src/share/vm/opto/memnode.hpp

Thu, 29 Jan 2015 10:26:02 -0800

author
vlivanov
date
Thu, 29 Jan 2015 10:26:02 -0800
changeset 7791
4eeec0cdeb6a
parent 7341
e7b3d177adda
child 7535
7ae4e26cb1e0
child 7858
55d07ec5bde4
permissions
-rw-r--r--

8068915: uncommon trap w/ Reason_speculate_class_check causes performance regression due to continuous deoptimizations
Reviewed-by: kvn, roland, jrose

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
    26 #define SHARE_VM_OPTO_MEMNODE_HPP
    28 #include "opto/multnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/opcodes.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 class MultiNode;
    36 class PhaseCCP;
    37 class PhaseTransform;
    39 //------------------------------MemNode----------------------------------------
    40 // Load or Store, possibly throwing a NULL pointer exception
    41 class MemNode : public Node {
    42 protected:
    43 #ifdef ASSERT
    44   const TypePtr* _adr_type;     // What kind of memory is being addressed?
    45 #endif
    46   virtual uint size_of() const; // Size is bigger (ASSERT only)
    47 public:
    48   enum { Control,               // When is it safe to do this load?
    49          Memory,                // Chunk of memory is being loaded from
    50          Address,               // Actually address, derived from base
    51          ValueIn,               // Value to store
    52          OopStore               // Preceeding oop store, only in StoreCM
    53   };
    54   typedef enum { unordered = 0,
    55                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
    56                  release        // Store has to release or be preceded by MemBarRelease.
    57   } MemOrd;
    58 protected:
    59   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    60     : Node(c0,c1,c2   ) {
    61     init_class_id(Class_Mem);
    62     debug_only(_adr_type=at; adr_type();)
    63   }
    64   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    65     : Node(c0,c1,c2,c3) {
    66     init_class_id(Class_Mem);
    67     debug_only(_adr_type=at; adr_type();)
    68   }
    69   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    70     : Node(c0,c1,c2,c3,c4) {
    71     init_class_id(Class_Mem);
    72     debug_only(_adr_type=at; adr_type();)
    73   }
    75 public:
    76   // Helpers for the optimizer.  Documented in memnode.cpp.
    77   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
    78                                       Node* p2, AllocateNode* a2,
    79                                       PhaseTransform* phase);
    80   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
    82   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
    83   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
    84   // This one should probably be a phase-specific function:
    85   static bool all_controls_dominate(Node* dom, Node* sub);
    87   // Find any cast-away of null-ness and keep its control.
    88   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
    89   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
    91   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
    93   // Shared code for Ideal methods:
    94   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
    96   // Helper function for adr_type() implementations.
    97   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
    99   // Raw access function, to allow copying of adr_type efficiently in
   100   // product builds and retain the debug info for debug builds.
   101   const TypePtr *raw_adr_type() const {
   102 #ifdef ASSERT
   103     return _adr_type;
   104 #else
   105     return 0;
   106 #endif
   107   }
   109   // Map a load or store opcode to its corresponding store opcode.
   110   // (Return -1 if unknown.)
   111   virtual int store_Opcode() const { return -1; }
   113   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
   114   virtual BasicType memory_type() const = 0;
   115   virtual int memory_size() const {
   116 #ifdef ASSERT
   117     return type2aelembytes(memory_type(), true);
   118 #else
   119     return type2aelembytes(memory_type());
   120 #endif
   121   }
   123   // Search through memory states which precede this node (load or store).
   124   // Look for an exact match for the address, with no intervening
   125   // aliased stores.
   126   Node* find_previous_store(PhaseTransform* phase);
   128   // Can this node (load or store) accurately see a stored value in
   129   // the given memory state?  (The state may or may not be in(Memory).)
   130   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
   132 #ifndef PRODUCT
   133   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
   134   virtual void dump_spec(outputStream *st) const;
   135 #endif
   136 };
   138 //------------------------------LoadNode---------------------------------------
   139 // Load value; requires Memory and Address
   140 class LoadNode : public MemNode {
   141 private:
   142   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
   143   // loads that can be reordered, and such requiring acquire semantics to
   144   // adhere to the Java specification.  The required behaviour is stored in
   145   // this field.
   146   const MemOrd _mo;
   148 protected:
   149   virtual uint cmp(const Node &n) const;
   150   virtual uint size_of() const; // Size is bigger
   151   // Should LoadNode::Ideal() attempt to remove control edges?
   152   virtual bool can_remove_control() const;
   153   const Type* const _type;      // What kind of value is loaded?
   154 public:
   156   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo)
   157     : MemNode(c,mem,adr,at), _type(rt), _mo(mo) {
   158     init_class_id(Class_Load);
   159   }
   160   inline bool is_unordered() const { return !is_acquire(); }
   161   inline bool is_acquire() const {
   162     assert(_mo == unordered || _mo == acquire, "unexpected");
   163     return _mo == acquire;
   164   }
   166   // Polymorphic factory method:
   167    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   168                      const TypePtr* at, const Type *rt, BasicType bt, MemOrd mo);
   170   virtual uint hash()   const;  // Check the type
   172   // Handle algebraic identities here.  If we have an identity, return the Node
   173   // we are equivalent to.  We look for Load of a Store.
   174   virtual Node *Identity( PhaseTransform *phase );
   176   // If the load is from Field memory and the pointer is non-null, it might be possible to
   177   // zero out the control input.
   178   // If the offset is constant and the base is an object allocation,
   179   // try to hook me up to the exact initializing store.
   180   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   182   // Split instance field load through Phi.
   183   Node* split_through_phi(PhaseGVN *phase);
   185   // Recover original value from boxed values
   186   Node *eliminate_autobox(PhaseGVN *phase);
   188   // Compute a new Type for this node.  Basically we just do the pre-check,
   189   // then call the virtual add() to set the type.
   190   virtual const Type *Value( PhaseTransform *phase ) const;
   192   // Common methods for LoadKlass and LoadNKlass nodes.
   193   const Type *klass_value_common( PhaseTransform *phase ) const;
   194   Node *klass_identity_common( PhaseTransform *phase );
   196   virtual uint ideal_reg() const;
   197   virtual const Type *bottom_type() const;
   198   // Following method is copied from TypeNode:
   199   void set_type(const Type* t) {
   200     assert(t != NULL, "sanity");
   201     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   202     *(const Type**)&_type = t;   // cast away const-ness
   203     // If this node is in the hash table, make sure it doesn't need a rehash.
   204     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
   205   }
   206   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
   208   // Do not match memory edge
   209   virtual uint match_edge(uint idx) const;
   211   // Map a load opcode to its corresponding store opcode.
   212   virtual int store_Opcode() const = 0;
   214   // Check if the load's memory input is a Phi node with the same control.
   215   bool is_instance_field_load_with_local_phi(Node* ctrl);
   217 #ifndef PRODUCT
   218   virtual void dump_spec(outputStream *st) const;
   219 #endif
   220 #ifdef ASSERT
   221   // Helper function to allow a raw load without control edge for some cases
   222   static bool is_immutable_value(Node* adr);
   223 #endif
   224 protected:
   225   const Type* load_array_final_field(const TypeKlassPtr *tkls,
   226                                      ciKlass* klass) const;
   227   // depends_only_on_test is almost always true, and needs to be almost always
   228   // true to enable key hoisting & commoning optimizations.  However, for the
   229   // special case of RawPtr loads from TLS top & end, and other loads performed by
   230   // GC barriers, the control edge carries the dependence preventing hoisting past
   231   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
   232   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
   233   // which produce results (new raw memory state) inside of loops preventing all
   234   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
   235   // See comment in macro.cpp, around line 125 expand_allocate_common().
   236   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   238 };
   240 //------------------------------LoadBNode--------------------------------------
   241 // Load a byte (8bits signed) from memory
   242 class LoadBNode : public LoadNode {
   243 public:
   244   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
   245     : LoadNode(c, mem, adr, at, ti, mo) {}
   246   virtual int Opcode() const;
   247   virtual uint ideal_reg() const { return Op_RegI; }
   248   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   249   virtual const Type *Value(PhaseTransform *phase) const;
   250   virtual int store_Opcode() const { return Op_StoreB; }
   251   virtual BasicType memory_type() const { return T_BYTE; }
   252 };
   254 //------------------------------LoadUBNode-------------------------------------
   255 // Load a unsigned byte (8bits unsigned) from memory
   256 class LoadUBNode : public LoadNode {
   257 public:
   258   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo)
   259     : LoadNode(c, mem, adr, at, ti, mo) {}
   260   virtual int Opcode() const;
   261   virtual uint ideal_reg() const { return Op_RegI; }
   262   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
   263   virtual const Type *Value(PhaseTransform *phase) const;
   264   virtual int store_Opcode() const { return Op_StoreB; }
   265   virtual BasicType memory_type() const { return T_BYTE; }
   266 };
   268 //------------------------------LoadUSNode-------------------------------------
   269 // Load an unsigned short/char (16bits unsigned) from memory
   270 class LoadUSNode : public LoadNode {
   271 public:
   272   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
   273     : LoadNode(c, mem, adr, at, ti, mo) {}
   274   virtual int Opcode() const;
   275   virtual uint ideal_reg() const { return Op_RegI; }
   276   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   277   virtual const Type *Value(PhaseTransform *phase) const;
   278   virtual int store_Opcode() const { return Op_StoreC; }
   279   virtual BasicType memory_type() const { return T_CHAR; }
   280 };
   282 //------------------------------LoadSNode--------------------------------------
   283 // Load a short (16bits signed) from memory
   284 class LoadSNode : public LoadNode {
   285 public:
   286   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
   287     : LoadNode(c, mem, adr, at, ti, mo) {}
   288   virtual int Opcode() const;
   289   virtual uint ideal_reg() const { return Op_RegI; }
   290   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   291   virtual const Type *Value(PhaseTransform *phase) const;
   292   virtual int store_Opcode() const { return Op_StoreC; }
   293   virtual BasicType memory_type() const { return T_SHORT; }
   294 };
   296 //------------------------------LoadINode--------------------------------------
   297 // Load an integer from memory
   298 class LoadINode : public LoadNode {
   299 public:
   300   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
   301     : LoadNode(c, mem, adr, at, ti, mo) {}
   302   virtual int Opcode() const;
   303   virtual uint ideal_reg() const { return Op_RegI; }
   304   virtual int store_Opcode() const { return Op_StoreI; }
   305   virtual BasicType memory_type() const { return T_INT; }
   306 };
   308 //------------------------------LoadRangeNode----------------------------------
   309 // Load an array length from the array
   310 class LoadRangeNode : public LoadINode {
   311 public:
   312   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
   313     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
   314   virtual int Opcode() const;
   315   virtual const Type *Value( PhaseTransform *phase ) const;
   316   virtual Node *Identity( PhaseTransform *phase );
   317   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   318 };
   320 //------------------------------LoadLNode--------------------------------------
   321 // Load a long from memory
   322 class LoadLNode : public LoadNode {
   323   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   324   virtual uint cmp( const Node &n ) const {
   325     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
   326       && LoadNode::cmp(n);
   327   }
   328   virtual uint size_of() const { return sizeof(*this); }
   329   const bool _require_atomic_access;  // is piecewise load forbidden?
   331 public:
   332   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
   333             MemOrd mo, bool require_atomic_access = false)
   334     : LoadNode(c, mem, adr, at, tl, mo), _require_atomic_access(require_atomic_access) {}
   335   virtual int Opcode() const;
   336   virtual uint ideal_reg() const { return Op_RegL; }
   337   virtual int store_Opcode() const { return Op_StoreL; }
   338   virtual BasicType memory_type() const { return T_LONG; }
   339   bool require_atomic_access() { return _require_atomic_access; }
   340   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
   341                                 const Type* rt, MemOrd mo);
   342 #ifndef PRODUCT
   343   virtual void dump_spec(outputStream *st) const {
   344     LoadNode::dump_spec(st);
   345     if (_require_atomic_access)  st->print(" Atomic!");
   346   }
   347 #endif
   348 };
   350 //------------------------------LoadL_unalignedNode----------------------------
   351 // Load a long from unaligned memory
   352 class LoadL_unalignedNode : public LoadLNode {
   353 public:
   354   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo)
   355     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo) {}
   356   virtual int Opcode() const;
   357 };
   359 //------------------------------LoadFNode--------------------------------------
   360 // Load a float (64 bits) from memory
   361 class LoadFNode : public LoadNode {
   362 public:
   363   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo)
   364     : LoadNode(c, mem, adr, at, t, mo) {}
   365   virtual int Opcode() const;
   366   virtual uint ideal_reg() const { return Op_RegF; }
   367   virtual int store_Opcode() const { return Op_StoreF; }
   368   virtual BasicType memory_type() const { return T_FLOAT; }
   369 };
   371 //------------------------------LoadDNode--------------------------------------
   372 // Load a double (64 bits) from memory
   373 class LoadDNode : public LoadNode {
   374 public:
   375   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo)
   376     : LoadNode(c, mem, adr, at, t, mo) {}
   377   virtual int Opcode() const;
   378   virtual uint ideal_reg() const { return Op_RegD; }
   379   virtual int store_Opcode() const { return Op_StoreD; }
   380   virtual BasicType memory_type() const { return T_DOUBLE; }
   381 };
   383 //------------------------------LoadD_unalignedNode----------------------------
   384 // Load a double from unaligned memory
   385 class LoadD_unalignedNode : public LoadDNode {
   386 public:
   387   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo)
   388     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo) {}
   389   virtual int Opcode() const;
   390 };
   392 //------------------------------LoadPNode--------------------------------------
   393 // Load a pointer from memory (either object or array)
   394 class LoadPNode : public LoadNode {
   395 public:
   396   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo)
   397     : LoadNode(c, mem, adr, at, t, mo) {}
   398   virtual int Opcode() const;
   399   virtual uint ideal_reg() const { return Op_RegP; }
   400   virtual int store_Opcode() const { return Op_StoreP; }
   401   virtual BasicType memory_type() const { return T_ADDRESS; }
   402 };
   405 //------------------------------LoadNNode--------------------------------------
   406 // Load a narrow oop from memory (either object or array)
   407 class LoadNNode : public LoadNode {
   408 public:
   409   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo)
   410     : LoadNode(c, mem, adr, at, t, mo) {}
   411   virtual int Opcode() const;
   412   virtual uint ideal_reg() const { return Op_RegN; }
   413   virtual int store_Opcode() const { return Op_StoreN; }
   414   virtual BasicType memory_type() const { return T_NARROWOOP; }
   415 };
   417 //------------------------------LoadKlassNode----------------------------------
   418 // Load a Klass from an object
   419 class LoadKlassNode : public LoadPNode {
   420 protected:
   421   // In most cases, LoadKlassNode does not have the control input set. If the control
   422   // input is set, it must not be removed (by LoadNode::Ideal()).
   423   virtual bool can_remove_control() const;
   424 public:
   425   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
   426     : LoadPNode(c, mem, adr, at, tk, mo) {}
   427   virtual int Opcode() const;
   428   virtual const Type *Value( PhaseTransform *phase ) const;
   429   virtual Node *Identity( PhaseTransform *phase );
   430   virtual bool depends_only_on_test() const { return true; }
   432   // Polymorphic factory method:
   433   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
   434                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
   435 };
   437 //------------------------------LoadNKlassNode---------------------------------
   438 // Load a narrow Klass from an object.
   439 class LoadNKlassNode : public LoadNNode {
   440 public:
   441   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
   442     : LoadNNode(c, mem, adr, at, tk, mo) {}
   443   virtual int Opcode() const;
   444   virtual uint ideal_reg() const { return Op_RegN; }
   445   virtual int store_Opcode() const { return Op_StoreNKlass; }
   446   virtual BasicType memory_type() const { return T_NARROWKLASS; }
   448   virtual const Type *Value( PhaseTransform *phase ) const;
   449   virtual Node *Identity( PhaseTransform *phase );
   450   virtual bool depends_only_on_test() const { return true; }
   451 };
   454 //------------------------------StoreNode--------------------------------------
   455 // Store value; requires Store, Address and Value
   456 class StoreNode : public MemNode {
   457 private:
   458   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
   459   // stores that can be reordered, and such requiring release semantics to
   460   // adhere to the Java specification.  The required behaviour is stored in
   461   // this field.
   462   const MemOrd _mo;
   463   // Needed for proper cloning.
   464   virtual uint size_of() const { return sizeof(*this); }
   465 protected:
   466   virtual uint cmp( const Node &n ) const;
   467   virtual bool depends_only_on_test() const { return false; }
   469   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
   470   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
   472 public:
   473   // We must ensure that stores of object references will be visible
   474   // only after the object's initialization. So the callers of this
   475   // procedure must indicate that the store requires `release'
   476   // semantics, if the stored value is an object reference that might
   477   // point to a new object and may become externally visible.
   478   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   479     : MemNode(c, mem, adr, at, val), _mo(mo) {
   480     init_class_id(Class_Store);
   481   }
   482   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
   483     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
   484     init_class_id(Class_Store);
   485   }
   487   inline bool is_unordered() const { return !is_release(); }
   488   inline bool is_release() const {
   489     assert((_mo == unordered || _mo == release), "unexpected");
   490     return _mo == release;
   491   }
   493   // Conservatively release stores of object references in order to
   494   // ensure visibility of object initialization.
   495   static inline MemOrd release_if_reference(const BasicType t) {
   496     const MemOrd mo = (t == T_ARRAY ||
   497                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
   498                        t == T_OBJECT) ? release : unordered;
   499     return mo;
   500   }
   502   // Polymorphic factory method
   503   //
   504   // We must ensure that stores of object references will be visible
   505   // only after the object's initialization. So the callers of this
   506   // procedure must indicate that the store requires `release'
   507   // semantics, if the stored value is an object reference that might
   508   // point to a new object and may become externally visible.
   509   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   510                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
   512   virtual uint hash() const;    // Check the type
   514   // If the store is to Field memory and the pointer is non-null, we can
   515   // zero out the control input.
   516   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   518   // Compute a new Type for this node.  Basically we just do the pre-check,
   519   // then call the virtual add() to set the type.
   520   virtual const Type *Value( PhaseTransform *phase ) const;
   522   // Check for identity function on memory (Load then Store at same address)
   523   virtual Node *Identity( PhaseTransform *phase );
   525   // Do not match memory edge
   526   virtual uint match_edge(uint idx) const;
   528   virtual const Type *bottom_type() const;  // returns Type::MEMORY
   530   // Map a store opcode to its corresponding own opcode, trivially.
   531   virtual int store_Opcode() const { return Opcode(); }
   533   // have all possible loads of the value stored been optimized away?
   534   bool value_never_loaded(PhaseTransform *phase) const;
   535 };
   537 //------------------------------StoreBNode-------------------------------------
   538 // Store byte to memory
   539 class StoreBNode : public StoreNode {
   540 public:
   541   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   542     : StoreNode(c, mem, adr, at, val, mo) {}
   543   virtual int Opcode() const;
   544   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   545   virtual BasicType memory_type() const { return T_BYTE; }
   546 };
   548 //------------------------------StoreCNode-------------------------------------
   549 // Store char/short to memory
   550 class StoreCNode : public StoreNode {
   551 public:
   552   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   553     : StoreNode(c, mem, adr, at, val, mo) {}
   554   virtual int Opcode() const;
   555   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   556   virtual BasicType memory_type() const { return T_CHAR; }
   557 };
   559 //------------------------------StoreINode-------------------------------------
   560 // Store int to memory
   561 class StoreINode : public StoreNode {
   562 public:
   563   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   564     : StoreNode(c, mem, adr, at, val, mo) {}
   565   virtual int Opcode() const;
   566   virtual BasicType memory_type() const { return T_INT; }
   567 };
   569 //------------------------------StoreLNode-------------------------------------
   570 // Store long to memory
   571 class StoreLNode : public StoreNode {
   572   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   573   virtual uint cmp( const Node &n ) const {
   574     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
   575       && StoreNode::cmp(n);
   576   }
   577   virtual uint size_of() const { return sizeof(*this); }
   578   const bool _require_atomic_access;  // is piecewise store forbidden?
   580 public:
   581   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
   582     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
   583   virtual int Opcode() const;
   584   virtual BasicType memory_type() const { return T_LONG; }
   585   bool require_atomic_access() { return _require_atomic_access; }
   586   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
   587 #ifndef PRODUCT
   588   virtual void dump_spec(outputStream *st) const {
   589     StoreNode::dump_spec(st);
   590     if (_require_atomic_access)  st->print(" Atomic!");
   591   }
   592 #endif
   593 };
   595 //------------------------------StoreFNode-------------------------------------
   596 // Store float to memory
   597 class StoreFNode : public StoreNode {
   598 public:
   599   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   600     : StoreNode(c, mem, adr, at, val, mo) {}
   601   virtual int Opcode() const;
   602   virtual BasicType memory_type() const { return T_FLOAT; }
   603 };
   605 //------------------------------StoreDNode-------------------------------------
   606 // Store double to memory
   607 class StoreDNode : public StoreNode {
   608 public:
   609   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   610     : StoreNode(c, mem, adr, at, val, mo) {}
   611   virtual int Opcode() const;
   612   virtual BasicType memory_type() const { return T_DOUBLE; }
   613 };
   615 //------------------------------StorePNode-------------------------------------
   616 // Store pointer to memory
   617 class StorePNode : public StoreNode {
   618 public:
   619   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   620     : StoreNode(c, mem, adr, at, val, mo) {}
   621   virtual int Opcode() const;
   622   virtual BasicType memory_type() const { return T_ADDRESS; }
   623 };
   625 //------------------------------StoreNNode-------------------------------------
   626 // Store narrow oop to memory
   627 class StoreNNode : public StoreNode {
   628 public:
   629   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   630     : StoreNode(c, mem, adr, at, val, mo) {}
   631   virtual int Opcode() const;
   632   virtual BasicType memory_type() const { return T_NARROWOOP; }
   633 };
   635 //------------------------------StoreNKlassNode--------------------------------------
   636 // Store narrow klass to memory
   637 class StoreNKlassNode : public StoreNNode {
   638 public:
   639   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   640     : StoreNNode(c, mem, adr, at, val, mo) {}
   641   virtual int Opcode() const;
   642   virtual BasicType memory_type() const { return T_NARROWKLASS; }
   643 };
   645 //------------------------------StoreCMNode-----------------------------------
   646 // Store card-mark byte to memory for CM
   647 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
   648 // Preceeding equivalent StoreCMs may be eliminated.
   649 class StoreCMNode : public StoreNode {
   650  private:
   651   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
   652   virtual uint cmp( const Node &n ) const {
   653     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
   654       && StoreNode::cmp(n);
   655   }
   656   virtual uint size_of() const { return sizeof(*this); }
   657   int _oop_alias_idx;   // The alias_idx of OopStore
   659 public:
   660   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
   661     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
   662     _oop_alias_idx(oop_alias_idx) {
   663     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
   664            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
   665            "bad oop alias idx");
   666   }
   667   virtual int Opcode() const;
   668   virtual Node *Identity( PhaseTransform *phase );
   669   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   670   virtual const Type *Value( PhaseTransform *phase ) const;
   671   virtual BasicType memory_type() const { return T_VOID; } // unspecific
   672   int oop_alias_idx() const { return _oop_alias_idx; }
   673 };
   675 //------------------------------LoadPLockedNode---------------------------------
   676 // Load-locked a pointer from memory (either object or array).
   677 // On Sparc & Intel this is implemented as a normal pointer load.
   678 // On PowerPC and friends it's a real load-locked.
   679 class LoadPLockedNode : public LoadPNode {
   680 public:
   681   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
   682     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
   683   virtual int Opcode() const;
   684   virtual int store_Opcode() const { return Op_StorePConditional; }
   685   virtual bool depends_only_on_test() const { return true; }
   686 };
   688 //------------------------------SCMemProjNode---------------------------------------
   689 // This class defines a projection of the memory  state of a store conditional node.
   690 // These nodes return a value, but also update memory.
   691 class SCMemProjNode : public ProjNode {
   692 public:
   693   enum {SCMEMPROJCON = (uint)-2};
   694   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
   695   virtual int Opcode() const;
   696   virtual bool      is_CFG() const  { return false; }
   697   virtual const Type *bottom_type() const {return Type::MEMORY;}
   698   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
   699   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
   700   virtual const Type *Value( PhaseTransform *phase ) const;
   701 #ifndef PRODUCT
   702   virtual void dump_spec(outputStream *st) const {};
   703 #endif
   704 };
   706 //------------------------------LoadStoreNode---------------------------
   707 // Note: is_Mem() method returns 'true' for this class.
   708 class LoadStoreNode : public Node {
   709 private:
   710   const Type* const _type;      // What kind of value is loaded?
   711   const TypePtr* _adr_type;     // What kind of memory is being addressed?
   712   virtual uint size_of() const; // Size is bigger
   713 public:
   714   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
   715   virtual bool depends_only_on_test() const { return false; }
   716   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
   718   virtual const Type *bottom_type() const { return _type; }
   719   virtual uint ideal_reg() const;
   720   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
   722   bool result_not_used() const;
   723 };
   725 class LoadStoreConditionalNode : public LoadStoreNode {
   726 public:
   727   enum {
   728     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
   729   };
   730   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
   731 };
   733 //------------------------------StorePConditionalNode---------------------------
   734 // Conditionally store pointer to memory, if no change since prior
   735 // load-locked.  Sets flags for success or failure of the store.
   736 class StorePConditionalNode : public LoadStoreConditionalNode {
   737 public:
   738   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
   739   virtual int Opcode() const;
   740   // Produces flags
   741   virtual uint ideal_reg() const { return Op_RegFlags; }
   742 };
   744 //------------------------------StoreIConditionalNode---------------------------
   745 // Conditionally store int to memory, if no change since prior
   746 // load-locked.  Sets flags for success or failure of the store.
   747 class StoreIConditionalNode : public LoadStoreConditionalNode {
   748 public:
   749   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
   750   virtual int Opcode() const;
   751   // Produces flags
   752   virtual uint ideal_reg() const { return Op_RegFlags; }
   753 };
   755 //------------------------------StoreLConditionalNode---------------------------
   756 // Conditionally store long to memory, if no change since prior
   757 // load-locked.  Sets flags for success or failure of the store.
   758 class StoreLConditionalNode : public LoadStoreConditionalNode {
   759 public:
   760   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
   761   virtual int Opcode() const;
   762   // Produces flags
   763   virtual uint ideal_reg() const { return Op_RegFlags; }
   764 };
   767 //------------------------------CompareAndSwapLNode---------------------------
   768 class CompareAndSwapLNode : public LoadStoreConditionalNode {
   769 public:
   770   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   771   virtual int Opcode() const;
   772 };
   775 //------------------------------CompareAndSwapINode---------------------------
   776 class CompareAndSwapINode : public LoadStoreConditionalNode {
   777 public:
   778   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   779   virtual int Opcode() const;
   780 };
   783 //------------------------------CompareAndSwapPNode---------------------------
   784 class CompareAndSwapPNode : public LoadStoreConditionalNode {
   785 public:
   786   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   787   virtual int Opcode() const;
   788 };
   790 //------------------------------CompareAndSwapNNode---------------------------
   791 class CompareAndSwapNNode : public LoadStoreConditionalNode {
   792 public:
   793   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   794   virtual int Opcode() const;
   795 };
   797 //------------------------------GetAndAddINode---------------------------
   798 class GetAndAddINode : public LoadStoreNode {
   799 public:
   800   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
   801   virtual int Opcode() const;
   802 };
   804 //------------------------------GetAndAddLNode---------------------------
   805 class GetAndAddLNode : public LoadStoreNode {
   806 public:
   807   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
   808   virtual int Opcode() const;
   809 };
   812 //------------------------------GetAndSetINode---------------------------
   813 class GetAndSetINode : public LoadStoreNode {
   814 public:
   815   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
   816   virtual int Opcode() const;
   817 };
   819 //------------------------------GetAndSetINode---------------------------
   820 class GetAndSetLNode : public LoadStoreNode {
   821 public:
   822   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
   823   virtual int Opcode() const;
   824 };
   826 //------------------------------GetAndSetPNode---------------------------
   827 class GetAndSetPNode : public LoadStoreNode {
   828 public:
   829   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
   830   virtual int Opcode() const;
   831 };
   833 //------------------------------GetAndSetNNode---------------------------
   834 class GetAndSetNNode : public LoadStoreNode {
   835 public:
   836   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
   837   virtual int Opcode() const;
   838 };
   840 //------------------------------ClearArray-------------------------------------
   841 class ClearArrayNode: public Node {
   842 public:
   843   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
   844     : Node(ctrl,arymem,word_cnt,base) {
   845     init_class_id(Class_ClearArray);
   846   }
   847   virtual int         Opcode() const;
   848   virtual const Type *bottom_type() const { return Type::MEMORY; }
   849   // ClearArray modifies array elements, and so affects only the
   850   // array memory addressed by the bottom_type of its base address.
   851   virtual const class TypePtr *adr_type() const;
   852   virtual Node *Identity( PhaseTransform *phase );
   853   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   854   virtual uint match_edge(uint idx) const;
   856   // Clear the given area of an object or array.
   857   // The start offset must always be aligned mod BytesPerInt.
   858   // The end offset must always be aligned mod BytesPerLong.
   859   // Return the new memory.
   860   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   861                             intptr_t start_offset,
   862                             intptr_t end_offset,
   863                             PhaseGVN* phase);
   864   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   865                             intptr_t start_offset,
   866                             Node* end_offset,
   867                             PhaseGVN* phase);
   868   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   869                             Node* start_offset,
   870                             Node* end_offset,
   871                             PhaseGVN* phase);
   872   // Return allocation input memory edge if it is different instance
   873   // or itself if it is the one we are looking for.
   874   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
   875 };
   877 //------------------------------StrIntrinsic-------------------------------
   878 // Base class for Ideal nodes used in String instrinsic code.
   879 class StrIntrinsicNode: public Node {
   880 public:
   881   StrIntrinsicNode(Node* control, Node* char_array_mem,
   882                    Node* s1, Node* c1, Node* s2, Node* c2):
   883     Node(control, char_array_mem, s1, c1, s2, c2) {
   884   }
   886   StrIntrinsicNode(Node* control, Node* char_array_mem,
   887                    Node* s1, Node* s2, Node* c):
   888     Node(control, char_array_mem, s1, s2, c) {
   889   }
   891   StrIntrinsicNode(Node* control, Node* char_array_mem,
   892                    Node* s1, Node* s2):
   893     Node(control, char_array_mem, s1, s2) {
   894   }
   896   virtual bool depends_only_on_test() const { return false; }
   897   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
   898   virtual uint match_edge(uint idx) const;
   899   virtual uint ideal_reg() const { return Op_RegI; }
   900   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   901   virtual const Type *Value(PhaseTransform *phase) const;
   902 };
   904 //------------------------------StrComp-------------------------------------
   905 class StrCompNode: public StrIntrinsicNode {
   906 public:
   907   StrCompNode(Node* control, Node* char_array_mem,
   908               Node* s1, Node* c1, Node* s2, Node* c2):
   909     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
   910   virtual int Opcode() const;
   911   virtual const Type* bottom_type() const { return TypeInt::INT; }
   912 };
   914 //------------------------------StrEquals-------------------------------------
   915 class StrEqualsNode: public StrIntrinsicNode {
   916 public:
   917   StrEqualsNode(Node* control, Node* char_array_mem,
   918                 Node* s1, Node* s2, Node* c):
   919     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
   920   virtual int Opcode() const;
   921   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   922 };
   924 //------------------------------StrIndexOf-------------------------------------
   925 class StrIndexOfNode: public StrIntrinsicNode {
   926 public:
   927   StrIndexOfNode(Node* control, Node* char_array_mem,
   928               Node* s1, Node* c1, Node* s2, Node* c2):
   929     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
   930   virtual int Opcode() const;
   931   virtual const Type* bottom_type() const { return TypeInt::INT; }
   932 };
   934 //------------------------------AryEq---------------------------------------
   935 class AryEqNode: public StrIntrinsicNode {
   936 public:
   937   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
   938     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
   939   virtual int Opcode() const;
   940   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   941 };
   944 //------------------------------EncodeISOArray--------------------------------
   945 // encode char[] to byte[] in ISO_8859_1
   946 class EncodeISOArrayNode: public Node {
   947 public:
   948   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
   949   virtual int Opcode() const;
   950   virtual bool depends_only_on_test() const { return false; }
   951   virtual const Type* bottom_type() const { return TypeInt::INT; }
   952   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
   953   virtual uint match_edge(uint idx) const;
   954   virtual uint ideal_reg() const { return Op_RegI; }
   955   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   956   virtual const Type *Value(PhaseTransform *phase) const;
   957 };
   959 //------------------------------MemBar-----------------------------------------
   960 // There are different flavors of Memory Barriers to match the Java Memory
   961 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
   962 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
   963 // volatile-load.  Monitor-exit and volatile-store act as Release: no
   964 // preceding ref can be moved to after them.  We insert a MemBar-Release
   965 // before a FastUnlock or volatile-store.  All volatiles need to be
   966 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
   967 // separate it from any following volatile-load.
   968 class MemBarNode: public MultiNode {
   969   virtual uint hash() const ;                  // { return NO_HASH; }
   970   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   972   virtual uint size_of() const { return sizeof(*this); }
   973   // Memory type this node is serializing.  Usually either rawptr or bottom.
   974   const TypePtr* _adr_type;
   976 public:
   977   enum {
   978     Precedent = TypeFunc::Parms  // optional edge to force precedence
   979   };
   980   MemBarNode(Compile* C, int alias_idx, Node* precedent);
   981   virtual int Opcode() const = 0;
   982   virtual const class TypePtr *adr_type() const { return _adr_type; }
   983   virtual const Type *Value( PhaseTransform *phase ) const;
   984   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   985   virtual uint match_edge(uint idx) const { return 0; }
   986   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
   987   virtual Node *match( const ProjNode *proj, const Matcher *m );
   988   // Factory method.  Builds a wide or narrow membar.
   989   // Optional 'precedent' becomes an extra edge if not null.
   990   static MemBarNode* make(Compile* C, int opcode,
   991                           int alias_idx = Compile::AliasIdxBot,
   992                           Node* precedent = NULL);
   993 };
   995 // "Acquire" - no following ref can move before (but earlier refs can
   996 // follow, like an early Load stalled in cache).  Requires multi-cpu
   997 // visibility.  Inserted after a volatile load.
   998 class MemBarAcquireNode: public MemBarNode {
   999 public:
  1000   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
  1001     : MemBarNode(C, alias_idx, precedent) {}
  1002   virtual int Opcode() const;
  1003 };
  1005 // "Acquire" - no following ref can move before (but earlier refs can
  1006 // follow, like an early Load stalled in cache).  Requires multi-cpu
  1007 // visibility.  Inserted independ of any load, as required
  1008 // for intrinsic sun.misc.Unsafe.loadFence().
  1009 class LoadFenceNode: public MemBarNode {
  1010 public:
  1011   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
  1012     : MemBarNode(C, alias_idx, precedent) {}
  1013   virtual int Opcode() const;
  1014 };
  1016 // "Release" - no earlier ref can move after (but later refs can move
  1017 // up, like a speculative pipelined cache-hitting Load).  Requires
  1018 // multi-cpu visibility.  Inserted before a volatile store.
  1019 class MemBarReleaseNode: public MemBarNode {
  1020 public:
  1021   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
  1022     : MemBarNode(C, alias_idx, precedent) {}
  1023   virtual int Opcode() const;
  1024 };
  1026 // "Release" - no earlier ref can move after (but later refs can move
  1027 // up, like a speculative pipelined cache-hitting Load).  Requires
  1028 // multi-cpu visibility.  Inserted independent of any store, as required
  1029 // for intrinsic sun.misc.Unsafe.storeFence().
  1030 class StoreFenceNode: public MemBarNode {
  1031 public:
  1032   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
  1033     : MemBarNode(C, alias_idx, precedent) {}
  1034   virtual int Opcode() const;
  1035 };
  1037 // "Acquire" - no following ref can move before (but earlier refs can
  1038 // follow, like an early Load stalled in cache).  Requires multi-cpu
  1039 // visibility.  Inserted after a FastLock.
  1040 class MemBarAcquireLockNode: public MemBarNode {
  1041 public:
  1042   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
  1043     : MemBarNode(C, alias_idx, precedent) {}
  1044   virtual int Opcode() const;
  1045 };
  1047 // "Release" - no earlier ref can move after (but later refs can move
  1048 // up, like a speculative pipelined cache-hitting Load).  Requires
  1049 // multi-cpu visibility.  Inserted before a FastUnLock.
  1050 class MemBarReleaseLockNode: public MemBarNode {
  1051 public:
  1052   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
  1053     : MemBarNode(C, alias_idx, precedent) {}
  1054   virtual int Opcode() const;
  1055 };
  1057 class MemBarStoreStoreNode: public MemBarNode {
  1058 public:
  1059   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
  1060     : MemBarNode(C, alias_idx, precedent) {
  1061     init_class_id(Class_MemBarStoreStore);
  1063   virtual int Opcode() const;
  1064 };
  1066 // Ordering between a volatile store and a following volatile load.
  1067 // Requires multi-CPU visibility?
  1068 class MemBarVolatileNode: public MemBarNode {
  1069 public:
  1070   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
  1071     : MemBarNode(C, alias_idx, precedent) {}
  1072   virtual int Opcode() const;
  1073 };
  1075 // Ordering within the same CPU.  Used to order unsafe memory references
  1076 // inside the compiler when we lack alias info.  Not needed "outside" the
  1077 // compiler because the CPU does all the ordering for us.
  1078 class MemBarCPUOrderNode: public MemBarNode {
  1079 public:
  1080   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
  1081     : MemBarNode(C, alias_idx, precedent) {}
  1082   virtual int Opcode() const;
  1083   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  1084 };
  1086 // Isolation of object setup after an AllocateNode and before next safepoint.
  1087 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
  1088 class InitializeNode: public MemBarNode {
  1089   friend class AllocateNode;
  1091   enum {
  1092     Incomplete    = 0,
  1093     Complete      = 1,
  1094     WithArraycopy = 2
  1095   };
  1096   int _is_complete;
  1098   bool _does_not_escape;
  1100 public:
  1101   enum {
  1102     Control    = TypeFunc::Control,
  1103     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
  1104     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
  1105     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
  1106   };
  1108   InitializeNode(Compile* C, int adr_type, Node* rawoop);
  1109   virtual int Opcode() const;
  1110   virtual uint size_of() const { return sizeof(*this); }
  1111   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  1112   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
  1114   // Manage incoming memory edges via a MergeMem on in(Memory):
  1115   Node* memory(uint alias_idx);
  1117   // The raw memory edge coming directly from the Allocation.
  1118   // The contents of this memory are *always* all-zero-bits.
  1119   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
  1121   // Return the corresponding allocation for this initialization (or null if none).
  1122   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
  1123   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
  1124   AllocateNode* allocation();
  1126   // Anything other than zeroing in this init?
  1127   bool is_non_zero();
  1129   // An InitializeNode must completed before macro expansion is done.
  1130   // Completion requires that the AllocateNode must be followed by
  1131   // initialization of the new memory to zero, then to any initializers.
  1132   bool is_complete() { return _is_complete != Incomplete; }
  1133   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
  1135   // Mark complete.  (Must not yet be complete.)
  1136   void set_complete(PhaseGVN* phase);
  1137   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
  1139   bool does_not_escape() { return _does_not_escape; }
  1140   void set_does_not_escape() { _does_not_escape = true; }
  1142 #ifdef ASSERT
  1143   // ensure all non-degenerate stores are ordered and non-overlapping
  1144   bool stores_are_sane(PhaseTransform* phase);
  1145 #endif //ASSERT
  1147   // See if this store can be captured; return offset where it initializes.
  1148   // Return 0 if the store cannot be moved (any sort of problem).
  1149   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
  1151   // Capture another store; reformat it to write my internal raw memory.
  1152   // Return the captured copy, else NULL if there is some sort of problem.
  1153   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
  1155   // Find captured store which corresponds to the range [start..start+size).
  1156   // Return my own memory projection (meaning the initial zero bits)
  1157   // if there is no such store.  Return NULL if there is a problem.
  1158   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
  1160   // Called when the associated AllocateNode is expanded into CFG.
  1161   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  1162                         intptr_t header_size, Node* size_in_bytes,
  1163                         PhaseGVN* phase);
  1165  private:
  1166   void remove_extra_zeroes();
  1168   // Find out where a captured store should be placed (or already is placed).
  1169   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
  1170                                      PhaseTransform* phase);
  1172   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
  1174   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
  1176   bool detect_init_independence(Node* n, int& count);
  1178   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
  1179                                PhaseGVN* phase);
  1181   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
  1182 };
  1184 //------------------------------MergeMem---------------------------------------
  1185 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
  1186 class MergeMemNode: public Node {
  1187   virtual uint hash() const ;                  // { return NO_HASH; }
  1188   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
  1189   friend class MergeMemStream;
  1190   MergeMemNode(Node* def);  // clients use MergeMemNode::make
  1192 public:
  1193   // If the input is a whole memory state, clone it with all its slices intact.
  1194   // Otherwise, make a new memory state with just that base memory input.
  1195   // In either case, the result is a newly created MergeMem.
  1196   static MergeMemNode* make(Compile* C, Node* base_memory);
  1198   virtual int Opcode() const;
  1199   virtual Node *Identity( PhaseTransform *phase );
  1200   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1201   virtual uint ideal_reg() const { return NotAMachineReg; }
  1202   virtual uint match_edge(uint idx) const { return 0; }
  1203   virtual const RegMask &out_RegMask() const;
  1204   virtual const Type *bottom_type() const { return Type::MEMORY; }
  1205   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  1206   // sparse accessors
  1207   // Fetch the previously stored "set_memory_at", or else the base memory.
  1208   // (Caller should clone it if it is a phi-nest.)
  1209   Node* memory_at(uint alias_idx) const;
  1210   // set the memory, regardless of its previous value
  1211   void set_memory_at(uint alias_idx, Node* n);
  1212   // the "base" is the memory that provides the non-finite support
  1213   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
  1214   // warning: setting the base can implicitly set any of the other slices too
  1215   void set_base_memory(Node* def);
  1216   // sentinel value which denotes a copy of the base memory:
  1217   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
  1218   static Node* make_empty_memory(); // where the sentinel comes from
  1219   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
  1220   // hook for the iterator, to perform any necessary setup
  1221   void iteration_setup(const MergeMemNode* other = NULL);
  1222   // push sentinels until I am at least as long as the other (semantic no-op)
  1223   void grow_to_match(const MergeMemNode* other);
  1224   bool verify_sparse() const PRODUCT_RETURN0;
  1225 #ifndef PRODUCT
  1226   virtual void dump_spec(outputStream *st) const;
  1227 #endif
  1228 };
  1230 class MergeMemStream : public StackObj {
  1231  private:
  1232   MergeMemNode*       _mm;
  1233   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
  1234   Node*               _mm_base;  // loop-invariant base memory of _mm
  1235   int                 _idx;
  1236   int                 _cnt;
  1237   Node*               _mem;
  1238   Node*               _mem2;
  1239   int                 _cnt2;
  1241   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
  1242     // subsume_node will break sparseness at times, whenever a memory slice
  1243     // folds down to a copy of the base ("fat") memory.  In such a case,
  1244     // the raw edge will update to base, although it should be top.
  1245     // This iterator will recognize either top or base_memory as an
  1246     // "empty" slice.  See is_empty, is_empty2, and next below.
  1247     //
  1248     // The sparseness property is repaired in MergeMemNode::Ideal.
  1249     // As long as access to a MergeMem goes through this iterator
  1250     // or the memory_at accessor, flaws in the sparseness will
  1251     // never be observed.
  1252     //
  1253     // Also, iteration_setup repairs sparseness.
  1254     assert(mm->verify_sparse(), "please, no dups of base");
  1255     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
  1257     _mm  = mm;
  1258     _mm_base = mm->base_memory();
  1259     _mm2 = mm2;
  1260     _cnt = mm->req();
  1261     _idx = Compile::AliasIdxBot-1; // start at the base memory
  1262     _mem = NULL;
  1263     _mem2 = NULL;
  1266 #ifdef ASSERT
  1267   Node* check_memory() const {
  1268     if (at_base_memory())
  1269       return _mm->base_memory();
  1270     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
  1271       return _mm->memory_at(_idx);
  1272     else
  1273       return _mm_base;
  1275   Node* check_memory2() const {
  1276     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
  1278 #endif
  1280   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
  1281   void assert_synch() const {
  1282     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
  1283            "no side-effects except through the stream");
  1286  public:
  1288   // expected usages:
  1289   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
  1290   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
  1292   // iterate over one merge
  1293   MergeMemStream(MergeMemNode* mm) {
  1294     mm->iteration_setup();
  1295     init(mm);
  1296     debug_only(_cnt2 = 999);
  1298   // iterate in parallel over two merges
  1299   // only iterates through non-empty elements of mm2
  1300   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
  1301     assert(mm2, "second argument must be a MergeMem also");
  1302     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
  1303     mm->iteration_setup(mm2);
  1304     init(mm, mm2);
  1305     _cnt2 = mm2->req();
  1307 #ifdef ASSERT
  1308   ~MergeMemStream() {
  1309     assert_synch();
  1311 #endif
  1313   MergeMemNode* all_memory() const {
  1314     return _mm;
  1316   Node* base_memory() const {
  1317     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
  1318     return _mm_base;
  1320   const MergeMemNode* all_memory2() const {
  1321     assert(_mm2 != NULL, "");
  1322     return _mm2;
  1324   bool at_base_memory() const {
  1325     return _idx == Compile::AliasIdxBot;
  1327   int alias_idx() const {
  1328     assert(_mem, "must call next 1st");
  1329     return _idx;
  1332   const TypePtr* adr_type() const {
  1333     return Compile::current()->get_adr_type(alias_idx());
  1336   const TypePtr* adr_type(Compile* C) const {
  1337     return C->get_adr_type(alias_idx());
  1339   bool is_empty() const {
  1340     assert(_mem, "must call next 1st");
  1341     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
  1342     return _mem->is_top();
  1344   bool is_empty2() const {
  1345     assert(_mem2, "must call next 1st");
  1346     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
  1347     return _mem2->is_top();
  1349   Node* memory() const {
  1350     assert(!is_empty(), "must not be empty");
  1351     assert_synch();
  1352     return _mem;
  1354   // get the current memory, regardless of empty or non-empty status
  1355   Node* force_memory() const {
  1356     assert(!is_empty() || !at_base_memory(), "");
  1357     // Use _mm_base to defend against updates to _mem->base_memory().
  1358     Node *mem = _mem->is_top() ? _mm_base : _mem;
  1359     assert(mem == check_memory(), "");
  1360     return mem;
  1362   Node* memory2() const {
  1363     assert(_mem2 == check_memory2(), "");
  1364     return _mem2;
  1366   void set_memory(Node* mem) {
  1367     if (at_base_memory()) {
  1368       // Note that this does not change the invariant _mm_base.
  1369       _mm->set_base_memory(mem);
  1370     } else {
  1371       _mm->set_memory_at(_idx, mem);
  1373     _mem = mem;
  1374     assert_synch();
  1377   // Recover from a side effect to the MergeMemNode.
  1378   void set_memory() {
  1379     _mem = _mm->in(_idx);
  1382   bool next()  { return next(false); }
  1383   bool next2() { return next(true); }
  1385   bool next_non_empty()  { return next_non_empty(false); }
  1386   bool next_non_empty2() { return next_non_empty(true); }
  1387   // next_non_empty2 can yield states where is_empty() is true
  1389  private:
  1390   // find the next item, which might be empty
  1391   bool next(bool have_mm2) {
  1392     assert((_mm2 != NULL) == have_mm2, "use other next");
  1393     assert_synch();
  1394     if (++_idx < _cnt) {
  1395       // Note:  This iterator allows _mm to be non-sparse.
  1396       // It behaves the same whether _mem is top or base_memory.
  1397       _mem = _mm->in(_idx);
  1398       if (have_mm2)
  1399         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
  1400       return true;
  1402     return false;
  1405   // find the next non-empty item
  1406   bool next_non_empty(bool have_mm2) {
  1407     while (next(have_mm2)) {
  1408       if (!is_empty()) {
  1409         // make sure _mem2 is filled in sensibly
  1410         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
  1411         return true;
  1412       } else if (have_mm2 && !is_empty2()) {
  1413         return true;   // is_empty() == true
  1416     return false;
  1418 };
  1420 //------------------------------Prefetch---------------------------------------
  1422 // Non-faulting prefetch load.  Prefetch for many reads.
  1423 class PrefetchReadNode : public Node {
  1424 public:
  1425   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1426   virtual int Opcode() const;
  1427   virtual uint ideal_reg() const { return NotAMachineReg; }
  1428   virtual uint match_edge(uint idx) const { return idx==2; }
  1429   virtual const Type *bottom_type() const { return Type::ABIO; }
  1430 };
  1432 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
  1433 class PrefetchWriteNode : public Node {
  1434 public:
  1435   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1436   virtual int Opcode() const;
  1437   virtual uint ideal_reg() const { return NotAMachineReg; }
  1438   virtual uint match_edge(uint idx) const { return idx==2; }
  1439   virtual const Type *bottom_type() const { return Type::ABIO; }
  1440 };
  1442 // Allocation prefetch which may fault, TLAB size have to be adjusted.
  1443 class PrefetchAllocationNode : public Node {
  1444 public:
  1445   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
  1446   virtual int Opcode() const;
  1447   virtual uint ideal_reg() const { return NotAMachineReg; }
  1448   virtual uint match_edge(uint idx) const { return idx==2; }
  1449   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
  1450 };
  1452 #endif // SHARE_VM_OPTO_MEMNODE_HPP

mercurial