src/share/vm/gc_interface/collectedHeap.cpp

Wed, 06 Jan 2010 14:22:39 -0800

author
never
date
Wed, 06 Jan 2010 14:22:39 -0800
changeset 1577
4ce7240d622c
parent 1462
39b01ab7035a
child 1600
2dd52dea6d28
permissions
-rw-r--r--

6914300: ciEnv should export all well known classes
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_collectedHeap.cpp.incl"
    29 #ifdef ASSERT
    30 int CollectedHeap::_fire_out_of_memory_count = 0;
    31 #endif
    33 size_t CollectedHeap::_filler_array_max_size = 0;
    35 // Memory state functions.
    37 CollectedHeap::CollectedHeap()
    38 {
    39   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
    40   const size_t elements_per_word = HeapWordSize / sizeof(jint);
    41   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
    42                                              max_len * elements_per_word);
    44   _barrier_set = NULL;
    45   _is_gc_active = false;
    46   _total_collections = _total_full_collections = 0;
    47   _gc_cause = _gc_lastcause = GCCause::_no_gc;
    48   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
    49   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
    51   if (UsePerfData) {
    52     EXCEPTION_MARK;
    54     // create the gc cause jvmstat counters
    55     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
    56                              80, GCCause::to_string(_gc_cause), CHECK);
    58     _perf_gc_lastcause =
    59                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
    60                              80, GCCause::to_string(_gc_lastcause), CHECK);
    61   }
    62 }
    65 #ifndef PRODUCT
    66 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
    67   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
    68     for (size_t slot = 0; slot < size; slot += 1) {
    69       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
    70              "Found badHeapWordValue in post-allocation check");
    71     }
    72   }
    73 }
    75 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
    76  {
    77   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
    78     for (size_t slot = 0; slot < size; slot += 1) {
    79       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
    80              "Found non badHeapWordValue in pre-allocation check");
    81     }
    82   }
    83 }
    84 #endif // PRODUCT
    86 #ifdef ASSERT
    87 void CollectedHeap::check_for_valid_allocation_state() {
    88   Thread *thread = Thread::current();
    89   // How to choose between a pending exception and a potential
    90   // OutOfMemoryError?  Don't allow pending exceptions.
    91   // This is a VM policy failure, so how do we exhaustively test it?
    92   assert(!thread->has_pending_exception(),
    93          "shouldn't be allocating with pending exception");
    94   if (StrictSafepointChecks) {
    95     assert(thread->allow_allocation(),
    96            "Allocation done by thread for which allocation is blocked "
    97            "by No_Allocation_Verifier!");
    98     // Allocation of an oop can always invoke a safepoint,
    99     // hence, the true argument
   100     thread->check_for_valid_safepoint_state(true);
   101   }
   102 }
   103 #endif
   105 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
   107   // Retain tlab and allocate object in shared space if
   108   // the amount free in the tlab is too large to discard.
   109   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
   110     thread->tlab().record_slow_allocation(size);
   111     return NULL;
   112   }
   114   // Discard tlab and allocate a new one.
   115   // To minimize fragmentation, the last TLAB may be smaller than the rest.
   116   size_t new_tlab_size = thread->tlab().compute_size(size);
   118   thread->tlab().clear_before_allocation();
   120   if (new_tlab_size == 0) {
   121     return NULL;
   122   }
   124   // Allocate a new TLAB...
   125   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
   126   if (obj == NULL) {
   127     return NULL;
   128   }
   129   if (ZeroTLAB) {
   130     // ..and clear it.
   131     Copy::zero_to_words(obj, new_tlab_size);
   132   } else {
   133     // ...and clear just the allocated object.
   134     Copy::zero_to_words(obj, size);
   135   }
   136   thread->tlab().fill(obj, obj + size, new_tlab_size);
   137   return obj;
   138 }
   140 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
   141   MemRegion deferred = thread->deferred_card_mark();
   142   if (!deferred.is_empty()) {
   143     {
   144       // Verify that the storage points to a parsable object in heap
   145       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
   146       assert(is_in(old_obj), "Not in allocated heap");
   147       assert(!can_elide_initializing_store_barrier(old_obj),
   148              "Else should have been filtered in defer_store_barrier()");
   149       assert(!is_in_permanent(old_obj), "Sanity: not expected");
   150       assert(old_obj->is_oop(true), "Not an oop");
   151       assert(old_obj->is_parsable(), "Will not be concurrently parsable");
   152       assert(deferred.word_size() == (size_t)(old_obj->size()),
   153              "Mismatch: multiple objects?");
   154     }
   155     BarrierSet* bs = barrier_set();
   156     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   157     bs->write_region(deferred);
   158     // "Clear" the deferred_card_mark field
   159     thread->set_deferred_card_mark(MemRegion());
   160   }
   161   assert(thread->deferred_card_mark().is_empty(), "invariant");
   162 }
   164 // Helper for ReduceInitialCardMarks. For performance,
   165 // compiled code may elide card-marks for initializing stores
   166 // to a newly allocated object along the fast-path. We
   167 // compensate for such elided card-marks as follows:
   168 // (a) Generational, non-concurrent collectors, such as
   169 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
   170 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
   171 //     need the card-mark if and only if the region is
   172 //     in the old gen, and do not care if the card-mark
   173 //     succeeds or precedes the initializing stores themselves,
   174 //     so long as the card-mark is completed before the next
   175 //     scavenge. For all these cases, we can do a card mark
   176 //     at the point at which we do a slow path allocation
   177 //     in the old gen. For uniformity, however, we end
   178 //     up using the same scheme (see below) for all three
   179 //     cases (deferring the card-mark appropriately).
   180 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
   181 //     in addition that the card-mark for an old gen allocated
   182 //     object strictly follow any associated initializing stores.
   183 //     In these cases, the memRegion remembered below is
   184 //     used to card-mark the entire region either just before the next
   185 //     slow-path allocation by this thread or just before the next scavenge or
   186 //     CMS-associated safepoint, whichever of these events happens first.
   187 //     (The implicit assumption is that the object has been fully
   188 //     initialized by this point, a fact that we assert when doing the
   189 //     card-mark.)
   190 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
   191 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
   192 //     is used to remember the pre-value of any store. Initializing
   193 //     stores will not need this barrier, so we need not worry about
   194 //     compensating for the missing pre-barrier here. Turning now
   195 //     to the post-barrier, we note that G1 needs a RS update barrier
   196 //     which simply enqueues a (sequence of) dirty cards which may
   197 //     optionally be refined by the concurrent update threads. Note
   198 //     that this barrier need only be applied to a non-young write,
   199 //     but, like in CMS, because of the presence of concurrent refinement
   200 //     (much like CMS' precleaning), must strictly follow the oop-store.
   201 //     Thus, using the same protocol for maintaining the intended
   202 //     invariants turns out, serendepitously, to be the same for all
   203 //     three collectors/heap types above.
   204 //
   205 // For each future collector, this should be reexamined with
   206 // that specific collector in mind.
   207 oop CollectedHeap::defer_store_barrier(JavaThread* thread, oop new_obj) {
   208   // If a previous card-mark was deferred, flush it now.
   209   flush_deferred_store_barrier(thread);
   210   if (can_elide_initializing_store_barrier(new_obj)) {
   211     // The deferred_card_mark region should be empty
   212     // following the flush above.
   213     assert(thread->deferred_card_mark().is_empty(), "Error");
   214   } else {
   215     // Remember info for the newly deferred store barrier
   216     MemRegion deferred = MemRegion((HeapWord*)new_obj, new_obj->size());
   217     assert(!deferred.is_empty(), "Error");
   218     thread->set_deferred_card_mark(deferred);
   219   }
   220   return new_obj;
   221 }
   223 size_t CollectedHeap::filler_array_hdr_size() {
   224   return size_t(arrayOopDesc::header_size(T_INT));
   225 }
   227 size_t CollectedHeap::filler_array_min_size() {
   228   return align_object_size(filler_array_hdr_size());
   229 }
   231 size_t CollectedHeap::filler_array_max_size() {
   232   return _filler_array_max_size;
   233 }
   235 #ifdef ASSERT
   236 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
   237 {
   238   assert(words >= min_fill_size(), "too small to fill");
   239   assert(words % MinObjAlignment == 0, "unaligned size");
   240   assert(Universe::heap()->is_in_reserved(start), "not in heap");
   241   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
   242 }
   244 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words)
   245 {
   246   if (ZapFillerObjects) {
   247     Copy::fill_to_words(start + filler_array_hdr_size(),
   248                         words - filler_array_hdr_size(), 0XDEAFBABE);
   249   }
   250 }
   251 #endif // ASSERT
   253 void
   254 CollectedHeap::fill_with_array(HeapWord* start, size_t words)
   255 {
   256   assert(words >= filler_array_min_size(), "too small for an array");
   257   assert(words <= filler_array_max_size(), "too big for a single object");
   259   const size_t payload_size = words - filler_array_hdr_size();
   260   const size_t len = payload_size * HeapWordSize / sizeof(jint);
   262   // Set the length first for concurrent GC.
   263   ((arrayOop)start)->set_length((int)len);
   264   post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
   265   DEBUG_ONLY(zap_filler_array(start, words);)
   266 }
   268 void
   269 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words)
   270 {
   271   assert(words <= filler_array_max_size(), "too big for a single object");
   273   if (words >= filler_array_min_size()) {
   274     fill_with_array(start, words);
   275   } else if (words > 0) {
   276     assert(words == min_fill_size(), "unaligned size");
   277     post_allocation_setup_common(SystemDictionary::Object_klass(), start,
   278                                  words);
   279   }
   280 }
   282 void CollectedHeap::fill_with_object(HeapWord* start, size_t words)
   283 {
   284   DEBUG_ONLY(fill_args_check(start, words);)
   285   HandleMark hm;  // Free handles before leaving.
   286   fill_with_object_impl(start, words);
   287 }
   289 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words)
   290 {
   291   DEBUG_ONLY(fill_args_check(start, words);)
   292   HandleMark hm;  // Free handles before leaving.
   294 #ifdef LP64
   295   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
   296   // First fill with arrays, ensuring that any remaining space is big enough to
   297   // fill.  The remainder is filled with a single object.
   298   const size_t min = min_fill_size();
   299   const size_t max = filler_array_max_size();
   300   while (words > max) {
   301     const size_t cur = words - max >= min ? max : max - min;
   302     fill_with_array(start, cur);
   303     start += cur;
   304     words -= cur;
   305   }
   306 #endif
   308   fill_with_object_impl(start, words);
   309 }
   311 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
   312   guarantee(false, "thread-local allocation buffers not supported");
   313   return NULL;
   314 }
   316 void CollectedHeap::fill_all_tlabs(bool retire) {
   317   assert(UseTLAB, "should not reach here");
   318   // See note in ensure_parsability() below.
   319   assert(SafepointSynchronize::is_at_safepoint() ||
   320          !is_init_completed(),
   321          "should only fill tlabs at safepoint");
   322   // The main thread starts allocating via a TLAB even before it
   323   // has added itself to the threads list at vm boot-up.
   324   assert(Threads::first() != NULL,
   325          "Attempt to fill tlabs before main thread has been added"
   326          " to threads list is doomed to failure!");
   327   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   328      thread->tlab().make_parsable(retire);
   329   }
   330 }
   332 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
   333   // The second disjunct in the assertion below makes a concession
   334   // for the start-up verification done while the VM is being
   335   // created. Callers be careful that you know that mutators
   336   // aren't going to interfere -- for instance, this is permissible
   337   // if we are still single-threaded and have either not yet
   338   // started allocating (nothing much to verify) or we have
   339   // started allocating but are now a full-fledged JavaThread
   340   // (and have thus made our TLAB's) available for filling.
   341   assert(SafepointSynchronize::is_at_safepoint() ||
   342          !is_init_completed(),
   343          "Should only be called at a safepoint or at start-up"
   344          " otherwise concurrent mutator activity may make heap "
   345          " unparsable again");
   346   if (UseTLAB) {
   347     fill_all_tlabs(retire_tlabs);
   348   }
   349 }
   351 void CollectedHeap::accumulate_statistics_all_tlabs() {
   352   if (UseTLAB) {
   353     assert(SafepointSynchronize::is_at_safepoint() ||
   354          !is_init_completed(),
   355          "should only accumulate statistics on tlabs at safepoint");
   357     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
   358   }
   359 }
   361 void CollectedHeap::resize_all_tlabs() {
   362   if (UseTLAB) {
   363     assert(SafepointSynchronize::is_at_safepoint() ||
   364          !is_init_completed(),
   365          "should only resize tlabs at safepoint");
   367     ThreadLocalAllocBuffer::resize_all_tlabs();
   368   }
   369 }
   371 void CollectedHeap::pre_full_gc_dump() {
   372   if (HeapDumpBeforeFullGC) {
   373     TraceTime tt("Heap Dump: ", PrintGCDetails, false, gclog_or_tty);
   374     // We are doing a "major" collection and a heap dump before
   375     // major collection has been requested.
   376     HeapDumper::dump_heap();
   377   }
   378   if (PrintClassHistogramBeforeFullGC) {
   379     TraceTime tt("Class Histogram: ", PrintGCDetails, true, gclog_or_tty);
   380     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
   381     inspector.doit();
   382   }
   383 }
   385 void CollectedHeap::post_full_gc_dump() {
   386   if (HeapDumpAfterFullGC) {
   387     TraceTime tt("Heap Dump", PrintGCDetails, false, gclog_or_tty);
   388     HeapDumper::dump_heap();
   389   }
   390   if (PrintClassHistogramAfterFullGC) {
   391     TraceTime tt("Class Histogram", PrintGCDetails, true, gclog_or_tty);
   392     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
   393     inspector.doit();
   394   }
   395 }

mercurial