL" };
  1495   GCOverheadReporter::initGCOverheadReporter(4, group_names);
  1497   return JNI_OK;
  1500 void G1CollectedHeap::ref_processing_init() {
  1501   SharedHeap::ref_processing_init();
  1502   MemRegion mr = reserved_region();
  1503   _ref_processor = ReferenceProcessor::create_ref_processor(
  1504                                          mr,    // span
  1505                                          false, // Reference discovery is not atomic
  1506                                                 // (though it shouldn't matter here.)
  1507                                          true,  // mt_discovery
  1508                                          NULL,  // is alive closure: need to fill this in for efficiency
  1509                                          ParallelGCThreads,
  1510                                          ParallelRefProcEnabled,
  1511                                          true); // Setting next fields of discovered
  1512                                                 // lists requires a barrier.
  1515 size_t G1CollectedHeap::capacity() const {
  1516   return _g1_committed.byte_size();
  1519 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
  1520                                                  int worker_i) {
  1521   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1522   int n_completed_buffers = 0;
  1523   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
  1524     n_completed_buffers++;
  1526   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1527                                                   (double) n_completed_buffers);
  1528   dcqs.clear_n_completed_buffers();
  1529   // Finish up the queue...
  1530   if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
  1531                                                             g1_rem_set());
  1532   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1536 // Computes the sum of the storage used by the various regions.
  1538 size_t G1CollectedHeap::used() const {
  1539   assert(Heap_lock->owner() != NULL,
  1540          "Should be owned on this thread's behalf.");
  1541   size_t result = _summary_bytes_used;
  1542   if (_cur_alloc_region != NULL)
  1543     result += _cur_alloc_region->used();
  1544   return result;
  1547 class SumUsedClosure: public HeapRegionClosure {
  1548   size_t _used;
  1549 public:
  1550   SumUsedClosure() : _used(0) {}
  1551   bool doHeapRegion(HeapRegion* r) {
  1552     if (!r->continuesHumongous()) {
  1553       _used += r->used();
  1555     return false;
  1557   size_t result() { return _used; }
  1558 };
  1560 size_t G1CollectedHeap::recalculate_used() const {
  1561   SumUsedClosure blk;
  1562   _hrs->iterate(&blk);
  1563   return blk.result();
  1566 #ifndef PRODUCT
  1567 class SumUsedRegionsClosure: public HeapRegionClosure {
  1568   size_t _num;
  1569 public:
  1570   // _num is set to 1 to account for the popular region
  1571   SumUsedRegionsClosure() : _num(G1NumPopularRegions) {}
  1572   bool doHeapRegion(HeapRegion* r) {
  1573     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1574       _num += 1;
  1576     return false;
  1578   size_t result() { return _num; }
  1579 };
  1581 size_t G1CollectedHeap::recalculate_used_regions() const {
  1582   SumUsedRegionsClosure blk;
  1583   _hrs->iterate(&blk);
  1584   return blk.result();
  1586 #endif // PRODUCT
  1588 size_t G1CollectedHeap::unsafe_max_alloc() {
  1589   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1590   // otherwise, is there space in the current allocation region?
  1592   // We need to store the current allocation region in a local variable
  1593   // here. The problem is that this method doesn't take any locks and
  1594   // there may be other threads which overwrite the current allocation
  1595   // region field. attempt_allocation(), for example, sets it to NULL
  1596   // and this can happen *after* the NULL check here but before the call
  1597   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1598   // to be a problem in the optimized build, since the two loads of the
  1599   // current allocation region field are optimized away.
  1600   HeapRegion* car = _cur_alloc_region;
  1602   // FIXME: should iterate over all regions?
  1603   if (car == NULL) {
  1604     return 0;
  1606   return car->free();
  1609 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1610   // The caller doesn't have the Heap_lock
  1611   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1612   MutexLocker ml(Heap_lock);
  1613   collect_locked(cause);
  1616 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1617   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1618   assert(Heap_lock->is_locked(), "Precondition#2");
  1619   GCCauseSetter gcs(this, cause);
  1620   switch (cause) {
  1621     case GCCause::_heap_inspection:
  1622     case GCCause::_heap_dump: {
  1623       HandleMark hm;
  1624       do_full_collection(false);         // don't clear all soft refs
  1625       break;
  1627     default: // XXX FIX ME
  1628       ShouldNotReachHere(); // Unexpected use of this function
  1633 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
  1634   // Don't want to do a GC until cleanup is completed.
  1635   wait_for_cleanup_complete();
  1637   // Read the GC count while holding the Heap_lock
  1638   int gc_count_before = SharedHeap::heap()->total_collections();
  1640     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  1641     VM_G1CollectFull op(gc_count_before, cause);
  1642     VMThread::execute(&op);
  1646 bool G1CollectedHeap::is_in(const void* p) const {
  1647   if (_g1_committed.contains(p)) {
  1648     HeapRegion* hr = _hrs->addr_to_region(p);
  1649     return hr->is_in(p);
  1650   } else {
  1651     return _perm_gen->as_gen()->is_in(p);
  1655 // Iteration functions.
  1657 // Iterates an OopClosure over all ref-containing fields of objects
  1658 // within a HeapRegion.
  1660 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1661   MemRegion _mr;
  1662   OopClosure* _cl;
  1663 public:
  1664   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1665     : _mr(mr), _cl(cl) {}
  1666   bool doHeapRegion(HeapRegion* r) {
  1667     if (! r->continuesHumongous()) {
  1668       r->oop_iterate(_cl);
  1670     return false;
  1672 };
  1674 void G1CollectedHeap::oop_iterate(OopClosure* cl) {
  1675   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1676   _hrs->iterate(&blk);
  1679 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
  1680   IterateOopClosureRegionClosure blk(mr, cl);
  1681   _hrs->iterate(&blk);
  1684 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1686 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1687   ObjectClosure* _cl;
  1688 public:
  1689   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1690   bool doHeapRegion(HeapRegion* r) {
  1691     if (! r->continuesHumongous()) {
  1692       r->object_iterate(_cl);
  1694     return false;
  1696 };
  1698 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  1699   IterateObjectClosureRegionClosure blk(cl);
  1700   _hrs->iterate(&blk);
  1703 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1704   // FIXME: is this right?
  1705   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1708 // Calls a SpaceClosure on a HeapRegion.
  1710 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1711   SpaceClosure* _cl;
  1712 public:
  1713   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1714   bool doHeapRegion(HeapRegion* r) {
  1715     _cl->do_space(r);
  1716     return false;
  1718 };
  1720 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1721   SpaceClosureRegionClosure blk(cl);
  1722   _hrs->iterate(&blk);
  1725 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1726   _hrs->iterate(cl);
  1729 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1730                                                HeapRegionClosure* cl) {
  1731   _hrs->iterate_from(r, cl);
  1734 void
  1735 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1736   _hrs->iterate_from(idx, cl);
  1739 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1741 void
  1742 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1743                                                  int worker,
  1744                                                  jint claim_value) {
  1745   const size_t regions = n_regions();
  1746   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  1747   // try to spread out the starting points of the workers
  1748   const size_t start_index = regions / worker_num * (size_t) worker;
  1750   // each worker will actually look at all regions
  1751   for (size_t count = 0; count < regions; ++count) {
  1752     const size_t index = (start_index + count) % regions;
  1753     assert(0 <= index && index < regions, "sanity");
  1754     HeapRegion* r = region_at(index);
  1755     // we'll ignore "continues humongous" regions (we'll process them
  1756     // when we come across their corresponding "start humongous"
  1757     // region) and regions already claimed
  1758     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1759       continue;
  1761     // OK, try to claim it
  1762     if (r->claimHeapRegion(claim_value)) {
  1763       // success!
  1764       assert(!r->continuesHumongous(), "sanity");
  1765       if (r->startsHumongous()) {
  1766         // If the region is "starts humongous" we'll iterate over its
  1767         // "continues humongous" first; in fact we'll do them
  1768         // first. The order is important. In on case, calling the
  1769         // closure on the "starts humongous" region might de-allocate
  1770         // and clear all its "continues humongous" regions and, as a
  1771         // result, we might end up processing them twice. So, we'll do
  1772         // them first (notice: most closures will ignore them anyway) and
  1773         // then we'll do the "starts humongous" region.
  1774         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1775           HeapRegion* chr = region_at(ch_index);
  1777           // if the region has already been claimed or it's not
  1778           // "continues humongous" we're done
  1779           if (chr->claim_value() == claim_value ||
  1780               !chr->continuesHumongous()) {
  1781             break;
  1784           // Noone should have claimed it directly. We can given
  1785           // that we claimed its "starts humongous" region.
  1786           assert(chr->claim_value() != claim_value, "sanity");
  1787           assert(chr->humongous_start_region() == r, "sanity");
  1789           if (chr->claimHeapRegion(claim_value)) {
  1790             // we should always be able to claim it; noone else should
  1791             // be trying to claim this region
  1793             bool res2 = cl->doHeapRegion(chr);
  1794             assert(!res2, "Should not abort");
  1796             // Right now, this holds (i.e., no closure that actually
  1797             // does something with "continues humongous" regions
  1798             // clears them). We might have to weaken it in the future,
  1799             // but let's leave these two asserts here for extra safety.
  1800             assert(chr->continuesHumongous(), "should still be the case");
  1801             assert(chr->humongous_start_region() == r, "sanity");
  1802           } else {
  1803             guarantee(false, "we should not reach here");
  1808       assert(!r->continuesHumongous(), "sanity");
  1809       bool res = cl->doHeapRegion(r);
  1810       assert(!res, "Should not abort");
  1815 class ResetClaimValuesClosure: public HeapRegionClosure {
  1816 public:
  1817   bool doHeapRegion(HeapRegion* r) {
  1818     r->set_claim_value(HeapRegion::InitialClaimValue);
  1819     return false;
  1821 };
  1823 void
  1824 G1CollectedHeap::reset_heap_region_claim_values() {
  1825   ResetClaimValuesClosure blk;
  1826   heap_region_iterate(&blk);
  1829 #ifdef ASSERT
  1830 // This checks whether all regions in the heap have the correct claim
  1831 // value. I also piggy-backed on this a check to ensure that the
  1832 // humongous_start_region() information on "continues humongous"
  1833 // regions is correct.
  1835 class CheckClaimValuesClosure : public HeapRegionClosure {
  1836 private:
  1837   jint _claim_value;
  1838   size_t _failures;
  1839   HeapRegion* _sh_region;
  1840 public:
  1841   CheckClaimValuesClosure(jint claim_value) :
  1842     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  1843   bool doHeapRegion(HeapRegion* r) {
  1844     if (r->claim_value() != _claim_value) {
  1845       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1846                              "claim value = %d, should be %d",
  1847                              r->bottom(), r->end(), r->claim_value(),
  1848                              _claim_value);
  1849       ++_failures;
  1851     if (!r->isHumongous()) {
  1852       _sh_region = NULL;
  1853     } else if (r->startsHumongous()) {
  1854       _sh_region = r;
  1855     } else if (r->continuesHumongous()) {
  1856       if (r->humongous_start_region() != _sh_region) {
  1857         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1858                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  1859                                r->bottom(), r->end(),
  1860                                r->humongous_start_region(),
  1861                                _sh_region);
  1862         ++_failures;
  1865     return false;
  1867   size_t failures() {
  1868     return _failures;
  1870 };
  1872 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  1873   CheckClaimValuesClosure cl(claim_value);
  1874   heap_region_iterate(&cl);
  1875   return cl.failures() == 0;
  1877 #endif // ASSERT
  1879 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  1880   HeapRegion* r = g1_policy()->collection_set();
  1881   while (r != NULL) {
  1882     HeapRegion* next = r->next_in_collection_set();
  1883     if (cl->doHeapRegion(r)) {
  1884       cl->incomplete();
  1885       return;
  1887     r = next;
  1891 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  1892                                                   HeapRegionClosure *cl) {
  1893   assert(r->in_collection_set(),
  1894          "Start region must be a member of the collection set.");
  1895   HeapRegion* cur = r;
  1896   while (cur != NULL) {
  1897     HeapRegion* next = cur->next_in_collection_set();
  1898     if (cl->doHeapRegion(cur) && false) {
  1899       cl->incomplete();
  1900       return;
  1902     cur = next;
  1904   cur = g1_policy()->collection_set();
  1905   while (cur != r) {
  1906     HeapRegion* next = cur->next_in_collection_set();
  1907     if (cl->doHeapRegion(cur) && false) {
  1908       cl->incomplete();
  1909       return;
  1911     cur = next;
  1915 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  1916   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  1920 Space* G1CollectedHeap::space_containing(const void* addr) const {
  1921   Space* res = heap_region_containing(addr);
  1922   if (res == NULL)
  1923     res = perm_gen()->space_containing(addr);
  1924   return res;
  1927 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  1928   Space* sp = space_containing(addr);
  1929   if (sp != NULL) {
  1930     return sp->block_start(addr);
  1932   return NULL;
  1935 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  1936   Space* sp = space_containing(addr);
  1937   assert(sp != NULL, "block_size of address outside of heap");
  1938   return sp->block_size(addr);
  1941 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  1942   Space* sp = space_containing(addr);
  1943   return sp->block_is_obj(addr);
  1946 bool G1CollectedHeap::supports_tlab_allocation() const {
  1947   return true;
  1950 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  1951   return HeapRegion::GrainBytes;
  1954 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  1955   // Return the remaining space in the cur alloc region, but not less than
  1956   // the min TLAB size.
  1957   // Also, no more than half the region size, since we can't allow tlabs to
  1958   // grow big enough to accomodate humongous objects.
  1960   // We need to story it locally, since it might change between when we
  1961   // test for NULL and when we use it later.
  1962   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  1963   if (cur_alloc_space == NULL) {
  1964     return HeapRegion::GrainBytes/2;
  1965   } else {
  1966     return MAX2(MIN2(cur_alloc_space->free(),
  1967                      (size_t)(HeapRegion::GrainBytes/2)),
  1968                 (size_t)MinTLABSize);
  1972 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  1973   bool dummy;
  1974   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
  1977 bool G1CollectedHeap::allocs_are_zero_filled() {
  1978   return false;
  1981 size_t G1CollectedHeap::large_typearray_limit() {
  1982   // FIXME
  1983   return HeapRegion::GrainBytes/HeapWordSize;
  1986 size_t G1CollectedHeap::max_capacity() const {
  1987   return _g1_committed.byte_size();
  1990 jlong G1CollectedHeap::millis_since_last_gc() {
  1991   // assert(false, "NYI");
  1992   return 0;
  1996 void G1CollectedHeap::prepare_for_verify() {
  1997   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  1998     ensure_parsability(false);
  2000   g1_rem_set()->prepare_for_verify();
  2003 class VerifyLivenessOopClosure: public OopClosure {
  2004   G1CollectedHeap* g1h;
  2005 public:
  2006   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2007     g1h = _g1h;
  2009   void do_oop(narrowOop *p) {
  2010     guarantee(false, "NYI");
  2012   void do_oop(oop *p) {
  2013     oop obj = *p;
  2014     assert(obj == NULL || !g1h->is_obj_dead(obj),
  2015            "Dead object referenced by a not dead object");
  2017 };
  2019 class VerifyObjsInRegionClosure: public ObjectClosure {
  2020   G1CollectedHeap* _g1h;
  2021   size_t _live_bytes;
  2022   HeapRegion *_hr;
  2023 public:
  2024   VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) {
  2025     _g1h = G1CollectedHeap::heap();
  2027   void do_object(oop o) {
  2028     VerifyLivenessOopClosure isLive(_g1h);
  2029     assert(o != NULL, "Huh?");
  2030     if (!_g1h->is_obj_dead(o)) {
  2031       o->oop_iterate(&isLive);
  2032       if (!_hr->obj_allocated_since_prev_marking(o))
  2033         _live_bytes += (o->size() * HeapWordSize);
  2036   size_t live_bytes() { return _live_bytes; }
  2037 };
  2039 class PrintObjsInRegionClosure : public ObjectClosure {
  2040   HeapRegion *_hr;
  2041   G1CollectedHeap *_g1;
  2042 public:
  2043   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2044     _g1 = G1CollectedHeap::heap();
  2045   };
  2047   void do_object(oop o) {
  2048     if (o != NULL) {
  2049       HeapWord *start = (HeapWord *) o;
  2050       size_t word_sz = o->size();
  2051       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2052                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2053                           (void*) o, word_sz,
  2054                           _g1->isMarkedPrev(o),
  2055                           _g1->isMarkedNext(o),
  2056                           _hr->obj_allocated_since_prev_marking(o));
  2057       HeapWord *end = start + word_sz;
  2058       HeapWord *cur;
  2059       int *val;
  2060       for (cur = start; cur < end; cur++) {
  2061         val = (int *) cur;
  2062         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2066 };
  2068 class VerifyRegionClosure: public HeapRegionClosure {
  2069 public:
  2070   bool _allow_dirty;
  2071   bool _par;
  2072   VerifyRegionClosure(bool allow_dirty, bool par = false)
  2073     : _allow_dirty(allow_dirty), _par(par) {}
  2074   bool doHeapRegion(HeapRegion* r) {
  2075     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2076               "Should be unclaimed at verify points.");
  2077     if (r->isHumongous()) {
  2078       if (r->startsHumongous()) {
  2079         // Verify the single H object.
  2080         oop(r->bottom())->verify();
  2081         size_t word_sz = oop(r->bottom())->size();
  2082         guarantee(r->top() == r->bottom() + word_sz,
  2083                   "Only one object in a humongous region");
  2085     } else {
  2086       VerifyObjsInRegionClosure not_dead_yet_cl(r);
  2087       r->verify(_allow_dirty);
  2088       r->object_iterate(&not_dead_yet_cl);
  2089       guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
  2090                 "More live objects than counted in last complete marking.");
  2092     return false;
  2094 };
  2096 class VerifyRootsClosure: public OopsInGenClosure {
  2097 private:
  2098   G1CollectedHeap* _g1h;
  2099   bool             _failures;
  2101 public:
  2102   VerifyRootsClosure() :
  2103     _g1h(G1CollectedHeap::heap()), _failures(false) { }
  2105   bool failures() { return _failures; }
  2107   void do_oop(narrowOop* p) {
  2108     guarantee(false, "NYI");
  2111   void do_oop(oop* p) {
  2112     oop obj = *p;
  2113     if (obj != NULL) {
  2114       if (_g1h->is_obj_dead(obj)) {
  2115         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2116                                "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2117         obj->print_on(gclog_or_tty);
  2118         _failures = true;
  2122 };
  2124 // This is the task used for parallel heap verification.
  2126 class G1ParVerifyTask: public AbstractGangTask {
  2127 private:
  2128   G1CollectedHeap* _g1h;
  2129   bool _allow_dirty;
  2131 public:
  2132   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty) :
  2133     AbstractGangTask("Parallel verify task"),
  2134     _g1h(g1h), _allow_dirty(allow_dirty) { }
  2136   void work(int worker_i) {
  2137     VerifyRegionClosure blk(_allow_dirty, true);
  2138     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2139                                           HeapRegion::ParVerifyClaimValue);
  2141 };
  2143 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2144   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2145     if (!silent) { gclog_or_tty->print("roots "); }
  2146     VerifyRootsClosure rootsCl;
  2147     process_strong_roots(false,
  2148                          SharedHeap::SO_AllClasses,
  2149                          &rootsCl,
  2150                          &rootsCl);
  2151     rem_set()->invalidate(perm_gen()->used_region(), false);
  2152     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2153     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2154       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2155              "sanity check");
  2157       G1ParVerifyTask task(this, allow_dirty);
  2158       int n_workers = workers()->total_workers();
  2159       set_par_threads(n_workers);
  2160       workers()->run_task(&task);
  2161       set_par_threads(0);
  2163       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2164              "sanity check");
  2166       reset_heap_region_claim_values();
  2168       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2169              "sanity check");
  2170     } else {
  2171       VerifyRegionClosure blk(allow_dirty);
  2172       _hrs->iterate(&blk);
  2174     if (!silent) gclog_or_tty->print("remset ");
  2175     rem_set()->verify();
  2176     guarantee(!rootsCl.failures(), "should not have had failures");
  2177   } else {
  2178     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2182 class PrintRegionClosure: public HeapRegionClosure {
  2183   outputStream* _st;
  2184 public:
  2185   PrintRegionClosure(outputStream* st) : _st(st) {}
  2186   bool doHeapRegion(HeapRegion* r) {
  2187     r->print_on(_st);
  2188     return false;
  2190 };
  2192 void G1CollectedHeap::print() const { print_on(gclog_or_tty); }
  2194 void G1CollectedHeap::print_on(outputStream* st) const {
  2195   PrintRegionClosure blk(st);
  2196   _hrs->iterate(&blk);
  2199 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2200   if (ParallelGCThreads > 0) {
  2201     workers()->print_worker_threads();
  2203   st->print("\"G1 concurrent mark GC Thread\" ");
  2204   _cmThread->print();
  2205   st->cr();
  2206   st->print("\"G1 concurrent refinement GC Thread\" ");
  2207   _cg1r->cg1rThread()->print_on(st);
  2208   st->cr();
  2209   st->print("\"G1 zero-fill GC Thread\" ");
  2210   _czft->print_on(st);
  2211   st->cr();
  2214 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2215   if (ParallelGCThreads > 0) {
  2216     workers()->threads_do(tc);
  2218   tc->do_thread(_cmThread);
  2219   tc->do_thread(_cg1r->cg1rThread());
  2220   tc->do_thread(_czft);
  2223 void G1CollectedHeap::print_tracing_info() const {
  2224   concurrent_g1_refine()->print_final_card_counts();
  2226   // We'll overload this to mean "trace GC pause statistics."
  2227   if (TraceGen0Time || TraceGen1Time) {
  2228     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2229     // to that.
  2230     g1_policy()->print_tracing_info();
  2232   if (SummarizeG1RSStats) {
  2233     g1_rem_set()->print_summary_info();
  2235   if (SummarizeG1ConcMark) {
  2236     concurrent_mark()->print_summary_info();
  2238   if (SummarizeG1ZFStats) {
  2239     ConcurrentZFThread::print_summary_info();
  2241   if (G1SummarizePopularity) {
  2242     print_popularity_summary_info();
  2244   g1_policy()->print_yg_surv_rate_info();
  2246   GCOverheadReporter::printGCOverhead();
  2248   SpecializationStats::print();
  2252 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2253   HeapRegion* hr = heap_region_containing(addr);
  2254   if (hr == NULL) {
  2255     return 0;
  2256   } else {
  2257     return 1;
  2261 G1CollectedHeap* G1CollectedHeap::heap() {
  2262   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2263          "not a garbage-first heap");
  2264   return _g1h;
  2267 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2268   if (PrintHeapAtGC){
  2269     gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections());
  2270     Universe::print();
  2272   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2273   // Call allocation profiler
  2274   AllocationProfiler::iterate_since_last_gc();
  2275   // Fill TLAB's and such
  2276   ensure_parsability(true);
  2279 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2280   // FIXME: what is this about?
  2281   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2282   // is set.
  2283   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2284                         "derived pointer present"));
  2286   if (PrintHeapAtGC){
  2287     gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections());
  2288     Universe::print();
  2289     gclog_or_tty->print("} ");
  2293 void G1CollectedHeap::do_collection_pause() {
  2294   // Read the GC count while holding the Heap_lock
  2295   // we need to do this _before_ wait_for_cleanup_complete(), to
  2296   // ensure that we do not give up the heap lock and potentially
  2297   // pick up the wrong count
  2298   int gc_count_before = SharedHeap::heap()->total_collections();
  2300   // Don't want to do a GC pause while cleanup is being completed!
  2301   wait_for_cleanup_complete();
  2303   g1_policy()->record_stop_world_start();
  2305     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2306     VM_G1IncCollectionPause op(gc_count_before);
  2307     VMThread::execute(&op);
  2311 void
  2312 G1CollectedHeap::doConcurrentMark() {
  2313   if (G1ConcMark) {
  2314     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2315     if (!_cmThread->in_progress()) {
  2316       _cmThread->set_started();
  2317       CGC_lock->notify();
  2322 class VerifyMarkedObjsClosure: public ObjectClosure {
  2323     G1CollectedHeap* _g1h;
  2324     public:
  2325     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2326     void do_object(oop obj) {
  2327       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2328              "markandsweep mark should agree with concurrent deadness");
  2330 };
  2332 void
  2333 G1CollectedHeap::checkConcurrentMark() {
  2334     VerifyMarkedObjsClosure verifycl(this);
  2335     doConcurrentMark();
  2336     //    MutexLockerEx x(getMarkBitMapLock(),
  2337     //              Mutex::_no_safepoint_check_flag);
  2338     object_iterate(&verifycl);
  2341 void G1CollectedHeap::do_sync_mark() {
  2342   _cm->checkpointRootsInitial();
  2343   _cm->markFromRoots();
  2344   _cm->checkpointRootsFinal(false);
  2347 // <NEW PREDICTION>
  2349 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2350                                                        bool young) {
  2351   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2354 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2355                                                            predicted_time_ms) {
  2356   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2359 size_t G1CollectedHeap::pending_card_num() {
  2360   size_t extra_cards = 0;
  2361   JavaThread *curr = Threads::first();
  2362   while (curr != NULL) {
  2363     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2364     extra_cards += dcq.size();
  2365     curr = curr->next();
  2367   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2368   size_t buffer_size = dcqs.buffer_size();
  2369   size_t buffer_num = dcqs.completed_buffers_num();
  2370   return buffer_size * buffer_num + extra_cards;
  2373 size_t G1CollectedHeap::max_pending_card_num() {
  2374   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2375   size_t buffer_size = dcqs.buffer_size();
  2376   size_t buffer_num  = dcqs.completed_buffers_num();
  2377   int thread_num  = Threads::number_of_threads();
  2378   return (buffer_num + thread_num) * buffer_size;
  2381 size_t G1CollectedHeap::cards_scanned() {
  2382   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  2383   return g1_rset->cardsScanned();
  2386 void
  2387 G1CollectedHeap::setup_surviving_young_words() {
  2388   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2389   size_t array_length = g1_policy()->young_cset_length();
  2390   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2391   if (_surviving_young_words == NULL) {
  2392     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2393                           "Not enough space for young surv words summary.");
  2395   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2396   for (size_t i = 0;  i < array_length; ++i) {
  2397     guarantee( _surviving_young_words[i] == 0, "invariant" );
  2401 void
  2402 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2403   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2404   size_t array_length = g1_policy()->young_cset_length();
  2405   for (size_t i = 0; i < array_length; ++i)
  2406     _surviving_young_words[i] += surv_young_words[i];
  2409 void
  2410 G1CollectedHeap::cleanup_surviving_young_words() {
  2411   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2412   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2413   _surviving_young_words = NULL;
  2416 // </NEW PREDICTION>
  2418 void
  2419 G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) {
  2420   char verbose_str[128];
  2421   sprintf(verbose_str, "GC pause ");
  2422   if (popular_region != NULL)
  2423     strcat(verbose_str, "(popular)");
  2424   else if (g1_policy()->in_young_gc_mode()) {
  2425     if (g1_policy()->full_young_gcs())
  2426       strcat(verbose_str, "(young)");
  2427     else
  2428       strcat(verbose_str, "(partial)");
  2430   bool reset_should_initiate_conc_mark = false;
  2431   if (popular_region != NULL && g1_policy()->should_initiate_conc_mark()) {
  2432     // we currently do not allow an initial mark phase to be piggy-backed
  2433     // on a popular pause
  2434     reset_should_initiate_conc_mark = true;
  2435     g1_policy()->unset_should_initiate_conc_mark();
  2437   if (g1_policy()->should_initiate_conc_mark())
  2438     strcat(verbose_str, " (initial-mark)");
  2440   GCCauseSetter x(this, (popular_region == NULL ?
  2441                          GCCause::_g1_inc_collection_pause :
  2442                          GCCause::_g1_pop_region_collection_pause));
  2444   // if PrintGCDetails is on, we'll print long statistics information
  2445   // in the collector policy code, so let's not print this as the output
  2446   // is messy if we do.
  2447   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2448   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2449   TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2451   ResourceMark rm;
  2452   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2453   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2454   guarantee(!is_gc_active(), "collection is not reentrant");
  2455   assert(regions_accounted_for(), "Region leakage!");
  2457   increment_gc_time_stamp();
  2459   if (g1_policy()->in_young_gc_mode()) {
  2460     assert(check_young_list_well_formed(),
  2461                 "young list should be well formed");
  2464   if (GC_locker::is_active()) {
  2465     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2468   bool abandoned = false;
  2469   { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2470     IsGCActiveMark x;
  2472     gc_prologue(false);
  2473     increment_total_collections();
  2475 #if G1_REM_SET_LOGGING
  2476     gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2477     print();
  2478 #endif
  2480     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2481       HandleMark hm;  // Discard invalid handles created during verification
  2482       prepare_for_verify();
  2483       gclog_or_tty->print(" VerifyBeforeGC:");
  2484       Universe::verify(false);
  2487     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2489     // We want to turn off ref discovery, if necessary, and turn it back on
  2490     // on again later if we do.
  2491     bool was_enabled = ref_processor()->discovery_enabled();
  2492     if (was_enabled) ref_processor()->disable_discovery();
  2494     // Forget the current alloc region (we might even choose it to be part
  2495     // of the collection set!).
  2496     abandon_cur_alloc_region();
  2498     // The elapsed time induced by the start time below deliberately elides
  2499     // the possible verification above.
  2500     double start_time_sec = os::elapsedTime();
  2501     GCOverheadReporter::recordSTWStart(start_time_sec);
  2502     size_t start_used_bytes = used();
  2503     if (!G1ConcMark) {
  2504       do_sync_mark();
  2507     g1_policy()->record_collection_pause_start(start_time_sec,
  2508                                                start_used_bytes);
  2510     guarantee(_in_cset_fast_test == NULL, "invariant");
  2511     guarantee(_in_cset_fast_test_base == NULL, "invariant");
  2512     _in_cset_fast_test_length = n_regions();
  2513     _in_cset_fast_test_base =
  2514                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2515     memset(_in_cset_fast_test_base, false,
  2516                                      _in_cset_fast_test_length * sizeof(bool));
  2517     // We're biasing _in_cset_fast_test to avoid subtracting the
  2518     // beginning of the heap every time we want to index; basically
  2519     // it's the same with what we do with the card table.
  2520     _in_cset_fast_test = _in_cset_fast_test_base -
  2521               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2523 #if SCAN_ONLY_VERBOSE
  2524     _young_list->print();
  2525 #endif // SCAN_ONLY_VERBOSE
  2527     if (g1_policy()->should_initiate_conc_mark()) {
  2528       concurrent_mark()->checkpointRootsInitialPre();
  2530     save_marks();
  2532     // We must do this before any possible evacuation that should propogate
  2533     // marks, including evacuation of popular objects in a popular pause.
  2534     if (mark_in_progress()) {
  2535       double start_time_sec = os::elapsedTime();
  2537       _cm->drainAllSATBBuffers();
  2538       double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2539       g1_policy()->record_satb_drain_time(finish_mark_ms);
  2542     // Record the number of elements currently on the mark stack, so we
  2543     // only iterate over these.  (Since evacuation may add to the mark
  2544     // stack, doing more exposes race conditions.)  If no mark is in
  2545     // progress, this will be zero.
  2546     _cm->set_oops_do_bound();
  2548     assert(regions_accounted_for(), "Region leakage.");
  2550     bool abandoned = false;
  2552     if (mark_in_progress())
  2553       concurrent_mark()->newCSet();
  2555     // Now choose the CS.
  2556     if (popular_region == NULL) {
  2557       g1_policy()->choose_collection_set();
  2558     } else {
  2559       // We may be evacuating a single region (for popularity).
  2560       g1_policy()->record_popular_pause_preamble_start();
  2561       popularity_pause_preamble(popular_region);
  2562       g1_policy()->record_popular_pause_preamble_end();
  2563       abandoned = (g1_policy()->collection_set() == NULL);
  2564       // Now we allow more regions to be added (we have to collect
  2565       // all popular regions).
  2566       if (!abandoned) {
  2567         g1_policy()->choose_collection_set(popular_region);
  2570     // We may abandon a pause if we find no region that will fit in the MMU
  2571     // pause.
  2572     abandoned = (g1_policy()->collection_set() == NULL);
  2574     // Nothing to do if we were unable to choose a collection set.
  2575     if (!abandoned) {
  2576 #if G1_REM_SET_LOGGING
  2577       gclog_or_tty->print_cr("\nAfter pause, heap:");
  2578       print();
  2579 #endif
  2581       setup_surviving_young_words();
  2583       // Set up the gc allocation regions.
  2584       get_gc_alloc_regions();
  2586       // Actually do the work...
  2587       evacuate_collection_set();
  2588       free_collection_set(g1_policy()->collection_set());
  2589       g1_policy()->clear_collection_set();
  2591       FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
  2592       // this is more for peace of mind; we're nulling them here and
  2593       // we're expecting them to be null at the beginning of the next GC
  2594       _in_cset_fast_test = NULL;
  2595       _in_cset_fast_test_base = NULL;
  2597       if (popular_region != NULL) {
  2598         // We have to wait until now, because we don't want the region to
  2599         // be rescheduled for pop-evac during RS update.
  2600         popular_region->set_popular_pending(false);
  2603       release_gc_alloc_regions();
  2605       cleanup_surviving_young_words();
  2607       if (g1_policy()->in_young_gc_mode()) {
  2608         _young_list->reset_sampled_info();
  2609         assert(check_young_list_empty(true),
  2610                "young list should be empty");
  2612 #if SCAN_ONLY_VERBOSE
  2613         _young_list->print();
  2614 #endif // SCAN_ONLY_VERBOSE
  2616         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2617                                              _young_list->first_survivor_region(),
  2618                                              _young_list->last_survivor_region());
  2619         _young_list->reset_auxilary_lists();
  2621     } else {
  2622       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  2625     if (evacuation_failed()) {
  2626       _summary_bytes_used = recalculate_used();
  2627     } else {
  2628       // The "used" of the the collection set have already been subtracted
  2629       // when they were freed.  Add in the bytes evacuated.
  2630       _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2633     if (g1_policy()->in_young_gc_mode() &&
  2634         g1_policy()->should_initiate_conc_mark()) {
  2635       concurrent_mark()->checkpointRootsInitialPost();
  2636       set_marking_started();
  2637       doConcurrentMark();
  2640 #if SCAN_ONLY_VERBOSE
  2641     _young_list->print();
  2642 #endif // SCAN_ONLY_VERBOSE
  2644     double end_time_sec = os::elapsedTime();
  2645     double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2646     g1_policy()->record_pause_time_ms(pause_time_ms);
  2647     GCOverheadReporter::recordSTWEnd(end_time_sec);
  2648     g1_policy()->record_collection_pause_end(popular_region != NULL,
  2649                                              abandoned);
  2651     assert(regions_accounted_for(), "Region leakage.");
  2653     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  2654       HandleMark hm;  // Discard invalid handles created during verification
  2655       gclog_or_tty->print(" VerifyAfterGC:");
  2656       Universe::verify(false);
  2659     if (was_enabled) ref_processor()->enable_discovery();
  2662       size_t expand_bytes = g1_policy()->expansion_amount();
  2663       if (expand_bytes > 0) {
  2664         size_t bytes_before = capacity();
  2665         expand(expand_bytes);
  2669     if (mark_in_progress()) {
  2670       concurrent_mark()->update_g1_committed();
  2673 #ifdef TRACESPINNING
  2674     ParallelTaskTerminator::print_termination_counts();
  2675 #endif
  2677     gc_epilogue(false);
  2680   assert(verify_region_lists(), "Bad region lists.");
  2682   if (reset_should_initiate_conc_mark)
  2683     g1_policy()->set_should_initiate_conc_mark();
  2685   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  2686     gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  2687     print_tracing_info();
  2688     vm_exit(-1);
  2692 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  2693   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  2694   HeapWord* original_top = NULL;
  2695   if (r != NULL)
  2696     original_top = r->top();
  2698   // We will want to record the used space in r as being there before gc.
  2699   // One we install it as a GC alloc region it's eligible for allocation.
  2700   // So record it now and use it later.
  2701   size_t r_used = 0;
  2702   if (r != NULL) {
  2703     r_used = r->used();
  2705     if (ParallelGCThreads > 0) {
  2706       // need to take the lock to guard against two threads calling
  2707       // get_gc_alloc_region concurrently (very unlikely but...)
  2708       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2709       r->save_marks();
  2712   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  2713   _gc_alloc_regions[purpose] = r;
  2714   if (old_alloc_region != NULL) {
  2715     // Replace aliases too.
  2716     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2717       if (_gc_alloc_regions[ap] == old_alloc_region) {
  2718         _gc_alloc_regions[ap] = r;
  2722   if (r != NULL) {
  2723     push_gc_alloc_region(r);
  2724     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  2725       // We are using a region as a GC alloc region after it has been used
  2726       // as a mutator allocation region during the current marking cycle.
  2727       // The mutator-allocated objects are currently implicitly marked, but
  2728       // when we move hr->next_top_at_mark_start() forward at the the end
  2729       // of the GC pause, they won't be.  We therefore mark all objects in
  2730       // the "gap".  We do this object-by-object, since marking densely
  2731       // does not currently work right with marking bitmap iteration.  This
  2732       // means we rely on TLAB filling at the start of pauses, and no
  2733       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  2734       // to fix the marking bitmap iteration.
  2735       HeapWord* curhw = r->next_top_at_mark_start();
  2736       HeapWord* t = original_top;
  2738       while (curhw < t) {
  2739         oop cur = (oop)curhw;
  2740         // We'll assume parallel for generality.  This is rare code.
  2741         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  2742         curhw = curhw + cur->size();
  2744       assert(curhw == t, "Should have parsed correctly.");
  2746     if (G1PolicyVerbose > 1) {
  2747       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  2748                           "for survivors:", r->bottom(), original_top, r->end());
  2749       r->print();
  2751     g1_policy()->record_before_bytes(r_used);
  2755 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  2756   assert(Thread::current()->is_VM_thread() ||
  2757          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  2758   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  2759          "Precondition.");
  2760   hr->set_is_gc_alloc_region(true);
  2761   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  2762   _gc_alloc_region_list = hr;
  2765 #ifdef G1_DEBUG
  2766 class FindGCAllocRegion: public HeapRegionClosure {
  2767 public:
  2768   bool doHeapRegion(HeapRegion* r) {
  2769     if (r->is_gc_alloc_region()) {
  2770       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  2771                              r->hrs_index(), r->bottom());
  2773     return false;
  2775 };
  2776 #endif // G1_DEBUG
  2778 void G1CollectedHeap::forget_alloc_region_list() {
  2779   assert(Thread::current()->is_VM_thread(), "Precondition");
  2780   while (_gc_alloc_region_list != NULL) {
  2781     HeapRegion* r = _gc_alloc_region_list;
  2782     assert(r->is_gc_alloc_region(), "Invariant.");
  2783     _gc_alloc_region_list = r->next_gc_alloc_region();
  2784     r->set_next_gc_alloc_region(NULL);
  2785     r->set_is_gc_alloc_region(false);
  2786     if (r->is_survivor()) {
  2787       if (r->is_empty()) {
  2788         r->set_not_young();
  2789       } else {
  2790         _young_list->add_survivor_region(r);
  2793     if (r->is_empty()) {
  2794       ++_free_regions;
  2797 #ifdef G1_DEBUG
  2798   FindGCAllocRegion fa;
  2799   heap_region_iterate(&fa);
  2800 #endif // G1_DEBUG
  2804 bool G1CollectedHeap::check_gc_alloc_regions() {
  2805   // TODO: allocation regions check
  2806   return true;
  2809 void G1CollectedHeap::get_gc_alloc_regions() {
  2810   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2811     // Create new GC alloc regions.
  2812     HeapRegion* alloc_region = _gc_alloc_regions[ap];
  2813     // Clear this alloc region, so that in case it turns out to be
  2814     // unacceptable, we end up with no allocation region, rather than a bad
  2815     // one.
  2816     _gc_alloc_regions[ap] = NULL;
  2817     if (alloc_region == NULL || alloc_region->in_collection_set()) {
  2818       // Can't re-use old one.  Allocate a new one.
  2819       alloc_region = newAllocRegionWithExpansion(ap, 0);
  2821     if (alloc_region != NULL) {
  2822       set_gc_alloc_region(ap, alloc_region);
  2825   // Set alternative regions for allocation purposes that have reached
  2826   // thier limit.
  2827   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2828     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  2829     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  2830       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  2833   assert(check_gc_alloc_regions(), "alloc regions messed up");
  2836 void G1CollectedHeap::release_gc_alloc_regions() {
  2837   // We keep a separate list of all regions that have been alloc regions in
  2838   // the current collection pause.  Forget that now.
  2839   forget_alloc_region_list();
  2841   // The current alloc regions contain objs that have survived
  2842   // collection. Make them no longer GC alloc regions.
  2843   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2844     HeapRegion* r = _gc_alloc_regions[ap];
  2845     if (r != NULL && r->is_empty()) {
  2847         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  2848         r->set_zero_fill_complete();
  2849         put_free_region_on_list_locked(r);
  2852     // set_gc_alloc_region will also NULLify all aliases to the region
  2853     set_gc_alloc_region(ap, NULL);
  2854     _gc_alloc_region_counts[ap] = 0;
  2858 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  2859   _drain_in_progress = false;
  2860   set_evac_failure_closure(cl);
  2861   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  2864 void G1CollectedHeap::finalize_for_evac_failure() {
  2865   assert(_evac_failure_scan_stack != NULL &&
  2866          _evac_failure_scan_stack->length() == 0,
  2867          "Postcondition");
  2868   assert(!_drain_in_progress, "Postcondition");
  2869   // Don't have to delete, since the scan stack is a resource object.
  2870   _evac_failure_scan_stack = NULL;
  2875 // *** Sequential G1 Evacuation
  2877 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  2878   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  2879   // let the caller handle alloc failure
  2880   if (alloc_region == NULL) return NULL;
  2881   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  2882          "Either the object is humongous or the region isn't");
  2883   HeapWord* block = alloc_region->allocate(word_size);
  2884   if (block == NULL) {
  2885     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  2887   return block;
  2890 class G1IsAliveClosure: public BoolObjectClosure {
  2891   G1CollectedHeap* _g1;
  2892 public:
  2893   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  2894   void do_object(oop p) { assert(false, "Do not call."); }
  2895   bool do_object_b(oop p) {
  2896     // It is reachable if it is outside the collection set, or is inside
  2897     // and forwarded.
  2899 #ifdef G1_DEBUG
  2900     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  2901                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  2902                            !_g1->obj_in_cs(p) || p->is_forwarded());
  2903 #endif // G1_DEBUG
  2905     return !_g1->obj_in_cs(p) || p->is_forwarded();
  2907 };
  2909 class G1KeepAliveClosure: public OopClosure {
  2910   G1CollectedHeap* _g1;
  2911 public:
  2912   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  2913   void do_oop(narrowOop* p) {
  2914     guarantee(false, "NYI");
  2916   void do_oop(oop* p) {
  2917     oop obj = *p;
  2918 #ifdef G1_DEBUG
  2919     if (PrintGC && Verbose) {
  2920       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  2921                              p, (void*) obj, (void*) *p);
  2923 #endif // G1_DEBUG
  2925     if (_g1->obj_in_cs(obj)) {
  2926       assert( obj->is_forwarded(), "invariant" );
  2927       *p = obj->forwardee();
  2929 #ifdef G1_DEBUG
  2930       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  2931                              (void*) obj, (void*) *p);
  2932 #endif // G1_DEBUG
  2935 };
  2937 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
  2938 private:
  2939   G1CollectedHeap* _g1;
  2940   G1RemSet* _g1_rem_set;
  2941 public:
  2942   UpdateRSetImmediate(G1CollectedHeap* g1) :
  2943     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
  2945   void do_oop(narrowOop* p) {
  2946     guarantee(false, "NYI");
  2948   void do_oop(oop* p) {
  2949     assert(_from->is_in_reserved(p), "paranoia");
  2950     if (*p != NULL && !_from->is_survivor()) {
  2951       _g1_rem_set->par_write_ref(_from, p, 0);
  2954 };
  2956 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  2957 private:
  2958   G1CollectedHeap* _g1;
  2959   DirtyCardQueue *_dcq;
  2960   CardTableModRefBS* _ct_bs;
  2962 public:
  2963   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  2964     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  2966   void do_oop(narrowOop* p) {
  2967     guarantee(false, "NYI");
  2969   void do_oop(oop* p) {
  2970     assert(_from->is_in_reserved(p), "paranoia");
  2971     if (!_from->is_in_reserved(*p) && !_from->is_survivor()) {
  2972       size_t card_index = _ct_bs->index_for(p);
  2973       if (_ct_bs->mark_card_deferred(card_index)) {
  2974         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  2978 };
  2982 class RemoveSelfPointerClosure: public ObjectClosure {
  2983 private:
  2984   G1CollectedHeap* _g1;
  2985   ConcurrentMark* _cm;
  2986   HeapRegion* _hr;
  2987   size_t _prev_marked_bytes;
  2988   size_t _next_marked_bytes;
  2989   OopsInHeapRegionClosure *_cl;
  2990 public:
  2991   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  2992     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  2993     _next_marked_bytes(0), _cl(cl) {}
  2995   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  2996   size_t next_marked_bytes() { return _next_marked_bytes; }
  2998   // The original idea here was to coalesce evacuated and dead objects.
  2999   // However that caused complications with the block offset table (BOT).
  3000   // In particular if there were two TLABs, one of them partially refined.
  3001   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3002   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3003   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3004   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3005   // would point into middle of the filler object.
  3006   //
  3007   // The current approach is to not coalesce and leave the BOT contents intact.
  3008   void do_object(oop obj) {
  3009     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3010       // The object failed to move.
  3011       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3012       _cm->markPrev(obj);
  3013       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3014       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3015       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3016         _cm->markAndGrayObjectIfNecessary(obj);
  3018       obj->set_mark(markOopDesc::prototype());
  3019       // While we were processing RSet buffers during the
  3020       // collection, we actually didn't scan any cards on the
  3021       // collection set, since we didn't want to update remebered
  3022       // sets with entries that point into the collection set, given
  3023       // that live objects fromthe collection set are about to move
  3024       // and such entries will be stale very soon. This change also
  3025       // dealt with a reliability issue which involved scanning a
  3026       // card in the collection set and coming across an array that
  3027       // was being chunked and looking malformed. The problem is
  3028       // that, if evacuation fails, we might have remembered set
  3029       // entries missing given that we skipped cards on the
  3030       // collection set. So, we'll recreate such entries now.
  3031       obj->oop_iterate(_cl);
  3032       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3033     } else {
  3034       // The object has been either evacuated or is dead. Fill it with a
  3035       // dummy object.
  3036       MemRegion mr((HeapWord*)obj, obj->size());
  3037       CollectedHeap::fill_with_object(mr);
  3038       _cm->clearRangeBothMaps(mr);
  3041 };
  3043 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3044   UpdateRSetImmediate immediate_update(_g1h);
  3045   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3046   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3047   OopsInHeapRegionClosure *cl;
  3048   if (G1DeferredRSUpdate) {
  3049     cl = &deferred_update;
  3050   } else {
  3051     cl = &immediate_update;
  3053   HeapRegion* cur = g1_policy()->collection_set();
  3054   while (cur != NULL) {
  3055     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3057     RemoveSelfPointerClosure rspc(_g1h, cl);
  3058     if (cur->evacuation_failed()) {
  3059       assert(cur->in_collection_set(), "bad CS");
  3060       cl->set_region(cur);
  3061       cur->object_iterate(&rspc);
  3063       // A number of manipulations to make the TAMS be the current top,
  3064       // and the marked bytes be the ones observed in the iteration.
  3065       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3066         // The comments below are the postconditions achieved by the
  3067         // calls.  Note especially the last such condition, which says that
  3068         // the count of marked bytes has been properly restored.
  3069         cur->note_start_of_marking(false);
  3070         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3071         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3072         // _next_marked_bytes == prev_marked_bytes.
  3073         cur->note_end_of_marking();
  3074         // _prev_top_at_mark_start == top(),
  3075         // _prev_marked_bytes == prev_marked_bytes
  3077       // If there is no mark in progress, we modified the _next variables
  3078       // above needlessly, but harmlessly.
  3079       if (_g1h->mark_in_progress()) {
  3080         cur->note_start_of_marking(false);
  3081         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3082         // _next_marked_bytes == next_marked_bytes.
  3085       // Now make sure the region has the right index in the sorted array.
  3086       g1_policy()->note_change_in_marked_bytes(cur);
  3088     cur = cur->next_in_collection_set();
  3090   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3092   // Now restore saved marks, if any.
  3093   if (_objs_with_preserved_marks != NULL) {
  3094     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3095     assert(_objs_with_preserved_marks->length() ==
  3096            _preserved_marks_of_objs->length(), "Both or none.");
  3097     guarantee(_objs_with_preserved_marks->length() ==
  3098               _preserved_marks_of_objs->length(), "Both or none.");
  3099     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3100       oop obj   = _objs_with_preserved_marks->at(i);
  3101       markOop m = _preserved_marks_of_objs->at(i);
  3102       obj->set_mark(m);
  3104     // Delete the preserved marks growable arrays (allocated on the C heap).
  3105     delete _objs_with_preserved_marks;
  3106     delete _preserved_marks_of_objs;
  3107     _objs_with_preserved_marks = NULL;
  3108     _preserved_marks_of_objs = NULL;
  3112 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3113   _evac_failure_scan_stack->push(obj);
  3116 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3117   assert(_evac_failure_scan_stack != NULL, "precondition");
  3119   while (_evac_failure_scan_stack->length() > 0) {
  3120      oop obj = _evac_failure_scan_stack->pop();
  3121      _evac_failure_closure->set_region(heap_region_containing(obj));
  3122      obj->oop_iterate_backwards(_evac_failure_closure);
  3126 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3127   markOop m = old->mark();
  3128   // forward to self
  3129   assert(!old->is_forwarded(), "precondition");
  3131   old->forward_to(old);
  3132   handle_evacuation_failure_common(old, m);
  3135 oop
  3136 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3137                                                oop old) {
  3138   markOop m = old->mark();
  3139   oop forward_ptr = old->forward_to_atomic(old);
  3140   if (forward_ptr == NULL) {
  3141     // Forward-to-self succeeded.
  3142     if (_evac_failure_closure != cl) {
  3143       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3144       assert(!_drain_in_progress,
  3145              "Should only be true while someone holds the lock.");
  3146       // Set the global evac-failure closure to the current thread's.
  3147       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3148       set_evac_failure_closure(cl);
  3149       // Now do the common part.
  3150       handle_evacuation_failure_common(old, m);
  3151       // Reset to NULL.
  3152       set_evac_failure_closure(NULL);
  3153     } else {
  3154       // The lock is already held, and this is recursive.
  3155       assert(_drain_in_progress, "This should only be the recursive case.");
  3156       handle_evacuation_failure_common(old, m);
  3158     return old;
  3159   } else {
  3160     // Someone else had a place to copy it.
  3161     return forward_ptr;
  3165 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3166   set_evacuation_failed(true);
  3168   preserve_mark_if_necessary(old, m);
  3170   HeapRegion* r = heap_region_containing(old);
  3171   if (!r->evacuation_failed()) {
  3172     r->set_evacuation_failed(true);
  3173     if (G1TraceRegions) {
  3174       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
  3175                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3176                           r, r->bottom(), r->end());
  3180   push_on_evac_failure_scan_stack(old);
  3182   if (!_drain_in_progress) {
  3183     // prevent recursion in copy_to_survivor_space()
  3184     _drain_in_progress = true;
  3185     drain_evac_failure_scan_stack();
  3186     _drain_in_progress = false;
  3190 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3191   if (m != markOopDesc::prototype()) {
  3192     if (_objs_with_preserved_marks == NULL) {
  3193       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3194       _objs_with_preserved_marks =
  3195         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3196       _preserved_marks_of_objs =
  3197         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3199     _objs_with_preserved_marks->push(obj);
  3200     _preserved_marks_of_objs->push(m);
  3204 // *** Parallel G1 Evacuation
  3206 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3207                                                   size_t word_size) {
  3208   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3209   // let the caller handle alloc failure
  3210   if (alloc_region == NULL) return NULL;
  3212   HeapWord* block = alloc_region->par_allocate(word_size);
  3213   if (block == NULL) {
  3214     MutexLockerEx x(par_alloc_during_gc_lock(),
  3215                     Mutex::_no_safepoint_check_flag);
  3216     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3218   return block;
  3221 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3222                                             bool par) {
  3223   // Another thread might have obtained alloc_region for the given
  3224   // purpose, and might be attempting to allocate in it, and might
  3225   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3226   // region below until we're sure the last allocation has happened.
  3227   // We ensure this by allocating the remaining space with a garbage
  3228   // object.
  3229   if (par) par_allocate_remaining_space(alloc_region);
  3230   // Now we can do the post-GC stuff on the region.
  3231   alloc_region->note_end_of_copying();
  3232   g1_policy()->record_after_bytes(alloc_region->used());
  3235 HeapWord*
  3236 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3237                                          HeapRegion*    alloc_region,
  3238                                          bool           par,
  3239                                          size_t         word_size) {
  3240   HeapWord* block = NULL;
  3241   // In the parallel case, a previous thread to obtain the lock may have
  3242   // already assigned a new gc_alloc_region.
  3243   if (alloc_region != _gc_alloc_regions[purpose]) {
  3244     assert(par, "But should only happen in parallel case.");
  3245     alloc_region = _gc_alloc_regions[purpose];
  3246     if (alloc_region == NULL) return NULL;
  3247     block = alloc_region->par_allocate(word_size);
  3248     if (block != NULL) return block;
  3249     // Otherwise, continue; this new region is empty, too.
  3251   assert(alloc_region != NULL, "We better have an allocation region");
  3252   retire_alloc_region(alloc_region, par);
  3254   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3255     // Cannot allocate more regions for the given purpose.
  3256     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3257     // Is there an alternative?
  3258     if (purpose != alt_purpose) {
  3259       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3260       // Has not the alternative region been aliased?
  3261       if (alloc_region != alt_region && alt_region != NULL) {
  3262         // Try to allocate in the alternative region.
  3263         if (par) {
  3264           block = alt_region->par_allocate(word_size);
  3265         } else {
  3266           block = alt_region->allocate(word_size);
  3268         // Make an alias.
  3269         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3270         if (block != NULL) {
  3271           return block;
  3273         retire_alloc_region(alt_region, par);
  3275       // Both the allocation region and the alternative one are full
  3276       // and aliased, replace them with a new allocation region.
  3277       purpose = alt_purpose;
  3278     } else {
  3279       set_gc_alloc_region(purpose, NULL);
  3280       return NULL;
  3284   // Now allocate a new region for allocation.
  3285   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3287   // let the caller handle alloc failure
  3288   if (alloc_region != NULL) {
  3290     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3291     assert(alloc_region->saved_mark_at_top(),
  3292            "Mark should have been saved already.");
  3293     // We used to assert that the region was zero-filled here, but no
  3294     // longer.
  3296     // This must be done last: once it's installed, other regions may
  3297     // allocate in it (without holding the lock.)
  3298     set_gc_alloc_region(purpose, alloc_region);
  3300     if (par) {
  3301       block = alloc_region->par_allocate(word_size);
  3302     } else {
  3303       block = alloc_region->allocate(word_size);
  3305     // Caller handles alloc failure.
  3306   } else {
  3307     // This sets other apis using the same old alloc region to NULL, also.
  3308     set_gc_alloc_region(purpose, NULL);
  3310   return block;  // May be NULL.
  3313 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3314   HeapWord* block = NULL;
  3315   size_t free_words;
  3316   do {
  3317     free_words = r->free()/HeapWordSize;
  3318     // If there's too little space, no one can allocate, so we're done.
  3319     if (free_words < (size_t)oopDesc::header_size()) return;
  3320     // Otherwise, try to claim it.
  3321     block = r->par_allocate(free_words);
  3322   } while (block == NULL);
  3323   fill_with_object(block, free_words);
  3326 #define use_local_bitmaps         1
  3327 #define verify_local_bitmaps      0
  3329 #ifndef PRODUCT
  3331 class GCLabBitMap;
  3332 class GCLabBitMapClosure: public BitMapClosure {
  3333 private:
  3334   ConcurrentMark* _cm;
  3335   GCLabBitMap*    _bitmap;
  3337 public:
  3338   GCLabBitMapClosure(ConcurrentMark* cm,
  3339                      GCLabBitMap* bitmap) {
  3340     _cm     = cm;
  3341     _bitmap = bitmap;
  3344   virtual bool do_bit(size_t offset);
  3345 };
  3347 #endif // PRODUCT
  3349 #define oop_buffer_length 256
  3351 class GCLabBitMap: public BitMap {
  3352 private:
  3353   ConcurrentMark* _cm;
  3355   int       _shifter;
  3356   size_t    _bitmap_word_covers_words;
  3358   // beginning of the heap
  3359   HeapWord* _heap_start;
  3361   // this is the actual start of the GCLab
  3362   HeapWord* _real_start_word;
  3364   // this is the actual end of the GCLab
  3365   HeapWord* _real_end_word;
  3367   // this is the first word, possibly located before the actual start
  3368   // of the GCLab, that corresponds to the first bit of the bitmap
  3369   HeapWord* _start_word;
  3371   // size of a GCLab in words
  3372   size_t _gclab_word_size;
  3374   static int shifter() {
  3375     return MinObjAlignment - 1;
  3378   // how many heap words does a single bitmap word corresponds to?
  3379   static size_t bitmap_word_covers_words() {
  3380     return BitsPerWord << shifter();
  3383   static size_t gclab_word_size() {
  3384     return ParallelGCG1AllocBufferSize / HeapWordSize;
  3387   static size_t bitmap_size_in_bits() {
  3388     size_t bits_in_bitmap = gclab_word_size() >> shifter();
  3389     // We are going to ensure that the beginning of a word in this
  3390     // bitmap also corresponds to the beginning of a word in the
  3391     // global marking bitmap. To handle the case where a GCLab
  3392     // starts from the middle of the bitmap, we need to add enough
  3393     // space (i.e. up to a bitmap word) to ensure that we have
  3394     // enough bits in the bitmap.
  3395     return bits_in_bitmap + BitsPerWord - 1;
  3397 public:
  3398   GCLabBitMap(HeapWord* heap_start)
  3399     : BitMap(bitmap_size_in_bits()),
  3400       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  3401       _shifter(shifter()),
  3402       _bitmap_word_covers_words(bitmap_word_covers_words()),
  3403       _heap_start(heap_start),
  3404       _gclab_word_size(gclab_word_size()),
  3405       _real_start_word(NULL),
  3406       _real_end_word(NULL),
  3407       _start_word(NULL)
  3409     guarantee( size_in_words() >= bitmap_size_in_words(),
  3410                "just making sure");
  3413   inline unsigned heapWordToOffset(HeapWord* addr) {
  3414     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  3415     assert(offset < size(), "offset should be within bounds");
  3416     return offset;
  3419   inline HeapWord* offsetToHeapWord(size_t offset) {
  3420     HeapWord* addr =  _start_word + (offset << _shifter);
  3421     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  3422     return addr;
  3425   bool fields_well_formed() {
  3426     bool ret1 = (_real_start_word == NULL) &&
  3427                 (_real_end_word == NULL) &&
  3428                 (_start_word == NULL);
  3429     if (ret1)
  3430       return true;
  3432     bool ret2 = _real_start_word >= _start_word &&
  3433       _start_word < _real_end_word &&
  3434       (_real_start_word + _gclab_word_size) == _real_end_word &&
  3435       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  3436                                                               > _real_end_word;
  3437     return ret2;
  3440   inline bool mark(HeapWord* addr) {
  3441     guarantee(use_local_bitmaps, "invariant");
  3442     assert(fields_well_formed(), "invariant");
  3444     if (addr >= _real_start_word && addr < _real_end_word) {
  3445       assert(!isMarked(addr), "should not have already been marked");
  3447       // first mark it on the bitmap
  3448       at_put(heapWordToOffset(addr), true);
  3450       return true;
  3451     } else {
  3452       return false;
  3456   inline bool isMarked(HeapWord* addr) {
  3457     guarantee(use_local_bitmaps, "invariant");
  3458     assert(fields_well_formed(), "invariant");
  3460     return at(heapWordToOffset(addr));
  3463   void set_buffer(HeapWord* start) {
  3464     guarantee(use_local_bitmaps, "invariant");
  3465     clear();
  3467     assert(start != NULL, "invariant");
  3468     _real_start_word = start;
  3469     _real_end_word   = start + _gclab_word_size;
  3471     size_t diff =
  3472       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  3473     _start_word = start - diff;
  3475     assert(fields_well_formed(), "invariant");
  3478 #ifndef PRODUCT
  3479   void verify() {
  3480     // verify that the marks have been propagated
  3481     GCLabBitMapClosure cl(_cm, this);
  3482     iterate(&cl);
  3484 #endif // PRODUCT
  3486   void retire() {
  3487     guarantee(use_local_bitmaps, "invariant");
  3488     assert(fields_well_formed(), "invariant");
  3490     if (_start_word != NULL) {
  3491       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  3493       // this means that the bitmap was set up for the GCLab
  3494       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  3496       mark_bitmap->mostly_disjoint_range_union(this,
  3497                                 0, // always start from the start of the bitmap
  3498                                 _start_word,
  3499                                 size_in_words());
  3500       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  3502 #ifndef PRODUCT
  3503       if (use_local_bitmaps && verify_local_bitmaps)
  3504         verify();
  3505 #endif // PRODUCT
  3506     } else {
  3507       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  3511   static size_t bitmap_size_in_words() {
  3512     return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
  3514 };
  3516 #ifndef PRODUCT
  3518 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3519   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3520   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3521   return true;
  3524 #endif // PRODUCT
  3526 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  3527 private:
  3528   bool        _retired;
  3529   bool        _during_marking;
  3530   GCLabBitMap _bitmap;
  3532 public:
  3533   G1ParGCAllocBuffer() :
  3534     ParGCAllocBuffer(ParallelGCG1AllocBufferSize / HeapWordSize),
  3535     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  3536     _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
  3537     _retired(false)
  3538   { }
  3540   inline bool mark(HeapWord* addr) {
  3541     guarantee(use_local_bitmaps, "invariant");
  3542     assert(_during_marking, "invariant");
  3543     return _bitmap.mark(addr);
  3546   inline void set_buf(HeapWord* buf) {
  3547     if (use_local_bitmaps && _during_marking)
  3548       _bitmap.set_buffer(buf);
  3549     ParGCAllocBuffer::set_buf(buf);
  3550     _retired = false;
  3553   inline void retire(bool end_of_gc, bool retain) {
  3554     if (_retired)
  3555       return;
  3556     if (use_local_bitmaps && _during_marking) {
  3557       _bitmap.retire();
  3559     ParGCAllocBuffer::retire(end_of_gc, retain);
  3560     _retired = true;
  3562 };
  3565 class G1ParScanThreadState : public StackObj {
  3566 protected:
  3567   G1CollectedHeap* _g1h;
  3568   RefToScanQueue*  _refs;
  3569   DirtyCardQueue   _dcq;
  3570   CardTableModRefBS* _ct_bs;
  3571   G1RemSet* _g1_rem;
  3573   typedef GrowableArray<oop*> OverflowQueue;
  3574   OverflowQueue* _overflowed_refs;
  3576   G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
  3577   ageTable           _age_table;
  3579   size_t           _alloc_buffer_waste;
  3580   size_t           _undo_waste;
  3582   OopsInHeapRegionClosure*      _evac_failure_cl;
  3583   G1ParScanHeapEvacClosure*     _evac_cl;
  3584   G1ParScanPartialArrayClosure* _partial_scan_cl;
  3586   int _hash_seed;
  3587   int _queue_num;
  3589   int _term_attempts;
  3590 #if G1_DETAILED_STATS
  3591   int _pushes, _pops, _steals, _steal_attempts;
  3592   int _overflow_pushes;
  3593 #endif
  3595   double _start;
  3596   double _start_strong_roots;
  3597   double _strong_roots_time;
  3598   double _start_term;
  3599   double _term_time;
  3601   // Map from young-age-index (0 == not young, 1 is youngest) to
  3602   // surviving words. base is what we get back from the malloc call
  3603   size_t* _surviving_young_words_base;
  3604   // this points into the array, as we use the first few entries for padding
  3605   size_t* _surviving_young_words;
  3607 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
  3609   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  3611   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  3613   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  3614   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  3616   void immediate_rs_update(HeapRegion* from, oop* p, int tid) {
  3617     _g1_rem->par_write_ref(from, p, tid);
  3620   void deferred_rs_update(HeapRegion* from, oop* p, int tid) {
  3621     // If the new value of the field points to the same region or
  3622     // is the to-space, we don't need to include it in the Rset updates.
  3623     if (!from->is_in_reserved(*p) && !from->is_survivor()) {
  3624       size_t card_index = ctbs()->index_for(p);
  3625       // If the card hasn't been added to the buffer, do it.
  3626       if (ctbs()->mark_card_deferred(card_index)) {
  3627         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  3632 public:
  3633   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3634     : _g1h(g1h),
  3635       _refs(g1h->task_queue(queue_num)),
  3636       _dcq(&g1h->dirty_card_queue_set()),
  3637       _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3638       _g1_rem(g1h->g1_rem_set()),
  3639       _hash_seed(17), _queue_num(queue_num),
  3640       _term_attempts(0),
  3641       _age_table(false),
  3642 #if G1_DETAILED_STATS
  3643       _pushes(0), _pops(0), _steals(0),
  3644       _steal_attempts(0),  _overflow_pushes(0),
  3645 #endif
  3646       _strong_roots_time(0), _term_time(0),
  3647       _alloc_buffer_waste(0), _undo_waste(0)
  3649     // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3650     // we "sacrifice" entry 0 to keep track of surviving bytes for
  3651     // non-young regions (where the age is -1)
  3652     // We also add a few elements at the beginning and at the end in
  3653     // an attempt to eliminate cache contention
  3654     size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3655     size_t array_length = PADDING_ELEM_NUM +
  3656                           real_length +
  3657                           PADDING_ELEM_NUM;
  3658     _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3659     if (_surviving_young_words_base == NULL)
  3660       vm_exit_out_of_memory(array_length * sizeof(size_t),
  3661                             "Not enough space for young surv histo.");
  3662     _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3663     memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3665     _overflowed_refs = new OverflowQueue(10);
  3667     _start = os::elapsedTime();
  3670   ~G1ParScanThreadState() {
  3671     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  3674   RefToScanQueue*   refs()            { return _refs;             }
  3675   OverflowQueue*    overflowed_refs() { return _overflowed_refs;  }
  3676   ageTable*         age_table()       { return &_age_table;       }
  3678   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  3679     return &_alloc_buffers[purpose];
  3682   size_t alloc_buffer_waste()                    { return _alloc_buffer_waste; }
  3683   size_t undo_waste()                            { return _undo_waste; }
  3685   void push_on_queue(oop* ref) {
  3686     assert(ref != NULL, "invariant");
  3687     assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), "invariant");
  3689     if (!refs()->push(ref)) {
  3690       overflowed_refs()->push(ref);
  3691       IF_G1_DETAILED_STATS(note_overflow_push());
  3692     } else {
  3693       IF_G1_DETAILED_STATS(note_push());
  3697   void pop_from_queue(oop*& ref) {
  3698     if (!refs()->pop_local(ref)) {
  3699       ref = NULL;
  3700     } else {
  3701       assert(ref != NULL, "invariant");
  3702       assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref),
  3703              "invariant");
  3705       IF_G1_DETAILED_STATS(note_pop());
  3709   void pop_from_overflow_queue(oop*& ref) {
  3710     ref = overflowed_refs()->pop();
  3713   int refs_to_scan()                             { return refs()->size();                 }
  3714   int overflowed_refs_to_scan()                  { return overflowed_refs()->length();    }
  3716   void update_rs(HeapRegion* from, oop* p, int tid) {
  3717     if (G1DeferredRSUpdate) {
  3718       deferred_rs_update(from, p, tid);
  3719     } else {
  3720       immediate_rs_update(from, p, tid);
  3724   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  3726     HeapWord* obj = NULL;
  3727     if (word_sz * 100 <
  3728         (size_t)(ParallelGCG1AllocBufferSize / HeapWordSize) *
  3729                                                   ParallelGCBufferWastePct) {
  3730       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  3731       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  3732       alloc_buf->retire(false, false);
  3734       HeapWord* buf =
  3735         _g1h->par_allocate_during_gc(purpose, ParallelGCG1AllocBufferSize / HeapWordSize);
  3736       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  3737       // Otherwise.
  3738       alloc_buf->set_buf(buf);
  3740       obj = alloc_buf->allocate(word_sz);
  3741       assert(obj != NULL, "buffer was definitely big enough...");
  3742     } else {
  3743       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  3745     return obj;
  3748   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  3749     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  3750     if (obj != NULL) return obj;
  3751     return allocate_slow(purpose, word_sz);
  3754   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  3755     if (alloc_buffer(purpose)->contains(obj)) {
  3756       guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  3757                 "should contain whole object");
  3758       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  3759     } else {
  3760       CollectedHeap::fill_with_object(obj, word_sz);
  3761       add_to_undo_waste(word_sz);
  3765   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  3766     _evac_failure_cl = evac_failure_cl;
  3768   OopsInHeapRegionClosure* evac_failure_closure() {
  3769     return _evac_failure_cl;
  3772   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  3773     _evac_cl = evac_cl;
  3776   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  3777     _partial_scan_cl = partial_scan_cl;
  3780   int* hash_seed() { return &_hash_seed; }
  3781   int  queue_num() { return _queue_num; }
  3783   int term_attempts()   { return _term_attempts; }
  3784   void note_term_attempt()  { _term_attempts++; }
  3786 #if G1_DETAILED_STATS
  3787   int pushes()          { return _pushes; }
  3788   int pops()            { return _pops; }
  3789   int steals()          { return _steals; }
  3790   int steal_attempts()  { return _steal_attempts; }
  3791   int overflow_pushes() { return _overflow_pushes; }
  3793   void note_push()          { _pushes++; }
  3794   void note_pop()           { _pops++; }
  3795   void note_steal()         { _steals++; }
  3796   void note_steal_attempt() { _steal_attempts++; }
  3797   void note_overflow_push() { _overflow_pushes++; }
  3798 #endif
  3800   void start_strong_roots() {
  3801     _start_strong_roots = os::elapsedTime();
  3803   void end_strong_roots() {
  3804     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  3806   double strong_roots_time() { return _strong_roots_time; }
  3808   void start_term_time() {
  3809     note_term_attempt();
  3810     _start_term = os::elapsedTime();
  3812   void end_term_time() {
  3813     _term_time += (os::elapsedTime() - _start_term);
  3815   double term_time() { return _term_time; }
  3817   double elapsed() {
  3818     return os::elapsedTime() - _start;
  3821   size_t* surviving_young_words() {
  3822     // We add on to hide entry 0 which accumulates surviving words for
  3823     // age -1 regions (i.e. non-young ones)
  3824     return _surviving_young_words;
  3827   void retire_alloc_buffers() {
  3828     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3829       size_t waste = _alloc_buffers[ap].words_remaining();
  3830       add_to_alloc_buffer_waste(waste);
  3831       _alloc_buffers[ap].retire(true, false);
  3835 private:
  3836   void deal_with_reference(oop* ref_to_scan) {
  3837     if (has_partial_array_mask(ref_to_scan)) {
  3838       _partial_scan_cl->do_oop_nv(ref_to_scan);
  3839     } else {
  3840       // Note: we can use "raw" versions of "region_containing" because
  3841       // "obj_to_scan" is definitely in the heap, and is not in a
  3842       // humongous region.
  3843       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  3844       _evac_cl->set_region(r);
  3845       _evac_cl->do_oop_nv(ref_to_scan);
  3849 public:
  3850   void trim_queue() {
  3851     // I've replicated the loop twice, first to drain the overflow
  3852     // queue, second to drain the task queue. This is better than
  3853     // having a single loop, which checks both conditions and, inside
  3854     // it, either pops the overflow queue or the task queue, as each
  3855     // loop is tighter. Also, the decision to drain the overflow queue
  3856     // first is not arbitrary, as the overflow queue is not visible
  3857     // to the other workers, whereas the task queue is. So, we want to
  3858     // drain the "invisible" entries first, while allowing the other
  3859     // workers to potentially steal the "visible" entries.
  3861     while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
  3862       while (overflowed_refs_to_scan() > 0) {
  3863         oop *ref_to_scan = NULL;
  3864         pop_from_overflow_queue(ref_to_scan);
  3865         assert(ref_to_scan != NULL, "invariant");
  3866         // We shouldn't have pushed it on the queue if it was not
  3867         // pointing into the CSet.
  3868         assert(ref_to_scan != NULL, "sanity");
  3869         assert(has_partial_array_mask(ref_to_scan) ||
  3870                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
  3872         deal_with_reference(ref_to_scan);
  3875       while (refs_to_scan() > 0) {
  3876         oop *ref_to_scan = NULL;
  3877         pop_from_queue(ref_to_scan);
  3879         if (ref_to_scan != NULL) {
  3880           // We shouldn't have pushed it on the queue if it was not
  3881           // pointing into the CSet.
  3882           assert(has_partial_array_mask(ref_to_scan) ||
  3883                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
  3885           deal_with_reference(ref_to_scan);
  3890 };
  3892 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  3893   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  3894   _par_scan_state(par_scan_state) { }
  3896 // This closure is applied to the fields of the objects that have just been copied.
  3897 // Should probably be made inline and moved in g1OopClosures.inline.hpp.
  3898 void G1ParScanClosure::do_oop_nv(oop* p) {
  3899   oop obj = *p;
  3901   if (obj != NULL) {
  3902     if (_g1->in_cset_fast_test(obj)) {
  3903       // We're not going to even bother checking whether the object is
  3904       // already forwarded or not, as this usually causes an immediate
  3905       // stall. We'll try to prefetch the object (for write, given that
  3906       // we might need to install the forwarding reference) and we'll
  3907       // get back to it when pop it from the queue
  3908       Prefetch::write(obj->mark_addr(), 0);
  3909       Prefetch::read(obj->mark_addr(), (HeapWordSize*2));
  3911       // slightly paranoid test; I'm trying to catch potential
  3912       // problems before we go into push_on_queue to know where the
  3913       // problem is coming from
  3914       assert(obj == *p, "the value of *p should not have changed");
  3915       _par_scan_state->push_on_queue(p);
  3916     } else {
  3917       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3922 void G1ParCopyHelper::mark_forwardee(oop* p) {
  3923   // This is called _after_ do_oop_work has been called, hence after
  3924   // the object has been relocated to its new location and *p points
  3925   // to its new location.
  3927   oop thisOop = *p;
  3928   if (thisOop != NULL) {
  3929     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)),
  3930            "shouldn't still be in the CSet if evacuation didn't fail.");
  3931     HeapWord* addr = (HeapWord*)thisOop;
  3932     if (_g1->is_in_g1_reserved(addr))
  3933       _cm->grayRoot(oop(addr));
  3937 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  3938   size_t    word_sz = old->size();
  3939   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  3940   // +1 to make the -1 indexes valid...
  3941   int       young_index = from_region->young_index_in_cset()+1;
  3942   assert( (from_region->is_young() && young_index > 0) ||
  3943           (!from_region->is_young() && young_index == 0), "invariant" );
  3944   G1CollectorPolicy* g1p = _g1->g1_policy();
  3945   markOop m = old->mark();
  3946   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  3947                                            : m->age();
  3948   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  3949                                                              word_sz);
  3950   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  3951   oop       obj     = oop(obj_ptr);
  3953   if (obj_ptr == NULL) {
  3954     // This will either forward-to-self, or detect that someone else has
  3955     // installed a forwarding pointer.
  3956     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  3957     return _g1->handle_evacuation_failure_par(cl, old);
  3960   // We're going to allocate linearly, so might as well prefetch ahead.
  3961   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  3963   oop forward_ptr = old->forward_to_atomic(obj);
  3964   if (forward_ptr == NULL) {
  3965     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  3966     if (g1p->track_object_age(alloc_purpose)) {
  3967       // We could simply do obj->incr_age(). However, this causes a
  3968       // performance issue. obj->incr_age() will first check whether
  3969       // the object has a displaced mark by checking its mark word;
  3970       // getting the mark word from the new location of the object
  3971       // stalls. So, given that we already have the mark word and we
  3972       // are about to install it anyway, it's better to increase the
  3973       // age on the mark word, when the object does not have a
  3974       // displaced mark word. We're not expecting many objects to have
  3975       // a displaced marked word, so that case is not optimized
  3976       // further (it could be...) and we simply call obj->incr_age().
  3978       if (m->has_displaced_mark_helper()) {
  3979         // in this case, we have to install the mark word first,
  3980         // otherwise obj looks to be forwarded (the old mark word,
  3981         // which contains the forward pointer, was copied)
  3982         obj->set_mark(m);
  3983         obj->incr_age();
  3984       } else {
  3985         m = m->incr_age();
  3986         obj->set_mark(m);
  3988       _par_scan_state->age_table()->add(obj, word_sz);
  3989     } else {
  3990       obj->set_mark(m);
  3993     // preserve "next" mark bit
  3994     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  3995       if (!use_local_bitmaps ||
  3996           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  3997         // if we couldn't mark it on the local bitmap (this happens when
  3998         // the object was not allocated in the GCLab), we have to bite
  3999         // the bullet and do the standard parallel mark
  4000         _cm->markAndGrayObjectIfNecessary(obj);
  4002 #if 1
  4003       if (_g1->isMarkedNext(old)) {
  4004         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4006 #endif
  4009     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4010     surv_young_words[young_index] += word_sz;
  4012     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4013       arrayOop(old)->set_length(0);
  4014       _par_scan_state->push_on_queue(set_partial_array_mask(old));
  4015     } else {
  4016       // No point in using the slower heap_region_containing() method,
  4017       // given that we know obj is in the heap.
  4018       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4019       obj->oop_iterate_backwards(_scanner);
  4021   } else {
  4022     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4023     obj = forward_ptr;
  4025   return obj;
  4028 template<bool do_gen_barrier, G1Barrier barrier,
  4029          bool do_mark_forwardee, bool skip_cset_test>
  4030 void G1ParCopyClosure<do_gen_barrier, barrier,
  4031                       do_mark_forwardee, skip_cset_test>::do_oop_work(oop* p) {
  4032   oop obj = *p;
  4033   assert(barrier != G1BarrierRS || obj != NULL,
  4034          "Precondition: G1BarrierRS implies obj is nonNull");
  4036   // The only time we skip the cset test is when we're scanning
  4037   // references popped from the queue. And we only push on the queue
  4038   // references that we know point into the cset, so no point in
  4039   // checking again. But we'll leave an assert here for peace of mind.
  4040   assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
  4042   // here the null check is implicit in the cset_fast_test() test
  4043   if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
  4044 #if G1_REM_SET_LOGGING
  4045     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  4046                            "into CS.", p, (void*) obj);
  4047 #endif
  4048     if (obj->is_forwarded()) {
  4049       *p = obj->forwardee();
  4050     } else {
  4051       *p = copy_to_survivor_space(obj);
  4053     // When scanning the RS, we only care about objs in CS.
  4054     if (barrier == G1BarrierRS) {
  4055       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4059   // When scanning moved objs, must look at all oops.
  4060   if (barrier == G1BarrierEvac && obj != NULL) {
  4061     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4064   if (do_gen_barrier && obj != NULL) {
  4065     par_do_barrier(p);
  4069 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
  4071 template<class T> void G1ParScanPartialArrayClosure::process_array_chunk(
  4072   oop obj, int start, int end) {
  4073   // process our set of indices (include header in first chunk)
  4074   assert(start < end, "invariant");
  4075   T* const base      = (T*)objArrayOop(obj)->base();
  4076   T* const start_addr = (start == 0) ? (T*) obj : base + start;
  4077   T* const end_addr   = base + end;
  4078   MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
  4079   _scanner.set_region(_g1->heap_region_containing(obj));
  4080   obj->oop_iterate(&_scanner, mr);
  4083 void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) {
  4084   assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops");
  4085   assert(has_partial_array_mask(p), "invariant");
  4086   oop old = clear_partial_array_mask(p);
  4087   assert(old->is_objArray(), "must be obj array");
  4088   assert(old->is_forwarded(), "must be forwarded");
  4089   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4091   objArrayOop obj = objArrayOop(old->forwardee());
  4092   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4093   // Process ParGCArrayScanChunk elements now
  4094   // and push the remainder back onto queue
  4095   int start     = arrayOop(old)->length();
  4096   int end       = obj->length();
  4097   int remainder = end - start;
  4098   assert(start <= end, "just checking");
  4099   if (remainder > 2 * ParGCArrayScanChunk) {
  4100     // Test above combines last partial chunk with a full chunk
  4101     end = start + ParGCArrayScanChunk;
  4102     arrayOop(old)->set_length(end);
  4103     // Push remainder.
  4104     _par_scan_state->push_on_queue(set_partial_array_mask(old));
  4105   } else {
  4106     // Restore length so that the heap remains parsable in
  4107     // case of evacuation failure.
  4108     arrayOop(old)->set_length(end);
  4111   // process our set of indices (include header in first chunk)
  4112   process_array_chunk<oop>(obj, start, end);
  4115 int G1ScanAndBalanceClosure::_nq = 0;
  4117 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4118 protected:
  4119   G1CollectedHeap*              _g1h;
  4120   G1ParScanThreadState*         _par_scan_state;
  4121   RefToScanQueueSet*            _queues;
  4122   ParallelTaskTerminator*       _terminator;
  4124   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4125   RefToScanQueueSet*      queues()         { return _queues; }
  4126   ParallelTaskTerminator* terminator()     { return _terminator; }
  4128 public:
  4129   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4130                                 G1ParScanThreadState* par_scan_state,
  4131                                 RefToScanQueueSet* queues,
  4132                                 ParallelTaskTerminator* terminator)
  4133     : _g1h(g1h), _par_scan_state(par_scan_state),
  4134       _queues(queues), _terminator(terminator) {}
  4136   void do_void() {
  4137     G1ParScanThreadState* pss = par_scan_state();
  4138     while (true) {
  4139       oop* ref_to_scan;
  4140       pss->trim_queue();
  4141       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
  4142       if (queues()->steal(pss->queue_num(),
  4143                           pss->hash_seed(),
  4144                           ref_to_scan)) {
  4145         IF_G1_DETAILED_STATS(pss->note_steal());
  4147         // slightly paranoid tests; I'm trying to catch potential
  4148         // problems before we go into push_on_queue to know where the
  4149         // problem is coming from
  4150         assert(ref_to_scan != NULL, "invariant");
  4151         assert(has_partial_array_mask(ref_to_scan) ||
  4152                                    _g1h->obj_in_cs(*ref_to_scan), "invariant");
  4153         pss->push_on_queue(ref_to_scan);
  4154         continue;
  4156       pss->start_term_time();
  4157       if (terminator()->offer_termination()) break;
  4158       pss->end_term_time();
  4160     pss->end_term_time();
  4161     pss->retire_alloc_buffers();
  4163 };
  4165 class G1ParTask : public AbstractGangTask {
  4166 protected:
  4167   G1CollectedHeap*       _g1h;
  4168   RefToScanQueueSet      *_queues;
  4169   ParallelTaskTerminator _terminator;
  4171   Mutex _stats_lock;
  4172   Mutex* stats_lock() { return &_stats_lock; }
  4174   size_t getNCards() {
  4175     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4176       / G1BlockOffsetSharedArray::N_bytes;
  4179 public:
  4180   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4181     : AbstractGangTask("G1 collection"),
  4182       _g1h(g1h),
  4183       _queues(task_queues),
  4184       _terminator(workers, _queues),
  4185       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4186   {}
  4188   RefToScanQueueSet* queues() { return _queues; }
  4190   RefToScanQueue *work_queue(int i) {
  4191     return queues()->queue(i);
  4194   void work(int i) {
  4195     ResourceMark rm;
  4196     HandleMark   hm;
  4198     G1ParScanThreadState            pss(_g1h, i);
  4199     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  4200     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  4201     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  4203     pss.set_evac_closure(&scan_evac_cl);
  4204     pss.set_evac_failure_closure(&evac_failure_cl);
  4205     pss.set_partial_scan_closure(&partial_scan_cl);
  4207     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  4208     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  4209     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  4211     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4212     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4213     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4215     OopsInHeapRegionClosure        *scan_root_cl;
  4216     OopsInHeapRegionClosure        *scan_perm_cl;
  4217     OopsInHeapRegionClosure        *scan_so_cl;
  4219     if (_g1h->g1_policy()->should_initiate_conc_mark()) {
  4220       scan_root_cl = &scan_mark_root_cl;
  4221       scan_perm_cl = &scan_mark_perm_cl;
  4222       scan_so_cl   = &scan_mark_heap_rs_cl;
  4223     } else {
  4224       scan_root_cl = &only_scan_root_cl;
  4225       scan_perm_cl = &only_scan_perm_cl;
  4226       scan_so_cl   = &only_scan_heap_rs_cl;
  4229     pss.start_strong_roots();
  4230     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4231                                   SharedHeap::SO_AllClasses,
  4232                                   scan_root_cl,
  4233                                   &only_scan_heap_rs_cl,
  4234                                   scan_so_cl,
  4235                                   scan_perm_cl,
  4236                                   i);
  4237     pss.end_strong_roots();
  4239       double start = os::elapsedTime();
  4240       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4241       evac.do_void();
  4242       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4243       double term_ms = pss.term_time()*1000.0;
  4244       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4245       _g1h->g1_policy()->record_termination_time(i, term_ms);
  4247     if (G1UseSurvivorSpace) {
  4248       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4250     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4252     // Clean up any par-expanded rem sets.
  4253     HeapRegionRemSet::par_cleanup();
  4255     MutexLocker x(stats_lock());
  4256     if (ParallelGCVerbose) {
  4257       gclog_or_tty->print("Thread %d complete:\n", i);
  4258 #if G1_DETAILED_STATS
  4259       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
  4260                           pss.pushes(),
  4261                           pss.pops(),
  4262                           pss.overflow_pushes(),
  4263                           pss.steals(),
  4264                           pss.steal_attempts());
  4265 #endif
  4266       double elapsed      = pss.elapsed();
  4267       double strong_roots = pss.strong_roots_time();
  4268       double term         = pss.term_time();
  4269       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
  4270                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
  4271                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
  4272                           elapsed * 1000.0,
  4273                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
  4274                           term * 1000.0, (term*100.0/elapsed),
  4275                           pss.term_attempts());
  4276       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
  4277       gclog_or_tty->print("  Waste: %8dK\n"
  4278                  "    Alloc Buffer: %8dK\n"
  4279                  "    Undo: %8dK\n",
  4280                  (total_waste * HeapWordSize) / K,
  4281                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
  4282                  (pss.undo_waste() * HeapWordSize) / K);
  4285     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  4286     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  4288 };
  4290 // *** Common G1 Evacuation Stuff
  4292 class G1CountClosure: public OopsInHeapRegionClosure {
  4293 public:
  4294   int n;
  4295   G1CountClosure() : n(0) {}
  4296   void do_oop(narrowOop* p) {
  4297     guarantee(false, "NYI");
  4299   void do_oop(oop* p) {
  4300     oop obj = *p;
  4301     assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj),
  4302            "Rem set closure called on non-rem-set pointer.");
  4303     n++;
  4305 };
  4307 static G1CountClosure count_closure;
  4309 void
  4310 G1CollectedHeap::
  4311 g1_process_strong_roots(bool collecting_perm_gen,
  4312                         SharedHeap::ScanningOption so,
  4313                         OopClosure* scan_non_heap_roots,
  4314                         OopsInHeapRegionClosure* scan_rs,
  4315                         OopsInHeapRegionClosure* scan_so,
  4316                         OopsInGenClosure* scan_perm,
  4317                         int worker_i) {
  4318   // First scan the strong roots, including the perm gen.
  4319   double ext_roots_start = os::elapsedTime();
  4320   double closure_app_time_sec = 0.0;
  4322   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4323   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4324   buf_scan_perm.set_generation(perm_gen());
  4326   process_strong_roots(collecting_perm_gen, so,
  4327                        &buf_scan_non_heap_roots,
  4328                        &buf_scan_perm);
  4329   // Finish up any enqueued closure apps.
  4330   buf_scan_non_heap_roots.done();
  4331   buf_scan_perm.done();
  4332   double ext_roots_end = os::elapsedTime();
  4333   g1_policy()->reset_obj_copy_time(worker_i);
  4334   double obj_copy_time_sec =
  4335     buf_scan_non_heap_roots.closure_app_seconds() +
  4336     buf_scan_perm.closure_app_seconds();
  4337   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4338   double ext_root_time_ms =
  4339     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4340   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4342   // Scan strong roots in mark stack.
  4343   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4344     concurrent_mark()->oops_do(scan_non_heap_roots);
  4346   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4347   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4349   // XXX What should this be doing in the parallel case?
  4350   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4351   if (G1VerifyRemSet) {
  4352     // :::: FIXME ::::
  4353     // The stupid remembered set doesn't know how to filter out dead
  4354     // objects, which the smart one does, and so when it is created
  4355     // and then compared the number of entries in each differs and
  4356     // the verification code fails.
  4357     guarantee(false, "verification code is broken, see note");
  4359     // Let's make sure that the current rem set agrees with the stupidest
  4360     // one possible!
  4361     bool refs_enabled = ref_processor()->discovery_enabled();
  4362     if (refs_enabled) ref_processor()->disable_discovery();
  4363     StupidG1RemSet stupid(this);
  4364     count_closure.n = 0;
  4365     stupid.oops_into_collection_set_do(&count_closure, worker_i);
  4366     int stupid_n = count_closure.n;
  4367     count_closure.n = 0;
  4368     g1_rem_set()->oops_into_collection_set_do(&count_closure, worker_i);
  4369     guarantee(count_closure.n == stupid_n, "Old and new rem sets differ.");
  4370     gclog_or_tty->print_cr("\nFound %d pointers in heap RS.", count_closure.n);
  4371     if (refs_enabled) ref_processor()->enable_discovery();
  4373   if (scan_so != NULL) {
  4374     scan_scan_only_set(scan_so, worker_i);
  4376   // Now scan the complement of the collection set.
  4377   if (scan_rs != NULL) {
  4378     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4380   // Finish with the ref_processor roots.
  4381   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4382     ref_processor()->oops_do(scan_non_heap_roots);
  4384   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4385   _process_strong_tasks->all_tasks_completed();
  4388 void
  4389 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
  4390                                        OopsInHeapRegionClosure* oc,
  4391                                        int worker_i) {
  4392   HeapWord* startAddr = r->bottom();
  4393   HeapWord* endAddr = r->used_region().end();
  4395   oc->set_region(r);
  4397   HeapWord* p = r->bottom();
  4398   HeapWord* t = r->top();
  4399   guarantee( p == r->next_top_at_mark_start(), "invariant" );
  4400   while (p < t) {
  4401     oop obj = oop(p);
  4402     p += obj->oop_iterate(oc);
  4406 void
  4407 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
  4408                                     int worker_i) {
  4409   double start = os::elapsedTime();
  4411   BufferingOopsInHeapRegionClosure boc(oc);
  4413   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
  4414   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
  4416   OopsInHeapRegionClosure *foc;
  4417   if (g1_policy()->should_initiate_conc_mark())
  4418     foc = &scan_and_mark;
  4419   else
  4420     foc = &scan_only;
  4422   HeapRegion* hr;
  4423   int n = 0;
  4424   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
  4425     scan_scan_only_region(hr, foc, worker_i);
  4426     ++n;
  4428   boc.done();
  4430   double closure_app_s = boc.closure_app_seconds();
  4431   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
  4432   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
  4433   g1_policy()->record_scan_only_time(worker_i, ms, n);
  4436 void
  4437 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4438                                        OopClosure* non_root_closure) {
  4439   SharedHeap::process_weak_roots(root_closure, non_root_closure);
  4443 class SaveMarksClosure: public HeapRegionClosure {
  4444 public:
  4445   bool doHeapRegion(HeapRegion* r) {
  4446     r->save_marks();
  4447     return false;
  4449 };
  4451 void G1CollectedHeap::save_marks() {
  4452   if (ParallelGCThreads == 0) {
  4453     SaveMarksClosure sm;
  4454     heap_region_iterate(&sm);
  4456   // We do this even in the parallel case
  4457   perm_gen()->save_marks();
  4460 void G1CollectedHeap::evacuate_collection_set() {
  4461   set_evacuation_failed(false);
  4463   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4464   concurrent_g1_refine()->set_use_cache(false);
  4465   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4466   set_par_threads(n_workers);
  4467   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4469   init_for_evac_failure(NULL);
  4471   change_strong_roots_parity();  // In preparation for parallel strong roots.
  4472   rem_set()->prepare_for_younger_refs_iterate(true);
  4474   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4475   double start_par = os::elapsedTime();
  4476   if (ParallelGCThreads > 0) {
  4477     // The individual threads will set their evac-failure closures.
  4478     workers()->run_task(&g1_par_task);
  4479   } else {
  4480     g1_par_task.work(0);
  4483   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4484   g1_policy()->record_par_time(par_time);
  4485   set_par_threads(0);
  4486   // Is this the right thing to do here?  We don't save marks
  4487   // on individual heap regions when we allocate from
  4488   // them in parallel, so this seems like the correct place for this.
  4489   retire_all_alloc_regions();
  4491     G1IsAliveClosure is_alive(this);
  4492     G1KeepAliveClosure keep_alive(this);
  4493     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4495   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4497   concurrent_g1_refine()->set_use_cache(true);
  4499   finalize_for_evac_failure();
  4501   // Must do this before removing self-forwarding pointers, which clears
  4502   // the per-region evac-failure flags.
  4503   concurrent_mark()->complete_marking_in_collection_set();
  4505   if (evacuation_failed()) {
  4506     remove_self_forwarding_pointers();
  4507     if (PrintGCDetails) {
  4508       gclog_or_tty->print(" (evacuation failed)");
  4509     } else if (PrintGC) {
  4510       gclog_or_tty->print("--");
  4514   if (G1DeferredRSUpdate) {
  4515     RedirtyLoggedCardTableEntryFastClosure redirty;
  4516     dirty_card_queue_set().set_closure(&redirty);
  4517     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4518     JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
  4519     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4522   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4525 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4526   size_t pre_used = 0;
  4527   size_t cleared_h_regions = 0;
  4528   size_t freed_regions = 0;
  4529   UncleanRegionList local_list;
  4531   HeapWord* start = hr->bottom();
  4532   HeapWord* end   = hr->prev_top_at_mark_start();
  4533   size_t used_bytes = hr->used();
  4534   size_t live_bytes = hr->max_live_bytes();
  4535   if (used_bytes > 0) {
  4536     guarantee( live_bytes <= used_bytes, "invariant" );
  4537   } else {
  4538     guarantee( live_bytes == 0, "invariant" );
  4541   size_t garbage_bytes = used_bytes - live_bytes;
  4542   if (garbage_bytes > 0)
  4543     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4545   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4546                    &local_list);
  4547   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4548                           &local_list);
  4551 void
  4552 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4553                                   size_t& pre_used,
  4554                                   size_t& cleared_h_regions,
  4555                                   size_t& freed_regions,
  4556                                   UncleanRegionList* list,
  4557                                   bool par) {
  4558   assert(!hr->popular(), "should not free popular regions");
  4559   pre_used += hr->used();
  4560   if (hr->isHumongous()) {
  4561     assert(hr->startsHumongous(),
  4562            "Only the start of a humongous region should be freed.");
  4563     int ind = _hrs->find(hr);
  4564     assert(ind != -1, "Should have an index.");
  4565     // Clear the start region.
  4566     hr->hr_clear(par, true /*clear_space*/);
  4567     list->insert_before_head(hr);
  4568     cleared_h_regions++;
  4569     freed_regions++;
  4570     // Clear any continued regions.
  4571     ind++;
  4572     while ((size_t)ind < n_regions()) {
  4573       HeapRegion* hrc = _hrs->at(ind);
  4574       if (!hrc->continuesHumongous()) break;
  4575       // Otherwise, does continue the H region.
  4576       assert(hrc->humongous_start_region() == hr, "Huh?");
  4577       hrc->hr_clear(par, true /*clear_space*/);
  4578       cleared_h_regions++;
  4579       freed_regions++;
  4580       list->insert_before_head(hrc);
  4581       ind++;
  4583   } else {
  4584     hr->hr_clear(par, true /*clear_space*/);
  4585     list->insert_before_head(hr);
  4586     freed_regions++;
  4587     // If we're using clear2, this should not be enabled.
  4588     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4592 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4593                                               size_t cleared_h_regions,
  4594                                               size_t freed_regions,
  4595                                               UncleanRegionList* list) {
  4596   if (list != NULL && list->sz() > 0) {
  4597     prepend_region_list_on_unclean_list(list);
  4599   // Acquire a lock, if we're parallel, to update possibly-shared
  4600   // variables.
  4601   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4603     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4604     _summary_bytes_used -= pre_used;
  4605     _num_humongous_regions -= (int) cleared_h_regions;
  4606     _free_regions += freed_regions;
  4611 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4612   while (list != NULL) {
  4613     guarantee( list->is_young(), "invariant" );
  4615     HeapWord* bottom = list->bottom();
  4616     HeapWord* end = list->end();
  4617     MemRegion mr(bottom, end);
  4618     ct_bs->dirty(mr);
  4620     list = list->get_next_young_region();
  4624 void G1CollectedHeap::cleanUpCardTable() {
  4625   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4626   double start = os::elapsedTime();
  4628   ct_bs->clear(_g1_committed);
  4630   // now, redirty the cards of the scan-only and survivor regions
  4631   // (it seemed faster to do it this way, instead of iterating over
  4632   // all regions and then clearing / dirtying as approprite)
  4633   dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
  4634   dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4636   double elapsed = os::elapsedTime() - start;
  4637   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4641 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4642   // First do any popular regions.
  4643   HeapRegion* hr;
  4644   while ((hr = popular_region_to_evac()) != NULL) {
  4645     evac_popular_region(hr);
  4647   // Now do heuristic pauses.
  4648   if (g1_policy()->should_do_collection_pause(word_size)) {
  4649     do_collection_pause();
  4653 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4654   double young_time_ms     = 0.0;
  4655   double non_young_time_ms = 0.0;
  4657   G1CollectorPolicy* policy = g1_policy();
  4659   double start_sec = os::elapsedTime();
  4660   bool non_young = true;
  4662   HeapRegion* cur = cs_head;
  4663   int age_bound = -1;
  4664   size_t rs_lengths = 0;
  4666   while (cur != NULL) {
  4667     if (non_young) {
  4668       if (cur->is_young()) {
  4669         double end_sec = os::elapsedTime();
  4670         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4671         non_young_time_ms += elapsed_ms;
  4673         start_sec = os::elapsedTime();
  4674         non_young = false;
  4676     } else {
  4677       if (!cur->is_on_free_list()) {
  4678         double end_sec = os::elapsedTime();
  4679         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4680         young_time_ms += elapsed_ms;
  4682         start_sec = os::elapsedTime();
  4683         non_young = true;
  4687     rs_lengths += cur->rem_set()->occupied();
  4689     HeapRegion* next = cur->next_in_collection_set();
  4690     assert(cur->in_collection_set(), "bad CS");
  4691     cur->set_next_in_collection_set(NULL);
  4692     cur->set_in_collection_set(false);
  4694     if (cur->is_young()) {
  4695       int index = cur->young_index_in_cset();
  4696       guarantee( index != -1, "invariant" );
  4697       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4698       size_t words_survived = _surviving_young_words[index];
  4699       cur->record_surv_words_in_group(words_survived);
  4700     } else {
  4701       int index = cur->young_index_in_cset();
  4702       guarantee( index == -1, "invariant" );
  4705     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4706             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4707             "invariant" );
  4709     if (!cur->evacuation_failed()) {
  4710       // And the region is empty.
  4711       assert(!cur->is_empty(),
  4712              "Should not have empty regions in a CS.");
  4713       free_region(cur);
  4714     } else {
  4715       guarantee( !cur->is_scan_only(), "should not be scan only" );
  4716       cur->uninstall_surv_rate_group();
  4717       if (cur->is_young())
  4718         cur->set_young_index_in_cset(-1);
  4719       cur->set_not_young();
  4720       cur->set_evacuation_failed(false);
  4722     cur = next;
  4725   policy->record_max_rs_lengths(rs_lengths);
  4726   policy->cset_regions_freed();
  4728   double end_sec = os::elapsedTime();
  4729   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4730   if (non_young)
  4731     non_young_time_ms += elapsed_ms;
  4732   else
  4733     young_time_ms += elapsed_ms;
  4735   policy->record_young_free_cset_time_ms(young_time_ms);
  4736   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4739 HeapRegion*
  4740 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4741   assert(ZF_mon->owned_by_self(), "Precondition");
  4742   HeapRegion* res = pop_unclean_region_list_locked();
  4743   if (res != NULL) {
  4744     assert(!res->continuesHumongous() &&
  4745            res->zero_fill_state() != HeapRegion::Allocated,
  4746            "Only free regions on unclean list.");
  4747     if (zero_filled) {
  4748       res->ensure_zero_filled_locked();
  4749       res->set_zero_fill_allocated();
  4752   return res;
  4755 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4756   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4757   return alloc_region_from_unclean_list_locked(zero_filled);
  4760 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4761   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4762   put_region_on_unclean_list_locked(r);
  4763   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4766 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4767   MutexLockerEx x(Cleanup_mon);
  4768   set_unclean_regions_coming_locked(b);
  4771 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4772   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4773   _unclean_regions_coming = b;
  4774   // Wake up mutator threads that might be waiting for completeCleanup to
  4775   // finish.
  4776   if (!b) Cleanup_mon->notify_all();
  4779 void G1CollectedHeap::wait_for_cleanup_complete() {
  4780   MutexLockerEx x(Cleanup_mon);
  4781   wait_for_cleanup_complete_locked();
  4784 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4785   assert(Cleanup_mon->owned_by_self(), "precondition");
  4786   while (_unclean_regions_coming) {
  4787     Cleanup_mon->wait();
  4791 void
  4792 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4793   assert(ZF_mon->owned_by_self(), "precondition.");
  4794   _unclean_region_list.insert_before_head(r);
  4797 void
  4798 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4799   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4800   prepend_region_list_on_unclean_list_locked(list);
  4801   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4804 void
  4805 G1CollectedHeap::
  4806 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4807   assert(ZF_mon->owned_by_self(), "precondition.");
  4808   _unclean_region_list.prepend_list(list);
  4811 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4812   assert(ZF_mon->owned_by_self(), "precondition.");
  4813   HeapRegion* res = _unclean_region_list.pop();
  4814   if (res != NULL) {
  4815     // Inform ZF thread that there's a new unclean head.
  4816     if (_unclean_region_list.hd() != NULL && should_zf())
  4817       ZF_mon->notify_all();
  4819   return res;
  4822 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4823   assert(ZF_mon->owned_by_self(), "precondition.");
  4824   return _unclean_region_list.hd();
  4828 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4829   assert(ZF_mon->owned_by_self(), "Precondition");
  4830   HeapRegion* r = peek_unclean_region_list_locked();
  4831   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4832     // Result of below must be equal to "r", since we hold the lock.
  4833     (void)pop_unclean_region_list_locked();
  4834     put_free_region_on_list_locked(r);
  4835     return true;
  4836   } else {
  4837     return false;
  4841 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4842   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4843   return move_cleaned_region_to_free_list_locked();
  4847 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  4848   assert(ZF_mon->owned_by_self(), "precondition.");
  4849   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4850   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  4851         "Regions on free list must be zero filled");
  4852   assert(!r->isHumongous(), "Must not be humongous.");
  4853   assert(r->is_empty(), "Better be empty");
  4854   assert(!r->is_on_free_list(),
  4855          "Better not already be on free list");
  4856   assert(!r->is_on_unclean_list(),
  4857          "Better not already be on unclean list");
  4858   r->set_on_free_list(true);
  4859   r->set_next_on_free_list(_free_region_list);
  4860   _free_region_list = r;
  4861   _free_region_list_size++;
  4862   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4865 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  4866   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4867   put_free_region_on_list_locked(r);
  4870 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  4871   assert(ZF_mon->owned_by_self(), "precondition.");
  4872   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4873   HeapRegion* res = _free_region_list;
  4874   if (res != NULL) {
  4875     _free_region_list = res->next_from_free_list();
  4876     _free_region_list_size--;
  4877     res->set_on_free_list(false);
  4878     res->set_next_on_free_list(NULL);
  4879     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4881   return res;
  4885 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  4886   // By self, or on behalf of self.
  4887   assert(Heap_lock->is_locked(), "Precondition");
  4888   HeapRegion* res = NULL;
  4889   bool first = true;
  4890   while (res == NULL) {
  4891     if (zero_filled || !first) {
  4892       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4893       res = pop_free_region_list_locked();
  4894       if (res != NULL) {
  4895         assert(!res->zero_fill_is_allocated(),
  4896                "No allocated regions on free list.");
  4897         res->set_zero_fill_allocated();
  4898       } else if (!first) {
  4899         break;  // We tried both, time to return NULL.
  4903     if (res == NULL) {
  4904       res = alloc_region_from_unclean_list(zero_filled);
  4906     assert(res == NULL ||
  4907            !zero_filled ||
  4908            res->zero_fill_is_allocated(),
  4909            "We must have allocated the region we're returning");
  4910     first = false;
  4912   return res;
  4915 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  4916   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4918     HeapRegion* prev = NULL;
  4919     HeapRegion* cur = _unclean_region_list.hd();
  4920     while (cur != NULL) {
  4921       HeapRegion* next = cur->next_from_unclean_list();
  4922       if (cur->zero_fill_is_allocated()) {
  4923         // Remove from the list.
  4924         if (prev == NULL) {
  4925           (void)_unclean_region_list.pop();
  4926         } else {
  4927           _unclean_region_list.delete_after(prev);
  4929         cur->set_on_unclean_list(false);
  4930         cur->set_next_on_unclean_list(NULL);
  4931       } else {
  4932         prev = cur;
  4934       cur = next;
  4936     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  4937            "Inv");
  4941     HeapRegion* prev = NULL;
  4942     HeapRegion* cur = _free_region_list;
  4943     while (cur != NULL) {
  4944       HeapRegion* next = cur->next_from_free_list();
  4945       if (cur->zero_fill_is_allocated()) {
  4946         // Remove from the list.
  4947         if (prev == NULL) {
  4948           _free_region_list = cur->next_from_free_list();
  4949         } else {
  4950           prev->set_next_on_free_list(cur->next_from_free_list());
  4952         cur->set_on_free_list(false);
  4953         cur->set_next_on_free_list(NULL);
  4954         _free_region_list_size--;
  4955       } else {
  4956         prev = cur;
  4958       cur = next;
  4960     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4964 bool G1CollectedHeap::verify_region_lists() {
  4965   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4966   return verify_region_lists_locked();
  4969 bool G1CollectedHeap::verify_region_lists_locked() {
  4970   HeapRegion* unclean = _unclean_region_list.hd();
  4971   while (unclean != NULL) {
  4972     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  4973     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  4974     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  4975               "Everything else is possible.");
  4976     unclean = unclean->next_from_unclean_list();
  4978   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  4980   HeapRegion* free_r = _free_region_list;
  4981   while (free_r != NULL) {
  4982     assert(free_r->is_on_free_list(), "Well, it is!");
  4983     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  4984     switch (free_r->zero_fill_state()) {
  4985     case HeapRegion::NotZeroFilled:
  4986     case HeapRegion::ZeroFilling:
  4987       guarantee(false, "Should not be on free list.");
  4988       break;
  4989     default:
  4990       // Everything else is possible.
  4991       break;
  4993     free_r = free_r->next_from_free_list();
  4995   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  4996   // If we didn't do an assertion...
  4997   return true;
  5000 size_t G1CollectedHeap::free_region_list_length() {
  5001   assert(ZF_mon->owned_by_self(), "precondition.");
  5002   size_t len = 0;
  5003   HeapRegion* cur = _free_region_list;
  5004   while (cur != NULL) {
  5005     len++;
  5006     cur = cur->next_from_free_list();
  5008   return len;
  5011 size_t G1CollectedHeap::unclean_region_list_length() {
  5012   assert(ZF_mon->owned_by_self(), "precondition.");
  5013   return _unclean_region_list.length();
  5016 size_t G1CollectedHeap::n_regions() {
  5017   return _hrs->length();
  5020 size_t G1CollectedHeap::max_regions() {
  5021   return
  5022     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  5023     HeapRegion::GrainBytes;
  5026 size_t G1CollectedHeap::free_regions() {
  5027   /* Possibly-expensive assert.
  5028   assert(_free_regions == count_free_regions(),
  5029          "_free_regions is off.");
  5030   */
  5031   return _free_regions;
  5034 bool G1CollectedHeap::should_zf() {
  5035   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  5038 class RegionCounter: public HeapRegionClosure {
  5039   size_t _n;
  5040 public:
  5041   RegionCounter() : _n(0) {}
  5042   bool doHeapRegion(HeapRegion* r) {
  5043     if (r->is_empty() && !r->popular()) {
  5044       assert(!r->isHumongous(), "H regions should not be empty.");
  5045       _n++;
  5047     return false;
  5049   int res() { return (int) _n; }
  5050 };
  5052 size_t G1CollectedHeap::count_free_regions() {
  5053   RegionCounter rc;
  5054   heap_region_iterate(&rc);
  5055   size_t n = rc.res();
  5056   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  5057     n--;
  5058   return n;
  5061 size_t G1CollectedHeap::count_free_regions_list() {
  5062   size_t n = 0;
  5063   size_t o = 0;
  5064   ZF_mon->lock_without_safepoint_check();
  5065   HeapRegion* cur = _free_region_list;
  5066   while (cur != NULL) {
  5067     cur = cur->next_from_free_list();
  5068     n++;
  5070   size_t m = unclean_region_list_length();
  5071   ZF_mon->unlock();
  5072   return n + m;
  5075 bool G1CollectedHeap::should_set_young_locked() {
  5076   assert(heap_lock_held_for_gc(),
  5077               "the heap lock should already be held by or for this thread");
  5078   return  (g1_policy()->in_young_gc_mode() &&
  5079            g1_policy()->should_add_next_region_to_young_list());
  5082 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5083   assert(heap_lock_held_for_gc(),
  5084               "the heap lock should already be held by or for this thread");
  5085   _young_list->push_region(hr);
  5086   g1_policy()->set_region_short_lived(hr);
  5089 class NoYoungRegionsClosure: public HeapRegionClosure {
  5090 private:
  5091   bool _success;
  5092 public:
  5093   NoYoungRegionsClosure() : _success(true) { }
  5094   bool doHeapRegion(HeapRegion* r) {
  5095     if (r->is_young()) {
  5096       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5097                              r->bottom(), r->end());
  5098       _success = false;
  5100     return false;
  5102   bool success() { return _success; }
  5103 };
  5105 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
  5106                                              bool check_sample) {
  5107   bool ret = true;
  5109   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
  5110   if (!ignore_scan_only_list) {
  5111     NoYoungRegionsClosure closure;
  5112     heap_region_iterate(&closure);
  5113     ret = ret && closure.success();
  5116   return ret;
  5119 void G1CollectedHeap::empty_young_list() {
  5120   assert(heap_lock_held_for_gc(),
  5121               "the heap lock should already be held by or for this thread");
  5122   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  5124   _young_list->empty_list();
  5127 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  5128   bool no_allocs = true;
  5129   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  5130     HeapRegion* r = _gc_alloc_regions[ap];
  5131     no_allocs = r == NULL || r->saved_mark_at_top();
  5133   return no_allocs;
  5136 void G1CollectedHeap::retire_all_alloc_regions() {
  5137   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  5138     HeapRegion* r = _gc_alloc_regions[ap];
  5139     if (r != NULL) {
  5140       // Check for aliases.
  5141       bool has_processed_alias = false;
  5142       for (int i = 0; i < ap; ++i) {
  5143         if (_gc_alloc_regions[i] == r) {
  5144           has_processed_alias = true;
  5145           break;
  5148       if (!has_processed_alias) {
  5149         retire_alloc_region(r, false /* par */);
  5156 // Done at the start of full GC.
  5157 void G1CollectedHeap::tear_down_region_lists() {
  5158   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5159   while (pop_unclean_region_list_locked() != NULL) ;
  5160   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  5161          "Postconditions of loop.")
  5162   while (pop_free_region_list_locked() != NULL) ;
  5163   assert(_free_region_list == NULL, "Postcondition of loop.");
  5164   if (_free_region_list_size != 0) {
  5165     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  5166     print();
  5168   assert(_free_region_list_size == 0, "Postconditions of loop.");
  5172 class RegionResetter: public HeapRegionClosure {
  5173   G1CollectedHeap* _g1;
  5174   int _n;
  5175 public:
  5176   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5177   bool doHeapRegion(HeapRegion* r) {
  5178     if (r->continuesHumongous()) return false;
  5179     if (r->top() > r->bottom()) {
  5180       if (r->top() < r->end()) {
  5181         Copy::fill_to_words(r->top(),
  5182                           pointer_delta(r->end(), r->top()));
  5184       r->set_zero_fill_allocated();
  5185     } else {
  5186       assert(r->is_empty(), "tautology");
  5187       if (r->popular()) {
  5188         if (r->zero_fill_state() != HeapRegion::Allocated) {
  5189           r->ensure_zero_filled_locked();
  5190           r->set_zero_fill_allocated();
  5192       } else {
  5193         _n++;
  5194         switch (r->zero_fill_state()) {
  5195         case HeapRegion::NotZeroFilled:
  5196         case HeapRegion::ZeroFilling:
  5197           _g1->put_region_on_unclean_list_locked(r);
  5198           break;
  5199         case HeapRegion::Allocated:
  5200           r->set_zero_fill_complete();
  5201           // no break; go on to put on free list.
  5202         case HeapRegion::ZeroFilled:
  5203           _g1->put_free_region_on_list_locked(r);
  5204           break;
  5208     return false;
  5211   int getFreeRegionCount() {return _n;}
  5212 };
  5214 // Done at the end of full GC.
  5215 void G1CollectedHeap::rebuild_region_lists() {
  5216   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5217   // This needs to go at the end of the full GC.
  5218   RegionResetter rs;
  5219   heap_region_iterate(&rs);
  5220   _free_regions = rs.getFreeRegionCount();
  5221   // Tell the ZF thread it may have work to do.
  5222   if (should_zf()) ZF_mon->notify_all();
  5225 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  5226   G1CollectedHeap* _g1;
  5227   int _n;
  5228 public:
  5229   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5230   bool doHeapRegion(HeapRegion* r) {
  5231     if (r->continuesHumongous()) return false;
  5232     if (r->top() > r->bottom()) {
  5233       // There are assertions in "set_zero_fill_needed()" below that
  5234       // require top() == bottom(), so this is technically illegal.
  5235       // We'll skirt the law here, by making that true temporarily.
  5236       DEBUG_ONLY(HeapWord* save_top = r->top();
  5237                  r->set_top(r->bottom()));
  5238       r->set_zero_fill_needed();
  5239       DEBUG_ONLY(r->set_top(save_top));
  5241     return false;
  5243 };
  5245 // Done at the start of full GC.
  5246 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  5247   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5248   // This needs to go at the end of the full GC.
  5249   UsedRegionsNeedZeroFillSetter rs;
  5250   heap_region_iterate(&rs);
  5253 class CountObjClosure: public ObjectClosure {
  5254   size_t _n;
  5255 public:
  5256   CountObjClosure() : _n(0) {}
  5257   void do_object(oop obj) { _n++; }
  5258   size_t n() { return _n; }
  5259 };
  5261 size_t G1CollectedHeap::pop_object_used_objs() {
  5262   size_t sum_objs = 0;
  5263   for (int i = 0; i < G1NumPopularRegions; i++) {
  5264     CountObjClosure cl;
  5265     _hrs->at(i)->object_iterate(&cl);
  5266     sum_objs += cl.n();
  5268   return sum_objs;
  5271 size_t G1CollectedHeap::pop_object_used_bytes() {
  5272   size_t sum_bytes = 0;
  5273   for (int i = 0; i < G1NumPopularRegions; i++) {
  5274     sum_bytes += _hrs->at(i)->used();
  5276   return sum_bytes;
  5280 static int nq = 0;
  5282 HeapWord* G1CollectedHeap::allocate_popular_object(size_t word_size) {
  5283   while (_cur_pop_hr_index < G1NumPopularRegions) {
  5284     HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
  5285     HeapWord* res = cur_pop_region->allocate(word_size);
  5286     if (res != NULL) {
  5287       // We account for popular objs directly in the used summary:
  5288       _summary_bytes_used += (word_size * HeapWordSize);
  5289       return res;
  5291     // Otherwise, try the next region (first making sure that we remember
  5292     // the last "top" value as the "next_top_at_mark_start", so that
  5293     // objects made popular during markings aren't automatically considered
  5294     // live).
  5295     cur_pop_region->note_end_of_copying();
  5296     // Otherwise, try the next region.
  5297     _cur_pop_hr_index++;
  5299   // XXX: For now !!!
  5300   vm_exit_out_of_memory(word_size,
  5301                         "Not enough pop obj space (To Be Fixed)");
  5302   return NULL;
  5305 class HeapRegionList: public CHeapObj {
  5306   public:
  5307   HeapRegion* hr;
  5308   HeapRegionList* next;
  5309 };
  5311 void G1CollectedHeap::schedule_popular_region_evac(HeapRegion* r) {
  5312   // This might happen during parallel GC, so protect by this lock.
  5313   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  5314   // We don't schedule regions whose evacuations are already pending, or
  5315   // are already being evacuated.
  5316   if (!r->popular_pending() && !r->in_collection_set()) {
  5317     r->set_popular_pending(true);
  5318     if (G1TracePopularity) {
  5319       gclog_or_tty->print_cr("Scheduling region "PTR_FORMAT" "
  5320                              "["PTR_FORMAT", "PTR_FORMAT") for pop-object evacuation.",
  5321                              r, r->bottom(), r->end());
  5323     HeapRegionList* hrl = new HeapRegionList;
  5324     hrl->hr = r;
  5325     hrl->next = _popular_regions_to_be_evacuated;
  5326     _popular_regions_to_be_evacuated = hrl;
  5330 HeapRegion* G1CollectedHeap::popular_region_to_evac() {
  5331   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  5332   HeapRegion* res = NULL;
  5333   while (_popular_regions_to_be_evacuated != NULL && res == NULL) {
  5334     HeapRegionList* hrl = _popular_regions_to_be_evacuated;
  5335     _popular_regions_to_be_evacuated = hrl->next;
  5336     res = hrl->hr;
  5337     // The G1RSPopLimit may have increased, so recheck here...
  5338     if (res->rem_set()->occupied() < (size_t) G1RSPopLimit) {
  5339       // Hah: don't need to schedule.
  5340       if (G1TracePopularity) {
  5341         gclog_or_tty->print_cr("Unscheduling region "PTR_FORMAT" "
  5342                                "["PTR_FORMAT", "PTR_FORMAT") "
  5343                                "for pop-object evacuation (size %d < limit %d)",
  5344                                res, res->bottom(), res->end(),
  5345                                res->rem_set()->occupied(), G1RSPopLimit);
  5347       res->set_popular_pending(false);
  5348       res = NULL;
  5350     // We do not reset res->popular() here; if we did so, it would allow
  5351     // the region to be "rescheduled" for popularity evacuation.  Instead,
  5352     // this is done in the collection pause, with the world stopped.
  5353     // So the invariant is that the regions in the list have the popularity
  5354     // boolean set, but having the boolean set does not imply membership
  5355     // on the list (though there can at most one such pop-pending region
  5356     // not on the list at any time).
  5357     delete hrl;
  5359   return res;
  5362 void G1CollectedHeap::evac_popular_region(HeapRegion* hr) {
  5363   while (true) {
  5364     // Don't want to do a GC pause while cleanup is being completed!
  5365     wait_for_cleanup_complete();
  5367     // Read the GC count while holding the Heap_lock
  5368     int gc_count_before = SharedHeap::heap()->total_collections();
  5369     g1_policy()->record_stop_world_start();
  5372       MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  5373       VM_G1PopRegionCollectionPause op(gc_count_before, hr);
  5374       VMThread::execute(&op);
  5376       // If the prolog succeeded, we didn't do a GC for this.
  5377       if (op.prologue_succeeded()) break;
  5379     // Otherwise we didn't.  We should recheck the size, though, since
  5380     // the limit may have increased...
  5381     if (hr->rem_set()->occupied() < (size_t) G1RSPopLimit) {
  5382       hr->set_popular_pending(false);
  5383       break;
  5388 void G1CollectedHeap::atomic_inc_obj_rc(oop obj) {
  5389   Atomic::inc(obj_rc_addr(obj));
  5392 class CountRCClosure: public OopsInHeapRegionClosure {
  5393   G1CollectedHeap* _g1h;
  5394   bool _parallel;
  5395 public:
  5396   CountRCClosure(G1CollectedHeap* g1h) :
  5397     _g1h(g1h), _parallel(ParallelGCThreads > 0)
  5398   {}
  5399   void do_oop(narrowOop* p) {
  5400     guarantee(false, "NYI");
  5402   void do_oop(oop* p) {
  5403     oop obj = *p;
  5404     assert(obj != NULL, "Precondition.");
  5405     if (_parallel) {
  5406       // We go sticky at the limit to avoid excess contention.
  5407       // If we want to track the actual RC's further, we'll need to keep a
  5408       // per-thread hash table or something for the popular objects.
  5409       if (_g1h->obj_rc(obj) < G1ObjPopLimit) {
  5410         _g1h->atomic_inc_obj_rc(obj);
  5412     } else {
  5413       _g1h->inc_obj_rc(obj);
  5416 };
  5418 class EvacPopObjClosure: public ObjectClosure {
  5419   G1CollectedHeap* _g1h;
  5420   size_t _pop_objs;
  5421   size_t _max_rc;
  5422 public:
  5423   EvacPopObjClosure(G1CollectedHeap* g1h) :
  5424     _g1h(g1h), _pop_objs(0), _max_rc(0) {}
  5426   void do_object(oop obj) {
  5427     size_t rc = _g1h->obj_rc(obj);
  5428     _max_rc = MAX2(rc, _max_rc);
  5429     if (rc >= (size_t) G1ObjPopLimit) {
  5430       _g1h->_pop_obj_rc_at_copy.add((double)rc);
  5431       size_t word_sz = obj->size();
  5432       HeapWord* new_pop_loc = _g1h->allocate_popular_object(word_sz);
  5433       oop new_pop_obj = (oop)new_pop_loc;
  5434       Copy::aligned_disjoint_words((HeapWord*)obj, new_pop_loc, word_sz);
  5435       obj->forward_to(new_pop_obj);
  5436       G1ScanAndBalanceClosure scan_and_balance(_g1h);
  5437       new_pop_obj->oop_iterate_backwards(&scan_and_balance);
  5438       // preserve "next" mark bit if marking is in progress.
  5439       if (_g1h->mark_in_progress() && !_g1h->is_obj_ill(obj)) {
  5440         _g1h->concurrent_mark()->markAndGrayObjectIfNecessary(new_pop_obj);
  5443       if (G1TracePopularity) {
  5444         gclog_or_tty->print_cr("Found obj " PTR_FORMAT " of word size " SIZE_FORMAT
  5445                                " pop (%d), move to " PTR_FORMAT,
  5446                                (void*) obj, word_sz,
  5447                                _g1h->obj_rc(obj), (void*) new_pop_obj);
  5449       _pop_objs++;
  5452   size_t pop_objs() { return _pop_objs; }
  5453   size_t max_rc() { return _max_rc; }
  5454 };
  5456 class G1ParCountRCTask : public AbstractGangTask {
  5457   G1CollectedHeap* _g1h;
  5458   BitMap _bm;
  5460   size_t getNCards() {
  5461     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  5462       / G1BlockOffsetSharedArray::N_bytes;
  5464   CountRCClosure _count_rc_closure;
  5465 public:
  5466   G1ParCountRCTask(G1CollectedHeap* g1h) :
  5467     AbstractGangTask("G1 Par RC Count task"),
  5468     _g1h(g1h), _bm(getNCards()), _count_rc_closure(g1h)
  5469   {}
  5471   void work(int i) {
  5472     ResourceMark rm;
  5473     HandleMark   hm;
  5474     _g1h->g1_rem_set()->oops_into_collection_set_do(&_count_rc_closure, i);
  5476 };
  5478 void G1CollectedHeap::popularity_pause_preamble(HeapRegion* popular_region) {
  5479   // We're evacuating a single region (for popularity).
  5480   if (G1TracePopularity) {
  5481     gclog_or_tty->print_cr("Doing pop region pause for ["PTR_FORMAT", "PTR_FORMAT")",
  5482                            popular_region->bottom(), popular_region->end());
  5484   g1_policy()->set_single_region_collection_set(popular_region);
  5485   size_t max_rc;
  5486   if (!compute_reference_counts_and_evac_popular(popular_region,
  5487                                                  &max_rc)) {
  5488     // We didn't evacuate any popular objects.
  5489     // We increase the RS popularity limit, to prevent this from
  5490     // happening in the future.
  5491     if (G1RSPopLimit < (1 << 30)) {
  5492       G1RSPopLimit *= 2;
  5494     // For now, interesting enough for a message:
  5495 #if 1
  5496     gclog_or_tty->print_cr("In pop region pause for ["PTR_FORMAT", "PTR_FORMAT"), "
  5497                            "failed to find a pop object (max = %d).",
  5498                            popular_region->bottom(), popular_region->end(),
  5499                            max_rc);
  5500     gclog_or_tty->print_cr("Increased G1RSPopLimit to %d.", G1RSPopLimit);
  5501 #endif // 0
  5502     // Also, we reset the collection set to NULL, to make the rest of
  5503     // the collection do nothing.
  5504     assert(popular_region->next_in_collection_set() == NULL,
  5505            "should be single-region.");
  5506     popular_region->set_in_collection_set(false);
  5507     popular_region->set_popular_pending(false);
  5508     g1_policy()->clear_collection_set();
  5512 bool G1CollectedHeap::
  5513 compute_reference_counts_and_evac_popular(HeapRegion* popular_region,
  5514                                           size_t* max_rc) {
  5515   HeapWord* rc_region_bot;
  5516   HeapWord* rc_region_end;
  5518   // Set up the reference count region.
  5519   HeapRegion* rc_region = newAllocRegion(HeapRegion::GrainWords);
  5520   if (rc_region != NULL) {
  5521     rc_region_bot = rc_region->bottom();
  5522     rc_region_end = rc_region->end();
  5523   } else {
  5524     rc_region_bot = NEW_C_HEAP_ARRAY(HeapWord, HeapRegion::GrainWords);
  5525     if (rc_region_bot == NULL) {
  5526       vm_exit_out_of_memory(HeapRegion::GrainWords,
  5527                             "No space for RC region.");
  5529     rc_region_end = rc_region_bot + HeapRegion::GrainWords;
  5532   if (G1TracePopularity)
  5533     gclog_or_tty->print_cr("RC region is ["PTR_FORMAT", "PTR_FORMAT")",
  5534                            rc_region_bot, rc_region_end);
  5535   if (rc_region_bot > popular_region->bottom()) {
  5536     _rc_region_above = true;
  5537     _rc_region_diff =
  5538       pointer_delta(rc_region_bot, popular_region->bottom(), 1);
  5539   } else {
  5540     assert(rc_region_bot < popular_region->bottom(), "Can't be equal.");
  5541     _rc_region_above = false;
  5542     _rc_region_diff =
  5543       pointer_delta(popular_region->bottom(), rc_region_bot, 1);
  5545   g1_policy()->record_pop_compute_rc_start();
  5546   // Count external references.
  5547   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5548   if (ParallelGCThreads > 0) {
  5550     set_par_threads(workers()->total_workers());
  5551     G1ParCountRCTask par_count_rc_task(this);
  5552     workers()->run_task(&par_count_rc_task);
  5553     set_par_threads(0);
  5555   } else {
  5556     CountRCClosure count_rc_closure(this);
  5557     g1_rem_set()->oops_into_collection_set_do(&count_rc_closure, 0);
  5559   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5560   g1_policy()->record_pop_compute_rc_end();
  5562   // Now evacuate popular objects.
  5563   g1_policy()->record_pop_evac_start();
  5564   EvacPopObjClosure evac_pop_obj_cl(this);
  5565   popular_region->object_iterate(&evac_pop_obj_cl);
  5566   *max_rc = evac_pop_obj_cl.max_rc();
  5568   // Make sure the last "top" value of the current popular region is copied
  5569   // as the "next_top_at_mark_start", so that objects made popular during
  5570   // markings aren't automatically considered live.
  5571   HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
  5572   cur_pop_region->note_end_of_copying();
  5574   if (rc_region != NULL) {
  5575     free_region(rc_region);
  5576   } else {
  5577     FREE_C_HEAP_ARRAY(HeapWord, rc_region_bot);
  5579   g1_policy()->record_pop_evac_end();
  5581   return evac_pop_obj_cl.pop_objs() > 0;
  5584 class CountPopObjInfoClosure: public HeapRegionClosure {
  5585   size_t _objs;
  5586   size_t _bytes;
  5588   class CountObjClosure: public ObjectClosure {
  5589     int _n;
  5590   public:
  5591     CountObjClosure() : _n(0) {}
  5592     void do_object(oop obj) { _n++; }
  5593     size_t n() { return _n; }
  5594   };
  5596 public:
  5597   CountPopObjInfoClosure() : _objs(0), _bytes(0) {}
  5598   bool doHeapRegion(HeapRegion* r) {
  5599     _bytes += r->used();
  5600     CountObjClosure blk;
  5601     r->object_iterate(&blk);
  5602     _objs += blk.n();
  5603     return false;
  5605   size_t objs() { return _objs; }
  5606   size_t bytes() { return _bytes; }
  5607 };
  5610 void G1CollectedHeap::print_popularity_summary_info() const {
  5611   CountPopObjInfoClosure blk;
  5612   for (int i = 0; i <= _cur_pop_hr_index; i++) {
  5613     blk.doHeapRegion(_hrs->at(i));
  5615   gclog_or_tty->print_cr("\nPopular objects: %d objs, %d bytes.",
  5616                          blk.objs(), blk.bytes());
  5617   gclog_or_tty->print_cr("   RC at copy = [avg = %5.2f, max = %5.2f, sd = %5.2f].",
  5618                 _pop_obj_rc_at_copy.avg(),
  5619                 _pop_obj_rc_at_copy.maximum(),
  5620                 _pop_obj_rc_at_copy.sd());
  5623 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5624   _refine_cte_cl->set_concurrent(concurrent);
  5627 #ifndef PRODUCT
  5629 class PrintHeapRegionClosure: public HeapRegionClosure {
  5630 public:
  5631   bool doHeapRegion(HeapRegion *r) {
  5632     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  5633     if (r != NULL) {
  5634       if (r->is_on_free_list())
  5635         gclog_or_tty->print("Free ");
  5636       if (r->is_young())
  5637         gclog_or_tty->print("Young ");
  5638       if (r->isHumongous())
  5639         gclog_or_tty->print("Is Humongous ");
  5640       r->print();
  5642     return false;
  5644 };
  5646 class SortHeapRegionClosure : public HeapRegionClosure {
  5647   size_t young_regions,free_regions, unclean_regions;
  5648   size_t hum_regions, count;
  5649   size_t unaccounted, cur_unclean, cur_alloc;
  5650   size_t total_free;
  5651   HeapRegion* cur;
  5652 public:
  5653   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  5654     free_regions(0), unclean_regions(0),
  5655     hum_regions(0),
  5656     count(0), unaccounted(0),
  5657     cur_alloc(0), total_free(0)
  5658   {}
  5659   bool doHeapRegion(HeapRegion *r) {
  5660     count++;
  5661     if (r->is_on_free_list()) free_regions++;
  5662     else if (r->is_on_unclean_list()) unclean_regions++;
  5663     else if (r->isHumongous())  hum_regions++;
  5664     else if (r->is_young()) young_regions++;
  5665     else if (r == cur) cur_alloc++;
  5666     else unaccounted++;
  5667     return false;
  5669   void print() {
  5670     total_free = free_regions + unclean_regions;
  5671     gclog_or_tty->print("%d regions\n", count);
  5672     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  5673                         total_free, free_regions, unclean_regions);
  5674     gclog_or_tty->print("%d humongous %d young\n",
  5675                         hum_regions, young_regions);
  5676     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  5677     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  5679 };
  5681 void G1CollectedHeap::print_region_counts() {
  5682   SortHeapRegionClosure sc(_cur_alloc_region);
  5683   PrintHeapRegionClosure cl;
  5684   heap_region_iterate(&cl);
  5685   heap_region_iterate(&sc);
  5686   sc.print();
  5687   print_region_accounting_info();
  5688 };
  5690 bool G1CollectedHeap::regions_accounted_for() {
  5691   // TODO: regions accounting for young/survivor/tenured
  5692   return true;
  5695 bool G1CollectedHeap::print_region_accounting_info() {
  5696   gclog_or_tty->print_cr("P regions: %d.", G1NumPopularRegions);
  5697   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5698                          free_regions(),
  5699                          count_free_regions(), count_free_regions_list(),
  5700                          _free_region_list_size, _unclean_region_list.sz());
  5701   gclog_or_tty->print_cr("cur_alloc: %d.",
  5702                          (_cur_alloc_region == NULL ? 0 : 1));
  5703   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5705   // TODO: check regions accounting for young/survivor/tenured
  5706   return true;
  5709 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5710   HeapRegion* hr = heap_region_containing(p);
  5711   if (hr == NULL) {
  5712     return is_in_permanent(p);
  5713   } else {
  5714     return hr->is_in(p);
  5717 #endif // PRODUCT
  5719 void G1CollectedHeap::g1_unimplemented() {
  5720   // Unimplemented();
  5724 // Local Variables: ***
  5725 // c-indentation-style: gnu ***
  5726 // End: ***

mercurial