src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 22 Sep 2011 10:57:37 -0700

author
johnc
date
Thu, 22 Sep 2011 10:57:37 -0700
changeset 3175
4dfb2df418f2
parent 3169
663cb89032b1
child 3176
8229bd737950
permissions
-rw-r--r--

6484982: G1: process references during evacuation pauses
Summary: G1 now uses two reference processors - one is used by concurrent marking and the other is used by STW GCs (both full and incremental evacuation pauses). In an evacuation pause, the reference processor is embedded into the closures used to scan objects. Doing so causes causes reference objects to be 'discovered' by the reference processor. At the end of the evacuation pause, these discovered reference objects are processed - preserving (and copying) referent objects (and their reachable graphs) as appropriate.
Reviewed-by: ysr, jwilhelm, brutisso, stefank, tonyp

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class PermanentGenerationSpec;
    49 class GenerationSpec;
    50 class OopsInHeapRegionClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   size_t      _length;
    89   size_t      _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   size_t       length() { return _length; }
   105   size_t       survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 // The G1 STW is alive closure.
   159 // An instance is embedded into the G1CH and used as the
   160 // (optional) _is_alive_non_header closure in the STW
   161 // reference processor. It is also extensively used during
   162 // refence processing during STW evacuation pauses.
   163 class G1STWIsAliveClosure: public BoolObjectClosure {
   164   G1CollectedHeap* _g1;
   165 public:
   166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   167   void do_object(oop p) { assert(false, "Do not call."); }
   168   bool do_object_b(oop p);
   169 };
   171 class SurvivorGCAllocRegion : public G1AllocRegion {
   172 protected:
   173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   175 public:
   176   SurvivorGCAllocRegion()
   177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   178 };
   180 class OldGCAllocRegion : public G1AllocRegion {
   181 protected:
   182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   184 public:
   185   OldGCAllocRegion()
   186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   187 };
   189 class RefineCardTableEntryClosure;
   191 class G1CollectedHeap : public SharedHeap {
   192   friend class VM_G1CollectForAllocation;
   193   friend class VM_GenCollectForPermanentAllocation;
   194   friend class VM_G1CollectFull;
   195   friend class VM_G1IncCollectionPause;
   196   friend class VMStructs;
   197   friend class MutatorAllocRegion;
   198   friend class SurvivorGCAllocRegion;
   199   friend class OldGCAllocRegion;
   201   // Closures used in implementation.
   202   friend class G1ParCopyHelper;
   203   friend class G1IsAliveClosure;
   204   friend class G1EvacuateFollowersClosure;
   205   friend class G1ParScanThreadState;
   206   friend class G1ParScanClosureSuper;
   207   friend class G1ParEvacuateFollowersClosure;
   208   friend class G1ParTask;
   209   friend class G1FreeGarbageRegionClosure;
   210   friend class RefineCardTableEntryClosure;
   211   friend class G1PrepareCompactClosure;
   212   friend class RegionSorter;
   213   friend class RegionResetter;
   214   friend class CountRCClosure;
   215   friend class EvacPopObjClosure;
   216   friend class G1ParCleanupCTTask;
   218   // Other related classes.
   219   friend class G1MarkSweep;
   221 private:
   222   // The one and only G1CollectedHeap, so static functions can find it.
   223   static G1CollectedHeap* _g1h;
   225   static size_t _humongous_object_threshold_in_words;
   227   // Storage for the G1 heap (excludes the permanent generation).
   228   VirtualSpace _g1_storage;
   229   MemRegion    _g1_reserved;
   231   // The part of _g1_storage that is currently committed.
   232   MemRegion _g1_committed;
   234   // The master free list. It will satisfy all new region allocations.
   235   MasterFreeRegionList      _free_list;
   237   // The secondary free list which contains regions that have been
   238   // freed up during the cleanup process. This will be appended to the
   239   // master free list when appropriate.
   240   SecondaryFreeRegionList   _secondary_free_list;
   242   // It keeps track of the humongous regions.
   243   MasterHumongousRegionSet  _humongous_set;
   245   // The number of regions we could create by expansion.
   246   size_t _expansion_regions;
   248   // The block offset table for the G1 heap.
   249   G1BlockOffsetSharedArray* _bot_shared;
   251   // Move all of the regions off the free lists, then rebuild those free
   252   // lists, before and after full GC.
   253   void tear_down_region_lists();
   254   void rebuild_region_lists();
   256   // The sequence of all heap regions in the heap.
   257   HeapRegionSeq _hrs;
   259   // Alloc region used to satisfy mutator allocation requests.
   260   MutatorAllocRegion _mutator_alloc_region;
   262   // Alloc region used to satisfy allocation requests by the GC for
   263   // survivor objects.
   264   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   266   // Alloc region used to satisfy allocation requests by the GC for
   267   // old objects.
   268   OldGCAllocRegion _old_gc_alloc_region;
   270   // The last old region we allocated to during the last GC.
   271   // Typically, it is not full so we should re-use it during the next GC.
   272   HeapRegion* _retained_old_gc_alloc_region;
   274   // It resets the mutator alloc region before new allocations can take place.
   275   void init_mutator_alloc_region();
   277   // It releases the mutator alloc region.
   278   void release_mutator_alloc_region();
   280   // It initializes the GC alloc regions at the start of a GC.
   281   void init_gc_alloc_regions();
   283   // It releases the GC alloc regions at the end of a GC.
   284   void release_gc_alloc_regions();
   286   // It does any cleanup that needs to be done on the GC alloc regions
   287   // before a Full GC.
   288   void abandon_gc_alloc_regions();
   290   // Helper for monitoring and management support.
   291   G1MonitoringSupport* _g1mm;
   293   // Determines PLAB size for a particular allocation purpose.
   294   static size_t desired_plab_sz(GCAllocPurpose purpose);
   296   // Outside of GC pauses, the number of bytes used in all regions other
   297   // than the current allocation region.
   298   size_t _summary_bytes_used;
   300   // This is used for a quick test on whether a reference points into
   301   // the collection set or not. Basically, we have an array, with one
   302   // byte per region, and that byte denotes whether the corresponding
   303   // region is in the collection set or not. The entry corresponding
   304   // the bottom of the heap, i.e., region 0, is pointed to by
   305   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   306   // biased so that it actually points to address 0 of the address
   307   // space, to make the test as fast as possible (we can simply shift
   308   // the address to address into it, instead of having to subtract the
   309   // bottom of the heap from the address before shifting it; basically
   310   // it works in the same way the card table works).
   311   bool* _in_cset_fast_test;
   313   // The allocated array used for the fast test on whether a reference
   314   // points into the collection set or not. This field is also used to
   315   // free the array.
   316   bool* _in_cset_fast_test_base;
   318   // The length of the _in_cset_fast_test_base array.
   319   size_t _in_cset_fast_test_length;
   321   volatile unsigned _gc_time_stamp;
   323   size_t* _surviving_young_words;
   325   G1HRPrinter _hr_printer;
   327   void setup_surviving_young_words();
   328   void update_surviving_young_words(size_t* surv_young_words);
   329   void cleanup_surviving_young_words();
   331   // It decides whether an explicit GC should start a concurrent cycle
   332   // instead of doing a STW GC. Currently, a concurrent cycle is
   333   // explicitly started if:
   334   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   335   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   336   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   338   // Keeps track of how many "full collections" (i.e., Full GCs or
   339   // concurrent cycles) we have completed. The number of them we have
   340   // started is maintained in _total_full_collections in CollectedHeap.
   341   volatile unsigned int _full_collections_completed;
   343   // This is a non-product method that is helpful for testing. It is
   344   // called at the end of a GC and artificially expands the heap by
   345   // allocating a number of dead regions. This way we can induce very
   346   // frequent marking cycles and stress the cleanup / concurrent
   347   // cleanup code more (as all the regions that will be allocated by
   348   // this method will be found dead by the marking cycle).
   349   void allocate_dummy_regions() PRODUCT_RETURN;
   351   // These are macros so that, if the assert fires, we get the correct
   352   // line number, file, etc.
   354 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   355   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   356           (_extra_message_),                                                  \
   357           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   358           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   359           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   361 #define assert_heap_locked()                                                  \
   362   do {                                                                        \
   363     assert(Heap_lock->owned_by_self(),                                        \
   364            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   365   } while (0)
   367 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   368   do {                                                                        \
   369     assert(Heap_lock->owned_by_self() ||                                      \
   370            (SafepointSynchronize::is_at_safepoint() &&                        \
   371              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   372            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   373                                         "should be at a safepoint"));         \
   374   } while (0)
   376 #define assert_heap_locked_and_not_at_safepoint()                             \
   377   do {                                                                        \
   378     assert(Heap_lock->owned_by_self() &&                                      \
   379                                     !SafepointSynchronize::is_at_safepoint(), \
   380           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   381                                        "should not be at a safepoint"));      \
   382   } while (0)
   384 #define assert_heap_not_locked()                                              \
   385   do {                                                                        \
   386     assert(!Heap_lock->owned_by_self(),                                       \
   387         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   388   } while (0)
   390 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   391   do {                                                                        \
   392     assert(!Heap_lock->owned_by_self() &&                                     \
   393                                     !SafepointSynchronize::is_at_safepoint(), \
   394       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   395                                    "should not be at a safepoint"));          \
   396   } while (0)
   398 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   399   do {                                                                        \
   400     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   401               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   402            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   403   } while (0)
   405 #define assert_not_at_safepoint()                                             \
   406   do {                                                                        \
   407     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   408            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   409   } while (0)
   411 protected:
   413   // The young region list.
   414   YoungList*  _young_list;
   416   // The current policy object for the collector.
   417   G1CollectorPolicy* _g1_policy;
   419   // This is the second level of trying to allocate a new region. If
   420   // new_region() didn't find a region on the free_list, this call will
   421   // check whether there's anything available on the
   422   // secondary_free_list and/or wait for more regions to appear on
   423   // that list, if _free_regions_coming is set.
   424   HeapRegion* new_region_try_secondary_free_list();
   426   // Try to allocate a single non-humongous HeapRegion sufficient for
   427   // an allocation of the given word_size. If do_expand is true,
   428   // attempt to expand the heap if necessary to satisfy the allocation
   429   // request.
   430   HeapRegion* new_region(size_t word_size, bool do_expand);
   432   // Attempt to satisfy a humongous allocation request of the given
   433   // size by finding a contiguous set of free regions of num_regions
   434   // length and remove them from the master free list. Return the
   435   // index of the first region or G1_NULL_HRS_INDEX if the search
   436   // was unsuccessful.
   437   size_t humongous_obj_allocate_find_first(size_t num_regions,
   438                                            size_t word_size);
   440   // Initialize a contiguous set of free regions of length num_regions
   441   // and starting at index first so that they appear as a single
   442   // humongous region.
   443   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   444                                                       size_t num_regions,
   445                                                       size_t word_size);
   447   // Attempt to allocate a humongous object of the given size. Return
   448   // NULL if unsuccessful.
   449   HeapWord* humongous_obj_allocate(size_t word_size);
   451   // The following two methods, allocate_new_tlab() and
   452   // mem_allocate(), are the two main entry points from the runtime
   453   // into the G1's allocation routines. They have the following
   454   // assumptions:
   455   //
   456   // * They should both be called outside safepoints.
   457   //
   458   // * They should both be called without holding the Heap_lock.
   459   //
   460   // * All allocation requests for new TLABs should go to
   461   //   allocate_new_tlab().
   462   //
   463   // * All non-TLAB allocation requests should go to mem_allocate().
   464   //
   465   // * If either call cannot satisfy the allocation request using the
   466   //   current allocating region, they will try to get a new one. If
   467   //   this fails, they will attempt to do an evacuation pause and
   468   //   retry the allocation.
   469   //
   470   // * If all allocation attempts fail, even after trying to schedule
   471   //   an evacuation pause, allocate_new_tlab() will return NULL,
   472   //   whereas mem_allocate() will attempt a heap expansion and/or
   473   //   schedule a Full GC.
   474   //
   475   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   476   //   should never be called with word_size being humongous. All
   477   //   humongous allocation requests should go to mem_allocate() which
   478   //   will satisfy them with a special path.
   480   virtual HeapWord* allocate_new_tlab(size_t word_size);
   482   virtual HeapWord* mem_allocate(size_t word_size,
   483                                  bool*  gc_overhead_limit_was_exceeded);
   485   // The following three methods take a gc_count_before_ret
   486   // parameter which is used to return the GC count if the method
   487   // returns NULL. Given that we are required to read the GC count
   488   // while holding the Heap_lock, and these paths will take the
   489   // Heap_lock at some point, it's easier to get them to read the GC
   490   // count while holding the Heap_lock before they return NULL instead
   491   // of the caller (namely: mem_allocate()) having to also take the
   492   // Heap_lock just to read the GC count.
   494   // First-level mutator allocation attempt: try to allocate out of
   495   // the mutator alloc region without taking the Heap_lock. This
   496   // should only be used for non-humongous allocations.
   497   inline HeapWord* attempt_allocation(size_t word_size,
   498                                       unsigned int* gc_count_before_ret);
   500   // Second-level mutator allocation attempt: take the Heap_lock and
   501   // retry the allocation attempt, potentially scheduling a GC
   502   // pause. This should only be used for non-humongous allocations.
   503   HeapWord* attempt_allocation_slow(size_t word_size,
   504                                     unsigned int* gc_count_before_ret);
   506   // Takes the Heap_lock and attempts a humongous allocation. It can
   507   // potentially schedule a GC pause.
   508   HeapWord* attempt_allocation_humongous(size_t word_size,
   509                                          unsigned int* gc_count_before_ret);
   511   // Allocation attempt that should be called during safepoints (e.g.,
   512   // at the end of a successful GC). expect_null_mutator_alloc_region
   513   // specifies whether the mutator alloc region is expected to be NULL
   514   // or not.
   515   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   516                                        bool expect_null_mutator_alloc_region);
   518   // It dirties the cards that cover the block so that so that the post
   519   // write barrier never queues anything when updating objects on this
   520   // block. It is assumed (and in fact we assert) that the block
   521   // belongs to a young region.
   522   inline void dirty_young_block(HeapWord* start, size_t word_size);
   524   // Allocate blocks during garbage collection. Will ensure an
   525   // allocation region, either by picking one or expanding the
   526   // heap, and then allocate a block of the given size. The block
   527   // may not be a humongous - it must fit into a single heap region.
   528   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   530   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   531                                     HeapRegion*    alloc_region,
   532                                     bool           par,
   533                                     size_t         word_size);
   535   // Ensure that no further allocations can happen in "r", bearing in mind
   536   // that parallel threads might be attempting allocations.
   537   void par_allocate_remaining_space(HeapRegion* r);
   539   // Allocation attempt during GC for a survivor object / PLAB.
   540   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   542   // Allocation attempt during GC for an old object / PLAB.
   543   inline HeapWord* old_attempt_allocation(size_t word_size);
   545   // These methods are the "callbacks" from the G1AllocRegion class.
   547   // For mutator alloc regions.
   548   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   549   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   550                                    size_t allocated_bytes);
   552   // For GC alloc regions.
   553   HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
   554                                   GCAllocPurpose ap);
   555   void retire_gc_alloc_region(HeapRegion* alloc_region,
   556                               size_t allocated_bytes, GCAllocPurpose ap);
   558   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   559   //   inspection request and should collect the entire heap
   560   // - if clear_all_soft_refs is true, all soft references should be
   561   //   cleared during the GC
   562   // - if explicit_gc is false, word_size describes the allocation that
   563   //   the GC should attempt (at least) to satisfy
   564   // - it returns false if it is unable to do the collection due to the
   565   //   GC locker being active, true otherwise
   566   bool do_collection(bool explicit_gc,
   567                      bool clear_all_soft_refs,
   568                      size_t word_size);
   570   // Callback from VM_G1CollectFull operation.
   571   // Perform a full collection.
   572   void do_full_collection(bool clear_all_soft_refs);
   574   // Resize the heap if necessary after a full collection.  If this is
   575   // after a collect-for allocation, "word_size" is the allocation size,
   576   // and will be considered part of the used portion of the heap.
   577   void resize_if_necessary_after_full_collection(size_t word_size);
   579   // Callback from VM_G1CollectForAllocation operation.
   580   // This function does everything necessary/possible to satisfy a
   581   // failed allocation request (including collection, expansion, etc.)
   582   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   584   // Attempting to expand the heap sufficiently
   585   // to support an allocation of the given "word_size".  If
   586   // successful, perform the allocation and return the address of the
   587   // allocated block, or else "NULL".
   588   HeapWord* expand_and_allocate(size_t word_size);
   590   // Process any reference objects discovered during
   591   // an incremental evacuation pause.
   592   void process_discovered_references();
   594   // Enqueue any remaining discovered references
   595   // after processing.
   596   void enqueue_discovered_references();
   598 public:
   600   G1MonitoringSupport* g1mm() { return _g1mm; }
   602   // Expand the garbage-first heap by at least the given size (in bytes!).
   603   // Returns true if the heap was expanded by the requested amount;
   604   // false otherwise.
   605   // (Rounds up to a HeapRegion boundary.)
   606   bool expand(size_t expand_bytes);
   608   // Do anything common to GC's.
   609   virtual void gc_prologue(bool full);
   610   virtual void gc_epilogue(bool full);
   612   // We register a region with the fast "in collection set" test. We
   613   // simply set to true the array slot corresponding to this region.
   614   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   615     assert(_in_cset_fast_test_base != NULL, "sanity");
   616     assert(r->in_collection_set(), "invariant");
   617     size_t index = r->hrs_index();
   618     assert(index < _in_cset_fast_test_length, "invariant");
   619     assert(!_in_cset_fast_test_base[index], "invariant");
   620     _in_cset_fast_test_base[index] = true;
   621   }
   623   // This is a fast test on whether a reference points into the
   624   // collection set or not. It does not assume that the reference
   625   // points into the heap; if it doesn't, it will return false.
   626   bool in_cset_fast_test(oop obj) {
   627     assert(_in_cset_fast_test != NULL, "sanity");
   628     if (_g1_committed.contains((HeapWord*) obj)) {
   629       // no need to subtract the bottom of the heap from obj,
   630       // _in_cset_fast_test is biased
   631       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   632       bool ret = _in_cset_fast_test[index];
   633       // let's make sure the result is consistent with what the slower
   634       // test returns
   635       assert( ret || !obj_in_cs(obj), "sanity");
   636       assert(!ret ||  obj_in_cs(obj), "sanity");
   637       return ret;
   638     } else {
   639       return false;
   640     }
   641   }
   643   void clear_cset_fast_test() {
   644     assert(_in_cset_fast_test_base != NULL, "sanity");
   645     memset(_in_cset_fast_test_base, false,
   646         _in_cset_fast_test_length * sizeof(bool));
   647   }
   649   // This is called at the end of either a concurrent cycle or a Full
   650   // GC to update the number of full collections completed. Those two
   651   // can happen in a nested fashion, i.e., we start a concurrent
   652   // cycle, a Full GC happens half-way through it which ends first,
   653   // and then the cycle notices that a Full GC happened and ends
   654   // too. The concurrent parameter is a boolean to help us do a bit
   655   // tighter consistency checking in the method. If concurrent is
   656   // false, the caller is the inner caller in the nesting (i.e., the
   657   // Full GC). If concurrent is true, the caller is the outer caller
   658   // in this nesting (i.e., the concurrent cycle). Further nesting is
   659   // not currently supported. The end of the this call also notifies
   660   // the FullGCCount_lock in case a Java thread is waiting for a full
   661   // GC to happen (e.g., it called System.gc() with
   662   // +ExplicitGCInvokesConcurrent).
   663   void increment_full_collections_completed(bool concurrent);
   665   unsigned int full_collections_completed() {
   666     return _full_collections_completed;
   667   }
   669   G1HRPrinter* hr_printer() { return &_hr_printer; }
   671 protected:
   673   // Shrink the garbage-first heap by at most the given size (in bytes!).
   674   // (Rounds down to a HeapRegion boundary.)
   675   virtual void shrink(size_t expand_bytes);
   676   void shrink_helper(size_t expand_bytes);
   678   #if TASKQUEUE_STATS
   679   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   680   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   681   void reset_taskqueue_stats();
   682   #endif // TASKQUEUE_STATS
   684   // Schedule the VM operation that will do an evacuation pause to
   685   // satisfy an allocation request of word_size. *succeeded will
   686   // return whether the VM operation was successful (it did do an
   687   // evacuation pause) or not (another thread beat us to it or the GC
   688   // locker was active). Given that we should not be holding the
   689   // Heap_lock when we enter this method, we will pass the
   690   // gc_count_before (i.e., total_collections()) as a parameter since
   691   // it has to be read while holding the Heap_lock. Currently, both
   692   // methods that call do_collection_pause() release the Heap_lock
   693   // before the call, so it's easy to read gc_count_before just before.
   694   HeapWord* do_collection_pause(size_t       word_size,
   695                                 unsigned int gc_count_before,
   696                                 bool*        succeeded);
   698   // The guts of the incremental collection pause, executed by the vm
   699   // thread. It returns false if it is unable to do the collection due
   700   // to the GC locker being active, true otherwise
   701   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   703   // Actually do the work of evacuating the collection set.
   704   void evacuate_collection_set();
   706   // The g1 remembered set of the heap.
   707   G1RemSet* _g1_rem_set;
   708   // And it's mod ref barrier set, used to track updates for the above.
   709   ModRefBarrierSet* _mr_bs;
   711   // A set of cards that cover the objects for which the Rsets should be updated
   712   // concurrently after the collection.
   713   DirtyCardQueueSet _dirty_card_queue_set;
   715   // The Heap Region Rem Set Iterator.
   716   HeapRegionRemSetIterator** _rem_set_iterator;
   718   // The closure used to refine a single card.
   719   RefineCardTableEntryClosure* _refine_cte_cl;
   721   // A function to check the consistency of dirty card logs.
   722   void check_ct_logs_at_safepoint();
   724   // A DirtyCardQueueSet that is used to hold cards that contain
   725   // references into the current collection set. This is used to
   726   // update the remembered sets of the regions in the collection
   727   // set in the event of an evacuation failure.
   728   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   730   // After a collection pause, make the regions in the CS into free
   731   // regions.
   732   void free_collection_set(HeapRegion* cs_head);
   734   // Abandon the current collection set without recording policy
   735   // statistics or updating free lists.
   736   void abandon_collection_set(HeapRegion* cs_head);
   738   // Applies "scan_non_heap_roots" to roots outside the heap,
   739   // "scan_rs" to roots inside the heap (having done "set_region" to
   740   // indicate the region in which the root resides), and does "scan_perm"
   741   // (setting the generation to the perm generation.)  If "scan_rs" is
   742   // NULL, then this step is skipped.  The "worker_i"
   743   // param is for use with parallel roots processing, and should be
   744   // the "i" of the calling parallel worker thread's work(i) function.
   745   // In the sequential case this param will be ignored.
   746   void g1_process_strong_roots(bool collecting_perm_gen,
   747                                SharedHeap::ScanningOption so,
   748                                OopClosure* scan_non_heap_roots,
   749                                OopsInHeapRegionClosure* scan_rs,
   750                                OopsInGenClosure* scan_perm,
   751                                int worker_i);
   753   // Apply "blk" to all the weak roots of the system.  These include
   754   // JNI weak roots, the code cache, system dictionary, symbol table,
   755   // string table, and referents of reachable weak refs.
   756   void g1_process_weak_roots(OopClosure* root_closure,
   757                              OopClosure* non_root_closure);
   759   // Frees a non-humongous region by initializing its contents and
   760   // adding it to the free list that's passed as a parameter (this is
   761   // usually a local list which will be appended to the master free
   762   // list later). The used bytes of freed regions are accumulated in
   763   // pre_used. If par is true, the region's RSet will not be freed
   764   // up. The assumption is that this will be done later.
   765   void free_region(HeapRegion* hr,
   766                    size_t* pre_used,
   767                    FreeRegionList* free_list,
   768                    bool par);
   770   // Frees a humongous region by collapsing it into individual regions
   771   // and calling free_region() for each of them. The freed regions
   772   // will be added to the free list that's passed as a parameter (this
   773   // is usually a local list which will be appended to the master free
   774   // list later). The used bytes of freed regions are accumulated in
   775   // pre_used. If par is true, the region's RSet will not be freed
   776   // up. The assumption is that this will be done later.
   777   void free_humongous_region(HeapRegion* hr,
   778                              size_t* pre_used,
   779                              FreeRegionList* free_list,
   780                              HumongousRegionSet* humongous_proxy_set,
   781                              bool par);
   783   // Notifies all the necessary spaces that the committed space has
   784   // been updated (either expanded or shrunk). It should be called
   785   // after _g1_storage is updated.
   786   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   788   // The concurrent marker (and the thread it runs in.)
   789   ConcurrentMark* _cm;
   790   ConcurrentMarkThread* _cmThread;
   791   bool _mark_in_progress;
   793   // The concurrent refiner.
   794   ConcurrentG1Refine* _cg1r;
   796   // The parallel task queues
   797   RefToScanQueueSet *_task_queues;
   799   // True iff a evacuation has failed in the current collection.
   800   bool _evacuation_failed;
   802   // Set the attribute indicating whether evacuation has failed in the
   803   // current collection.
   804   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   806   // Failed evacuations cause some logical from-space objects to have
   807   // forwarding pointers to themselves.  Reset them.
   808   void remove_self_forwarding_pointers();
   810   // When one is non-null, so is the other.  Together, they each pair is
   811   // an object with a preserved mark, and its mark value.
   812   GrowableArray<oop>*     _objs_with_preserved_marks;
   813   GrowableArray<markOop>* _preserved_marks_of_objs;
   815   // Preserve the mark of "obj", if necessary, in preparation for its mark
   816   // word being overwritten with a self-forwarding-pointer.
   817   void preserve_mark_if_necessary(oop obj, markOop m);
   819   // The stack of evac-failure objects left to be scanned.
   820   GrowableArray<oop>*    _evac_failure_scan_stack;
   821   // The closure to apply to evac-failure objects.
   823   OopsInHeapRegionClosure* _evac_failure_closure;
   824   // Set the field above.
   825   void
   826   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   827     _evac_failure_closure = evac_failure_closure;
   828   }
   830   // Push "obj" on the scan stack.
   831   void push_on_evac_failure_scan_stack(oop obj);
   832   // Process scan stack entries until the stack is empty.
   833   void drain_evac_failure_scan_stack();
   834   // True iff an invocation of "drain_scan_stack" is in progress; to
   835   // prevent unnecessary recursion.
   836   bool _drain_in_progress;
   838   // Do any necessary initialization for evacuation-failure handling.
   839   // "cl" is the closure that will be used to process evac-failure
   840   // objects.
   841   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   842   // Do any necessary cleanup for evacuation-failure handling data
   843   // structures.
   844   void finalize_for_evac_failure();
   846   // An attempt to evacuate "obj" has failed; take necessary steps.
   847   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj,
   848                                     bool should_mark_root);
   849   void handle_evacuation_failure_common(oop obj, markOop m);
   851   // ("Weak") Reference processing support.
   852   //
   853   // G1 has 2 instances of the referece processor class. One
   854   // (_ref_processor_cm) handles reference object discovery
   855   // and subsequent processing during concurrent marking cycles.
   856   //
   857   // The other (_ref_processor_stw) handles reference object
   858   // discovery and processing during full GCs and incremental
   859   // evacuation pauses.
   860   //
   861   // During an incremental pause, reference discovery will be
   862   // temporarily disabled for _ref_processor_cm and will be
   863   // enabled for _ref_processor_stw. At the end of the evacuation
   864   // pause references discovered by _ref_processor_stw will be
   865   // processed and discovery will be disabled. The previous
   866   // setting for reference object discovery for _ref_processor_cm
   867   // will be re-instated.
   868   //
   869   // At the start of marking:
   870   //  * Discovery by the CM ref processor is verified to be inactive
   871   //    and it's discovered lists are empty.
   872   //  * Discovery by the CM ref processor is then enabled.
   873   //
   874   // At the end of marking:
   875   //  * Any references on the CM ref processor's discovered
   876   //    lists are processed (possibly MT).
   877   //
   878   // At the start of full GC we:
   879   //  * Disable discovery by the CM ref processor and
   880   //    empty CM ref processor's discovered lists
   881   //    (without processing any entries).
   882   //  * Verify that the STW ref processor is inactive and it's
   883   //    discovered lists are empty.
   884   //  * Temporarily set STW ref processor discovery as single threaded.
   885   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   886   //    field.
   887   //  * Finally enable discovery by the STW ref processor.
   888   //
   889   // The STW ref processor is used to record any discovered
   890   // references during the full GC.
   891   //
   892   // At the end of a full GC we:
   893   //  * Enqueue any reference objects discovered by the STW ref processor
   894   //    that have non-live referents. This has the side-effect of
   895   //    making the STW ref processor inactive by disabling discovery.
   896   //  * Verify that the CM ref processor is still inactive
   897   //    and no references have been placed on it's discovered
   898   //    lists (also checked as a precondition during initial marking).
   900   // The (stw) reference processor...
   901   ReferenceProcessor* _ref_processor_stw;
   903   // During reference object discovery, the _is_alive_non_header
   904   // closure (if non-null) is applied to the referent object to
   905   // determine whether the referent is live. If so then the
   906   // reference object does not need to be 'discovered' and can
   907   // be treated as a regular oop. This has the benefit of reducing
   908   // the number of 'discovered' reference objects that need to
   909   // be processed.
   910   //
   911   // Instance of the is_alive closure for embedding into the
   912   // STW reference processor as the _is_alive_non_header field.
   913   // Supplying a value for the _is_alive_non_header field is
   914   // optional but doing so prevents unnecessary additions to
   915   // the discovered lists during reference discovery.
   916   G1STWIsAliveClosure _is_alive_closure_stw;
   918   // The (concurrent marking) reference processor...
   919   ReferenceProcessor* _ref_processor_cm;
   921   // Instance of the concurrent mark is_alive closure for embedding
   922   // into the Concurrent Marking reference processor as the
   923   // _is_alive_non_header field. Supplying a value for the
   924   // _is_alive_non_header field is optional but doing so prevents
   925   // unnecessary additions to the discovered lists during reference
   926   // discovery.
   927   G1CMIsAliveClosure _is_alive_closure_cm;
   929   enum G1H_process_strong_roots_tasks {
   930     G1H_PS_mark_stack_oops_do,
   931     G1H_PS_refProcessor_oops_do,
   932     // Leave this one last.
   933     G1H_PS_NumElements
   934   };
   936   SubTasksDone* _process_strong_tasks;
   938   volatile bool _free_regions_coming;
   940 public:
   942   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   944   void set_refine_cte_cl_concurrency(bool concurrent);
   946   RefToScanQueue *task_queue(int i) const;
   948   // A set of cards where updates happened during the GC
   949   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   951   // A DirtyCardQueueSet that is used to hold cards that contain
   952   // references into the current collection set. This is used to
   953   // update the remembered sets of the regions in the collection
   954   // set in the event of an evacuation failure.
   955   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   956         { return _into_cset_dirty_card_queue_set; }
   958   // Create a G1CollectedHeap with the specified policy.
   959   // Must call the initialize method afterwards.
   960   // May not return if something goes wrong.
   961   G1CollectedHeap(G1CollectorPolicy* policy);
   963   // Initialize the G1CollectedHeap to have the initial and
   964   // maximum sizes, permanent generation, and remembered and barrier sets
   965   // specified by the policy object.
   966   jint initialize();
   968   // Initialize weak reference processing.
   969   virtual void ref_processing_init();
   971   void set_par_threads(int t) {
   972     SharedHeap::set_par_threads(t);
   973     _process_strong_tasks->set_n_threads(t);
   974   }
   976   virtual CollectedHeap::Name kind() const {
   977     return CollectedHeap::G1CollectedHeap;
   978   }
   980   // The current policy object for the collector.
   981   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   983   // Adaptive size policy.  No such thing for g1.
   984   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   986   // The rem set and barrier set.
   987   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   988   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   990   // The rem set iterator.
   991   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   992     return _rem_set_iterator[i];
   993   }
   995   HeapRegionRemSetIterator* rem_set_iterator() {
   996     return _rem_set_iterator[0];
   997   }
   999   unsigned get_gc_time_stamp() {
  1000     return _gc_time_stamp;
  1003   void reset_gc_time_stamp() {
  1004     _gc_time_stamp = 0;
  1005     OrderAccess::fence();
  1008   void increment_gc_time_stamp() {
  1009     ++_gc_time_stamp;
  1010     OrderAccess::fence();
  1013   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1014                                   DirtyCardQueue* into_cset_dcq,
  1015                                   bool concurrent, int worker_i);
  1017   // The shared block offset table array.
  1018   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1020   // Reference Processing accessors
  1022   // The STW reference processor....
  1023   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1025   // The Concurent Marking reference processor...
  1026   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1028   virtual size_t capacity() const;
  1029   virtual size_t used() const;
  1030   // This should be called when we're not holding the heap lock. The
  1031   // result might be a bit inaccurate.
  1032   size_t used_unlocked() const;
  1033   size_t recalculate_used() const;
  1035   // These virtual functions do the actual allocation.
  1036   // Some heaps may offer a contiguous region for shared non-blocking
  1037   // allocation, via inlined code (by exporting the address of the top and
  1038   // end fields defining the extent of the contiguous allocation region.)
  1039   // But G1CollectedHeap doesn't yet support this.
  1041   // Return an estimate of the maximum allocation that could be performed
  1042   // without triggering any collection or expansion activity.  In a
  1043   // generational collector, for example, this is probably the largest
  1044   // allocation that could be supported (without expansion) in the youngest
  1045   // generation.  It is "unsafe" because no locks are taken; the result
  1046   // should be treated as an approximation, not a guarantee, for use in
  1047   // heuristic resizing decisions.
  1048   virtual size_t unsafe_max_alloc();
  1050   virtual bool is_maximal_no_gc() const {
  1051     return _g1_storage.uncommitted_size() == 0;
  1054   // The total number of regions in the heap.
  1055   size_t n_regions() { return _hrs.length(); }
  1057   // The max number of regions in the heap.
  1058   size_t max_regions() { return _hrs.max_length(); }
  1060   // The number of regions that are completely free.
  1061   size_t free_regions() { return _free_list.length(); }
  1063   // The number of regions that are not completely free.
  1064   size_t used_regions() { return n_regions() - free_regions(); }
  1066   // The number of regions available for "regular" expansion.
  1067   size_t expansion_regions() { return _expansion_regions; }
  1069   // Factory method for HeapRegion instances. It will return NULL if
  1070   // the allocation fails.
  1071   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
  1073   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1074   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1075   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1076   void verify_dirty_young_regions() PRODUCT_RETURN;
  1078   // verify_region_sets() performs verification over the region
  1079   // lists. It will be compiled in the product code to be used when
  1080   // necessary (i.e., during heap verification).
  1081   void verify_region_sets();
  1083   // verify_region_sets_optional() is planted in the code for
  1084   // list verification in non-product builds (and it can be enabled in
  1085   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1086 #if HEAP_REGION_SET_FORCE_VERIFY
  1087   void verify_region_sets_optional() {
  1088     verify_region_sets();
  1090 #else // HEAP_REGION_SET_FORCE_VERIFY
  1091   void verify_region_sets_optional() { }
  1092 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1094 #ifdef ASSERT
  1095   bool is_on_master_free_list(HeapRegion* hr) {
  1096     return hr->containing_set() == &_free_list;
  1099   bool is_in_humongous_set(HeapRegion* hr) {
  1100     return hr->containing_set() == &_humongous_set;
  1102 #endif // ASSERT
  1104   // Wrapper for the region list operations that can be called from
  1105   // methods outside this class.
  1107   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1108     _secondary_free_list.add_as_tail(list);
  1111   void append_secondary_free_list() {
  1112     _free_list.add_as_head(&_secondary_free_list);
  1115   void append_secondary_free_list_if_not_empty_with_lock() {
  1116     // If the secondary free list looks empty there's no reason to
  1117     // take the lock and then try to append it.
  1118     if (!_secondary_free_list.is_empty()) {
  1119       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1120       append_secondary_free_list();
  1124   void set_free_regions_coming();
  1125   void reset_free_regions_coming();
  1126   bool free_regions_coming() { return _free_regions_coming; }
  1127   void wait_while_free_regions_coming();
  1129   // Perform a collection of the heap; intended for use in implementing
  1130   // "System.gc".  This probably implies as full a collection as the
  1131   // "CollectedHeap" supports.
  1132   virtual void collect(GCCause::Cause cause);
  1134   // The same as above but assume that the caller holds the Heap_lock.
  1135   void collect_locked(GCCause::Cause cause);
  1137   // This interface assumes that it's being called by the
  1138   // vm thread. It collects the heap assuming that the
  1139   // heap lock is already held and that we are executing in
  1140   // the context of the vm thread.
  1141   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1143   // True iff a evacuation has failed in the most-recent collection.
  1144   bool evacuation_failed() { return _evacuation_failed; }
  1146   // It will free a region if it has allocated objects in it that are
  1147   // all dead. It calls either free_region() or
  1148   // free_humongous_region() depending on the type of the region that
  1149   // is passed to it.
  1150   void free_region_if_empty(HeapRegion* hr,
  1151                             size_t* pre_used,
  1152                             FreeRegionList* free_list,
  1153                             HumongousRegionSet* humongous_proxy_set,
  1154                             HRRSCleanupTask* hrrs_cleanup_task,
  1155                             bool par);
  1157   // It appends the free list to the master free list and updates the
  1158   // master humongous list according to the contents of the proxy
  1159   // list. It also adjusts the total used bytes according to pre_used
  1160   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1161   void update_sets_after_freeing_regions(size_t pre_used,
  1162                                        FreeRegionList* free_list,
  1163                                        HumongousRegionSet* humongous_proxy_set,
  1164                                        bool par);
  1166   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1167   virtual bool is_in(const void* p) const;
  1169   // Return "TRUE" iff the given object address is within the collection
  1170   // set.
  1171   inline bool obj_in_cs(oop obj);
  1173   // Return "TRUE" iff the given object address is in the reserved
  1174   // region of g1 (excluding the permanent generation).
  1175   bool is_in_g1_reserved(const void* p) const {
  1176     return _g1_reserved.contains(p);
  1179   // Returns a MemRegion that corresponds to the space that has been
  1180   // reserved for the heap
  1181   MemRegion g1_reserved() {
  1182     return _g1_reserved;
  1185   // Returns a MemRegion that corresponds to the space that has been
  1186   // committed in the heap
  1187   MemRegion g1_committed() {
  1188     return _g1_committed;
  1191   virtual bool is_in_closed_subset(const void* p) const;
  1193   // This resets the card table to all zeros.  It is used after
  1194   // a collection pause which used the card table to claim cards.
  1195   void cleanUpCardTable();
  1197   // Iteration functions.
  1199   // Iterate over all the ref-containing fields of all objects, calling
  1200   // "cl.do_oop" on each.
  1201   virtual void oop_iterate(OopClosure* cl) {
  1202     oop_iterate(cl, true);
  1204   void oop_iterate(OopClosure* cl, bool do_perm);
  1206   // Same as above, restricted to a memory region.
  1207   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1208     oop_iterate(mr, cl, true);
  1210   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1212   // Iterate over all objects, calling "cl.do_object" on each.
  1213   virtual void object_iterate(ObjectClosure* cl) {
  1214     object_iterate(cl, true);
  1216   virtual void safe_object_iterate(ObjectClosure* cl) {
  1217     object_iterate(cl, true);
  1219   void object_iterate(ObjectClosure* cl, bool do_perm);
  1221   // Iterate over all objects allocated since the last collection, calling
  1222   // "cl.do_object" on each.  The heap must have been initialized properly
  1223   // to support this function, or else this call will fail.
  1224   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1226   // Iterate over all spaces in use in the heap, in ascending address order.
  1227   virtual void space_iterate(SpaceClosure* cl);
  1229   // Iterate over heap regions, in address order, terminating the
  1230   // iteration early if the "doHeapRegion" method returns "true".
  1231   void heap_region_iterate(HeapRegionClosure* blk) const;
  1233   // Iterate over heap regions starting with r (or the first region if "r"
  1234   // is NULL), in address order, terminating early if the "doHeapRegion"
  1235   // method returns "true".
  1236   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1238   // Return the region with the given index. It assumes the index is valid.
  1239   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1241   // Divide the heap region sequence into "chunks" of some size (the number
  1242   // of regions divided by the number of parallel threads times some
  1243   // overpartition factor, currently 4).  Assumes that this will be called
  1244   // in parallel by ParallelGCThreads worker threads with discinct worker
  1245   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1246   // calls will use the same "claim_value", and that that claim value is
  1247   // different from the claim_value of any heap region before the start of
  1248   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1249   // attempting to claim the first region in each chunk, and, if
  1250   // successful, applying the closure to each region in the chunk (and
  1251   // setting the claim value of the second and subsequent regions of the
  1252   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1253   // i.e., that a closure never attempt to abort a traversal.
  1254   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1255                                        int worker,
  1256                                        jint claim_value);
  1258   // It resets all the region claim values to the default.
  1259   void reset_heap_region_claim_values();
  1261 #ifdef ASSERT
  1262   bool check_heap_region_claim_values(jint claim_value);
  1263 #endif // ASSERT
  1265   // Iterate over the regions (if any) in the current collection set.
  1266   void collection_set_iterate(HeapRegionClosure* blk);
  1268   // As above but starting from region r
  1269   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1271   // Returns the first (lowest address) compactible space in the heap.
  1272   virtual CompactibleSpace* first_compactible_space();
  1274   // A CollectedHeap will contain some number of spaces.  This finds the
  1275   // space containing a given address, or else returns NULL.
  1276   virtual Space* space_containing(const void* addr) const;
  1278   // A G1CollectedHeap will contain some number of heap regions.  This
  1279   // finds the region containing a given address, or else returns NULL.
  1280   template <class T>
  1281   inline HeapRegion* heap_region_containing(const T addr) const;
  1283   // Like the above, but requires "addr" to be in the heap (to avoid a
  1284   // null-check), and unlike the above, may return an continuing humongous
  1285   // region.
  1286   template <class T>
  1287   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1289   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1290   // each address in the (reserved) heap is a member of exactly
  1291   // one block.  The defining characteristic of a block is that it is
  1292   // possible to find its size, and thus to progress forward to the next
  1293   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1294   // represent Java objects, or they might be free blocks in a
  1295   // free-list-based heap (or subheap), as long as the two kinds are
  1296   // distinguishable and the size of each is determinable.
  1298   // Returns the address of the start of the "block" that contains the
  1299   // address "addr".  We say "blocks" instead of "object" since some heaps
  1300   // may not pack objects densely; a chunk may either be an object or a
  1301   // non-object.
  1302   virtual HeapWord* block_start(const void* addr) const;
  1304   // Requires "addr" to be the start of a chunk, and returns its size.
  1305   // "addr + size" is required to be the start of a new chunk, or the end
  1306   // of the active area of the heap.
  1307   virtual size_t block_size(const HeapWord* addr) const;
  1309   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1310   // the block is an object.
  1311   virtual bool block_is_obj(const HeapWord* addr) const;
  1313   // Does this heap support heap inspection? (+PrintClassHistogram)
  1314   virtual bool supports_heap_inspection() const { return true; }
  1316   // Section on thread-local allocation buffers (TLABs)
  1317   // See CollectedHeap for semantics.
  1319   virtual bool supports_tlab_allocation() const;
  1320   virtual size_t tlab_capacity(Thread* thr) const;
  1321   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1323   // Can a compiler initialize a new object without store barriers?
  1324   // This permission only extends from the creation of a new object
  1325   // via a TLAB up to the first subsequent safepoint. If such permission
  1326   // is granted for this heap type, the compiler promises to call
  1327   // defer_store_barrier() below on any slow path allocation of
  1328   // a new object for which such initializing store barriers will
  1329   // have been elided. G1, like CMS, allows this, but should be
  1330   // ready to provide a compensating write barrier as necessary
  1331   // if that storage came out of a non-young region. The efficiency
  1332   // of this implementation depends crucially on being able to
  1333   // answer very efficiently in constant time whether a piece of
  1334   // storage in the heap comes from a young region or not.
  1335   // See ReduceInitialCardMarks.
  1336   virtual bool can_elide_tlab_store_barriers() const {
  1337     // 6920090: Temporarily disabled, because of lingering
  1338     // instabilities related to RICM with G1. In the
  1339     // interim, the option ReduceInitialCardMarksForG1
  1340     // below is left solely as a debugging device at least
  1341     // until 6920109 fixes the instabilities.
  1342     return ReduceInitialCardMarksForG1;
  1345   virtual bool card_mark_must_follow_store() const {
  1346     return true;
  1349   bool is_in_young(const oop obj) {
  1350     HeapRegion* hr = heap_region_containing(obj);
  1351     return hr != NULL && hr->is_young();
  1354 #ifdef ASSERT
  1355   virtual bool is_in_partial_collection(const void* p);
  1356 #endif
  1358   virtual bool is_scavengable(const void* addr);
  1360   // We don't need barriers for initializing stores to objects
  1361   // in the young gen: for the SATB pre-barrier, there is no
  1362   // pre-value that needs to be remembered; for the remembered-set
  1363   // update logging post-barrier, we don't maintain remembered set
  1364   // information for young gen objects.
  1365   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1366     // Re 6920090, 6920109 above.
  1367     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1368     return is_in_young(new_obj);
  1371   // Can a compiler elide a store barrier when it writes
  1372   // a permanent oop into the heap?  Applies when the compiler
  1373   // is storing x to the heap, where x->is_perm() is true.
  1374   virtual bool can_elide_permanent_oop_store_barriers() const {
  1375     // At least until perm gen collection is also G1-ified, at
  1376     // which point this should return false.
  1377     return true;
  1380   // Returns "true" iff the given word_size is "very large".
  1381   static bool isHumongous(size_t word_size) {
  1382     // Note this has to be strictly greater-than as the TLABs
  1383     // are capped at the humongous thresold and we want to
  1384     // ensure that we don't try to allocate a TLAB as
  1385     // humongous and that we don't allocate a humongous
  1386     // object in a TLAB.
  1387     return word_size > _humongous_object_threshold_in_words;
  1390   // Update mod union table with the set of dirty cards.
  1391   void updateModUnion();
  1393   // Set the mod union bits corresponding to the given memRegion.  Note
  1394   // that this is always a safe operation, since it doesn't clear any
  1395   // bits.
  1396   void markModUnionRange(MemRegion mr);
  1398   // Records the fact that a marking phase is no longer in progress.
  1399   void set_marking_complete() {
  1400     _mark_in_progress = false;
  1402   void set_marking_started() {
  1403     _mark_in_progress = true;
  1405   bool mark_in_progress() {
  1406     return _mark_in_progress;
  1409   // Print the maximum heap capacity.
  1410   virtual size_t max_capacity() const;
  1412   virtual jlong millis_since_last_gc();
  1414   // Perform any cleanup actions necessary before allowing a verification.
  1415   virtual void prepare_for_verify();
  1417   // Perform verification.
  1419   // vo == UsePrevMarking  -> use "prev" marking information,
  1420   // vo == UseNextMarking -> use "next" marking information
  1421   // vo == UseMarkWord    -> use the mark word in the object header
  1422   //
  1423   // NOTE: Only the "prev" marking information is guaranteed to be
  1424   // consistent most of the time, so most calls to this should use
  1425   // vo == UsePrevMarking.
  1426   // Currently, there is only one case where this is called with
  1427   // vo == UseNextMarking, which is to verify the "next" marking
  1428   // information at the end of remark.
  1429   // Currently there is only one place where this is called with
  1430   // vo == UseMarkWord, which is to verify the marking during a
  1431   // full GC.
  1432   void verify(bool allow_dirty, bool silent, VerifyOption vo);
  1434   // Override; it uses the "prev" marking information
  1435   virtual void verify(bool allow_dirty, bool silent);
  1436   // Default behavior by calling print(tty);
  1437   virtual void print() const;
  1438   // This calls print_on(st, PrintHeapAtGCExtended).
  1439   virtual void print_on(outputStream* st) const;
  1440   // If extended is true, it will print out information for all
  1441   // regions in the heap by calling print_on_extended(st).
  1442   virtual void print_on(outputStream* st, bool extended) const;
  1443   virtual void print_on_extended(outputStream* st) const;
  1445   virtual void print_gc_threads_on(outputStream* st) const;
  1446   virtual void gc_threads_do(ThreadClosure* tc) const;
  1448   // Override
  1449   void print_tracing_info() const;
  1451   // The following two methods are helpful for debugging RSet issues.
  1452   void print_cset_rsets() PRODUCT_RETURN;
  1453   void print_all_rsets() PRODUCT_RETURN;
  1455   // Convenience function to be used in situations where the heap type can be
  1456   // asserted to be this type.
  1457   static G1CollectedHeap* heap();
  1459   void empty_young_list();
  1461   void set_region_short_lived_locked(HeapRegion* hr);
  1462   // add appropriate methods for any other surv rate groups
  1464   YoungList* young_list() { return _young_list; }
  1466   // debugging
  1467   bool check_young_list_well_formed() {
  1468     return _young_list->check_list_well_formed();
  1471   bool check_young_list_empty(bool check_heap,
  1472                               bool check_sample = true);
  1474   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1475   // many of these need to be public.
  1477   // The functions below are helper functions that a subclass of
  1478   // "CollectedHeap" can use in the implementation of its virtual
  1479   // functions.
  1480   // This performs a concurrent marking of the live objects in a
  1481   // bitmap off to the side.
  1482   void doConcurrentMark();
  1484   bool isMarkedPrev(oop obj) const;
  1485   bool isMarkedNext(oop obj) const;
  1487   // vo == UsePrevMarking -> use "prev" marking information,
  1488   // vo == UseNextMarking -> use "next" marking information,
  1489   // vo == UseMarkWord    -> use mark word from object header
  1490   bool is_obj_dead_cond(const oop obj,
  1491                         const HeapRegion* hr,
  1492                         const VerifyOption vo) const {
  1494     switch (vo) {
  1495       case VerifyOption_G1UsePrevMarking:
  1496         return is_obj_dead(obj, hr);
  1497       case VerifyOption_G1UseNextMarking:
  1498         return is_obj_ill(obj, hr);
  1499       default:
  1500         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1501         return !obj->is_gc_marked();
  1505   // Determine if an object is dead, given the object and also
  1506   // the region to which the object belongs. An object is dead
  1507   // iff a) it was not allocated since the last mark and b) it
  1508   // is not marked.
  1510   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1511     return
  1512       !hr->obj_allocated_since_prev_marking(obj) &&
  1513       !isMarkedPrev(obj);
  1516   // This is used when copying an object to survivor space.
  1517   // If the object is marked live, then we mark the copy live.
  1518   // If the object is allocated since the start of this mark
  1519   // cycle, then we mark the copy live.
  1520   // If the object has been around since the previous mark
  1521   // phase, and hasn't been marked yet during this phase,
  1522   // then we don't mark it, we just wait for the
  1523   // current marking cycle to get to it.
  1525   // This function returns true when an object has been
  1526   // around since the previous marking and hasn't yet
  1527   // been marked during this marking.
  1529   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1530     return
  1531       !hr->obj_allocated_since_next_marking(obj) &&
  1532       !isMarkedNext(obj);
  1535   // Determine if an object is dead, given only the object itself.
  1536   // This will find the region to which the object belongs and
  1537   // then call the region version of the same function.
  1539   // Added if it is in permanent gen it isn't dead.
  1540   // Added if it is NULL it isn't dead.
  1542   // vo == UsePrevMarking -> use "prev" marking information,
  1543   // vo == UseNextMarking -> use "next" marking information,
  1544   // vo == UseMarkWord    -> use mark word from object header
  1545   bool is_obj_dead_cond(const oop obj,
  1546                         const VerifyOption vo) const {
  1548     switch (vo) {
  1549       case VerifyOption_G1UsePrevMarking:
  1550         return is_obj_dead(obj);
  1551       case VerifyOption_G1UseNextMarking:
  1552         return is_obj_ill(obj);
  1553       default:
  1554         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1555         return !obj->is_gc_marked();
  1559   bool is_obj_dead(const oop obj) const {
  1560     const HeapRegion* hr = heap_region_containing(obj);
  1561     if (hr == NULL) {
  1562       if (Universe::heap()->is_in_permanent(obj))
  1563         return false;
  1564       else if (obj == NULL) return false;
  1565       else return true;
  1567     else return is_obj_dead(obj, hr);
  1570   bool is_obj_ill(const oop obj) const {
  1571     const HeapRegion* hr = heap_region_containing(obj);
  1572     if (hr == NULL) {
  1573       if (Universe::heap()->is_in_permanent(obj))
  1574         return false;
  1575       else if (obj == NULL) return false;
  1576       else return true;
  1578     else return is_obj_ill(obj, hr);
  1581   // The following is just to alert the verification code
  1582   // that a full collection has occurred and that the
  1583   // remembered sets are no longer up to date.
  1584   bool _full_collection;
  1585   void set_full_collection() { _full_collection = true;}
  1586   void clear_full_collection() {_full_collection = false;}
  1587   bool full_collection() {return _full_collection;}
  1589   ConcurrentMark* concurrent_mark() const { return _cm; }
  1590   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1592   // The dirty cards region list is used to record a subset of regions
  1593   // whose cards need clearing. The list if populated during the
  1594   // remembered set scanning and drained during the card table
  1595   // cleanup. Although the methods are reentrant, population/draining
  1596   // phases must not overlap. For synchronization purposes the last
  1597   // element on the list points to itself.
  1598   HeapRegion* _dirty_cards_region_list;
  1599   void push_dirty_cards_region(HeapRegion* hr);
  1600   HeapRegion* pop_dirty_cards_region();
  1602 public:
  1603   void stop_conc_gc_threads();
  1605   // <NEW PREDICTION>
  1607   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1608   void check_if_region_is_too_expensive(double predicted_time_ms);
  1609   size_t pending_card_num();
  1610   size_t max_pending_card_num();
  1611   size_t cards_scanned();
  1613   // </NEW PREDICTION>
  1615 protected:
  1616   size_t _max_heap_capacity;
  1617 };
  1619 #define use_local_bitmaps         1
  1620 #define verify_local_bitmaps      0
  1621 #define oop_buffer_length       256
  1623 #ifndef PRODUCT
  1624 class GCLabBitMap;
  1625 class GCLabBitMapClosure: public BitMapClosure {
  1626 private:
  1627   ConcurrentMark* _cm;
  1628   GCLabBitMap*    _bitmap;
  1630 public:
  1631   GCLabBitMapClosure(ConcurrentMark* cm,
  1632                      GCLabBitMap* bitmap) {
  1633     _cm     = cm;
  1634     _bitmap = bitmap;
  1637   virtual bool do_bit(size_t offset);
  1638 };
  1639 #endif // !PRODUCT
  1641 class GCLabBitMap: public BitMap {
  1642 private:
  1643   ConcurrentMark* _cm;
  1645   int       _shifter;
  1646   size_t    _bitmap_word_covers_words;
  1648   // beginning of the heap
  1649   HeapWord* _heap_start;
  1651   // this is the actual start of the GCLab
  1652   HeapWord* _real_start_word;
  1654   // this is the actual end of the GCLab
  1655   HeapWord* _real_end_word;
  1657   // this is the first word, possibly located before the actual start
  1658   // of the GCLab, that corresponds to the first bit of the bitmap
  1659   HeapWord* _start_word;
  1661   // size of a GCLab in words
  1662   size_t _gclab_word_size;
  1664   static int shifter() {
  1665     return MinObjAlignment - 1;
  1668   // how many heap words does a single bitmap word corresponds to?
  1669   static size_t bitmap_word_covers_words() {
  1670     return BitsPerWord << shifter();
  1673   size_t gclab_word_size() const {
  1674     return _gclab_word_size;
  1677   // Calculates actual GCLab size in words
  1678   size_t gclab_real_word_size() const {
  1679     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1680            / BitsPerWord;
  1683   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1684     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1685     // We are going to ensure that the beginning of a word in this
  1686     // bitmap also corresponds to the beginning of a word in the
  1687     // global marking bitmap. To handle the case where a GCLab
  1688     // starts from the middle of the bitmap, we need to add enough
  1689     // space (i.e. up to a bitmap word) to ensure that we have
  1690     // enough bits in the bitmap.
  1691     return bits_in_bitmap + BitsPerWord - 1;
  1693 public:
  1694   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1695     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1696       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1697       _shifter(shifter()),
  1698       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1699       _heap_start(heap_start),
  1700       _gclab_word_size(gclab_word_size),
  1701       _real_start_word(NULL),
  1702       _real_end_word(NULL),
  1703       _start_word(NULL)
  1705     guarantee( size_in_words() >= bitmap_size_in_words(),
  1706                "just making sure");
  1709   inline unsigned heapWordToOffset(HeapWord* addr) {
  1710     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1711     assert(offset < size(), "offset should be within bounds");
  1712     return offset;
  1715   inline HeapWord* offsetToHeapWord(size_t offset) {
  1716     HeapWord* addr =  _start_word + (offset << _shifter);
  1717     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1718     return addr;
  1721   bool fields_well_formed() {
  1722     bool ret1 = (_real_start_word == NULL) &&
  1723                 (_real_end_word == NULL) &&
  1724                 (_start_word == NULL);
  1725     if (ret1)
  1726       return true;
  1728     bool ret2 = _real_start_word >= _start_word &&
  1729       _start_word < _real_end_word &&
  1730       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1731       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1732                                                               > _real_end_word;
  1733     return ret2;
  1736   inline bool mark(HeapWord* addr) {
  1737     guarantee(use_local_bitmaps, "invariant");
  1738     assert(fields_well_formed(), "invariant");
  1740     if (addr >= _real_start_word && addr < _real_end_word) {
  1741       assert(!isMarked(addr), "should not have already been marked");
  1743       // first mark it on the bitmap
  1744       at_put(heapWordToOffset(addr), true);
  1746       return true;
  1747     } else {
  1748       return false;
  1752   inline bool isMarked(HeapWord* addr) {
  1753     guarantee(use_local_bitmaps, "invariant");
  1754     assert(fields_well_formed(), "invariant");
  1756     return at(heapWordToOffset(addr));
  1759   void set_buffer(HeapWord* start) {
  1760     guarantee(use_local_bitmaps, "invariant");
  1761     clear();
  1763     assert(start != NULL, "invariant");
  1764     _real_start_word = start;
  1765     _real_end_word   = start + _gclab_word_size;
  1767     size_t diff =
  1768       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1769     _start_word = start - diff;
  1771     assert(fields_well_formed(), "invariant");
  1774 #ifndef PRODUCT
  1775   void verify() {
  1776     // verify that the marks have been propagated
  1777     GCLabBitMapClosure cl(_cm, this);
  1778     iterate(&cl);
  1780 #endif // PRODUCT
  1782   void retire() {
  1783     guarantee(use_local_bitmaps, "invariant");
  1784     assert(fields_well_formed(), "invariant");
  1786     if (_start_word != NULL) {
  1787       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1789       // this means that the bitmap was set up for the GCLab
  1790       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1792       mark_bitmap->mostly_disjoint_range_union(this,
  1793                                 0, // always start from the start of the bitmap
  1794                                 _start_word,
  1795                                 gclab_real_word_size());
  1796       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1798 #ifndef PRODUCT
  1799       if (use_local_bitmaps && verify_local_bitmaps)
  1800         verify();
  1801 #endif // PRODUCT
  1802     } else {
  1803       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1807   size_t bitmap_size_in_words() const {
  1808     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1811 };
  1813 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1814 private:
  1815   bool        _retired;
  1816   bool        _should_mark_objects;
  1817   GCLabBitMap _bitmap;
  1819 public:
  1820   G1ParGCAllocBuffer(size_t gclab_word_size);
  1822   inline bool mark(HeapWord* addr) {
  1823     guarantee(use_local_bitmaps, "invariant");
  1824     assert(_should_mark_objects, "invariant");
  1825     return _bitmap.mark(addr);
  1828   inline void set_buf(HeapWord* buf) {
  1829     if (use_local_bitmaps && _should_mark_objects) {
  1830       _bitmap.set_buffer(buf);
  1832     ParGCAllocBuffer::set_buf(buf);
  1833     _retired = false;
  1836   inline void retire(bool end_of_gc, bool retain) {
  1837     if (_retired)
  1838       return;
  1839     if (use_local_bitmaps && _should_mark_objects) {
  1840       _bitmap.retire();
  1842     ParGCAllocBuffer::retire(end_of_gc, retain);
  1843     _retired = true;
  1845 };
  1847 class G1ParScanThreadState : public StackObj {
  1848 protected:
  1849   G1CollectedHeap* _g1h;
  1850   RefToScanQueue*  _refs;
  1851   DirtyCardQueue   _dcq;
  1852   CardTableModRefBS* _ct_bs;
  1853   G1RemSet* _g1_rem;
  1855   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1856   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1857   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1858   ageTable            _age_table;
  1860   size_t           _alloc_buffer_waste;
  1861   size_t           _undo_waste;
  1863   OopsInHeapRegionClosure*      _evac_failure_cl;
  1864   G1ParScanHeapEvacClosure*     _evac_cl;
  1865   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1867   int _hash_seed;
  1868   int _queue_num;
  1870   size_t _term_attempts;
  1872   double _start;
  1873   double _start_strong_roots;
  1874   double _strong_roots_time;
  1875   double _start_term;
  1876   double _term_time;
  1878   // Map from young-age-index (0 == not young, 1 is youngest) to
  1879   // surviving words. base is what we get back from the malloc call
  1880   size_t* _surviving_young_words_base;
  1881   // this points into the array, as we use the first few entries for padding
  1882   size_t* _surviving_young_words;
  1884 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1886   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1888   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1890   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1891   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1893   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1894     if (!from->is_survivor()) {
  1895       _g1_rem->par_write_ref(from, p, tid);
  1899   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1900     // If the new value of the field points to the same region or
  1901     // is the to-space, we don't need to include it in the Rset updates.
  1902     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1903       size_t card_index = ctbs()->index_for(p);
  1904       // If the card hasn't been added to the buffer, do it.
  1905       if (ctbs()->mark_card_deferred(card_index)) {
  1906         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1911 public:
  1912   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1914   ~G1ParScanThreadState() {
  1915     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1918   RefToScanQueue*   refs()            { return _refs;             }
  1919   ageTable*         age_table()       { return &_age_table;       }
  1921   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1922     return _alloc_buffers[purpose];
  1925   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1926   size_t undo_waste() const                      { return _undo_waste; }
  1928 #ifdef ASSERT
  1929   bool verify_ref(narrowOop* ref) const;
  1930   bool verify_ref(oop* ref) const;
  1931   bool verify_task(StarTask ref) const;
  1932 #endif // ASSERT
  1934   template <class T> void push_on_queue(T* ref) {
  1935     assert(verify_ref(ref), "sanity");
  1936     refs()->push(ref);
  1939   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1940     if (G1DeferredRSUpdate) {
  1941       deferred_rs_update(from, p, tid);
  1942     } else {
  1943       immediate_rs_update(from, p, tid);
  1947   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1949     HeapWord* obj = NULL;
  1950     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1951     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1952       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1953       assert(gclab_word_size == alloc_buf->word_sz(),
  1954              "dynamic resizing is not supported");
  1955       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1956       alloc_buf->retire(false, false);
  1958       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1959       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1960       // Otherwise.
  1961       alloc_buf->set_buf(buf);
  1963       obj = alloc_buf->allocate(word_sz);
  1964       assert(obj != NULL, "buffer was definitely big enough...");
  1965     } else {
  1966       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1968     return obj;
  1971   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1972     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1973     if (obj != NULL) return obj;
  1974     return allocate_slow(purpose, word_sz);
  1977   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1978     if (alloc_buffer(purpose)->contains(obj)) {
  1979       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1980              "should contain whole object");
  1981       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1982     } else {
  1983       CollectedHeap::fill_with_object(obj, word_sz);
  1984       add_to_undo_waste(word_sz);
  1988   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1989     _evac_failure_cl = evac_failure_cl;
  1991   OopsInHeapRegionClosure* evac_failure_closure() {
  1992     return _evac_failure_cl;
  1995   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1996     _evac_cl = evac_cl;
  1999   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  2000     _partial_scan_cl = partial_scan_cl;
  2003   int* hash_seed() { return &_hash_seed; }
  2004   int  queue_num() { return _queue_num; }
  2006   size_t term_attempts() const  { return _term_attempts; }
  2007   void note_term_attempt() { _term_attempts++; }
  2009   void start_strong_roots() {
  2010     _start_strong_roots = os::elapsedTime();
  2012   void end_strong_roots() {
  2013     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  2015   double strong_roots_time() const { return _strong_roots_time; }
  2017   void start_term_time() {
  2018     note_term_attempt();
  2019     _start_term = os::elapsedTime();
  2021   void end_term_time() {
  2022     _term_time += (os::elapsedTime() - _start_term);
  2024   double term_time() const { return _term_time; }
  2026   double elapsed_time() const {
  2027     return os::elapsedTime() - _start;
  2030   static void
  2031     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  2032   void
  2033     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  2035   size_t* surviving_young_words() {
  2036     // We add on to hide entry 0 which accumulates surviving words for
  2037     // age -1 regions (i.e. non-young ones)
  2038     return _surviving_young_words;
  2041   void retire_alloc_buffers() {
  2042     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2043       size_t waste = _alloc_buffers[ap]->words_remaining();
  2044       add_to_alloc_buffer_waste(waste);
  2045       _alloc_buffers[ap]->retire(true, false);
  2049   template <class T> void deal_with_reference(T* ref_to_scan) {
  2050     if (has_partial_array_mask(ref_to_scan)) {
  2051       _partial_scan_cl->do_oop_nv(ref_to_scan);
  2052     } else {
  2053       // Note: we can use "raw" versions of "region_containing" because
  2054       // "obj_to_scan" is definitely in the heap, and is not in a
  2055       // humongous region.
  2056       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  2057       _evac_cl->set_region(r);
  2058       _evac_cl->do_oop_nv(ref_to_scan);
  2062   void deal_with_reference(StarTask ref) {
  2063     assert(verify_task(ref), "sanity");
  2064     if (ref.is_narrow()) {
  2065       deal_with_reference((narrowOop*)ref);
  2066     } else {
  2067       deal_with_reference((oop*)ref);
  2071 public:
  2072   void trim_queue();
  2073 };
  2075 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial