src/os/solaris/vm/os_solaris.cpp

Fri, 16 Aug 2013 13:22:32 +0200

author
stefank
date
Fri, 16 Aug 2013 13:22:32 +0200
changeset 5578
4c84d351cca9
parent 5385
ec173c8f3739
child 5701
40136aa2cdb1
child 6462
e2722a66aba7
permissions
-rw-r--r--

8007074: SIGSEGV at ParMarkBitMap::verify_clear()
Summary: Replace the broken large pages implementation on Linux. New flag: -XX:+UseTransparentHugePages - Linux specific flag to turn on transparent huge page hinting with madvise(..., MAP_HUGETLB). Changed behavior: -XX:+UseLargePages - tries to use -XX:+UseTransparentHugePages before trying other large pages implementations (on Linux). Changed behavior: -XX:+UseHugeTLBFS - Use upfront allocation of Large Pages instead of using the broken implementation to dynamically committing large pages. Changed behavior: -XX:LargePageSizeInBytes - Turned off the ability to use this flag on Linux and provides warning to user if set to a value different than the OS chosen large page size. Changed behavior: Setting no large page size - Now defaults to use -XX:UseTransparentHugePages if the OS supports it. Previously, -XX:+UseHugeTLBFS was chosen if the OS was configured to use large pages.
Reviewed-by: tschatzl, dcubed, brutisso

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_solaris.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_solaris.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_solaris.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/java.hpp"
    48 #include "runtime/javaCalls.hpp"
    49 #include "runtime/mutexLocker.hpp"
    50 #include "runtime/objectMonitor.hpp"
    51 #include "runtime/osThread.hpp"
    52 #include "runtime/perfMemory.hpp"
    53 #include "runtime/sharedRuntime.hpp"
    54 #include "runtime/statSampler.hpp"
    55 #include "runtime/stubRoutines.hpp"
    56 #include "runtime/thread.inline.hpp"
    57 #include "runtime/threadCritical.hpp"
    58 #include "runtime/timer.hpp"
    59 #include "services/attachListener.hpp"
    60 #include "services/memTracker.hpp"
    61 #include "services/runtimeService.hpp"
    62 #include "utilities/decoder.hpp"
    63 #include "utilities/defaultStream.hpp"
    64 #include "utilities/events.hpp"
    65 #include "utilities/growableArray.hpp"
    66 #include "utilities/vmError.hpp"
    68 // put OS-includes here
    69 # include <dlfcn.h>
    70 # include <errno.h>
    71 # include <exception>
    72 # include <link.h>
    73 # include <poll.h>
    74 # include <pthread.h>
    75 # include <pwd.h>
    76 # include <schedctl.h>
    77 # include <setjmp.h>
    78 # include <signal.h>
    79 # include <stdio.h>
    80 # include <alloca.h>
    81 # include <sys/filio.h>
    82 # include <sys/ipc.h>
    83 # include <sys/lwp.h>
    84 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
    85 # include <sys/mman.h>
    86 # include <sys/processor.h>
    87 # include <sys/procset.h>
    88 # include <sys/pset.h>
    89 # include <sys/resource.h>
    90 # include <sys/shm.h>
    91 # include <sys/socket.h>
    92 # include <sys/stat.h>
    93 # include <sys/systeminfo.h>
    94 # include <sys/time.h>
    95 # include <sys/times.h>
    96 # include <sys/types.h>
    97 # include <sys/wait.h>
    98 # include <sys/utsname.h>
    99 # include <thread.h>
   100 # include <unistd.h>
   101 # include <sys/priocntl.h>
   102 # include <sys/rtpriocntl.h>
   103 # include <sys/tspriocntl.h>
   104 # include <sys/iapriocntl.h>
   105 # include <sys/fxpriocntl.h>
   106 # include <sys/loadavg.h>
   107 # include <string.h>
   108 # include <stdio.h>
   110 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
   111 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
   113 #define MAX_PATH (2 * K)
   115 // for timer info max values which include all bits
   116 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   119 // Here are some liblgrp types from sys/lgrp_user.h to be able to
   120 // compile on older systems without this header file.
   122 #ifndef MADV_ACCESS_LWP
   123 # define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
   124 #endif
   125 #ifndef MADV_ACCESS_MANY
   126 # define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
   127 #endif
   129 #ifndef LGRP_RSRC_CPU
   130 # define LGRP_RSRC_CPU           0       /* CPU resources */
   131 #endif
   132 #ifndef LGRP_RSRC_MEM
   133 # define LGRP_RSRC_MEM           1       /* memory resources */
   134 #endif
   136 // see thr_setprio(3T) for the basis of these numbers
   137 #define MinimumPriority 0
   138 #define NormalPriority  64
   139 #define MaximumPriority 127
   141 // Values for ThreadPriorityPolicy == 1
   142 int prio_policy1[CriticalPriority+1] = {
   143   -99999,  0, 16,  32,  48,  64,
   144           80, 96, 112, 124, 127, 127 };
   146 // System parameters used internally
   147 static clock_t clock_tics_per_sec = 100;
   149 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
   150 static bool enabled_extended_FILE_stdio = false;
   152 // For diagnostics to print a message once. see run_periodic_checks
   153 static bool check_addr0_done = false;
   154 static sigset_t check_signal_done;
   155 static bool check_signals = true;
   157 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
   158 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
   160 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
   163 // "default" initializers for missing libc APIs
   164 extern "C" {
   165   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   166   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
   168   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   169   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
   170 }
   172 // "default" initializers for pthread-based synchronization
   173 extern "C" {
   174   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   175   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   176 }
   178 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   180 // Thread Local Storage
   181 // This is common to all Solaris platforms so it is defined here,
   182 // in this common file.
   183 // The declarations are in the os_cpu threadLS*.hpp files.
   184 //
   185 // Static member initialization for TLS
   186 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
   188 #ifndef PRODUCT
   189 #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
   191 int ThreadLocalStorage::_tcacheHit = 0;
   192 int ThreadLocalStorage::_tcacheMiss = 0;
   194 void ThreadLocalStorage::print_statistics() {
   195   int total = _tcacheMiss+_tcacheHit;
   196   tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
   197                 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
   198 }
   199 #undef _PCT
   200 #endif // PRODUCT
   202 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
   203                                                         int index) {
   204   Thread *thread = get_thread_slow();
   205   if (thread != NULL) {
   206     address sp = os::current_stack_pointer();
   207     guarantee(thread->_stack_base == NULL ||
   208               (sp <= thread->_stack_base &&
   209                  sp >= thread->_stack_base - thread->_stack_size) ||
   210                is_error_reported(),
   211               "sp must be inside of selected thread stack");
   213     thread->set_self_raw_id(raw_id);  // mark for quick retrieval
   214     _get_thread_cache[ index ] = thread;
   215   }
   216   return thread;
   217 }
   220 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
   221 #define NO_CACHED_THREAD ((Thread*)all_zero)
   223 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
   225   // Store the new value before updating the cache to prevent a race
   226   // between get_thread_via_cache_slowly() and this store operation.
   227   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
   229   // Update thread cache with new thread if setting on thread create,
   230   // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
   231   uintptr_t raw = pd_raw_thread_id();
   232   int ix = pd_cache_index(raw);
   233   _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
   234 }
   236 void ThreadLocalStorage::pd_init() {
   237   for (int i = 0; i < _pd_cache_size; i++) {
   238     _get_thread_cache[i] = NO_CACHED_THREAD;
   239   }
   240 }
   242 // Invalidate all the caches (happens to be the same as pd_init).
   243 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
   245 #undef NO_CACHED_THREAD
   247 // END Thread Local Storage
   249 static inline size_t adjust_stack_size(address base, size_t size) {
   250   if ((ssize_t)size < 0) {
   251     // 4759953: Compensate for ridiculous stack size.
   252     size = max_intx;
   253   }
   254   if (size > (size_t)base) {
   255     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
   256     size = (size_t)base;
   257   }
   258   return size;
   259 }
   261 static inline stack_t get_stack_info() {
   262   stack_t st;
   263   int retval = thr_stksegment(&st);
   264   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
   265   assert(retval == 0, "incorrect return value from thr_stksegment");
   266   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
   267   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
   268   return st;
   269 }
   271 address os::current_stack_base() {
   272   int r = thr_main() ;
   273   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   274   bool is_primordial_thread = r;
   276   // Workaround 4352906, avoid calls to thr_stksegment by
   277   // thr_main after the first one (it looks like we trash
   278   // some data, causing the value for ss_sp to be incorrect).
   279   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
   280     stack_t st = get_stack_info();
   281     if (is_primordial_thread) {
   282       // cache initial value of stack base
   283       os::Solaris::_main_stack_base = (address)st.ss_sp;
   284     }
   285     return (address)st.ss_sp;
   286   } else {
   287     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
   288     return os::Solaris::_main_stack_base;
   289   }
   290 }
   292 size_t os::current_stack_size() {
   293   size_t size;
   295   int r = thr_main() ;
   296   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   297   if(!r) {
   298     size = get_stack_info().ss_size;
   299   } else {
   300     struct rlimit limits;
   301     getrlimit(RLIMIT_STACK, &limits);
   302     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
   303   }
   304   // base may not be page aligned
   305   address base = current_stack_base();
   306   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
   307   return (size_t)(base - bottom);
   308 }
   310 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
   311   return localtime_r(clock, res);
   312 }
   314 // interruptible infrastructure
   316 // setup_interruptible saves the thread state before going into an
   317 // interruptible system call.
   318 // The saved state is used to restore the thread to
   319 // its former state whether or not an interrupt is received.
   320 // Used by classloader os::read
   321 // os::restartable_read calls skip this layer and stay in _thread_in_native
   323 void os::Solaris::setup_interruptible(JavaThread* thread) {
   325   JavaThreadState thread_state = thread->thread_state();
   327   assert(thread_state != _thread_blocked, "Coming from the wrong thread");
   328   assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
   329   OSThread* osthread = thread->osthread();
   330   osthread->set_saved_interrupt_thread_state(thread_state);
   331   thread->frame_anchor()->make_walkable(thread);
   332   ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
   333 }
   335 // Version of setup_interruptible() for threads that are already in
   336 // _thread_blocked. Used by os_sleep().
   337 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
   338   thread->frame_anchor()->make_walkable(thread);
   339 }
   341 JavaThread* os::Solaris::setup_interruptible() {
   342   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   343   setup_interruptible(thread);
   344   return thread;
   345 }
   347 void os::Solaris::try_enable_extended_io() {
   348   typedef int (*enable_extended_FILE_stdio_t)(int, int);
   350   if (!UseExtendedFileIO) {
   351     return;
   352   }
   354   enable_extended_FILE_stdio_t enabler =
   355     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
   356                                          "enable_extended_FILE_stdio");
   357   if (enabler) {
   358     enabler(-1, -1);
   359   }
   360 }
   363 #ifdef ASSERT
   365 JavaThread* os::Solaris::setup_interruptible_native() {
   366   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   367   JavaThreadState thread_state = thread->thread_state();
   368   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   369   return thread;
   370 }
   372 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
   373   JavaThreadState thread_state = thread->thread_state();
   374   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   375 }
   376 #endif
   378 // cleanup_interruptible reverses the effects of setup_interruptible
   379 // setup_interruptible_already_blocked() does not need any cleanup.
   381 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
   382   OSThread* osthread = thread->osthread();
   384   ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
   385 }
   387 // I/O interruption related counters called in _INTERRUPTIBLE
   389 void os::Solaris::bump_interrupted_before_count() {
   390   RuntimeService::record_interrupted_before_count();
   391 }
   393 void os::Solaris::bump_interrupted_during_count() {
   394   RuntimeService::record_interrupted_during_count();
   395 }
   397 static int _processors_online = 0;
   399          jint os::Solaris::_os_thread_limit = 0;
   400 volatile jint os::Solaris::_os_thread_count = 0;
   402 julong os::available_memory() {
   403   return Solaris::available_memory();
   404 }
   406 julong os::Solaris::available_memory() {
   407   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
   408 }
   410 julong os::Solaris::_physical_memory = 0;
   412 julong os::physical_memory() {
   413    return Solaris::physical_memory();
   414 }
   416 static hrtime_t first_hrtime = 0;
   417 static const hrtime_t hrtime_hz = 1000*1000*1000;
   418 const int LOCK_BUSY = 1;
   419 const int LOCK_FREE = 0;
   420 const int LOCK_INVALID = -1;
   421 static volatile hrtime_t max_hrtime = 0;
   422 static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
   425 void os::Solaris::initialize_system_info() {
   426   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   427   _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
   428   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   429 }
   431 int os::active_processor_count() {
   432   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
   433   pid_t pid = getpid();
   434   psetid_t pset = PS_NONE;
   435   // Are we running in a processor set or is there any processor set around?
   436   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
   437     uint_t pset_cpus;
   438     // Query the number of cpus available to us.
   439     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
   440       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
   441       _processors_online = pset_cpus;
   442       return pset_cpus;
   443     }
   444   }
   445   // Otherwise return number of online cpus
   446   return online_cpus;
   447 }
   449 static bool find_processors_in_pset(psetid_t        pset,
   450                                     processorid_t** id_array,
   451                                     uint_t*         id_length) {
   452   bool result = false;
   453   // Find the number of processors in the processor set.
   454   if (pset_info(pset, NULL, id_length, NULL) == 0) {
   455     // Make up an array to hold their ids.
   456     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
   457     // Fill in the array with their processor ids.
   458     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
   459       result = true;
   460     }
   461   }
   462   return result;
   463 }
   465 // Callers of find_processors_online() must tolerate imprecise results --
   466 // the system configuration can change asynchronously because of DR
   467 // or explicit psradm operations.
   468 //
   469 // We also need to take care that the loop (below) terminates as the
   470 // number of processors online can change between the _SC_NPROCESSORS_ONLN
   471 // request and the loop that builds the list of processor ids.   Unfortunately
   472 // there's no reliable way to determine the maximum valid processor id,
   473 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
   474 // man pages, which claim the processor id set is "sparse, but
   475 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
   476 // exit the loop.
   477 //
   478 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
   479 // not available on S8.0.
   481 static bool find_processors_online(processorid_t** id_array,
   482                                    uint*           id_length) {
   483   const processorid_t MAX_PROCESSOR_ID = 100000 ;
   484   // Find the number of processors online.
   485   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
   486   // Make up an array to hold their ids.
   487   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
   488   // Processors need not be numbered consecutively.
   489   long found = 0;
   490   processorid_t next = 0;
   491   while (found < *id_length && next < MAX_PROCESSOR_ID) {
   492     processor_info_t info;
   493     if (processor_info(next, &info) == 0) {
   494       // NB, PI_NOINTR processors are effectively online ...
   495       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
   496         (*id_array)[found] = next;
   497         found += 1;
   498       }
   499     }
   500     next += 1;
   501   }
   502   if (found < *id_length) {
   503       // The loop above didn't identify the expected number of processors.
   504       // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
   505       // and re-running the loop, above, but there's no guarantee of progress
   506       // if the system configuration is in flux.  Instead, we just return what
   507       // we've got.  Note that in the worst case find_processors_online() could
   508       // return an empty set.  (As a fall-back in the case of the empty set we
   509       // could just return the ID of the current processor).
   510       *id_length = found ;
   511   }
   513   return true;
   514 }
   516 static bool assign_distribution(processorid_t* id_array,
   517                                 uint           id_length,
   518                                 uint*          distribution,
   519                                 uint           distribution_length) {
   520   // We assume we can assign processorid_t's to uint's.
   521   assert(sizeof(processorid_t) == sizeof(uint),
   522          "can't convert processorid_t to uint");
   523   // Quick check to see if we won't succeed.
   524   if (id_length < distribution_length) {
   525     return false;
   526   }
   527   // Assign processor ids to the distribution.
   528   // Try to shuffle processors to distribute work across boards,
   529   // assuming 4 processors per board.
   530   const uint processors_per_board = ProcessDistributionStride;
   531   // Find the maximum processor id.
   532   processorid_t max_id = 0;
   533   for (uint m = 0; m < id_length; m += 1) {
   534     max_id = MAX2(max_id, id_array[m]);
   535   }
   536   // The next id, to limit loops.
   537   const processorid_t limit_id = max_id + 1;
   538   // Make up markers for available processors.
   539   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
   540   for (uint c = 0; c < limit_id; c += 1) {
   541     available_id[c] = false;
   542   }
   543   for (uint a = 0; a < id_length; a += 1) {
   544     available_id[id_array[a]] = true;
   545   }
   546   // Step by "boards", then by "slot", copying to "assigned".
   547   // NEEDS_CLEANUP: The assignment of processors should be stateful,
   548   //                remembering which processors have been assigned by
   549   //                previous calls, etc., so as to distribute several
   550   //                independent calls of this method.  What we'd like is
   551   //                It would be nice to have an API that let us ask
   552   //                how many processes are bound to a processor,
   553   //                but we don't have that, either.
   554   //                In the short term, "board" is static so that
   555   //                subsequent distributions don't all start at board 0.
   556   static uint board = 0;
   557   uint assigned = 0;
   558   // Until we've found enough processors ....
   559   while (assigned < distribution_length) {
   560     // ... find the next available processor in the board.
   561     for (uint slot = 0; slot < processors_per_board; slot += 1) {
   562       uint try_id = board * processors_per_board + slot;
   563       if ((try_id < limit_id) && (available_id[try_id] == true)) {
   564         distribution[assigned] = try_id;
   565         available_id[try_id] = false;
   566         assigned += 1;
   567         break;
   568       }
   569     }
   570     board += 1;
   571     if (board * processors_per_board + 0 >= limit_id) {
   572       board = 0;
   573     }
   574   }
   575   if (available_id != NULL) {
   576     FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
   577   }
   578   return true;
   579 }
   581 void os::set_native_thread_name(const char *name) {
   582   // Not yet implemented.
   583   return;
   584 }
   586 bool os::distribute_processes(uint length, uint* distribution) {
   587   bool result = false;
   588   // Find the processor id's of all the available CPUs.
   589   processorid_t* id_array  = NULL;
   590   uint           id_length = 0;
   591   // There are some races between querying information and using it,
   592   // since processor sets can change dynamically.
   593   psetid_t pset = PS_NONE;
   594   // Are we running in a processor set?
   595   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
   596     result = find_processors_in_pset(pset, &id_array, &id_length);
   597   } else {
   598     result = find_processors_online(&id_array, &id_length);
   599   }
   600   if (result == true) {
   601     if (id_length >= length) {
   602       result = assign_distribution(id_array, id_length, distribution, length);
   603     } else {
   604       result = false;
   605     }
   606   }
   607   if (id_array != NULL) {
   608     FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
   609   }
   610   return result;
   611 }
   613 bool os::bind_to_processor(uint processor_id) {
   614   // We assume that a processorid_t can be stored in a uint.
   615   assert(sizeof(uint) == sizeof(processorid_t),
   616          "can't convert uint to processorid_t");
   617   int bind_result =
   618     processor_bind(P_LWPID,                       // bind LWP.
   619                    P_MYID,                        // bind current LWP.
   620                    (processorid_t) processor_id,  // id.
   621                    NULL);                         // don't return old binding.
   622   return (bind_result == 0);
   623 }
   625 bool os::getenv(const char* name, char* buffer, int len) {
   626   char* val = ::getenv( name );
   627   if ( val == NULL
   628   ||   strlen(val) + 1  >  len ) {
   629     if (len > 0)  buffer[0] = 0; // return a null string
   630     return false;
   631   }
   632   strcpy( buffer, val );
   633   return true;
   634 }
   637 // Return true if user is running as root.
   639 bool os::have_special_privileges() {
   640   static bool init = false;
   641   static bool privileges = false;
   642   if (!init) {
   643     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   644     init = true;
   645   }
   646   return privileges;
   647 }
   650 void os::init_system_properties_values() {
   651   char arch[12];
   652   sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   654   // The next steps are taken in the product version:
   655   //
   656   // Obtain the JAVA_HOME value from the location of libjvm.so.
   657   // This library should be located at:
   658   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   659   //
   660   // If "/jre/lib/" appears at the right place in the path, then we
   661   // assume libjvm.so is installed in a JDK and we use this path.
   662   //
   663   // Otherwise exit with message: "Could not create the Java virtual machine."
   664   //
   665   // The following extra steps are taken in the debugging version:
   666   //
   667   // If "/jre/lib/" does NOT appear at the right place in the path
   668   // instead of exit check for $JAVA_HOME environment variable.
   669   //
   670   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   671   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   672   // it looks like libjvm.so is installed there
   673   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   674   //
   675   // Otherwise exit.
   676   //
   677   // Important note: if the location of libjvm.so changes this
   678   // code needs to be changed accordingly.
   680   // The next few definitions allow the code to be verbatim:
   681 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   682 #define free(p) FREE_C_HEAP_ARRAY(char, p, mtInternal)
   683 #define getenv(n) ::getenv(n)
   685 #define EXTENSIONS_DIR  "/lib/ext"
   686 #define ENDORSED_DIR    "/lib/endorsed"
   687 #define COMMON_DIR      "/usr/jdk/packages"
   689   {
   690     /* sysclasspath, java_home, dll_dir */
   691     {
   692         char *home_path;
   693         char *dll_path;
   694         char *pslash;
   695         char buf[MAXPATHLEN];
   696         os::jvm_path(buf, sizeof(buf));
   698         // Found the full path to libjvm.so.
   699         // Now cut the path to <java_home>/jre if we can.
   700         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   701         pslash = strrchr(buf, '/');
   702         if (pslash != NULL)
   703             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   704         dll_path = malloc(strlen(buf) + 1);
   705         if (dll_path == NULL)
   706             return;
   707         strcpy(dll_path, buf);
   708         Arguments::set_dll_dir(dll_path);
   710         if (pslash != NULL) {
   711             pslash = strrchr(buf, '/');
   712             if (pslash != NULL) {
   713                 *pslash = '\0';       /* get rid of /<arch> */
   714                 pslash = strrchr(buf, '/');
   715                 if (pslash != NULL)
   716                     *pslash = '\0';   /* get rid of /lib */
   717             }
   718         }
   720         home_path = malloc(strlen(buf) + 1);
   721         if (home_path == NULL)
   722             return;
   723         strcpy(home_path, buf);
   724         Arguments::set_java_home(home_path);
   726         if (!set_boot_path('/', ':'))
   727             return;
   728     }
   730     /*
   731      * Where to look for native libraries
   732      */
   733     {
   734       // Use dlinfo() to determine the correct java.library.path.
   735       //
   736       // If we're launched by the Java launcher, and the user
   737       // does not set java.library.path explicitly on the commandline,
   738       // the Java launcher sets LD_LIBRARY_PATH for us and unsets
   739       // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
   740       // dlinfo returns LD_LIBRARY_PATH + crle settings (including
   741       // /usr/lib), which is exactly what we want.
   742       //
   743       // If the user does set java.library.path, it completely
   744       // overwrites this setting, and always has.
   745       //
   746       // If we're not launched by the Java launcher, we may
   747       // get here with any/all of the LD_LIBRARY_PATH[_32|64]
   748       // settings.  Again, dlinfo does exactly what we want.
   750       Dl_serinfo     _info, *info = &_info;
   751       Dl_serpath     *path;
   752       char*          library_path;
   753       char           *common_path;
   754       int            i;
   756       // determine search path count and required buffer size
   757       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
   758         vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
   759       }
   761       // allocate new buffer and initialize
   762       info = (Dl_serinfo*)malloc(_info.dls_size);
   763       if (info == NULL) {
   764         vm_exit_out_of_memory(_info.dls_size, OOM_MALLOC_ERROR,
   765                               "init_system_properties_values info");
   766       }
   767       info->dls_size = _info.dls_size;
   768       info->dls_cnt = _info.dls_cnt;
   770       // obtain search path information
   771       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
   772         free(info);
   773         vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
   774       }
   776       path = &info->dls_serpath[0];
   778       // Note: Due to a legacy implementation, most of the library path
   779       // is set in the launcher.  This was to accomodate linking restrictions
   780       // on legacy Solaris implementations (which are no longer supported).
   781       // Eventually, all the library path setting will be done here.
   782       //
   783       // However, to prevent the proliferation of improperly built native
   784       // libraries, the new path component /usr/jdk/packages is added here.
   786       // Determine the actual CPU architecture.
   787       char cpu_arch[12];
   788       sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
   789 #ifdef _LP64
   790       // If we are a 64-bit vm, perform the following translations:
   791       //   sparc   -> sparcv9
   792       //   i386    -> amd64
   793       if (strcmp(cpu_arch, "sparc") == 0)
   794         strcat(cpu_arch, "v9");
   795       else if (strcmp(cpu_arch, "i386") == 0)
   796         strcpy(cpu_arch, "amd64");
   797 #endif
   799       // Construct the invariant part of ld_library_path. Note that the
   800       // space for the colon and the trailing null are provided by the
   801       // nulls included by the sizeof operator.
   802       size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
   803       common_path = malloc(bufsize);
   804       if (common_path == NULL) {
   805         free(info);
   806         vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
   807                               "init_system_properties_values common_path");
   808       }
   809       sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
   811       // struct size is more than sufficient for the path components obtained
   812       // through the dlinfo() call, so only add additional space for the path
   813       // components explicitly added here.
   814       bufsize = info->dls_size + strlen(common_path);
   815       library_path = malloc(bufsize);
   816       if (library_path == NULL) {
   817         free(info);
   818         free(common_path);
   819         vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
   820                               "init_system_properties_values library_path");
   821       }
   822       library_path[0] = '\0';
   824       // Construct the desired Java library path from the linker's library
   825       // search path.
   826       //
   827       // For compatibility, it is optimal that we insert the additional path
   828       // components specific to the Java VM after those components specified
   829       // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
   830       // infrastructure.
   831       if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
   832         strcpy(library_path, common_path);
   833       } else {
   834         int inserted = 0;
   835         for (i = 0; i < info->dls_cnt; i++, path++) {
   836           uint_t flags = path->dls_flags & LA_SER_MASK;
   837           if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
   838             strcat(library_path, common_path);
   839             strcat(library_path, os::path_separator());
   840             inserted = 1;
   841           }
   842           strcat(library_path, path->dls_name);
   843           strcat(library_path, os::path_separator());
   844         }
   845         // eliminate trailing path separator
   846         library_path[strlen(library_path)-1] = '\0';
   847       }
   849       // happens before argument parsing - can't use a trace flag
   850       // tty->print_raw("init_system_properties_values: native lib path: ");
   851       // tty->print_raw_cr(library_path);
   853       // callee copies into its own buffer
   854       Arguments::set_library_path(library_path);
   856       free(common_path);
   857       free(library_path);
   858       free(info);
   859     }
   861     /*
   862      * Extensions directories.
   863      *
   864      * Note that the space for the colon and the trailing null are provided
   865      * by the nulls included by the sizeof operator (so actually one byte more
   866      * than necessary is allocated).
   867      */
   868     {
   869         char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
   870             sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
   871             sizeof(EXTENSIONS_DIR));
   872         sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
   873             Arguments::get_java_home());
   874         Arguments::set_ext_dirs(buf);
   875     }
   877     /* Endorsed standards default directory. */
   878     {
   879         char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   880         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   881         Arguments::set_endorsed_dirs(buf);
   882     }
   883   }
   885 #undef malloc
   886 #undef free
   887 #undef getenv
   888 #undef EXTENSIONS_DIR
   889 #undef ENDORSED_DIR
   890 #undef COMMON_DIR
   892 }
   894 void os::breakpoint() {
   895   BREAKPOINT;
   896 }
   898 bool os::obsolete_option(const JavaVMOption *option)
   899 {
   900   if (!strncmp(option->optionString, "-Xt", 3)) {
   901     return true;
   902   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
   903     return true;
   904   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
   905     return true;
   906   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
   907     return true;
   908   }
   909   return false;
   910 }
   912 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
   913   address  stackStart  = (address)thread->stack_base();
   914   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
   915   if (sp < stackStart && sp >= stackEnd ) return true;
   916   return false;
   917 }
   919 extern "C" void breakpoint() {
   920   // use debugger to set breakpoint here
   921 }
   923 static thread_t main_thread;
   925 // Thread start routine for all new Java threads
   926 extern "C" void* java_start(void* thread_addr) {
   927   // Try to randomize the cache line index of hot stack frames.
   928   // This helps when threads of the same stack traces evict each other's
   929   // cache lines. The threads can be either from the same JVM instance, or
   930   // from different JVM instances. The benefit is especially true for
   931   // processors with hyperthreading technology.
   932   static int counter = 0;
   933   int pid = os::current_process_id();
   934   alloca(((pid ^ counter++) & 7) * 128);
   936   int prio;
   937   Thread* thread = (Thread*)thread_addr;
   938   OSThread* osthr = thread->osthread();
   940   osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
   941   thread->_schedctl = (void *) schedctl_init () ;
   943   if (UseNUMA) {
   944     int lgrp_id = os::numa_get_group_id();
   945     if (lgrp_id != -1) {
   946       thread->set_lgrp_id(lgrp_id);
   947     }
   948   }
   950   // If the creator called set priority before we started,
   951   // we need to call set_native_priority now that we have an lwp.
   952   // We used to get the priority from thr_getprio (we called
   953   // thr_setprio way back in create_thread) and pass it to
   954   // set_native_priority, but Solaris scales the priority
   955   // in java_to_os_priority, so when we read it back here,
   956   // we pass trash to set_native_priority instead of what's
   957   // in java_to_os_priority. So we save the native priority
   958   // in the osThread and recall it here.
   960   if ( osthr->thread_id() != -1 ) {
   961     if ( UseThreadPriorities ) {
   962       int prio = osthr->native_priority();
   963       if (ThreadPriorityVerbose) {
   964         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
   965                       INTPTR_FORMAT ", setting priority: %d\n",
   966                       osthr->thread_id(), osthr->lwp_id(), prio);
   967       }
   968       os::set_native_priority(thread, prio);
   969     }
   970   } else if (ThreadPriorityVerbose) {
   971     warning("Can't set priority in _start routine, thread id hasn't been set\n");
   972   }
   974   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   976   // initialize signal mask for this thread
   977   os::Solaris::hotspot_sigmask(thread);
   979   thread->run();
   981   // One less thread is executing
   982   // When the VMThread gets here, the main thread may have already exited
   983   // which frees the CodeHeap containing the Atomic::dec code
   984   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   985     Atomic::dec(&os::Solaris::_os_thread_count);
   986   }
   988   if (UseDetachedThreads) {
   989     thr_exit(NULL);
   990     ShouldNotReachHere();
   991   }
   992   return NULL;
   993 }
   995 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
   996   // Allocate the OSThread object
   997   OSThread* osthread = new OSThread(NULL, NULL);
   998   if (osthread == NULL) return NULL;
  1000   // Store info on the Solaris thread into the OSThread
  1001   osthread->set_thread_id(thread_id);
  1002   osthread->set_lwp_id(_lwp_self());
  1003   thread->_schedctl = (void *) schedctl_init () ;
  1005   if (UseNUMA) {
  1006     int lgrp_id = os::numa_get_group_id();
  1007     if (lgrp_id != -1) {
  1008       thread->set_lgrp_id(lgrp_id);
  1012   if ( ThreadPriorityVerbose ) {
  1013     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
  1014                   osthread->thread_id(), osthread->lwp_id() );
  1017   // Initial thread state is INITIALIZED, not SUSPENDED
  1018   osthread->set_state(INITIALIZED);
  1020   return osthread;
  1023 void os::Solaris::hotspot_sigmask(Thread* thread) {
  1025   //Save caller's signal mask
  1026   sigset_t sigmask;
  1027   thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
  1028   OSThread *osthread = thread->osthread();
  1029   osthread->set_caller_sigmask(sigmask);
  1031   thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
  1032   if (!ReduceSignalUsage) {
  1033     if (thread->is_VM_thread()) {
  1034       // Only the VM thread handles BREAK_SIGNAL ...
  1035       thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
  1036     } else {
  1037       // ... all other threads block BREAK_SIGNAL
  1038       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
  1039       thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
  1044 bool os::create_attached_thread(JavaThread* thread) {
  1045 #ifdef ASSERT
  1046   thread->verify_not_published();
  1047 #endif
  1048   OSThread* osthread = create_os_thread(thread, thr_self());
  1049   if (osthread == NULL) {
  1050      return false;
  1053   // Initial thread state is RUNNABLE
  1054   osthread->set_state(RUNNABLE);
  1055   thread->set_osthread(osthread);
  1057   // initialize signal mask for this thread
  1058   // and save the caller's signal mask
  1059   os::Solaris::hotspot_sigmask(thread);
  1061   return true;
  1064 bool os::create_main_thread(JavaThread* thread) {
  1065 #ifdef ASSERT
  1066   thread->verify_not_published();
  1067 #endif
  1068   if (_starting_thread == NULL) {
  1069     _starting_thread = create_os_thread(thread, main_thread);
  1070      if (_starting_thread == NULL) {
  1071         return false;
  1075   // The primodial thread is runnable from the start
  1076   _starting_thread->set_state(RUNNABLE);
  1078   thread->set_osthread(_starting_thread);
  1080   // initialize signal mask for this thread
  1081   // and save the caller's signal mask
  1082   os::Solaris::hotspot_sigmask(thread);
  1084   return true;
  1087 // _T2_libthread is true if we believe we are running with the newer
  1088 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
  1089 bool os::Solaris::_T2_libthread = false;
  1091 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
  1092   // Allocate the OSThread object
  1093   OSThread* osthread = new OSThread(NULL, NULL);
  1094   if (osthread == NULL) {
  1095     return false;
  1098   if ( ThreadPriorityVerbose ) {
  1099     char *thrtyp;
  1100     switch ( thr_type ) {
  1101       case vm_thread:
  1102         thrtyp = (char *)"vm";
  1103         break;
  1104       case cgc_thread:
  1105         thrtyp = (char *)"cgc";
  1106         break;
  1107       case pgc_thread:
  1108         thrtyp = (char *)"pgc";
  1109         break;
  1110       case java_thread:
  1111         thrtyp = (char *)"java";
  1112         break;
  1113       case compiler_thread:
  1114         thrtyp = (char *)"compiler";
  1115         break;
  1116       case watcher_thread:
  1117         thrtyp = (char *)"watcher";
  1118         break;
  1119       default:
  1120         thrtyp = (char *)"unknown";
  1121         break;
  1123     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
  1126   // Calculate stack size if it's not specified by caller.
  1127   if (stack_size == 0) {
  1128     // The default stack size 1M (2M for LP64).
  1129     stack_size = (BytesPerWord >> 2) * K * K;
  1131     switch (thr_type) {
  1132     case os::java_thread:
  1133       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
  1134       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
  1135       break;
  1136     case os::compiler_thread:
  1137       if (CompilerThreadStackSize > 0) {
  1138         stack_size = (size_t)(CompilerThreadStackSize * K);
  1139         break;
  1140       } // else fall through:
  1141         // use VMThreadStackSize if CompilerThreadStackSize is not defined
  1142     case os::vm_thread:
  1143     case os::pgc_thread:
  1144     case os::cgc_thread:
  1145     case os::watcher_thread:
  1146       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
  1147       break;
  1150   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
  1152   // Initial state is ALLOCATED but not INITIALIZED
  1153   osthread->set_state(ALLOCATED);
  1155   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
  1156     // We got lots of threads. Check if we still have some address space left.
  1157     // Need to be at least 5Mb of unreserved address space. We do check by
  1158     // trying to reserve some.
  1159     const size_t VirtualMemoryBangSize = 20*K*K;
  1160     char* mem = os::reserve_memory(VirtualMemoryBangSize);
  1161     if (mem == NULL) {
  1162       delete osthread;
  1163       return false;
  1164     } else {
  1165       // Release the memory again
  1166       os::release_memory(mem, VirtualMemoryBangSize);
  1170   // Setup osthread because the child thread may need it.
  1171   thread->set_osthread(osthread);
  1173   // Create the Solaris thread
  1174   // explicit THR_BOUND for T2_libthread case in case
  1175   // that assumption is not accurate, but our alternate signal stack
  1176   // handling is based on it which must have bound threads
  1177   thread_t tid = 0;
  1178   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
  1179                    | ((UseBoundThreads || os::Solaris::T2_libthread() ||
  1180                        (thr_type == vm_thread) ||
  1181                        (thr_type == cgc_thread) ||
  1182                        (thr_type == pgc_thread) ||
  1183                        (thr_type == compiler_thread && BackgroundCompilation)) ?
  1184                       THR_BOUND : 0);
  1185   int      status;
  1187   // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
  1188   //
  1189   // On multiprocessors systems, libthread sometimes under-provisions our
  1190   // process with LWPs.  On a 30-way systems, for instance, we could have
  1191   // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
  1192   // to our process.  This can result in under utilization of PEs.
  1193   // I suspect the problem is related to libthread's LWP
  1194   // pool management and to the kernel's SIGBLOCKING "last LWP parked"
  1195   // upcall policy.
  1196   //
  1197   // The following code is palliative -- it attempts to ensure that our
  1198   // process has sufficient LWPs to take advantage of multiple PEs.
  1199   // Proper long-term cures include using user-level threads bound to LWPs
  1200   // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
  1201   // slight timing window with respect to sampling _os_thread_count, but
  1202   // the race is benign.  Also, we should periodically recompute
  1203   // _processors_online as the min of SC_NPROCESSORS_ONLN and the
  1204   // the number of PEs in our partition.  You might be tempted to use
  1205   // THR_NEW_LWP here, but I'd recommend against it as that could
  1206   // result in undesirable growth of the libthread's LWP pool.
  1207   // The fix below isn't sufficient; for instance, it doesn't take into count
  1208   // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
  1209   //
  1210   // Some pathologies this scheme doesn't handle:
  1211   // *  Threads can block, releasing the LWPs.  The LWPs can age out.
  1212   //    When a large number of threads become ready again there aren't
  1213   //    enough LWPs available to service them.  This can occur when the
  1214   //    number of ready threads oscillates.
  1215   // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
  1216   //
  1217   // Finally, we should call thr_setconcurrency() periodically to refresh
  1218   // the LWP pool and thwart the LWP age-out mechanism.
  1219   // The "+3" term provides a little slop -- we want to slightly overprovision.
  1221   if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
  1222     if (!(flags & THR_BOUND)) {
  1223       thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
  1226   // Although this doesn't hurt, we should warn of undefined behavior
  1227   // when using unbound T1 threads with schedctl().  This should never
  1228   // happen, as the compiler and VM threads are always created bound
  1229   DEBUG_ONLY(
  1230       if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
  1231           (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
  1232           ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
  1233            (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
  1234          warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
  1236   );
  1239   // Mark that we don't have an lwp or thread id yet.
  1240   // In case we attempt to set the priority before the thread starts.
  1241   osthread->set_lwp_id(-1);
  1242   osthread->set_thread_id(-1);
  1244   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
  1245   if (status != 0) {
  1246     if (PrintMiscellaneous && (Verbose || WizardMode)) {
  1247       perror("os::create_thread");
  1249     thread->set_osthread(NULL);
  1250     // Need to clean up stuff we've allocated so far
  1251     delete osthread;
  1252     return false;
  1255   Atomic::inc(&os::Solaris::_os_thread_count);
  1257   // Store info on the Solaris thread into the OSThread
  1258   osthread->set_thread_id(tid);
  1260   // Remember that we created this thread so we can set priority on it
  1261   osthread->set_vm_created();
  1263   // Set the default thread priority.  If using bound threads, setting
  1264   // lwp priority will be delayed until thread start.
  1265   set_native_priority(thread,
  1266                       DefaultThreadPriority == -1 ?
  1267                         java_to_os_priority[NormPriority] :
  1268                         DefaultThreadPriority);
  1270   // Initial thread state is INITIALIZED, not SUSPENDED
  1271   osthread->set_state(INITIALIZED);
  1273   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
  1274   return true;
  1277 /* defined for >= Solaris 10. This allows builds on earlier versions
  1278  *  of Solaris to take advantage of the newly reserved Solaris JVM signals
  1279  *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
  1280  *  and -XX:+UseAltSigs does nothing since these should have no conflict
  1281  */
  1282 #if !defined(SIGJVM1)
  1283 #define SIGJVM1 39
  1284 #define SIGJVM2 40
  1285 #endif
  1287 debug_only(static bool signal_sets_initialized = false);
  1288 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
  1289 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
  1290 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
  1292 bool os::Solaris::is_sig_ignored(int sig) {
  1293       struct sigaction oact;
  1294       sigaction(sig, (struct sigaction*)NULL, &oact);
  1295       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
  1296                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
  1297       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
  1298            return true;
  1299       else
  1300            return false;
  1303 // Note: SIGRTMIN is a macro that calls sysconf() so it will
  1304 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
  1305 static bool isJVM1available() {
  1306   return SIGJVM1 < SIGRTMIN;
  1309 void os::Solaris::signal_sets_init() {
  1310   // Should also have an assertion stating we are still single-threaded.
  1311   assert(!signal_sets_initialized, "Already initialized");
  1312   // Fill in signals that are necessarily unblocked for all threads in
  1313   // the VM. Currently, we unblock the following signals:
  1314   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  1315   //                         by -Xrs (=ReduceSignalUsage));
  1316   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  1317   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  1318   // the dispositions or masks wrt these signals.
  1319   // Programs embedding the VM that want to use the above signals for their
  1320   // own purposes must, at this time, use the "-Xrs" option to prevent
  1321   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  1322   // (See bug 4345157, and other related bugs).
  1323   // In reality, though, unblocking these signals is really a nop, since
  1324   // these signals are not blocked by default.
  1325   sigemptyset(&unblocked_sigs);
  1326   sigemptyset(&allowdebug_blocked_sigs);
  1327   sigaddset(&unblocked_sigs, SIGILL);
  1328   sigaddset(&unblocked_sigs, SIGSEGV);
  1329   sigaddset(&unblocked_sigs, SIGBUS);
  1330   sigaddset(&unblocked_sigs, SIGFPE);
  1332   if (isJVM1available) {
  1333     os::Solaris::set_SIGinterrupt(SIGJVM1);
  1334     os::Solaris::set_SIGasync(SIGJVM2);
  1335   } else if (UseAltSigs) {
  1336     os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
  1337     os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
  1338   } else {
  1339     os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
  1340     os::Solaris::set_SIGasync(ASYNC_SIGNAL);
  1343   sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
  1344   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
  1346   if (!ReduceSignalUsage) {
  1347    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
  1348       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
  1349       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
  1351    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
  1352       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
  1353       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
  1355    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
  1356       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
  1357       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
  1360   // Fill in signals that are blocked by all but the VM thread.
  1361   sigemptyset(&vm_sigs);
  1362   if (!ReduceSignalUsage)
  1363     sigaddset(&vm_sigs, BREAK_SIGNAL);
  1364   debug_only(signal_sets_initialized = true);
  1366   // For diagnostics only used in run_periodic_checks
  1367   sigemptyset(&check_signal_done);
  1370 // These are signals that are unblocked while a thread is running Java.
  1371 // (For some reason, they get blocked by default.)
  1372 sigset_t* os::Solaris::unblocked_signals() {
  1373   assert(signal_sets_initialized, "Not initialized");
  1374   return &unblocked_sigs;
  1377 // These are the signals that are blocked while a (non-VM) thread is
  1378 // running Java. Only the VM thread handles these signals.
  1379 sigset_t* os::Solaris::vm_signals() {
  1380   assert(signal_sets_initialized, "Not initialized");
  1381   return &vm_sigs;
  1384 // These are signals that are blocked during cond_wait to allow debugger in
  1385 sigset_t* os::Solaris::allowdebug_blocked_signals() {
  1386   assert(signal_sets_initialized, "Not initialized");
  1387   return &allowdebug_blocked_sigs;
  1391 void _handle_uncaught_cxx_exception() {
  1392   VMError err("An uncaught C++ exception");
  1393   err.report_and_die();
  1397 // First crack at OS-specific initialization, from inside the new thread.
  1398 void os::initialize_thread(Thread* thr) {
  1399   int r = thr_main() ;
  1400   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
  1401   if (r) {
  1402     JavaThread* jt = (JavaThread *)thr;
  1403     assert(jt != NULL,"Sanity check");
  1404     size_t stack_size;
  1405     address base = jt->stack_base();
  1406     if (Arguments::created_by_java_launcher()) {
  1407       // Use 2MB to allow for Solaris 7 64 bit mode.
  1408       stack_size = JavaThread::stack_size_at_create() == 0
  1409         ? 2048*K : JavaThread::stack_size_at_create();
  1411       // There are rare cases when we may have already used more than
  1412       // the basic stack size allotment before this method is invoked.
  1413       // Attempt to allow for a normally sized java_stack.
  1414       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
  1415       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
  1416     } else {
  1417       // 6269555: If we were not created by a Java launcher, i.e. if we are
  1418       // running embedded in a native application, treat the primordial thread
  1419       // as much like a native attached thread as possible.  This means using
  1420       // the current stack size from thr_stksegment(), unless it is too large
  1421       // to reliably setup guard pages.  A reasonable max size is 8MB.
  1422       size_t current_size = current_stack_size();
  1423       // This should never happen, but just in case....
  1424       if (current_size == 0) current_size = 2 * K * K;
  1425       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
  1427     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
  1428     stack_size = (size_t)(base - bottom);
  1430     assert(stack_size > 0, "Stack size calculation problem");
  1432     if (stack_size > jt->stack_size()) {
  1433       NOT_PRODUCT(
  1434         struct rlimit limits;
  1435         getrlimit(RLIMIT_STACK, &limits);
  1436         size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
  1437         assert(size >= jt->stack_size(), "Stack size problem in main thread");
  1439       tty->print_cr(
  1440         "Stack size of %d Kb exceeds current limit of %d Kb.\n"
  1441         "(Stack sizes are rounded up to a multiple of the system page size.)\n"
  1442         "See limit(1) to increase the stack size limit.",
  1443         stack_size / K, jt->stack_size() / K);
  1444       vm_exit(1);
  1446     assert(jt->stack_size() >= stack_size,
  1447           "Attempt to map more stack than was allocated");
  1448     jt->set_stack_size(stack_size);
  1451    // 5/22/01: Right now alternate signal stacks do not handle
  1452    // throwing stack overflow exceptions, see bug 4463178
  1453    // Until a fix is found for this, T2 will NOT imply alternate signal
  1454    // stacks.
  1455    // If using T2 libthread threads, install an alternate signal stack.
  1456    // Because alternate stacks associate with LWPs on Solaris,
  1457    // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
  1458    // we prefer to explicitly stack bang.
  1459    // If not using T2 libthread, but using UseBoundThreads any threads
  1460    // (primordial thread, jni_attachCurrentThread) we do not create,
  1461    // probably are not bound, therefore they can not have an alternate
  1462    // signal stack. Since our stack banging code is generated and
  1463    // is shared across threads, all threads must be bound to allow
  1464    // using alternate signal stacks.  The alternative is to interpose
  1465    // on _lwp_create to associate an alt sig stack with each LWP,
  1466    // and this could be a problem when the JVM is embedded.
  1467    // We would prefer to use alternate signal stacks with T2
  1468    // Since there is currently no accurate way to detect T2
  1469    // we do not. Assuming T2 when running T1 causes sig 11s or assertions
  1470    // on installing alternate signal stacks
  1473    // 05/09/03: removed alternate signal stack support for Solaris
  1474    // The alternate signal stack mechanism is no longer needed to
  1475    // handle stack overflow. This is now handled by allocating
  1476    // guard pages (red zone) and stackbanging.
  1477    // Initially the alternate signal stack mechanism was removed because
  1478    // it did not work with T1 llibthread. Alternate
  1479    // signal stacks MUST have all threads bound to lwps. Applications
  1480    // can create their own threads and attach them without their being
  1481    // bound under T1. This is frequently the case for the primordial thread.
  1482    // If we were ever to reenable this mechanism we would need to
  1483    // use the dynamic check for T2 libthread.
  1485   os::Solaris::init_thread_fpu_state();
  1486   std::set_terminate(_handle_uncaught_cxx_exception);
  1491 // Free Solaris resources related to the OSThread
  1492 void os::free_thread(OSThread* osthread) {
  1493   assert(osthread != NULL, "os::free_thread but osthread not set");
  1496   // We are told to free resources of the argument thread,
  1497   // but we can only really operate on the current thread.
  1498   // The main thread must take the VMThread down synchronously
  1499   // before the main thread exits and frees up CodeHeap
  1500   guarantee((Thread::current()->osthread() == osthread
  1501      || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
  1502   if (Thread::current()->osthread() == osthread) {
  1503     // Restore caller's signal mask
  1504     sigset_t sigmask = osthread->caller_sigmask();
  1505     thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
  1507   delete osthread;
  1510 void os::pd_start_thread(Thread* thread) {
  1511   int status = thr_continue(thread->osthread()->thread_id());
  1512   assert_status(status == 0, status, "thr_continue failed");
  1516 intx os::current_thread_id() {
  1517   return (intx)thr_self();
  1520 static pid_t _initial_pid = 0;
  1522 int os::current_process_id() {
  1523   return (int)(_initial_pid ? _initial_pid : getpid());
  1526 int os::allocate_thread_local_storage() {
  1527   // %%%       in Win32 this allocates a memory segment pointed to by a
  1528   //           register.  Dan Stein can implement a similar feature in
  1529   //           Solaris.  Alternatively, the VM can do the same thing
  1530   //           explicitly: malloc some storage and keep the pointer in a
  1531   //           register (which is part of the thread's context) (or keep it
  1532   //           in TLS).
  1533   // %%%       In current versions of Solaris, thr_self and TSD can
  1534   //           be accessed via short sequences of displaced indirections.
  1535   //           The value of thr_self is available as %g7(36).
  1536   //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
  1537   //           assuming that the current thread already has a value bound to k.
  1538   //           It may be worth experimenting with such access patterns,
  1539   //           and later having the parameters formally exported from a Solaris
  1540   //           interface.  I think, however, that it will be faster to
  1541   //           maintain the invariant that %g2 always contains the
  1542   //           JavaThread in Java code, and have stubs simply
  1543   //           treat %g2 as a caller-save register, preserving it in a %lN.
  1544   thread_key_t tk;
  1545   if (thr_keycreate( &tk, NULL ) )
  1546     fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
  1547                   "(%s)", strerror(errno)));
  1548   return int(tk);
  1551 void os::free_thread_local_storage(int index) {
  1552   // %%% don't think we need anything here
  1553   // if ( pthread_key_delete((pthread_key_t) tk) )
  1554   //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
  1557 #define SMALLINT 32   // libthread allocate for tsd_common is a version specific
  1558                       // small number - point is NO swap space available
  1559 void os::thread_local_storage_at_put(int index, void* value) {
  1560   // %%% this is used only in threadLocalStorage.cpp
  1561   if (thr_setspecific((thread_key_t)index, value)) {
  1562     if (errno == ENOMEM) {
  1563        vm_exit_out_of_memory(SMALLINT, OOM_MALLOC_ERROR,
  1564                              "thr_setspecific: out of swap space");
  1565     } else {
  1566       fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
  1567                     "(%s)", strerror(errno)));
  1569   } else {
  1570       ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
  1574 // This function could be called before TLS is initialized, for example, when
  1575 // VM receives an async signal or when VM causes a fatal error during
  1576 // initialization. Return NULL if thr_getspecific() fails.
  1577 void* os::thread_local_storage_at(int index) {
  1578   // %%% this is used only in threadLocalStorage.cpp
  1579   void* r = NULL;
  1580   return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
  1584 // gethrtime can move backwards if read from one cpu and then a different cpu
  1585 // getTimeNanos is guaranteed to not move backward on Solaris
  1586 // local spinloop created as faster for a CAS on an int than
  1587 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
  1588 // supported on sparc v8 or pre supports_cx8 intel boxes.
  1589 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
  1590 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
  1591 inline hrtime_t oldgetTimeNanos() {
  1592   int gotlock = LOCK_INVALID;
  1593   hrtime_t newtime = gethrtime();
  1595   for (;;) {
  1596 // grab lock for max_hrtime
  1597     int curlock = max_hrtime_lock;
  1598     if (curlock & LOCK_BUSY)  continue;
  1599     if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
  1600     if (newtime > max_hrtime) {
  1601       max_hrtime = newtime;
  1602     } else {
  1603       newtime = max_hrtime;
  1605     // release lock
  1606     max_hrtime_lock = LOCK_FREE;
  1607     return newtime;
  1610 // gethrtime can move backwards if read from one cpu and then a different cpu
  1611 // getTimeNanos is guaranteed to not move backward on Solaris
  1612 inline hrtime_t getTimeNanos() {
  1613   if (VM_Version::supports_cx8()) {
  1614     const hrtime_t now = gethrtime();
  1615     // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
  1616     const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
  1617     if (now <= prev)  return prev;   // same or retrograde time;
  1618     const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
  1619     assert(obsv >= prev, "invariant");   // Monotonicity
  1620     // If the CAS succeeded then we're done and return "now".
  1621     // If the CAS failed and the observed value "obs" is >= now then
  1622     // we should return "obs".  If the CAS failed and now > obs > prv then
  1623     // some other thread raced this thread and installed a new value, in which case
  1624     // we could either (a) retry the entire operation, (b) retry trying to install now
  1625     // or (c) just return obs.  We use (c).   No loop is required although in some cases
  1626     // we might discard a higher "now" value in deference to a slightly lower but freshly
  1627     // installed obs value.   That's entirely benign -- it admits no new orderings compared
  1628     // to (a) or (b) -- and greatly reduces coherence traffic.
  1629     // We might also condition (c) on the magnitude of the delta between obs and now.
  1630     // Avoiding excessive CAS operations to hot RW locations is critical.
  1631     // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
  1632     return (prev == obsv) ? now : obsv ;
  1633   } else {
  1634     return oldgetTimeNanos();
  1638 // Time since start-up in seconds to a fine granularity.
  1639 // Used by VMSelfDestructTimer and the MemProfiler.
  1640 double os::elapsedTime() {
  1641   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
  1644 jlong os::elapsed_counter() {
  1645   return (jlong)(getTimeNanos() - first_hrtime);
  1648 jlong os::elapsed_frequency() {
  1649    return hrtime_hz;
  1652 // Return the real, user, and system times in seconds from an
  1653 // arbitrary fixed point in the past.
  1654 bool os::getTimesSecs(double* process_real_time,
  1655                   double* process_user_time,
  1656                   double* process_system_time) {
  1657   struct tms ticks;
  1658   clock_t real_ticks = times(&ticks);
  1660   if (real_ticks == (clock_t) (-1)) {
  1661     return false;
  1662   } else {
  1663     double ticks_per_second = (double) clock_tics_per_sec;
  1664     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1665     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1666     // For consistency return the real time from getTimeNanos()
  1667     // converted to seconds.
  1668     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
  1670     return true;
  1674 bool os::supports_vtime() { return true; }
  1676 bool os::enable_vtime() {
  1677   int fd = ::open("/proc/self/ctl", O_WRONLY);
  1678   if (fd == -1)
  1679     return false;
  1681   long cmd[] = { PCSET, PR_MSACCT };
  1682   int res = ::write(fd, cmd, sizeof(long) * 2);
  1683   ::close(fd);
  1684   if (res != sizeof(long) * 2)
  1685     return false;
  1687   return true;
  1690 bool os::vtime_enabled() {
  1691   int fd = ::open("/proc/self/status", O_RDONLY);
  1692   if (fd == -1)
  1693     return false;
  1695   pstatus_t status;
  1696   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
  1697   ::close(fd);
  1698   if (res != sizeof(pstatus_t))
  1699     return false;
  1701   return status.pr_flags & PR_MSACCT;
  1704 double os::elapsedVTime() {
  1705   return (double)gethrvtime() / (double)hrtime_hz;
  1708 // Used internally for comparisons only
  1709 // getTimeMillis guaranteed to not move backwards on Solaris
  1710 jlong getTimeMillis() {
  1711   jlong nanotime = getTimeNanos();
  1712   return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
  1715 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
  1716 jlong os::javaTimeMillis() {
  1717   timeval t;
  1718   if (gettimeofday( &t, NULL) == -1)
  1719     fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
  1720   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
  1723 jlong os::javaTimeNanos() {
  1724   return (jlong)getTimeNanos();
  1727 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1728   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
  1729   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
  1730   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
  1731   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
  1734 char * os::local_time_string(char *buf, size_t buflen) {
  1735   struct tm t;
  1736   time_t long_time;
  1737   time(&long_time);
  1738   localtime_r(&long_time, &t);
  1739   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1740                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1741                t.tm_hour, t.tm_min, t.tm_sec);
  1742   return buf;
  1745 // Note: os::shutdown() might be called very early during initialization, or
  1746 // called from signal handler. Before adding something to os::shutdown(), make
  1747 // sure it is async-safe and can handle partially initialized VM.
  1748 void os::shutdown() {
  1750   // allow PerfMemory to attempt cleanup of any persistent resources
  1751   perfMemory_exit();
  1753   // needs to remove object in file system
  1754   AttachListener::abort();
  1756   // flush buffered output, finish log files
  1757   ostream_abort();
  1759   // Check for abort hook
  1760   abort_hook_t abort_hook = Arguments::abort_hook();
  1761   if (abort_hook != NULL) {
  1762     abort_hook();
  1766 // Note: os::abort() might be called very early during initialization, or
  1767 // called from signal handler. Before adding something to os::abort(), make
  1768 // sure it is async-safe and can handle partially initialized VM.
  1769 void os::abort(bool dump_core) {
  1770   os::shutdown();
  1771   if (dump_core) {
  1772 #ifndef PRODUCT
  1773     fdStream out(defaultStream::output_fd());
  1774     out.print_raw("Current thread is ");
  1775     char buf[16];
  1776     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1777     out.print_raw_cr(buf);
  1778     out.print_raw_cr("Dumping core ...");
  1779 #endif
  1780     ::abort(); // dump core (for debugging)
  1783   ::exit(1);
  1786 // Die immediately, no exit hook, no abort hook, no cleanup.
  1787 void os::die() {
  1788   ::abort(); // dump core (for debugging)
  1791 // unused
  1792 void os::set_error_file(const char *logfile) {}
  1794 // DLL functions
  1796 const char* os::dll_file_extension() { return ".so"; }
  1798 // This must be hard coded because it's the system's temporary
  1799 // directory not the java application's temp directory, ala java.io.tmpdir.
  1800 const char* os::get_temp_directory() { return "/tmp"; }
  1802 static bool file_exists(const char* filename) {
  1803   struct stat statbuf;
  1804   if (filename == NULL || strlen(filename) == 0) {
  1805     return false;
  1807   return os::stat(filename, &statbuf) == 0;
  1810 bool os::dll_build_name(char* buffer, size_t buflen,
  1811                         const char* pname, const char* fname) {
  1812   bool retval = false;
  1813   const size_t pnamelen = pname ? strlen(pname) : 0;
  1815   // Return error on buffer overflow.
  1816   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1817     return retval;
  1820   if (pnamelen == 0) {
  1821     snprintf(buffer, buflen, "lib%s.so", fname);
  1822     retval = true;
  1823   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1824     int n;
  1825     char** pelements = split_path(pname, &n);
  1826     if (pelements == NULL) {
  1827       return false;
  1829     for (int i = 0 ; i < n ; i++) {
  1830       // really shouldn't be NULL but what the heck, check can't hurt
  1831       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1832         continue; // skip the empty path values
  1834       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1835       if (file_exists(buffer)) {
  1836         retval = true;
  1837         break;
  1840     // release the storage
  1841     for (int i = 0 ; i < n ; i++) {
  1842       if (pelements[i] != NULL) {
  1843         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1846     if (pelements != NULL) {
  1847       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1849   } else {
  1850     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1851     retval = true;
  1853   return retval;
  1856 // check if addr is inside libjvm.so
  1857 bool os::address_is_in_vm(address addr) {
  1858   static address libjvm_base_addr;
  1859   Dl_info dlinfo;
  1861   if (libjvm_base_addr == NULL) {
  1862     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1863       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1865     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1868   if (dladdr((void *)addr, &dlinfo) != 0) {
  1869     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1872   return false;
  1875 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
  1876 static dladdr1_func_type dladdr1_func = NULL;
  1878 bool os::dll_address_to_function_name(address addr, char *buf,
  1879                                       int buflen, int * offset) {
  1880   // buf is not optional, but offset is optional
  1881   assert(buf != NULL, "sanity check");
  1883   Dl_info dlinfo;
  1885   // dladdr1_func was initialized in os::init()
  1886   if (dladdr1_func != NULL) {
  1887     // yes, we have dladdr1
  1889     // Support for dladdr1 is checked at runtime; it may be
  1890     // available even if the vm is built on a machine that does
  1891     // not have dladdr1 support.  Make sure there is a value for
  1892     // RTLD_DL_SYMENT.
  1893     #ifndef RTLD_DL_SYMENT
  1894     #define RTLD_DL_SYMENT 1
  1895     #endif
  1896 #ifdef _LP64
  1897     Elf64_Sym * info;
  1898 #else
  1899     Elf32_Sym * info;
  1900 #endif
  1901     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
  1902                      RTLD_DL_SYMENT) != 0) {
  1903       // see if we have a matching symbol that covers our address
  1904       if (dlinfo.dli_saddr != NULL &&
  1905           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
  1906         if (dlinfo.dli_sname != NULL) {
  1907           if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1908             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1910           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1911           return true;
  1914       // no matching symbol so try for just file info
  1915       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1916         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1917                             buf, buflen, offset, dlinfo.dli_fname)) {
  1918           return true;
  1922     buf[0] = '\0';
  1923     if (offset != NULL) *offset  = -1;
  1924     return false;
  1927   // no, only dladdr is available
  1928   if (dladdr((void *)addr, &dlinfo) != 0) {
  1929     // see if we have a matching symbol
  1930     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1931       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1932         jio_snprintf(buf, buflen, dlinfo.dli_sname);
  1934       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1935       return true;
  1937     // no matching symbol so try for just file info
  1938     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1939       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1940                           buf, buflen, offset, dlinfo.dli_fname)) {
  1941         return true;
  1945   buf[0] = '\0';
  1946   if (offset != NULL) *offset  = -1;
  1947   return false;
  1950 bool os::dll_address_to_library_name(address addr, char* buf,
  1951                                      int buflen, int* offset) {
  1952   // buf is not optional, but offset is optional
  1953   assert(buf != NULL, "sanity check");
  1955   Dl_info dlinfo;
  1957   if (dladdr((void*)addr, &dlinfo) != 0) {
  1958     if (dlinfo.dli_fname != NULL) {
  1959       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1961     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1962       *offset = addr - (address)dlinfo.dli_fbase;
  1964     return true;
  1967   buf[0] = '\0';
  1968   if (offset) *offset = -1;
  1969   return false;
  1972 // Prints the names and full paths of all opened dynamic libraries
  1973 // for current process
  1974 void os::print_dll_info(outputStream * st) {
  1975   Dl_info dli;
  1976   void *handle;
  1977   Link_map *map;
  1978   Link_map *p;
  1980   st->print_cr("Dynamic libraries:"); st->flush();
  1982   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
  1983       dli.dli_fname == NULL) {
  1984     st->print_cr("Error: Cannot print dynamic libraries.");
  1985     return;
  1987   handle = dlopen(dli.dli_fname, RTLD_LAZY);
  1988   if (handle == NULL) {
  1989     st->print_cr("Error: Cannot print dynamic libraries.");
  1990     return;
  1992   dlinfo(handle, RTLD_DI_LINKMAP, &map);
  1993   if (map == NULL) {
  1994     st->print_cr("Error: Cannot print dynamic libraries.");
  1995     return;
  1998   while (map->l_prev != NULL)
  1999     map = map->l_prev;
  2001   while (map != NULL) {
  2002     st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  2003     map = map->l_next;
  2006   dlclose(handle);
  2009   // Loads .dll/.so and
  2010   // in case of error it checks if .dll/.so was built for the
  2011   // same architecture as Hotspot is running on
  2013 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  2015   void * result= ::dlopen(filename, RTLD_LAZY);
  2016   if (result != NULL) {
  2017     // Successful loading
  2018     return result;
  2021   Elf32_Ehdr elf_head;
  2023   // Read system error message into ebuf
  2024   // It may or may not be overwritten below
  2025   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  2026   ebuf[ebuflen-1]='\0';
  2027   int diag_msg_max_length=ebuflen-strlen(ebuf);
  2028   char* diag_msg_buf=ebuf+strlen(ebuf);
  2030   if (diag_msg_max_length==0) {
  2031     // No more space in ebuf for additional diagnostics message
  2032     return NULL;
  2036   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  2038   if (file_descriptor < 0) {
  2039     // Can't open library, report dlerror() message
  2040     return NULL;
  2043   bool failed_to_read_elf_head=
  2044     (sizeof(elf_head)!=
  2045         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  2047   ::close(file_descriptor);
  2048   if (failed_to_read_elf_head) {
  2049     // file i/o error - report dlerror() msg
  2050     return NULL;
  2053   typedef struct {
  2054     Elf32_Half  code;         // Actual value as defined in elf.h
  2055     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  2056     char        elf_class;    // 32 or 64 bit
  2057     char        endianess;    // MSB or LSB
  2058     char*       name;         // String representation
  2059   } arch_t;
  2061   static const arch_t arch_array[]={
  2062     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2063     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2064     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  2065     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  2066     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2067     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2068     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  2069     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  2070     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  2071     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
  2072   };
  2074   #if  (defined IA32)
  2075     static  Elf32_Half running_arch_code=EM_386;
  2076   #elif   (defined AMD64)
  2077     static  Elf32_Half running_arch_code=EM_X86_64;
  2078   #elif  (defined IA64)
  2079     static  Elf32_Half running_arch_code=EM_IA_64;
  2080   #elif  (defined __sparc) && (defined _LP64)
  2081     static  Elf32_Half running_arch_code=EM_SPARCV9;
  2082   #elif  (defined __sparc) && (!defined _LP64)
  2083     static  Elf32_Half running_arch_code=EM_SPARC;
  2084   #elif  (defined __powerpc64__)
  2085     static  Elf32_Half running_arch_code=EM_PPC64;
  2086   #elif  (defined __powerpc__)
  2087     static  Elf32_Half running_arch_code=EM_PPC;
  2088   #elif (defined ARM)
  2089     static  Elf32_Half running_arch_code=EM_ARM;
  2090   #else
  2091     #error Method os::dll_load requires that one of following is defined:\
  2092          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
  2093   #endif
  2095   // Identify compatability class for VM's architecture and library's architecture
  2096   // Obtain string descriptions for architectures
  2098   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2099   int running_arch_index=-1;
  2101   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2102     if (running_arch_code == arch_array[i].code) {
  2103       running_arch_index    = i;
  2105     if (lib_arch.code == arch_array[i].code) {
  2106       lib_arch.compat_class = arch_array[i].compat_class;
  2107       lib_arch.name         = arch_array[i].name;
  2111   assert(running_arch_index != -1,
  2112     "Didn't find running architecture code (running_arch_code) in arch_array");
  2113   if (running_arch_index == -1) {
  2114     // Even though running architecture detection failed
  2115     // we may still continue with reporting dlerror() message
  2116     return NULL;
  2119   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2120     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2121     return NULL;
  2124   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2125     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2126     return NULL;
  2129   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2130     if ( lib_arch.name!=NULL ) {
  2131       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2132         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2133         lib_arch.name, arch_array[running_arch_index].name);
  2134     } else {
  2135       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2136       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2137         lib_arch.code,
  2138         arch_array[running_arch_index].name);
  2142   return NULL;
  2145 void* os::dll_lookup(void* handle, const char* name) {
  2146   return dlsym(handle, name);
  2149 int os::stat(const char *path, struct stat *sbuf) {
  2150   char pathbuf[MAX_PATH];
  2151   if (strlen(path) > MAX_PATH - 1) {
  2152     errno = ENAMETOOLONG;
  2153     return -1;
  2155   os::native_path(strcpy(pathbuf, path));
  2156   return ::stat(pathbuf, sbuf);
  2159 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2160   int fd = ::open(filename, O_RDONLY);
  2161   if (fd == -1) {
  2162      return false;
  2165   char buf[32];
  2166   int bytes;
  2167   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2168     st->print_raw(buf, bytes);
  2171   ::close(fd);
  2173   return true;
  2176 void os::print_os_info_brief(outputStream* st) {
  2177   os::Solaris::print_distro_info(st);
  2179   os::Posix::print_uname_info(st);
  2181   os::Solaris::print_libversion_info(st);
  2184 void os::print_os_info(outputStream* st) {
  2185   st->print("OS:");
  2187   os::Solaris::print_distro_info(st);
  2189   os::Posix::print_uname_info(st);
  2191   os::Solaris::print_libversion_info(st);
  2193   os::Posix::print_rlimit_info(st);
  2195   os::Posix::print_load_average(st);
  2198 void os::Solaris::print_distro_info(outputStream* st) {
  2199   if (!_print_ascii_file("/etc/release", st)) {
  2200       st->print("Solaris");
  2202     st->cr();
  2205 void os::Solaris::print_libversion_info(outputStream* st) {
  2206   if (os::Solaris::T2_libthread()) {
  2207     st->print("  (T2 libthread)");
  2209   else {
  2210     st->print("  (T1 libthread)");
  2212   st->cr();
  2215 static bool check_addr0(outputStream* st) {
  2216   jboolean status = false;
  2217   int fd = ::open("/proc/self/map",O_RDONLY);
  2218   if (fd >= 0) {
  2219     prmap_t p;
  2220     while(::read(fd, &p, sizeof(p)) > 0) {
  2221       if (p.pr_vaddr == 0x0) {
  2222         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
  2223         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
  2224         st->print("Access:");
  2225         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
  2226         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
  2227         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
  2228         st->cr();
  2229         status = true;
  2231       ::close(fd);
  2234   return status;
  2237 void os::pd_print_cpu_info(outputStream* st) {
  2238   // Nothing to do for now.
  2241 void os::print_memory_info(outputStream* st) {
  2242   st->print("Memory:");
  2243   st->print(" %dk page", os::vm_page_size()>>10);
  2244   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
  2245   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
  2246   st->cr();
  2247   (void) check_addr0(st);
  2250 // Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
  2251 // but they're the same for all the solaris architectures that we support.
  2252 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2253                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2254                           "ILL_COPROC", "ILL_BADSTK" };
  2256 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2257                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2258                           "FPE_FLTINV", "FPE_FLTSUB" };
  2260 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2262 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2264 void os::print_siginfo(outputStream* st, void* siginfo) {
  2265   st->print("siginfo:");
  2267   const int buflen = 100;
  2268   char buf[buflen];
  2269   siginfo_t *si = (siginfo_t*)siginfo;
  2270   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2271   char *err = strerror(si->si_errno);
  2272   if (si->si_errno != 0 && err != NULL) {
  2273     st->print("si_errno=%s", err);
  2274   } else {
  2275     st->print("si_errno=%d", si->si_errno);
  2277   const int c = si->si_code;
  2278   assert(c > 0, "unexpected si_code");
  2279   switch (si->si_signo) {
  2280   case SIGILL:
  2281     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2282     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2283     break;
  2284   case SIGFPE:
  2285     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2286     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2287     break;
  2288   case SIGSEGV:
  2289     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2290     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2291     break;
  2292   case SIGBUS:
  2293     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2294     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2295     break;
  2296   default:
  2297     st->print(", si_code=%d", si->si_code);
  2298     // no si_addr
  2301   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2302       UseSharedSpaces) {
  2303     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2304     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2305       st->print("\n\nError accessing class data sharing archive."   \
  2306                 " Mapped file inaccessible during execution, "      \
  2307                 " possible disk/network problem.");
  2310   st->cr();
  2313 // Moved from whole group, because we need them here for diagnostic
  2314 // prints.
  2315 #define OLDMAXSIGNUM 32
  2316 static int Maxsignum = 0;
  2317 static int *ourSigFlags = NULL;
  2319 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
  2321 int os::Solaris::get_our_sigflags(int sig) {
  2322   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2323   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2324   return ourSigFlags[sig];
  2327 void os::Solaris::set_our_sigflags(int sig, int flags) {
  2328   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2329   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2330   ourSigFlags[sig] = flags;
  2334 static const char* get_signal_handler_name(address handler,
  2335                                            char* buf, int buflen) {
  2336   int offset;
  2337   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  2338   if (found) {
  2339     // skip directory names
  2340     const char *p1, *p2;
  2341     p1 = buf;
  2342     size_t len = strlen(os::file_separator());
  2343     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  2344     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  2345   } else {
  2346     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  2348   return buf;
  2351 static void print_signal_handler(outputStream* st, int sig,
  2352                                   char* buf, size_t buflen) {
  2353   struct sigaction sa;
  2355   sigaction(sig, NULL, &sa);
  2357   st->print("%s: ", os::exception_name(sig, buf, buflen));
  2359   address handler = (sa.sa_flags & SA_SIGINFO)
  2360                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  2361                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
  2363   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  2364     st->print("SIG_DFL");
  2365   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  2366     st->print("SIG_IGN");
  2367   } else {
  2368     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  2371   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  2373   address rh = VMError::get_resetted_sighandler(sig);
  2374   // May be, handler was resetted by VMError?
  2375   if(rh != NULL) {
  2376     handler = rh;
  2377     sa.sa_flags = VMError::get_resetted_sigflags(sig);
  2380   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  2382   // Check: is it our handler?
  2383   if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
  2384      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
  2385     // It is our signal handler
  2386     // check for flags
  2387     if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  2388       st->print(
  2389         ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  2390         os::Solaris::get_our_sigflags(sig));
  2393   st->cr();
  2396 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2397   st->print_cr("Signal Handlers:");
  2398   print_signal_handler(st, SIGSEGV, buf, buflen);
  2399   print_signal_handler(st, SIGBUS , buf, buflen);
  2400   print_signal_handler(st, SIGFPE , buf, buflen);
  2401   print_signal_handler(st, SIGPIPE, buf, buflen);
  2402   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2403   print_signal_handler(st, SIGILL , buf, buflen);
  2404   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2405   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
  2406   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2407   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
  2408   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2409   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
  2410   print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
  2411   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
  2414 static char saved_jvm_path[MAXPATHLEN] = { 0 };
  2416 // Find the full path to the current module, libjvm.so
  2417 void os::jvm_path(char *buf, jint buflen) {
  2418   // Error checking.
  2419   if (buflen < MAXPATHLEN) {
  2420     assert(false, "must use a large-enough buffer");
  2421     buf[0] = '\0';
  2422     return;
  2424   // Lazy resolve the path to current module.
  2425   if (saved_jvm_path[0] != 0) {
  2426     strcpy(buf, saved_jvm_path);
  2427     return;
  2430   Dl_info dlinfo;
  2431   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  2432   assert(ret != 0, "cannot locate libjvm");
  2433   if (ret != 0 && dlinfo.dli_fname != NULL) {
  2434     realpath((char *)dlinfo.dli_fname, buf);
  2435   } else {
  2436     buf[0] = '\0';
  2437     return;
  2440   if (Arguments::created_by_gamma_launcher()) {
  2441     // Support for the gamma launcher.  Typical value for buf is
  2442     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2443     // the right place in the string, then assume we are installed in a JDK and
  2444     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2445     // up the path so it looks like libjvm.so is installed there (append a
  2446     // fake suffix hotspot/libjvm.so).
  2447     const char *p = buf + strlen(buf) - 1;
  2448     for (int count = 0; p > buf && count < 5; ++count) {
  2449       for (--p; p > buf && *p != '/'; --p)
  2450         /* empty */ ;
  2453     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2454       // Look for JAVA_HOME in the environment.
  2455       char* java_home_var = ::getenv("JAVA_HOME");
  2456       if (java_home_var != NULL && java_home_var[0] != 0) {
  2457         char cpu_arch[12];
  2458         char* jrelib_p;
  2459         int   len;
  2460         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
  2461 #ifdef _LP64
  2462         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
  2463         if (strcmp(cpu_arch, "sparc") == 0) {
  2464           strcat(cpu_arch, "v9");
  2465         } else if (strcmp(cpu_arch, "i386") == 0) {
  2466           strcpy(cpu_arch, "amd64");
  2468 #endif
  2469         // Check the current module name "libjvm.so".
  2470         p = strrchr(buf, '/');
  2471         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2473         realpath(java_home_var, buf);
  2474         // determine if this is a legacy image or modules image
  2475         // modules image doesn't have "jre" subdirectory
  2476         len = strlen(buf);
  2477         jrelib_p = buf + len;
  2478         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2479         if (0 != access(buf, F_OK)) {
  2480           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2483         if (0 == access(buf, F_OK)) {
  2484           // Use current module name "libjvm.so"
  2485           len = strlen(buf);
  2486           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2487         } else {
  2488           // Go back to path of .so
  2489           realpath((char *)dlinfo.dli_fname, buf);
  2495   strcpy(saved_jvm_path, buf);
  2499 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2500   // no prefix required, not even "_"
  2504 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2505   // no suffix required
  2508 // This method is a copy of JDK's sysGetLastErrorString
  2509 // from src/solaris/hpi/src/system_md.c
  2511 size_t os::lasterror(char *buf, size_t len) {
  2513   if (errno == 0)  return 0;
  2515   const char *s = ::strerror(errno);
  2516   size_t n = ::strlen(s);
  2517   if (n >= len) {
  2518     n = len - 1;
  2520   ::strncpy(buf, s, n);
  2521   buf[n] = '\0';
  2522   return n;
  2526 // sun.misc.Signal
  2528 extern "C" {
  2529   static void UserHandler(int sig, void *siginfo, void *context) {
  2530     // Ctrl-C is pressed during error reporting, likely because the error
  2531     // handler fails to abort. Let VM die immediately.
  2532     if (sig == SIGINT && is_error_reported()) {
  2533        os::die();
  2536     os::signal_notify(sig);
  2537     // We do not need to reinstate the signal handler each time...
  2541 void* os::user_handler() {
  2542   return CAST_FROM_FN_PTR(void*, UserHandler);
  2545 class Semaphore : public StackObj {
  2546   public:
  2547     Semaphore();
  2548     ~Semaphore();
  2549     void signal();
  2550     void wait();
  2551     bool trywait();
  2552     bool timedwait(unsigned int sec, int nsec);
  2553   private:
  2554     sema_t _semaphore;
  2555 };
  2558 Semaphore::Semaphore() {
  2559   sema_init(&_semaphore, 0, NULL, NULL);
  2562 Semaphore::~Semaphore() {
  2563   sema_destroy(&_semaphore);
  2566 void Semaphore::signal() {
  2567   sema_post(&_semaphore);
  2570 void Semaphore::wait() {
  2571   sema_wait(&_semaphore);
  2574 bool Semaphore::trywait() {
  2575   return sema_trywait(&_semaphore) == 0;
  2578 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2579   struct timespec ts;
  2580   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
  2582   while (1) {
  2583     int result = sema_timedwait(&_semaphore, &ts);
  2584     if (result == 0) {
  2585       return true;
  2586     } else if (errno == EINTR) {
  2587       continue;
  2588     } else if (errno == ETIME) {
  2589       return false;
  2590     } else {
  2591       return false;
  2596 extern "C" {
  2597   typedef void (*sa_handler_t)(int);
  2598   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2601 void* os::signal(int signal_number, void* handler) {
  2602   struct sigaction sigAct, oldSigAct;
  2603   sigfillset(&(sigAct.sa_mask));
  2604   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
  2605   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2607   if (sigaction(signal_number, &sigAct, &oldSigAct))
  2608     // -1 means registration failed
  2609     return (void *)-1;
  2611   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2614 void os::signal_raise(int signal_number) {
  2615   raise(signal_number);
  2618 /*
  2619  * The following code is moved from os.cpp for making this
  2620  * code platform specific, which it is by its very nature.
  2621  */
  2623 // a counter for each possible signal value
  2624 static int Sigexit = 0;
  2625 static int Maxlibjsigsigs;
  2626 static jint *pending_signals = NULL;
  2627 static int *preinstalled_sigs = NULL;
  2628 static struct sigaction *chainedsigactions = NULL;
  2629 static sema_t sig_sem;
  2630 typedef int (*version_getting_t)();
  2631 version_getting_t os::Solaris::get_libjsig_version = NULL;
  2632 static int libjsigversion = NULL;
  2634 int os::sigexitnum_pd() {
  2635   assert(Sigexit > 0, "signal memory not yet initialized");
  2636   return Sigexit;
  2639 void os::Solaris::init_signal_mem() {
  2640   // Initialize signal structures
  2641   Maxsignum = SIGRTMAX;
  2642   Sigexit = Maxsignum+1;
  2643   assert(Maxsignum >0, "Unable to obtain max signal number");
  2645   Maxlibjsigsigs = Maxsignum;
  2647   // pending_signals has one int per signal
  2648   // The additional signal is for SIGEXIT - exit signal to signal_thread
  2649   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
  2650   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
  2652   if (UseSignalChaining) {
  2653      chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
  2654        * (Maxsignum + 1), mtInternal);
  2655      memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
  2656      preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
  2657      memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
  2659   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal);
  2660   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
  2663 void os::signal_init_pd() {
  2664   int ret;
  2666   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
  2667   assert(ret == 0, "sema_init() failed");
  2670 void os::signal_notify(int signal_number) {
  2671   int ret;
  2673   Atomic::inc(&pending_signals[signal_number]);
  2674   ret = ::sema_post(&sig_sem);
  2675   assert(ret == 0, "sema_post() failed");
  2678 static int check_pending_signals(bool wait_for_signal) {
  2679   int ret;
  2680   while (true) {
  2681     for (int i = 0; i < Sigexit + 1; i++) {
  2682       jint n = pending_signals[i];
  2683       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2684         return i;
  2687     if (!wait_for_signal) {
  2688       return -1;
  2690     JavaThread *thread = JavaThread::current();
  2691     ThreadBlockInVM tbivm(thread);
  2693     bool threadIsSuspended;
  2694     do {
  2695       thread->set_suspend_equivalent();
  2696       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2697       while((ret = ::sema_wait(&sig_sem)) == EINTR)
  2699       assert(ret == 0, "sema_wait() failed");
  2701       // were we externally suspended while we were waiting?
  2702       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2703       if (threadIsSuspended) {
  2704         //
  2705         // The semaphore has been incremented, but while we were waiting
  2706         // another thread suspended us. We don't want to continue running
  2707         // while suspended because that would surprise the thread that
  2708         // suspended us.
  2709         //
  2710         ret = ::sema_post(&sig_sem);
  2711         assert(ret == 0, "sema_post() failed");
  2713         thread->java_suspend_self();
  2715     } while (threadIsSuspended);
  2719 int os::signal_lookup() {
  2720   return check_pending_signals(false);
  2723 int os::signal_wait() {
  2724   return check_pending_signals(true);
  2727 ////////////////////////////////////////////////////////////////////////////////
  2728 // Virtual Memory
  2730 static int page_size = -1;
  2732 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
  2733 // clear this var if support is not available.
  2734 static bool has_map_align = true;
  2736 int os::vm_page_size() {
  2737   assert(page_size != -1, "must call os::init");
  2738   return page_size;
  2741 // Solaris allocates memory by pages.
  2742 int os::vm_allocation_granularity() {
  2743   assert(page_size != -1, "must call os::init");
  2744   return page_size;
  2747 static bool recoverable_mmap_error(int err) {
  2748   // See if the error is one we can let the caller handle. This
  2749   // list of errno values comes from the Solaris mmap(2) man page.
  2750   switch (err) {
  2751   case EBADF:
  2752   case EINVAL:
  2753   case ENOTSUP:
  2754     // let the caller deal with these errors
  2755     return true;
  2757   default:
  2758     // Any remaining errors on this OS can cause our reserved mapping
  2759     // to be lost. That can cause confusion where different data
  2760     // structures think they have the same memory mapped. The worst
  2761     // scenario is if both the VM and a library think they have the
  2762     // same memory mapped.
  2763     return false;
  2767 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
  2768                                     int err) {
  2769   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2770           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
  2771           strerror(err), err);
  2774 static void warn_fail_commit_memory(char* addr, size_t bytes,
  2775                                     size_t alignment_hint, bool exec,
  2776                                     int err) {
  2777   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2778           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
  2779           alignment_hint, exec, strerror(err), err);
  2782 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
  2783   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2784   size_t size = bytes;
  2785   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
  2786   if (res != NULL) {
  2787     if (UseNUMAInterleaving) {
  2788       numa_make_global(addr, bytes);
  2790     return 0;
  2793   int err = errno;  // save errno from mmap() call in mmap_chunk()
  2795   if (!recoverable_mmap_error(err)) {
  2796     warn_fail_commit_memory(addr, bytes, exec, err);
  2797     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
  2800   return err;
  2803 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  2804   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
  2807 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
  2808                                   const char* mesg) {
  2809   assert(mesg != NULL, "mesg must be specified");
  2810   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
  2811   if (err != 0) {
  2812     // the caller wants all commit errors to exit with the specified mesg:
  2813     warn_fail_commit_memory(addr, bytes, exec, err);
  2814     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
  2818 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
  2819                                     size_t alignment_hint, bool exec) {
  2820   int err = Solaris::commit_memory_impl(addr, bytes, exec);
  2821   if (err == 0) {
  2822     if (UseLargePages && (alignment_hint > (size_t)vm_page_size())) {
  2823       // If the large page size has been set and the VM
  2824       // is using large pages, use the large page size
  2825       // if it is smaller than the alignment hint. This is
  2826       // a case where the VM wants to use a larger alignment size
  2827       // for its own reasons but still want to use large pages
  2828       // (which is what matters to setting the mpss range.
  2829       size_t page_size = 0;
  2830       if (large_page_size() < alignment_hint) {
  2831         assert(UseLargePages, "Expected to be here for large page use only");
  2832         page_size = large_page_size();
  2833       } else {
  2834         // If the alignment hint is less than the large page
  2835         // size, the VM wants a particular alignment (thus the hint)
  2836         // for internal reasons.  Try to set the mpss range using
  2837         // the alignment_hint.
  2838         page_size = alignment_hint;
  2840       // Since this is a hint, ignore any failures.
  2841       (void)Solaris::setup_large_pages(addr, bytes, page_size);
  2844   return err;
  2847 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
  2848                           bool exec) {
  2849   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
  2852 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
  2853                                   size_t alignment_hint, bool exec,
  2854                                   const char* mesg) {
  2855   assert(mesg != NULL, "mesg must be specified");
  2856   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
  2857   if (err != 0) {
  2858     // the caller wants all commit errors to exit with the specified mesg:
  2859     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
  2860     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg);
  2864 // Uncommit the pages in a specified region.
  2865 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
  2866   if (madvise(addr, bytes, MADV_FREE) < 0) {
  2867     debug_only(warning("MADV_FREE failed."));
  2868     return;
  2872 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2873   return os::commit_memory(addr, size, !ExecMem);
  2876 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2877   return os::uncommit_memory(addr, size);
  2880 // Change the page size in a given range.
  2881 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2882   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
  2883   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
  2884   if (UseLargePages) {
  2885     Solaris::setup_large_pages(addr, bytes, alignment_hint);
  2889 // Tell the OS to make the range local to the first-touching LWP
  2890 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2891   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2892   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
  2893     debug_only(warning("MADV_ACCESS_LWP failed."));
  2897 // Tell the OS that this range would be accessed from different LWPs.
  2898 void os::numa_make_global(char *addr, size_t bytes) {
  2899   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2900   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
  2901     debug_only(warning("MADV_ACCESS_MANY failed."));
  2905 // Get the number of the locality groups.
  2906 size_t os::numa_get_groups_num() {
  2907   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
  2908   return n != -1 ? n : 1;
  2911 // Get a list of leaf locality groups. A leaf lgroup is group that
  2912 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
  2913 // board. An LWP is assigned to one of these groups upon creation.
  2914 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2915    if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
  2916      ids[0] = 0;
  2917      return 1;
  2919    int result_size = 0, top = 1, bottom = 0, cur = 0;
  2920    for (int k = 0; k < size; k++) {
  2921      int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
  2922                                     (Solaris::lgrp_id_t*)&ids[top], size - top);
  2923      if (r == -1) {
  2924        ids[0] = 0;
  2925        return 1;
  2927      if (!r) {
  2928        // That's a leaf node.
  2929        assert (bottom <= cur, "Sanity check");
  2930        // Check if the node has memory
  2931        if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
  2932                                    NULL, 0, LGRP_RSRC_MEM) > 0) {
  2933          ids[bottom++] = ids[cur];
  2936      top += r;
  2937      cur++;
  2939    if (bottom == 0) {
  2940      // Handle a situation, when the OS reports no memory available.
  2941      // Assume UMA architecture.
  2942      ids[0] = 0;
  2943      return 1;
  2945    return bottom;
  2948 // Detect the topology change. Typically happens during CPU plugging-unplugging.
  2949 bool os::numa_topology_changed() {
  2950   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
  2951   if (is_stale != -1 && is_stale) {
  2952     Solaris::lgrp_fini(Solaris::lgrp_cookie());
  2953     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
  2954     assert(c != 0, "Failure to initialize LGRP API");
  2955     Solaris::set_lgrp_cookie(c);
  2956     return true;
  2958   return false;
  2961 // Get the group id of the current LWP.
  2962 int os::numa_get_group_id() {
  2963   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
  2964   if (lgrp_id == -1) {
  2965     return 0;
  2967   const int size = os::numa_get_groups_num();
  2968   int *ids = (int*)alloca(size * sizeof(int));
  2970   // Get the ids of all lgroups with memory; r is the count.
  2971   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
  2972                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
  2973   if (r <= 0) {
  2974     return 0;
  2976   return ids[os::random() % r];
  2979 // Request information about the page.
  2980 bool os::get_page_info(char *start, page_info* info) {
  2981   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2982   uint64_t addr = (uintptr_t)start;
  2983   uint64_t outdata[2];
  2984   uint_t validity = 0;
  2986   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
  2987     return false;
  2990   info->size = 0;
  2991   info->lgrp_id = -1;
  2993   if ((validity & 1) != 0) {
  2994     if ((validity & 2) != 0) {
  2995       info->lgrp_id = outdata[0];
  2997     if ((validity & 4) != 0) {
  2998       info->size = outdata[1];
  3000     return true;
  3002   return false;
  3005 // Scan the pages from start to end until a page different than
  3006 // the one described in the info parameter is encountered.
  3007 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  3008   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  3009   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
  3010   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
  3011   uint_t validity[MAX_MEMINFO_CNT];
  3013   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
  3014   uint64_t p = (uint64_t)start;
  3015   while (p < (uint64_t)end) {
  3016     addrs[0] = p;
  3017     size_t addrs_count = 1;
  3018     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
  3019       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
  3020       addrs_count++;
  3023     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
  3024       return NULL;
  3027     size_t i = 0;
  3028     for (; i < addrs_count; i++) {
  3029       if ((validity[i] & 1) != 0) {
  3030         if ((validity[i] & 4) != 0) {
  3031           if (outdata[types * i + 1] != page_expected->size) {
  3032             break;
  3034         } else
  3035           if (page_expected->size != 0) {
  3036             break;
  3039         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
  3040           if (outdata[types * i] != page_expected->lgrp_id) {
  3041             break;
  3044       } else {
  3045         return NULL;
  3049     if (i != addrs_count) {
  3050       if ((validity[i] & 2) != 0) {
  3051         page_found->lgrp_id = outdata[types * i];
  3052       } else {
  3053         page_found->lgrp_id = -1;
  3055       if ((validity[i] & 4) != 0) {
  3056         page_found->size = outdata[types * i + 1];
  3057       } else {
  3058         page_found->size = 0;
  3060       return (char*)addrs[i];
  3063     p = addrs[addrs_count - 1] + page_size;
  3065   return end;
  3068 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  3069   size_t size = bytes;
  3070   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3071   // uncommitted page. Otherwise, the read/write might succeed if we
  3072   // have enough swap space to back the physical page.
  3073   return
  3074     NULL != Solaris::mmap_chunk(addr, size,
  3075                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
  3076                                 PROT_NONE);
  3079 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
  3080   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
  3082   if (b == MAP_FAILED) {
  3083     return NULL;
  3085   return b;
  3088 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
  3089   char* addr = requested_addr;
  3090   int flags = MAP_PRIVATE | MAP_NORESERVE;
  3092   assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
  3094   if (fixed) {
  3095     flags |= MAP_FIXED;
  3096   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
  3097     flags |= MAP_ALIGN;
  3098     addr = (char*) alignment_hint;
  3101   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3102   // uncommitted page. Otherwise, the read/write might succeed if we
  3103   // have enough swap space to back the physical page.
  3104   return mmap_chunk(addr, bytes, flags, PROT_NONE);
  3107 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
  3108   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
  3110   guarantee(requested_addr == NULL || requested_addr == addr,
  3111             "OS failed to return requested mmap address.");
  3112   return addr;
  3115 // Reserve memory at an arbitrary address, only if that area is
  3116 // available (and not reserved for something else).
  3118 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3119   const int max_tries = 10;
  3120   char* base[max_tries];
  3121   size_t size[max_tries];
  3123   // Solaris adds a gap between mmap'ed regions.  The size of the gap
  3124   // is dependent on the requested size and the MMU.  Our initial gap
  3125   // value here is just a guess and will be corrected later.
  3126   bool had_top_overlap = false;
  3127   bool have_adjusted_gap = false;
  3128   size_t gap = 0x400000;
  3130   // Assert only that the size is a multiple of the page size, since
  3131   // that's all that mmap requires, and since that's all we really know
  3132   // about at this low abstraction level.  If we need higher alignment,
  3133   // we can either pass an alignment to this method or verify alignment
  3134   // in one of the methods further up the call chain.  See bug 5044738.
  3135   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3137   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
  3138   // Give it a try, if the kernel honors the hint we can return immediately.
  3139   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
  3141   volatile int err = errno;
  3142   if (addr == requested_addr) {
  3143     return addr;
  3144   } else if (addr != NULL) {
  3145     pd_unmap_memory(addr, bytes);
  3148   if (PrintMiscellaneous && Verbose) {
  3149     char buf[256];
  3150     buf[0] = '\0';
  3151     if (addr == NULL) {
  3152       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
  3154     warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
  3155             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
  3156             "%s", bytes, requested_addr, addr, buf);
  3159   // Address hint method didn't work.  Fall back to the old method.
  3160   // In theory, once SNV becomes our oldest supported platform, this
  3161   // code will no longer be needed.
  3162   //
  3163   // Repeatedly allocate blocks until the block is allocated at the
  3164   // right spot. Give up after max_tries.
  3165   int i;
  3166   for (i = 0; i < max_tries; ++i) {
  3167     base[i] = reserve_memory(bytes);
  3169     if (base[i] != NULL) {
  3170       // Is this the block we wanted?
  3171       if (base[i] == requested_addr) {
  3172         size[i] = bytes;
  3173         break;
  3176       // check that the gap value is right
  3177       if (had_top_overlap && !have_adjusted_gap) {
  3178         size_t actual_gap = base[i-1] - base[i] - bytes;
  3179         if (gap != actual_gap) {
  3180           // adjust the gap value and retry the last 2 allocations
  3181           assert(i > 0, "gap adjustment code problem");
  3182           have_adjusted_gap = true;  // adjust the gap only once, just in case
  3183           gap = actual_gap;
  3184           if (PrintMiscellaneous && Verbose) {
  3185             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
  3187           unmap_memory(base[i], bytes);
  3188           unmap_memory(base[i-1], size[i-1]);
  3189           i-=2;
  3190           continue;
  3194       // Does this overlap the block we wanted? Give back the overlapped
  3195       // parts and try again.
  3196       //
  3197       // There is still a bug in this code: if top_overlap == bytes,
  3198       // the overlap is offset from requested region by the value of gap.
  3199       // In this case giving back the overlapped part will not work,
  3200       // because we'll give back the entire block at base[i] and
  3201       // therefore the subsequent allocation will not generate a new gap.
  3202       // This could be fixed with a new algorithm that used larger
  3203       // or variable size chunks to find the requested region -
  3204       // but such a change would introduce additional complications.
  3205       // It's rare enough that the planets align for this bug,
  3206       // so we'll just wait for a fix for 6204603/5003415 which
  3207       // will provide a mmap flag to allow us to avoid this business.
  3209       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3210       if (top_overlap >= 0 && top_overlap < bytes) {
  3211         had_top_overlap = true;
  3212         unmap_memory(base[i], top_overlap);
  3213         base[i] += top_overlap;
  3214         size[i] = bytes - top_overlap;
  3215       } else {
  3216         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3217         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3218           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
  3219             warning("attempt_reserve_memory_at: possible alignment bug");
  3221           unmap_memory(requested_addr, bottom_overlap);
  3222           size[i] = bytes - bottom_overlap;
  3223         } else {
  3224           size[i] = bytes;
  3230   // Give back the unused reserved pieces.
  3232   for (int j = 0; j < i; ++j) {
  3233     if (base[j] != NULL) {
  3234       unmap_memory(base[j], size[j]);
  3238   return (i < max_tries) ? requested_addr : NULL;
  3241 bool os::pd_release_memory(char* addr, size_t bytes) {
  3242   size_t size = bytes;
  3243   return munmap(addr, size) == 0;
  3246 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
  3247   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
  3248          "addr must be page aligned");
  3249   int retVal = mprotect(addr, bytes, prot);
  3250   return retVal == 0;
  3253 // Protect memory (Used to pass readonly pages through
  3254 // JNI GetArray<type>Elements with empty arrays.)
  3255 // Also, used for serialization page and for compressed oops null pointer
  3256 // checking.
  3257 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3258                         bool is_committed) {
  3259   unsigned int p = 0;
  3260   switch (prot) {
  3261   case MEM_PROT_NONE: p = PROT_NONE; break;
  3262   case MEM_PROT_READ: p = PROT_READ; break;
  3263   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3264   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3265   default:
  3266     ShouldNotReachHere();
  3268   // is_committed is unused.
  3269   return solaris_mprotect(addr, bytes, p);
  3272 // guard_memory and unguard_memory only happens within stack guard pages.
  3273 // Since ISM pertains only to the heap, guard and unguard memory should not
  3274 /// happen with an ISM region.
  3275 bool os::guard_memory(char* addr, size_t bytes) {
  3276   return solaris_mprotect(addr, bytes, PROT_NONE);
  3279 bool os::unguard_memory(char* addr, size_t bytes) {
  3280   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
  3283 // Large page support
  3284 static size_t _large_page_size = 0;
  3286 // Insertion sort for small arrays (descending order).
  3287 static void insertion_sort_descending(size_t* array, int len) {
  3288   for (int i = 0; i < len; i++) {
  3289     size_t val = array[i];
  3290     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
  3291       size_t tmp = array[key];
  3292       array[key] = array[key - 1];
  3293       array[key - 1] = tmp;
  3298 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
  3299   const unsigned int usable_count = VM_Version::page_size_count();
  3300   if (usable_count == 1) {
  3301     return false;
  3304   // Find the right getpagesizes interface.  When solaris 11 is the minimum
  3305   // build platform, getpagesizes() (without the '2') can be called directly.
  3306   typedef int (*gps_t)(size_t[], int);
  3307   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
  3308   if (gps_func == NULL) {
  3309     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
  3310     if (gps_func == NULL) {
  3311       if (warn) {
  3312         warning("MPSS is not supported by the operating system.");
  3314       return false;
  3318   // Fill the array of page sizes.
  3319   int n = (*gps_func)(_page_sizes, page_sizes_max);
  3320   assert(n > 0, "Solaris bug?");
  3322   if (n == page_sizes_max) {
  3323     // Add a sentinel value (necessary only if the array was completely filled
  3324     // since it is static (zeroed at initialization)).
  3325     _page_sizes[--n] = 0;
  3326     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
  3328   assert(_page_sizes[n] == 0, "missing sentinel");
  3329   trace_page_sizes("available page sizes", _page_sizes, n);
  3331   if (n == 1) return false;     // Only one page size available.
  3333   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
  3334   // select up to usable_count elements.  First sort the array, find the first
  3335   // acceptable value, then copy the usable sizes to the top of the array and
  3336   // trim the rest.  Make sure to include the default page size :-).
  3337   //
  3338   // A better policy could get rid of the 4M limit by taking the sizes of the
  3339   // important VM memory regions (java heap and possibly the code cache) into
  3340   // account.
  3341   insertion_sort_descending(_page_sizes, n);
  3342   const size_t size_limit =
  3343     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
  3344   int beg;
  3345   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
  3346   const int end = MIN2((int)usable_count, n) - 1;
  3347   for (int cur = 0; cur < end; ++cur, ++beg) {
  3348     _page_sizes[cur] = _page_sizes[beg];
  3350   _page_sizes[end] = vm_page_size();
  3351   _page_sizes[end + 1] = 0;
  3353   if (_page_sizes[end] > _page_sizes[end - 1]) {
  3354     // Default page size is not the smallest; sort again.
  3355     insertion_sort_descending(_page_sizes, end + 1);
  3357   *page_size = _page_sizes[0];
  3359   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
  3360   return true;
  3363 void os::large_page_init() {
  3364   if (UseLargePages) {
  3365     // print a warning if any large page related flag is specified on command line
  3366     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
  3367                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3369     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
  3373 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
  3374   // Signal to OS that we want large pages for addresses
  3375   // from addr, addr + bytes
  3376   struct memcntl_mha mpss_struct;
  3377   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
  3378   mpss_struct.mha_pagesize = align;
  3379   mpss_struct.mha_flags = 0;
  3380   // Upon successful completion, memcntl() returns 0
  3381   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
  3382     debug_only(warning("Attempt to use MPSS failed."));
  3383     return false;
  3385   return true;
  3388 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
  3389   fatal("os::reserve_memory_special should not be called on Solaris.");
  3390   return NULL;
  3393 bool os::release_memory_special(char* base, size_t bytes) {
  3394   fatal("os::release_memory_special should not be called on Solaris.");
  3395   return false;
  3398 size_t os::large_page_size() {
  3399   return _large_page_size;
  3402 // MPSS allows application to commit large page memory on demand; with ISM
  3403 // the entire memory region must be allocated as shared memory.
  3404 bool os::can_commit_large_page_memory() {
  3405   return true;
  3408 bool os::can_execute_large_page_memory() {
  3409   return true;
  3412 static int os_sleep(jlong millis, bool interruptible) {
  3413   const jlong limit = INT_MAX;
  3414   jlong prevtime;
  3415   int res;
  3417   while (millis > limit) {
  3418     if ((res = os_sleep(limit, interruptible)) != OS_OK)
  3419       return res;
  3420     millis -= limit;
  3423   // Restart interrupted polls with new parameters until the proper delay
  3424   // has been completed.
  3426   prevtime = getTimeMillis();
  3428   while (millis > 0) {
  3429     jlong newtime;
  3431     if (!interruptible) {
  3432       // Following assert fails for os::yield_all:
  3433       // assert(!thread->is_Java_thread(), "must not be java thread");
  3434       res = poll(NULL, 0, millis);
  3435     } else {
  3436       JavaThread *jt = JavaThread::current();
  3438       INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
  3439         os::Solaris::clear_interrupted);
  3442     // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
  3443     // thread.Interrupt.
  3445     // See c/r 6751923. Poll can return 0 before time
  3446     // has elapsed if time is set via clock_settime (as NTP does).
  3447     // res == 0 if poll timed out (see man poll RETURN VALUES)
  3448     // using the logic below checks that we really did
  3449     // sleep at least "millis" if not we'll sleep again.
  3450     if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
  3451       newtime = getTimeMillis();
  3452       assert(newtime >= prevtime, "time moving backwards");
  3453     /* Doing prevtime and newtime in microseconds doesn't help precision,
  3454        and trying to round up to avoid lost milliseconds can result in a
  3455        too-short delay. */
  3456       millis -= newtime - prevtime;
  3457       if(millis <= 0)
  3458         return OS_OK;
  3459       prevtime = newtime;
  3460     } else
  3461       return res;
  3464   return OS_OK;
  3467 // Read calls from inside the vm need to perform state transitions
  3468 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3469   INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3472 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
  3473   INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3476 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3477   assert(thread == Thread::current(),  "thread consistency check");
  3479   // TODO-FIXME: this should be removed.
  3480   // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
  3481   // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
  3482   // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
  3483   // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
  3484   // is fooled into believing that the system is making progress. In the code below we block the
  3485   // the watcher thread while safepoint is in progress so that it would not appear as though the
  3486   // system is making progress.
  3487   if (!Solaris::T2_libthread() &&
  3488       thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
  3489     // We now try to acquire the threads lock. Since this lock is held by the VM thread during
  3490     // the entire safepoint, the watcher thread will  line up here during the safepoint.
  3491     Threads_lock->lock_without_safepoint_check();
  3492     Threads_lock->unlock();
  3495   if (thread->is_Java_thread()) {
  3496     // This is a JavaThread so we honor the _thread_blocked protocol
  3497     // even for sleeps of 0 milliseconds. This was originally done
  3498     // as a workaround for bug 4338139. However, now we also do it
  3499     // to honor the suspend-equivalent protocol.
  3501     JavaThread *jt = (JavaThread *) thread;
  3502     ThreadBlockInVM tbivm(jt);
  3504     jt->set_suspend_equivalent();
  3505     // cleared by handle_special_suspend_equivalent_condition() or
  3506     // java_suspend_self() via check_and_wait_while_suspended()
  3508     int ret_code;
  3509     if (millis <= 0) {
  3510       thr_yield();
  3511       ret_code = 0;
  3512     } else {
  3513       // The original sleep() implementation did not create an
  3514       // OSThreadWaitState helper for sleeps of 0 milliseconds.
  3515       // I'm preserving that decision for now.
  3516       OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3518       ret_code = os_sleep(millis, interruptible);
  3521     // were we externally suspended while we were waiting?
  3522     jt->check_and_wait_while_suspended();
  3524     return ret_code;
  3527   // non-JavaThread from this point on:
  3529   if (millis <= 0) {
  3530     thr_yield();
  3531     return 0;
  3534   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3536   return os_sleep(millis, interruptible);
  3539 int os::naked_sleep() {
  3540   // %% make the sleep time an integer flag. for now use 1 millisec.
  3541   return os_sleep(1, false);
  3544 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3545 void os::infinite_sleep() {
  3546   while (true) {    // sleep forever ...
  3547     ::sleep(100);   // ... 100 seconds at a time
  3551 // Used to convert frequent JVM_Yield() to nops
  3552 bool os::dont_yield() {
  3553   if (DontYieldALot) {
  3554     static hrtime_t last_time = 0;
  3555     hrtime_t diff = getTimeNanos() - last_time;
  3557     if (diff < DontYieldALotInterval * 1000000)
  3558       return true;
  3560     last_time += diff;
  3562     return false;
  3564   else {
  3565     return false;
  3569 // Caveat: Solaris os::yield() causes a thread-state transition whereas
  3570 // the linux and win32 implementations do not.  This should be checked.
  3572 void os::yield() {
  3573   // Yields to all threads with same or greater priority
  3574   os::sleep(Thread::current(), 0, false);
  3577 // Note that yield semantics are defined by the scheduling class to which
  3578 // the thread currently belongs.  Typically, yield will _not yield to
  3579 // other equal or higher priority threads that reside on the dispatch queues
  3580 // of other CPUs.
  3582 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
  3585 // On Solaris we found that yield_all doesn't always yield to all other threads.
  3586 // There have been cases where there is a thread ready to execute but it doesn't
  3587 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
  3588 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
  3589 // SIGWAITING signal which will cause a new lwp to be created. So we count the
  3590 // number of times yield_all is called in the one loop and increase the sleep
  3591 // time after 8 attempts. If this fails too we increase the concurrency level
  3592 // so that the starving thread would get an lwp
  3594 void os::yield_all(int attempts) {
  3595   // Yields to all threads, including threads with lower priorities
  3596   if (attempts == 0) {
  3597     os::sleep(Thread::current(), 1, false);
  3598   } else {
  3599     int iterations = attempts % 30;
  3600     if (iterations == 0 && !os::Solaris::T2_libthread()) {
  3601       // thr_setconcurrency and _getconcurrency make sense only under T1.
  3602       int noofLWPS = thr_getconcurrency();
  3603       if (noofLWPS < (Threads::number_of_threads() + 2)) {
  3604         thr_setconcurrency(thr_getconcurrency() + 1);
  3606     } else if (iterations < 25) {
  3607       os::sleep(Thread::current(), 1, false);
  3608     } else {
  3609       os::sleep(Thread::current(), 10, false);
  3614 // Called from the tight loops to possibly influence time-sharing heuristics
  3615 void os::loop_breaker(int attempts) {
  3616   os::yield_all(attempts);
  3620 // Interface for setting lwp priorities.  If we are using T2 libthread,
  3621 // which forces the use of BoundThreads or we manually set UseBoundThreads,
  3622 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
  3623 // function is meaningless in this mode so we must adjust the real lwp's priority
  3624 // The routines below implement the getting and setting of lwp priorities.
  3625 //
  3626 // Note: There are three priority scales used on Solaris.  Java priotities
  3627 //       which range from 1 to 10, libthread "thr_setprio" scale which range
  3628 //       from 0 to 127, and the current scheduling class of the process we
  3629 //       are running in.  This is typically from -60 to +60.
  3630 //       The setting of the lwp priorities in done after a call to thr_setprio
  3631 //       so Java priorities are mapped to libthread priorities and we map from
  3632 //       the latter to lwp priorities.  We don't keep priorities stored in
  3633 //       Java priorities since some of our worker threads want to set priorities
  3634 //       higher than all Java threads.
  3635 //
  3636 // For related information:
  3637 // (1)  man -s 2 priocntl
  3638 // (2)  man -s 4 priocntl
  3639 // (3)  man dispadmin
  3640 // =    librt.so
  3641 // =    libthread/common/rtsched.c - thrp_setlwpprio().
  3642 // =    ps -cL <pid> ... to validate priority.
  3643 // =    sched_get_priority_min and _max
  3644 //              pthread_create
  3645 //              sched_setparam
  3646 //              pthread_setschedparam
  3647 //
  3648 // Assumptions:
  3649 // +    We assume that all threads in the process belong to the same
  3650 //              scheduling class.   IE. an homogenous process.
  3651 // +    Must be root or in IA group to change change "interactive" attribute.
  3652 //              Priocntl() will fail silently.  The only indication of failure is when
  3653 //              we read-back the value and notice that it hasn't changed.
  3654 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
  3655 // +    For RT, change timeslice as well.  Invariant:
  3656 //              constant "priority integral"
  3657 //              Konst == TimeSlice * (60-Priority)
  3658 //              Given a priority, compute appropriate timeslice.
  3659 // +    Higher numerical values have higher priority.
  3661 // sched class attributes
  3662 typedef struct {
  3663         int   schedPolicy;              // classID
  3664         int   maxPrio;
  3665         int   minPrio;
  3666 } SchedInfo;
  3669 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
  3671 #ifdef ASSERT
  3672 static int  ReadBackValidate = 1;
  3673 #endif
  3674 static int  myClass     = 0;
  3675 static int  myMin       = 0;
  3676 static int  myMax       = 0;
  3677 static int  myCur       = 0;
  3678 static bool priocntl_enable = false;
  3680 static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
  3681 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
  3684 // lwp_priocntl_init
  3685 //
  3686 // Try to determine the priority scale for our process.
  3687 //
  3688 // Return errno or 0 if OK.
  3689 //
  3690 static int lwp_priocntl_init () {
  3691   int rslt;
  3692   pcinfo_t ClassInfo;
  3693   pcparms_t ParmInfo;
  3694   int i;
  3696   if (!UseThreadPriorities) return 0;
  3698   // We are using Bound threads, we need to determine our priority ranges
  3699   if (os::Solaris::T2_libthread() || UseBoundThreads) {
  3700     // If ThreadPriorityPolicy is 1, switch tables
  3701     if (ThreadPriorityPolicy == 1) {
  3702       for (i = 0 ; i < CriticalPriority+1; i++)
  3703         os::java_to_os_priority[i] = prio_policy1[i];
  3705     if (UseCriticalJavaThreadPriority) {
  3706       // MaxPriority always maps to the FX scheduling class and criticalPrio.
  3707       // See set_native_priority() and set_lwp_class_and_priority().
  3708       // Save original MaxPriority mapping in case attempt to
  3709       // use critical priority fails.
  3710       java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
  3711       // Set negative to distinguish from other priorities
  3712       os::java_to_os_priority[MaxPriority] = -criticalPrio;
  3715   // Not using Bound Threads, set to ThreadPolicy 1
  3716   else {
  3717     for ( i = 0 ; i < CriticalPriority+1; i++ ) {
  3718       os::java_to_os_priority[i] = prio_policy1[i];
  3720     return 0;
  3723   // Get IDs for a set of well-known scheduling classes.
  3724   // TODO-FIXME: GETCLINFO returns the current # of classes in the
  3725   // the system.  We should have a loop that iterates over the
  3726   // classID values, which are known to be "small" integers.
  3728   strcpy(ClassInfo.pc_clname, "TS");
  3729   ClassInfo.pc_cid = -1;
  3730   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3731   if (rslt < 0) return errno;
  3732   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
  3733   tsLimits.schedPolicy = ClassInfo.pc_cid;
  3734   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
  3735   tsLimits.minPrio = -tsLimits.maxPrio;
  3737   strcpy(ClassInfo.pc_clname, "IA");
  3738   ClassInfo.pc_cid = -1;
  3739   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3740   if (rslt < 0) return errno;
  3741   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
  3742   iaLimits.schedPolicy = ClassInfo.pc_cid;
  3743   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
  3744   iaLimits.minPrio = -iaLimits.maxPrio;
  3746   strcpy(ClassInfo.pc_clname, "RT");
  3747   ClassInfo.pc_cid = -1;
  3748   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3749   if (rslt < 0) return errno;
  3750   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
  3751   rtLimits.schedPolicy = ClassInfo.pc_cid;
  3752   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
  3753   rtLimits.minPrio = 0;
  3755   strcpy(ClassInfo.pc_clname, "FX");
  3756   ClassInfo.pc_cid = -1;
  3757   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3758   if (rslt < 0) return errno;
  3759   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
  3760   fxLimits.schedPolicy = ClassInfo.pc_cid;
  3761   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
  3762   fxLimits.minPrio = 0;
  3764   // Query our "current" scheduling class.
  3765   // This will normally be IA, TS or, rarely, FX or RT.
  3766   memset(&ParmInfo, 0, sizeof(ParmInfo));
  3767   ParmInfo.pc_cid = PC_CLNULL;
  3768   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3769   if (rslt < 0) return errno;
  3770   myClass = ParmInfo.pc_cid;
  3772   // We now know our scheduling classId, get specific information
  3773   // about the class.
  3774   ClassInfo.pc_cid = myClass;
  3775   ClassInfo.pc_clname[0] = 0;
  3776   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
  3777   if (rslt < 0) return errno;
  3779   if (ThreadPriorityVerbose) {
  3780     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
  3783   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3784   ParmInfo.pc_cid = PC_CLNULL;
  3785   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3786   if (rslt < 0) return errno;
  3788   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3789     myMin = rtLimits.minPrio;
  3790     myMax = rtLimits.maxPrio;
  3791   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3792     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3793     myMin = iaLimits.minPrio;
  3794     myMax = iaLimits.maxPrio;
  3795     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
  3796   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3797     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3798     myMin = tsLimits.minPrio;
  3799     myMax = tsLimits.maxPrio;
  3800     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
  3801   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
  3802     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
  3803     myMin = fxLimits.minPrio;
  3804     myMax = fxLimits.maxPrio;
  3805     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
  3806   } else {
  3807     // No clue - punt
  3808     if (ThreadPriorityVerbose)
  3809       tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
  3810     return EINVAL;      // no clue, punt
  3813   if (ThreadPriorityVerbose) {
  3814     tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
  3817   priocntl_enable = true;  // Enable changing priorities
  3818   return 0;
  3821 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
  3822 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
  3823 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
  3824 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
  3827 // scale_to_lwp_priority
  3828 //
  3829 // Convert from the libthread "thr_setprio" scale to our current
  3830 // lwp scheduling class scale.
  3831 //
  3832 static
  3833 int     scale_to_lwp_priority (int rMin, int rMax, int x)
  3835   int v;
  3837   if (x == 127) return rMax;            // avoid round-down
  3838     v = (((x*(rMax-rMin)))/128)+rMin;
  3839   return v;
  3843 // set_lwp_class_and_priority
  3844 //
  3845 // Set the class and priority of the lwp.  This call should only
  3846 // be made when using bound threads (T2 threads are bound by default).
  3847 //
  3848 int set_lwp_class_and_priority(int ThreadID, int lwpid,
  3849                                int newPrio, int new_class, bool scale) {
  3850   int rslt;
  3851   int Actual, Expected, prv;
  3852   pcparms_t ParmInfo;                   // for GET-SET
  3853 #ifdef ASSERT
  3854   pcparms_t ReadBack;                   // for readback
  3855 #endif
  3857   // Set priority via PC_GETPARMS, update, PC_SETPARMS
  3858   // Query current values.
  3859   // TODO: accelerate this by eliminating the PC_GETPARMS call.
  3860   // Cache "pcparms_t" in global ParmCache.
  3861   // TODO: elide set-to-same-value
  3863   // If something went wrong on init, don't change priorities.
  3864   if ( !priocntl_enable ) {
  3865     if (ThreadPriorityVerbose)
  3866       tty->print_cr("Trying to set priority but init failed, ignoring");
  3867     return EINVAL;
  3870   // If lwp hasn't started yet, just return
  3871   // the _start routine will call us again.
  3872   if ( lwpid <= 0 ) {
  3873     if (ThreadPriorityVerbose) {
  3874       tty->print_cr ("deferring the set_lwp_class_and_priority of thread "
  3875                      INTPTR_FORMAT " to %d, lwpid not set",
  3876                      ThreadID, newPrio);
  3878     return 0;
  3881   if (ThreadPriorityVerbose) {
  3882     tty->print_cr ("set_lwp_class_and_priority("
  3883                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
  3884                    ThreadID, lwpid, newPrio);
  3887   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3888   ParmInfo.pc_cid = PC_CLNULL;
  3889   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
  3890   if (rslt < 0) return errno;
  3892   int cur_class = ParmInfo.pc_cid;
  3893   ParmInfo.pc_cid = (id_t)new_class;
  3895   if (new_class == rtLimits.schedPolicy) {
  3896     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
  3897     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
  3898                                                        rtLimits.maxPrio, newPrio)
  3899                                : newPrio;
  3900     rtInfo->rt_tqsecs  = RT_NOCHANGE;
  3901     rtInfo->rt_tqnsecs = RT_NOCHANGE;
  3902     if (ThreadPriorityVerbose) {
  3903       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
  3905   } else if (new_class == iaLimits.schedPolicy) {
  3906     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3907     int maxClamped     = MIN2(iaLimits.maxPrio,
  3908                               cur_class == new_class
  3909                                 ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
  3910     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
  3911                                                        maxClamped, newPrio)
  3912                                : newPrio;
  3913     iaInfo->ia_uprilim = cur_class == new_class
  3914                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
  3915     iaInfo->ia_mode    = IA_NOCHANGE;
  3916     if (ThreadPriorityVerbose) {
  3917       tty->print_cr("IA: [%d...%d] %d->%d\n",
  3918                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
  3920   } else if (new_class == tsLimits.schedPolicy) {
  3921     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3922     int maxClamped     = MIN2(tsLimits.maxPrio,
  3923                               cur_class == new_class
  3924                                 ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
  3925     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
  3926                                                        maxClamped, newPrio)
  3927                                : newPrio;
  3928     tsInfo->ts_uprilim = cur_class == new_class
  3929                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
  3930     if (ThreadPriorityVerbose) {
  3931       tty->print_cr("TS: [%d...%d] %d->%d\n",
  3932                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
  3934   } else if (new_class == fxLimits.schedPolicy) {
  3935     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
  3936     int maxClamped     = MIN2(fxLimits.maxPrio,
  3937                               cur_class == new_class
  3938                                 ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
  3939     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
  3940                                                        maxClamped, newPrio)
  3941                                : newPrio;
  3942     fxInfo->fx_uprilim = cur_class == new_class
  3943                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
  3944     fxInfo->fx_tqsecs  = FX_NOCHANGE;
  3945     fxInfo->fx_tqnsecs = FX_NOCHANGE;
  3946     if (ThreadPriorityVerbose) {
  3947       tty->print_cr("FX: [%d...%d] %d->%d\n",
  3948                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
  3950   } else {
  3951     if (ThreadPriorityVerbose) {
  3952       tty->print_cr("Unknown new scheduling class %d\n", new_class);
  3954     return EINVAL;    // no clue, punt
  3957   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
  3958   if (ThreadPriorityVerbose && rslt) {
  3959     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
  3961   if (rslt < 0) return errno;
  3963 #ifdef ASSERT
  3964   // Sanity check: read back what we just attempted to set.
  3965   // In theory it could have changed in the interim ...
  3966   //
  3967   // The priocntl system call is tricky.
  3968   // Sometimes it'll validate the priority value argument and
  3969   // return EINVAL if unhappy.  At other times it fails silently.
  3970   // Readbacks are prudent.
  3972   if (!ReadBackValidate) return 0;
  3974   memset(&ReadBack, 0, sizeof(pcparms_t));
  3975   ReadBack.pc_cid = PC_CLNULL;
  3976   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
  3977   assert(rslt >= 0, "priocntl failed");
  3978   Actual = Expected = 0xBAD;
  3979   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
  3980   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3981     Actual   = RTPRI(ReadBack)->rt_pri;
  3982     Expected = RTPRI(ParmInfo)->rt_pri;
  3983   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3984     Actual   = IAPRI(ReadBack)->ia_upri;
  3985     Expected = IAPRI(ParmInfo)->ia_upri;
  3986   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3987     Actual   = TSPRI(ReadBack)->ts_upri;
  3988     Expected = TSPRI(ParmInfo)->ts_upri;
  3989   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
  3990     Actual   = FXPRI(ReadBack)->fx_upri;
  3991     Expected = FXPRI(ParmInfo)->fx_upri;
  3992   } else {
  3993     if (ThreadPriorityVerbose) {
  3994       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
  3995                     ParmInfo.pc_cid);
  3999   if (Actual != Expected) {
  4000     if (ThreadPriorityVerbose) {
  4001       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
  4002                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
  4005 #endif
  4007   return 0;
  4010 // Solaris only gives access to 128 real priorities at a time,
  4011 // so we expand Java's ten to fill this range.  This would be better
  4012 // if we dynamically adjusted relative priorities.
  4013 //
  4014 // The ThreadPriorityPolicy option allows us to select 2 different
  4015 // priority scales.
  4016 //
  4017 // ThreadPriorityPolicy=0
  4018 // Since the Solaris' default priority is MaximumPriority, we do not
  4019 // set a priority lower than Max unless a priority lower than
  4020 // NormPriority is requested.
  4021 //
  4022 // ThreadPriorityPolicy=1
  4023 // This mode causes the priority table to get filled with
  4024 // linear values.  NormPriority get's mapped to 50% of the
  4025 // Maximum priority an so on.  This will cause VM threads
  4026 // to get unfair treatment against other Solaris processes
  4027 // which do not explicitly alter their thread priorities.
  4028 //
  4030 int os::java_to_os_priority[CriticalPriority + 1] = {
  4031   -99999,         // 0 Entry should never be used
  4033   0,              // 1 MinPriority
  4034   32,             // 2
  4035   64,             // 3
  4037   96,             // 4
  4038   127,            // 5 NormPriority
  4039   127,            // 6
  4041   127,            // 7
  4042   127,            // 8
  4043   127,            // 9 NearMaxPriority
  4045   127,            // 10 MaxPriority
  4047   -criticalPrio   // 11 CriticalPriority
  4048 };
  4050 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4051   OSThread* osthread = thread->osthread();
  4053   // Save requested priority in case the thread hasn't been started
  4054   osthread->set_native_priority(newpri);
  4056   // Check for critical priority request
  4057   bool fxcritical = false;
  4058   if (newpri == -criticalPrio) {
  4059     fxcritical = true;
  4060     newpri = criticalPrio;
  4063   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
  4064   if (!UseThreadPriorities) return OS_OK;
  4066   int status = 0;
  4068   if (!fxcritical) {
  4069     // Use thr_setprio only if we have a priority that thr_setprio understands
  4070     status = thr_setprio(thread->osthread()->thread_id(), newpri);
  4073   if (os::Solaris::T2_libthread() ||
  4074       (UseBoundThreads && osthread->is_vm_created())) {
  4075     int lwp_status =
  4076       set_lwp_class_and_priority(osthread->thread_id(),
  4077                                  osthread->lwp_id(),
  4078                                  newpri,
  4079                                  fxcritical ? fxLimits.schedPolicy : myClass,
  4080                                  !fxcritical);
  4081     if (lwp_status != 0 && fxcritical) {
  4082       // Try again, this time without changing the scheduling class
  4083       newpri = java_MaxPriority_to_os_priority;
  4084       lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
  4085                                               osthread->lwp_id(),
  4086                                               newpri, myClass, false);
  4088     status |= lwp_status;
  4090   return (status == 0) ? OS_OK : OS_ERR;
  4094 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4095   int p;
  4096   if ( !UseThreadPriorities ) {
  4097     *priority_ptr = NormalPriority;
  4098     return OS_OK;
  4100   int status = thr_getprio(thread->osthread()->thread_id(), &p);
  4101   if (status != 0) {
  4102     return OS_ERR;
  4104   *priority_ptr = p;
  4105   return OS_OK;
  4109 // Hint to the underlying OS that a task switch would not be good.
  4110 // Void return because it's a hint and can fail.
  4111 void os::hint_no_preempt() {
  4112   schedctl_start(schedctl_init());
  4115 static void resume_clear_context(OSThread *osthread) {
  4116   osthread->set_ucontext(NULL);
  4119 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
  4120   osthread->set_ucontext(context);
  4123 static Semaphore sr_semaphore;
  4125 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
  4126   // Save and restore errno to avoid confusing native code with EINTR
  4127   // after sigsuspend.
  4128   int old_errno = errno;
  4130   OSThread* osthread = thread->osthread();
  4131   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4133   os::SuspendResume::State current = osthread->sr.state();
  4134   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4135     suspend_save_context(osthread, uc);
  4137     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4138     os::SuspendResume::State state = osthread->sr.suspended();
  4139     if (state == os::SuspendResume::SR_SUSPENDED) {
  4140       sigset_t suspend_set;  // signals for sigsuspend()
  4142       // get current set of blocked signals and unblock resume signal
  4143       thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set);
  4144       sigdelset(&suspend_set, os::Solaris::SIGasync());
  4146       sr_semaphore.signal();
  4147       // wait here until we are resumed
  4148       while (1) {
  4149         sigsuspend(&suspend_set);
  4151         os::SuspendResume::State result = osthread->sr.running();
  4152         if (result == os::SuspendResume::SR_RUNNING) {
  4153           sr_semaphore.signal();
  4154           break;
  4158     } else if (state == os::SuspendResume::SR_RUNNING) {
  4159       // request was cancelled, continue
  4160     } else {
  4161       ShouldNotReachHere();
  4164     resume_clear_context(osthread);
  4165   } else if (current == os::SuspendResume::SR_RUNNING) {
  4166     // request was cancelled, continue
  4167   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4168     // ignore
  4169   } else {
  4170     // ignore
  4173   errno = old_errno;
  4177 void os::interrupt(Thread* thread) {
  4178   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4180   OSThread* osthread = thread->osthread();
  4182   int isInterrupted = osthread->interrupted();
  4183   if (!isInterrupted) {
  4184       osthread->set_interrupted(true);
  4185       OrderAccess::fence();
  4186       // os::sleep() is implemented with either poll (NULL,0,timeout) or
  4187       // by parking on _SleepEvent.  If the former, thr_kill will unwedge
  4188       // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
  4189       ParkEvent * const slp = thread->_SleepEvent ;
  4190       if (slp != NULL) slp->unpark() ;
  4193   // For JSR166:  unpark after setting status but before thr_kill -dl
  4194   if (thread->is_Java_thread()) {
  4195     ((JavaThread*)thread)->parker()->unpark();
  4198   // Handle interruptible wait() ...
  4199   ParkEvent * const ev = thread->_ParkEvent ;
  4200   if (ev != NULL) ev->unpark() ;
  4202   // When events are used everywhere for os::sleep, then this thr_kill
  4203   // will only be needed if UseVMInterruptibleIO is true.
  4205   if (!isInterrupted) {
  4206     int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
  4207     assert_status(status == 0, status, "thr_kill");
  4209     // Bump thread interruption counter
  4210     RuntimeService::record_thread_interrupt_signaled_count();
  4215 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4216   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4218   OSThread* osthread = thread->osthread();
  4220   bool res = osthread->interrupted();
  4222   // NOTE that since there is no "lock" around these two operations,
  4223   // there is the possibility that the interrupted flag will be
  4224   // "false" but that the interrupt event will be set. This is
  4225   // intentional. The effect of this is that Object.wait() will appear
  4226   // to have a spurious wakeup, which is not harmful, and the
  4227   // possibility is so rare that it is not worth the added complexity
  4228   // to add yet another lock. It has also been recommended not to put
  4229   // the interrupted flag into the os::Solaris::Event structure,
  4230   // because it hides the issue.
  4231   if (res && clear_interrupted) {
  4232     osthread->set_interrupted(false);
  4234   return res;
  4238 void os::print_statistics() {
  4241 int os::message_box(const char* title, const char* message) {
  4242   int i;
  4243   fdStream err(defaultStream::error_fd());
  4244   for (i = 0; i < 78; i++) err.print_raw("=");
  4245   err.cr();
  4246   err.print_raw_cr(title);
  4247   for (i = 0; i < 78; i++) err.print_raw("-");
  4248   err.cr();
  4249   err.print_raw_cr(message);
  4250   for (i = 0; i < 78; i++) err.print_raw("=");
  4251   err.cr();
  4253   char buf[16];
  4254   // Prevent process from exiting upon "read error" without consuming all CPU
  4255   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4257   return buf[0] == 'y' || buf[0] == 'Y';
  4260 static int sr_notify(OSThread* osthread) {
  4261   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
  4262   assert_status(status == 0, status, "thr_kill");
  4263   return status;
  4266 // "Randomly" selected value for how long we want to spin
  4267 // before bailing out on suspending a thread, also how often
  4268 // we send a signal to a thread we want to resume
  4269 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4270 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4272 static bool do_suspend(OSThread* osthread) {
  4273   assert(osthread->sr.is_running(), "thread should be running");
  4274   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4276   // mark as suspended and send signal
  4277   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4278     // failed to switch, state wasn't running?
  4279     ShouldNotReachHere();
  4280     return false;
  4283   if (sr_notify(osthread) != 0) {
  4284     ShouldNotReachHere();
  4287   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4288   while (true) {
  4289     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
  4290       break;
  4291     } else {
  4292       // timeout
  4293       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4294       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4295         return false;
  4296       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4297         // make sure that we consume the signal on the semaphore as well
  4298         sr_semaphore.wait();
  4299         break;
  4300       } else {
  4301         ShouldNotReachHere();
  4302         return false;
  4307   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4308   return true;
  4311 static void do_resume(OSThread* osthread) {
  4312   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4313   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4315   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4316     // failed to switch to WAKEUP_REQUEST
  4317     ShouldNotReachHere();
  4318     return;
  4321   while (true) {
  4322     if (sr_notify(osthread) == 0) {
  4323       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4324         if (osthread->sr.is_running()) {
  4325           return;
  4328     } else {
  4329       ShouldNotReachHere();
  4333   guarantee(osthread->sr.is_running(), "Must be running!");
  4336 void os::SuspendedThreadTask::internal_do_task() {
  4337   if (do_suspend(_thread->osthread())) {
  4338     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  4339     do_task(context);
  4340     do_resume(_thread->osthread());
  4344 class PcFetcher : public os::SuspendedThreadTask {
  4345 public:
  4346   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  4347   ExtendedPC result();
  4348 protected:
  4349   void do_task(const os::SuspendedThreadTaskContext& context);
  4350 private:
  4351   ExtendedPC _epc;
  4352 };
  4354 ExtendedPC PcFetcher::result() {
  4355   guarantee(is_done(), "task is not done yet.");
  4356   return _epc;
  4359 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  4360   Thread* thread = context.thread();
  4361   OSThread* osthread = thread->osthread();
  4362   if (osthread->ucontext() != NULL) {
  4363     _epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext());
  4364   } else {
  4365     // NULL context is unexpected, double-check this is the VMThread
  4366     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4370 // A lightweight implementation that does not suspend the target thread and
  4371 // thus returns only a hint. Used for profiling only!
  4372 ExtendedPC os::get_thread_pc(Thread* thread) {
  4373   // Make sure that it is called by the watcher and the Threads lock is owned.
  4374   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
  4375   // For now, is only used to profile the VM Thread
  4376   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4377   PcFetcher fetcher(thread);
  4378   fetcher.run();
  4379   return fetcher.result();
  4383 // This does not do anything on Solaris. This is basically a hook for being
  4384 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
  4385 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
  4386   f(value, method, args, thread);
  4389 // This routine may be used by user applications as a "hook" to catch signals.
  4390 // The user-defined signal handler must pass unrecognized signals to this
  4391 // routine, and if it returns true (non-zero), then the signal handler must
  4392 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4393 // routine will never retun false (zero), but instead will execute a VM panic
  4394 // routine kill the process.
  4395 //
  4396 // If this routine returns false, it is OK to call it again.  This allows
  4397 // the user-defined signal handler to perform checks either before or after
  4398 // the VM performs its own checks.  Naturally, the user code would be making
  4399 // a serious error if it tried to handle an exception (such as a null check
  4400 // or breakpoint) that the VM was generating for its own correct operation.
  4401 //
  4402 // This routine may recognize any of the following kinds of signals:
  4403 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
  4404 // os::Solaris::SIGasync
  4405 // It should be consulted by handlers for any of those signals.
  4406 // It explicitly does not recognize os::Solaris::SIGinterrupt
  4407 //
  4408 // The caller of this routine must pass in the three arguments supplied
  4409 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4410 // field of the structure passed to sigaction().  This routine assumes that
  4411 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4412 //
  4413 // Note that the VM will print warnings if it detects conflicting signal
  4414 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4415 //
  4416 extern "C" JNIEXPORT int
  4417 JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
  4418                           int abort_if_unrecognized);
  4421 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
  4422   int orig_errno = errno;  // Preserve errno value over signal handler.
  4423   JVM_handle_solaris_signal(sig, info, ucVoid, true);
  4424   errno = orig_errno;
  4427 /* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
  4428    is needed to provoke threads blocked on IO to return an EINTR
  4429    Note: this explicitly does NOT call JVM_handle_solaris_signal and
  4430    does NOT participate in signal chaining due to requirement for
  4431    NOT setting SA_RESTART to make EINTR work. */
  4432 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
  4433    if (UseSignalChaining) {
  4434       struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
  4435       if (actp && actp->sa_handler) {
  4436         vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
  4441 // This boolean allows users to forward their own non-matching signals
  4442 // to JVM_handle_solaris_signal, harmlessly.
  4443 bool os::Solaris::signal_handlers_are_installed = false;
  4445 // For signal-chaining
  4446 bool os::Solaris::libjsig_is_loaded = false;
  4447 typedef struct sigaction *(*get_signal_t)(int);
  4448 get_signal_t os::Solaris::get_signal_action = NULL;
  4450 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
  4451   struct sigaction *actp = NULL;
  4453   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
  4454     // Retrieve the old signal handler from libjsig
  4455     actp = (*get_signal_action)(sig);
  4457   if (actp == NULL) {
  4458     // Retrieve the preinstalled signal handler from jvm
  4459     actp = get_preinstalled_handler(sig);
  4462   return actp;
  4465 static bool call_chained_handler(struct sigaction *actp, int sig,
  4466                                  siginfo_t *siginfo, void *context) {
  4467   // Call the old signal handler
  4468   if (actp->sa_handler == SIG_DFL) {
  4469     // It's more reasonable to let jvm treat it as an unexpected exception
  4470     // instead of taking the default action.
  4471     return false;
  4472   } else if (actp->sa_handler != SIG_IGN) {
  4473     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4474       // automaticlly block the signal
  4475       sigaddset(&(actp->sa_mask), sig);
  4478     sa_handler_t hand;
  4479     sa_sigaction_t sa;
  4480     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4481     // retrieve the chained handler
  4482     if (siginfo_flag_set) {
  4483       sa = actp->sa_sigaction;
  4484     } else {
  4485       hand = actp->sa_handler;
  4488     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4489       actp->sa_handler = SIG_DFL;
  4492     // try to honor the signal mask
  4493     sigset_t oset;
  4494     thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4496     // call into the chained handler
  4497     if (siginfo_flag_set) {
  4498       (*sa)(sig, siginfo, context);
  4499     } else {
  4500       (*hand)(sig);
  4503     // restore the signal mask
  4504     thr_sigsetmask(SIG_SETMASK, &oset, 0);
  4506   // Tell jvm's signal handler the signal is taken care of.
  4507   return true;
  4510 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4511   bool chained = false;
  4512   // signal-chaining
  4513   if (UseSignalChaining) {
  4514     struct sigaction *actp = get_chained_signal_action(sig);
  4515     if (actp != NULL) {
  4516       chained = call_chained_handler(actp, sig, siginfo, context);
  4519   return chained;
  4522 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
  4523   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4524   if (preinstalled_sigs[sig] != 0) {
  4525     return &chainedsigactions[sig];
  4527   return NULL;
  4530 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4532   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
  4533   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4534   chainedsigactions[sig] = oldAct;
  4535   preinstalled_sigs[sig] = 1;
  4538 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
  4539   // Check for overwrite.
  4540   struct sigaction oldAct;
  4541   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4542   void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4543                                       : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4544   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4545       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4546       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
  4547     if (AllowUserSignalHandlers || !set_installed) {
  4548       // Do not overwrite; user takes responsibility to forward to us.
  4549       return;
  4550     } else if (UseSignalChaining) {
  4551       if (oktochain) {
  4552         // save the old handler in jvm
  4553         save_preinstalled_handler(sig, oldAct);
  4554       } else {
  4555         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
  4557       // libjsig also interposes the sigaction() call below and saves the
  4558       // old sigaction on it own.
  4559     } else {
  4560       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4561                     "%#lx for signal %d.", (long)oldhand, sig));
  4565   struct sigaction sigAct;
  4566   sigfillset(&(sigAct.sa_mask));
  4567   sigAct.sa_handler = SIG_DFL;
  4569   sigAct.sa_sigaction = signalHandler;
  4570   // Handle SIGSEGV on alternate signal stack if
  4571   // not using stack banging
  4572   if (!UseStackBanging && sig == SIGSEGV) {
  4573     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
  4574   // Interruptible i/o requires SA_RESTART cleared so EINTR
  4575   // is returned instead of restarting system calls
  4576   } else if (sig == os::Solaris::SIGinterrupt()) {
  4577     sigemptyset(&sigAct.sa_mask);
  4578     sigAct.sa_handler = NULL;
  4579     sigAct.sa_flags = SA_SIGINFO;
  4580     sigAct.sa_sigaction = sigINTRHandler;
  4581   } else {
  4582     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
  4584   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
  4586   sigaction(sig, &sigAct, &oldAct);
  4588   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4589                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4590   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4594 #define DO_SIGNAL_CHECK(sig) \
  4595   if (!sigismember(&check_signal_done, sig)) \
  4596     os::Solaris::check_signal_handler(sig)
  4598 // This method is a periodic task to check for misbehaving JNI applications
  4599 // under CheckJNI, we can add any periodic checks here
  4601 void os::run_periodic_checks() {
  4602   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
  4603   // thereby preventing a NULL checks.
  4604   if(!check_addr0_done) check_addr0_done = check_addr0(tty);
  4606   if (check_signals == false) return;
  4608   // SEGV and BUS if overridden could potentially prevent
  4609   // generation of hs*.log in the event of a crash, debugging
  4610   // such a case can be very challenging, so we absolutely
  4611   // check for the following for a good measure:
  4612   DO_SIGNAL_CHECK(SIGSEGV);
  4613   DO_SIGNAL_CHECK(SIGILL);
  4614   DO_SIGNAL_CHECK(SIGFPE);
  4615   DO_SIGNAL_CHECK(SIGBUS);
  4616   DO_SIGNAL_CHECK(SIGPIPE);
  4617   DO_SIGNAL_CHECK(SIGXFSZ);
  4619   // ReduceSignalUsage allows the user to override these handlers
  4620   // see comments at the very top and jvm_solaris.h
  4621   if (!ReduceSignalUsage) {
  4622     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4623     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4624     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4625     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4628   // See comments above for using JVM1/JVM2 and UseAltSigs
  4629   DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
  4630   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
  4634 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4636 static os_sigaction_t os_sigaction = NULL;
  4638 void os::Solaris::check_signal_handler(int sig) {
  4639   char buf[O_BUFLEN];
  4640   address jvmHandler = NULL;
  4642   struct sigaction act;
  4643   if (os_sigaction == NULL) {
  4644     // only trust the default sigaction, in case it has been interposed
  4645     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4646     if (os_sigaction == NULL) return;
  4649   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4651   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4652     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4653     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4656   switch(sig) {
  4657     case SIGSEGV:
  4658     case SIGBUS:
  4659     case SIGFPE:
  4660     case SIGPIPE:
  4661     case SIGXFSZ:
  4662     case SIGILL:
  4663       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4664       break;
  4666     case SHUTDOWN1_SIGNAL:
  4667     case SHUTDOWN2_SIGNAL:
  4668     case SHUTDOWN3_SIGNAL:
  4669     case BREAK_SIGNAL:
  4670       jvmHandler = (address)user_handler();
  4671       break;
  4673     default:
  4674       int intrsig = os::Solaris::SIGinterrupt();
  4675       int asynsig = os::Solaris::SIGasync();
  4677       if (sig == intrsig) {
  4678         jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
  4679       } else if (sig == asynsig) {
  4680         jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4681       } else {
  4682         return;
  4684       break;
  4688   if (thisHandler != jvmHandler) {
  4689     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4690     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4691     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4692     // No need to check this sig any longer
  4693     sigaddset(&check_signal_done, sig);
  4694   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  4695     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4696     tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
  4697     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4698     // No need to check this sig any longer
  4699     sigaddset(&check_signal_done, sig);
  4702   // Print all the signal handler state
  4703   if (sigismember(&check_signal_done, sig)) {
  4704     print_signal_handlers(tty, buf, O_BUFLEN);
  4709 void os::Solaris::install_signal_handlers() {
  4710   bool libjsigdone = false;
  4711   signal_handlers_are_installed = true;
  4713   // signal-chaining
  4714   typedef void (*signal_setting_t)();
  4715   signal_setting_t begin_signal_setting = NULL;
  4716   signal_setting_t end_signal_setting = NULL;
  4717   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4718                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4719   if (begin_signal_setting != NULL) {
  4720     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4721                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4722     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4723                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4724     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
  4725                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
  4726     libjsig_is_loaded = true;
  4727     if (os::Solaris::get_libjsig_version != NULL) {
  4728       libjsigversion =  (*os::Solaris::get_libjsig_version)();
  4730     assert(UseSignalChaining, "should enable signal-chaining");
  4732   if (libjsig_is_loaded) {
  4733     // Tell libjsig jvm is setting signal handlers
  4734     (*begin_signal_setting)();
  4737   set_signal_handler(SIGSEGV, true, true);
  4738   set_signal_handler(SIGPIPE, true, true);
  4739   set_signal_handler(SIGXFSZ, true, true);
  4740   set_signal_handler(SIGBUS, true, true);
  4741   set_signal_handler(SIGILL, true, true);
  4742   set_signal_handler(SIGFPE, true, true);
  4745   if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
  4747     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
  4748     // can not register overridable signals which might be > 32
  4749     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
  4750     // Tell libjsig jvm has finished setting signal handlers
  4751       (*end_signal_setting)();
  4752       libjsigdone = true;
  4756   // Never ok to chain our SIGinterrupt
  4757   set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
  4758   set_signal_handler(os::Solaris::SIGasync(), true, true);
  4760   if (libjsig_is_loaded && !libjsigdone) {
  4761     // Tell libjsig jvm finishes setting signal handlers
  4762     (*end_signal_setting)();
  4765   // We don't activate signal checker if libjsig is in place, we trust ourselves
  4766   // and if UserSignalHandler is installed all bets are off.
  4767   // Log that signal checking is off only if -verbose:jni is specified.
  4768   if (CheckJNICalls) {
  4769     if (libjsig_is_loaded) {
  4770       if (PrintJNIResolving) {
  4771         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4773       check_signals = false;
  4775     if (AllowUserSignalHandlers) {
  4776       if (PrintJNIResolving) {
  4777         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4779       check_signals = false;
  4785 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
  4787 const char * signames[] = {
  4788   "SIG0",
  4789   "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
  4790   "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
  4791   "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
  4792   "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
  4793   "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
  4794   "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
  4795   "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
  4796   "SIGCANCEL", "SIGLOST"
  4797 };
  4799 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4800   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4801     // signal
  4802     if (exception_code < sizeof(signames)/sizeof(const char*)) {
  4803        jio_snprintf(buf, size, "%s", signames[exception_code]);
  4804     } else {
  4805        jio_snprintf(buf, size, "SIG%d", exception_code);
  4807     return buf;
  4808   } else {
  4809     return NULL;
  4813 // (Static) wrappers for the new libthread API
  4814 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
  4815 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
  4816 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
  4817 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
  4818 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
  4820 // (Static) wrapper for getisax(2) call.
  4821 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
  4823 // (Static) wrappers for the liblgrp API
  4824 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
  4825 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
  4826 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
  4827 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
  4828 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
  4829 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
  4830 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
  4831 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
  4832 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
  4834 // (Static) wrapper for meminfo() call.
  4835 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
  4837 static address resolve_symbol_lazy(const char* name) {
  4838   address addr = (address) dlsym(RTLD_DEFAULT, name);
  4839   if(addr == NULL) {
  4840     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
  4841     addr = (address) dlsym(RTLD_NEXT, name);
  4843   return addr;
  4846 static address resolve_symbol(const char* name) {
  4847   address addr = resolve_symbol_lazy(name);
  4848   if(addr == NULL) {
  4849     fatal(dlerror());
  4851   return addr;
  4856 // isT2_libthread()
  4857 //
  4858 // Routine to determine if we are currently using the new T2 libthread.
  4859 //
  4860 // We determine if we are using T2 by reading /proc/self/lstatus and
  4861 // looking for a thread with the ASLWP bit set.  If we find this status
  4862 // bit set, we must assume that we are NOT using T2.  The T2 team
  4863 // has approved this algorithm.
  4864 //
  4865 // We need to determine if we are running with the new T2 libthread
  4866 // since setting native thread priorities is handled differently
  4867 // when using this library.  All threads created using T2 are bound
  4868 // threads. Calling thr_setprio is meaningless in this case.
  4869 //
  4870 bool isT2_libthread() {
  4871   static prheader_t * lwpArray = NULL;
  4872   static int lwpSize = 0;
  4873   static int lwpFile = -1;
  4874   lwpstatus_t * that;
  4875   char lwpName [128];
  4876   bool isT2 = false;
  4878 #define ADR(x)  ((uintptr_t)(x))
  4879 #define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
  4881   lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
  4882   if (lwpFile < 0) {
  4883       if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
  4884       return false;
  4886   lwpSize = 16*1024;
  4887   for (;;) {
  4888     ::lseek64 (lwpFile, 0, SEEK_SET);
  4889     lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal);
  4890     if (::read(lwpFile, lwpArray, lwpSize) < 0) {
  4891       if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
  4892       break;
  4894     if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
  4895        // We got a good snapshot - now iterate over the list.
  4896       int aslwpcount = 0;
  4897       for (int i = 0; i < lwpArray->pr_nent; i++ ) {
  4898         that = LWPINDEX(lwpArray,i);
  4899         if (that->pr_flags & PR_ASLWP) {
  4900           aslwpcount++;
  4903       if (aslwpcount == 0) isT2 = true;
  4904       break;
  4906     lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
  4907     FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);  // retry.
  4910   FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);
  4911   ::close (lwpFile);
  4912   if (ThreadPriorityVerbose) {
  4913     if (isT2) tty->print_cr("We are running with a T2 libthread\n");
  4914     else tty->print_cr("We are not running with a T2 libthread\n");
  4916   return isT2;
  4920 void os::Solaris::libthread_init() {
  4921   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
  4923   // Determine if we are running with the new T2 libthread
  4924   os::Solaris::set_T2_libthread(isT2_libthread());
  4926   lwp_priocntl_init();
  4928   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
  4929   if(func == NULL) {
  4930     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
  4931     // Guarantee that this VM is running on an new enough OS (5.6 or
  4932     // later) that it will have a new enough libthread.so.
  4933     guarantee(func != NULL, "libthread.so is too old.");
  4936   // Initialize the new libthread getstate API wrappers
  4937   func = resolve_symbol("thr_getstate");
  4938   os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
  4940   func = resolve_symbol("thr_setstate");
  4941   os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
  4943   func = resolve_symbol("thr_setmutator");
  4944   os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
  4946   func = resolve_symbol("thr_suspend_mutator");
  4947   os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4949   func = resolve_symbol("thr_continue_mutator");
  4950   os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4952   int size;
  4953   void (*handler_info_func)(address *, int *);
  4954   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
  4955   handler_info_func(&handler_start, &size);
  4956   handler_end = handler_start + size;
  4960 int_fnP_mutex_tP os::Solaris::_mutex_lock;
  4961 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
  4962 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
  4963 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
  4964 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
  4965 int os::Solaris::_mutex_scope = USYNC_THREAD;
  4967 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
  4968 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
  4969 int_fnP_cond_tP os::Solaris::_cond_signal;
  4970 int_fnP_cond_tP os::Solaris::_cond_broadcast;
  4971 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
  4972 int_fnP_cond_tP os::Solaris::_cond_destroy;
  4973 int os::Solaris::_cond_scope = USYNC_THREAD;
  4975 void os::Solaris::synchronization_init() {
  4976   if(UseLWPSynchronization) {
  4977     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
  4978     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
  4979     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
  4980     os::Solaris::set_mutex_init(lwp_mutex_init);
  4981     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
  4982     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4984     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
  4985     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
  4986     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
  4987     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
  4988     os::Solaris::set_cond_init(lwp_cond_init);
  4989     os::Solaris::set_cond_destroy(lwp_cond_destroy);
  4990     os::Solaris::set_cond_scope(USYNC_THREAD);
  4992   else {
  4993     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4994     os::Solaris::set_cond_scope(USYNC_THREAD);
  4996     if(UsePthreads) {
  4997       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
  4998       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
  4999       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
  5000       os::Solaris::set_mutex_init(pthread_mutex_default_init);
  5001       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
  5003       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
  5004       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
  5005       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
  5006       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
  5007       os::Solaris::set_cond_init(pthread_cond_default_init);
  5008       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
  5010     else {
  5011       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
  5012       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
  5013       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
  5014       os::Solaris::set_mutex_init(::mutex_init);
  5015       os::Solaris::set_mutex_destroy(::mutex_destroy);
  5017       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
  5018       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
  5019       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
  5020       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
  5021       os::Solaris::set_cond_init(::cond_init);
  5022       os::Solaris::set_cond_destroy(::cond_destroy);
  5027 bool os::Solaris::liblgrp_init() {
  5028   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
  5029   if (handle != NULL) {
  5030     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
  5031     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
  5032     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
  5033     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
  5034     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
  5035     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
  5036     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
  5037     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
  5038                                        dlsym(handle, "lgrp_cookie_stale")));
  5040     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
  5041     set_lgrp_cookie(c);
  5042     return true;
  5044   return false;
  5047 void os::Solaris::misc_sym_init() {
  5048   address func;
  5050   // getisax
  5051   func = resolve_symbol_lazy("getisax");
  5052   if (func != NULL) {
  5053     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
  5056   // meminfo
  5057   func = resolve_symbol_lazy("meminfo");
  5058   if (func != NULL) {
  5059     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
  5063 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
  5064   assert(_getisax != NULL, "_getisax not set");
  5065   return _getisax(array, n);
  5068 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
  5069 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
  5070 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
  5072 void init_pset_getloadavg_ptr(void) {
  5073   pset_getloadavg_ptr =
  5074     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
  5075   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
  5076     warning("pset_getloadavg function not found");
  5080 int os::Solaris::_dev_zero_fd = -1;
  5082 // this is called _before_ the global arguments have been parsed
  5083 void os::init(void) {
  5084   _initial_pid = getpid();
  5086   max_hrtime = first_hrtime = gethrtime();
  5088   init_random(1234567);
  5090   page_size = sysconf(_SC_PAGESIZE);
  5091   if (page_size == -1)
  5092     fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
  5093                   strerror(errno)));
  5094   init_page_sizes((size_t) page_size);
  5096   Solaris::initialize_system_info();
  5098   // Initialize misc. symbols as soon as possible, so we can use them
  5099   // if we need them.
  5100   Solaris::misc_sym_init();
  5102   int fd = ::open("/dev/zero", O_RDWR);
  5103   if (fd < 0) {
  5104     fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
  5105   } else {
  5106     Solaris::set_dev_zero_fd(fd);
  5108     // Close on exec, child won't inherit.
  5109     fcntl(fd, F_SETFD, FD_CLOEXEC);
  5112   clock_tics_per_sec = CLK_TCK;
  5114   // check if dladdr1() exists; dladdr1 can provide more information than
  5115   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
  5116   // and is available on linker patches for 5.7 and 5.8.
  5117   // libdl.so must have been loaded, this call is just an entry lookup
  5118   void * hdl = dlopen("libdl.so", RTLD_NOW);
  5119   if (hdl)
  5120     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
  5122   // (Solaris only) this switches to calls that actually do locking.
  5123   ThreadCritical::initialize();
  5125   main_thread = thr_self();
  5127   // Constant minimum stack size allowed. It must be at least
  5128   // the minimum of what the OS supports (thr_min_stack()), and
  5129   // enough to allow the thread to get to user bytecode execution.
  5130   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
  5131   // If the pagesize of the VM is greater than 8K determine the appropriate
  5132   // number of initial guard pages.  The user can change this with the
  5133   // command line arguments, if needed.
  5134   if (vm_page_size() > 8*K) {
  5135     StackYellowPages = 1;
  5136     StackRedPages = 1;
  5137     StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
  5141 // To install functions for atexit system call
  5142 extern "C" {
  5143   static void perfMemory_exit_helper() {
  5144     perfMemory_exit();
  5148 // this is called _after_ the global arguments have been parsed
  5149 jint os::init_2(void) {
  5150   // try to enable extended file IO ASAP, see 6431278
  5151   os::Solaris::try_enable_extended_io();
  5153   // Allocate a single page and mark it as readable for safepoint polling.  Also
  5154   // use this first mmap call to check support for MAP_ALIGN.
  5155   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
  5156                                                       page_size,
  5157                                                       MAP_PRIVATE | MAP_ALIGN,
  5158                                                       PROT_READ);
  5159   if (polling_page == NULL) {
  5160     has_map_align = false;
  5161     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
  5162                                                 PROT_READ);
  5165   os::set_polling_page(polling_page);
  5167 #ifndef PRODUCT
  5168   if( Verbose && PrintMiscellaneous )
  5169     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  5170 #endif
  5172   if (!UseMembar) {
  5173     address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
  5174     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  5175     os::set_memory_serialize_page( mem_serialize_page );
  5177 #ifndef PRODUCT
  5178     if(Verbose && PrintMiscellaneous)
  5179       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  5180 #endif
  5183   os::large_page_init();
  5185   // Check minimum allowable stack size for thread creation and to initialize
  5186   // the java system classes, including StackOverflowError - depends on page
  5187   // size.  Add a page for compiler2 recursion in main thread.
  5188   // Add in 2*BytesPerWord times page size to account for VM stack during
  5189   // class initialization depending on 32 or 64 bit VM.
  5190   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
  5191             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  5192                     2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
  5194   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5195   if (threadStackSizeInBytes != 0 &&
  5196     threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
  5197     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
  5198                   os::Solaris::min_stack_allowed/K);
  5199     return JNI_ERR;
  5202   // For 64kbps there will be a 64kb page size, which makes
  5203   // the usable default stack size quite a bit less.  Increase the
  5204   // stack for 64kb (or any > than 8kb) pages, this increases
  5205   // virtual memory fragmentation (since we're not creating the
  5206   // stack on a power of 2 boundary.  The real fix for this
  5207   // should be to fix the guard page mechanism.
  5209   if (vm_page_size() > 8*K) {
  5210       threadStackSizeInBytes = (threadStackSizeInBytes != 0)
  5211          ? threadStackSizeInBytes +
  5212            ((StackYellowPages + StackRedPages) * vm_page_size())
  5213          : 0;
  5214       ThreadStackSize = threadStackSizeInBytes/K;
  5217   // Make the stack size a multiple of the page size so that
  5218   // the yellow/red zones can be guarded.
  5219   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5220         vm_page_size()));
  5222   Solaris::libthread_init();
  5224   if (UseNUMA) {
  5225     if (!Solaris::liblgrp_init()) {
  5226       UseNUMA = false;
  5227     } else {
  5228       size_t lgrp_limit = os::numa_get_groups_num();
  5229       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
  5230       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
  5231       FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
  5232       if (lgrp_num < 2) {
  5233         // There's only one locality group, disable NUMA.
  5234         UseNUMA = false;
  5237     if (!UseNUMA && ForceNUMA) {
  5238       UseNUMA = true;
  5242   Solaris::signal_sets_init();
  5243   Solaris::init_signal_mem();
  5244   Solaris::install_signal_handlers();
  5246   if (libjsigversion < JSIG_VERSION_1_4_1) {
  5247     Maxlibjsigsigs = OLDMAXSIGNUM;
  5250   // initialize synchronization primitives to use either thread or
  5251   // lwp synchronization (controlled by UseLWPSynchronization)
  5252   Solaris::synchronization_init();
  5254   if (MaxFDLimit) {
  5255     // set the number of file descriptors to max. print out error
  5256     // if getrlimit/setrlimit fails but continue regardless.
  5257     struct rlimit nbr_files;
  5258     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5259     if (status != 0) {
  5260       if (PrintMiscellaneous && (Verbose || WizardMode))
  5261         perror("os::init_2 getrlimit failed");
  5262     } else {
  5263       nbr_files.rlim_cur = nbr_files.rlim_max;
  5264       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5265       if (status != 0) {
  5266         if (PrintMiscellaneous && (Verbose || WizardMode))
  5267           perror("os::init_2 setrlimit failed");
  5272   // Calculate theoretical max. size of Threads to guard gainst
  5273   // artifical out-of-memory situations, where all available address-
  5274   // space has been reserved by thread stacks. Default stack size is 1Mb.
  5275   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
  5276     JavaThread::stack_size_at_create() : (1*K*K);
  5277   assert(pre_thread_stack_size != 0, "Must have a stack");
  5278   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
  5279   // we should start doing Virtual Memory banging. Currently when the threads will
  5280   // have used all but 200Mb of space.
  5281   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
  5282   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
  5284   // at-exit methods are called in the reverse order of their registration.
  5285   // In Solaris 7 and earlier, atexit functions are called on return from
  5286   // main or as a result of a call to exit(3C). There can be only 32 of
  5287   // these functions registered and atexit() does not set errno. In Solaris
  5288   // 8 and later, there is no limit to the number of functions registered
  5289   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
  5290   // functions are called upon dlclose(3DL) in addition to return from main
  5291   // and exit(3C).
  5293   if (PerfAllowAtExitRegistration) {
  5294     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5295     // atexit functions can be delayed until process exit time, which
  5296     // can be problematic for embedded VM situations. Embedded VMs should
  5297     // call DestroyJavaVM() to assure that VM resources are released.
  5299     // note: perfMemory_exit_helper atexit function may be removed in
  5300     // the future if the appropriate cleanup code can be added to the
  5301     // VM_Exit VMOperation's doit method.
  5302     if (atexit(perfMemory_exit_helper) != 0) {
  5303       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  5307   // Init pset_loadavg function pointer
  5308   init_pset_getloadavg_ptr();
  5310   return JNI_OK;
  5313 void os::init_3(void) {
  5314   return;
  5317 // Mark the polling page as unreadable
  5318 void os::make_polling_page_unreadable(void) {
  5319   if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
  5320     fatal("Could not disable polling page");
  5321 };
  5323 // Mark the polling page as readable
  5324 void os::make_polling_page_readable(void) {
  5325   if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
  5326     fatal("Could not enable polling page");
  5327 };
  5329 // OS interface.
  5331 bool os::check_heap(bool force) { return true; }
  5333 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
  5334 static vsnprintf_t sol_vsnprintf = NULL;
  5336 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
  5337   if (!sol_vsnprintf) {
  5338     //search  for the named symbol in the objects that were loaded after libjvm
  5339     void* where = RTLD_NEXT;
  5340     if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5341         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5342     if (!sol_vsnprintf){
  5343       //search  for the named symbol in the objects that were loaded before libjvm
  5344       where = RTLD_DEFAULT;
  5345       if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5346         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5347       assert(sol_vsnprintf != NULL, "vsnprintf not found");
  5350   return (*sol_vsnprintf)(buf, count, fmt, argptr);
  5354 // Is a (classpath) directory empty?
  5355 bool os::dir_is_empty(const char* path) {
  5356   DIR *dir = NULL;
  5357   struct dirent *ptr;
  5359   dir = opendir(path);
  5360   if (dir == NULL) return true;
  5362   /* Scan the directory */
  5363   bool result = true;
  5364   char buf[sizeof(struct dirent) + MAX_PATH];
  5365   struct dirent *dbuf = (struct dirent *) buf;
  5366   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
  5367     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5368       result = false;
  5371   closedir(dir);
  5372   return result;
  5375 // This code originates from JDK's sysOpen and open64_w
  5376 // from src/solaris/hpi/src/system_md.c
  5378 #ifndef O_DELETE
  5379 #define O_DELETE 0x10000
  5380 #endif
  5382 // Open a file. Unlink the file immediately after open returns
  5383 // if the specified oflag has the O_DELETE flag set.
  5384 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5386 int os::open(const char *path, int oflag, int mode) {
  5387   if (strlen(path) > MAX_PATH - 1) {
  5388     errno = ENAMETOOLONG;
  5389     return -1;
  5391   int fd;
  5392   int o_delete = (oflag & O_DELETE);
  5393   oflag = oflag & ~O_DELETE;
  5395   fd = ::open64(path, oflag, mode);
  5396   if (fd == -1) return -1;
  5398   //If the open succeeded, the file might still be a directory
  5400     struct stat64 buf64;
  5401     int ret = ::fstat64(fd, &buf64);
  5402     int st_mode = buf64.st_mode;
  5404     if (ret != -1) {
  5405       if ((st_mode & S_IFMT) == S_IFDIR) {
  5406         errno = EISDIR;
  5407         ::close(fd);
  5408         return -1;
  5410     } else {
  5411       ::close(fd);
  5412       return -1;
  5415     /*
  5416      * 32-bit Solaris systems suffer from:
  5418      * - an historical default soft limit of 256 per-process file
  5419      *   descriptors that is too low for many Java programs.
  5421      * - a design flaw where file descriptors created using stdio
  5422      *   fopen must be less than 256, _even_ when the first limit above
  5423      *   has been raised.  This can cause calls to fopen (but not calls to
  5424      *   open, for example) to fail mysteriously, perhaps in 3rd party
  5425      *   native code (although the JDK itself uses fopen).  One can hardly
  5426      *   criticize them for using this most standard of all functions.
  5428      * We attempt to make everything work anyways by:
  5430      * - raising the soft limit on per-process file descriptors beyond
  5431      *   256
  5433      * - As of Solaris 10u4, we can request that Solaris raise the 256
  5434      *   stdio fopen limit by calling function enable_extended_FILE_stdio.
  5435      *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
  5437      * - If we are stuck on an old (pre 10u4) Solaris system, we can
  5438      *   workaround the bug by remapping non-stdio file descriptors below
  5439      *   256 to ones beyond 256, which is done below.
  5441      * See:
  5442      * 1085341: 32-bit stdio routines should support file descriptors >255
  5443      * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
  5444      * 6431278: Netbeans crash on 32 bit Solaris: need to call
  5445      *          enable_extended_FILE_stdio() in VM initialisation
  5446      * Giri Mandalika's blog
  5447      * http://technopark02.blogspot.com/2005_05_01_archive.html
  5448      */
  5449 #ifndef  _LP64
  5450      if ((!enabled_extended_FILE_stdio) && fd < 256) {
  5451          int newfd = ::fcntl(fd, F_DUPFD, 256);
  5452          if (newfd != -1) {
  5453              ::close(fd);
  5454              fd = newfd;
  5457 #endif // 32-bit Solaris
  5458     /*
  5459      * All file descriptors that are opened in the JVM and not
  5460      * specifically destined for a subprocess should have the
  5461      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5462      * party native code might fork and exec without closing all
  5463      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5464      * UNIXProcess.c), and this in turn might:
  5466      * - cause end-of-file to fail to be detected on some file
  5467      *   descriptors, resulting in mysterious hangs, or
  5469      * - might cause an fopen in the subprocess to fail on a system
  5470      *   suffering from bug 1085341.
  5472      * (Yes, the default setting of the close-on-exec flag is a Unix
  5473      * design flaw)
  5475      * See:
  5476      * 1085341: 32-bit stdio routines should support file descriptors >255
  5477      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5478      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5479      */
  5480 #ifdef FD_CLOEXEC
  5482         int flags = ::fcntl(fd, F_GETFD);
  5483         if (flags != -1)
  5484             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5486 #endif
  5488   if (o_delete != 0) {
  5489     ::unlink(path);
  5491   return fd;
  5494 // create binary file, rewriting existing file if required
  5495 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5496   int oflags = O_WRONLY | O_CREAT;
  5497   if (!rewrite_existing) {
  5498     oflags |= O_EXCL;
  5500   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5503 // return current position of file pointer
  5504 jlong os::current_file_offset(int fd) {
  5505   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5508 // move file pointer to the specified offset
  5509 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5510   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5513 jlong os::lseek(int fd, jlong offset, int whence) {
  5514   return (jlong) ::lseek64(fd, offset, whence);
  5517 char * os::native_path(char *path) {
  5518   return path;
  5521 int os::ftruncate(int fd, jlong length) {
  5522   return ::ftruncate64(fd, length);
  5525 int os::fsync(int fd)  {
  5526   RESTARTABLE_RETURN_INT(::fsync(fd));
  5529 int os::available(int fd, jlong *bytes) {
  5530   jlong cur, end;
  5531   int mode;
  5532   struct stat64 buf64;
  5534   if (::fstat64(fd, &buf64) >= 0) {
  5535     mode = buf64.st_mode;
  5536     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5537       /*
  5538       * XXX: is the following call interruptible? If so, this might
  5539       * need to go through the INTERRUPT_IO() wrapper as for other
  5540       * blocking, interruptible calls in this file.
  5541       */
  5542       int n,ioctl_return;
  5544       INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
  5545       if (ioctl_return>= 0) {
  5546           *bytes = n;
  5547         return 1;
  5551   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5552     return 0;
  5553   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5554     return 0;
  5555   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5556     return 0;
  5558   *bytes = end - cur;
  5559   return 1;
  5562 // Map a block of memory.
  5563 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5564                      char *addr, size_t bytes, bool read_only,
  5565                      bool allow_exec) {
  5566   int prot;
  5567   int flags;
  5569   if (read_only) {
  5570     prot = PROT_READ;
  5571     flags = MAP_SHARED;
  5572   } else {
  5573     prot = PROT_READ | PROT_WRITE;
  5574     flags = MAP_PRIVATE;
  5577   if (allow_exec) {
  5578     prot |= PROT_EXEC;
  5581   if (addr != NULL) {
  5582     flags |= MAP_FIXED;
  5585   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5586                                      fd, file_offset);
  5587   if (mapped_address == MAP_FAILED) {
  5588     return NULL;
  5590   return mapped_address;
  5594 // Remap a block of memory.
  5595 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5596                        char *addr, size_t bytes, bool read_only,
  5597                        bool allow_exec) {
  5598   // same as map_memory() on this OS
  5599   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5600                         allow_exec);
  5604 // Unmap a block of memory.
  5605 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5606   return munmap(addr, bytes) == 0;
  5609 void os::pause() {
  5610   char filename[MAX_PATH];
  5611   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5612     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5613   } else {
  5614     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5617   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5618   if (fd != -1) {
  5619     struct stat buf;
  5620     ::close(fd);
  5621     while (::stat(filename, &buf) == 0) {
  5622       (void)::poll(NULL, 0, 100);
  5624   } else {
  5625     jio_fprintf(stderr,
  5626       "Could not open pause file '%s', continuing immediately.\n", filename);
  5630 #ifndef PRODUCT
  5631 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5632 // Turn this on if you need to trace synch operations.
  5633 // Set RECORD_SYNCH_LIMIT to a large-enough value,
  5634 // and call record_synch_enable and record_synch_disable
  5635 // around the computation of interest.
  5637 void record_synch(char* name, bool returning);  // defined below
  5639 class RecordSynch {
  5640   char* _name;
  5641  public:
  5642   RecordSynch(char* name) :_name(name)
  5643                  { record_synch(_name, false); }
  5644   ~RecordSynch() { record_synch(_name,   true);  }
  5645 };
  5647 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
  5648 extern "C" ret name params {                                    \
  5649   typedef ret name##_t params;                                  \
  5650   static name##_t* implem = NULL;                               \
  5651   static int callcount = 0;                                     \
  5652   if (implem == NULL) {                                         \
  5653     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
  5654     if (implem == NULL)  fatal(dlerror());                      \
  5655   }                                                             \
  5656   ++callcount;                                                  \
  5657   RecordSynch _rs(#name);                                       \
  5658   inner;                                                        \
  5659   return implem args;                                           \
  5661 // in dbx, examine callcounts this way:
  5662 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
  5664 #define CHECK_POINTER_OK(p) \
  5665   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
  5666 #define CHECK_MU \
  5667   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
  5668 #define CHECK_CV \
  5669   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
  5670 #define CHECK_P(p) \
  5671   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
  5673 #define CHECK_MUTEX(mutex_op) \
  5674 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
  5676 CHECK_MUTEX(   mutex_lock)
  5677 CHECK_MUTEX(  _mutex_lock)
  5678 CHECK_MUTEX( mutex_unlock)
  5679 CHECK_MUTEX(_mutex_unlock)
  5680 CHECK_MUTEX( mutex_trylock)
  5681 CHECK_MUTEX(_mutex_trylock)
  5683 #define CHECK_COND(cond_op) \
  5684 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
  5686 CHECK_COND( cond_wait);
  5687 CHECK_COND(_cond_wait);
  5688 CHECK_COND(_cond_wait_cancel);
  5690 #define CHECK_COND2(cond_op) \
  5691 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
  5693 CHECK_COND2( cond_timedwait);
  5694 CHECK_COND2(_cond_timedwait);
  5695 CHECK_COND2(_cond_timedwait_cancel);
  5697 // do the _lwp_* versions too
  5698 #define mutex_t lwp_mutex_t
  5699 #define cond_t  lwp_cond_t
  5700 CHECK_MUTEX(  _lwp_mutex_lock)
  5701 CHECK_MUTEX(  _lwp_mutex_unlock)
  5702 CHECK_MUTEX(  _lwp_mutex_trylock)
  5703 CHECK_MUTEX( __lwp_mutex_lock)
  5704 CHECK_MUTEX( __lwp_mutex_unlock)
  5705 CHECK_MUTEX( __lwp_mutex_trylock)
  5706 CHECK_MUTEX(___lwp_mutex_lock)
  5707 CHECK_MUTEX(___lwp_mutex_unlock)
  5709 CHECK_COND(  _lwp_cond_wait);
  5710 CHECK_COND( __lwp_cond_wait);
  5711 CHECK_COND(___lwp_cond_wait);
  5713 CHECK_COND2(  _lwp_cond_timedwait);
  5714 CHECK_COND2( __lwp_cond_timedwait);
  5715 #undef mutex_t
  5716 #undef cond_t
  5718 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5719 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5720 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5721 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5722 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5723 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5724 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5725 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5728 // recording machinery:
  5730 enum { RECORD_SYNCH_LIMIT = 200 };
  5731 char* record_synch_name[RECORD_SYNCH_LIMIT];
  5732 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
  5733 bool record_synch_returning[RECORD_SYNCH_LIMIT];
  5734 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
  5735 int record_synch_count = 0;
  5736 bool record_synch_enabled = false;
  5738 // in dbx, examine recorded data this way:
  5739 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
  5741 void record_synch(char* name, bool returning) {
  5742   if (record_synch_enabled) {
  5743     if (record_synch_count < RECORD_SYNCH_LIMIT) {
  5744       record_synch_name[record_synch_count] = name;
  5745       record_synch_returning[record_synch_count] = returning;
  5746       record_synch_thread[record_synch_count] = thr_self();
  5747       record_synch_arg0ptr[record_synch_count] = &name;
  5748       record_synch_count++;
  5750     // put more checking code here:
  5751     // ...
  5755 void record_synch_enable() {
  5756   // start collecting trace data, if not already doing so
  5757   if (!record_synch_enabled)  record_synch_count = 0;
  5758   record_synch_enabled = true;
  5761 void record_synch_disable() {
  5762   // stop collecting trace data
  5763   record_synch_enabled = false;
  5766 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5767 #endif // PRODUCT
  5769 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5770 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
  5771                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5774 // JVMTI & JVM monitoring and management support
  5775 // The thread_cpu_time() and current_thread_cpu_time() are only
  5776 // supported if is_thread_cpu_time_supported() returns true.
  5777 // They are not supported on Solaris T1.
  5779 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5780 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5781 // of a thread.
  5782 //
  5783 // current_thread_cpu_time() and thread_cpu_time(Thread *)
  5784 // returns the fast estimate available on the platform.
  5786 // hrtime_t gethrvtime() return value includes
  5787 // user time but does not include system time
  5788 jlong os::current_thread_cpu_time() {
  5789   return (jlong) gethrvtime();
  5792 jlong os::thread_cpu_time(Thread *thread) {
  5793   // return user level CPU time only to be consistent with
  5794   // what current_thread_cpu_time returns.
  5795   // thread_cpu_time_info() must be changed if this changes
  5796   return os::thread_cpu_time(thread, false /* user time only */);
  5799 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5800   if (user_sys_cpu_time) {
  5801     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5802   } else {
  5803     return os::current_thread_cpu_time();
  5807 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5808   char proc_name[64];
  5809   int count;
  5810   prusage_t prusage;
  5811   jlong lwp_time;
  5812   int fd;
  5814   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
  5815                      getpid(),
  5816                      thread->osthread()->lwp_id());
  5817   fd = ::open(proc_name, O_RDONLY);
  5818   if ( fd == -1 ) return -1;
  5820   do {
  5821     count = ::pread(fd,
  5822                   (void *)&prusage.pr_utime,
  5823                   thr_time_size,
  5824                   thr_time_off);
  5825   } while (count < 0 && errno == EINTR);
  5826   ::close(fd);
  5827   if ( count < 0 ) return -1;
  5829   if (user_sys_cpu_time) {
  5830     // user + system CPU time
  5831     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
  5832                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
  5833                  (jlong)prusage.pr_stime.tv_nsec +
  5834                  (jlong)prusage.pr_utime.tv_nsec;
  5835   } else {
  5836     // user level CPU time only
  5837     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
  5838                 (jlong)prusage.pr_utime.tv_nsec;
  5841   return(lwp_time);
  5844 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5845   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5846   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5847   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5848   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5851 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5852   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5853   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5854   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5855   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5858 bool os::is_thread_cpu_time_supported() {
  5859   if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
  5860     return true;
  5861   } else {
  5862     return false;
  5866 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5867 // Return the load average for our processor set if the primitive exists
  5868 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
  5869 int os::loadavg(double loadavg[], int nelem) {
  5870   if (pset_getloadavg_ptr != NULL) {
  5871     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
  5872   } else {
  5873     return ::getloadavg(loadavg, nelem);
  5877 //---------------------------------------------------------------------------------
  5879 bool os::find(address addr, outputStream* st) {
  5880   Dl_info dlinfo;
  5881   memset(&dlinfo, 0, sizeof(dlinfo));
  5882   if (dladdr(addr, &dlinfo) != 0) {
  5883     st->print(PTR_FORMAT ": ", addr);
  5884     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5885       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
  5886     } else if (dlinfo.dli_fbase != NULL)
  5887       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
  5888     else
  5889       st->print("<absolute address>");
  5890     if (dlinfo.dli_fname != NULL) {
  5891       st->print(" in %s", dlinfo.dli_fname);
  5893     if (dlinfo.dli_fbase != NULL) {
  5894       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5896     st->cr();
  5898     if (Verbose) {
  5899       // decode some bytes around the PC
  5900       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5901       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5902       address       lowest = (address) dlinfo.dli_sname;
  5903       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5904       if (begin < lowest)  begin = lowest;
  5905       Dl_info dlinfo2;
  5906       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5907           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5908         end = (address) dlinfo2.dli_saddr;
  5909       Disassembler::decode(begin, end, st);
  5911     return true;
  5913   return false;
  5916 // Following function has been added to support HotSparc's libjvm.so running
  5917 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
  5918 // src/solaris/hpi/native_threads in the EVM codebase.
  5919 //
  5920 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
  5921 // libraries and should thus be removed. We will leave it behind for a while
  5922 // until we no longer want to able to run on top of 1.3.0 Solaris production
  5923 // JDK. See 4341971.
  5925 #define STACK_SLACK 0x800
  5927 extern "C" {
  5928   intptr_t sysThreadAvailableStackWithSlack() {
  5929     stack_t st;
  5930     intptr_t retval, stack_top;
  5931     retval = thr_stksegment(&st);
  5932     assert(retval == 0, "incorrect return value from thr_stksegment");
  5933     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
  5934     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
  5935     stack_top=(intptr_t)st.ss_sp-st.ss_size;
  5936     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
  5940 // ObjectMonitor park-unpark infrastructure ...
  5941 //
  5942 // We implement Solaris and Linux PlatformEvents with the
  5943 // obvious condvar-mutex-flag triple.
  5944 // Another alternative that works quite well is pipes:
  5945 // Each PlatformEvent consists of a pipe-pair.
  5946 // The thread associated with the PlatformEvent
  5947 // calls park(), which reads from the input end of the pipe.
  5948 // Unpark() writes into the other end of the pipe.
  5949 // The write-side of the pipe must be set NDELAY.
  5950 // Unfortunately pipes consume a large # of handles.
  5951 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
  5952 // Using pipes for the 1st few threads might be workable, however.
  5953 //
  5954 // park() is permitted to return spuriously.
  5955 // Callers of park() should wrap the call to park() in
  5956 // an appropriate loop.  A litmus test for the correct
  5957 // usage of park is the following: if park() were modified
  5958 // to immediately return 0 your code should still work,
  5959 // albeit degenerating to a spin loop.
  5960 //
  5961 // An interesting optimization for park() is to use a trylock()
  5962 // to attempt to acquire the mutex.  If the trylock() fails
  5963 // then we know that a concurrent unpark() operation is in-progress.
  5964 // in that case the park() code could simply set _count to 0
  5965 // and return immediately.  The subsequent park() operation *might*
  5966 // return immediately.  That's harmless as the caller of park() is
  5967 // expected to loop.  By using trylock() we will have avoided a
  5968 // avoided a context switch caused by contention on the per-thread mutex.
  5969 //
  5970 // TODO-FIXME:
  5971 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
  5972 //     objectmonitor implementation.
  5973 // 2.  Collapse the JSR166 parker event, and the
  5974 //     objectmonitor ParkEvent into a single "Event" construct.
  5975 // 3.  In park() and unpark() add:
  5976 //     assert (Thread::current() == AssociatedWith).
  5977 // 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
  5978 //     1-out-of-N park() operations will return immediately.
  5979 //
  5980 // _Event transitions in park()
  5981 //   -1 => -1 : illegal
  5982 //    1 =>  0 : pass - return immediately
  5983 //    0 => -1 : block
  5984 //
  5985 // _Event serves as a restricted-range semaphore.
  5986 //
  5987 // Another possible encoding of _Event would be with
  5988 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
  5989 //
  5990 // TODO-FIXME: add DTRACE probes for:
  5991 // 1.   Tx parks
  5992 // 2.   Ty unparks Tx
  5993 // 3.   Tx resumes from park
  5996 // value determined through experimentation
  5997 #define ROUNDINGFIX 11
  5999 // utility to compute the abstime argument to timedwait.
  6000 // TODO-FIXME: switch from compute_abstime() to unpackTime().
  6002 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
  6003   // millis is the relative timeout time
  6004   // abstime will be the absolute timeout time
  6005   if (millis < 0)  millis = 0;
  6006   struct timeval now;
  6007   int status = gettimeofday(&now, NULL);
  6008   assert(status == 0, "gettimeofday");
  6009   jlong seconds = millis / 1000;
  6010   jlong max_wait_period;
  6012   if (UseLWPSynchronization) {
  6013     // forward port of fix for 4275818 (not sleeping long enough)
  6014     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
  6015     // _lwp_cond_timedwait() used a round_down algorithm rather
  6016     // than a round_up. For millis less than our roundfactor
  6017     // it rounded down to 0 which doesn't meet the spec.
  6018     // For millis > roundfactor we may return a bit sooner, but
  6019     // since we can not accurately identify the patch level and
  6020     // this has already been fixed in Solaris 9 and 8 we will
  6021     // leave it alone rather than always rounding down.
  6023     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
  6024        // It appears that when we go directly through Solaris _lwp_cond_timedwait()
  6025            // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
  6026            max_wait_period = 21000000;
  6027   } else {
  6028     max_wait_period = 50000000;
  6030   millis %= 1000;
  6031   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
  6032      seconds = max_wait_period;
  6034   abstime->tv_sec = now.tv_sec  + seconds;
  6035   long       usec = now.tv_usec + millis * 1000;
  6036   if (usec >= 1000000) {
  6037     abstime->tv_sec += 1;
  6038     usec -= 1000000;
  6040   abstime->tv_nsec = usec * 1000;
  6041   return abstime;
  6044 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  6045 // Conceptually TryPark() should be equivalent to park(0).
  6047 int os::PlatformEvent::TryPark() {
  6048   for (;;) {
  6049     const int v = _Event ;
  6050     guarantee ((v == 0) || (v == 1), "invariant") ;
  6051     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  6055 void os::PlatformEvent::park() {           // AKA: down()
  6056   // Invariant: Only the thread associated with the Event/PlatformEvent
  6057   // may call park().
  6058   int v ;
  6059   for (;;) {
  6060       v = _Event ;
  6061       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6063   guarantee (v >= 0, "invariant") ;
  6064   if (v == 0) {
  6065      // Do this the hard way by blocking ...
  6066      // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6067      // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6068      // Only for SPARC >= V8PlusA
  6069 #if defined(__sparc) && defined(COMPILER2)
  6070      if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6071 #endif
  6072      int status = os::Solaris::mutex_lock(_mutex);
  6073      assert_status(status == 0, status,  "mutex_lock");
  6074      guarantee (_nParked == 0, "invariant") ;
  6075      ++ _nParked ;
  6076      while (_Event < 0) {
  6077         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  6078         // Treat this the same as if the wait was interrupted
  6079         // With usr/lib/lwp going to kernel, always handle ETIME
  6080         status = os::Solaris::cond_wait(_cond, _mutex);
  6081         if (status == ETIME) status = EINTR ;
  6082         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  6084      -- _nParked ;
  6085      _Event = 0 ;
  6086      status = os::Solaris::mutex_unlock(_mutex);
  6087      assert_status(status == 0, status, "mutex_unlock");
  6088     // Paranoia to ensure our locked and lock-free paths interact
  6089     // correctly with each other.
  6090     OrderAccess::fence();
  6094 int os::PlatformEvent::park(jlong millis) {
  6095   guarantee (_nParked == 0, "invariant") ;
  6096   int v ;
  6097   for (;;) {
  6098       v = _Event ;
  6099       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6101   guarantee (v >= 0, "invariant") ;
  6102   if (v != 0) return OS_OK ;
  6104   int ret = OS_TIMEOUT;
  6105   timestruc_t abst;
  6106   compute_abstime (&abst, millis);
  6108   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6109   // For Solaris SPARC set fprs.FEF=0 prior to parking.
  6110   // Only for SPARC >= V8PlusA
  6111 #if defined(__sparc) && defined(COMPILER2)
  6112  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6113 #endif
  6114   int status = os::Solaris::mutex_lock(_mutex);
  6115   assert_status(status == 0, status, "mutex_lock");
  6116   guarantee (_nParked == 0, "invariant") ;
  6117   ++ _nParked ;
  6118   while (_Event < 0) {
  6119      int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
  6120      assert_status(status == 0 || status == EINTR ||
  6121                    status == ETIME || status == ETIMEDOUT,
  6122                    status, "cond_timedwait");
  6123      if (!FilterSpuriousWakeups) break ;                // previous semantics
  6124      if (status == ETIME || status == ETIMEDOUT) break ;
  6125      // We consume and ignore EINTR and spurious wakeups.
  6127   -- _nParked ;
  6128   if (_Event >= 0) ret = OS_OK ;
  6129   _Event = 0 ;
  6130   status = os::Solaris::mutex_unlock(_mutex);
  6131   assert_status(status == 0, status, "mutex_unlock");
  6132   // Paranoia to ensure our locked and lock-free paths interact
  6133   // correctly with each other.
  6134   OrderAccess::fence();
  6135   return ret;
  6138 void os::PlatformEvent::unpark() {
  6139   // Transitions for _Event:
  6140   //    0 :=> 1
  6141   //    1 :=> 1
  6142   //   -1 :=> either 0 or 1; must signal target thread
  6143   //          That is, we can safely transition _Event from -1 to either
  6144   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  6145   //          unpark() calls.
  6146   // See also: "Semaphores in Plan 9" by Mullender & Cox
  6147   //
  6148   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  6149   // that it will take two back-to-back park() calls for the owning
  6150   // thread to block. This has the benefit of forcing a spurious return
  6151   // from the first park() call after an unpark() call which will help
  6152   // shake out uses of park() and unpark() without condition variables.
  6154   if (Atomic::xchg(1, &_Event) >= 0) return;
  6156   // If the thread associated with the event was parked, wake it.
  6157   // Wait for the thread assoc with the PlatformEvent to vacate.
  6158   int status = os::Solaris::mutex_lock(_mutex);
  6159   assert_status(status == 0, status, "mutex_lock");
  6160   int AnyWaiters = _nParked;
  6161   status = os::Solaris::mutex_unlock(_mutex);
  6162   assert_status(status == 0, status, "mutex_unlock");
  6163   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  6164   if (AnyWaiters != 0) {
  6165     // We intentional signal *after* dropping the lock
  6166     // to avoid a common class of futile wakeups.
  6167     status = os::Solaris::cond_signal(_cond);
  6168     assert_status(status == 0, status, "cond_signal");
  6172 // JSR166
  6173 // -------------------------------------------------------
  6175 /*
  6176  * The solaris and linux implementations of park/unpark are fairly
  6177  * conservative for now, but can be improved. They currently use a
  6178  * mutex/condvar pair, plus _counter.
  6179  * Park decrements _counter if > 0, else does a condvar wait.  Unpark
  6180  * sets count to 1 and signals condvar.  Only one thread ever waits
  6181  * on the condvar. Contention seen when trying to park implies that someone
  6182  * is unparking you, so don't wait. And spurious returns are fine, so there
  6183  * is no need to track notifications.
  6184  */
  6186 #define MAX_SECS 100000000
  6187 /*
  6188  * This code is common to linux and solaris and will be moved to a
  6189  * common place in dolphin.
  6191  * The passed in time value is either a relative time in nanoseconds
  6192  * or an absolute time in milliseconds. Either way it has to be unpacked
  6193  * into suitable seconds and nanoseconds components and stored in the
  6194  * given timespec structure.
  6195  * Given time is a 64-bit value and the time_t used in the timespec is only
  6196  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6197  * overflow if times way in the future are given. Further on Solaris versions
  6198  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6199  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6200  * As it will be 28 years before "now + 100000000" will overflow we can
  6201  * ignore overflow and just impose a hard-limit on seconds using the value
  6202  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6203  * years from "now".
  6204  */
  6205 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6206   assert (time > 0, "convertTime");
  6208   struct timeval now;
  6209   int status = gettimeofday(&now, NULL);
  6210   assert(status == 0, "gettimeofday");
  6212   time_t max_secs = now.tv_sec + MAX_SECS;
  6214   if (isAbsolute) {
  6215     jlong secs = time / 1000;
  6216     if (secs > max_secs) {
  6217       absTime->tv_sec = max_secs;
  6219     else {
  6220       absTime->tv_sec = secs;
  6222     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6224   else {
  6225     jlong secs = time / NANOSECS_PER_SEC;
  6226     if (secs >= MAX_SECS) {
  6227       absTime->tv_sec = max_secs;
  6228       absTime->tv_nsec = 0;
  6230     else {
  6231       absTime->tv_sec = now.tv_sec + secs;
  6232       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6233       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6234         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6235         ++absTime->tv_sec; // note: this must be <= max_secs
  6239   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6240   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6241   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6242   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6245 void Parker::park(bool isAbsolute, jlong time) {
  6246   // Ideally we'd do something useful while spinning, such
  6247   // as calling unpackTime().
  6249   // Optional fast-path check:
  6250   // Return immediately if a permit is available.
  6251   // We depend on Atomic::xchg() having full barrier semantics
  6252   // since we are doing a lock-free update to _counter.
  6253   if (Atomic::xchg(0, &_counter) > 0) return;
  6255   // Optional fast-exit: Check interrupt before trying to wait
  6256   Thread* thread = Thread::current();
  6257   assert(thread->is_Java_thread(), "Must be JavaThread");
  6258   JavaThread *jt = (JavaThread *)thread;
  6259   if (Thread::is_interrupted(thread, false)) {
  6260     return;
  6263   // First, demultiplex/decode time arguments
  6264   timespec absTime;
  6265   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6266     return;
  6268   if (time > 0) {
  6269     // Warning: this code might be exposed to the old Solaris time
  6270     // round-down bugs.  Grep "roundingFix" for details.
  6271     unpackTime(&absTime, isAbsolute, time);
  6274   // Enter safepoint region
  6275   // Beware of deadlocks such as 6317397.
  6276   // The per-thread Parker:: _mutex is a classic leaf-lock.
  6277   // In particular a thread must never block on the Threads_lock while
  6278   // holding the Parker:: mutex.  If safepoints are pending both the
  6279   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6280   ThreadBlockInVM tbivm(jt);
  6282   // Don't wait if cannot get lock since interference arises from
  6283   // unblocking.  Also. check interrupt before trying wait
  6284   if (Thread::is_interrupted(thread, false) ||
  6285       os::Solaris::mutex_trylock(_mutex) != 0) {
  6286     return;
  6289   int status ;
  6291   if (_counter > 0)  { // no wait needed
  6292     _counter = 0;
  6293     status = os::Solaris::mutex_unlock(_mutex);
  6294     assert (status == 0, "invariant") ;
  6295     // Paranoia to ensure our locked and lock-free paths interact
  6296     // correctly with each other and Java-level accesses.
  6297     OrderAccess::fence();
  6298     return;
  6301 #ifdef ASSERT
  6302   // Don't catch signals while blocked; let the running threads have the signals.
  6303   // (This allows a debugger to break into the running thread.)
  6304   sigset_t oldsigs;
  6305   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
  6306   thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6307 #endif
  6309   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6310   jt->set_suspend_equivalent();
  6311   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6313   // Do this the hard way by blocking ...
  6314   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6315   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6316   // Only for SPARC >= V8PlusA
  6317 #if defined(__sparc) && defined(COMPILER2)
  6318   if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6319 #endif
  6321   if (time == 0) {
  6322     status = os::Solaris::cond_wait (_cond, _mutex) ;
  6323   } else {
  6324     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
  6326   // Note that an untimed cond_wait() can sometimes return ETIME on older
  6327   // versions of the Solaris.
  6328   assert_status(status == 0 || status == EINTR ||
  6329                 status == ETIME || status == ETIMEDOUT,
  6330                 status, "cond_timedwait");
  6332 #ifdef ASSERT
  6333   thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
  6334 #endif
  6335   _counter = 0 ;
  6336   status = os::Solaris::mutex_unlock(_mutex);
  6337   assert_status(status == 0, status, "mutex_unlock") ;
  6338   // Paranoia to ensure our locked and lock-free paths interact
  6339   // correctly with each other and Java-level accesses.
  6340   OrderAccess::fence();
  6342   // If externally suspended while waiting, re-suspend
  6343   if (jt->handle_special_suspend_equivalent_condition()) {
  6344     jt->java_suspend_self();
  6348 void Parker::unpark() {
  6349   int s, status ;
  6350   status = os::Solaris::mutex_lock (_mutex) ;
  6351   assert (status == 0, "invariant") ;
  6352   s = _counter;
  6353   _counter = 1;
  6354   status = os::Solaris::mutex_unlock (_mutex) ;
  6355   assert (status == 0, "invariant") ;
  6357   if (s < 1) {
  6358     status = os::Solaris::cond_signal (_cond) ;
  6359     assert (status == 0, "invariant") ;
  6363 extern char** environ;
  6365 // Run the specified command in a separate process. Return its exit value,
  6366 // or -1 on failure (e.g. can't fork a new process).
  6367 // Unlike system(), this function can be called from signal handler. It
  6368 // doesn't block SIGINT et al.
  6369 int os::fork_and_exec(char* cmd) {
  6370   char * argv[4];
  6371   argv[0] = (char *)"sh";
  6372   argv[1] = (char *)"-c";
  6373   argv[2] = cmd;
  6374   argv[3] = NULL;
  6376   // fork is async-safe, fork1 is not so can't use in signal handler
  6377   pid_t pid;
  6378   Thread* t = ThreadLocalStorage::get_thread_slow();
  6379   if (t != NULL && t->is_inside_signal_handler()) {
  6380     pid = fork();
  6381   } else {
  6382     pid = fork1();
  6385   if (pid < 0) {
  6386     // fork failed
  6387     warning("fork failed: %s", strerror(errno));
  6388     return -1;
  6390   } else if (pid == 0) {
  6391     // child process
  6393     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
  6394     execve("/usr/bin/sh", argv, environ);
  6396     // execve failed
  6397     _exit(-1);
  6399   } else  {
  6400     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6401     // care about the actual exit code, for now.
  6403     int status;
  6405     // Wait for the child process to exit.  This returns immediately if
  6406     // the child has already exited. */
  6407     while (waitpid(pid, &status, 0) < 0) {
  6408         switch (errno) {
  6409         case ECHILD: return 0;
  6410         case EINTR: break;
  6411         default: return -1;
  6415     if (WIFEXITED(status)) {
  6416        // The child exited normally; get its exit code.
  6417        return WEXITSTATUS(status);
  6418     } else if (WIFSIGNALED(status)) {
  6419        // The child exited because of a signal
  6420        // The best value to return is 0x80 + signal number,
  6421        // because that is what all Unix shells do, and because
  6422        // it allows callers to distinguish between process exit and
  6423        // process death by signal.
  6424        return 0x80 + WTERMSIG(status);
  6425     } else {
  6426        // Unknown exit code; pass it through
  6427        return status;
  6432 // is_headless_jre()
  6433 //
  6434 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6435 // in order to report if we are running in a headless jre
  6436 //
  6437 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6438 // as libawt.so, and renamed libawt_xawt.so
  6439 //
  6440 bool os::is_headless_jre() {
  6441     struct stat statbuf;
  6442     char buf[MAXPATHLEN];
  6443     char libmawtpath[MAXPATHLEN];
  6444     const char *xawtstr  = "/xawt/libmawt.so";
  6445     const char *new_xawtstr = "/libawt_xawt.so";
  6446     char *p;
  6448     // Get path to libjvm.so
  6449     os::jvm_path(buf, sizeof(buf));
  6451     // Get rid of libjvm.so
  6452     p = strrchr(buf, '/');
  6453     if (p == NULL) return false;
  6454     else *p = '\0';
  6456     // Get rid of client or server
  6457     p = strrchr(buf, '/');
  6458     if (p == NULL) return false;
  6459     else *p = '\0';
  6461     // check xawt/libmawt.so
  6462     strcpy(libmawtpath, buf);
  6463     strcat(libmawtpath, xawtstr);
  6464     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6466     // check libawt_xawt.so
  6467     strcpy(libmawtpath, buf);
  6468     strcat(libmawtpath, new_xawtstr);
  6469     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6471     return true;
  6474 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
  6475   INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
  6478 int os::close(int fd) {
  6479   return ::close(fd);
  6482 int os::socket_close(int fd) {
  6483   return ::close(fd);
  6486 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  6487   INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6490 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  6491   INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6494 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  6495   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
  6498 // As both poll and select can be interrupted by signals, we have to be
  6499 // prepared to restart the system call after updating the timeout, unless
  6500 // a poll() is done with timeout == -1, in which case we repeat with this
  6501 // "wait forever" value.
  6503 int os::timeout(int fd, long timeout) {
  6504   int res;
  6505   struct timeval t;
  6506   julong prevtime, newtime;
  6507   static const char* aNull = 0;
  6508   struct pollfd pfd;
  6509   pfd.fd = fd;
  6510   pfd.events = POLLIN;
  6512   gettimeofday(&t, &aNull);
  6513   prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
  6515   for(;;) {
  6516     INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
  6517     if(res == OS_ERR && errno == EINTR) {
  6518         if(timeout != -1) {
  6519           gettimeofday(&t, &aNull);
  6520           newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
  6521           timeout -= newtime - prevtime;
  6522           if(timeout <= 0)
  6523             return OS_OK;
  6524           prevtime = newtime;
  6526     } else return res;
  6530 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
  6531   int _result;
  6532   INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
  6533                           os::Solaris::clear_interrupted);
  6535   // Depending on when thread interruption is reset, _result could be
  6536   // one of two values when errno == EINTR
  6538   if (((_result == OS_INTRPT) || (_result == OS_ERR))
  6539       && (errno == EINTR)) {
  6540      /* restarting a connect() changes its errno semantics */
  6541      INTERRUPTIBLE(::connect(fd, him, len), _result,\
  6542                    os::Solaris::clear_interrupted);
  6543      /* undo these changes */
  6544      if (_result == OS_ERR) {
  6545        if (errno == EALREADY) {
  6546          errno = EINPROGRESS; /* fall through */
  6547        } else if (errno == EISCONN) {
  6548          errno = 0;
  6549          return OS_OK;
  6553    return _result;
  6556 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  6557   if (fd < 0) {
  6558     return OS_ERR;
  6560   INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
  6561                            os::Solaris::clear_interrupted);
  6564 int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
  6565                  sockaddr* from, socklen_t* fromlen) {
  6566   INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
  6567                            os::Solaris::clear_interrupted);
  6570 int os::sendto(int fd, char* buf, size_t len, uint flags,
  6571                struct sockaddr* to, socklen_t tolen) {
  6572   INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
  6573                            os::Solaris::clear_interrupted);
  6576 int os::socket_available(int fd, jint *pbytes) {
  6577   if (fd < 0) {
  6578     return OS_OK;
  6580   int ret;
  6581   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  6582   // note: ioctl can return 0 when successful, JVM_SocketAvailable
  6583   // is expected to return 0 on failure and 1 on success to the jdk.
  6584   return (ret == OS_ERR) ? 0 : 1;
  6587 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  6588    INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
  6589                                       os::Solaris::clear_interrupted);
  6592 // Get the default path to the core file
  6593 // Returns the length of the string
  6594 int os::get_core_path(char* buffer, size_t bufferSize) {
  6595   const char* p = get_current_directory(buffer, bufferSize);
  6597   if (p == NULL) {
  6598     assert(p != NULL, "failed to get current directory");
  6599     return 0;
  6602   return strlen(buffer);
  6605 #ifndef PRODUCT
  6606 void TestReserveMemorySpecial_test() {
  6607   // No tests available for this platform
  6609 #endif

mercurial