src/cpu/sparc/vm/sparc.ad

Tue, 28 Oct 2008 09:31:30 -0700

author
never
date
Tue, 28 Oct 2008 09:31:30 -0700
changeset 850
4d9884b01ba6
parent 670
9c2ecc2ffb12
child 855
a1980da045cc
permissions
-rw-r--r--

6754519: don't emit flag fixup for NaN when condition being tested doesn't need it
Reviewed-by: kvn, rasbold

     1 //
     2 // Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning 'dont go here'.
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
   197 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
   198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
   199 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
   200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
   201 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
   202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
   203 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
   204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
   205 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
   206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
   207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
   208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
   209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
   210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
   211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
   212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
   213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
   214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
   215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
   216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
   217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
   218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
   219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
   220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
   221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
   222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
   223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
   224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
   225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
   226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
   227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class o2_regL(R_O2H,R_O2);
   399 reg_class o7_regL(R_O7H,R_O7);
   401 // ----------------------------
   402 // Special Class for Condition Code Flags Register
   403 reg_class int_flags(CCR);
   404 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   405 reg_class float_flag0(FCC0);
   408 // ----------------------------
   409 // Float Point Register Classes
   410 // ----------------------------
   411 // Skip F30/F31, they are reserved for mem-mem copies
   412 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   414 // Paired floating point registers--they show up in the same order as the floats,
   415 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   416 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   417                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   418                    /* Use extra V9 double registers; this AD file does not support V8 */
   419                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   420                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   421                    );
   423 // Paired floating point registers--they show up in the same order as the floats,
   424 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   425 // This class is usable for mis-aligned loads as happen in I2C adapters.
   426 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   427                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   428 %}
   430 //----------DEFINITION BLOCK---------------------------------------------------
   431 // Define name --> value mappings to inform the ADLC of an integer valued name
   432 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   433 // Format:
   434 //        int_def  <name>         ( <int_value>, <expression>);
   435 // Generated Code in ad_<arch>.hpp
   436 //        #define  <name>   (<expression>)
   437 //        // value == <int_value>
   438 // Generated code in ad_<arch>.cpp adlc_verification()
   439 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   440 //
   441 definitions %{
   442 // The default cost (of an ALU instruction).
   443   int_def DEFAULT_COST      (    100,     100);
   444   int_def HUGE_COST         (1000000, 1000000);
   446 // Memory refs are twice as expensive as run-of-the-mill.
   447   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   449 // Branches are even more expensive.
   450   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   451   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   452 %}
   455 //----------SOURCE BLOCK-------------------------------------------------------
   456 // This is a block of C++ code which provides values, functions, and
   457 // definitions necessary in the rest of the architecture description
   458 source_hpp %{
   459 // Must be visible to the DFA in dfa_sparc.cpp
   460 extern bool can_branch_register( Node *bol, Node *cmp );
   462 // Macros to extract hi & lo halves from a long pair.
   463 // G0 is not part of any long pair, so assert on that.
   464 // Prevents accidently using G1 instead of G0.
   465 #define LONG_HI_REG(x) (x)
   466 #define LONG_LO_REG(x) (x)
   468 %}
   470 source %{
   471 #define __ _masm.
   473 // tertiary op of a LoadP or StoreP encoding
   474 #define REGP_OP true
   476 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   477 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   478 static Register reg_to_register_object(int register_encoding);
   480 // Used by the DFA in dfa_sparc.cpp.
   481 // Check for being able to use a V9 branch-on-register.  Requires a
   482 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   483 // extended.  Doesn't work following an integer ADD, for example, because of
   484 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   485 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   486 // replace them with zero, which could become sign-extension in a different OS
   487 // release.  There's no obvious reason why an interrupt will ever fill these
   488 // bits with non-zero junk (the registers are reloaded with standard LD
   489 // instructions which either zero-fill or sign-fill).
   490 bool can_branch_register( Node *bol, Node *cmp ) {
   491   if( !BranchOnRegister ) return false;
   492 #ifdef _LP64
   493   if( cmp->Opcode() == Op_CmpP )
   494     return true;  // No problems with pointer compares
   495 #endif
   496   if( cmp->Opcode() == Op_CmpL )
   497     return true;  // No problems with long compares
   499   if( !SparcV9RegsHiBitsZero ) return false;
   500   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   501       bol->as_Bool()->_test._test != BoolTest::eq )
   502      return false;
   504   // Check for comparing against a 'safe' value.  Any operation which
   505   // clears out the high word is safe.  Thus, loads and certain shifts
   506   // are safe, as are non-negative constants.  Any operation which
   507   // preserves zero bits in the high word is safe as long as each of its
   508   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   509   // inputs are safe.  At present, the only important case to recognize
   510   // seems to be loads.  Constants should fold away, and shifts &
   511   // logicals can use the 'cc' forms.
   512   Node *x = cmp->in(1);
   513   if( x->is_Load() ) return true;
   514   if( x->is_Phi() ) {
   515     for( uint i = 1; i < x->req(); i++ )
   516       if( !x->in(i)->is_Load() )
   517         return false;
   518     return true;
   519   }
   520   return false;
   521 }
   523 // ****************************************************************************
   525 // REQUIRED FUNCTIONALITY
   527 // !!!!! Special hack to get all type of calls to specify the byte offset
   528 //       from the start of the call to the point where the return address
   529 //       will point.
   530 //       The "return address" is the address of the call instruction, plus 8.
   532 int MachCallStaticJavaNode::ret_addr_offset() {
   533   return NativeCall::instruction_size;  // call; delay slot
   534 }
   536 int MachCallDynamicJavaNode::ret_addr_offset() {
   537   int vtable_index = this->_vtable_index;
   538   if (vtable_index < 0) {
   539     // must be invalid_vtable_index, not nonvirtual_vtable_index
   540     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   541     return (NativeMovConstReg::instruction_size +
   542            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   543   } else {
   544     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   545     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   546     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   547     int klass_load_size;
   548     if (UseCompressedOops) {
   549       klass_load_size = 3*BytesPerInstWord; // see MacroAssembler::load_klass()
   550     } else {
   551       klass_load_size = 1*BytesPerInstWord;
   552     }
   553     if( Assembler::is_simm13(v_off) ) {
   554       return klass_load_size +
   555              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   556              NativeCall::instruction_size);  // call; delay slot
   557     } else {
   558       return klass_load_size +
   559              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   560              NativeCall::instruction_size);  // call; delay slot
   561     }
   562   }
   563 }
   565 int MachCallRuntimeNode::ret_addr_offset() {
   566 #ifdef _LP64
   567   return NativeFarCall::instruction_size;  // farcall; delay slot
   568 #else
   569   return NativeCall::instruction_size;  // call; delay slot
   570 #endif
   571 }
   573 // Indicate if the safepoint node needs the polling page as an input.
   574 // Since Sparc does not have absolute addressing, it does.
   575 bool SafePointNode::needs_polling_address_input() {
   576   return true;
   577 }
   579 // emit an interrupt that is caught by the debugger (for debugging compiler)
   580 void emit_break(CodeBuffer &cbuf) {
   581   MacroAssembler _masm(&cbuf);
   582   __ breakpoint_trap();
   583 }
   585 #ifndef PRODUCT
   586 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   587   st->print("TA");
   588 }
   589 #endif
   591 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   592   emit_break(cbuf);
   593 }
   595 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   596   return MachNode::size(ra_);
   597 }
   599 // Traceable jump
   600 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   601   MacroAssembler _masm(&cbuf);
   602   Register rdest = reg_to_register_object(jump_target);
   603   __ JMP(rdest, 0);
   604   __ delayed()->nop();
   605 }
   607 // Traceable jump and set exception pc
   608 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   609   MacroAssembler _masm(&cbuf);
   610   Register rdest = reg_to_register_object(jump_target);
   611   __ JMP(rdest, 0);
   612   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   613 }
   615 void emit_nop(CodeBuffer &cbuf) {
   616   MacroAssembler _masm(&cbuf);
   617   __ nop();
   618 }
   620 void emit_illtrap(CodeBuffer &cbuf) {
   621   MacroAssembler _masm(&cbuf);
   622   __ illtrap(0);
   623 }
   626 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   627   assert(n->rule() != loadUB_rule, "");
   629   intptr_t offset = 0;
   630   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   631   const Node* addr = n->get_base_and_disp(offset, adr_type);
   632   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   633   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   634   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   635   atype = atype->add_offset(offset);
   636   assert(disp32 == offset, "wrong disp32");
   637   return atype->_offset;
   638 }
   641 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   642   assert(n->rule() != loadUB_rule, "");
   644   intptr_t offset = 0;
   645   Node* addr = n->in(2);
   646   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   647   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   648     Node* a = addr->in(2/*AddPNode::Address*/);
   649     Node* o = addr->in(3/*AddPNode::Offset*/);
   650     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   651     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   652     assert(atype->isa_oop_ptr(), "still an oop");
   653   }
   654   offset = atype->is_ptr()->_offset;
   655   if (offset != Type::OffsetBot)  offset += disp32;
   656   return offset;
   657 }
   659 // Standard Sparc opcode form2 field breakdown
   660 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   661   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   662   int op = (f30 << 30) |
   663            (f29 << 29) |
   664            (f25 << 25) |
   665            (f22 << 22) |
   666            (f20 << 20) |
   667            (f19 << 19) |
   668            (f0  <<  0);
   669   *((int*)(cbuf.code_end())) = op;
   670   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   671 }
   673 // Standard Sparc opcode form2 field breakdown
   674 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   675   f0 >>= 10;           // Drop 10 bits
   676   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   677   int op = (f30 << 30) |
   678            (f25 << 25) |
   679            (f22 << 22) |
   680            (f0  <<  0);
   681   *((int*)(cbuf.code_end())) = op;
   682   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   683 }
   685 // Standard Sparc opcode form3 field breakdown
   686 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   687   int op = (f30 << 30) |
   688            (f25 << 25) |
   689            (f19 << 19) |
   690            (f14 << 14) |
   691            (f5  <<  5) |
   692            (f0  <<  0);
   693   *((int*)(cbuf.code_end())) = op;
   694   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   695 }
   697 // Standard Sparc opcode form3 field breakdown
   698 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   699   simm13 &= (1<<13)-1; // Mask to 13 bits
   700   int op = (f30 << 30) |
   701            (f25 << 25) |
   702            (f19 << 19) |
   703            (f14 << 14) |
   704            (1   << 13) | // bit to indicate immediate-mode
   705            (simm13<<0);
   706   *((int*)(cbuf.code_end())) = op;
   707   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   708 }
   710 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   711   simm10 &= (1<<10)-1; // Mask to 10 bits
   712   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   713 }
   715 #ifdef ASSERT
   716 // Helper function for VerifyOops in emit_form3_mem_reg
   717 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   718   warning("VerifyOops encountered unexpected instruction:");
   719   n->dump(2);
   720   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   721 }
   722 #endif
   725 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   726                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   728 #ifdef ASSERT
   729   // The following code implements the +VerifyOops feature.
   730   // It verifies oop values which are loaded into or stored out of
   731   // the current method activation.  +VerifyOops complements techniques
   732   // like ScavengeALot, because it eagerly inspects oops in transit,
   733   // as they enter or leave the stack, as opposed to ScavengeALot,
   734   // which inspects oops "at rest", in the stack or heap, at safepoints.
   735   // For this reason, +VerifyOops can sometimes detect bugs very close
   736   // to their point of creation.  It can also serve as a cross-check
   737   // on the validity of oop maps, when used toegether with ScavengeALot.
   739   // It would be good to verify oops at other points, especially
   740   // when an oop is used as a base pointer for a load or store.
   741   // This is presently difficult, because it is hard to know when
   742   // a base address is biased or not.  (If we had such information,
   743   // it would be easy and useful to make a two-argument version of
   744   // verify_oop which unbiases the base, and performs verification.)
   746   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   747   bool is_verified_oop_base  = false;
   748   bool is_verified_oop_load  = false;
   749   bool is_verified_oop_store = false;
   750   int tmp_enc = -1;
   751   if (VerifyOops && src1_enc != R_SP_enc) {
   752     // classify the op, mainly for an assert check
   753     int st_op = 0, ld_op = 0;
   754     switch (primary) {
   755     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   756     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   757     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   758     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   759     case Assembler::std_op3:  st_op = Op_StoreL; break;
   760     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   761     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   763     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   764     case Assembler::lduh_op3: ld_op = Op_LoadC; break;
   765     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   766     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   767     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   768     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   769     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   770     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   771     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   772     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   773     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   775     default: ShouldNotReachHere();
   776     }
   777     if (tertiary == REGP_OP) {
   778       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   779       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   780       else                          ShouldNotReachHere();
   781       if (st_op) {
   782         // a store
   783         // inputs are (0:control, 1:memory, 2:address, 3:value)
   784         Node* n2 = n->in(3);
   785         if (n2 != NULL) {
   786           const Type* t = n2->bottom_type();
   787           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   788         }
   789       } else {
   790         // a load
   791         const Type* t = n->bottom_type();
   792         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   793       }
   794     }
   796     if (ld_op) {
   797       // a Load
   798       // inputs are (0:control, 1:memory, 2:address)
   799       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   800           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   801           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   802           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   803           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   804           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   805           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   806           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   807           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   808           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   809           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   810           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   811           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   812           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   813           !(n->rule() == loadUB_rule)) {
   814         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   815       }
   816     } else if (st_op) {
   817       // a Store
   818       // inputs are (0:control, 1:memory, 2:address, 3:value)
   819       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   820           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   821           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   822           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   823           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   824           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   825         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   826       }
   827     }
   829     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   830       Node* addr = n->in(2);
   831       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   832         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   833         if (atype != NULL) {
   834           intptr_t offset = get_offset_from_base(n, atype, disp32);
   835           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   836           if (offset != offset_2) {
   837             get_offset_from_base(n, atype, disp32);
   838             get_offset_from_base_2(n, atype, disp32);
   839           }
   840           assert(offset == offset_2, "different offsets");
   841           if (offset == disp32) {
   842             // we now know that src1 is a true oop pointer
   843             is_verified_oop_base = true;
   844             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   845               if( primary == Assembler::ldd_op3 ) {
   846                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   847               } else {
   848                 tmp_enc = dst_enc;
   849                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   850                 assert(src1_enc != dst_enc, "");
   851               }
   852             }
   853           }
   854           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   855                        || offset == oopDesc::mark_offset_in_bytes())) {
   856                       // loading the mark should not be allowed either, but
   857                       // we don't check this since it conflicts with InlineObjectHash
   858                       // usage of LoadINode to get the mark. We could keep the
   859                       // check if we create a new LoadMarkNode
   860             // but do not verify the object before its header is initialized
   861             ShouldNotReachHere();
   862           }
   863         }
   864       }
   865     }
   866   }
   867 #endif
   869   uint instr;
   870   instr = (Assembler::ldst_op << 30)
   871         | (dst_enc        << 25)
   872         | (primary        << 19)
   873         | (src1_enc       << 14);
   875   uint index = src2_enc;
   876   int disp = disp32;
   878   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   879     disp += STACK_BIAS;
   881   // We should have a compiler bailout here rather than a guarantee.
   882   // Better yet would be some mechanism to handle variable-size matches correctly.
   883   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   885   if( disp == 0 ) {
   886     // use reg-reg form
   887     // bit 13 is already zero
   888     instr |= index;
   889   } else {
   890     // use reg-imm form
   891     instr |= 0x00002000;          // set bit 13 to one
   892     instr |= disp & 0x1FFF;
   893   }
   895   uint *code = (uint*)cbuf.code_end();
   896   *code = instr;
   897   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   899 #ifdef ASSERT
   900   {
   901     MacroAssembler _masm(&cbuf);
   902     if (is_verified_oop_base) {
   903       __ verify_oop(reg_to_register_object(src1_enc));
   904     }
   905     if (is_verified_oop_store) {
   906       __ verify_oop(reg_to_register_object(dst_enc));
   907     }
   908     if (tmp_enc != -1) {
   909       __ mov(O7, reg_to_register_object(tmp_enc));
   910     }
   911     if (is_verified_oop_load) {
   912       __ verify_oop(reg_to_register_object(dst_enc));
   913     }
   914   }
   915 #endif
   916 }
   918 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   919                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
   921   uint instr;
   922   instr = (Assembler::ldst_op << 30)
   923         | (dst_enc        << 25)
   924         | (primary        << 19)
   925         | (src1_enc       << 14);
   927   int disp = disp32;
   928   int index    = src2_enc;
   930   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   931     disp += STACK_BIAS;
   933   // We should have a compiler bailout here rather than a guarantee.
   934   // Better yet would be some mechanism to handle variable-size matches correctly.
   935   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   937   if( disp != 0 ) {
   938     // use reg-reg form
   939     // set src2=R_O7 contains offset
   940     index = R_O7_enc;
   941     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
   942   }
   943   instr |= (asi << 5);
   944   instr |= index;
   945   uint *code = (uint*)cbuf.code_end();
   946   *code = instr;
   947   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   948 }
   950 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   951   // The method which records debug information at every safepoint
   952   // expects the call to be the first instruction in the snippet as
   953   // it creates a PcDesc structure which tracks the offset of a call
   954   // from the start of the codeBlob. This offset is computed as
   955   // code_end() - code_begin() of the code which has been emitted
   956   // so far.
   957   // In this particular case we have skirted around the problem by
   958   // putting the "mov" instruction in the delay slot but the problem
   959   // may bite us again at some other point and a cleaner/generic
   960   // solution using relocations would be needed.
   961   MacroAssembler _masm(&cbuf);
   962   __ set_inst_mark();
   964   // We flush the current window just so that there is a valid stack copy
   965   // the fact that the current window becomes active again instantly is
   966   // not a problem there is nothing live in it.
   968 #ifdef ASSERT
   969   int startpos = __ offset();
   970 #endif /* ASSERT */
   972 #ifdef _LP64
   973   // Calls to the runtime or native may not be reachable from compiled code,
   974   // so we generate the far call sequence on 64 bit sparc.
   975   // This code sequence is relocatable to any address, even on LP64.
   976   if ( force_far_call ) {
   977     __ relocate(rtype);
   978     Address dest(O7, (address)entry_point);
   979     __ jumpl_to(dest, O7);
   980   }
   981   else
   982 #endif
   983   {
   984      __ call((address)entry_point, rtype);
   985   }
   987   if (preserve_g2)   __ delayed()->mov(G2, L7);
   988   else __ delayed()->nop();
   990   if (preserve_g2)   __ mov(L7, G2);
   992 #ifdef ASSERT
   993   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   994 #ifdef _LP64
   995     // Trash argument dump slots.
   996     __ set(0xb0b8ac0db0b8ac0d, G1);
   997     __ mov(G1, G5);
   998     __ stx(G1, SP, STACK_BIAS + 0x80);
   999     __ stx(G1, SP, STACK_BIAS + 0x88);
  1000     __ stx(G1, SP, STACK_BIAS + 0x90);
  1001     __ stx(G1, SP, STACK_BIAS + 0x98);
  1002     __ stx(G1, SP, STACK_BIAS + 0xA0);
  1003     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1004 #else // _LP64
  1005     // this is also a native call, so smash the first 7 stack locations,
  1006     // and the various registers
  1008     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1009     // while [SP+0x44..0x58] are the argument dump slots.
  1010     __ set((intptr_t)0xbaadf00d, G1);
  1011     __ mov(G1, G5);
  1012     __ sllx(G1, 32, G1);
  1013     __ or3(G1, G5, G1);
  1014     __ mov(G1, G5);
  1015     __ stx(G1, SP, 0x40);
  1016     __ stx(G1, SP, 0x48);
  1017     __ stx(G1, SP, 0x50);
  1018     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1019 #endif // _LP64
  1021 #endif /*ASSERT*/
  1024 //=============================================================================
  1025 // REQUIRED FUNCTIONALITY for encoding
  1026 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1027 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1029 void emit_ptr(CodeBuffer &cbuf, intptr_t val, Register reg, bool ForceRelocatable) {
  1030   MacroAssembler _masm(&cbuf);
  1031   if (ForceRelocatable) {
  1032     Address addr(reg, (address)val);
  1033     __ sethi(addr, ForceRelocatable);
  1034     __ add(addr, reg);
  1035   } else {
  1036     __ set(val, reg);
  1041 //=============================================================================
  1043 #ifndef PRODUCT
  1044 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1045   Compile* C = ra_->C;
  1047   for (int i = 0; i < OptoPrologueNops; i++) {
  1048     st->print_cr("NOP"); st->print("\t");
  1051   if( VerifyThread ) {
  1052     st->print_cr("Verify_Thread"); st->print("\t");
  1055   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1057   // Calls to C2R adapters often do not accept exceptional returns.
  1058   // We require that their callers must bang for them.  But be careful, because
  1059   // some VM calls (such as call site linkage) can use several kilobytes of
  1060   // stack.  But the stack safety zone should account for that.
  1061   // See bugs 4446381, 4468289, 4497237.
  1062   if (C->need_stack_bang(framesize)) {
  1063     st->print_cr("! stack bang"); st->print("\t");
  1066   if (Assembler::is_simm13(-framesize)) {
  1067     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1068   } else {
  1069     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1070     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1071     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1075 #endif
  1077 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1078   Compile* C = ra_->C;
  1079   MacroAssembler _masm(&cbuf);
  1081   for (int i = 0; i < OptoPrologueNops; i++) {
  1082     __ nop();
  1085   __ verify_thread();
  1087   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1088   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1089   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1091   // Calls to C2R adapters often do not accept exceptional returns.
  1092   // We require that their callers must bang for them.  But be careful, because
  1093   // some VM calls (such as call site linkage) can use several kilobytes of
  1094   // stack.  But the stack safety zone should account for that.
  1095   // See bugs 4446381, 4468289, 4497237.
  1096   if (C->need_stack_bang(framesize)) {
  1097     __ generate_stack_overflow_check(framesize);
  1100   if (Assembler::is_simm13(-framesize)) {
  1101     __ save(SP, -framesize, SP);
  1102   } else {
  1103     __ sethi(-framesize & ~0x3ff, G3);
  1104     __ add(G3, -framesize & 0x3ff, G3);
  1105     __ save(SP, G3, SP);
  1107   C->set_frame_complete( __ offset() );
  1110 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1111   return MachNode::size(ra_);
  1114 int MachPrologNode::reloc() const {
  1115   return 10; // a large enough number
  1118 //=============================================================================
  1119 #ifndef PRODUCT
  1120 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1121   Compile* C = ra_->C;
  1123   if( do_polling() && ra_->C->is_method_compilation() ) {
  1124     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1125 #ifdef _LP64
  1126     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1127 #else
  1128     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1129 #endif
  1132   if( do_polling() )
  1133     st->print("RET\n\t");
  1135   st->print("RESTORE");
  1137 #endif
  1139 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1140   MacroAssembler _masm(&cbuf);
  1141   Compile* C = ra_->C;
  1143   __ verify_thread();
  1145   // If this does safepoint polling, then do it here
  1146   if( do_polling() && ra_->C->is_method_compilation() ) {
  1147     Address polling_page(L0, (address)os::get_polling_page());
  1148     __ sethi(polling_page, false);
  1149     __ relocate(relocInfo::poll_return_type);
  1150     __ ld_ptr( L0, 0, G0 );
  1153   // If this is a return, then stuff the restore in the delay slot
  1154   if( do_polling() ) {
  1155     __ ret();
  1156     __ delayed()->restore();
  1157   } else {
  1158     __ restore();
  1162 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1163   return MachNode::size(ra_);
  1166 int MachEpilogNode::reloc() const {
  1167   return 16; // a large enough number
  1170 const Pipeline * MachEpilogNode::pipeline() const {
  1171   return MachNode::pipeline_class();
  1174 int MachEpilogNode::safepoint_offset() const {
  1175   assert( do_polling(), "no return for this epilog node");
  1176   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1179 //=============================================================================
  1181 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1182 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1183 static enum RC rc_class( OptoReg::Name reg ) {
  1184   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1185   if (OptoReg::is_stack(reg)) return rc_stack;
  1186   VMReg r = OptoReg::as_VMReg(reg);
  1187   if (r->is_Register()) return rc_int;
  1188   assert(r->is_FloatRegister(), "must be");
  1189   return rc_float;
  1192 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1193   if( cbuf ) {
  1194     // Better yet would be some mechanism to handle variable-size matches correctly
  1195     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1196       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1197     } else {
  1198       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1201 #ifndef PRODUCT
  1202   else if( !do_size ) {
  1203     if( size != 0 ) st->print("\n\t");
  1204     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1205     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1207 #endif
  1208   return size+4;
  1211 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1212   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1213 #ifndef PRODUCT
  1214   else if( !do_size ) {
  1215     if( size != 0 ) st->print("\n\t");
  1216     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1218 #endif
  1219   return size+4;
  1222 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1223                                         PhaseRegAlloc *ra_,
  1224                                         bool do_size,
  1225                                         outputStream* st ) const {
  1226   // Get registers to move
  1227   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1228   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1229   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1230   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1232   enum RC src_second_rc = rc_class(src_second);
  1233   enum RC src_first_rc = rc_class(src_first);
  1234   enum RC dst_second_rc = rc_class(dst_second);
  1235   enum RC dst_first_rc = rc_class(dst_first);
  1237   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1239   // Generate spill code!
  1240   int size = 0;
  1242   if( src_first == dst_first && src_second == dst_second )
  1243     return size;            // Self copy, no move
  1245   // --------------------------------------
  1246   // Check for mem-mem move.  Load into unused float registers and fall into
  1247   // the float-store case.
  1248   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1249     int offset = ra_->reg2offset(src_first);
  1250     // Further check for aligned-adjacent pair, so we can use a double load
  1251     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1252       src_second    = OptoReg::Name(R_F31_num);
  1253       src_second_rc = rc_float;
  1254       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1255     } else {
  1256       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1258     src_first    = OptoReg::Name(R_F30_num);
  1259     src_first_rc = rc_float;
  1262   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1263     int offset = ra_->reg2offset(src_second);
  1264     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1265     src_second    = OptoReg::Name(R_F31_num);
  1266     src_second_rc = rc_float;
  1269   // --------------------------------------
  1270   // Check for float->int copy; requires a trip through memory
  1271   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1272     int offset = frame::register_save_words*wordSize;
  1273     if( cbuf ) {
  1274       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1275       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1276       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1277       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1279 #ifndef PRODUCT
  1280     else if( !do_size ) {
  1281       if( size != 0 ) st->print("\n\t");
  1282       st->print(  "SUB    R_SP,16,R_SP\n");
  1283       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1284       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1285       st->print("\tADD    R_SP,16,R_SP\n");
  1287 #endif
  1288     size += 16;
  1291   // --------------------------------------
  1292   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1293   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1294   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1295   // there.  Misaligned sources only come from native-long-returns (handled
  1296   // special below).
  1297 #ifndef _LP64
  1298   if( src_first_rc == rc_int &&     // source is already big-endian
  1299       src_second_rc != rc_bad &&    // 64-bit move
  1300       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1301     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1302     // Do the big-endian flop.
  1303     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1304     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1306 #endif
  1308   // --------------------------------------
  1309   // Check for integer reg-reg copy
  1310   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1311 #ifndef _LP64
  1312     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1313       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1314       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1315       //       operand contains the least significant word of the 64-bit value and vice versa.
  1316       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1317       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1318       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1319       if( cbuf ) {
  1320         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1321         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1322         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1323 #ifndef PRODUCT
  1324       } else if( !do_size ) {
  1325         if( size != 0 ) st->print("\n\t");
  1326         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1327         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1328         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1329 #endif
  1331       return size+12;
  1333     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1334       // returning a long value in I0/I1
  1335       // a SpillCopy must be able to target a return instruction's reg_class
  1336       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1337       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1338       //       operand contains the least significant word of the 64-bit value and vice versa.
  1339       OptoReg::Name tdest = dst_first;
  1341       if (src_first == dst_first) {
  1342         tdest = OptoReg::Name(R_O7_num);
  1343         size += 4;
  1346       if( cbuf ) {
  1347         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1348         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1349         // ShrL_reg_imm6
  1350         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1351         // ShrR_reg_imm6  src, 0, dst
  1352         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1353         if (tdest != dst_first) {
  1354           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1357 #ifndef PRODUCT
  1358       else if( !do_size ) {
  1359         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1360         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1361         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1362         if (tdest != dst_first) {
  1363           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1366 #endif // PRODUCT
  1367       return size+8;
  1369 #endif // !_LP64
  1370     // Else normal reg-reg copy
  1371     assert( src_second != dst_first, "smashed second before evacuating it" );
  1372     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1373     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1374     // This moves an aligned adjacent pair.
  1375     // See if we are done.
  1376     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1377       return size;
  1380   // Check for integer store
  1381   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1382     int offset = ra_->reg2offset(dst_first);
  1383     // Further check for aligned-adjacent pair, so we can use a double store
  1384     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1385       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1386     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1389   // Check for integer load
  1390   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1391     int offset = ra_->reg2offset(src_first);
  1392     // Further check for aligned-adjacent pair, so we can use a double load
  1393     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1394       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1395     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1398   // Check for float reg-reg copy
  1399   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1400     // Further check for aligned-adjacent pair, so we can use a double move
  1401     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1402       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1403     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1406   // Check for float store
  1407   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1408     int offset = ra_->reg2offset(dst_first);
  1409     // Further check for aligned-adjacent pair, so we can use a double store
  1410     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1411       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1412     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1415   // Check for float load
  1416   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1417     int offset = ra_->reg2offset(src_first);
  1418     // Further check for aligned-adjacent pair, so we can use a double load
  1419     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1420       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1421     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1424   // --------------------------------------------------------------------
  1425   // Check for hi bits still needing moving.  Only happens for misaligned
  1426   // arguments to native calls.
  1427   if( src_second == dst_second )
  1428     return size;               // Self copy; no move
  1429   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1431 #ifndef _LP64
  1432   // In the LP64 build, all registers can be moved as aligned/adjacent
  1433   // pairs, so there's never any need to move the high bits seperately.
  1434   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1435   // all sorts of silly alignment problems.
  1437   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1438   // 32-bits of a 64-bit register, but are needed in low bits of another
  1439   // register (else it's a hi-bits-to-hi-bits copy which should have
  1440   // happened already as part of a 64-bit move)
  1441   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1442     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1443     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1444     // Shift src_second down to dst_second's low bits.
  1445     if( cbuf ) {
  1446       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1447 #ifndef PRODUCT
  1448     } else if( !do_size ) {
  1449       if( size != 0 ) st->print("\n\t");
  1450       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1451 #endif
  1453     return size+4;
  1456   // Check for high word integer store.  Must down-shift the hi bits
  1457   // into a temp register, then fall into the case of storing int bits.
  1458   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1459     // Shift src_second down to dst_second's low bits.
  1460     if( cbuf ) {
  1461       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1462 #ifndef PRODUCT
  1463     } else if( !do_size ) {
  1464       if( size != 0 ) st->print("\n\t");
  1465       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1466 #endif
  1468     size+=4;
  1469     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1472   // Check for high word integer load
  1473   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1474     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1476   // Check for high word integer store
  1477   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1478     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1480   // Check for high word float store
  1481   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1482     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1484 #endif // !_LP64
  1486   Unimplemented();
  1489 #ifndef PRODUCT
  1490 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1491   implementation( NULL, ra_, false, st );
  1493 #endif
  1495 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1496   implementation( &cbuf, ra_, false, NULL );
  1499 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1500   return implementation( NULL, ra_, true, NULL );
  1503 //=============================================================================
  1504 #ifndef PRODUCT
  1505 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1506   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1508 #endif
  1510 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1511   MacroAssembler _masm(&cbuf);
  1512   for(int i = 0; i < _count; i += 1) {
  1513     __ nop();
  1517 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1518   return 4 * _count;
  1522 //=============================================================================
  1523 #ifndef PRODUCT
  1524 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1525   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1526   int reg = ra_->get_reg_first(this);
  1527   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1529 #endif
  1531 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1532   MacroAssembler _masm(&cbuf);
  1533   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1534   int reg = ra_->get_encode(this);
  1536   if (Assembler::is_simm13(offset)) {
  1537      __ add(SP, offset, reg_to_register_object(reg));
  1538   } else {
  1539      __ set(offset, O7);
  1540      __ add(SP, O7, reg_to_register_object(reg));
  1544 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1545   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1546   assert(ra_ == ra_->C->regalloc(), "sanity");
  1547   return ra_->C->scratch_emit_size(this);
  1550 //=============================================================================
  1552 // emit call stub, compiled java to interpretor
  1553 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1555   // Stub is fixed up when the corresponding call is converted from calling
  1556   // compiled code to calling interpreted code.
  1557   // set (empty), G5
  1558   // jmp -1
  1560   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1562   MacroAssembler _masm(&cbuf);
  1564   address base =
  1565   __ start_a_stub(Compile::MAX_stubs_size);
  1566   if (base == NULL)  return;  // CodeBuffer::expand failed
  1568   // static stub relocation stores the instruction address of the call
  1569   __ relocate(static_stub_Relocation::spec(mark));
  1571   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1573   __ set_inst_mark();
  1574   Address a(G3, (address)-1);
  1575   __ JUMP(a, 0);
  1577   __ delayed()->nop();
  1579   // Update current stubs pointer and restore code_end.
  1580   __ end_a_stub();
  1583 // size of call stub, compiled java to interpretor
  1584 uint size_java_to_interp() {
  1585   // This doesn't need to be accurate but it must be larger or equal to
  1586   // the real size of the stub.
  1587   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1588           NativeJump::instruction_size + // sethi; jmp; nop
  1589           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1591 // relocation entries for call stub, compiled java to interpretor
  1592 uint reloc_java_to_interp() {
  1593   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1597 //=============================================================================
  1598 #ifndef PRODUCT
  1599 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1600   st->print_cr("\nUEP:");
  1601 #ifdef    _LP64
  1602   if (UseCompressedOops) {
  1603     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1604     st->print_cr("\tSLL    R_G5,3,R_G5");
  1605     st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1606   } else {
  1607     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1609   st->print_cr("\tCMP    R_G5,R_G3" );
  1610   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1611 #else  // _LP64
  1612   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1613   st->print_cr("\tCMP    R_G5,R_G3" );
  1614   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1615 #endif // _LP64
  1617 #endif
  1619 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1620   MacroAssembler _masm(&cbuf);
  1621   Label L;
  1622   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1623   Register temp_reg   = G3;
  1624   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1626   // Load klass from reciever
  1627   __ load_klass(O0, temp_reg);
  1628   // Compare against expected klass
  1629   __ cmp(temp_reg, G5_ic_reg);
  1630   // Branch to miss code, checks xcc or icc depending
  1631   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1634 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1635   return MachNode::size(ra_);
  1639 //=============================================================================
  1641 uint size_exception_handler() {
  1642   if (TraceJumps) {
  1643     return (400); // just a guess
  1645   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1648 uint size_deopt_handler() {
  1649   if (TraceJumps) {
  1650     return (400); // just a guess
  1652   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1655 // Emit exception handler code.
  1656 int emit_exception_handler(CodeBuffer& cbuf) {
  1657   Register temp_reg = G3;
  1658   Address exception_blob(temp_reg, OptoRuntime::exception_blob()->instructions_begin());
  1659   MacroAssembler _masm(&cbuf);
  1661   address base =
  1662   __ start_a_stub(size_exception_handler());
  1663   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1665   int offset = __ offset();
  1667   __ JUMP(exception_blob, 0); // sethi;jmp
  1668   __ delayed()->nop();
  1670   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1672   __ end_a_stub();
  1674   return offset;
  1677 int emit_deopt_handler(CodeBuffer& cbuf) {
  1678   // Can't use any of the current frame's registers as we may have deopted
  1679   // at a poll and everything (including G3) can be live.
  1680   Register temp_reg = L0;
  1681   Address deopt_blob(temp_reg, SharedRuntime::deopt_blob()->unpack());
  1682   MacroAssembler _masm(&cbuf);
  1684   address base =
  1685   __ start_a_stub(size_deopt_handler());
  1686   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1688   int offset = __ offset();
  1689   __ save_frame(0);
  1690   __ JUMP(deopt_blob, 0); // sethi;jmp
  1691   __ delayed()->restore();
  1693   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1695   __ end_a_stub();
  1696   return offset;
  1700 // Given a register encoding, produce a Integer Register object
  1701 static Register reg_to_register_object(int register_encoding) {
  1702   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1703   return as_Register(register_encoding);
  1706 // Given a register encoding, produce a single-precision Float Register object
  1707 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1708   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1709   return as_SingleFloatRegister(register_encoding);
  1712 // Given a register encoding, produce a double-precision Float Register object
  1713 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1714   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1715   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1716   return as_DoubleFloatRegister(register_encoding);
  1719 int Matcher::regnum_to_fpu_offset(int regnum) {
  1720   return regnum - 32; // The FP registers are in the second chunk
  1723 #ifdef ASSERT
  1724 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1725 #endif
  1727 // Vector width in bytes
  1728 const uint Matcher::vector_width_in_bytes(void) {
  1729   return 8;
  1732 // Vector ideal reg
  1733 const uint Matcher::vector_ideal_reg(void) {
  1734   return Op_RegD;
  1737 // USII supports fxtof through the whole range of number, USIII doesn't
  1738 const bool Matcher::convL2FSupported(void) {
  1739   return VM_Version::has_fast_fxtof();
  1742 // Is this branch offset short enough that a short branch can be used?
  1743 //
  1744 // NOTE: If the platform does not provide any short branch variants, then
  1745 //       this method should return false for offset 0.
  1746 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1747   return false;
  1750 const bool Matcher::isSimpleConstant64(jlong value) {
  1751   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1752   // Depends on optimizations in MacroAssembler::setx.
  1753   int hi = (int)(value >> 32);
  1754   int lo = (int)(value & ~0);
  1755   return (hi == 0) || (hi == -1) || (lo == 0);
  1758 // No scaling for the parameter the ClearArray node.
  1759 const bool Matcher::init_array_count_is_in_bytes = true;
  1761 // Threshold size for cleararray.
  1762 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1764 // Should the Matcher clone shifts on addressing modes, expecting them to
  1765 // be subsumed into complex addressing expressions or compute them into
  1766 // registers?  True for Intel but false for most RISCs
  1767 const bool Matcher::clone_shift_expressions = false;
  1769 // Is it better to copy float constants, or load them directly from memory?
  1770 // Intel can load a float constant from a direct address, requiring no
  1771 // extra registers.  Most RISCs will have to materialize an address into a
  1772 // register first, so they would do better to copy the constant from stack.
  1773 const bool Matcher::rematerialize_float_constants = false;
  1775 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1776 // needed.  Else we split the double into 2 integer pieces and move it
  1777 // piece-by-piece.  Only happens when passing doubles into C code as the
  1778 // Java calling convention forces doubles to be aligned.
  1779 #ifdef _LP64
  1780 const bool Matcher::misaligned_doubles_ok = true;
  1781 #else
  1782 const bool Matcher::misaligned_doubles_ok = false;
  1783 #endif
  1785 // No-op on SPARC.
  1786 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1789 // Advertise here if the CPU requires explicit rounding operations
  1790 // to implement the UseStrictFP mode.
  1791 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1793 // Do floats take an entire double register or just half?
  1794 const bool Matcher::float_in_double = false;
  1796 // Do ints take an entire long register or just half?
  1797 // Note that we if-def off of _LP64.
  1798 // The relevant question is how the int is callee-saved.  In _LP64
  1799 // the whole long is written but de-opt'ing will have to extract
  1800 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1801 #ifdef _LP64
  1802 const bool Matcher::int_in_long = true;
  1803 #else
  1804 const bool Matcher::int_in_long = false;
  1805 #endif
  1807 // Return whether or not this register is ever used as an argument.  This
  1808 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1809 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1810 // arguments in those registers not be available to the callee.
  1811 bool Matcher::can_be_java_arg( int reg ) {
  1812   // Standard sparc 6 args in registers
  1813   if( reg == R_I0_num ||
  1814       reg == R_I1_num ||
  1815       reg == R_I2_num ||
  1816       reg == R_I3_num ||
  1817       reg == R_I4_num ||
  1818       reg == R_I5_num ) return true;
  1819 #ifdef _LP64
  1820   // 64-bit builds can pass 64-bit pointers and longs in
  1821   // the high I registers
  1822   if( reg == R_I0H_num ||
  1823       reg == R_I1H_num ||
  1824       reg == R_I2H_num ||
  1825       reg == R_I3H_num ||
  1826       reg == R_I4H_num ||
  1827       reg == R_I5H_num ) return true;
  1829   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1830     return true;
  1833 #else
  1834   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1835   // Longs cannot be passed in O regs, because O regs become I regs
  1836   // after a 'save' and I regs get their high bits chopped off on
  1837   // interrupt.
  1838   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1839   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1840 #endif
  1841   // A few float args in registers
  1842   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1844   return false;
  1847 bool Matcher::is_spillable_arg( int reg ) {
  1848   return can_be_java_arg(reg);
  1851 // Register for DIVI projection of divmodI
  1852 RegMask Matcher::divI_proj_mask() {
  1853   ShouldNotReachHere();
  1854   return RegMask();
  1857 // Register for MODI projection of divmodI
  1858 RegMask Matcher::modI_proj_mask() {
  1859   ShouldNotReachHere();
  1860   return RegMask();
  1863 // Register for DIVL projection of divmodL
  1864 RegMask Matcher::divL_proj_mask() {
  1865   ShouldNotReachHere();
  1866   return RegMask();
  1869 // Register for MODL projection of divmodL
  1870 RegMask Matcher::modL_proj_mask() {
  1871   ShouldNotReachHere();
  1872   return RegMask();
  1875 %}
  1878 // The intptr_t operand types, defined by textual substitution.
  1879 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1880 #ifdef _LP64
  1881 #define immX    immL
  1882 #define immX13  immL13
  1883 #define iRegX   iRegL
  1884 #define g1RegX  g1RegL
  1885 #else
  1886 #define immX    immI
  1887 #define immX13  immI13
  1888 #define iRegX   iRegI
  1889 #define g1RegX  g1RegI
  1890 #endif
  1892 //----------ENCODING BLOCK-----------------------------------------------------
  1893 // This block specifies the encoding classes used by the compiler to output
  1894 // byte streams.  Encoding classes are parameterized macros used by
  1895 // Machine Instruction Nodes in order to generate the bit encoding of the
  1896 // instruction.  Operands specify their base encoding interface with the
  1897 // interface keyword.  There are currently supported four interfaces,
  1898 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1899 // operand to generate a function which returns its register number when
  1900 // queried.   CONST_INTER causes an operand to generate a function which
  1901 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1902 // operand to generate four functions which return the Base Register, the
  1903 // Index Register, the Scale Value, and the Offset Value of the operand when
  1904 // queried.  COND_INTER causes an operand to generate six functions which
  1905 // return the encoding code (ie - encoding bits for the instruction)
  1906 // associated with each basic boolean condition for a conditional instruction.
  1907 //
  1908 // Instructions specify two basic values for encoding.  Again, a function
  1909 // is available to check if the constant displacement is an oop. They use the
  1910 // ins_encode keyword to specify their encoding classes (which must be
  1911 // a sequence of enc_class names, and their parameters, specified in
  1912 // the encoding block), and they use the
  1913 // opcode keyword to specify, in order, their primary, secondary, and
  1914 // tertiary opcode.  Only the opcode sections which a particular instruction
  1915 // needs for encoding need to be specified.
  1916 encode %{
  1917   enc_class enc_untested %{
  1918 #ifdef ASSERT
  1919     MacroAssembler _masm(&cbuf);
  1920     __ untested("encoding");
  1921 #endif
  1922   %}
  1924   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1925     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1926                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1927   %}
  1929   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  1930     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1931                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1932   %}
  1934   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
  1935     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
  1936                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
  1937   %}
  1939   enc_class form3_mem_prefetch_read( memory mem ) %{
  1940     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1941                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1942   %}
  1944   enc_class form3_mem_prefetch_write( memory mem ) %{
  1945     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1946                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1947   %}
  1949   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1950     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1951     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1952     guarantee($mem$$index == R_G0_enc, "double index?");
  1953     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1954     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1955     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1956     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1957   %}
  1959   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1960     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1961     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1962     guarantee($mem$$index == R_G0_enc, "double index?");
  1963     // Load long with 2 instructions
  1964     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1965     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1966   %}
  1968   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1969   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1970     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1971     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1972   %}
  1974   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1975     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1976     if( $rs2$$reg != $rd$$reg )
  1977       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1978   %}
  1980   // Target lo half of long
  1981   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1982     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1983     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1984       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1985   %}
  1987   // Source lo half of long
  1988   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1989     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1990     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1991       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1992   %}
  1994   // Target hi half of long
  1995   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  1996     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  1997   %}
  1999   // Source lo half of long, and leave it sign extended.
  2000   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2001     // Sign extend low half
  2002     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2003   %}
  2005   // Source hi half of long, and leave it sign extended.
  2006   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2007     // Shift high half to low half
  2008     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2009   %}
  2011   // Source hi half of long
  2012   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2013     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2014     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2015       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2016   %}
  2018   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2019     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2020   %}
  2022   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2023     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2024     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2025   %}
  2027   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2028     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2029     // clear if nothing else is happening
  2030     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2031     // blt,a,pn done
  2032     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2033     // mov dst,-1 in delay slot
  2034     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2035   %}
  2037   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2038     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2039   %}
  2041   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2042     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2043   %}
  2045   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2046     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2047   %}
  2049   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2050     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2051   %}
  2053   enc_class move_return_pc_to_o1() %{
  2054     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2055   %}
  2057 #ifdef _LP64
  2058   /* %%% merge with enc_to_bool */
  2059   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2060     MacroAssembler _masm(&cbuf);
  2062     Register   src_reg = reg_to_register_object($src$$reg);
  2063     Register   dst_reg = reg_to_register_object($dst$$reg);
  2064     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2065   %}
  2066 #endif
  2068   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2069     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2070     MacroAssembler _masm(&cbuf);
  2072     Register   p_reg = reg_to_register_object($p$$reg);
  2073     Register   q_reg = reg_to_register_object($q$$reg);
  2074     Register   y_reg = reg_to_register_object($y$$reg);
  2075     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2077     __ subcc( p_reg, q_reg,   p_reg );
  2078     __ add  ( p_reg, y_reg, tmp_reg );
  2079     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2080   %}
  2082   enc_class form_d2i_helper(regD src, regF dst) %{
  2083     // fcmp %fcc0,$src,$src
  2084     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2085     // branch %fcc0 not-nan, predict taken
  2086     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2087     // fdtoi $src,$dst
  2088     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2089     // fitos $dst,$dst (if nan)
  2090     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2091     // clear $dst (if nan)
  2092     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2093     // carry on here...
  2094   %}
  2096   enc_class form_d2l_helper(regD src, regD dst) %{
  2097     // fcmp %fcc0,$src,$src  check for NAN
  2098     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2099     // branch %fcc0 not-nan, predict taken
  2100     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2101     // fdtox $src,$dst   convert in delay slot
  2102     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2103     // fxtod $dst,$dst  (if nan)
  2104     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2105     // clear $dst (if nan)
  2106     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2107     // carry on here...
  2108   %}
  2110   enc_class form_f2i_helper(regF src, regF dst) %{
  2111     // fcmps %fcc0,$src,$src
  2112     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2113     // branch %fcc0 not-nan, predict taken
  2114     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2115     // fstoi $src,$dst
  2116     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2117     // fitos $dst,$dst (if nan)
  2118     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2119     // clear $dst (if nan)
  2120     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2121     // carry on here...
  2122   %}
  2124   enc_class form_f2l_helper(regF src, regD dst) %{
  2125     // fcmps %fcc0,$src,$src
  2126     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2127     // branch %fcc0 not-nan, predict taken
  2128     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2129     // fstox $src,$dst
  2130     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2131     // fxtod $dst,$dst (if nan)
  2132     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2133     // clear $dst (if nan)
  2134     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2135     // carry on here...
  2136   %}
  2138   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2139   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2140   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2141   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2143   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2145   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2146   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2148   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2149     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2150   %}
  2152   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2153     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2154   %}
  2156   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2157     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2158   %}
  2160   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2161     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2162   %}
  2164   enc_class form3_convI2F(regF rs2, regF rd) %{
  2165     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2166   %}
  2168   // Encloding class for traceable jumps
  2169   enc_class form_jmpl(g3RegP dest) %{
  2170     emit_jmpl(cbuf, $dest$$reg);
  2171   %}
  2173   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2174     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2175   %}
  2177   enc_class form2_nop() %{
  2178     emit_nop(cbuf);
  2179   %}
  2181   enc_class form2_illtrap() %{
  2182     emit_illtrap(cbuf);
  2183   %}
  2186   // Compare longs and convert into -1, 0, 1.
  2187   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2188     // CMP $src1,$src2
  2189     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2190     // blt,a,pn done
  2191     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2192     // mov dst,-1 in delay slot
  2193     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2194     // bgt,a,pn done
  2195     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2196     // mov dst,1 in delay slot
  2197     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2198     // CLR    $dst
  2199     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2200   %}
  2202   enc_class enc_PartialSubtypeCheck() %{
  2203     MacroAssembler _masm(&cbuf);
  2204     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2205     __ delayed()->nop();
  2206   %}
  2208   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2209     MacroAssembler _masm(&cbuf);
  2210     Label &L = *($labl$$label);
  2211     Assembler::Predict predict_taken =
  2212       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2214     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2215     __ delayed()->nop();
  2216   %}
  2218   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2219     MacroAssembler _masm(&cbuf);
  2220     Label &L = *($labl$$label);
  2221     Assembler::Predict predict_taken =
  2222       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2224     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2225     __ delayed()->nop();
  2226   %}
  2228   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2229     MacroAssembler _masm(&cbuf);
  2230     Label &L = *($labl$$label);
  2231     Assembler::Predict predict_taken =
  2232       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2234     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2235     __ delayed()->nop();
  2236   %}
  2238   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2239     MacroAssembler _masm(&cbuf);
  2240     Label &L = *($labl$$label);
  2241     Assembler::Predict predict_taken =
  2242       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2244     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2245     __ delayed()->nop();
  2246   %}
  2248   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  2249     MacroAssembler _masm(&cbuf);
  2251     Register switch_reg       = as_Register($switch_val$$reg);
  2252     Register table_reg        = O7;
  2254     address table_base = __ address_table_constant(_index2label);
  2255     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  2257     // Load table address
  2258     Address the_pc(table_reg, table_base, rspec);
  2259     __ load_address(the_pc);
  2261     // Jump to base address + switch value
  2262     __ ld_ptr(table_reg, switch_reg, table_reg);
  2263     __ jmp(table_reg, G0);
  2264     __ delayed()->nop();
  2266   %}
  2268   enc_class enc_ba( Label labl ) %{
  2269     MacroAssembler _masm(&cbuf);
  2270     Label &L = *($labl$$label);
  2271     __ ba(false, L);
  2272     __ delayed()->nop();
  2273   %}
  2275   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2276     MacroAssembler _masm(&cbuf);
  2277     Label &L = *$labl$$label;
  2278     Assembler::Predict predict_taken =
  2279       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2281     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2282     __ delayed()->nop();
  2283   %}
  2285   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2286     int op = (Assembler::arith_op << 30) |
  2287              ($dst$$reg << 25) |
  2288              (Assembler::movcc_op3 << 19) |
  2289              (1 << 18) |                    // cc2 bit for 'icc'
  2290              ($cmp$$cmpcode << 14) |
  2291              (0 << 13) |                    // select register move
  2292              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2293              ($src$$reg << 0);
  2294     *((int*)(cbuf.code_end())) = op;
  2295     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2296   %}
  2298   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2299     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2300     int op = (Assembler::arith_op << 30) |
  2301              ($dst$$reg << 25) |
  2302              (Assembler::movcc_op3 << 19) |
  2303              (1 << 18) |                    // cc2 bit for 'icc'
  2304              ($cmp$$cmpcode << 14) |
  2305              (1 << 13) |                    // select immediate move
  2306              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2307              (simm11 << 0);
  2308     *((int*)(cbuf.code_end())) = op;
  2309     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2310   %}
  2312   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2313     int op = (Assembler::arith_op << 30) |
  2314              ($dst$$reg << 25) |
  2315              (Assembler::movcc_op3 << 19) |
  2316              (0 << 18) |                    // cc2 bit for 'fccX'
  2317              ($cmp$$cmpcode << 14) |
  2318              (0 << 13) |                    // select register move
  2319              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2320              ($src$$reg << 0);
  2321     *((int*)(cbuf.code_end())) = op;
  2322     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2323   %}
  2325   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2326     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2327     int op = (Assembler::arith_op << 30) |
  2328              ($dst$$reg << 25) |
  2329              (Assembler::movcc_op3 << 19) |
  2330              (0 << 18) |                    // cc2 bit for 'fccX'
  2331              ($cmp$$cmpcode << 14) |
  2332              (1 << 13) |                    // select immediate move
  2333              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2334              (simm11 << 0);
  2335     *((int*)(cbuf.code_end())) = op;
  2336     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2337   %}
  2339   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2340     int op = (Assembler::arith_op << 30) |
  2341              ($dst$$reg << 25) |
  2342              (Assembler::fpop2_op3 << 19) |
  2343              (0 << 18) |
  2344              ($cmp$$cmpcode << 14) |
  2345              (1 << 13) |                    // select register move
  2346              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2347              ($primary << 5) |              // select single, double or quad
  2348              ($src$$reg << 0);
  2349     *((int*)(cbuf.code_end())) = op;
  2350     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2351   %}
  2353   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2354     int op = (Assembler::arith_op << 30) |
  2355              ($dst$$reg << 25) |
  2356              (Assembler::fpop2_op3 << 19) |
  2357              (0 << 18) |
  2358              ($cmp$$cmpcode << 14) |
  2359              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2360              ($primary << 5) |              // select single, double or quad
  2361              ($src$$reg << 0);
  2362     *((int*)(cbuf.code_end())) = op;
  2363     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2364   %}
  2366   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2367   // the condition comes from opcode-field instead of an argument.
  2368   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2369     int op = (Assembler::arith_op << 30) |
  2370              ($dst$$reg << 25) |
  2371              (Assembler::movcc_op3 << 19) |
  2372              (1 << 18) |                    // cc2 bit for 'icc'
  2373              ($primary << 14) |
  2374              (0 << 13) |                    // select register move
  2375              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2376              ($src$$reg << 0);
  2377     *((int*)(cbuf.code_end())) = op;
  2378     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2379   %}
  2381   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2382     int op = (Assembler::arith_op << 30) |
  2383              ($dst$$reg << 25) |
  2384              (Assembler::movcc_op3 << 19) |
  2385              (6 << 16) |                    // cc2 bit for 'xcc'
  2386              ($primary << 14) |
  2387              (0 << 13) |                    // select register move
  2388              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2389              ($src$$reg << 0);
  2390     *((int*)(cbuf.code_end())) = op;
  2391     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2392   %}
  2394   // Utility encoding for loading a 64 bit Pointer into a register
  2395   // The 64 bit pointer is stored in the generated code stream
  2396   enc_class SetPtr( immP src, iRegP rd ) %{
  2397     Register dest = reg_to_register_object($rd$$reg);
  2398     // [RGV] This next line should be generated from ADLC
  2399     if ( _opnds[1]->constant_is_oop() ) {
  2400       intptr_t val = $src$$constant;
  2401       MacroAssembler _masm(&cbuf);
  2402       __ set_oop_constant((jobject)val, dest);
  2403     } else {          // non-oop pointers, e.g. card mark base, heap top
  2404       emit_ptr(cbuf, $src$$constant, dest, /*ForceRelocatable=*/ false);
  2406   %}
  2408   enc_class Set13( immI13 src, iRegI rd ) %{
  2409     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2410   %}
  2412   enc_class SetHi22( immI src, iRegI rd ) %{
  2413     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2414   %}
  2416   enc_class Set32( immI src, iRegI rd ) %{
  2417     MacroAssembler _masm(&cbuf);
  2418     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2419   %}
  2421   enc_class SetNull( iRegI rd ) %{
  2422     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  2423   %}
  2425   enc_class call_epilog %{
  2426     if( VerifyStackAtCalls ) {
  2427       MacroAssembler _masm(&cbuf);
  2428       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2429       Register temp_reg = G3;
  2430       __ add(SP, framesize, temp_reg);
  2431       __ cmp(temp_reg, FP);
  2432       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2434   %}
  2436   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2437   // to G1 so the register allocator will not have to deal with the misaligned register
  2438   // pair.
  2439   enc_class adjust_long_from_native_call %{
  2440 #ifndef _LP64
  2441     if (returns_long()) {
  2442       //    sllx  O0,32,O0
  2443       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2444       //    srl   O1,0,O1
  2445       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2446       //    or    O0,O1,G1
  2447       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2449 #endif
  2450   %}
  2452   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2453     // CALL directly to the runtime
  2454     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2455     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2456                     /*preserve_g2=*/true, /*force far call*/true);
  2457   %}
  2459   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2460     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2461     // who we intended to call.
  2462     if ( !_method ) {
  2463       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2464     } else if (_optimized_virtual) {
  2465       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2466     } else {
  2467       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2469     if( _method ) {  // Emit stub for static call
  2470       emit_java_to_interp(cbuf);
  2472   %}
  2474   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2475     MacroAssembler _masm(&cbuf);
  2476     __ set_inst_mark();
  2477     int vtable_index = this->_vtable_index;
  2478     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2479     if (vtable_index < 0) {
  2480       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2481       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2482       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2483       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2484       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2485       // !!!!!
  2486       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2487       // emit_call_dynamic_prologue( cbuf );
  2488       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2490       address  virtual_call_oop_addr = __ inst_mark();
  2491       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2492       // who we intended to call.
  2493       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2494       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2495     } else {
  2496       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2497       // Just go thru the vtable
  2498       // get receiver klass (receiver already checked for non-null)
  2499       // If we end up going thru a c2i adapter interpreter expects method in G5
  2500       int off = __ offset();
  2501       __ load_klass(O0, G3_scratch);
  2502       int klass_load_size;
  2503       if (UseCompressedOops) {
  2504         klass_load_size = 3*BytesPerInstWord;
  2505       } else {
  2506         klass_load_size = 1*BytesPerInstWord;
  2508       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2509       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2510       if( __ is_simm13(v_off) ) {
  2511         __ ld_ptr(G3, v_off, G5_method);
  2512       } else {
  2513         // Generate 2 instructions
  2514         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2515         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2516         // ld_ptr, set_hi, set
  2517         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2518                "Unexpected instruction size(s)");
  2519         __ ld_ptr(G3, G5_method, G5_method);
  2521       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2522       // However it may very well end up in handle_wrong_method if the
  2523       // method is abstract for the particular class.
  2524       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2525       // jump to target (either compiled code or c2iadapter)
  2526       __ jmpl(G3_scratch, G0, O7);
  2527       __ delayed()->nop();
  2529   %}
  2531   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2532     MacroAssembler _masm(&cbuf);
  2534     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2535     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2536                               // we might be calling a C2I adapter which needs it.
  2538     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2539     // Load nmethod
  2540     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2542     // CALL to compiled java, indirect the contents of G3
  2543     __ set_inst_mark();
  2544     __ callr(temp_reg, G0);
  2545     __ delayed()->nop();
  2546   %}
  2548 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2549     MacroAssembler _masm(&cbuf);
  2550     Register Rdividend = reg_to_register_object($src1$$reg);
  2551     Register Rdivisor = reg_to_register_object($src2$$reg);
  2552     Register Rresult = reg_to_register_object($dst$$reg);
  2554     __ sra(Rdivisor, 0, Rdivisor);
  2555     __ sra(Rdividend, 0, Rdividend);
  2556     __ sdivx(Rdividend, Rdivisor, Rresult);
  2557 %}
  2559 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2560     MacroAssembler _masm(&cbuf);
  2562     Register Rdividend = reg_to_register_object($src1$$reg);
  2563     int divisor = $imm$$constant;
  2564     Register Rresult = reg_to_register_object($dst$$reg);
  2566     __ sra(Rdividend, 0, Rdividend);
  2567     __ sdivx(Rdividend, divisor, Rresult);
  2568 %}
  2570 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2571     MacroAssembler _masm(&cbuf);
  2572     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2573     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2574     Register Rdst  = reg_to_register_object($dst$$reg);
  2576     __ sra( Rsrc1, 0, Rsrc1 );
  2577     __ sra( Rsrc2, 0, Rsrc2 );
  2578     __ mulx( Rsrc1, Rsrc2, Rdst );
  2579     __ srlx( Rdst, 32, Rdst );
  2580 %}
  2582 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2583     MacroAssembler _masm(&cbuf);
  2584     Register Rdividend = reg_to_register_object($src1$$reg);
  2585     Register Rdivisor = reg_to_register_object($src2$$reg);
  2586     Register Rresult = reg_to_register_object($dst$$reg);
  2587     Register Rscratch = reg_to_register_object($scratch$$reg);
  2589     assert(Rdividend != Rscratch, "");
  2590     assert(Rdivisor  != Rscratch, "");
  2592     __ sra(Rdividend, 0, Rdividend);
  2593     __ sra(Rdivisor, 0, Rdivisor);
  2594     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2595     __ mulx(Rscratch, Rdivisor, Rscratch);
  2596     __ sub(Rdividend, Rscratch, Rresult);
  2597 %}
  2599 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2600     MacroAssembler _masm(&cbuf);
  2602     Register Rdividend = reg_to_register_object($src1$$reg);
  2603     int divisor = $imm$$constant;
  2604     Register Rresult = reg_to_register_object($dst$$reg);
  2605     Register Rscratch = reg_to_register_object($scratch$$reg);
  2607     assert(Rdividend != Rscratch, "");
  2609     __ sra(Rdividend, 0, Rdividend);
  2610     __ sdivx(Rdividend, divisor, Rscratch);
  2611     __ mulx(Rscratch, divisor, Rscratch);
  2612     __ sub(Rdividend, Rscratch, Rresult);
  2613 %}
  2615 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2616     MacroAssembler _masm(&cbuf);
  2618     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2619     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2621     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2622 %}
  2624 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2625     MacroAssembler _masm(&cbuf);
  2627     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2628     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2630     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2631 %}
  2633 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2634     MacroAssembler _masm(&cbuf);
  2636     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2637     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2639     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2640 %}
  2642 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2643     MacroAssembler _masm(&cbuf);
  2645     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2646     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2648     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2649 %}
  2651 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2652     MacroAssembler _masm(&cbuf);
  2654     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2655     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2657     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2658 %}
  2660 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2661     MacroAssembler _masm(&cbuf);
  2663     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2664     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2666     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2667 %}
  2669 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2670     MacroAssembler _masm(&cbuf);
  2672     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2673     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2675     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2676 %}
  2678 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2679     MacroAssembler _masm(&cbuf);
  2681     Register Roop  = reg_to_register_object($oop$$reg);
  2682     Register Rbox  = reg_to_register_object($box$$reg);
  2683     Register Rscratch = reg_to_register_object($scratch$$reg);
  2684     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2686     assert(Roop  != Rscratch, "");
  2687     assert(Roop  != Rmark, "");
  2688     assert(Rbox  != Rscratch, "");
  2689     assert(Rbox  != Rmark, "");
  2691     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters);
  2692 %}
  2694 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2695     MacroAssembler _masm(&cbuf);
  2697     Register Roop  = reg_to_register_object($oop$$reg);
  2698     Register Rbox  = reg_to_register_object($box$$reg);
  2699     Register Rscratch = reg_to_register_object($scratch$$reg);
  2700     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2702     assert(Roop  != Rscratch, "");
  2703     assert(Roop  != Rmark, "");
  2704     assert(Rbox  != Rscratch, "");
  2705     assert(Rbox  != Rmark, "");
  2707     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch);
  2708   %}
  2710   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2711     MacroAssembler _masm(&cbuf);
  2712     Register Rmem = reg_to_register_object($mem$$reg);
  2713     Register Rold = reg_to_register_object($old$$reg);
  2714     Register Rnew = reg_to_register_object($new$$reg);
  2716     // casx_under_lock picks 1 of 3 encodings:
  2717     // For 32-bit pointers you get a 32-bit CAS
  2718     // For 64-bit pointers you get a 64-bit CASX
  2719     __ casx_under_lock(Rmem, Rold, Rnew, // Swap(*Rmem,Rnew) if *Rmem == Rold
  2720                         (address) StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2721     __ cmp( Rold, Rnew );
  2722   %}
  2724   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2725     Register Rmem = reg_to_register_object($mem$$reg);
  2726     Register Rold = reg_to_register_object($old$$reg);
  2727     Register Rnew = reg_to_register_object($new$$reg);
  2729     MacroAssembler _masm(&cbuf);
  2730     __ mov(Rnew, O7);
  2731     __ casx(Rmem, Rold, O7);
  2732     __ cmp( Rold, O7 );
  2733   %}
  2735   // raw int cas, used for compareAndSwap
  2736   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2737     Register Rmem = reg_to_register_object($mem$$reg);
  2738     Register Rold = reg_to_register_object($old$$reg);
  2739     Register Rnew = reg_to_register_object($new$$reg);
  2741     MacroAssembler _masm(&cbuf);
  2742     __ mov(Rnew, O7);
  2743     __ cas(Rmem, Rold, O7);
  2744     __ cmp( Rold, O7 );
  2745   %}
  2747   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2748     Register Rres = reg_to_register_object($res$$reg);
  2750     MacroAssembler _masm(&cbuf);
  2751     __ mov(1, Rres);
  2752     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2753   %}
  2755   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2756     Register Rres = reg_to_register_object($res$$reg);
  2758     MacroAssembler _masm(&cbuf);
  2759     __ mov(1, Rres);
  2760     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2761   %}
  2763   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2764     MacroAssembler _masm(&cbuf);
  2765     Register Rdst = reg_to_register_object($dst$$reg);
  2766     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2767                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2768     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2769                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2771     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2772     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2773   %}
  2775   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  2776     MacroAssembler _masm(&cbuf);
  2777     Register dest = reg_to_register_object($dst$$reg);
  2778     Register temp = reg_to_register_object($tmp$$reg);
  2779     __ set64( $src$$constant, dest, temp );
  2780   %}
  2782   enc_class LdImmF(immF src, regF dst, o7RegP tmp) %{    // Load Immediate
  2783     address float_address = MacroAssembler(&cbuf).float_constant($src$$constant);
  2784     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  2785 #ifdef _LP64
  2786     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2787     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2788     emit_ptr(cbuf, (intptr_t)float_address, tmp_reg, /*ForceRelocatable=*/ true);
  2789     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, $tmp$$reg, 0 );
  2790 #else  // _LP64
  2791     uint *code;
  2792     int tmp_reg = $tmp$$reg;
  2794     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2795     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) float_address );
  2797     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2798     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, tmp_reg, (intptr_t) float_address );
  2799 #endif // _LP64
  2800   %}
  2802   enc_class LdImmD(immD src, regD dst, o7RegP tmp) %{    // Load Immediate
  2803     address double_address = MacroAssembler(&cbuf).double_constant($src$$constant);
  2804     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2805 #ifdef _LP64
  2806     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2807     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2808     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2809     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2810 #else // _LP64
  2811     uint *code;
  2812     int tmp_reg = $tmp$$reg;
  2814     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2815     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2817     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2818     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2819 #endif // _LP64
  2820   %}
  2822   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  2823     // Load a constant replicated "count" times with width "width"
  2824     int bit_width = $width$$constant * 8;
  2825     jlong elt_val = $src$$constant;
  2826     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  2827     jlong val = elt_val;
  2828     for (int i = 0; i < $count$$constant - 1; i++) {
  2829         val <<= bit_width;
  2830         val |= elt_val;
  2832     jdouble dval = *(jdouble*)&val; // coerce to double type
  2833     address double_address = MacroAssembler(&cbuf).double_constant(dval);
  2834     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2835 #ifdef _LP64
  2836     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2837     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2838     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2839     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2840 #else // _LP64
  2841     uint *code;
  2842     int tmp_reg = $tmp$$reg;
  2844     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2845     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2847     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2848     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2849 #endif // _LP64
  2850   %}
  2853   enc_class ShouldNotEncodeThis ( ) %{
  2854     ShouldNotCallThis();
  2855   %}
  2857   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2858   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2859     MacroAssembler _masm(&cbuf);
  2860     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2861     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2862     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2864     Label loop;
  2865     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2867     // Loop and clear, walking backwards through the array.
  2868     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2869     __ bind(loop);
  2870     __ deccc(nof_bytes_tmp, 8);
  2871     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2872     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2873     // %%%% this mini-loop must not cross a cache boundary!
  2874   %}
  2877   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
  2878     Label Ldone, Lloop;
  2879     MacroAssembler _masm(&cbuf);
  2881     Register   str1_reg = reg_to_register_object($str1$$reg);
  2882     Register   str2_reg = reg_to_register_object($str2$$reg);
  2883     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  2884     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
  2885     Register result_reg = reg_to_register_object($result$$reg);
  2887     // Get the first character position in both strings
  2888     //         [8] char array, [12] offset, [16] count
  2889     int  value_offset = java_lang_String:: value_offset_in_bytes();
  2890     int offset_offset = java_lang_String::offset_offset_in_bytes();
  2891     int  count_offset = java_lang_String:: count_offset_in_bytes();
  2893     // load str1 (jchar*) base address into tmp1_reg
  2894     __ load_heap_oop(Address(str1_reg, 0,  value_offset), tmp1_reg);
  2895     __ ld(Address(str1_reg, 0, offset_offset), result_reg);
  2896     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
  2897     __    ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2898     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2899     __    load_heap_oop(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2900     __ add(result_reg, tmp1_reg, tmp1_reg);
  2902     // load str2 (jchar*) base address into tmp2_reg
  2903     // __ ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2904     __ ld(Address(str2_reg, 0, offset_offset), result_reg);
  2905     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
  2906     __    ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2907     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2908     __   subcc(str1_reg, str2_reg, O7); // hoisted
  2909     __ add(result_reg, tmp2_reg, tmp2_reg);
  2911     // Compute the minimum of the string lengths(str1_reg) and the
  2912     // difference of the string lengths (stack)
  2914     // discard string base pointers, after loading up the lengths
  2915     // __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2916     // __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2918     // See if the lengths are different, and calculate min in str1_reg.
  2919     // Stash diff in O7 in case we need it for a tie-breaker.
  2920     Label Lskip;
  2921     // __ subcc(str1_reg, str2_reg, O7); // hoisted
  2922     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2923     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2924     // str2 is shorter, so use its count:
  2925     __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2926     __ bind(Lskip);
  2928     // reallocate str1_reg, str2_reg, result_reg
  2929     // Note:  limit_reg holds the string length pre-scaled by 2
  2930     Register limit_reg =   str1_reg;
  2931     Register  chr2_reg =   str2_reg;
  2932     Register  chr1_reg = result_reg;
  2933     // tmp{12} are the base pointers
  2935     // Is the minimum length zero?
  2936     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2937     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2938     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2940     // Load first characters
  2941     __ lduh(tmp1_reg, 0, chr1_reg);
  2942     __ lduh(tmp2_reg, 0, chr2_reg);
  2944     // Compare first characters
  2945     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2946     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2947     assert(chr1_reg == result_reg, "result must be pre-placed");
  2948     __ delayed()->nop();
  2951       // Check after comparing first character to see if strings are equivalent
  2952       Label LSkip2;
  2953       // Check if the strings start at same location
  2954       __ cmp(tmp1_reg, tmp2_reg);
  2955       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2956       __ delayed()->nop();
  2958       // Check if the length difference is zero (in O7)
  2959       __ cmp(G0, O7);
  2960       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2961       __ delayed()->mov(G0, result_reg);  // result is zero
  2963       // Strings might not be equal
  2964       __ bind(LSkip2);
  2967     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2968     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2969     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2971     // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
  2972     __ add(tmp1_reg, limit_reg, tmp1_reg);
  2973     __ add(tmp2_reg, limit_reg, tmp2_reg);
  2974     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2976     // Compare the rest of the characters
  2977     __ lduh(tmp1_reg, limit_reg, chr1_reg);
  2978     __ bind(Lloop);
  2979     // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2980     __ lduh(tmp2_reg, limit_reg, chr2_reg);
  2981     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2982     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2983     assert(chr1_reg == result_reg, "result must be pre-placed");
  2984     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2985     // annul LDUH if branch is not taken to prevent access past end of string
  2986     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2987     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2989     // If strings are equal up to min length, return the length difference.
  2990     __ mov(O7, result_reg);
  2992     // Otherwise, return the difference between the first mismatched chars.
  2993     __ bind(Ldone);
  2994   %}
  2996   enc_class enc_rethrow() %{
  2997     cbuf.set_inst_mark();
  2998     Register temp_reg = G3;
  2999     Address rethrow_stub(temp_reg, OptoRuntime::rethrow_stub());
  3000     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3001     MacroAssembler _masm(&cbuf);
  3002 #ifdef ASSERT
  3003     __ save_frame(0);
  3004     Address last_rethrow_addr(L1, (address)&last_rethrow);
  3005     __ sethi(last_rethrow_addr);
  3006     __ get_pc(L2);
  3007     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3008     __ st_ptr(L2, last_rethrow_addr);
  3009     __ restore();
  3010 #endif
  3011     __ JUMP(rethrow_stub, 0); // sethi;jmp
  3012     __ delayed()->nop();
  3013   %}
  3015   enc_class emit_mem_nop() %{
  3016     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3017     unsigned int *code = (unsigned int*)cbuf.code_end();
  3018     *code = (unsigned int)0xc0839040;
  3019     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3020   %}
  3022   enc_class emit_fadd_nop() %{
  3023     // Generates the instruction FMOVS f31,f31
  3024     unsigned int *code = (unsigned int*)cbuf.code_end();
  3025     *code = (unsigned int)0xbfa0003f;
  3026     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3027   %}
  3029   enc_class emit_br_nop() %{
  3030     // Generates the instruction BPN,PN .
  3031     unsigned int *code = (unsigned int*)cbuf.code_end();
  3032     *code = (unsigned int)0x00400000;
  3033     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3034   %}
  3036   enc_class enc_membar_acquire %{
  3037     MacroAssembler _masm(&cbuf);
  3038     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3039   %}
  3041   enc_class enc_membar_release %{
  3042     MacroAssembler _masm(&cbuf);
  3043     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3044   %}
  3046   enc_class enc_membar_volatile %{
  3047     MacroAssembler _masm(&cbuf);
  3048     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3049   %}
  3051   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3052     MacroAssembler _masm(&cbuf);
  3053     Register src_reg = reg_to_register_object($src$$reg);
  3054     Register dst_reg = reg_to_register_object($dst$$reg);
  3055     __ sllx(src_reg, 56, dst_reg);
  3056     __ srlx(dst_reg,  8, O7);
  3057     __ or3 (dst_reg, O7, dst_reg);
  3058     __ srlx(dst_reg, 16, O7);
  3059     __ or3 (dst_reg, O7, dst_reg);
  3060     __ srlx(dst_reg, 32, O7);
  3061     __ or3 (dst_reg, O7, dst_reg);
  3062   %}
  3064   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3065     MacroAssembler _masm(&cbuf);
  3066     Register src_reg = reg_to_register_object($src$$reg);
  3067     Register dst_reg = reg_to_register_object($dst$$reg);
  3068     __ sll(src_reg, 24, dst_reg);
  3069     __ srl(dst_reg,  8, O7);
  3070     __ or3(dst_reg, O7, dst_reg);
  3071     __ srl(dst_reg, 16, O7);
  3072     __ or3(dst_reg, O7, dst_reg);
  3073   %}
  3075   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3076     MacroAssembler _masm(&cbuf);
  3077     Register src_reg = reg_to_register_object($src$$reg);
  3078     Register dst_reg = reg_to_register_object($dst$$reg);
  3079     __ sllx(src_reg, 48, dst_reg);
  3080     __ srlx(dst_reg, 16, O7);
  3081     __ or3 (dst_reg, O7, dst_reg);
  3082     __ srlx(dst_reg, 32, O7);
  3083     __ or3 (dst_reg, O7, dst_reg);
  3084   %}
  3086   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3087     MacroAssembler _masm(&cbuf);
  3088     Register src_reg = reg_to_register_object($src$$reg);
  3089     Register dst_reg = reg_to_register_object($dst$$reg);
  3090     __ sllx(src_reg, 32, dst_reg);
  3091     __ srlx(dst_reg, 32, O7);
  3092     __ or3 (dst_reg, O7, dst_reg);
  3093   %}
  3095 %}
  3097 //----------FRAME--------------------------------------------------------------
  3098 // Definition of frame structure and management information.
  3099 //
  3100 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3101 //                             |   (to get allocators register number
  3102 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3103 //  r   CALLER     |        |
  3104 //  o     |        +--------+      pad to even-align allocators stack-slot
  3105 //  w     V        |  pad0  |        numbers; owned by CALLER
  3106 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3107 //  h     ^        |   in   |  5
  3108 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3109 //  |     |        |        |  3
  3110 //  |     |        +--------+
  3111 //  V     |        | old out|      Empty on Intel, window on Sparc
  3112 //        |    old |preserve|      Must be even aligned.
  3113 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3114 //        |        |   in   |  3   area for Intel ret address
  3115 //     Owned by    |preserve|      Empty on Sparc.
  3116 //       SELF      +--------+
  3117 //        |        |  pad2  |  2   pad to align old SP
  3118 //        |        +--------+  1
  3119 //        |        | locks  |  0
  3120 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3121 //        |        |  pad1  | 11   pad to align new SP
  3122 //        |        +--------+
  3123 //        |        |        | 10
  3124 //        |        | spills |  9   spills
  3125 //        V        |        |  8   (pad0 slot for callee)
  3126 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3127 //        ^        |  out   |  7
  3128 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3129 //     Owned by    +--------+
  3130 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3131 //        |    new |preserve|      Must be even-aligned.
  3132 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3133 //        |        |        |
  3134 //
  3135 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3136 //         known from SELF's arguments and the Java calling convention.
  3137 //         Region 6-7 is determined per call site.
  3138 // Note 2: If the calling convention leaves holes in the incoming argument
  3139 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3140 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3141 //         incoming area, as the Java calling convention is completely under
  3142 //         the control of the AD file.  Doubles can be sorted and packed to
  3143 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3144 //         varargs C calling conventions.
  3145 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3146 //         even aligned with pad0 as needed.
  3147 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3148 //         region 6-11 is even aligned; it may be padded out more so that
  3149 //         the region from SP to FP meets the minimum stack alignment.
  3151 frame %{
  3152   // What direction does stack grow in (assumed to be same for native & Java)
  3153   stack_direction(TOWARDS_LOW);
  3155   // These two registers define part of the calling convention
  3156   // between compiled code and the interpreter.
  3157   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3158   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3160   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3161   cisc_spilling_operand_name(indOffset);
  3163   // Number of stack slots consumed by a Monitor enter
  3164 #ifdef _LP64
  3165   sync_stack_slots(2);
  3166 #else
  3167   sync_stack_slots(1);
  3168 #endif
  3170   // Compiled code's Frame Pointer
  3171   frame_pointer(R_SP);
  3173   // Stack alignment requirement
  3174   stack_alignment(StackAlignmentInBytes);
  3175   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3176   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3178   // Number of stack slots between incoming argument block and the start of
  3179   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3180   // EPILOG must remove this many slots.
  3181   in_preserve_stack_slots(0);
  3183   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3184   // for calls to C.  Supports the var-args backing area for register parms.
  3185   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3186 #ifdef _LP64
  3187   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3188   varargs_C_out_slots_killed(12);
  3189 #else
  3190   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3191   varargs_C_out_slots_killed( 7);
  3192 #endif
  3194   // The after-PROLOG location of the return address.  Location of
  3195   // return address specifies a type (REG or STACK) and a number
  3196   // representing the register number (i.e. - use a register name) or
  3197   // stack slot.
  3198   return_addr(REG R_I7);          // Ret Addr is in register I7
  3200   // Body of function which returns an OptoRegs array locating
  3201   // arguments either in registers or in stack slots for calling
  3202   // java
  3203   calling_convention %{
  3204     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3206   %}
  3208   // Body of function which returns an OptoRegs array locating
  3209   // arguments either in registers or in stack slots for callin
  3210   // C.
  3211   c_calling_convention %{
  3212     // This is obviously always outgoing
  3213     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3214   %}
  3216   // Location of native (C/C++) and interpreter return values.  This is specified to
  3217   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3218   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3219   // to and from the register pairs is done by the appropriate call and epilog
  3220   // opcodes.  This simplifies the register allocator.
  3221   c_return_value %{
  3222     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3223 #ifdef     _LP64
  3224     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3225     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3226     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3227     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3228 #else  // !_LP64
  3229     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3230     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3231     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3232     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3233 #endif
  3234     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3235                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3236   %}
  3238   // Location of compiled Java return values.  Same as C
  3239   return_value %{
  3240     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3241 #ifdef     _LP64
  3242     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3243     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3244     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3245     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3246 #else  // !_LP64
  3247     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3248     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3249     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3250     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3251 #endif
  3252     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3253                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3254   %}
  3256 %}
  3259 //----------ATTRIBUTES---------------------------------------------------------
  3260 //----------Operand Attributes-------------------------------------------------
  3261 op_attrib op_cost(1);          // Required cost attribute
  3263 //----------Instruction Attributes---------------------------------------------
  3264 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3265 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3266 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3267 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3268                                 // non-matching short branch variant of some
  3269                                                             // long branch?
  3271 //----------OPERANDS-----------------------------------------------------------
  3272 // Operand definitions must precede instruction definitions for correct parsing
  3273 // in the ADLC because operands constitute user defined types which are used in
  3274 // instruction definitions.
  3276 //----------Simple Operands----------------------------------------------------
  3277 // Immediate Operands
  3278 // Integer Immediate: 32-bit
  3279 operand immI() %{
  3280   match(ConI);
  3282   op_cost(0);
  3283   // formats are generated automatically for constants and base registers
  3284   format %{ %}
  3285   interface(CONST_INTER);
  3286 %}
  3288 // Integer Immediate: 13-bit
  3289 operand immI13() %{
  3290   predicate(Assembler::is_simm13(n->get_int()));
  3291   match(ConI);
  3292   op_cost(0);
  3294   format %{ %}
  3295   interface(CONST_INTER);
  3296 %}
  3298 // Unsigned (positive) Integer Immediate: 13-bit
  3299 operand immU13() %{
  3300   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3301   match(ConI);
  3302   op_cost(0);
  3304   format %{ %}
  3305   interface(CONST_INTER);
  3306 %}
  3308 // Integer Immediate: 6-bit
  3309 operand immU6() %{
  3310   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3311   match(ConI);
  3312   op_cost(0);
  3313   format %{ %}
  3314   interface(CONST_INTER);
  3315 %}
  3317 // Integer Immediate: 11-bit
  3318 operand immI11() %{
  3319   predicate(Assembler::is_simm(n->get_int(),11));
  3320   match(ConI);
  3321   op_cost(0);
  3322   format %{ %}
  3323   interface(CONST_INTER);
  3324 %}
  3326 // Integer Immediate: 0-bit
  3327 operand immI0() %{
  3328   predicate(n->get_int() == 0);
  3329   match(ConI);
  3330   op_cost(0);
  3332   format %{ %}
  3333   interface(CONST_INTER);
  3334 %}
  3336 // Integer Immediate: the value 10
  3337 operand immI10() %{
  3338   predicate(n->get_int() == 10);
  3339   match(ConI);
  3340   op_cost(0);
  3342   format %{ %}
  3343   interface(CONST_INTER);
  3344 %}
  3346 // Integer Immediate: the values 0-31
  3347 operand immU5() %{
  3348   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3349   match(ConI);
  3350   op_cost(0);
  3352   format %{ %}
  3353   interface(CONST_INTER);
  3354 %}
  3356 // Integer Immediate: the values 1-31
  3357 operand immI_1_31() %{
  3358   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3359   match(ConI);
  3360   op_cost(0);
  3362   format %{ %}
  3363   interface(CONST_INTER);
  3364 %}
  3366 // Integer Immediate: the values 32-63
  3367 operand immI_32_63() %{
  3368   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3369   match(ConI);
  3370   op_cost(0);
  3372   format %{ %}
  3373   interface(CONST_INTER);
  3374 %}
  3376 // Integer Immediate: the value 255
  3377 operand immI_255() %{
  3378   predicate( n->get_int() == 255 );
  3379   match(ConI);
  3380   op_cost(0);
  3382   format %{ %}
  3383   interface(CONST_INTER);
  3384 %}
  3386 // Long Immediate: the value FF
  3387 operand immL_FF() %{
  3388   predicate( n->get_long() == 0xFFL );
  3389   match(ConL);
  3390   op_cost(0);
  3392   format %{ %}
  3393   interface(CONST_INTER);
  3394 %}
  3396 // Long Immediate: the value FFFF
  3397 operand immL_FFFF() %{
  3398   predicate( n->get_long() == 0xFFFFL );
  3399   match(ConL);
  3400   op_cost(0);
  3402   format %{ %}
  3403   interface(CONST_INTER);
  3404 %}
  3406 // Pointer Immediate: 32 or 64-bit
  3407 operand immP() %{
  3408   match(ConP);
  3410   op_cost(5);
  3411   // formats are generated automatically for constants and base registers
  3412   format %{ %}
  3413   interface(CONST_INTER);
  3414 %}
  3416 operand immP13() %{
  3417   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3418   match(ConP);
  3419   op_cost(0);
  3421   format %{ %}
  3422   interface(CONST_INTER);
  3423 %}
  3425 operand immP0() %{
  3426   predicate(n->get_ptr() == 0);
  3427   match(ConP);
  3428   op_cost(0);
  3430   format %{ %}
  3431   interface(CONST_INTER);
  3432 %}
  3434 operand immP_poll() %{
  3435   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3436   match(ConP);
  3438   // formats are generated automatically for constants and base registers
  3439   format %{ %}
  3440   interface(CONST_INTER);
  3441 %}
  3443 // Pointer Immediate
  3444 operand immN()
  3445 %{
  3446   match(ConN);
  3448   op_cost(10);
  3449   format %{ %}
  3450   interface(CONST_INTER);
  3451 %}
  3453 // NULL Pointer Immediate
  3454 operand immN0()
  3455 %{
  3456   predicate(n->get_narrowcon() == 0);
  3457   match(ConN);
  3459   op_cost(0);
  3460   format %{ %}
  3461   interface(CONST_INTER);
  3462 %}
  3464 operand immL() %{
  3465   match(ConL);
  3466   op_cost(40);
  3467   // formats are generated automatically for constants and base registers
  3468   format %{ %}
  3469   interface(CONST_INTER);
  3470 %}
  3472 operand immL0() %{
  3473   predicate(n->get_long() == 0L);
  3474   match(ConL);
  3475   op_cost(0);
  3476   // formats are generated automatically for constants and base registers
  3477   format %{ %}
  3478   interface(CONST_INTER);
  3479 %}
  3481 // Long Immediate: 13-bit
  3482 operand immL13() %{
  3483   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3484   match(ConL);
  3485   op_cost(0);
  3487   format %{ %}
  3488   interface(CONST_INTER);
  3489 %}
  3491 // Long Immediate: low 32-bit mask
  3492 operand immL_32bits() %{
  3493   predicate(n->get_long() == 0xFFFFFFFFL);
  3494   match(ConL);
  3495   op_cost(0);
  3497   format %{ %}
  3498   interface(CONST_INTER);
  3499 %}
  3501 // Double Immediate
  3502 operand immD() %{
  3503   match(ConD);
  3505   op_cost(40);
  3506   format %{ %}
  3507   interface(CONST_INTER);
  3508 %}
  3510 operand immD0() %{
  3511 #ifdef _LP64
  3512   // on 64-bit architectures this comparision is faster
  3513   predicate(jlong_cast(n->getd()) == 0);
  3514 #else
  3515   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3516 #endif
  3517   match(ConD);
  3519   op_cost(0);
  3520   format %{ %}
  3521   interface(CONST_INTER);
  3522 %}
  3524 // Float Immediate
  3525 operand immF() %{
  3526   match(ConF);
  3528   op_cost(20);
  3529   format %{ %}
  3530   interface(CONST_INTER);
  3531 %}
  3533 // Float Immediate: 0
  3534 operand immF0() %{
  3535   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3536   match(ConF);
  3538   op_cost(0);
  3539   format %{ %}
  3540   interface(CONST_INTER);
  3541 %}
  3543 // Integer Register Operands
  3544 // Integer Register
  3545 operand iRegI() %{
  3546   constraint(ALLOC_IN_RC(int_reg));
  3547   match(RegI);
  3549   match(notemp_iRegI);
  3550   match(g1RegI);
  3551   match(o0RegI);
  3552   match(iRegIsafe);
  3554   format %{ %}
  3555   interface(REG_INTER);
  3556 %}
  3558 operand notemp_iRegI() %{
  3559   constraint(ALLOC_IN_RC(notemp_int_reg));
  3560   match(RegI);
  3562   match(o0RegI);
  3564   format %{ %}
  3565   interface(REG_INTER);
  3566 %}
  3568 operand o0RegI() %{
  3569   constraint(ALLOC_IN_RC(o0_regI));
  3570   match(iRegI);
  3572   format %{ %}
  3573   interface(REG_INTER);
  3574 %}
  3576 // Pointer Register
  3577 operand iRegP() %{
  3578   constraint(ALLOC_IN_RC(ptr_reg));
  3579   match(RegP);
  3581   match(lock_ptr_RegP);
  3582   match(g1RegP);
  3583   match(g2RegP);
  3584   match(g3RegP);
  3585   match(g4RegP);
  3586   match(i0RegP);
  3587   match(o0RegP);
  3588   match(o1RegP);
  3589   match(l7RegP);
  3591   format %{ %}
  3592   interface(REG_INTER);
  3593 %}
  3595 operand sp_ptr_RegP() %{
  3596   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3597   match(RegP);
  3598   match(iRegP);
  3600   format %{ %}
  3601   interface(REG_INTER);
  3602 %}
  3604 operand lock_ptr_RegP() %{
  3605   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3606   match(RegP);
  3607   match(i0RegP);
  3608   match(o0RegP);
  3609   match(o1RegP);
  3610   match(l7RegP);
  3612   format %{ %}
  3613   interface(REG_INTER);
  3614 %}
  3616 operand g1RegP() %{
  3617   constraint(ALLOC_IN_RC(g1_regP));
  3618   match(iRegP);
  3620   format %{ %}
  3621   interface(REG_INTER);
  3622 %}
  3624 operand g2RegP() %{
  3625   constraint(ALLOC_IN_RC(g2_regP));
  3626   match(iRegP);
  3628   format %{ %}
  3629   interface(REG_INTER);
  3630 %}
  3632 operand g3RegP() %{
  3633   constraint(ALLOC_IN_RC(g3_regP));
  3634   match(iRegP);
  3636   format %{ %}
  3637   interface(REG_INTER);
  3638 %}
  3640 operand g1RegI() %{
  3641   constraint(ALLOC_IN_RC(g1_regI));
  3642   match(iRegI);
  3644   format %{ %}
  3645   interface(REG_INTER);
  3646 %}
  3648 operand g3RegI() %{
  3649   constraint(ALLOC_IN_RC(g3_regI));
  3650   match(iRegI);
  3652   format %{ %}
  3653   interface(REG_INTER);
  3654 %}
  3656 operand g4RegI() %{
  3657   constraint(ALLOC_IN_RC(g4_regI));
  3658   match(iRegI);
  3660   format %{ %}
  3661   interface(REG_INTER);
  3662 %}
  3664 operand g4RegP() %{
  3665   constraint(ALLOC_IN_RC(g4_regP));
  3666   match(iRegP);
  3668   format %{ %}
  3669   interface(REG_INTER);
  3670 %}
  3672 operand i0RegP() %{
  3673   constraint(ALLOC_IN_RC(i0_regP));
  3674   match(iRegP);
  3676   format %{ %}
  3677   interface(REG_INTER);
  3678 %}
  3680 operand o0RegP() %{
  3681   constraint(ALLOC_IN_RC(o0_regP));
  3682   match(iRegP);
  3684   format %{ %}
  3685   interface(REG_INTER);
  3686 %}
  3688 operand o1RegP() %{
  3689   constraint(ALLOC_IN_RC(o1_regP));
  3690   match(iRegP);
  3692   format %{ %}
  3693   interface(REG_INTER);
  3694 %}
  3696 operand o2RegP() %{
  3697   constraint(ALLOC_IN_RC(o2_regP));
  3698   match(iRegP);
  3700   format %{ %}
  3701   interface(REG_INTER);
  3702 %}
  3704 operand o7RegP() %{
  3705   constraint(ALLOC_IN_RC(o7_regP));
  3706   match(iRegP);
  3708   format %{ %}
  3709   interface(REG_INTER);
  3710 %}
  3712 operand l7RegP() %{
  3713   constraint(ALLOC_IN_RC(l7_regP));
  3714   match(iRegP);
  3716   format %{ %}
  3717   interface(REG_INTER);
  3718 %}
  3720 operand o7RegI() %{
  3721   constraint(ALLOC_IN_RC(o7_regI));
  3722   match(iRegI);
  3724   format %{ %}
  3725   interface(REG_INTER);
  3726 %}
  3728 operand iRegN() %{
  3729   constraint(ALLOC_IN_RC(int_reg));
  3730   match(RegN);
  3732   format %{ %}
  3733   interface(REG_INTER);
  3734 %}
  3736 // Long Register
  3737 operand iRegL() %{
  3738   constraint(ALLOC_IN_RC(long_reg));
  3739   match(RegL);
  3741   format %{ %}
  3742   interface(REG_INTER);
  3743 %}
  3745 operand o2RegL() %{
  3746   constraint(ALLOC_IN_RC(o2_regL));
  3747   match(iRegL);
  3749   format %{ %}
  3750   interface(REG_INTER);
  3751 %}
  3753 operand o7RegL() %{
  3754   constraint(ALLOC_IN_RC(o7_regL));
  3755   match(iRegL);
  3757   format %{ %}
  3758   interface(REG_INTER);
  3759 %}
  3761 operand g1RegL() %{
  3762   constraint(ALLOC_IN_RC(g1_regL));
  3763   match(iRegL);
  3765   format %{ %}
  3766   interface(REG_INTER);
  3767 %}
  3769 // Int Register safe
  3770 // This is 64bit safe
  3771 operand iRegIsafe() %{
  3772   constraint(ALLOC_IN_RC(long_reg));
  3774   match(iRegI);
  3776   format %{ %}
  3777   interface(REG_INTER);
  3778 %}
  3780 // Condition Code Flag Register
  3781 operand flagsReg() %{
  3782   constraint(ALLOC_IN_RC(int_flags));
  3783   match(RegFlags);
  3785   format %{ "ccr" %} // both ICC and XCC
  3786   interface(REG_INTER);
  3787 %}
  3789 // Condition Code Register, unsigned comparisons.
  3790 operand flagsRegU() %{
  3791   constraint(ALLOC_IN_RC(int_flags));
  3792   match(RegFlags);
  3794   format %{ "icc_U" %}
  3795   interface(REG_INTER);
  3796 %}
  3798 // Condition Code Register, pointer comparisons.
  3799 operand flagsRegP() %{
  3800   constraint(ALLOC_IN_RC(int_flags));
  3801   match(RegFlags);
  3803 #ifdef _LP64
  3804   format %{ "xcc_P" %}
  3805 #else
  3806   format %{ "icc_P" %}
  3807 #endif
  3808   interface(REG_INTER);
  3809 %}
  3811 // Condition Code Register, long comparisons.
  3812 operand flagsRegL() %{
  3813   constraint(ALLOC_IN_RC(int_flags));
  3814   match(RegFlags);
  3816   format %{ "xcc_L" %}
  3817   interface(REG_INTER);
  3818 %}
  3820 // Condition Code Register, floating comparisons, unordered same as "less".
  3821 operand flagsRegF() %{
  3822   constraint(ALLOC_IN_RC(float_flags));
  3823   match(RegFlags);
  3824   match(flagsRegF0);
  3826   format %{ %}
  3827   interface(REG_INTER);
  3828 %}
  3830 operand flagsRegF0() %{
  3831   constraint(ALLOC_IN_RC(float_flag0));
  3832   match(RegFlags);
  3834   format %{ %}
  3835   interface(REG_INTER);
  3836 %}
  3839 // Condition Code Flag Register used by long compare
  3840 operand flagsReg_long_LTGE() %{
  3841   constraint(ALLOC_IN_RC(int_flags));
  3842   match(RegFlags);
  3843   format %{ "icc_LTGE" %}
  3844   interface(REG_INTER);
  3845 %}
  3846 operand flagsReg_long_EQNE() %{
  3847   constraint(ALLOC_IN_RC(int_flags));
  3848   match(RegFlags);
  3849   format %{ "icc_EQNE" %}
  3850   interface(REG_INTER);
  3851 %}
  3852 operand flagsReg_long_LEGT() %{
  3853   constraint(ALLOC_IN_RC(int_flags));
  3854   match(RegFlags);
  3855   format %{ "icc_LEGT" %}
  3856   interface(REG_INTER);
  3857 %}
  3860 operand regD() %{
  3861   constraint(ALLOC_IN_RC(dflt_reg));
  3862   match(RegD);
  3864   format %{ %}
  3865   interface(REG_INTER);
  3866 %}
  3868 operand regF() %{
  3869   constraint(ALLOC_IN_RC(sflt_reg));
  3870   match(RegF);
  3872   format %{ %}
  3873   interface(REG_INTER);
  3874 %}
  3876 operand regD_low() %{
  3877   constraint(ALLOC_IN_RC(dflt_low_reg));
  3878   match(RegD);
  3880   format %{ %}
  3881   interface(REG_INTER);
  3882 %}
  3884 // Special Registers
  3886 // Method Register
  3887 operand inline_cache_regP(iRegP reg) %{
  3888   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  3889   match(reg);
  3890   format %{ %}
  3891   interface(REG_INTER);
  3892 %}
  3894 operand interpreter_method_oop_regP(iRegP reg) %{
  3895   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  3896   match(reg);
  3897   format %{ %}
  3898   interface(REG_INTER);
  3899 %}
  3902 //----------Complex Operands---------------------------------------------------
  3903 // Indirect Memory Reference
  3904 operand indirect(sp_ptr_RegP reg) %{
  3905   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3906   match(reg);
  3908   op_cost(100);
  3909   format %{ "[$reg]" %}
  3910   interface(MEMORY_INTER) %{
  3911     base($reg);
  3912     index(0x0);
  3913     scale(0x0);
  3914     disp(0x0);
  3915   %}
  3916 %}
  3918 // Indirect with Offset
  3919 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  3920   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3921   match(AddP reg offset);
  3923   op_cost(100);
  3924   format %{ "[$reg + $offset]" %}
  3925   interface(MEMORY_INTER) %{
  3926     base($reg);
  3927     index(0x0);
  3928     scale(0x0);
  3929     disp($offset);
  3930   %}
  3931 %}
  3933 // Note:  Intel has a swapped version also, like this:
  3934 //operand indOffsetX(iRegI reg, immP offset) %{
  3935 //  constraint(ALLOC_IN_RC(int_reg));
  3936 //  match(AddP offset reg);
  3937 //
  3938 //  op_cost(100);
  3939 //  format %{ "[$reg + $offset]" %}
  3940 //  interface(MEMORY_INTER) %{
  3941 //    base($reg);
  3942 //    index(0x0);
  3943 //    scale(0x0);
  3944 //    disp($offset);
  3945 //  %}
  3946 //%}
  3947 //// However, it doesn't make sense for SPARC, since
  3948 // we have no particularly good way to embed oops in
  3949 // single instructions.
  3951 // Indirect with Register Index
  3952 operand indIndex(iRegP addr, iRegX index) %{
  3953   constraint(ALLOC_IN_RC(ptr_reg));
  3954   match(AddP addr index);
  3956   op_cost(100);
  3957   format %{ "[$addr + $index]" %}
  3958   interface(MEMORY_INTER) %{
  3959     base($addr);
  3960     index($index);
  3961     scale(0x0);
  3962     disp(0x0);
  3963   %}
  3964 %}
  3966 //----------Special Memory Operands--------------------------------------------
  3967 // Stack Slot Operand - This operand is used for loading and storing temporary
  3968 //                      values on the stack where a match requires a value to
  3969 //                      flow through memory.
  3970 operand stackSlotI(sRegI reg) %{
  3971   constraint(ALLOC_IN_RC(stack_slots));
  3972   op_cost(100);
  3973   //match(RegI);
  3974   format %{ "[$reg]" %}
  3975   interface(MEMORY_INTER) %{
  3976     base(0xE);   // R_SP
  3977     index(0x0);
  3978     scale(0x0);
  3979     disp($reg);  // Stack Offset
  3980   %}
  3981 %}
  3983 operand stackSlotP(sRegP reg) %{
  3984   constraint(ALLOC_IN_RC(stack_slots));
  3985   op_cost(100);
  3986   //match(RegP);
  3987   format %{ "[$reg]" %}
  3988   interface(MEMORY_INTER) %{
  3989     base(0xE);   // R_SP
  3990     index(0x0);
  3991     scale(0x0);
  3992     disp($reg);  // Stack Offset
  3993   %}
  3994 %}
  3996 operand stackSlotF(sRegF reg) %{
  3997   constraint(ALLOC_IN_RC(stack_slots));
  3998   op_cost(100);
  3999   //match(RegF);
  4000   format %{ "[$reg]" %}
  4001   interface(MEMORY_INTER) %{
  4002     base(0xE);   // R_SP
  4003     index(0x0);
  4004     scale(0x0);
  4005     disp($reg);  // Stack Offset
  4006   %}
  4007 %}
  4008 operand stackSlotD(sRegD reg) %{
  4009   constraint(ALLOC_IN_RC(stack_slots));
  4010   op_cost(100);
  4011   //match(RegD);
  4012   format %{ "[$reg]" %}
  4013   interface(MEMORY_INTER) %{
  4014     base(0xE);   // R_SP
  4015     index(0x0);
  4016     scale(0x0);
  4017     disp($reg);  // Stack Offset
  4018   %}
  4019 %}
  4020 operand stackSlotL(sRegL reg) %{
  4021   constraint(ALLOC_IN_RC(stack_slots));
  4022   op_cost(100);
  4023   //match(RegL);
  4024   format %{ "[$reg]" %}
  4025   interface(MEMORY_INTER) %{
  4026     base(0xE);   // R_SP
  4027     index(0x0);
  4028     scale(0x0);
  4029     disp($reg);  // Stack Offset
  4030   %}
  4031 %}
  4033 // Operands for expressing Control Flow
  4034 // NOTE:  Label is a predefined operand which should not be redefined in
  4035 //        the AD file.  It is generically handled within the ADLC.
  4037 //----------Conditional Branch Operands----------------------------------------
  4038 // Comparison Op  - This is the operation of the comparison, and is limited to
  4039 //                  the following set of codes:
  4040 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4041 //
  4042 // Other attributes of the comparison, such as unsignedness, are specified
  4043 // by the comparison instruction that sets a condition code flags register.
  4044 // That result is represented by a flags operand whose subtype is appropriate
  4045 // to the unsignedness (etc.) of the comparison.
  4046 //
  4047 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4048 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4049 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4051 operand cmpOp() %{
  4052   match(Bool);
  4054   format %{ "" %}
  4055   interface(COND_INTER) %{
  4056     equal(0x1);
  4057     not_equal(0x9);
  4058     less(0x3);
  4059     greater_equal(0xB);
  4060     less_equal(0x2);
  4061     greater(0xA);
  4062   %}
  4063 %}
  4065 // Comparison Op, unsigned
  4066 operand cmpOpU() %{
  4067   match(Bool);
  4069   format %{ "u" %}
  4070   interface(COND_INTER) %{
  4071     equal(0x1);
  4072     not_equal(0x9);
  4073     less(0x5);
  4074     greater_equal(0xD);
  4075     less_equal(0x4);
  4076     greater(0xC);
  4077   %}
  4078 %}
  4080 // Comparison Op, pointer (same as unsigned)
  4081 operand cmpOpP() %{
  4082   match(Bool);
  4084   format %{ "p" %}
  4085   interface(COND_INTER) %{
  4086     equal(0x1);
  4087     not_equal(0x9);
  4088     less(0x5);
  4089     greater_equal(0xD);
  4090     less_equal(0x4);
  4091     greater(0xC);
  4092   %}
  4093 %}
  4095 // Comparison Op, branch-register encoding
  4096 operand cmpOp_reg() %{
  4097   match(Bool);
  4099   format %{ "" %}
  4100   interface(COND_INTER) %{
  4101     equal        (0x1);
  4102     not_equal    (0x5);
  4103     less         (0x3);
  4104     greater_equal(0x7);
  4105     less_equal   (0x2);
  4106     greater      (0x6);
  4107   %}
  4108 %}
  4110 // Comparison Code, floating, unordered same as less
  4111 operand cmpOpF() %{
  4112   match(Bool);
  4114   format %{ "fl" %}
  4115   interface(COND_INTER) %{
  4116     equal(0x9);
  4117     not_equal(0x1);
  4118     less(0x3);
  4119     greater_equal(0xB);
  4120     less_equal(0xE);
  4121     greater(0x6);
  4122   %}
  4123 %}
  4125 // Used by long compare
  4126 operand cmpOp_commute() %{
  4127   match(Bool);
  4129   format %{ "" %}
  4130   interface(COND_INTER) %{
  4131     equal(0x1);
  4132     not_equal(0x9);
  4133     less(0xA);
  4134     greater_equal(0x2);
  4135     less_equal(0xB);
  4136     greater(0x3);
  4137   %}
  4138 %}
  4140 //----------OPERAND CLASSES----------------------------------------------------
  4141 // Operand Classes are groups of operands that are used to simplify
  4142 // instruction definitions by not requiring the AD writer to specify seperate
  4143 // instructions for every form of operand when the instruction accepts
  4144 // multiple operand types with the same basic encoding and format.  The classic
  4145 // case of this is memory operands.
  4146 // Indirect is not included since its use is limited to Compare & Swap
  4147 opclass memory( indirect, indOffset13, indIndex );
  4149 //----------PIPELINE-----------------------------------------------------------
  4150 pipeline %{
  4152 //----------ATTRIBUTES---------------------------------------------------------
  4153 attributes %{
  4154   fixed_size_instructions;           // Fixed size instructions
  4155   branch_has_delay_slot;             // Branch has delay slot following
  4156   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4157   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4158   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4159   instruction_fetch_units = 1;       // of 16 bytes
  4161   // List of nop instructions
  4162   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4163 %}
  4165 //----------RESOURCES----------------------------------------------------------
  4166 // Resources are the functional units available to the machine
  4167 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4169 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4170 // Pipeline Description specifies the stages in the machine's pipeline
  4172 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4174 //----------PIPELINE CLASSES---------------------------------------------------
  4175 // Pipeline Classes describe the stages in which input and output are
  4176 // referenced by the hardware pipeline.
  4178 // Integer ALU reg-reg operation
  4179 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4180     single_instruction;
  4181     dst   : E(write);
  4182     src1  : R(read);
  4183     src2  : R(read);
  4184     IALU  : R;
  4185 %}
  4187 // Integer ALU reg-reg long operation
  4188 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4189     instruction_count(2);
  4190     dst   : E(write);
  4191     src1  : R(read);
  4192     src2  : R(read);
  4193     IALU  : R;
  4194     IALU  : R;
  4195 %}
  4197 // Integer ALU reg-reg long dependent operation
  4198 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4199     instruction_count(1); multiple_bundles;
  4200     dst   : E(write);
  4201     src1  : R(read);
  4202     src2  : R(read);
  4203     cr    : E(write);
  4204     IALU  : R(2);
  4205 %}
  4207 // Integer ALU reg-imm operaion
  4208 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4209     single_instruction;
  4210     dst   : E(write);
  4211     src1  : R(read);
  4212     IALU  : R;
  4213 %}
  4215 // Integer ALU reg-reg operation with condition code
  4216 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4217     single_instruction;
  4218     dst   : E(write);
  4219     cr    : E(write);
  4220     src1  : R(read);
  4221     src2  : R(read);
  4222     IALU  : R;
  4223 %}
  4225 // Integer ALU reg-imm operation with condition code
  4226 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4227     single_instruction;
  4228     dst   : E(write);
  4229     cr    : E(write);
  4230     src1  : R(read);
  4231     IALU  : R;
  4232 %}
  4234 // Integer ALU zero-reg operation
  4235 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4236     single_instruction;
  4237     dst   : E(write);
  4238     src2  : R(read);
  4239     IALU  : R;
  4240 %}
  4242 // Integer ALU zero-reg operation with condition code only
  4243 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4244     single_instruction;
  4245     cr    : E(write);
  4246     src   : R(read);
  4247     IALU  : R;
  4248 %}
  4250 // Integer ALU reg-reg operation with condition code only
  4251 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4252     single_instruction;
  4253     cr    : E(write);
  4254     src1  : R(read);
  4255     src2  : R(read);
  4256     IALU  : R;
  4257 %}
  4259 // Integer ALU reg-imm operation with condition code only
  4260 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4261     single_instruction;
  4262     cr    : E(write);
  4263     src1  : R(read);
  4264     IALU  : R;
  4265 %}
  4267 // Integer ALU reg-reg-zero operation with condition code only
  4268 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4269     single_instruction;
  4270     cr    : E(write);
  4271     src1  : R(read);
  4272     src2  : R(read);
  4273     IALU  : R;
  4274 %}
  4276 // Integer ALU reg-imm-zero operation with condition code only
  4277 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4278     single_instruction;
  4279     cr    : E(write);
  4280     src1  : R(read);
  4281     IALU  : R;
  4282 %}
  4284 // Integer ALU reg-reg operation with condition code, src1 modified
  4285 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4286     single_instruction;
  4287     cr    : E(write);
  4288     src1  : E(write);
  4289     src1  : R(read);
  4290     src2  : R(read);
  4291     IALU  : R;
  4292 %}
  4294 // Integer ALU reg-imm operation with condition code, src1 modified
  4295 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4296     single_instruction;
  4297     cr    : E(write);
  4298     src1  : E(write);
  4299     src1  : R(read);
  4300     IALU  : R;
  4301 %}
  4303 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4304     multiple_bundles;
  4305     dst   : E(write)+4;
  4306     cr    : E(write);
  4307     src1  : R(read);
  4308     src2  : R(read);
  4309     IALU  : R(3);
  4310     BR    : R(2);
  4311 %}
  4313 // Integer ALU operation
  4314 pipe_class ialu_none(iRegI dst) %{
  4315     single_instruction;
  4316     dst   : E(write);
  4317     IALU  : R;
  4318 %}
  4320 // Integer ALU reg operation
  4321 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4322     single_instruction; may_have_no_code;
  4323     dst   : E(write);
  4324     src   : R(read);
  4325     IALU  : R;
  4326 %}
  4328 // Integer ALU reg conditional operation
  4329 // This instruction has a 1 cycle stall, and cannot execute
  4330 // in the same cycle as the instruction setting the condition
  4331 // code. We kludge this by pretending to read the condition code
  4332 // 1 cycle earlier, and by marking the functional units as busy
  4333 // for 2 cycles with the result available 1 cycle later than
  4334 // is really the case.
  4335 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4336     single_instruction;
  4337     op2_out : C(write);
  4338     op1     : R(read);
  4339     cr      : R(read);       // This is really E, with a 1 cycle stall
  4340     BR      : R(2);
  4341     MS      : R(2);
  4342 %}
  4344 #ifdef _LP64
  4345 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4346     instruction_count(1); multiple_bundles;
  4347     dst     : C(write)+1;
  4348     src     : R(read)+1;
  4349     IALU    : R(1);
  4350     BR      : E(2);
  4351     MS      : E(2);
  4352 %}
  4353 #endif
  4355 // Integer ALU reg operation
  4356 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4357     single_instruction; may_have_no_code;
  4358     dst   : E(write);
  4359     src   : R(read);
  4360     IALU  : R;
  4361 %}
  4362 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4363     single_instruction; may_have_no_code;
  4364     dst   : E(write);
  4365     src   : R(read);
  4366     IALU  : R;
  4367 %}
  4369 // Two integer ALU reg operations
  4370 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4371     instruction_count(2);
  4372     dst   : E(write);
  4373     src   : R(read);
  4374     A0    : R;
  4375     A1    : R;
  4376 %}
  4378 // Two integer ALU reg operations
  4379 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4380     instruction_count(2); may_have_no_code;
  4381     dst   : E(write);
  4382     src   : R(read);
  4383     A0    : R;
  4384     A1    : R;
  4385 %}
  4387 // Integer ALU imm operation
  4388 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4389     single_instruction;
  4390     dst   : E(write);
  4391     IALU  : R;
  4392 %}
  4394 // Integer ALU reg-reg with carry operation
  4395 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4396     single_instruction;
  4397     dst   : E(write);
  4398     src1  : R(read);
  4399     src2  : R(read);
  4400     IALU  : R;
  4401 %}
  4403 // Integer ALU cc operation
  4404 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4405     single_instruction;
  4406     dst   : E(write);
  4407     cc    : R(read);
  4408     IALU  : R;
  4409 %}
  4411 // Integer ALU cc / second IALU operation
  4412 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4413     instruction_count(1); multiple_bundles;
  4414     dst   : E(write)+1;
  4415     src   : R(read);
  4416     IALU  : R;
  4417 %}
  4419 // Integer ALU cc / second IALU operation
  4420 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4421     instruction_count(1); multiple_bundles;
  4422     dst   : E(write)+1;
  4423     p     : R(read);
  4424     q     : R(read);
  4425     IALU  : R;
  4426 %}
  4428 // Integer ALU hi-lo-reg operation
  4429 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4430     instruction_count(1); multiple_bundles;
  4431     dst   : E(write)+1;
  4432     IALU  : R(2);
  4433 %}
  4435 // Float ALU hi-lo-reg operation (with temp)
  4436 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4437     instruction_count(1); multiple_bundles;
  4438     dst   : E(write)+1;
  4439     IALU  : R(2);
  4440 %}
  4442 // Long Constant
  4443 pipe_class loadConL( iRegL dst, immL src ) %{
  4444     instruction_count(2); multiple_bundles;
  4445     dst   : E(write)+1;
  4446     IALU  : R(2);
  4447     IALU  : R(2);
  4448 %}
  4450 // Pointer Constant
  4451 pipe_class loadConP( iRegP dst, immP src ) %{
  4452     instruction_count(0); multiple_bundles;
  4453     fixed_latency(6);
  4454 %}
  4456 // Polling Address
  4457 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4458 #ifdef _LP64
  4459     instruction_count(0); multiple_bundles;
  4460     fixed_latency(6);
  4461 #else
  4462     dst   : E(write);
  4463     IALU  : R;
  4464 #endif
  4465 %}
  4467 // Long Constant small
  4468 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4469     instruction_count(2);
  4470     dst   : E(write);
  4471     IALU  : R;
  4472     IALU  : R;
  4473 %}
  4475 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4476 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4477     instruction_count(1); multiple_bundles;
  4478     src   : R(read);
  4479     dst   : M(write)+1;
  4480     IALU  : R;
  4481     MS    : E;
  4482 %}
  4484 // Integer ALU nop operation
  4485 pipe_class ialu_nop() %{
  4486     single_instruction;
  4487     IALU  : R;
  4488 %}
  4490 // Integer ALU nop operation
  4491 pipe_class ialu_nop_A0() %{
  4492     single_instruction;
  4493     A0    : R;
  4494 %}
  4496 // Integer ALU nop operation
  4497 pipe_class ialu_nop_A1() %{
  4498     single_instruction;
  4499     A1    : R;
  4500 %}
  4502 // Integer Multiply reg-reg operation
  4503 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4504     single_instruction;
  4505     dst   : E(write);
  4506     src1  : R(read);
  4507     src2  : R(read);
  4508     MS    : R(5);
  4509 %}
  4511 // Integer Multiply reg-imm operation
  4512 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4513     single_instruction;
  4514     dst   : E(write);
  4515     src1  : R(read);
  4516     MS    : R(5);
  4517 %}
  4519 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4520     single_instruction;
  4521     dst   : E(write)+4;
  4522     src1  : R(read);
  4523     src2  : R(read);
  4524     MS    : R(6);
  4525 %}
  4527 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4528     single_instruction;
  4529     dst   : E(write)+4;
  4530     src1  : R(read);
  4531     MS    : R(6);
  4532 %}
  4534 // Integer Divide reg-reg
  4535 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4536     instruction_count(1); multiple_bundles;
  4537     dst   : E(write);
  4538     temp  : E(write);
  4539     src1  : R(read);
  4540     src2  : R(read);
  4541     temp  : R(read);
  4542     MS    : R(38);
  4543 %}
  4545 // Integer Divide reg-imm
  4546 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4547     instruction_count(1); multiple_bundles;
  4548     dst   : E(write);
  4549     temp  : E(write);
  4550     src1  : R(read);
  4551     temp  : R(read);
  4552     MS    : R(38);
  4553 %}
  4555 // Long Divide
  4556 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4557     dst  : E(write)+71;
  4558     src1 : R(read);
  4559     src2 : R(read)+1;
  4560     MS   : R(70);
  4561 %}
  4563 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4564     dst  : E(write)+71;
  4565     src1 : R(read);
  4566     MS   : R(70);
  4567 %}
  4569 // Floating Point Add Float
  4570 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4571     single_instruction;
  4572     dst   : X(write);
  4573     src1  : E(read);
  4574     src2  : E(read);
  4575     FA    : R;
  4576 %}
  4578 // Floating Point Add Double
  4579 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4580     single_instruction;
  4581     dst   : X(write);
  4582     src1  : E(read);
  4583     src2  : E(read);
  4584     FA    : R;
  4585 %}
  4587 // Floating Point Conditional Move based on integer flags
  4588 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4589     single_instruction;
  4590     dst   : X(write);
  4591     src   : E(read);
  4592     cr    : R(read);
  4593     FA    : R(2);
  4594     BR    : R(2);
  4595 %}
  4597 // Floating Point Conditional Move based on integer flags
  4598 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4599     single_instruction;
  4600     dst   : X(write);
  4601     src   : E(read);
  4602     cr    : R(read);
  4603     FA    : R(2);
  4604     BR    : R(2);
  4605 %}
  4607 // Floating Point Multiply Float
  4608 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4609     single_instruction;
  4610     dst   : X(write);
  4611     src1  : E(read);
  4612     src2  : E(read);
  4613     FM    : R;
  4614 %}
  4616 // Floating Point Multiply Double
  4617 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4618     single_instruction;
  4619     dst   : X(write);
  4620     src1  : E(read);
  4621     src2  : E(read);
  4622     FM    : R;
  4623 %}
  4625 // Floating Point Divide Float
  4626 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4627     single_instruction;
  4628     dst   : X(write);
  4629     src1  : E(read);
  4630     src2  : E(read);
  4631     FM    : R;
  4632     FDIV  : C(14);
  4633 %}
  4635 // Floating Point Divide Double
  4636 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4637     single_instruction;
  4638     dst   : X(write);
  4639     src1  : E(read);
  4640     src2  : E(read);
  4641     FM    : R;
  4642     FDIV  : C(17);
  4643 %}
  4645 // Floating Point Move/Negate/Abs Float
  4646 pipe_class faddF_reg(regF dst, regF src) %{
  4647     single_instruction;
  4648     dst   : W(write);
  4649     src   : E(read);
  4650     FA    : R(1);
  4651 %}
  4653 // Floating Point Move/Negate/Abs Double
  4654 pipe_class faddD_reg(regD dst, regD src) %{
  4655     single_instruction;
  4656     dst   : W(write);
  4657     src   : E(read);
  4658     FA    : R;
  4659 %}
  4661 // Floating Point Convert F->D
  4662 pipe_class fcvtF2D(regD dst, regF src) %{
  4663     single_instruction;
  4664     dst   : X(write);
  4665     src   : E(read);
  4666     FA    : R;
  4667 %}
  4669 // Floating Point Convert I->D
  4670 pipe_class fcvtI2D(regD dst, regF src) %{
  4671     single_instruction;
  4672     dst   : X(write);
  4673     src   : E(read);
  4674     FA    : R;
  4675 %}
  4677 // Floating Point Convert LHi->D
  4678 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4679     single_instruction;
  4680     dst   : X(write);
  4681     src   : E(read);
  4682     FA    : R;
  4683 %}
  4685 // Floating Point Convert L->D
  4686 pipe_class fcvtL2D(regD dst, regF src) %{
  4687     single_instruction;
  4688     dst   : X(write);
  4689     src   : E(read);
  4690     FA    : R;
  4691 %}
  4693 // Floating Point Convert L->F
  4694 pipe_class fcvtL2F(regD dst, regF src) %{
  4695     single_instruction;
  4696     dst   : X(write);
  4697     src   : E(read);
  4698     FA    : R;
  4699 %}
  4701 // Floating Point Convert D->F
  4702 pipe_class fcvtD2F(regD dst, regF src) %{
  4703     single_instruction;
  4704     dst   : X(write);
  4705     src   : E(read);
  4706     FA    : R;
  4707 %}
  4709 // Floating Point Convert I->L
  4710 pipe_class fcvtI2L(regD dst, regF src) %{
  4711     single_instruction;
  4712     dst   : X(write);
  4713     src   : E(read);
  4714     FA    : R;
  4715 %}
  4717 // Floating Point Convert D->F
  4718 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4719     instruction_count(1); multiple_bundles;
  4720     dst   : X(write)+6;
  4721     src   : E(read);
  4722     FA    : R;
  4723 %}
  4725 // Floating Point Convert D->L
  4726 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4727     instruction_count(1); multiple_bundles;
  4728     dst   : X(write)+6;
  4729     src   : E(read);
  4730     FA    : R;
  4731 %}
  4733 // Floating Point Convert F->I
  4734 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4735     instruction_count(1); multiple_bundles;
  4736     dst   : X(write)+6;
  4737     src   : E(read);
  4738     FA    : R;
  4739 %}
  4741 // Floating Point Convert F->L
  4742 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4743     instruction_count(1); multiple_bundles;
  4744     dst   : X(write)+6;
  4745     src   : E(read);
  4746     FA    : R;
  4747 %}
  4749 // Floating Point Convert I->F
  4750 pipe_class fcvtI2F(regF dst, regF src) %{
  4751     single_instruction;
  4752     dst   : X(write);
  4753     src   : E(read);
  4754     FA    : R;
  4755 %}
  4757 // Floating Point Compare
  4758 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4759     single_instruction;
  4760     cr    : X(write);
  4761     src1  : E(read);
  4762     src2  : E(read);
  4763     FA    : R;
  4764 %}
  4766 // Floating Point Compare
  4767 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4768     single_instruction;
  4769     cr    : X(write);
  4770     src1  : E(read);
  4771     src2  : E(read);
  4772     FA    : R;
  4773 %}
  4775 // Floating Add Nop
  4776 pipe_class fadd_nop() %{
  4777     single_instruction;
  4778     FA  : R;
  4779 %}
  4781 // Integer Store to Memory
  4782 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4783     single_instruction;
  4784     mem   : R(read);
  4785     src   : C(read);
  4786     MS    : R;
  4787 %}
  4789 // Integer Store to Memory
  4790 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4791     single_instruction;
  4792     mem   : R(read);
  4793     src   : C(read);
  4794     MS    : R;
  4795 %}
  4797 // Integer Store Zero to Memory
  4798 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4799     single_instruction;
  4800     mem   : R(read);
  4801     MS    : R;
  4802 %}
  4804 // Special Stack Slot Store
  4805 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4806     single_instruction;
  4807     stkSlot : R(read);
  4808     src     : C(read);
  4809     MS      : R;
  4810 %}
  4812 // Special Stack Slot Store
  4813 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  4814     instruction_count(2); multiple_bundles;
  4815     stkSlot : R(read);
  4816     src     : C(read);
  4817     MS      : R(2);
  4818 %}
  4820 // Float Store
  4821 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  4822     single_instruction;
  4823     mem : R(read);
  4824     src : C(read);
  4825     MS  : R;
  4826 %}
  4828 // Float Store
  4829 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  4830     single_instruction;
  4831     mem : R(read);
  4832     MS  : R;
  4833 %}
  4835 // Double Store
  4836 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  4837     instruction_count(1);
  4838     mem : R(read);
  4839     src : C(read);
  4840     MS  : R;
  4841 %}
  4843 // Double Store
  4844 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  4845     single_instruction;
  4846     mem : R(read);
  4847     MS  : R;
  4848 %}
  4850 // Special Stack Slot Float Store
  4851 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  4852     single_instruction;
  4853     stkSlot : R(read);
  4854     src     : C(read);
  4855     MS      : R;
  4856 %}
  4858 // Special Stack Slot Double Store
  4859 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  4860     single_instruction;
  4861     stkSlot : R(read);
  4862     src     : C(read);
  4863     MS      : R;
  4864 %}
  4866 // Integer Load (when sign bit propagation not needed)
  4867 pipe_class iload_mem(iRegI dst, memory mem) %{
  4868     single_instruction;
  4869     mem : R(read);
  4870     dst : C(write);
  4871     MS  : R;
  4872 %}
  4874 // Integer Load from stack operand
  4875 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  4876     single_instruction;
  4877     mem : R(read);
  4878     dst : C(write);
  4879     MS  : R;
  4880 %}
  4882 // Integer Load (when sign bit propagation or masking is needed)
  4883 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  4884     single_instruction;
  4885     mem : R(read);
  4886     dst : M(write);
  4887     MS  : R;
  4888 %}
  4890 // Float Load
  4891 pipe_class floadF_mem(regF dst, memory mem) %{
  4892     single_instruction;
  4893     mem : R(read);
  4894     dst : M(write);
  4895     MS  : R;
  4896 %}
  4898 // Float Load
  4899 pipe_class floadD_mem(regD dst, memory mem) %{
  4900     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  4901     mem : R(read);
  4902     dst : M(write);
  4903     MS  : R;
  4904 %}
  4906 // Float Load
  4907 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  4908     single_instruction;
  4909     stkSlot : R(read);
  4910     dst : M(write);
  4911     MS  : R;
  4912 %}
  4914 // Float Load
  4915 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  4916     single_instruction;
  4917     stkSlot : R(read);
  4918     dst : M(write);
  4919     MS  : R;
  4920 %}
  4922 // Memory Nop
  4923 pipe_class mem_nop() %{
  4924     single_instruction;
  4925     MS  : R;
  4926 %}
  4928 pipe_class sethi(iRegP dst, immI src) %{
  4929     single_instruction;
  4930     dst  : E(write);
  4931     IALU : R;
  4932 %}
  4934 pipe_class loadPollP(iRegP poll) %{
  4935     single_instruction;
  4936     poll : R(read);
  4937     MS   : R;
  4938 %}
  4940 pipe_class br(Universe br, label labl) %{
  4941     single_instruction_with_delay_slot;
  4942     BR  : R;
  4943 %}
  4945 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  4946     single_instruction_with_delay_slot;
  4947     cr    : E(read);
  4948     BR    : R;
  4949 %}
  4951 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  4952     single_instruction_with_delay_slot;
  4953     op1 : E(read);
  4954     BR  : R;
  4955     MS  : R;
  4956 %}
  4958 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  4959     single_instruction_with_delay_slot;
  4960     cr    : E(read);
  4961     BR    : R;
  4962 %}
  4964 pipe_class br_nop() %{
  4965     single_instruction;
  4966     BR  : R;
  4967 %}
  4969 pipe_class simple_call(method meth) %{
  4970     instruction_count(2); multiple_bundles; force_serialization;
  4971     fixed_latency(100);
  4972     BR  : R(1);
  4973     MS  : R(1);
  4974     A0  : R(1);
  4975 %}
  4977 pipe_class compiled_call(method meth) %{
  4978     instruction_count(1); multiple_bundles; force_serialization;
  4979     fixed_latency(100);
  4980     MS  : R(1);
  4981 %}
  4983 pipe_class call(method meth) %{
  4984     instruction_count(0); multiple_bundles; force_serialization;
  4985     fixed_latency(100);
  4986 %}
  4988 pipe_class tail_call(Universe ignore, label labl) %{
  4989     single_instruction; has_delay_slot;
  4990     fixed_latency(100);
  4991     BR  : R(1);
  4992     MS  : R(1);
  4993 %}
  4995 pipe_class ret(Universe ignore) %{
  4996     single_instruction; has_delay_slot;
  4997     BR  : R(1);
  4998     MS  : R(1);
  4999 %}
  5001 pipe_class ret_poll(g3RegP poll) %{
  5002     instruction_count(3); has_delay_slot;
  5003     poll : E(read);
  5004     MS   : R;
  5005 %}
  5007 // The real do-nothing guy
  5008 pipe_class empty( ) %{
  5009     instruction_count(0);
  5010 %}
  5012 pipe_class long_memory_op() %{
  5013     instruction_count(0); multiple_bundles; force_serialization;
  5014     fixed_latency(25);
  5015     MS  : R(1);
  5016 %}
  5018 // Check-cast
  5019 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5020     array : R(read);
  5021     match  : R(read);
  5022     IALU   : R(2);
  5023     BR     : R(2);
  5024     MS     : R;
  5025 %}
  5027 // Convert FPU flags into +1,0,-1
  5028 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5029     src1  : E(read);
  5030     src2  : E(read);
  5031     dst   : E(write);
  5032     FA    : R;
  5033     MS    : R(2);
  5034     BR    : R(2);
  5035 %}
  5037 // Compare for p < q, and conditionally add y
  5038 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5039     p     : E(read);
  5040     q     : E(read);
  5041     y     : E(read);
  5042     IALU  : R(3)
  5043 %}
  5045 // Perform a compare, then move conditionally in a branch delay slot.
  5046 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5047     src2   : E(read);
  5048     srcdst : E(read);
  5049     IALU   : R;
  5050     BR     : R;
  5051 %}
  5053 // Define the class for the Nop node
  5054 define %{
  5055    MachNop = ialu_nop;
  5056 %}
  5058 %}
  5060 //----------INSTRUCTIONS-------------------------------------------------------
  5062 //------------Special Stack Slot instructions - no match rules-----------------
  5063 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5064   // No match rule to avoid chain rule match.
  5065   effect(DEF dst, USE src);
  5066   ins_cost(MEMORY_REF_COST);
  5067   size(4);
  5068   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5069   opcode(Assembler::ldf_op3);
  5070   ins_encode(simple_form3_mem_reg(src, dst));
  5071   ins_pipe(floadF_stk);
  5072 %}
  5074 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5075   // No match rule to avoid chain rule match.
  5076   effect(DEF dst, USE src);
  5077   ins_cost(MEMORY_REF_COST);
  5078   size(4);
  5079   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5080   opcode(Assembler::lddf_op3);
  5081   ins_encode(simple_form3_mem_reg(src, dst));
  5082   ins_pipe(floadD_stk);
  5083 %}
  5085 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5086   // No match rule to avoid chain rule match.
  5087   effect(DEF dst, USE src);
  5088   ins_cost(MEMORY_REF_COST);
  5089   size(4);
  5090   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5091   opcode(Assembler::stf_op3);
  5092   ins_encode(simple_form3_mem_reg(dst, src));
  5093   ins_pipe(fstoreF_stk_reg);
  5094 %}
  5096 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5097   // No match rule to avoid chain rule match.
  5098   effect(DEF dst, USE src);
  5099   ins_cost(MEMORY_REF_COST);
  5100   size(4);
  5101   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5102   opcode(Assembler::stdf_op3);
  5103   ins_encode(simple_form3_mem_reg(dst, src));
  5104   ins_pipe(fstoreD_stk_reg);
  5105 %}
  5107 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5108   effect(DEF dst, USE src);
  5109   ins_cost(MEMORY_REF_COST*2);
  5110   size(8);
  5111   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5112             "STW    R_G0,$dst.lo" %}
  5113   opcode(Assembler::stw_op3);
  5114   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5115   ins_pipe(lstoreI_stk_reg);
  5116 %}
  5118 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5119   // No match rule to avoid chain rule match.
  5120   effect(DEF dst, USE src);
  5121   ins_cost(MEMORY_REF_COST);
  5122   size(4);
  5123   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5124   opcode(Assembler::stx_op3);
  5125   ins_encode(simple_form3_mem_reg( dst, src ) );
  5126   ins_pipe(istore_stk_reg);
  5127 %}
  5129 //---------- Chain stack slots between similar types --------
  5131 // Load integer from stack slot
  5132 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5133   match(Set dst src);
  5134   ins_cost(MEMORY_REF_COST);
  5136   size(4);
  5137   format %{ "LDUW   $src,$dst\t!stk" %}
  5138   opcode(Assembler::lduw_op3);
  5139   ins_encode(simple_form3_mem_reg( src, dst ) );
  5140   ins_pipe(iload_mem);
  5141 %}
  5143 // Store integer to stack slot
  5144 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5145   match(Set dst src);
  5146   ins_cost(MEMORY_REF_COST);
  5148   size(4);
  5149   format %{ "STW    $src,$dst\t!stk" %}
  5150   opcode(Assembler::stw_op3);
  5151   ins_encode(simple_form3_mem_reg( dst, src ) );
  5152   ins_pipe(istore_mem_reg);
  5153 %}
  5155 // Load long from stack slot
  5156 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5157   match(Set dst src);
  5159   ins_cost(MEMORY_REF_COST);
  5160   size(4);
  5161   format %{ "LDX    $src,$dst\t! long" %}
  5162   opcode(Assembler::ldx_op3);
  5163   ins_encode(simple_form3_mem_reg( src, dst ) );
  5164   ins_pipe(iload_mem);
  5165 %}
  5167 // Store long to stack slot
  5168 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5169   match(Set dst src);
  5171   ins_cost(MEMORY_REF_COST);
  5172   size(4);
  5173   format %{ "STX    $src,$dst\t! long" %}
  5174   opcode(Assembler::stx_op3);
  5175   ins_encode(simple_form3_mem_reg( dst, src ) );
  5176   ins_pipe(istore_mem_reg);
  5177 %}
  5179 #ifdef _LP64
  5180 // Load pointer from stack slot, 64-bit encoding
  5181 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5182   match(Set dst src);
  5183   ins_cost(MEMORY_REF_COST);
  5184   size(4);
  5185   format %{ "LDX    $src,$dst\t!ptr" %}
  5186   opcode(Assembler::ldx_op3);
  5187   ins_encode(simple_form3_mem_reg( src, dst ) );
  5188   ins_pipe(iload_mem);
  5189 %}
  5191 // Store pointer to stack slot
  5192 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5193   match(Set dst src);
  5194   ins_cost(MEMORY_REF_COST);
  5195   size(4);
  5196   format %{ "STX    $src,$dst\t!ptr" %}
  5197   opcode(Assembler::stx_op3);
  5198   ins_encode(simple_form3_mem_reg( dst, src ) );
  5199   ins_pipe(istore_mem_reg);
  5200 %}
  5201 #else // _LP64
  5202 // Load pointer from stack slot, 32-bit encoding
  5203 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5204   match(Set dst src);
  5205   ins_cost(MEMORY_REF_COST);
  5206   format %{ "LDUW   $src,$dst\t!ptr" %}
  5207   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5208   ins_encode(simple_form3_mem_reg( src, dst ) );
  5209   ins_pipe(iload_mem);
  5210 %}
  5212 // Store pointer to stack slot
  5213 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5214   match(Set dst src);
  5215   ins_cost(MEMORY_REF_COST);
  5216   format %{ "STW    $src,$dst\t!ptr" %}
  5217   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5218   ins_encode(simple_form3_mem_reg( dst, src ) );
  5219   ins_pipe(istore_mem_reg);
  5220 %}
  5221 #endif // _LP64
  5223 //------------Special Nop instructions for bundling - no match rules-----------
  5224 // Nop using the A0 functional unit
  5225 instruct Nop_A0() %{
  5226   ins_cost(0);
  5228   format %{ "NOP    ! Alu Pipeline" %}
  5229   opcode(Assembler::or_op3, Assembler::arith_op);
  5230   ins_encode( form2_nop() );
  5231   ins_pipe(ialu_nop_A0);
  5232 %}
  5234 // Nop using the A1 functional unit
  5235 instruct Nop_A1( ) %{
  5236   ins_cost(0);
  5238   format %{ "NOP    ! Alu Pipeline" %}
  5239   opcode(Assembler::or_op3, Assembler::arith_op);
  5240   ins_encode( form2_nop() );
  5241   ins_pipe(ialu_nop_A1);
  5242 %}
  5244 // Nop using the memory functional unit
  5245 instruct Nop_MS( ) %{
  5246   ins_cost(0);
  5248   format %{ "NOP    ! Memory Pipeline" %}
  5249   ins_encode( emit_mem_nop );
  5250   ins_pipe(mem_nop);
  5251 %}
  5253 // Nop using the floating add functional unit
  5254 instruct Nop_FA( ) %{
  5255   ins_cost(0);
  5257   format %{ "NOP    ! Floating Add Pipeline" %}
  5258   ins_encode( emit_fadd_nop );
  5259   ins_pipe(fadd_nop);
  5260 %}
  5262 // Nop using the branch functional unit
  5263 instruct Nop_BR( ) %{
  5264   ins_cost(0);
  5266   format %{ "NOP    ! Branch Pipeline" %}
  5267   ins_encode( emit_br_nop );
  5268   ins_pipe(br_nop);
  5269 %}
  5271 //----------Load/Store/Move Instructions---------------------------------------
  5272 //----------Load Instructions--------------------------------------------------
  5273 // Load Byte (8bit signed)
  5274 instruct loadB(iRegI dst, memory mem) %{
  5275   match(Set dst (LoadB mem));
  5276   ins_cost(MEMORY_REF_COST);
  5278   size(4);
  5279   format %{ "LDSB   $mem,$dst" %}
  5280   opcode(Assembler::ldsb_op3);
  5281   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5282   ins_pipe(iload_mask_mem);
  5283 %}
  5285 // Load Byte (8bit UNsigned) into an int reg
  5286 instruct loadUB(iRegI dst, memory mem, immI_255 bytemask) %{
  5287   match(Set dst (AndI (LoadB mem) bytemask));
  5288   ins_cost(MEMORY_REF_COST);
  5290   size(4);
  5291   format %{ "LDUB   $mem,$dst" %}
  5292   opcode(Assembler::ldub_op3);
  5293   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5294   ins_pipe(iload_mask_mem);
  5295 %}
  5297 // Load Byte (8bit UNsigned) into a Long Register
  5298 instruct loadUBL(iRegL dst, memory mem, immL_FF bytemask) %{
  5299   match(Set dst (AndL (ConvI2L (LoadB mem)) bytemask));
  5300   ins_cost(MEMORY_REF_COST);
  5302   size(4);
  5303   format %{ "LDUB   $mem,$dst" %}
  5304   opcode(Assembler::ldub_op3);
  5305   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5306   ins_pipe(iload_mask_mem);
  5307 %}
  5309 // Load Char (16bit UNsigned) into a Long Register
  5310 instruct loadUCL(iRegL dst, memory mem, immL_FFFF bytemask) %{
  5311   match(Set dst (AndL (ConvI2L (LoadC mem)) bytemask));
  5312   ins_cost(MEMORY_REF_COST);
  5314   size(4);
  5315   format %{ "LDUH   $mem,$dst" %}
  5316   opcode(Assembler::lduh_op3);
  5317   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5318   ins_pipe(iload_mask_mem);
  5319 %}
  5321 // Load Char (16bit unsigned)
  5322 instruct loadC(iRegI dst, memory mem) %{
  5323   match(Set dst (LoadC mem));
  5324   ins_cost(MEMORY_REF_COST);
  5326   size(4);
  5327   format %{ "LDUH   $mem,$dst" %}
  5328   opcode(Assembler::lduh_op3);
  5329   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5330   ins_pipe(iload_mask_mem);
  5331 %}
  5333 // Load Integer
  5334 instruct loadI(iRegI dst, memory mem) %{
  5335   match(Set dst (LoadI mem));
  5336   ins_cost(MEMORY_REF_COST);
  5337   size(4);
  5339   format %{ "LDUW   $mem,$dst" %}
  5340   opcode(Assembler::lduw_op3);
  5341   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5342   ins_pipe(iload_mem);
  5343 %}
  5345 // Load Long - aligned
  5346 instruct loadL(iRegL dst, memory mem ) %{
  5347   match(Set dst (LoadL mem));
  5348   ins_cost(MEMORY_REF_COST);
  5349   size(4);
  5350   format %{ "LDX    $mem,$dst\t! long" %}
  5351   opcode(Assembler::ldx_op3);
  5352   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5353   ins_pipe(iload_mem);
  5354 %}
  5356 // Load Long - UNaligned
  5357 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5358   match(Set dst (LoadL_unaligned mem));
  5359   effect(KILL tmp);
  5360   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5361   size(16);
  5362   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5363           "\tLDUW   $mem  ,$dst\n"
  5364           "\tSLLX   #32, $dst, $dst\n"
  5365           "\tOR     $dst, R_O7, $dst" %}
  5366   opcode(Assembler::lduw_op3);
  5367   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5368   ins_pipe(iload_mem);
  5369 %}
  5371 // Load Aligned Packed Byte into a Double Register
  5372 instruct loadA8B(regD dst, memory mem) %{
  5373   match(Set dst (Load8B mem));
  5374   ins_cost(MEMORY_REF_COST);
  5375   size(4);
  5376   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5377   opcode(Assembler::lddf_op3);
  5378   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5379   ins_pipe(floadD_mem);
  5380 %}
  5382 // Load Aligned Packed Char into a Double Register
  5383 instruct loadA4C(regD dst, memory mem) %{
  5384   match(Set dst (Load4C mem));
  5385   ins_cost(MEMORY_REF_COST);
  5386   size(4);
  5387   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5388   opcode(Assembler::lddf_op3);
  5389   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5390   ins_pipe(floadD_mem);
  5391 %}
  5393 // Load Aligned Packed Short into a Double Register
  5394 instruct loadA4S(regD dst, memory mem) %{
  5395   match(Set dst (Load4S mem));
  5396   ins_cost(MEMORY_REF_COST);
  5397   size(4);
  5398   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5399   opcode(Assembler::lddf_op3);
  5400   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5401   ins_pipe(floadD_mem);
  5402 %}
  5404 // Load Aligned Packed Int into a Double Register
  5405 instruct loadA2I(regD dst, memory mem) %{
  5406   match(Set dst (Load2I mem));
  5407   ins_cost(MEMORY_REF_COST);
  5408   size(4);
  5409   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5410   opcode(Assembler::lddf_op3);
  5411   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5412   ins_pipe(floadD_mem);
  5413 %}
  5415 // Load Range
  5416 instruct loadRange(iRegI dst, memory mem) %{
  5417   match(Set dst (LoadRange mem));
  5418   ins_cost(MEMORY_REF_COST);
  5420   size(4);
  5421   format %{ "LDUW   $mem,$dst\t! range" %}
  5422   opcode(Assembler::lduw_op3);
  5423   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5424   ins_pipe(iload_mem);
  5425 %}
  5427 // Load Integer into %f register (for fitos/fitod)
  5428 instruct loadI_freg(regF dst, memory mem) %{
  5429   match(Set dst (LoadI mem));
  5430   ins_cost(MEMORY_REF_COST);
  5431   size(4);
  5433   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5434   opcode(Assembler::ldf_op3);
  5435   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5436   ins_pipe(floadF_mem);
  5437 %}
  5439 // Load Pointer
  5440 instruct loadP(iRegP dst, memory mem) %{
  5441   match(Set dst (LoadP mem));
  5442   ins_cost(MEMORY_REF_COST);
  5443   size(4);
  5445 #ifndef _LP64
  5446   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5447   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5448 #else
  5449   format %{ "LDX    $mem,$dst\t! ptr" %}
  5450   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5451 #endif
  5452   ins_encode( form3_mem_reg( mem, dst ) );
  5453   ins_pipe(iload_mem);
  5454 %}
  5456 // Load Compressed Pointer
  5457 instruct loadN(iRegN dst, memory mem) %{
  5458    match(Set dst (LoadN mem));
  5459    ins_cost(MEMORY_REF_COST);
  5460    size(4);
  5462    format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5463    ins_encode %{
  5464      Register base = as_Register($mem$$base);
  5465      Register index = as_Register($mem$$index);
  5466      Register dst = $dst$$Register;
  5467      if (index != G0) {
  5468        __ lduw(base, index, dst);
  5469      } else {
  5470        __ lduw(base, $mem$$disp, dst);
  5472    %}
  5473    ins_pipe(iload_mem);
  5474 %}
  5476 // Load Klass Pointer
  5477 instruct loadKlass(iRegP dst, memory mem) %{
  5478   match(Set dst (LoadKlass mem));
  5479   ins_cost(MEMORY_REF_COST);
  5480   size(4);
  5482 #ifndef _LP64
  5483   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5484   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5485 #else
  5486   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5487   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5488 #endif
  5489   ins_encode( form3_mem_reg( mem, dst ) );
  5490   ins_pipe(iload_mem);
  5491 %}
  5493 // Load narrow Klass Pointer
  5494 instruct loadNKlass(iRegN dst, memory mem) %{
  5495   match(Set dst (LoadNKlass mem));
  5496   ins_cost(MEMORY_REF_COST);
  5497   size(4);
  5499   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5501   ins_encode %{
  5502      Register base = as_Register($mem$$base);
  5503      Register index = as_Register($mem$$index);
  5504      Register dst = $dst$$Register;
  5505      if (index != G0) {
  5506        __ lduw(base, index, dst);
  5507      } else {
  5508        __ lduw(base, $mem$$disp, dst);
  5510   %}
  5511   ins_pipe(iload_mem);
  5512 %}
  5514 // Load Short (16bit signed)
  5515 instruct loadS(iRegI dst, memory mem) %{
  5516   match(Set dst (LoadS mem));
  5517   ins_cost(MEMORY_REF_COST);
  5519   size(4);
  5520   format %{ "LDSH   $mem,$dst" %}
  5521   opcode(Assembler::ldsh_op3);
  5522   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5523   ins_pipe(iload_mask_mem);
  5524 %}
  5526 // Load Double
  5527 instruct loadD(regD dst, memory mem) %{
  5528   match(Set dst (LoadD mem));
  5529   ins_cost(MEMORY_REF_COST);
  5531   size(4);
  5532   format %{ "LDDF   $mem,$dst" %}
  5533   opcode(Assembler::lddf_op3);
  5534   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5535   ins_pipe(floadD_mem);
  5536 %}
  5538 // Load Double - UNaligned
  5539 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5540   match(Set dst (LoadD_unaligned mem));
  5541   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5542   size(8);
  5543   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5544           "\tLDF    $mem+4,$dst.lo\t!" %}
  5545   opcode(Assembler::ldf_op3);
  5546   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5547   ins_pipe(iload_mem);
  5548 %}
  5550 // Load Float
  5551 instruct loadF(regF dst, memory mem) %{
  5552   match(Set dst (LoadF mem));
  5553   ins_cost(MEMORY_REF_COST);
  5555   size(4);
  5556   format %{ "LDF    $mem,$dst" %}
  5557   opcode(Assembler::ldf_op3);
  5558   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5559   ins_pipe(floadF_mem);
  5560 %}
  5562 // Load Constant
  5563 instruct loadConI( iRegI dst, immI src ) %{
  5564   match(Set dst src);
  5565   ins_cost(DEFAULT_COST * 3/2);
  5566   format %{ "SET    $src,$dst" %}
  5567   ins_encode( Set32(src, dst) );
  5568   ins_pipe(ialu_hi_lo_reg);
  5569 %}
  5571 instruct loadConI13( iRegI dst, immI13 src ) %{
  5572   match(Set dst src);
  5574   size(4);
  5575   format %{ "MOV    $src,$dst" %}
  5576   ins_encode( Set13( src, dst ) );
  5577   ins_pipe(ialu_imm);
  5578 %}
  5580 instruct loadConP(iRegP dst, immP src) %{
  5581   match(Set dst src);
  5582   ins_cost(DEFAULT_COST * 3/2);
  5583   format %{ "SET    $src,$dst\t!ptr" %}
  5584   // This rule does not use "expand" unlike loadConI because then
  5585   // the result type is not known to be an Oop.  An ADLC
  5586   // enhancement will be needed to make that work - not worth it!
  5588   ins_encode( SetPtr( src, dst ) );
  5589   ins_pipe(loadConP);
  5591 %}
  5593 instruct loadConP0(iRegP dst, immP0 src) %{
  5594   match(Set dst src);
  5596   size(4);
  5597   format %{ "CLR    $dst\t!ptr" %}
  5598   ins_encode( SetNull( dst ) );
  5599   ins_pipe(ialu_imm);
  5600 %}
  5602 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  5603   match(Set dst src);
  5604   ins_cost(DEFAULT_COST);
  5605   format %{ "SET    $src,$dst\t!ptr" %}
  5606   ins_encode %{
  5607     Address polling_page(reg_to_register_object($dst$$reg), (address)os::get_polling_page());
  5608     __ sethi(polling_page, false );
  5609   %}
  5610   ins_pipe(loadConP_poll);
  5611 %}
  5613 instruct loadConN0(iRegN dst, immN0 src) %{
  5614   match(Set dst src);
  5616   size(4);
  5617   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  5618   ins_encode( SetNull( dst ) );
  5619   ins_pipe(ialu_imm);
  5620 %}
  5622 instruct loadConN(iRegN dst, immN src) %{
  5623   match(Set dst src);
  5624   ins_cost(DEFAULT_COST * 3/2);
  5625   format %{ "SET    $src,$dst\t! compressed ptr" %}
  5626   ins_encode %{
  5627     Register dst = $dst$$Register;
  5628     __ set_narrow_oop((jobject)$src$$constant, dst);
  5629   %}
  5630   ins_pipe(ialu_hi_lo_reg);
  5631 %}
  5633 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  5634   // %%% maybe this should work like loadConD
  5635   match(Set dst src);
  5636   effect(KILL tmp);
  5637   ins_cost(DEFAULT_COST * 4);
  5638   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  5639   ins_encode( LdImmL(src, dst, tmp) );
  5640   ins_pipe(loadConL);
  5641 %}
  5643 instruct loadConL0( iRegL dst, immL0 src ) %{
  5644   match(Set dst src);
  5645   ins_cost(DEFAULT_COST);
  5646   size(4);
  5647   format %{ "CLR    $dst\t! long" %}
  5648   ins_encode( Set13( src, dst ) );
  5649   ins_pipe(ialu_imm);
  5650 %}
  5652 instruct loadConL13( iRegL dst, immL13 src ) %{
  5653   match(Set dst src);
  5654   ins_cost(DEFAULT_COST * 2);
  5656   size(4);
  5657   format %{ "MOV    $src,$dst\t! long" %}
  5658   ins_encode( Set13( src, dst ) );
  5659   ins_pipe(ialu_imm);
  5660 %}
  5662 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  5663   match(Set dst src);
  5664   effect(KILL tmp);
  5666 #ifdef _LP64
  5667   size(36);
  5668 #else
  5669   size(8);
  5670 #endif
  5672   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  5673             "LDF    [$tmp+lo(&$src)],$dst" %}
  5674   ins_encode( LdImmF(src, dst, tmp) );
  5675   ins_pipe(loadConFD);
  5676 %}
  5678 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  5679   match(Set dst src);
  5680   effect(KILL tmp);
  5682 #ifdef _LP64
  5683   size(36);
  5684 #else
  5685   size(8);
  5686 #endif
  5688   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  5689             "LDDF   [$tmp+lo(&$src)],$dst" %}
  5690   ins_encode( LdImmD(src, dst, tmp) );
  5691   ins_pipe(loadConFD);
  5692 %}
  5694 // Prefetch instructions.
  5695 // Must be safe to execute with invalid address (cannot fault).
  5697 instruct prefetchr( memory mem ) %{
  5698   match( PrefetchRead mem );
  5699   ins_cost(MEMORY_REF_COST);
  5701   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  5702   opcode(Assembler::prefetch_op3);
  5703   ins_encode( form3_mem_prefetch_read( mem ) );
  5704   ins_pipe(iload_mem);
  5705 %}
  5707 instruct prefetchw( memory mem ) %{
  5708   match( PrefetchWrite mem );
  5709   ins_cost(MEMORY_REF_COST);
  5711   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  5712   opcode(Assembler::prefetch_op3);
  5713   ins_encode( form3_mem_prefetch_write( mem ) );
  5714   ins_pipe(iload_mem);
  5715 %}
  5718 //----------Store Instructions-------------------------------------------------
  5719 // Store Byte
  5720 instruct storeB(memory mem, iRegI src) %{
  5721   match(Set mem (StoreB mem src));
  5722   ins_cost(MEMORY_REF_COST);
  5724   size(4);
  5725   format %{ "STB    $src,$mem\t! byte" %}
  5726   opcode(Assembler::stb_op3);
  5727   ins_encode(simple_form3_mem_reg( mem, src ) );
  5728   ins_pipe(istore_mem_reg);
  5729 %}
  5731 instruct storeB0(memory mem, immI0 src) %{
  5732   match(Set mem (StoreB mem src));
  5733   ins_cost(MEMORY_REF_COST);
  5735   size(4);
  5736   format %{ "STB    $src,$mem\t! byte" %}
  5737   opcode(Assembler::stb_op3);
  5738   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5739   ins_pipe(istore_mem_zero);
  5740 %}
  5742 instruct storeCM0(memory mem, immI0 src) %{
  5743   match(Set mem (StoreCM mem src));
  5744   ins_cost(MEMORY_REF_COST);
  5746   size(4);
  5747   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  5748   opcode(Assembler::stb_op3);
  5749   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5750   ins_pipe(istore_mem_zero);
  5751 %}
  5753 // Store Char/Short
  5754 instruct storeC(memory mem, iRegI src) %{
  5755   match(Set mem (StoreC mem src));
  5756   ins_cost(MEMORY_REF_COST);
  5758   size(4);
  5759   format %{ "STH    $src,$mem\t! short" %}
  5760   opcode(Assembler::sth_op3);
  5761   ins_encode(simple_form3_mem_reg( mem, src ) );
  5762   ins_pipe(istore_mem_reg);
  5763 %}
  5765 instruct storeC0(memory mem, immI0 src) %{
  5766   match(Set mem (StoreC mem src));
  5767   ins_cost(MEMORY_REF_COST);
  5769   size(4);
  5770   format %{ "STH    $src,$mem\t! short" %}
  5771   opcode(Assembler::sth_op3);
  5772   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5773   ins_pipe(istore_mem_zero);
  5774 %}
  5776 // Store Integer
  5777 instruct storeI(memory mem, iRegI src) %{
  5778   match(Set mem (StoreI mem src));
  5779   ins_cost(MEMORY_REF_COST);
  5781   size(4);
  5782   format %{ "STW    $src,$mem" %}
  5783   opcode(Assembler::stw_op3);
  5784   ins_encode(simple_form3_mem_reg( mem, src ) );
  5785   ins_pipe(istore_mem_reg);
  5786 %}
  5788 // Store Long
  5789 instruct storeL(memory mem, iRegL src) %{
  5790   match(Set mem (StoreL mem src));
  5791   ins_cost(MEMORY_REF_COST);
  5792   size(4);
  5793   format %{ "STX    $src,$mem\t! long" %}
  5794   opcode(Assembler::stx_op3);
  5795   ins_encode(simple_form3_mem_reg( mem, src ) );
  5796   ins_pipe(istore_mem_reg);
  5797 %}
  5799 instruct storeI0(memory mem, immI0 src) %{
  5800   match(Set mem (StoreI mem src));
  5801   ins_cost(MEMORY_REF_COST);
  5803   size(4);
  5804   format %{ "STW    $src,$mem" %}
  5805   opcode(Assembler::stw_op3);
  5806   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5807   ins_pipe(istore_mem_zero);
  5808 %}
  5810 instruct storeL0(memory mem, immL0 src) %{
  5811   match(Set mem (StoreL mem src));
  5812   ins_cost(MEMORY_REF_COST);
  5814   size(4);
  5815   format %{ "STX    $src,$mem" %}
  5816   opcode(Assembler::stx_op3);
  5817   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5818   ins_pipe(istore_mem_zero);
  5819 %}
  5821 // Store Integer from float register (used after fstoi)
  5822 instruct storeI_Freg(memory mem, regF src) %{
  5823   match(Set mem (StoreI mem src));
  5824   ins_cost(MEMORY_REF_COST);
  5826   size(4);
  5827   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  5828   opcode(Assembler::stf_op3);
  5829   ins_encode(simple_form3_mem_reg( mem, src ) );
  5830   ins_pipe(fstoreF_mem_reg);
  5831 %}
  5833 // Store Pointer
  5834 instruct storeP(memory dst, sp_ptr_RegP src) %{
  5835   match(Set dst (StoreP dst src));
  5836   ins_cost(MEMORY_REF_COST);
  5837   size(4);
  5839 #ifndef _LP64
  5840   format %{ "STW    $src,$dst\t! ptr" %}
  5841   opcode(Assembler::stw_op3, 0, REGP_OP);
  5842 #else
  5843   format %{ "STX    $src,$dst\t! ptr" %}
  5844   opcode(Assembler::stx_op3, 0, REGP_OP);
  5845 #endif
  5846   ins_encode( form3_mem_reg( dst, src ) );
  5847   ins_pipe(istore_mem_spORreg);
  5848 %}
  5850 instruct storeP0(memory dst, immP0 src) %{
  5851   match(Set dst (StoreP dst src));
  5852   ins_cost(MEMORY_REF_COST);
  5853   size(4);
  5855 #ifndef _LP64
  5856   format %{ "STW    $src,$dst\t! ptr" %}
  5857   opcode(Assembler::stw_op3, 0, REGP_OP);
  5858 #else
  5859   format %{ "STX    $src,$dst\t! ptr" %}
  5860   opcode(Assembler::stx_op3, 0, REGP_OP);
  5861 #endif
  5862   ins_encode( form3_mem_reg( dst, R_G0 ) );
  5863   ins_pipe(istore_mem_zero);
  5864 %}
  5866 // Store Compressed Pointer
  5867 instruct storeN(memory dst, iRegN src) %{
  5868    match(Set dst (StoreN dst src));
  5869    ins_cost(MEMORY_REF_COST);
  5870    size(4);
  5872    format %{ "STW    $src,$dst\t! compressed ptr" %}
  5873    ins_encode %{
  5874      Register base = as_Register($dst$$base);
  5875      Register index = as_Register($dst$$index);
  5876      Register src = $src$$Register;
  5877      if (index != G0) {
  5878        __ stw(src, base, index);
  5879      } else {
  5880        __ stw(src, base, $dst$$disp);
  5882    %}
  5883    ins_pipe(istore_mem_spORreg);
  5884 %}
  5886 instruct storeN0(memory dst, immN0 src) %{
  5887    match(Set dst (StoreN dst src));
  5888    ins_cost(MEMORY_REF_COST);
  5889    size(4);
  5891    format %{ "STW    $src,$dst\t! compressed ptr" %}
  5892    ins_encode %{
  5893      Register base = as_Register($dst$$base);
  5894      Register index = as_Register($dst$$index);
  5895      if (index != G0) {
  5896        __ stw(0, base, index);
  5897      } else {
  5898        __ stw(0, base, $dst$$disp);
  5900    %}
  5901    ins_pipe(istore_mem_zero);
  5902 %}
  5904 // Store Double
  5905 instruct storeD( memory mem, regD src) %{
  5906   match(Set mem (StoreD mem src));
  5907   ins_cost(MEMORY_REF_COST);
  5909   size(4);
  5910   format %{ "STDF   $src,$mem" %}
  5911   opcode(Assembler::stdf_op3);
  5912   ins_encode(simple_form3_mem_reg( mem, src ) );
  5913   ins_pipe(fstoreD_mem_reg);
  5914 %}
  5916 instruct storeD0( memory mem, immD0 src) %{
  5917   match(Set mem (StoreD mem src));
  5918   ins_cost(MEMORY_REF_COST);
  5920   size(4);
  5921   format %{ "STX    $src,$mem" %}
  5922   opcode(Assembler::stx_op3);
  5923   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5924   ins_pipe(fstoreD_mem_zero);
  5925 %}
  5927 // Store Float
  5928 instruct storeF( memory mem, regF src) %{
  5929   match(Set mem (StoreF mem src));
  5930   ins_cost(MEMORY_REF_COST);
  5932   size(4);
  5933   format %{ "STF    $src,$mem" %}
  5934   opcode(Assembler::stf_op3);
  5935   ins_encode(simple_form3_mem_reg( mem, src ) );
  5936   ins_pipe(fstoreF_mem_reg);
  5937 %}
  5939 instruct storeF0( memory mem, immF0 src) %{
  5940   match(Set mem (StoreF mem src));
  5941   ins_cost(MEMORY_REF_COST);
  5943   size(4);
  5944   format %{ "STW    $src,$mem\t! storeF0" %}
  5945   opcode(Assembler::stw_op3);
  5946   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5947   ins_pipe(fstoreF_mem_zero);
  5948 %}
  5950 // Store Aligned Packed Bytes in Double register to memory
  5951 instruct storeA8B(memory mem, regD src) %{
  5952   match(Set mem (Store8B mem src));
  5953   ins_cost(MEMORY_REF_COST);
  5954   size(4);
  5955   format %{ "STDF   $src,$mem\t! packed8B" %}
  5956   opcode(Assembler::stdf_op3);
  5957   ins_encode(simple_form3_mem_reg( mem, src ) );
  5958   ins_pipe(fstoreD_mem_reg);
  5959 %}
  5961 // Convert oop pointer into compressed form
  5962 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  5963   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  5964   match(Set dst (EncodeP src));
  5965   format %{ "encode_heap_oop $src, $dst" %}
  5966   ins_encode %{
  5967     __ encode_heap_oop($src$$Register, $dst$$Register);
  5968   %}
  5969   ins_pipe(ialu_reg);
  5970 %}
  5972 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  5973   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  5974   match(Set dst (EncodeP src));
  5975   format %{ "encode_heap_oop_not_null $src, $dst" %}
  5976   ins_encode %{
  5977     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  5978   %}
  5979   ins_pipe(ialu_reg);
  5980 %}
  5982 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  5983   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  5984             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  5985   match(Set dst (DecodeN src));
  5986   format %{ "decode_heap_oop $src, $dst" %}
  5987   ins_encode %{
  5988     __ decode_heap_oop($src$$Register, $dst$$Register);
  5989   %}
  5990   ins_pipe(ialu_reg);
  5991 %}
  5993 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  5994   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  5995             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  5996   match(Set dst (DecodeN src));
  5997   format %{ "decode_heap_oop_not_null $src, $dst" %}
  5998   ins_encode %{
  5999     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6000   %}
  6001   ins_pipe(ialu_reg);
  6002 %}
  6005 // Store Zero into Aligned Packed Bytes
  6006 instruct storeA8B0(memory mem, immI0 zero) %{
  6007   match(Set mem (Store8B mem zero));
  6008   ins_cost(MEMORY_REF_COST);
  6009   size(4);
  6010   format %{ "STX    $zero,$mem\t! packed8B" %}
  6011   opcode(Assembler::stx_op3);
  6012   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6013   ins_pipe(fstoreD_mem_zero);
  6014 %}
  6016 // Store Aligned Packed Chars/Shorts in Double register to memory
  6017 instruct storeA4C(memory mem, regD src) %{
  6018   match(Set mem (Store4C mem src));
  6019   ins_cost(MEMORY_REF_COST);
  6020   size(4);
  6021   format %{ "STDF   $src,$mem\t! packed4C" %}
  6022   opcode(Assembler::stdf_op3);
  6023   ins_encode(simple_form3_mem_reg( mem, src ) );
  6024   ins_pipe(fstoreD_mem_reg);
  6025 %}
  6027 // Store Zero into Aligned Packed Chars/Shorts
  6028 instruct storeA4C0(memory mem, immI0 zero) %{
  6029   match(Set mem (Store4C mem (Replicate4C zero)));
  6030   ins_cost(MEMORY_REF_COST);
  6031   size(4);
  6032   format %{ "STX    $zero,$mem\t! packed4C" %}
  6033   opcode(Assembler::stx_op3);
  6034   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6035   ins_pipe(fstoreD_mem_zero);
  6036 %}
  6038 // Store Aligned Packed Ints in Double register to memory
  6039 instruct storeA2I(memory mem, regD src) %{
  6040   match(Set mem (Store2I mem src));
  6041   ins_cost(MEMORY_REF_COST);
  6042   size(4);
  6043   format %{ "STDF   $src,$mem\t! packed2I" %}
  6044   opcode(Assembler::stdf_op3);
  6045   ins_encode(simple_form3_mem_reg( mem, src ) );
  6046   ins_pipe(fstoreD_mem_reg);
  6047 %}
  6049 // Store Zero into Aligned Packed Ints
  6050 instruct storeA2I0(memory mem, immI0 zero) %{
  6051   match(Set mem (Store2I mem zero));
  6052   ins_cost(MEMORY_REF_COST);
  6053   size(4);
  6054   format %{ "STX    $zero,$mem\t! packed2I" %}
  6055   opcode(Assembler::stx_op3);
  6056   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6057   ins_pipe(fstoreD_mem_zero);
  6058 %}
  6061 //----------MemBar Instructions-----------------------------------------------
  6062 // Memory barrier flavors
  6064 instruct membar_acquire() %{
  6065   match(MemBarAcquire);
  6066   ins_cost(4*MEMORY_REF_COST);
  6068   size(0);
  6069   format %{ "MEMBAR-acquire" %}
  6070   ins_encode( enc_membar_acquire );
  6071   ins_pipe(long_memory_op);
  6072 %}
  6074 instruct membar_acquire_lock() %{
  6075   match(MemBarAcquire);
  6076   predicate(Matcher::prior_fast_lock(n));
  6077   ins_cost(0);
  6079   size(0);
  6080   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6081   ins_encode( );
  6082   ins_pipe(empty);
  6083 %}
  6085 instruct membar_release() %{
  6086   match(MemBarRelease);
  6087   ins_cost(4*MEMORY_REF_COST);
  6089   size(0);
  6090   format %{ "MEMBAR-release" %}
  6091   ins_encode( enc_membar_release );
  6092   ins_pipe(long_memory_op);
  6093 %}
  6095 instruct membar_release_lock() %{
  6096   match(MemBarRelease);
  6097   predicate(Matcher::post_fast_unlock(n));
  6098   ins_cost(0);
  6100   size(0);
  6101   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6102   ins_encode( );
  6103   ins_pipe(empty);
  6104 %}
  6106 instruct membar_volatile() %{
  6107   match(MemBarVolatile);
  6108   ins_cost(4*MEMORY_REF_COST);
  6110   size(4);
  6111   format %{ "MEMBAR-volatile" %}
  6112   ins_encode( enc_membar_volatile );
  6113   ins_pipe(long_memory_op);
  6114 %}
  6116 instruct unnecessary_membar_volatile() %{
  6117   match(MemBarVolatile);
  6118   predicate(Matcher::post_store_load_barrier(n));
  6119   ins_cost(0);
  6121   size(0);
  6122   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6123   ins_encode( );
  6124   ins_pipe(empty);
  6125 %}
  6127 //----------Register Move Instructions-----------------------------------------
  6128 instruct roundDouble_nop(regD dst) %{
  6129   match(Set dst (RoundDouble dst));
  6130   ins_cost(0);
  6131   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6132   ins_encode( );
  6133   ins_pipe(empty);
  6134 %}
  6137 instruct roundFloat_nop(regF dst) %{
  6138   match(Set dst (RoundFloat dst));
  6139   ins_cost(0);
  6140   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6141   ins_encode( );
  6142   ins_pipe(empty);
  6143 %}
  6146 // Cast Index to Pointer for unsafe natives
  6147 instruct castX2P(iRegX src, iRegP dst) %{
  6148   match(Set dst (CastX2P src));
  6150   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6151   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6152   ins_pipe(ialu_reg);
  6153 %}
  6155 // Cast Pointer to Index for unsafe natives
  6156 instruct castP2X(iRegP src, iRegX dst) %{
  6157   match(Set dst (CastP2X src));
  6159   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6160   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6161   ins_pipe(ialu_reg);
  6162 %}
  6164 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6165   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6166   match(Set stkSlot src);   // chain rule
  6167   ins_cost(MEMORY_REF_COST);
  6168   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6169   opcode(Assembler::stdf_op3);
  6170   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6171   ins_pipe(fstoreD_stk_reg);
  6172 %}
  6174 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6175   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6176   match(Set dst stkSlot);   // chain rule
  6177   ins_cost(MEMORY_REF_COST);
  6178   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6179   opcode(Assembler::lddf_op3);
  6180   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6181   ins_pipe(floadD_stk);
  6182 %}
  6184 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6185   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6186   match(Set stkSlot src);   // chain rule
  6187   ins_cost(MEMORY_REF_COST);
  6188   format %{ "STF   $src,$stkSlot\t!stk" %}
  6189   opcode(Assembler::stf_op3);
  6190   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6191   ins_pipe(fstoreF_stk_reg);
  6192 %}
  6194 //----------Conditional Move---------------------------------------------------
  6195 // Conditional move
  6196 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6197   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6198   ins_cost(150);
  6199   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6200   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6201   ins_pipe(ialu_reg);
  6202 %}
  6204 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6205   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6206   ins_cost(140);
  6207   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6208   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6209   ins_pipe(ialu_imm);
  6210 %}
  6212 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6213   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6214   ins_cost(150);
  6215   size(4);
  6216   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6217   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6218   ins_pipe(ialu_reg);
  6219 %}
  6221 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6222   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6223   ins_cost(140);
  6224   size(4);
  6225   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6226   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6227   ins_pipe(ialu_imm);
  6228 %}
  6230 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6231   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6232   ins_cost(150);
  6233   size(4);
  6234   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6235   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6236   ins_pipe(ialu_reg);
  6237 %}
  6239 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6240   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6241   ins_cost(140);
  6242   size(4);
  6243   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6244   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6245   ins_pipe(ialu_imm);
  6246 %}
  6248 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6249   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6250   ins_cost(150);
  6251   size(4);
  6252   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6253   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6254   ins_pipe(ialu_reg);
  6255 %}
  6257 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6258   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6259   ins_cost(140);
  6260   size(4);
  6261   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6262   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6263   ins_pipe(ialu_imm);
  6264 %}
  6266 // Conditional move for RegN. Only cmov(reg,reg).
  6267 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6268   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6269   ins_cost(150);
  6270   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6271   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6272   ins_pipe(ialu_reg);
  6273 %}
  6275 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6276 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6277   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6278   ins_cost(150);
  6279   size(4);
  6280   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6281   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6282   ins_pipe(ialu_reg);
  6283 %}
  6285 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6286   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6287   ins_cost(150);
  6288   size(4);
  6289   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6290   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6291   ins_pipe(ialu_reg);
  6292 %}
  6294 // Conditional move
  6295 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6296   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6297   ins_cost(150);
  6298   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6299   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6300   ins_pipe(ialu_reg);
  6301 %}
  6303 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6304   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6305   ins_cost(140);
  6306   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6307   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6308   ins_pipe(ialu_imm);
  6309 %}
  6311 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6312 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6313   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6314   ins_cost(150);
  6316   size(4);
  6317   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6318   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6319   ins_pipe(ialu_reg);
  6320 %}
  6322 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6323   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6324   ins_cost(140);
  6326   size(4);
  6327   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6328   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6329   ins_pipe(ialu_imm);
  6330 %}
  6332 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6333   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6334   ins_cost(150);
  6335   size(4);
  6336   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6337   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6338   ins_pipe(ialu_imm);
  6339 %}
  6341 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6342   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6343   ins_cost(140);
  6344   size(4);
  6345   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6346   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6347   ins_pipe(ialu_imm);
  6348 %}
  6350 // Conditional move
  6351 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6352   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6353   ins_cost(150);
  6354   opcode(0x101);
  6355   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6356   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6357   ins_pipe(int_conditional_float_move);
  6358 %}
  6360 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6361   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6362   ins_cost(150);
  6364   size(4);
  6365   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6366   opcode(0x101);
  6367   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6368   ins_pipe(int_conditional_float_move);
  6369 %}
  6371 // Conditional move,
  6372 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6373   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6374   ins_cost(150);
  6375   size(4);
  6376   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6377   opcode(0x1);
  6378   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6379   ins_pipe(int_conditional_double_move);
  6380 %}
  6382 // Conditional move
  6383 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6384   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6385   ins_cost(150);
  6386   size(4);
  6387   opcode(0x102);
  6388   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6389   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6390   ins_pipe(int_conditional_double_move);
  6391 %}
  6393 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6394   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6395   ins_cost(150);
  6397   size(4);
  6398   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6399   opcode(0x102);
  6400   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6401   ins_pipe(int_conditional_double_move);
  6402 %}
  6404 // Conditional move,
  6405 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6406   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6407   ins_cost(150);
  6408   size(4);
  6409   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6410   opcode(0x2);
  6411   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6412   ins_pipe(int_conditional_double_move);
  6413 %}
  6415 // Conditional move
  6416 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6417   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6418   ins_cost(150);
  6419   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6420   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6421   ins_pipe(ialu_reg);
  6422 %}
  6424 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6425   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6426   ins_cost(140);
  6427   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6428   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6429   ins_pipe(ialu_imm);
  6430 %}
  6432 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  6433   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6434   ins_cost(150);
  6436   size(4);
  6437   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6438   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6439   ins_pipe(ialu_reg);
  6440 %}
  6443 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  6444   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  6445   ins_cost(150);
  6447   size(4);
  6448   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  6449   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6450   ins_pipe(ialu_reg);
  6451 %}
  6455 //----------OS and Locking Instructions----------------------------------------
  6457 // This name is KNOWN by the ADLC and cannot be changed.
  6458 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  6459 // for this guy.
  6460 instruct tlsLoadP(g2RegP dst) %{
  6461   match(Set dst (ThreadLocal));
  6463   size(0);
  6464   ins_cost(0);
  6465   format %{ "# TLS is in G2" %}
  6466   ins_encode( /*empty encoding*/ );
  6467   ins_pipe(ialu_none);
  6468 %}
  6470 instruct checkCastPP( iRegP dst ) %{
  6471   match(Set dst (CheckCastPP dst));
  6473   size(0);
  6474   format %{ "# checkcastPP of $dst" %}
  6475   ins_encode( /*empty encoding*/ );
  6476   ins_pipe(empty);
  6477 %}
  6480 instruct castPP( iRegP dst ) %{
  6481   match(Set dst (CastPP dst));
  6482   format %{ "# castPP of $dst" %}
  6483   ins_encode( /*empty encoding*/ );
  6484   ins_pipe(empty);
  6485 %}
  6487 instruct castII( iRegI dst ) %{
  6488   match(Set dst (CastII dst));
  6489   format %{ "# castII of $dst" %}
  6490   ins_encode( /*empty encoding*/ );
  6491   ins_cost(0);
  6492   ins_pipe(empty);
  6493 %}
  6495 //----------Arithmetic Instructions--------------------------------------------
  6496 // Addition Instructions
  6497 // Register Addition
  6498 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6499   match(Set dst (AddI src1 src2));
  6501   size(4);
  6502   format %{ "ADD    $src1,$src2,$dst" %}
  6503   ins_encode %{
  6504     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  6505   %}
  6506   ins_pipe(ialu_reg_reg);
  6507 %}
  6509 // Immediate Addition
  6510 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6511   match(Set dst (AddI src1 src2));
  6513   size(4);
  6514   format %{ "ADD    $src1,$src2,$dst" %}
  6515   opcode(Assembler::add_op3, Assembler::arith_op);
  6516   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6517   ins_pipe(ialu_reg_imm);
  6518 %}
  6520 // Pointer Register Addition
  6521 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  6522   match(Set dst (AddP src1 src2));
  6524   size(4);
  6525   format %{ "ADD    $src1,$src2,$dst" %}
  6526   opcode(Assembler::add_op3, Assembler::arith_op);
  6527   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6528   ins_pipe(ialu_reg_reg);
  6529 %}
  6531 // Pointer Immediate Addition
  6532 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  6533   match(Set dst (AddP src1 src2));
  6535   size(4);
  6536   format %{ "ADD    $src1,$src2,$dst" %}
  6537   opcode(Assembler::add_op3, Assembler::arith_op);
  6538   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6539   ins_pipe(ialu_reg_imm);
  6540 %}
  6542 // Long Addition
  6543 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6544   match(Set dst (AddL src1 src2));
  6546   size(4);
  6547   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  6548   opcode(Assembler::add_op3, Assembler::arith_op);
  6549   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6550   ins_pipe(ialu_reg_reg);
  6551 %}
  6553 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6554   match(Set dst (AddL src1 con));
  6556   size(4);
  6557   format %{ "ADD    $src1,$con,$dst" %}
  6558   opcode(Assembler::add_op3, Assembler::arith_op);
  6559   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6560   ins_pipe(ialu_reg_imm);
  6561 %}
  6563 //----------Conditional_store--------------------------------------------------
  6564 // Conditional-store of the updated heap-top.
  6565 // Used during allocation of the shared heap.
  6566 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  6568 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  6569 instruct loadPLocked(iRegP dst, memory mem) %{
  6570   match(Set dst (LoadPLocked mem));
  6571   ins_cost(MEMORY_REF_COST);
  6573 #ifndef _LP64
  6574   size(4);
  6575   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6576   opcode(Assembler::lduw_op3, 0, REGP_OP);
  6577 #else
  6578   format %{ "LDX    $mem,$dst\t! ptr" %}
  6579   opcode(Assembler::ldx_op3, 0, REGP_OP);
  6580 #endif
  6581   ins_encode( form3_mem_reg( mem, dst ) );
  6582   ins_pipe(iload_mem);
  6583 %}
  6585 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  6586 instruct loadLLocked(iRegL dst, memory mem) %{
  6587   match(Set dst (LoadLLocked mem));
  6588   ins_cost(MEMORY_REF_COST);
  6589   size(4);
  6590   format %{ "LDX    $mem,$dst\t! long" %}
  6591   opcode(Assembler::ldx_op3);
  6592   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6593   ins_pipe(iload_mem);
  6594 %}
  6596 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  6597   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  6598   effect( KILL newval );
  6599   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  6600             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  6601   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  6602   ins_pipe( long_memory_op );
  6603 %}
  6605 instruct storeLConditional_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6606   match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
  6607   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6608   // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
  6609   format %{
  6610             "MOV    $newval,R_O7\n\t"
  6611             "CASXA  [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
  6612             "CMP    $oldval,R_O7\t\t! See if we made progress\n\t"
  6613             "MOV    1,$res\n\t"
  6614             "MOVne  xcc,R_G0,$res"
  6615   %}
  6616   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6617               enc_lflags_ne_to_boolean(res) );
  6618   ins_pipe( long_memory_op );
  6619 %}
  6621 instruct storeLConditional_flags(iRegP mem_ptr, iRegL oldval, iRegL newval, flagsRegL xcc, o7RegI tmp1, immI0 zero) %{
  6622   match(Set xcc (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
  6623   effect( USE mem_ptr, KILL tmp1);
  6624   // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap
  6625   format %{
  6626             "MOV    $newval,R_O7\n\t"
  6627             "CASXA  [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t"
  6628             "CMP    $oldval,R_O7\t\t! See if we made progress"
  6629   %}
  6630   ins_encode( enc_casx(mem_ptr, oldval, newval));
  6631   ins_pipe( long_memory_op );
  6632 %}
  6634 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  6636 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6637   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  6638   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6639   format %{
  6640             "MOV    $newval,O7\n\t"
  6641             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6642             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6643             "MOV    1,$res\n\t"
  6644             "MOVne  xcc,R_G0,$res"
  6645   %}
  6646   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6647               enc_lflags_ne_to_boolean(res) );
  6648   ins_pipe( long_memory_op );
  6649 %}
  6652 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6653   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  6654   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6655   format %{
  6656             "MOV    $newval,O7\n\t"
  6657             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6658             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6659             "MOV    1,$res\n\t"
  6660             "MOVne  icc,R_G0,$res"
  6661   %}
  6662   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6663               enc_iflags_ne_to_boolean(res) );
  6664   ins_pipe( long_memory_op );
  6665 %}
  6667 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6668   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  6669   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6670   format %{
  6671             "MOV    $newval,O7\n\t"
  6672             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6673             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6674             "MOV    1,$res\n\t"
  6675             "MOVne  xcc,R_G0,$res"
  6676   %}
  6677 #ifdef _LP64
  6678   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6679               enc_lflags_ne_to_boolean(res) );
  6680 #else
  6681   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6682               enc_iflags_ne_to_boolean(res) );
  6683 #endif
  6684   ins_pipe( long_memory_op );
  6685 %}
  6687 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6688   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  6689   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6690   format %{
  6691             "MOV    $newval,O7\n\t"
  6692             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6693             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6694             "MOV    1,$res\n\t"
  6695             "MOVne  icc,R_G0,$res"
  6696   %}
  6697   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6698               enc_iflags_ne_to_boolean(res) );
  6699   ins_pipe( long_memory_op );
  6700 %}
  6702 //---------------------
  6703 // Subtraction Instructions
  6704 // Register Subtraction
  6705 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6706   match(Set dst (SubI src1 src2));
  6708   size(4);
  6709   format %{ "SUB    $src1,$src2,$dst" %}
  6710   opcode(Assembler::sub_op3, Assembler::arith_op);
  6711   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6712   ins_pipe(ialu_reg_reg);
  6713 %}
  6715 // Immediate Subtraction
  6716 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6717   match(Set dst (SubI src1 src2));
  6719   size(4);
  6720   format %{ "SUB    $src1,$src2,$dst" %}
  6721   opcode(Assembler::sub_op3, Assembler::arith_op);
  6722   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6723   ins_pipe(ialu_reg_imm);
  6724 %}
  6726 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  6727   match(Set dst (SubI zero src2));
  6729   size(4);
  6730   format %{ "NEG    $src2,$dst" %}
  6731   opcode(Assembler::sub_op3, Assembler::arith_op);
  6732   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6733   ins_pipe(ialu_zero_reg);
  6734 %}
  6736 // Long subtraction
  6737 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6738   match(Set dst (SubL src1 src2));
  6740   size(4);
  6741   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6742   opcode(Assembler::sub_op3, Assembler::arith_op);
  6743   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6744   ins_pipe(ialu_reg_reg);
  6745 %}
  6747 // Immediate Subtraction
  6748 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6749   match(Set dst (SubL src1 con));
  6751   size(4);
  6752   format %{ "SUB    $src1,$con,$dst\t! long" %}
  6753   opcode(Assembler::sub_op3, Assembler::arith_op);
  6754   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6755   ins_pipe(ialu_reg_imm);
  6756 %}
  6758 // Long negation
  6759 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  6760   match(Set dst (SubL zero src2));
  6762   size(4);
  6763   format %{ "NEG    $src2,$dst\t! long" %}
  6764   opcode(Assembler::sub_op3, Assembler::arith_op);
  6765   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6766   ins_pipe(ialu_zero_reg);
  6767 %}
  6769 // Multiplication Instructions
  6770 // Integer Multiplication
  6771 // Register Multiplication
  6772 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6773   match(Set dst (MulI src1 src2));
  6775   size(4);
  6776   format %{ "MULX   $src1,$src2,$dst" %}
  6777   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6778   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6779   ins_pipe(imul_reg_reg);
  6780 %}
  6782 // Immediate Multiplication
  6783 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6784   match(Set dst (MulI src1 src2));
  6786   size(4);
  6787   format %{ "MULX   $src1,$src2,$dst" %}
  6788   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6789   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6790   ins_pipe(imul_reg_imm);
  6791 %}
  6793 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6794   match(Set dst (MulL src1 src2));
  6795   ins_cost(DEFAULT_COST * 5);
  6796   size(4);
  6797   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  6798   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6799   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6800   ins_pipe(mulL_reg_reg);
  6801 %}
  6803 // Immediate Multiplication
  6804 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6805   match(Set dst (MulL src1 src2));
  6806   ins_cost(DEFAULT_COST * 5);
  6807   size(4);
  6808   format %{ "MULX   $src1,$src2,$dst" %}
  6809   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6810   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6811   ins_pipe(mulL_reg_imm);
  6812 %}
  6814 // Integer Division
  6815 // Register Division
  6816 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  6817   match(Set dst (DivI src1 src2));
  6818   ins_cost((2+71)*DEFAULT_COST);
  6820   format %{ "SRA     $src2,0,$src2\n\t"
  6821             "SRA     $src1,0,$src1\n\t"
  6822             "SDIVX   $src1,$src2,$dst" %}
  6823   ins_encode( idiv_reg( src1, src2, dst ) );
  6824   ins_pipe(sdiv_reg_reg);
  6825 %}
  6827 // Immediate Division
  6828 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  6829   match(Set dst (DivI src1 src2));
  6830   ins_cost((2+71)*DEFAULT_COST);
  6832   format %{ "SRA     $src1,0,$src1\n\t"
  6833             "SDIVX   $src1,$src2,$dst" %}
  6834   ins_encode( idiv_imm( src1, src2, dst ) );
  6835   ins_pipe(sdiv_reg_imm);
  6836 %}
  6838 //----------Div-By-10-Expansion------------------------------------------------
  6839 // Extract hi bits of a 32x32->64 bit multiply.
  6840 // Expand rule only, not matched
  6841 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  6842   effect( DEF dst, USE src1, USE src2 );
  6843   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  6844             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  6845   ins_encode( enc_mul_hi(dst,src1,src2));
  6846   ins_pipe(sdiv_reg_reg);
  6847 %}
  6849 // Magic constant, reciprical of 10
  6850 instruct loadConI_x66666667(iRegIsafe dst) %{
  6851   effect( DEF dst );
  6853   size(8);
  6854   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  6855   ins_encode( Set32(0x66666667, dst) );
  6856   ins_pipe(ialu_hi_lo_reg);
  6857 %}
  6859 // Register Shift Right Arithmatic Long by 32-63
  6860 instruct sra_31( iRegI dst, iRegI src ) %{
  6861   effect( DEF dst, USE src );
  6862   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  6863   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  6864   ins_pipe(ialu_reg_reg);
  6865 %}
  6867 // Arithmetic Shift Right by 8-bit immediate
  6868 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  6869   effect( DEF dst, USE src );
  6870   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  6871   opcode(Assembler::sra_op3, Assembler::arith_op);
  6872   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  6873   ins_pipe(ialu_reg_imm);
  6874 %}
  6876 // Integer DIV with 10
  6877 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  6878   match(Set dst (DivI src div));
  6879   ins_cost((6+6)*DEFAULT_COST);
  6880   expand %{
  6881     iRegIsafe tmp1;               // Killed temps;
  6882     iRegIsafe tmp2;               // Killed temps;
  6883     iRegI tmp3;                   // Killed temps;
  6884     iRegI tmp4;                   // Killed temps;
  6885     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  6886     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  6887     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  6888     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  6889     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  6890   %}
  6891 %}
  6893 // Register Long Division
  6894 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6895   match(Set dst (DivL src1 src2));
  6896   ins_cost(DEFAULT_COST*71);
  6897   size(4);
  6898   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6899   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6900   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6901   ins_pipe(divL_reg_reg);
  6902 %}
  6904 // Register Long Division
  6905 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6906   match(Set dst (DivL src1 src2));
  6907   ins_cost(DEFAULT_COST*71);
  6908   size(4);
  6909   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6910   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6911   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6912   ins_pipe(divL_reg_imm);
  6913 %}
  6915 // Integer Remainder
  6916 // Register Remainder
  6917 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  6918   match(Set dst (ModI src1 src2));
  6919   effect( KILL ccr, KILL temp);
  6921   format %{ "SREM   $src1,$src2,$dst" %}
  6922   ins_encode( irem_reg(src1, src2, dst, temp) );
  6923   ins_pipe(sdiv_reg_reg);
  6924 %}
  6926 // Immediate Remainder
  6927 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  6928   match(Set dst (ModI src1 src2));
  6929   effect( KILL ccr, KILL temp);
  6931   format %{ "SREM   $src1,$src2,$dst" %}
  6932   ins_encode( irem_imm(src1, src2, dst, temp) );
  6933   ins_pipe(sdiv_reg_imm);
  6934 %}
  6936 // Register Long Remainder
  6937 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6938   effect(DEF dst, USE src1, USE src2);
  6939   size(4);
  6940   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6941   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6942   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6943   ins_pipe(divL_reg_reg);
  6944 %}
  6946 // Register Long Division
  6947 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  6948   effect(DEF dst, USE src1, USE src2);
  6949   size(4);
  6950   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6951   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6952   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6953   ins_pipe(divL_reg_imm);
  6954 %}
  6956 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6957   effect(DEF dst, USE src1, USE src2);
  6958   size(4);
  6959   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  6960   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6961   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6962   ins_pipe(mulL_reg_reg);
  6963 %}
  6965 // Immediate Multiplication
  6966 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  6967   effect(DEF dst, USE src1, USE src2);
  6968   size(4);
  6969   format %{ "MULX   $src1,$src2,$dst" %}
  6970   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6971   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6972   ins_pipe(mulL_reg_imm);
  6973 %}
  6975 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6976   effect(DEF dst, USE src1, USE src2);
  6977   size(4);
  6978   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6979   opcode(Assembler::sub_op3, Assembler::arith_op);
  6980   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6981   ins_pipe(ialu_reg_reg);
  6982 %}
  6984 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  6985   effect(DEF dst, USE src1, USE src2);
  6986   size(4);
  6987   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6988   opcode(Assembler::sub_op3, Assembler::arith_op);
  6989   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6990   ins_pipe(ialu_reg_reg);
  6991 %}
  6993 // Register Long Remainder
  6994 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6995   match(Set dst (ModL src1 src2));
  6996   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  6997   expand %{
  6998     iRegL tmp1;
  6999     iRegL tmp2;
  7000     divL_reg_reg_1(tmp1, src1, src2);
  7001     mulL_reg_reg_1(tmp2, tmp1, src2);
  7002     subL_reg_reg_1(dst,  src1, tmp2);
  7003   %}
  7004 %}
  7006 // Register Long Remainder
  7007 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7008   match(Set dst (ModL src1 src2));
  7009   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7010   expand %{
  7011     iRegL tmp1;
  7012     iRegL tmp2;
  7013     divL_reg_imm13_1(tmp1, src1, src2);
  7014     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7015     subL_reg_reg_2  (dst,  src1, tmp2);
  7016   %}
  7017 %}
  7019 // Integer Shift Instructions
  7020 // Register Shift Left
  7021 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7022   match(Set dst (LShiftI src1 src2));
  7024   size(4);
  7025   format %{ "SLL    $src1,$src2,$dst" %}
  7026   opcode(Assembler::sll_op3, Assembler::arith_op);
  7027   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7028   ins_pipe(ialu_reg_reg);
  7029 %}
  7031 // Register Shift Left Immediate
  7032 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7033   match(Set dst (LShiftI src1 src2));
  7035   size(4);
  7036   format %{ "SLL    $src1,$src2,$dst" %}
  7037   opcode(Assembler::sll_op3, Assembler::arith_op);
  7038   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7039   ins_pipe(ialu_reg_imm);
  7040 %}
  7042 // Register Shift Left
  7043 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7044   match(Set dst (LShiftL src1 src2));
  7046   size(4);
  7047   format %{ "SLLX   $src1,$src2,$dst" %}
  7048   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7049   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7050   ins_pipe(ialu_reg_reg);
  7051 %}
  7053 // Register Shift Left Immediate
  7054 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7055   match(Set dst (LShiftL src1 src2));
  7057   size(4);
  7058   format %{ "SLLX   $src1,$src2,$dst" %}
  7059   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7060   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7061   ins_pipe(ialu_reg_imm);
  7062 %}
  7064 // Register Arithmetic Shift Right
  7065 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7066   match(Set dst (RShiftI src1 src2));
  7067   size(4);
  7068   format %{ "SRA    $src1,$src2,$dst" %}
  7069   opcode(Assembler::sra_op3, Assembler::arith_op);
  7070   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7071   ins_pipe(ialu_reg_reg);
  7072 %}
  7074 // Register Arithmetic Shift Right Immediate
  7075 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7076   match(Set dst (RShiftI src1 src2));
  7078   size(4);
  7079   format %{ "SRA    $src1,$src2,$dst" %}
  7080   opcode(Assembler::sra_op3, Assembler::arith_op);
  7081   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7082   ins_pipe(ialu_reg_imm);
  7083 %}
  7085 // Register Shift Right Arithmatic Long
  7086 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7087   match(Set dst (RShiftL src1 src2));
  7089   size(4);
  7090   format %{ "SRAX   $src1,$src2,$dst" %}
  7091   opcode(Assembler::srax_op3, Assembler::arith_op);
  7092   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7093   ins_pipe(ialu_reg_reg);
  7094 %}
  7096 // Register Shift Left Immediate
  7097 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7098   match(Set dst (RShiftL src1 src2));
  7100   size(4);
  7101   format %{ "SRAX   $src1,$src2,$dst" %}
  7102   opcode(Assembler::srax_op3, Assembler::arith_op);
  7103   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7104   ins_pipe(ialu_reg_imm);
  7105 %}
  7107 // Register Shift Right
  7108 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7109   match(Set dst (URShiftI src1 src2));
  7111   size(4);
  7112   format %{ "SRL    $src1,$src2,$dst" %}
  7113   opcode(Assembler::srl_op3, Assembler::arith_op);
  7114   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7115   ins_pipe(ialu_reg_reg);
  7116 %}
  7118 // Register Shift Right Immediate
  7119 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7120   match(Set dst (URShiftI src1 src2));
  7122   size(4);
  7123   format %{ "SRL    $src1,$src2,$dst" %}
  7124   opcode(Assembler::srl_op3, Assembler::arith_op);
  7125   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7126   ins_pipe(ialu_reg_imm);
  7127 %}
  7129 // Register Shift Right
  7130 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7131   match(Set dst (URShiftL src1 src2));
  7133   size(4);
  7134   format %{ "SRLX   $src1,$src2,$dst" %}
  7135   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7136   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7137   ins_pipe(ialu_reg_reg);
  7138 %}
  7140 // Register Shift Right Immediate
  7141 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7142   match(Set dst (URShiftL src1 src2));
  7144   size(4);
  7145   format %{ "SRLX   $src1,$src2,$dst" %}
  7146   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7147   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7148   ins_pipe(ialu_reg_imm);
  7149 %}
  7151 // Register Shift Right Immediate with a CastP2X
  7152 #ifdef _LP64
  7153 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7154   match(Set dst (URShiftL (CastP2X src1) src2));
  7155   size(4);
  7156   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7157   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7158   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7159   ins_pipe(ialu_reg_imm);
  7160 %}
  7161 #else
  7162 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7163   match(Set dst (URShiftI (CastP2X src1) src2));
  7164   size(4);
  7165   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7166   opcode(Assembler::srl_op3, Assembler::arith_op);
  7167   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7168   ins_pipe(ialu_reg_imm);
  7169 %}
  7170 #endif
  7173 //----------Floating Point Arithmetic Instructions-----------------------------
  7175 //  Add float single precision
  7176 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7177   match(Set dst (AddF src1 src2));
  7179   size(4);
  7180   format %{ "FADDS  $src1,$src2,$dst" %}
  7181   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7182   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7183   ins_pipe(faddF_reg_reg);
  7184 %}
  7186 //  Add float double precision
  7187 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7188   match(Set dst (AddD src1 src2));
  7190   size(4);
  7191   format %{ "FADDD  $src1,$src2,$dst" %}
  7192   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7193   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7194   ins_pipe(faddD_reg_reg);
  7195 %}
  7197 //  Sub float single precision
  7198 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7199   match(Set dst (SubF src1 src2));
  7201   size(4);
  7202   format %{ "FSUBS  $src1,$src2,$dst" %}
  7203   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7204   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7205   ins_pipe(faddF_reg_reg);
  7206 %}
  7208 //  Sub float double precision
  7209 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7210   match(Set dst (SubD src1 src2));
  7212   size(4);
  7213   format %{ "FSUBD  $src1,$src2,$dst" %}
  7214   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7215   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7216   ins_pipe(faddD_reg_reg);
  7217 %}
  7219 //  Mul float single precision
  7220 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7221   match(Set dst (MulF src1 src2));
  7223   size(4);
  7224   format %{ "FMULS  $src1,$src2,$dst" %}
  7225   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7226   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7227   ins_pipe(fmulF_reg_reg);
  7228 %}
  7230 //  Mul float double precision
  7231 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7232   match(Set dst (MulD src1 src2));
  7234   size(4);
  7235   format %{ "FMULD  $src1,$src2,$dst" %}
  7236   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7237   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7238   ins_pipe(fmulD_reg_reg);
  7239 %}
  7241 //  Div float single precision
  7242 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7243   match(Set dst (DivF src1 src2));
  7245   size(4);
  7246   format %{ "FDIVS  $src1,$src2,$dst" %}
  7247   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7248   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7249   ins_pipe(fdivF_reg_reg);
  7250 %}
  7252 //  Div float double precision
  7253 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7254   match(Set dst (DivD src1 src2));
  7256   size(4);
  7257   format %{ "FDIVD  $src1,$src2,$dst" %}
  7258   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7259   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7260   ins_pipe(fdivD_reg_reg);
  7261 %}
  7263 //  Absolute float double precision
  7264 instruct absD_reg(regD dst, regD src) %{
  7265   match(Set dst (AbsD src));
  7267   format %{ "FABSd  $src,$dst" %}
  7268   ins_encode(fabsd(dst, src));
  7269   ins_pipe(faddD_reg);
  7270 %}
  7272 //  Absolute float single precision
  7273 instruct absF_reg(regF dst, regF src) %{
  7274   match(Set dst (AbsF src));
  7276   format %{ "FABSs  $src,$dst" %}
  7277   ins_encode(fabss(dst, src));
  7278   ins_pipe(faddF_reg);
  7279 %}
  7281 instruct negF_reg(regF dst, regF src) %{
  7282   match(Set dst (NegF src));
  7284   size(4);
  7285   format %{ "FNEGs  $src,$dst" %}
  7286   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7287   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7288   ins_pipe(faddF_reg);
  7289 %}
  7291 instruct negD_reg(regD dst, regD src) %{
  7292   match(Set dst (NegD src));
  7294   format %{ "FNEGd  $src,$dst" %}
  7295   ins_encode(fnegd(dst, src));
  7296   ins_pipe(faddD_reg);
  7297 %}
  7299 //  Sqrt float double precision
  7300 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7301   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7303   size(4);
  7304   format %{ "FSQRTS $src,$dst" %}
  7305   ins_encode(fsqrts(dst, src));
  7306   ins_pipe(fdivF_reg_reg);
  7307 %}
  7309 //  Sqrt float double precision
  7310 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7311   match(Set dst (SqrtD src));
  7313   size(4);
  7314   format %{ "FSQRTD $src,$dst" %}
  7315   ins_encode(fsqrtd(dst, src));
  7316   ins_pipe(fdivD_reg_reg);
  7317 %}
  7319 //----------Logical Instructions-----------------------------------------------
  7320 // And Instructions
  7321 // Register And
  7322 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7323   match(Set dst (AndI src1 src2));
  7325   size(4);
  7326   format %{ "AND    $src1,$src2,$dst" %}
  7327   opcode(Assembler::and_op3, Assembler::arith_op);
  7328   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7329   ins_pipe(ialu_reg_reg);
  7330 %}
  7332 // Immediate And
  7333 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7334   match(Set dst (AndI src1 src2));
  7336   size(4);
  7337   format %{ "AND    $src1,$src2,$dst" %}
  7338   opcode(Assembler::and_op3, Assembler::arith_op);
  7339   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7340   ins_pipe(ialu_reg_imm);
  7341 %}
  7343 // Register And Long
  7344 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7345   match(Set dst (AndL src1 src2));
  7347   ins_cost(DEFAULT_COST);
  7348   size(4);
  7349   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7350   opcode(Assembler::and_op3, Assembler::arith_op);
  7351   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7352   ins_pipe(ialu_reg_reg);
  7353 %}
  7355 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7356   match(Set dst (AndL src1 con));
  7358   ins_cost(DEFAULT_COST);
  7359   size(4);
  7360   format %{ "AND    $src1,$con,$dst\t! long" %}
  7361   opcode(Assembler::and_op3, Assembler::arith_op);
  7362   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7363   ins_pipe(ialu_reg_imm);
  7364 %}
  7366 // Or Instructions
  7367 // Register Or
  7368 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7369   match(Set dst (OrI src1 src2));
  7371   size(4);
  7372   format %{ "OR     $src1,$src2,$dst" %}
  7373   opcode(Assembler::or_op3, Assembler::arith_op);
  7374   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7375   ins_pipe(ialu_reg_reg);
  7376 %}
  7378 // Immediate Or
  7379 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7380   match(Set dst (OrI src1 src2));
  7382   size(4);
  7383   format %{ "OR     $src1,$src2,$dst" %}
  7384   opcode(Assembler::or_op3, Assembler::arith_op);
  7385   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7386   ins_pipe(ialu_reg_imm);
  7387 %}
  7389 // Register Or Long
  7390 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7391   match(Set dst (OrL src1 src2));
  7393   ins_cost(DEFAULT_COST);
  7394   size(4);
  7395   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7396   opcode(Assembler::or_op3, Assembler::arith_op);
  7397   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7398   ins_pipe(ialu_reg_reg);
  7399 %}
  7401 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7402   match(Set dst (OrL src1 con));
  7403   ins_cost(DEFAULT_COST*2);
  7405   ins_cost(DEFAULT_COST);
  7406   size(4);
  7407   format %{ "OR     $src1,$con,$dst\t! long" %}
  7408   opcode(Assembler::or_op3, Assembler::arith_op);
  7409   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7410   ins_pipe(ialu_reg_imm);
  7411 %}
  7413 // Xor Instructions
  7414 // Register Xor
  7415 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7416   match(Set dst (XorI src1 src2));
  7418   size(4);
  7419   format %{ "XOR    $src1,$src2,$dst" %}
  7420   opcode(Assembler::xor_op3, Assembler::arith_op);
  7421   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7422   ins_pipe(ialu_reg_reg);
  7423 %}
  7425 // Immediate Xor
  7426 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7427   match(Set dst (XorI src1 src2));
  7429   size(4);
  7430   format %{ "XOR    $src1,$src2,$dst" %}
  7431   opcode(Assembler::xor_op3, Assembler::arith_op);
  7432   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7433   ins_pipe(ialu_reg_imm);
  7434 %}
  7436 // Register Xor Long
  7437 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7438   match(Set dst (XorL src1 src2));
  7440   ins_cost(DEFAULT_COST);
  7441   size(4);
  7442   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  7443   opcode(Assembler::xor_op3, Assembler::arith_op);
  7444   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7445   ins_pipe(ialu_reg_reg);
  7446 %}
  7448 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7449   match(Set dst (XorL src1 con));
  7451   ins_cost(DEFAULT_COST);
  7452   size(4);
  7453   format %{ "XOR    $src1,$con,$dst\t! long" %}
  7454   opcode(Assembler::xor_op3, Assembler::arith_op);
  7455   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7456   ins_pipe(ialu_reg_imm);
  7457 %}
  7459 //----------Convert to Boolean-------------------------------------------------
  7460 // Nice hack for 32-bit tests but doesn't work for
  7461 // 64-bit pointers.
  7462 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  7463   match(Set dst (Conv2B src));
  7464   effect( KILL ccr );
  7465   ins_cost(DEFAULT_COST*2);
  7466   format %{ "CMP    R_G0,$src\n\t"
  7467             "ADDX   R_G0,0,$dst" %}
  7468   ins_encode( enc_to_bool( src, dst ) );
  7469   ins_pipe(ialu_reg_ialu);
  7470 %}
  7472 #ifndef _LP64
  7473 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  7474   match(Set dst (Conv2B src));
  7475   effect( KILL ccr );
  7476   ins_cost(DEFAULT_COST*2);
  7477   format %{ "CMP    R_G0,$src\n\t"
  7478             "ADDX   R_G0,0,$dst" %}
  7479   ins_encode( enc_to_bool( src, dst ) );
  7480   ins_pipe(ialu_reg_ialu);
  7481 %}
  7482 #else
  7483 instruct convP2B( iRegI dst, iRegP src ) %{
  7484   match(Set dst (Conv2B src));
  7485   ins_cost(DEFAULT_COST*2);
  7486   format %{ "MOV    $src,$dst\n\t"
  7487             "MOVRNZ $src,1,$dst" %}
  7488   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  7489   ins_pipe(ialu_clr_and_mover);
  7490 %}
  7491 #endif
  7493 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  7494   match(Set dst (CmpLTMask p q));
  7495   effect( KILL ccr );
  7496   ins_cost(DEFAULT_COST*4);
  7497   format %{ "CMP    $p,$q\n\t"
  7498             "MOV    #0,$dst\n\t"
  7499             "BLT,a  .+8\n\t"
  7500             "MOV    #-1,$dst" %}
  7501   ins_encode( enc_ltmask(p,q,dst) );
  7502   ins_pipe(ialu_reg_reg_ialu);
  7503 %}
  7505 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7506   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  7507   effect(KILL ccr, TEMP tmp);
  7508   ins_cost(DEFAULT_COST*3);
  7510   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7511             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7512             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7513   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7514   ins_pipe( cadd_cmpltmask );
  7515 %}
  7517 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7518   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  7519   effect( KILL ccr, TEMP tmp);
  7520   ins_cost(DEFAULT_COST*3);
  7522   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7523             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7524             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7525   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7526   ins_pipe( cadd_cmpltmask );
  7527 %}
  7529 //----------Arithmetic Conversion Instructions---------------------------------
  7530 // The conversions operations are all Alpha sorted.  Please keep it that way!
  7532 instruct convD2F_reg(regF dst, regD src) %{
  7533   match(Set dst (ConvD2F src));
  7534   size(4);
  7535   format %{ "FDTOS  $src,$dst" %}
  7536   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  7537   ins_encode(form3_opf_rs2D_rdF(src, dst));
  7538   ins_pipe(fcvtD2F);
  7539 %}
  7542 // Convert a double to an int in a float register.
  7543 // If the double is a NAN, stuff a zero in instead.
  7544 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  7545   effect(DEF dst, USE src, KILL fcc0);
  7546   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7547             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7548             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  7549             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7550             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7551       "skip:" %}
  7552   ins_encode(form_d2i_helper(src,dst));
  7553   ins_pipe(fcvtD2I);
  7554 %}
  7556 instruct convD2I_reg(stackSlotI dst, regD src) %{
  7557   match(Set dst (ConvD2I src));
  7558   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7559   expand %{
  7560     regF tmp;
  7561     convD2I_helper(tmp, src);
  7562     regF_to_stkI(dst, tmp);
  7563   %}
  7564 %}
  7566 // Convert a double to a long in a double register.
  7567 // If the double is a NAN, stuff a zero in instead.
  7568 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  7569   effect(DEF dst, USE src, KILL fcc0);
  7570   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7571             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7572             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  7573             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7574             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7575       "skip:" %}
  7576   ins_encode(form_d2l_helper(src,dst));
  7577   ins_pipe(fcvtD2L);
  7578 %}
  7581 // Double to Long conversion
  7582 instruct convD2L_reg(stackSlotL dst, regD src) %{
  7583   match(Set dst (ConvD2L src));
  7584   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7585   expand %{
  7586     regD tmp;
  7587     convD2L_helper(tmp, src);
  7588     regD_to_stkL(dst, tmp);
  7589   %}
  7590 %}
  7593 instruct convF2D_reg(regD dst, regF src) %{
  7594   match(Set dst (ConvF2D src));
  7595   format %{ "FSTOD  $src,$dst" %}
  7596   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  7597   ins_encode(form3_opf_rs2F_rdD(src, dst));
  7598   ins_pipe(fcvtF2D);
  7599 %}
  7602 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  7603   effect(DEF dst, USE src, KILL fcc0);
  7604   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7605             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7606             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  7607             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7608             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7609       "skip:" %}
  7610   ins_encode(form_f2i_helper(src,dst));
  7611   ins_pipe(fcvtF2I);
  7612 %}
  7614 instruct convF2I_reg(stackSlotI dst, regF src) %{
  7615   match(Set dst (ConvF2I src));
  7616   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7617   expand %{
  7618     regF tmp;
  7619     convF2I_helper(tmp, src);
  7620     regF_to_stkI(dst, tmp);
  7621   %}
  7622 %}
  7625 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  7626   effect(DEF dst, USE src, KILL fcc0);
  7627   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7628             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7629             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  7630             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7631             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7632       "skip:" %}
  7633   ins_encode(form_f2l_helper(src,dst));
  7634   ins_pipe(fcvtF2L);
  7635 %}
  7637 // Float to Long conversion
  7638 instruct convF2L_reg(stackSlotL dst, regF src) %{
  7639   match(Set dst (ConvF2L src));
  7640   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7641   expand %{
  7642     regD tmp;
  7643     convF2L_helper(tmp, src);
  7644     regD_to_stkL(dst, tmp);
  7645   %}
  7646 %}
  7649 instruct convI2D_helper(regD dst, regF tmp) %{
  7650   effect(USE tmp, DEF dst);
  7651   format %{ "FITOD  $tmp,$dst" %}
  7652   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7653   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  7654   ins_pipe(fcvtI2D);
  7655 %}
  7657 instruct convI2D_reg(stackSlotI src, regD dst) %{
  7658   match(Set dst (ConvI2D src));
  7659   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7660   expand %{
  7661     regF tmp;
  7662     stkI_to_regF( tmp, src);
  7663     convI2D_helper( dst, tmp);
  7664   %}
  7665 %}
  7667 instruct convI2D_mem( regD_low dst, memory mem ) %{
  7668   match(Set dst (ConvI2D (LoadI mem)));
  7669   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7670   size(8);
  7671   format %{ "LDF    $mem,$dst\n\t"
  7672             "FITOD  $dst,$dst" %}
  7673   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  7674   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7675   ins_pipe(floadF_mem);
  7676 %}
  7679 instruct convI2F_helper(regF dst, regF tmp) %{
  7680   effect(DEF dst, USE tmp);
  7681   format %{ "FITOS  $tmp,$dst" %}
  7682   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  7683   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  7684   ins_pipe(fcvtI2F);
  7685 %}
  7687 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  7688   match(Set dst (ConvI2F src));
  7689   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7690   expand %{
  7691     regF tmp;
  7692     stkI_to_regF(tmp,src);
  7693     convI2F_helper(dst, tmp);
  7694   %}
  7695 %}
  7697 instruct convI2F_mem( regF dst, memory mem ) %{
  7698   match(Set dst (ConvI2F (LoadI mem)));
  7699   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7700   size(8);
  7701   format %{ "LDF    $mem,$dst\n\t"
  7702             "FITOS  $dst,$dst" %}
  7703   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  7704   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7705   ins_pipe(floadF_mem);
  7706 %}
  7709 instruct convI2L_reg(iRegL dst, iRegI src) %{
  7710   match(Set dst (ConvI2L src));
  7711   size(4);
  7712   format %{ "SRA    $src,0,$dst\t! int->long" %}
  7713   opcode(Assembler::sra_op3, Assembler::arith_op);
  7714   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7715   ins_pipe(ialu_reg_reg);
  7716 %}
  7718 // Zero-extend convert int to long
  7719 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  7720   match(Set dst (AndL (ConvI2L src) mask) );
  7721   size(4);
  7722   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  7723   opcode(Assembler::srl_op3, Assembler::arith_op);
  7724   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7725   ins_pipe(ialu_reg_reg);
  7726 %}
  7728 // Zero-extend long
  7729 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  7730   match(Set dst (AndL src mask) );
  7731   size(4);
  7732   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  7733   opcode(Assembler::srl_op3, Assembler::arith_op);
  7734   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7735   ins_pipe(ialu_reg_reg);
  7736 %}
  7738 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  7739   match(Set dst (MoveF2I src));
  7740   effect(DEF dst, USE src);
  7741   ins_cost(MEMORY_REF_COST);
  7743   size(4);
  7744   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  7745   opcode(Assembler::lduw_op3);
  7746   ins_encode(simple_form3_mem_reg( src, dst ) );
  7747   ins_pipe(iload_mem);
  7748 %}
  7750 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  7751   match(Set dst (MoveI2F src));
  7752   effect(DEF dst, USE src);
  7753   ins_cost(MEMORY_REF_COST);
  7755   size(4);
  7756   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  7757   opcode(Assembler::ldf_op3);
  7758   ins_encode(simple_form3_mem_reg(src, dst));
  7759   ins_pipe(floadF_stk);
  7760 %}
  7762 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  7763   match(Set dst (MoveD2L src));
  7764   effect(DEF dst, USE src);
  7765   ins_cost(MEMORY_REF_COST);
  7767   size(4);
  7768   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  7769   opcode(Assembler::ldx_op3);
  7770   ins_encode(simple_form3_mem_reg( src, dst ) );
  7771   ins_pipe(iload_mem);
  7772 %}
  7774 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  7775   match(Set dst (MoveL2D src));
  7776   effect(DEF dst, USE src);
  7777   ins_cost(MEMORY_REF_COST);
  7779   size(4);
  7780   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  7781   opcode(Assembler::lddf_op3);
  7782   ins_encode(simple_form3_mem_reg(src, dst));
  7783   ins_pipe(floadD_stk);
  7784 %}
  7786 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  7787   match(Set dst (MoveF2I src));
  7788   effect(DEF dst, USE src);
  7789   ins_cost(MEMORY_REF_COST);
  7791   size(4);
  7792   format %{ "STF   $src,$dst\t!MoveF2I" %}
  7793   opcode(Assembler::stf_op3);
  7794   ins_encode(simple_form3_mem_reg(dst, src));
  7795   ins_pipe(fstoreF_stk_reg);
  7796 %}
  7798 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  7799   match(Set dst (MoveI2F src));
  7800   effect(DEF dst, USE src);
  7801   ins_cost(MEMORY_REF_COST);
  7803   size(4);
  7804   format %{ "STW    $src,$dst\t!MoveI2F" %}
  7805   opcode(Assembler::stw_op3);
  7806   ins_encode(simple_form3_mem_reg( dst, src ) );
  7807   ins_pipe(istore_mem_reg);
  7808 %}
  7810 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  7811   match(Set dst (MoveD2L src));
  7812   effect(DEF dst, USE src);
  7813   ins_cost(MEMORY_REF_COST);
  7815   size(4);
  7816   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  7817   opcode(Assembler::stdf_op3);
  7818   ins_encode(simple_form3_mem_reg(dst, src));
  7819   ins_pipe(fstoreD_stk_reg);
  7820 %}
  7822 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  7823   match(Set dst (MoveL2D src));
  7824   effect(DEF dst, USE src);
  7825   ins_cost(MEMORY_REF_COST);
  7827   size(4);
  7828   format %{ "STX    $src,$dst\t!MoveL2D" %}
  7829   opcode(Assembler::stx_op3);
  7830   ins_encode(simple_form3_mem_reg( dst, src ) );
  7831   ins_pipe(istore_mem_reg);
  7832 %}
  7835 //-----------
  7836 // Long to Double conversion using V8 opcodes.
  7837 // Still useful because cheetah traps and becomes
  7838 // amazingly slow for some common numbers.
  7840 // Magic constant, 0x43300000
  7841 instruct loadConI_x43300000(iRegI dst) %{
  7842   effect(DEF dst);
  7843   size(4);
  7844   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  7845   ins_encode(SetHi22(0x43300000, dst));
  7846   ins_pipe(ialu_none);
  7847 %}
  7849 // Magic constant, 0x41f00000
  7850 instruct loadConI_x41f00000(iRegI dst) %{
  7851   effect(DEF dst);
  7852   size(4);
  7853   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  7854   ins_encode(SetHi22(0x41f00000, dst));
  7855   ins_pipe(ialu_none);
  7856 %}
  7858 // Construct a double from two float halves
  7859 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  7860   effect(DEF dst, USE src1, USE src2);
  7861   size(8);
  7862   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  7863             "FMOVS  $src2.lo,$dst.lo" %}
  7864   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  7865   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  7866   ins_pipe(faddD_reg_reg);
  7867 %}
  7869 // Convert integer in high half of a double register (in the lower half of
  7870 // the double register file) to double
  7871 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  7872   effect(DEF dst, USE src);
  7873   size(4);
  7874   format %{ "FITOD  $src,$dst" %}
  7875   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7876   ins_encode(form3_opf_rs2D_rdD(src, dst));
  7877   ins_pipe(fcvtLHi2D);
  7878 %}
  7880 // Add float double precision
  7881 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  7882   effect(DEF dst, USE src1, USE src2);
  7883   size(4);
  7884   format %{ "FADDD  $src1,$src2,$dst" %}
  7885   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7886   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7887   ins_pipe(faddD_reg_reg);
  7888 %}
  7890 // Sub float double precision
  7891 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  7892   effect(DEF dst, USE src1, USE src2);
  7893   size(4);
  7894   format %{ "FSUBD  $src1,$src2,$dst" %}
  7895   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7896   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7897   ins_pipe(faddD_reg_reg);
  7898 %}
  7900 // Mul float double precision
  7901 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  7902   effect(DEF dst, USE src1, USE src2);
  7903   size(4);
  7904   format %{ "FMULD  $src1,$src2,$dst" %}
  7905   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7906   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7907   ins_pipe(fmulD_reg_reg);
  7908 %}
  7910 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  7911   match(Set dst (ConvL2D src));
  7912   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  7914   expand %{
  7915     regD_low   tmpsrc;
  7916     iRegI      ix43300000;
  7917     iRegI      ix41f00000;
  7918     stackSlotL lx43300000;
  7919     stackSlotL lx41f00000;
  7920     regD_low   dx43300000;
  7921     regD       dx41f00000;
  7922     regD       tmp1;
  7923     regD_low   tmp2;
  7924     regD       tmp3;
  7925     regD       tmp4;
  7927     stkL_to_regD(tmpsrc, src);
  7929     loadConI_x43300000(ix43300000);
  7930     loadConI_x41f00000(ix41f00000);
  7931     regI_to_stkLHi(lx43300000, ix43300000);
  7932     regI_to_stkLHi(lx41f00000, ix41f00000);
  7933     stkL_to_regD(dx43300000, lx43300000);
  7934     stkL_to_regD(dx41f00000, lx41f00000);
  7936     convI2D_regDHi_regD(tmp1, tmpsrc);
  7937     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  7938     subD_regD_regD(tmp3, tmp2, dx43300000);
  7939     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  7940     addD_regD_regD(dst, tmp3, tmp4);
  7941   %}
  7942 %}
  7944 // Long to Double conversion using fast fxtof
  7945 instruct convL2D_helper(regD dst, regD tmp) %{
  7946   effect(DEF dst, USE tmp);
  7947   size(4);
  7948   format %{ "FXTOD  $tmp,$dst" %}
  7949   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  7950   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  7951   ins_pipe(fcvtL2D);
  7952 %}
  7954 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  7955   predicate(VM_Version::has_fast_fxtof());
  7956   match(Set dst (ConvL2D src));
  7957   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  7958   expand %{
  7959     regD tmp;
  7960     stkL_to_regD(tmp, src);
  7961     convL2D_helper(dst, tmp);
  7962   %}
  7963 %}
  7965 //-----------
  7966 // Long to Float conversion using V8 opcodes.
  7967 // Still useful because cheetah traps and becomes
  7968 // amazingly slow for some common numbers.
  7970 // Long to Float conversion using fast fxtof
  7971 instruct convL2F_helper(regF dst, regD tmp) %{
  7972   effect(DEF dst, USE tmp);
  7973   size(4);
  7974   format %{ "FXTOS  $tmp,$dst" %}
  7975   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  7976   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  7977   ins_pipe(fcvtL2F);
  7978 %}
  7980 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  7981   match(Set dst (ConvL2F src));
  7982   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7983   expand %{
  7984     regD tmp;
  7985     stkL_to_regD(tmp, src);
  7986     convL2F_helper(dst, tmp);
  7987   %}
  7988 %}
  7989 //-----------
  7991 instruct convL2I_reg(iRegI dst, iRegL src) %{
  7992   match(Set dst (ConvL2I src));
  7993 #ifndef _LP64
  7994   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  7995   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  7996   ins_pipe(ialu_move_reg_I_to_L);
  7997 #else
  7998   size(4);
  7999   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8000   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8001   ins_pipe(ialu_reg);
  8002 #endif
  8003 %}
  8005 // Register Shift Right Immediate
  8006 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8007   match(Set dst (ConvL2I (RShiftL src cnt)));
  8009   size(4);
  8010   format %{ "SRAX   $src,$cnt,$dst" %}
  8011   opcode(Assembler::srax_op3, Assembler::arith_op);
  8012   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8013   ins_pipe(ialu_reg_imm);
  8014 %}
  8016 // Replicate scalar to packed byte values in Double register
  8017 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8018   effect(DEF dst, USE src);
  8019   format %{ "SLLX  $src,56,$dst\n\t"
  8020             "SRLX  $dst, 8,O7\n\t"
  8021             "OR    $dst,O7,$dst\n\t"
  8022             "SRLX  $dst,16,O7\n\t"
  8023             "OR    $dst,O7,$dst\n\t"
  8024             "SRLX  $dst,32,O7\n\t"
  8025             "OR    $dst,O7,$dst\t! replicate8B" %}
  8026   ins_encode( enc_repl8b(src, dst));
  8027   ins_pipe(ialu_reg);
  8028 %}
  8030 // Replicate scalar to packed byte values in Double register
  8031 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8032   match(Set dst (Replicate8B src));
  8033   expand %{
  8034     iRegL tmp;
  8035     Repl8B_reg_helper(tmp, src);
  8036     regL_to_stkD(dst, tmp);
  8037   %}
  8038 %}
  8040 // Replicate scalar constant to packed byte values in Double register
  8041 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  8042   match(Set dst (Replicate8B src));
  8043 #ifdef _LP64
  8044   size(36);
  8045 #else
  8046   size(8);
  8047 #endif
  8048   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  8049             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  8050   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  8051   ins_pipe(loadConFD);
  8052 %}
  8054 // Replicate scalar to packed char values into stack slot
  8055 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8056   effect(DEF dst, USE src);
  8057   format %{ "SLLX  $src,48,$dst\n\t"
  8058             "SRLX  $dst,16,O7\n\t"
  8059             "OR    $dst,O7,$dst\n\t"
  8060             "SRLX  $dst,32,O7\n\t"
  8061             "OR    $dst,O7,$dst\t! replicate4C" %}
  8062   ins_encode( enc_repl4s(src, dst) );
  8063   ins_pipe(ialu_reg);
  8064 %}
  8066 // Replicate scalar to packed char values into stack slot
  8067 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8068   match(Set dst (Replicate4C src));
  8069   expand %{
  8070     iRegL tmp;
  8071     Repl4C_reg_helper(tmp, src);
  8072     regL_to_stkD(dst, tmp);
  8073   %}
  8074 %}
  8076 // Replicate scalar constant to packed char values in Double register
  8077 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  8078   match(Set dst (Replicate4C src));
  8079 #ifdef _LP64
  8080   size(36);
  8081 #else
  8082   size(8);
  8083 #endif
  8084   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  8085             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8086   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8087   ins_pipe(loadConFD);
  8088 %}
  8090 // Replicate scalar to packed short values into stack slot
  8091 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8092   effect(DEF dst, USE src);
  8093   format %{ "SLLX  $src,48,$dst\n\t"
  8094             "SRLX  $dst,16,O7\n\t"
  8095             "OR    $dst,O7,$dst\n\t"
  8096             "SRLX  $dst,32,O7\n\t"
  8097             "OR    $dst,O7,$dst\t! replicate4S" %}
  8098   ins_encode( enc_repl4s(src, dst) );
  8099   ins_pipe(ialu_reg);
  8100 %}
  8102 // Replicate scalar to packed short values into stack slot
  8103 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8104   match(Set dst (Replicate4S src));
  8105   expand %{
  8106     iRegL tmp;
  8107     Repl4S_reg_helper(tmp, src);
  8108     regL_to_stkD(dst, tmp);
  8109   %}
  8110 %}
  8112 // Replicate scalar constant to packed short values in Double register
  8113 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  8114   match(Set dst (Replicate4S src));
  8115 #ifdef _LP64
  8116   size(36);
  8117 #else
  8118   size(8);
  8119 #endif
  8120   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  8121             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8122   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8123   ins_pipe(loadConFD);
  8124 %}
  8126 // Replicate scalar to packed int values in Double register
  8127 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8128   effect(DEF dst, USE src);
  8129   format %{ "SLLX  $src,32,$dst\n\t"
  8130             "SRLX  $dst,32,O7\n\t"
  8131             "OR    $dst,O7,$dst\t! replicate2I" %}
  8132   ins_encode( enc_repl2i(src, dst));
  8133   ins_pipe(ialu_reg);
  8134 %}
  8136 // Replicate scalar to packed int values in Double register
  8137 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8138   match(Set dst (Replicate2I src));
  8139   expand %{
  8140     iRegL tmp;
  8141     Repl2I_reg_helper(tmp, src);
  8142     regL_to_stkD(dst, tmp);
  8143   %}
  8144 %}
  8146 // Replicate scalar zero constant to packed int values in Double register
  8147 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  8148   match(Set dst (Replicate2I src));
  8149 #ifdef _LP64
  8150   size(36);
  8151 #else
  8152   size(8);
  8153 #endif
  8154   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  8155             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  8156   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  8157   ins_pipe(loadConFD);
  8158 %}
  8160 //----------Control Flow Instructions------------------------------------------
  8161 // Compare Instructions
  8162 // Compare Integers
  8163 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8164   match(Set icc (CmpI op1 op2));
  8165   effect( DEF icc, USE op1, USE op2 );
  8167   size(4);
  8168   format %{ "CMP    $op1,$op2" %}
  8169   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8170   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8171   ins_pipe(ialu_cconly_reg_reg);
  8172 %}
  8174 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8175   match(Set icc (CmpU op1 op2));
  8177   size(4);
  8178   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8179   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8180   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8181   ins_pipe(ialu_cconly_reg_reg);
  8182 %}
  8184 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8185   match(Set icc (CmpI op1 op2));
  8186   effect( DEF icc, USE op1 );
  8188   size(4);
  8189   format %{ "CMP    $op1,$op2" %}
  8190   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8191   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8192   ins_pipe(ialu_cconly_reg_imm);
  8193 %}
  8195 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8196   match(Set icc (CmpI (AndI op1 op2) zero));
  8198   size(4);
  8199   format %{ "BTST   $op2,$op1" %}
  8200   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8201   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8202   ins_pipe(ialu_cconly_reg_reg_zero);
  8203 %}
  8205 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8206   match(Set icc (CmpI (AndI op1 op2) zero));
  8208   size(4);
  8209   format %{ "BTST   $op2,$op1" %}
  8210   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8211   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8212   ins_pipe(ialu_cconly_reg_imm_zero);
  8213 %}
  8215 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8216   match(Set xcc (CmpL op1 op2));
  8217   effect( DEF xcc, USE op1, USE op2 );
  8219   size(4);
  8220   format %{ "CMP    $op1,$op2\t\t! long" %}
  8221   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8222   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8223   ins_pipe(ialu_cconly_reg_reg);
  8224 %}
  8226 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8227   match(Set xcc (CmpL op1 con));
  8228   effect( DEF xcc, USE op1, USE con );
  8230   size(4);
  8231   format %{ "CMP    $op1,$con\t\t! long" %}
  8232   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8233   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8234   ins_pipe(ialu_cconly_reg_reg);
  8235 %}
  8237 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8238   match(Set xcc (CmpL (AndL op1 op2) zero));
  8239   effect( DEF xcc, USE op1, USE op2 );
  8241   size(4);
  8242   format %{ "BTST   $op1,$op2\t\t! long" %}
  8243   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8244   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8245   ins_pipe(ialu_cconly_reg_reg);
  8246 %}
  8248 // useful for checking the alignment of a pointer:
  8249 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8250   match(Set xcc (CmpL (AndL op1 con) zero));
  8251   effect( DEF xcc, USE op1, USE con );
  8253   size(4);
  8254   format %{ "BTST   $op1,$con\t\t! long" %}
  8255   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8256   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8257   ins_pipe(ialu_cconly_reg_reg);
  8258 %}
  8260 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8261   match(Set icc (CmpU op1 op2));
  8263   size(4);
  8264   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8265   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8266   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8267   ins_pipe(ialu_cconly_reg_imm);
  8268 %}
  8270 // Compare Pointers
  8271 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8272   match(Set pcc (CmpP op1 op2));
  8274   size(4);
  8275   format %{ "CMP    $op1,$op2\t! ptr" %}
  8276   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8277   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8278   ins_pipe(ialu_cconly_reg_reg);
  8279 %}
  8281 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8282   match(Set pcc (CmpP op1 op2));
  8284   size(4);
  8285   format %{ "CMP    $op1,$op2\t! ptr" %}
  8286   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8287   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8288   ins_pipe(ialu_cconly_reg_imm);
  8289 %}
  8291 // Compare Narrow oops
  8292 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8293   match(Set icc (CmpN op1 op2));
  8295   size(4);
  8296   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8297   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8298   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8299   ins_pipe(ialu_cconly_reg_reg);
  8300 %}
  8302 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8303   match(Set icc (CmpN op1 op2));
  8305   size(4);
  8306   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8307   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8308   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8309   ins_pipe(ialu_cconly_reg_imm);
  8310 %}
  8312 //----------Max and Min--------------------------------------------------------
  8313 // Min Instructions
  8314 // Conditional move for min
  8315 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8316   effect( USE_DEF op2, USE op1, USE icc );
  8318   size(4);
  8319   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8320   opcode(Assembler::less);
  8321   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8322   ins_pipe(ialu_reg_flags);
  8323 %}
  8325 // Min Register with Register.
  8326 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8327   match(Set op2 (MinI op1 op2));
  8328   ins_cost(DEFAULT_COST*2);
  8329   expand %{
  8330     flagsReg icc;
  8331     compI_iReg(icc,op1,op2);
  8332     cmovI_reg_lt(op2,op1,icc);
  8333   %}
  8334 %}
  8336 // Max Instructions
  8337 // Conditional move for max
  8338 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8339   effect( USE_DEF op2, USE op1, USE icc );
  8340   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8341   opcode(Assembler::greater);
  8342   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8343   ins_pipe(ialu_reg_flags);
  8344 %}
  8346 // Max Register with Register
  8347 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8348   match(Set op2 (MaxI op1 op2));
  8349   ins_cost(DEFAULT_COST*2);
  8350   expand %{
  8351     flagsReg icc;
  8352     compI_iReg(icc,op1,op2);
  8353     cmovI_reg_gt(op2,op1,icc);
  8354   %}
  8355 %}
  8358 //----------Float Compares----------------------------------------------------
  8359 // Compare floating, generate condition code
  8360 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8361   match(Set fcc (CmpF src1 src2));
  8363   size(4);
  8364   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8365   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8366   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8367   ins_pipe(faddF_fcc_reg_reg_zero);
  8368 %}
  8370 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8371   match(Set fcc (CmpD src1 src2));
  8373   size(4);
  8374   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8375   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8376   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8377   ins_pipe(faddD_fcc_reg_reg_zero);
  8378 %}
  8381 // Compare floating, generate -1,0,1
  8382 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8383   match(Set dst (CmpF3 src1 src2));
  8384   effect(KILL fcc0);
  8385   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8386   format %{ "fcmpl  $dst,$src1,$src2" %}
  8387   // Primary = float
  8388   opcode( true );
  8389   ins_encode( floating_cmp( dst, src1, src2 ) );
  8390   ins_pipe( floating_cmp );
  8391 %}
  8393 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8394   match(Set dst (CmpD3 src1 src2));
  8395   effect(KILL fcc0);
  8396   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8397   format %{ "dcmpl  $dst,$src1,$src2" %}
  8398   // Primary = double (not float)
  8399   opcode( false );
  8400   ins_encode( floating_cmp( dst, src1, src2 ) );
  8401   ins_pipe( floating_cmp );
  8402 %}
  8404 //----------Branches---------------------------------------------------------
  8405 // Jump
  8406 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8407 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8408   match(Jump switch_val);
  8410   ins_cost(350);
  8412   format %{  "SETHI  [hi(table_base)],O7\n\t"
  8413              "ADD    O7, lo(table_base), O7\n\t"
  8414              "LD     [O7+$switch_val], O7\n\t"
  8415              "JUMP   O7"
  8416          %}
  8417   ins_encode( jump_enc( switch_val, table) );
  8418   ins_pc_relative(1);
  8419   ins_pipe(ialu_reg_reg);
  8420 %}
  8422 // Direct Branch.  Use V8 version with longer range.
  8423 instruct branch(label labl) %{
  8424   match(Goto);
  8425   effect(USE labl);
  8427   size(8);
  8428   ins_cost(BRANCH_COST);
  8429   format %{ "BA     $labl" %}
  8430   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  8431   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  8432   ins_encode( enc_ba( labl ) );
  8433   ins_pc_relative(1);
  8434   ins_pipe(br);
  8435 %}
  8437 // Conditional Direct Branch
  8438 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  8439   match(If cmp icc);
  8440   effect(USE labl);
  8442   size(8);
  8443   ins_cost(BRANCH_COST);
  8444   format %{ "BP$cmp   $icc,$labl" %}
  8445   // Prim = bits 24-22, Secnd = bits 31-30
  8446   ins_encode( enc_bp( labl, cmp, icc ) );
  8447   ins_pc_relative(1);
  8448   ins_pipe(br_cc);
  8449 %}
  8451 // Branch-on-register tests all 64 bits.  We assume that values
  8452 // in 64-bit registers always remains zero or sign extended
  8453 // unless our code munges the high bits.  Interrupts can chop
  8454 // the high order bits to zero or sign at any time.
  8455 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  8456   match(If cmp (CmpI op1 zero));
  8457   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8458   effect(USE labl);
  8460   size(8);
  8461   ins_cost(BRANCH_COST);
  8462   format %{ "BR$cmp   $op1,$labl" %}
  8463   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8464   ins_pc_relative(1);
  8465   ins_pipe(br_reg);
  8466 %}
  8468 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  8469   match(If cmp (CmpP op1 null));
  8470   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8471   effect(USE labl);
  8473   size(8);
  8474   ins_cost(BRANCH_COST);
  8475   format %{ "BR$cmp   $op1,$labl" %}
  8476   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8477   ins_pc_relative(1);
  8478   ins_pipe(br_reg);
  8479 %}
  8481 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  8482   match(If cmp (CmpL op1 zero));
  8483   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8484   effect(USE labl);
  8486   size(8);
  8487   ins_cost(BRANCH_COST);
  8488   format %{ "BR$cmp   $op1,$labl" %}
  8489   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8490   ins_pc_relative(1);
  8491   ins_pipe(br_reg);
  8492 %}
  8494 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8495   match(If cmp icc);
  8496   effect(USE labl);
  8498   format %{ "BP$cmp  $icc,$labl" %}
  8499   // Prim = bits 24-22, Secnd = bits 31-30
  8500   ins_encode( enc_bp( labl, cmp, icc ) );
  8501   ins_pc_relative(1);
  8502   ins_pipe(br_cc);
  8503 %}
  8505 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  8506   match(If cmp pcc);
  8507   effect(USE labl);
  8509   size(8);
  8510   ins_cost(BRANCH_COST);
  8511   format %{ "BP$cmp  $pcc,$labl" %}
  8512   // Prim = bits 24-22, Secnd = bits 31-30
  8513   ins_encode( enc_bpx( labl, cmp, pcc ) );
  8514   ins_pc_relative(1);
  8515   ins_pipe(br_cc);
  8516 %}
  8518 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  8519   match(If cmp fcc);
  8520   effect(USE labl);
  8522   size(8);
  8523   ins_cost(BRANCH_COST);
  8524   format %{ "FBP$cmp $fcc,$labl" %}
  8525   // Prim = bits 24-22, Secnd = bits 31-30
  8526   ins_encode( enc_fbp( labl, cmp, fcc ) );
  8527   ins_pc_relative(1);
  8528   ins_pipe(br_fcc);
  8529 %}
  8531 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  8532   match(CountedLoopEnd cmp icc);
  8533   effect(USE labl);
  8535   size(8);
  8536   ins_cost(BRANCH_COST);
  8537   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  8538   // Prim = bits 24-22, Secnd = bits 31-30
  8539   ins_encode( enc_bp( labl, cmp, icc ) );
  8540   ins_pc_relative(1);
  8541   ins_pipe(br_cc);
  8542 %}
  8544 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8545   match(CountedLoopEnd cmp icc);
  8546   effect(USE labl);
  8548   size(8);
  8549   ins_cost(BRANCH_COST);
  8550   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  8551   // Prim = bits 24-22, Secnd = bits 31-30
  8552   ins_encode( enc_bp( labl, cmp, icc ) );
  8553   ins_pc_relative(1);
  8554   ins_pipe(br_cc);
  8555 %}
  8557 // ============================================================================
  8558 // Long Compare
  8559 //
  8560 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  8561 // is tricky.  The flavor of compare used depends on whether we are testing
  8562 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  8563 // The GE test is the negated LT test.  The LE test can be had by commuting
  8564 // the operands (yielding a GE test) and then negating; negate again for the
  8565 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  8566 // NE test is negated from that.
  8568 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  8569 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  8570 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  8571 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  8572 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  8573 // foo match ends up with the wrong leaf.  One fix is to not match both
  8574 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  8575 // both forms beat the trinary form of long-compare and both are very useful
  8576 // on Intel which has so few registers.
  8578 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  8579   match(If cmp xcc);
  8580   effect(USE labl);
  8582   size(8);
  8583   ins_cost(BRANCH_COST);
  8584   format %{ "BP$cmp   $xcc,$labl" %}
  8585   // Prim = bits 24-22, Secnd = bits 31-30
  8586   ins_encode( enc_bpl( labl, cmp, xcc ) );
  8587   ins_pc_relative(1);
  8588   ins_pipe(br_cc);
  8589 %}
  8591 // Manifest a CmpL3 result in an integer register.  Very painful.
  8592 // This is the test to avoid.
  8593 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  8594   match(Set dst (CmpL3 src1 src2) );
  8595   effect( KILL ccr );
  8596   ins_cost(6*DEFAULT_COST);
  8597   size(24);
  8598   format %{ "CMP    $src1,$src2\t\t! long\n"
  8599           "\tBLT,a,pn done\n"
  8600           "\tMOV    -1,$dst\t! delay slot\n"
  8601           "\tBGT,a,pn done\n"
  8602           "\tMOV    1,$dst\t! delay slot\n"
  8603           "\tCLR    $dst\n"
  8604     "done:"     %}
  8605   ins_encode( cmpl_flag(src1,src2,dst) );
  8606   ins_pipe(cmpL_reg);
  8607 %}
  8609 // Conditional move
  8610 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  8611   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8612   ins_cost(150);
  8613   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8614   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8615   ins_pipe(ialu_reg);
  8616 %}
  8618 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  8619   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8620   ins_cost(140);
  8621   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8622   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8623   ins_pipe(ialu_imm);
  8624 %}
  8626 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  8627   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8628   ins_cost(150);
  8629   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8630   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8631   ins_pipe(ialu_reg);
  8632 %}
  8634 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  8635   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8636   ins_cost(140);
  8637   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8638   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8639   ins_pipe(ialu_imm);
  8640 %}
  8642 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  8643   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  8644   ins_cost(150);
  8645   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8646   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8647   ins_pipe(ialu_reg);
  8648 %}
  8650 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  8651   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8652   ins_cost(150);
  8653   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8654   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8655   ins_pipe(ialu_reg);
  8656 %}
  8658 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  8659   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8660   ins_cost(140);
  8661   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8662   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8663   ins_pipe(ialu_imm);
  8664 %}
  8666 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  8667   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  8668   ins_cost(150);
  8669   opcode(0x101);
  8670   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  8671   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8672   ins_pipe(int_conditional_float_move);
  8673 %}
  8675 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  8676   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  8677   ins_cost(150);
  8678   opcode(0x102);
  8679   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  8680   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8681   ins_pipe(int_conditional_float_move);
  8682 %}
  8684 // ============================================================================
  8685 // Safepoint Instruction
  8686 instruct safePoint_poll(iRegP poll) %{
  8687   match(SafePoint poll);
  8688   effect(USE poll);
  8690   size(4);
  8691 #ifdef _LP64
  8692   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  8693 #else
  8694   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  8695 #endif
  8696   ins_encode %{
  8697     __ relocate(relocInfo::poll_type);
  8698     __ ld_ptr($poll$$Register, 0, G0);
  8699   %}
  8700   ins_pipe(loadPollP);
  8701 %}
  8703 // ============================================================================
  8704 // Call Instructions
  8705 // Call Java Static Instruction
  8706 instruct CallStaticJavaDirect( method meth ) %{
  8707   match(CallStaticJava);
  8708   effect(USE meth);
  8710   size(8);
  8711   ins_cost(CALL_COST);
  8712   format %{ "CALL,static  ; NOP ==> " %}
  8713   ins_encode( Java_Static_Call( meth ), call_epilog );
  8714   ins_pc_relative(1);
  8715   ins_pipe(simple_call);
  8716 %}
  8718 // Call Java Dynamic Instruction
  8719 instruct CallDynamicJavaDirect( method meth ) %{
  8720   match(CallDynamicJava);
  8721   effect(USE meth);
  8723   ins_cost(CALL_COST);
  8724   format %{ "SET    (empty),R_G5\n\t"
  8725             "CALL,dynamic  ; NOP ==> " %}
  8726   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  8727   ins_pc_relative(1);
  8728   ins_pipe(call);
  8729 %}
  8731 // Call Runtime Instruction
  8732 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  8733   match(CallRuntime);
  8734   effect(USE meth, KILL l7);
  8735   ins_cost(CALL_COST);
  8736   format %{ "CALL,runtime" %}
  8737   ins_encode( Java_To_Runtime( meth ),
  8738               call_epilog, adjust_long_from_native_call );
  8739   ins_pc_relative(1);
  8740   ins_pipe(simple_call);
  8741 %}
  8743 // Call runtime without safepoint - same as CallRuntime
  8744 instruct CallLeafDirect(method meth, l7RegP l7) %{
  8745   match(CallLeaf);
  8746   effect(USE meth, KILL l7);
  8747   ins_cost(CALL_COST);
  8748   format %{ "CALL,runtime leaf" %}
  8749   ins_encode( Java_To_Runtime( meth ),
  8750               call_epilog,
  8751               adjust_long_from_native_call );
  8752   ins_pc_relative(1);
  8753   ins_pipe(simple_call);
  8754 %}
  8756 // Call runtime without safepoint - same as CallLeaf
  8757 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  8758   match(CallLeafNoFP);
  8759   effect(USE meth, KILL l7);
  8760   ins_cost(CALL_COST);
  8761   format %{ "CALL,runtime leaf nofp" %}
  8762   ins_encode( Java_To_Runtime( meth ),
  8763               call_epilog,
  8764               adjust_long_from_native_call );
  8765   ins_pc_relative(1);
  8766   ins_pipe(simple_call);
  8767 %}
  8769 // Tail Call; Jump from runtime stub to Java code.
  8770 // Also known as an 'interprocedural jump'.
  8771 // Target of jump will eventually return to caller.
  8772 // TailJump below removes the return address.
  8773 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  8774   match(TailCall jump_target method_oop );
  8776   ins_cost(CALL_COST);
  8777   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  8778   ins_encode(form_jmpl(jump_target));
  8779   ins_pipe(tail_call);
  8780 %}
  8783 // Return Instruction
  8784 instruct Ret() %{
  8785   match(Return);
  8787   // The epilogue node did the ret already.
  8788   size(0);
  8789   format %{ "! return" %}
  8790   ins_encode();
  8791   ins_pipe(empty);
  8792 %}
  8795 // Tail Jump; remove the return address; jump to target.
  8796 // TailCall above leaves the return address around.
  8797 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  8798 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  8799 // "restore" before this instruction (in Epilogue), we need to materialize it
  8800 // in %i0.
  8801 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  8802   match( TailJump jump_target ex_oop );
  8803   ins_cost(CALL_COST);
  8804   format %{ "! discard R_O7\n\t"
  8805             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  8806   ins_encode(form_jmpl_set_exception_pc(jump_target));
  8807   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  8808   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  8809   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  8810   ins_pipe(tail_call);
  8811 %}
  8813 // Create exception oop: created by stack-crawling runtime code.
  8814 // Created exception is now available to this handler, and is setup
  8815 // just prior to jumping to this handler.  No code emitted.
  8816 instruct CreateException( o0RegP ex_oop )
  8817 %{
  8818   match(Set ex_oop (CreateEx));
  8819   ins_cost(0);
  8821   size(0);
  8822   // use the following format syntax
  8823   format %{ "! exception oop is in R_O0; no code emitted" %}
  8824   ins_encode();
  8825   ins_pipe(empty);
  8826 %}
  8829 // Rethrow exception:
  8830 // The exception oop will come in the first argument position.
  8831 // Then JUMP (not call) to the rethrow stub code.
  8832 instruct RethrowException()
  8833 %{
  8834   match(Rethrow);
  8835   ins_cost(CALL_COST);
  8837   // use the following format syntax
  8838   format %{ "Jmp    rethrow_stub" %}
  8839   ins_encode(enc_rethrow);
  8840   ins_pipe(tail_call);
  8841 %}
  8844 // Die now
  8845 instruct ShouldNotReachHere( )
  8846 %{
  8847   match(Halt);
  8848   ins_cost(CALL_COST);
  8850   size(4);
  8851   // Use the following format syntax
  8852   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  8853   ins_encode( form2_illtrap() );
  8854   ins_pipe(tail_call);
  8855 %}
  8857 // ============================================================================
  8858 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  8859 // array for an instance of the superklass.  Set a hidden internal cache on a
  8860 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  8861 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  8862 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  8863   match(Set index (PartialSubtypeCheck sub super));
  8864   effect( KILL pcc, KILL o7 );
  8865   ins_cost(DEFAULT_COST*10);
  8866   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  8867   ins_encode( enc_PartialSubtypeCheck() );
  8868   ins_pipe(partial_subtype_check_pipe);
  8869 %}
  8871 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  8872   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  8873   effect( KILL idx, KILL o7 );
  8874   ins_cost(DEFAULT_COST*10);
  8875   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  8876   ins_encode( enc_PartialSubtypeCheck() );
  8877   ins_pipe(partial_subtype_check_pipe);
  8878 %}
  8881 // ============================================================================
  8882 // inlined locking and unlocking
  8884 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  8885   match(Set pcc (FastLock object box));
  8887   effect(KILL scratch, TEMP scratch2);
  8888   ins_cost(100);
  8890   size(4*112);       // conservative overestimation ...
  8891   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  8892   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  8893   ins_pipe(long_memory_op);
  8894 %}
  8897 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  8898   match(Set pcc (FastUnlock object box));
  8899   effect(KILL scratch, TEMP scratch2);
  8900   ins_cost(100);
  8902   size(4*120);       // conservative overestimation ...
  8903   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  8904   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  8905   ins_pipe(long_memory_op);
  8906 %}
  8908 // Count and Base registers are fixed because the allocator cannot
  8909 // kill unknown registers.  The encodings are generic.
  8910 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  8911   match(Set dummy (ClearArray cnt base));
  8912   effect(TEMP temp, KILL ccr);
  8913   ins_cost(300);
  8914   format %{ "MOV    $cnt,$temp\n"
  8915     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  8916     "        BRge   loop\t\t! Clearing loop\n"
  8917     "        STX    G0,[$base+$temp]\t! delay slot" %}
  8918   ins_encode( enc_Clear_Array(cnt, base, temp) );
  8919   ins_pipe(long_memory_op);
  8920 %}
  8922 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
  8923                         o7RegI tmp3, flagsReg ccr) %{
  8924   match(Set result (StrComp str1 str2));
  8925   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
  8926   ins_cost(300);
  8927   format %{ "String Compare $str1,$str2 -> $result" %}
  8928   ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
  8929   ins_pipe(long_memory_op);
  8930 %}
  8932 // ============================================================================
  8933 //------------Bytes reverse--------------------------------------------------
  8935 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  8936   match(Set dst (ReverseBytesI src));
  8937   effect(DEF dst, USE src);
  8939   // Op cost is artificially doubled to make sure that load or store
  8940   // instructions are preferred over this one which requires a spill
  8941   // onto a stack slot.
  8942   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  8943   size(8);
  8944   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  8945   opcode(Assembler::lduwa_op3);
  8946   ins_encode( form3_mem_reg_little(src, dst) );
  8947   ins_pipe( iload_mem );
  8948 %}
  8950 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  8951   match(Set dst (ReverseBytesL src));
  8952   effect(DEF dst, USE src);
  8954   // Op cost is artificially doubled to make sure that load or store
  8955   // instructions are preferred over this one which requires a spill
  8956   // onto a stack slot.
  8957   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  8958   size(8);
  8959   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  8961   opcode(Assembler::ldxa_op3);
  8962   ins_encode( form3_mem_reg_little(src, dst) );
  8963   ins_pipe( iload_mem );
  8964 %}
  8966 // Load Integer reversed byte order
  8967 instruct loadI_reversed(iRegI dst, memory src) %{
  8968   match(Set dst (ReverseBytesI (LoadI src)));
  8970   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8971   size(8);
  8972   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  8974   opcode(Assembler::lduwa_op3);
  8975   ins_encode( form3_mem_reg_little( src, dst) );
  8976   ins_pipe(iload_mem);
  8977 %}
  8979 // Load Long - aligned and reversed
  8980 instruct loadL_reversed(iRegL dst, memory src) %{
  8981   match(Set dst (ReverseBytesL (LoadL src)));
  8983   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8984   size(8);
  8985   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  8987   opcode(Assembler::ldxa_op3);
  8988   ins_encode( form3_mem_reg_little( src, dst ) );
  8989   ins_pipe(iload_mem);
  8990 %}
  8992 // Store Integer reversed byte order
  8993 instruct storeI_reversed(memory dst, iRegI src) %{
  8994   match(Set dst (StoreI dst (ReverseBytesI src)));
  8996   ins_cost(MEMORY_REF_COST);
  8997   size(8);
  8998   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9000   opcode(Assembler::stwa_op3);
  9001   ins_encode( form3_mem_reg_little( dst, src) );
  9002   ins_pipe(istore_mem_reg);
  9003 %}
  9005 // Store Long reversed byte order
  9006 instruct storeL_reversed(memory dst, iRegL src) %{
  9007   match(Set dst (StoreL dst (ReverseBytesL src)));
  9009   ins_cost(MEMORY_REF_COST);
  9010   size(8);
  9011   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9013   opcode(Assembler::stxa_op3);
  9014   ins_encode( form3_mem_reg_little( dst, src) );
  9015   ins_pipe(istore_mem_reg);
  9016 %}
  9018 //----------PEEPHOLE RULES-----------------------------------------------------
  9019 // These must follow all instruction definitions as they use the names
  9020 // defined in the instructions definitions.
  9021 //
  9022 // peepmatch ( root_instr_name [preceeding_instruction]* );
  9023 //
  9024 // peepconstraint %{
  9025 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9026 //  [, ...] );
  9027 // // instruction numbers are zero-based using left to right order in peepmatch
  9028 //
  9029 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9030 // // provide an instruction_number.operand_name for each operand that appears
  9031 // // in the replacement instruction's match rule
  9032 //
  9033 // ---------VM FLAGS---------------------------------------------------------
  9034 //
  9035 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9036 //
  9037 // Each peephole rule is given an identifying number starting with zero and
  9038 // increasing by one in the order seen by the parser.  An individual peephole
  9039 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9040 // on the command-line.
  9041 //
  9042 // ---------CURRENT LIMITATIONS----------------------------------------------
  9043 //
  9044 // Only match adjacent instructions in same basic block
  9045 // Only equality constraints
  9046 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9047 // Only one replacement instruction
  9048 //
  9049 // ---------EXAMPLE----------------------------------------------------------
  9050 //
  9051 // // pertinent parts of existing instructions in architecture description
  9052 // instruct movI(eRegI dst, eRegI src) %{
  9053 //   match(Set dst (CopyI src));
  9054 // %}
  9055 //
  9056 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  9057 //   match(Set dst (AddI dst src));
  9058 //   effect(KILL cr);
  9059 // %}
  9060 //
  9061 // // Change (inc mov) to lea
  9062 // peephole %{
  9063 //   // increment preceeded by register-register move
  9064 //   peepmatch ( incI_eReg movI );
  9065 //   // require that the destination register of the increment
  9066 //   // match the destination register of the move
  9067 //   peepconstraint ( 0.dst == 1.dst );
  9068 //   // construct a replacement instruction that sets
  9069 //   // the destination to ( move's source register + one )
  9070 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  9071 // %}
  9072 //
  9074 // // Change load of spilled value to only a spill
  9075 // instruct storeI(memory mem, eRegI src) %{
  9076 //   match(Set mem (StoreI mem src));
  9077 // %}
  9078 //
  9079 // instruct loadI(eRegI dst, memory mem) %{
  9080 //   match(Set dst (LoadI mem));
  9081 // %}
  9082 //
  9083 // peephole %{
  9084 //   peepmatch ( loadI storeI );
  9085 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  9086 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  9087 // %}
  9089 //----------SMARTSPILL RULES---------------------------------------------------
  9090 // These must follow all instruction definitions as they use the names
  9091 // defined in the instructions definitions.
  9092 //
  9093 // SPARC will probably not have any of these rules due to RISC instruction set.
  9095 //----------PIPELINE-----------------------------------------------------------
  9096 // Rules which define the behavior of the target architectures pipeline.

mercurial