src/share/vm/memory/referenceProcessor.cpp

Tue, 24 Jun 2014 16:20:15 +0200

author
stefank
date
Tue, 24 Jun 2014 16:20:15 +0200
changeset 6982
4c1b88a53c74
parent 6904
0982ec23da03
child 7476
c2844108a708
permissions
-rw-r--r--

8046670: Make CMS metadata aware closures applicable for other collectors
Reviewed-by: ehelin, mgerdin

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_implementation/shared/gcTimer.hpp"
    29 #include "gc_implementation/shared/gcTraceTime.hpp"
    30 #include "gc_interface/collectedHeap.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "memory/referencePolicy.hpp"
    33 #include "memory/referenceProcessor.hpp"
    34 #include "oops/oop.inline.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/jniHandles.hpp"
    38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    40 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    41 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    42 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
    43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
    45 void referenceProcessor_init() {
    46   ReferenceProcessor::init_statics();
    47 }
    49 void ReferenceProcessor::init_statics() {
    50   // We need a monotonically non-deccreasing time in ms but
    51   // os::javaTimeMillis() does not guarantee monotonicity.
    52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
    54   // Initialize the soft ref timestamp clock.
    55   _soft_ref_timestamp_clock = now;
    56   // Also update the soft ref clock in j.l.r.SoftReference
    57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
    59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    60   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    61                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    62   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    63     vm_exit_during_initialization("Could not allocate reference policy object");
    64   }
    65   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    66             RefDiscoveryPolicy == ReferentBasedDiscovery,
    67             "Unrecongnized RefDiscoveryPolicy");
    68   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
    69 }
    71 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
    72 #ifdef ASSERT
    73   // Verify that we're not currently discovering refs
    74   assert(!verify_disabled || !_discovering_refs, "nested call?");
    76   if (check_no_refs) {
    77     // Verify that the discovered lists are empty
    78     verify_no_references_recorded();
    79   }
    80 #endif // ASSERT
    82   // Someone could have modified the value of the static
    83   // field in the j.l.r.SoftReference class that holds the
    84   // soft reference timestamp clock using reflection or
    85   // Unsafe between GCs. Unconditionally update the static
    86   // field in ReferenceProcessor here so that we use the new
    87   // value during reference discovery.
    89   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
    90   _discovering_refs = true;
    91 }
    93 ReferenceProcessor::ReferenceProcessor(MemRegion span,
    94                                        bool      mt_processing,
    95                                        uint      mt_processing_degree,
    96                                        bool      mt_discovery,
    97                                        uint      mt_discovery_degree,
    98                                        bool      atomic_discovery,
    99                                        BoolObjectClosure* is_alive_non_header)  :
   100   _discovering_refs(false),
   101   _enqueuing_is_done(false),
   102   _is_alive_non_header(is_alive_non_header),
   103   _processing_is_mt(mt_processing),
   104   _next_id(0)
   105 {
   106   _span = span;
   107   _discovery_is_atomic = atomic_discovery;
   108   _discovery_is_mt     = mt_discovery;
   109   _num_q               = MAX2(1U, mt_processing_degree);
   110   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   111   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
   112             _max_num_q * number_of_subclasses_of_ref(), mtGC);
   114   if (_discovered_refs == NULL) {
   115     vm_exit_during_initialization("Could not allocated RefProc Array");
   116   }
   117   _discoveredSoftRefs    = &_discovered_refs[0];
   118   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   119   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   120   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   122   // Initialize all entries to NULL
   123   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   124     _discovered_refs[i].set_head(NULL);
   125     _discovered_refs[i].set_length(0);
   126   }
   128   setup_policy(false /* default soft ref policy */);
   129 }
   131 #ifndef PRODUCT
   132 void ReferenceProcessor::verify_no_references_recorded() {
   133   guarantee(!_discovering_refs, "Discovering refs?");
   134   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   135     guarantee(_discovered_refs[i].is_empty(),
   136               "Found non-empty discovered list");
   137   }
   138 }
   139 #endif
   141 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   142   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   143     if (UseCompressedOops) {
   144       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
   145     } else {
   146       f->do_oop((oop*)_discovered_refs[i].adr_head());
   147     }
   148   }
   149 }
   151 void ReferenceProcessor::update_soft_ref_master_clock() {
   152   // Update (advance) the soft ref master clock field. This must be done
   153   // after processing the soft ref list.
   155   // We need a monotonically non-deccreasing time in ms but
   156   // os::javaTimeMillis() does not guarantee monotonicity.
   157   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   158   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
   159   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
   161   NOT_PRODUCT(
   162   if (now < _soft_ref_timestamp_clock) {
   163     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
   164             _soft_ref_timestamp_clock, now);
   165   }
   166   )
   167   // The values of now and _soft_ref_timestamp_clock are set using
   168   // javaTimeNanos(), which is guaranteed to be monotonically
   169   // non-decreasing provided the underlying platform provides such
   170   // a time source (and it is bug free).
   171   // In product mode, however, protect ourselves from non-monotonicty.
   172   if (now > _soft_ref_timestamp_clock) {
   173     _soft_ref_timestamp_clock = now;
   174     java_lang_ref_SoftReference::set_clock(now);
   175   }
   176   // Else leave clock stalled at its old value until time progresses
   177   // past clock value.
   178 }
   180 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
   181   size_t total = 0;
   182   for (uint i = 0; i < _max_num_q; ++i) {
   183     total += lists[i].length();
   184   }
   185   return total;
   186 }
   188 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
   189   BoolObjectClosure*           is_alive,
   190   OopClosure*                  keep_alive,
   191   VoidClosure*                 complete_gc,
   192   AbstractRefProcTaskExecutor* task_executor,
   193   GCTimer*                     gc_timer,
   194   GCId                         gc_id) {
   195   NOT_PRODUCT(verify_ok_to_handle_reflists());
   197   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   198   // Stop treating discovered references specially.
   199   disable_discovery();
   201   // If discovery was concurrent, someone could have modified
   202   // the value of the static field in the j.l.r.SoftReference
   203   // class that holds the soft reference timestamp clock using
   204   // reflection or Unsafe between when discovery was enabled and
   205   // now. Unconditionally update the static field in ReferenceProcessor
   206   // here so that we use the new value during processing of the
   207   // discovered soft refs.
   209   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
   211   bool trace_time = PrintGCDetails && PrintReferenceGC;
   213   // Soft references
   214   size_t soft_count = 0;
   215   {
   216     GCTraceTime tt("SoftReference", trace_time, false, gc_timer, gc_id);
   217     soft_count =
   218       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   219                                  is_alive, keep_alive, complete_gc, task_executor);
   220   }
   222   update_soft_ref_master_clock();
   224   // Weak references
   225   size_t weak_count = 0;
   226   {
   227     GCTraceTime tt("WeakReference", trace_time, false, gc_timer, gc_id);
   228     weak_count =
   229       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   230                                  is_alive, keep_alive, complete_gc, task_executor);
   231   }
   233   // Final references
   234   size_t final_count = 0;
   235   {
   236     GCTraceTime tt("FinalReference", trace_time, false, gc_timer, gc_id);
   237     final_count =
   238       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   239                                  is_alive, keep_alive, complete_gc, task_executor);
   240   }
   242   // Phantom references
   243   size_t phantom_count = 0;
   244   {
   245     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer, gc_id);
   246     phantom_count =
   247       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   248                                  is_alive, keep_alive, complete_gc, task_executor);
   249   }
   251   // Weak global JNI references. It would make more sense (semantically) to
   252   // traverse these simultaneously with the regular weak references above, but
   253   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   254   // thus use JNI weak references to circumvent the phantom references and
   255   // resurrect a "post-mortem" object.
   256   {
   257     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer, gc_id);
   258     if (task_executor != NULL) {
   259       task_executor->set_single_threaded_mode();
   260     }
   261     process_phaseJNI(is_alive, keep_alive, complete_gc);
   262   }
   264   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count);
   265 }
   267 #ifndef PRODUCT
   268 // Calculate the number of jni handles.
   269 uint ReferenceProcessor::count_jni_refs() {
   270   class AlwaysAliveClosure: public BoolObjectClosure {
   271   public:
   272     virtual bool do_object_b(oop obj) { return true; }
   273   };
   275   class CountHandleClosure: public OopClosure {
   276   private:
   277     int _count;
   278   public:
   279     CountHandleClosure(): _count(0) {}
   280     void do_oop(oop* unused)       { _count++; }
   281     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   282     int count() { return _count; }
   283   };
   284   CountHandleClosure global_handle_count;
   285   AlwaysAliveClosure always_alive;
   286   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   287   return global_handle_count.count();
   288 }
   289 #endif
   291 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   292                                           OopClosure*        keep_alive,
   293                                           VoidClosure*       complete_gc) {
   294 #ifndef PRODUCT
   295   if (PrintGCDetails && PrintReferenceGC) {
   296     unsigned int count = count_jni_refs();
   297     gclog_or_tty->print(", %u refs", count);
   298   }
   299 #endif
   300   JNIHandles::weak_oops_do(is_alive, keep_alive);
   301   complete_gc->do_void();
   302 }
   305 template <class T>
   306 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   307                                    AbstractRefProcTaskExecutor* task_executor) {
   309   // Remember old value of pending references list
   310   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   311   T old_pending_list_value = *pending_list_addr;
   313   // Enqueue references that are not made active again, and
   314   // clear the decks for the next collection (cycle).
   315   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   316   // Do the post-barrier on pending_list_addr missed in
   317   // enqueue_discovered_reflist.
   318   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   320   // Stop treating discovered references specially.
   321   ref->disable_discovery();
   323   // Return true if new pending references were added
   324   return old_pending_list_value != *pending_list_addr;
   325 }
   327 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   328   NOT_PRODUCT(verify_ok_to_handle_reflists());
   329   if (UseCompressedOops) {
   330     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   331   } else {
   332     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   333   }
   334 }
   336 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   337                                                     HeapWord* pending_list_addr) {
   338   // Given a list of refs linked through the "discovered" field
   339   // (java.lang.ref.Reference.discovered), self-loop their "next" field
   340   // thus distinguishing them from active References, then
   341   // prepend them to the pending list.
   342   //
   343   // The Java threads will see the Reference objects linked together through
   344   // the discovered field. Instead of trying to do the write barrier updates
   345   // in all places in the reference processor where we manipulate the discovered
   346   // field we make sure to do the barrier here where we anyway iterate through
   347   // all linked Reference objects. Note that it is important to not dirty any
   348   // cards during reference processing since this will cause card table
   349   // verification to fail for G1.
   350   //
   351   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
   352   // the "next" field is used to chain the pending list, not the discovered
   353   // field.
   354   if (TraceReferenceGC && PrintGCDetails) {
   355     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   356                            INTPTR_FORMAT, (address)refs_list.head());
   357   }
   359   oop obj = NULL;
   360   oop next_d = refs_list.head();
   361   if (pending_list_uses_discovered_field()) { // New behavior
   362     // Walk down the list, self-looping the next field
   363     // so that the References are not considered active.
   364     while (obj != next_d) {
   365       obj = next_d;
   366       assert(obj->is_instanceRef(), "should be reference object");
   367       next_d = java_lang_ref_Reference::discovered(obj);
   368       if (TraceReferenceGC && PrintGCDetails) {
   369         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   370                                (void *)obj, (void *)next_d);
   371       }
   372       assert(java_lang_ref_Reference::next(obj) == NULL,
   373              "Reference not active; should not be discovered");
   374       // Self-loop next, so as to make Ref not active.
   375       java_lang_ref_Reference::set_next_raw(obj, obj);
   376       if (next_d != obj) {
   377         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
   378       } else {
   379         // This is the last object.
   380         // Swap refs_list into pending_list_addr and
   381         // set obj's discovered to what we read from pending_list_addr.
   382         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   383         // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
   384         java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
   385         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
   386       }
   387     }
   388   } else { // Old behaviour
   389     // Walk down the list, copying the discovered field into
   390     // the next field and clearing the discovered field.
   391     while (obj != next_d) {
   392       obj = next_d;
   393       assert(obj->is_instanceRef(), "should be reference object");
   394       next_d = java_lang_ref_Reference::discovered(obj);
   395       if (TraceReferenceGC && PrintGCDetails) {
   396         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   397                                (void *)obj, (void *)next_d);
   398       }
   399       assert(java_lang_ref_Reference::next(obj) == NULL,
   400              "The reference should not be enqueued");
   401       if (next_d == obj) {  // obj is last
   402         // Swap refs_list into pendling_list_addr and
   403         // set obj's next to what we read from pending_list_addr.
   404         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   405         // Need oop_check on pending_list_addr above;
   406         // see special oop-check code at the end of
   407         // enqueue_discovered_reflists() further below.
   408         if (old == NULL) {
   409           // obj should be made to point to itself, since
   410           // pending list was empty.
   411           java_lang_ref_Reference::set_next(obj, obj);
   412         } else {
   413           java_lang_ref_Reference::set_next(obj, old);
   414         }
   415       } else {
   416         java_lang_ref_Reference::set_next(obj, next_d);
   417       }
   418       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   419     }
   420   }
   421 }
   423 // Parallel enqueue task
   424 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   425 public:
   426   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   427                      DiscoveredList      discovered_refs[],
   428                      HeapWord*           pending_list_addr,
   429                      int                 n_queues)
   430     : EnqueueTask(ref_processor, discovered_refs,
   431                   pending_list_addr, n_queues)
   432   { }
   434   virtual void work(unsigned int work_id) {
   435     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   436     // Simplest first cut: static partitioning.
   437     int index = work_id;
   438     // The increment on "index" must correspond to the maximum number of queues
   439     // (n_queues) with which that ReferenceProcessor was created.  That
   440     // is because of the "clever" way the discovered references lists were
   441     // allocated and are indexed into.
   442     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   443     for (int j = 0;
   444          j < ReferenceProcessor::number_of_subclasses_of_ref();
   445          j++, index += _n_queues) {
   446       _ref_processor.enqueue_discovered_reflist(
   447         _refs_lists[index], _pending_list_addr);
   448       _refs_lists[index].set_head(NULL);
   449       _refs_lists[index].set_length(0);
   450     }
   451   }
   452 };
   454 // Enqueue references that are not made active again
   455 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   456   AbstractRefProcTaskExecutor* task_executor) {
   457   if (_processing_is_mt && task_executor != NULL) {
   458     // Parallel code
   459     RefProcEnqueueTask tsk(*this, _discovered_refs,
   460                            pending_list_addr, _max_num_q);
   461     task_executor->execute(tsk);
   462   } else {
   463     // Serial code: call the parent class's implementation
   464     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   465       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
   466       _discovered_refs[i].set_head(NULL);
   467       _discovered_refs[i].set_length(0);
   468     }
   469   }
   470 }
   472 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   473   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   474   oop discovered = java_lang_ref_Reference::discovered(_ref);
   475   assert(_discovered_addr && discovered->is_oop_or_null(),
   476          "discovered field is bad");
   477   _next = discovered;
   478   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   479   _referent = java_lang_ref_Reference::referent(_ref);
   480   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   481          "Wrong oop found in java.lang.Reference object");
   482   assert(allow_null_referent ?
   483              _referent->is_oop_or_null()
   484            : _referent->is_oop(),
   485          "bad referent");
   486 }
   488 void DiscoveredListIterator::remove() {
   489   assert(_ref->is_oop(), "Dropping a bad reference");
   490   oop_store_raw(_discovered_addr, NULL);
   492   // First _prev_next ref actually points into DiscoveredList (gross).
   493   oop new_next;
   494   if (_next == _ref) {
   495     // At the end of the list, we should make _prev point to itself.
   496     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
   497     // and _prev will be NULL.
   498     new_next = _prev;
   499   } else {
   500     new_next = _next;
   501   }
   502   // Remove Reference object from discovered list. Note that G1 does not need a
   503   // pre-barrier here because we know the Reference has already been found/marked,
   504   // that's how it ended up in the discovered list in the first place.
   505   oop_store_raw(_prev_next, new_next);
   506   NOT_PRODUCT(_removed++);
   507   _refs_list.dec_length(1);
   508 }
   510 // Make the Reference object active again.
   511 void DiscoveredListIterator::make_active() {
   512   // The pre barrier for G1 is probably just needed for the old
   513   // reference processing behavior. Should we guard this with
   514   // ReferenceProcessor::pending_list_uses_discovered_field() ?
   515   if (UseG1GC) {
   516     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
   517     if (UseCompressedOops) {
   518       oopDesc::bs()->write_ref_field_pre((narrowOop*)next_addr, NULL);
   519     } else {
   520       oopDesc::bs()->write_ref_field_pre((oop*)next_addr, NULL);
   521     }
   522   }
   523   java_lang_ref_Reference::set_next_raw(_ref, NULL);
   524 }
   526 void DiscoveredListIterator::clear_referent() {
   527   oop_store_raw(_referent_addr, NULL);
   528 }
   530 // NOTE: process_phase*() are largely similar, and at a high level
   531 // merely iterate over the extant list applying a predicate to
   532 // each of its elements and possibly removing that element from the
   533 // list and applying some further closures to that element.
   534 // We should consider the possibility of replacing these
   535 // process_phase*() methods by abstracting them into
   536 // a single general iterator invocation that receives appropriate
   537 // closures that accomplish this work.
   539 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   540 // referents are not alive, but that should be kept alive for policy reasons.
   541 // Keep alive the transitive closure of all such referents.
   542 void
   543 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   544                                    ReferencePolicy*   policy,
   545                                    BoolObjectClosure* is_alive,
   546                                    OopClosure*        keep_alive,
   547                                    VoidClosure*       complete_gc) {
   548   assert(policy != NULL, "Must have a non-NULL policy");
   549   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   550   // Decide which softly reachable refs should be kept alive.
   551   while (iter.has_next()) {
   552     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   553     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   554     if (referent_is_dead &&
   555         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
   556       if (TraceReferenceGC) {
   557         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   558                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   559       }
   560       // Remove Reference object from list
   561       iter.remove();
   562       // Make the Reference object active again
   563       iter.make_active();
   564       // keep the referent around
   565       iter.make_referent_alive();
   566       iter.move_to_next();
   567     } else {
   568       iter.next();
   569     }
   570   }
   571   // Close the reachable set
   572   complete_gc->do_void();
   573   NOT_PRODUCT(
   574     if (PrintGCDetails && TraceReferenceGC) {
   575       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   576         "discovered Refs by policy, from list " INTPTR_FORMAT,
   577         iter.removed(), iter.processed(), (address)refs_list.head());
   578     }
   579   )
   580 }
   582 // Traverse the list and remove any Refs that are not active, or
   583 // whose referents are either alive or NULL.
   584 void
   585 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   586                              BoolObjectClosure* is_alive,
   587                              OopClosure*        keep_alive) {
   588   assert(discovery_is_atomic(), "Error");
   589   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   590   while (iter.has_next()) {
   591     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   592     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   593     assert(next == NULL, "Should not discover inactive Reference");
   594     if (iter.is_referent_alive()) {
   595       if (TraceReferenceGC) {
   596         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   597                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   598       }
   599       // The referent is reachable after all.
   600       // Remove Reference object from list.
   601       iter.remove();
   602       // Update the referent pointer as necessary: Note that this
   603       // should not entail any recursive marking because the
   604       // referent must already have been traversed.
   605       iter.make_referent_alive();
   606       iter.move_to_next();
   607     } else {
   608       iter.next();
   609     }
   610   }
   611   NOT_PRODUCT(
   612     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   613       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   614         "Refs in discovered list " INTPTR_FORMAT,
   615         iter.removed(), iter.processed(), (address)refs_list.head());
   616     }
   617   )
   618 }
   620 void
   621 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   622                                                   BoolObjectClosure* is_alive,
   623                                                   OopClosure*        keep_alive,
   624                                                   VoidClosure*       complete_gc) {
   625   assert(!discovery_is_atomic(), "Error");
   626   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   627   while (iter.has_next()) {
   628     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   629     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   630     oop next = java_lang_ref_Reference::next(iter.obj());
   631     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   632          next != NULL)) {
   633       assert(next->is_oop_or_null(), "bad next field");
   634       // Remove Reference object from list
   635       iter.remove();
   636       // Trace the cohorts
   637       iter.make_referent_alive();
   638       if (UseCompressedOops) {
   639         keep_alive->do_oop((narrowOop*)next_addr);
   640       } else {
   641         keep_alive->do_oop((oop*)next_addr);
   642       }
   643       iter.move_to_next();
   644     } else {
   645       iter.next();
   646     }
   647   }
   648   // Now close the newly reachable set
   649   complete_gc->do_void();
   650   NOT_PRODUCT(
   651     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   652       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   653         "Refs in discovered list " INTPTR_FORMAT,
   654         iter.removed(), iter.processed(), (address)refs_list.head());
   655     }
   656   )
   657 }
   659 // Traverse the list and process the referents, by either
   660 // clearing them or keeping them (and their reachable
   661 // closure) alive.
   662 void
   663 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   664                                    bool               clear_referent,
   665                                    BoolObjectClosure* is_alive,
   666                                    OopClosure*        keep_alive,
   667                                    VoidClosure*       complete_gc) {
   668   ResourceMark rm;
   669   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   670   while (iter.has_next()) {
   671     iter.update_discovered();
   672     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   673     if (clear_referent) {
   674       // NULL out referent pointer
   675       iter.clear_referent();
   676     } else {
   677       // keep the referent around
   678       iter.make_referent_alive();
   679     }
   680     if (TraceReferenceGC) {
   681       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   682                              clear_referent ? "cleared " : "",
   683                              (void *)iter.obj(), iter.obj()->klass()->internal_name());
   684     }
   685     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   686     iter.next();
   687   }
   688   // Remember to update the next pointer of the last ref.
   689   iter.update_discovered();
   690   // Close the reachable set
   691   complete_gc->do_void();
   692 }
   694 void
   695 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
   696   oop obj = NULL;
   697   oop next = refs_list.head();
   698   while (next != obj) {
   699     obj = next;
   700     next = java_lang_ref_Reference::discovered(obj);
   701     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   702   }
   703   refs_list.set_head(NULL);
   704   refs_list.set_length(0);
   705 }
   707 void
   708 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   709   clear_discovered_references(refs_list);
   710 }
   712 void ReferenceProcessor::abandon_partial_discovery() {
   713   // loop over the lists
   714   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   715     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   716       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
   717     }
   718     abandon_partial_discovered_list(_discovered_refs[i]);
   719   }
   720 }
   722 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   723 public:
   724   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   725                     DiscoveredList      refs_lists[],
   726                     ReferencePolicy*    policy,
   727                     bool                marks_oops_alive)
   728     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   729       _policy(policy)
   730   { }
   731   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   732                     OopClosure& keep_alive,
   733                     VoidClosure& complete_gc)
   734   {
   735     Thread* thr = Thread::current();
   736     int refs_list_index = ((WorkerThread*)thr)->id();
   737     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   738                                   &is_alive, &keep_alive, &complete_gc);
   739   }
   740 private:
   741   ReferencePolicy* _policy;
   742 };
   744 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   745 public:
   746   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   747                     DiscoveredList      refs_lists[],
   748                     bool                marks_oops_alive)
   749     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   750   { }
   751   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   752                     OopClosure& keep_alive,
   753                     VoidClosure& complete_gc)
   754   {
   755     _ref_processor.process_phase2(_refs_lists[i],
   756                                   &is_alive, &keep_alive, &complete_gc);
   757   }
   758 };
   760 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   761 public:
   762   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   763                     DiscoveredList      refs_lists[],
   764                     bool                clear_referent,
   765                     bool                marks_oops_alive)
   766     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   767       _clear_referent(clear_referent)
   768   { }
   769   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   770                     OopClosure& keep_alive,
   771                     VoidClosure& complete_gc)
   772   {
   773     // Don't use "refs_list_index" calculated in this way because
   774     // balance_queues() has moved the Ref's into the first n queues.
   775     // Thread* thr = Thread::current();
   776     // int refs_list_index = ((WorkerThread*)thr)->id();
   777     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   778     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   779                                   &is_alive, &keep_alive, &complete_gc);
   780   }
   781 private:
   782   bool _clear_referent;
   783 };
   785 // Balances reference queues.
   786 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   787 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   788 // corresponding to the active workers will be processed.
   789 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   790 {
   791   // calculate total length
   792   size_t total_refs = 0;
   793   if (TraceReferenceGC && PrintGCDetails) {
   794     gclog_or_tty->print_cr("\nBalance ref_lists ");
   795   }
   797   for (uint i = 0; i < _max_num_q; ++i) {
   798     total_refs += ref_lists[i].length();
   799     if (TraceReferenceGC && PrintGCDetails) {
   800       gclog_or_tty->print("%d ", ref_lists[i].length());
   801     }
   802   }
   803   if (TraceReferenceGC && PrintGCDetails) {
   804     gclog_or_tty->print_cr(" = %d", total_refs);
   805   }
   806   size_t avg_refs = total_refs / _num_q + 1;
   807   uint to_idx = 0;
   808   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
   809     bool move_all = false;
   810     if (from_idx >= _num_q) {
   811       move_all = ref_lists[from_idx].length() > 0;
   812     }
   813     while ((ref_lists[from_idx].length() > avg_refs) ||
   814            move_all) {
   815       assert(to_idx < _num_q, "Sanity Check!");
   816       if (ref_lists[to_idx].length() < avg_refs) {
   817         // move superfluous refs
   818         size_t refs_to_move;
   819         // Move all the Ref's if the from queue will not be processed.
   820         if (move_all) {
   821           refs_to_move = MIN2(ref_lists[from_idx].length(),
   822                               avg_refs - ref_lists[to_idx].length());
   823         } else {
   824           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   825                               avg_refs - ref_lists[to_idx].length());
   826         }
   828         assert(refs_to_move > 0, "otherwise the code below will fail");
   830         oop move_head = ref_lists[from_idx].head();
   831         oop move_tail = move_head;
   832         oop new_head  = move_head;
   833         // find an element to split the list on
   834         for (size_t j = 0; j < refs_to_move; ++j) {
   835           move_tail = new_head;
   836           new_head = java_lang_ref_Reference::discovered(new_head);
   837         }
   839         // Add the chain to the to list.
   840         if (ref_lists[to_idx].head() == NULL) {
   841           // to list is empty. Make a loop at the end.
   842           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
   843         } else {
   844           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
   845         }
   846         ref_lists[to_idx].set_head(move_head);
   847         ref_lists[to_idx].inc_length(refs_to_move);
   849         // Remove the chain from the from list.
   850         if (move_tail == new_head) {
   851           // We found the end of the from list.
   852           ref_lists[from_idx].set_head(NULL);
   853         } else {
   854           ref_lists[from_idx].set_head(new_head);
   855         }
   856         ref_lists[from_idx].dec_length(refs_to_move);
   857         if (ref_lists[from_idx].length() == 0) {
   858           break;
   859         }
   860       } else {
   861         to_idx = (to_idx + 1) % _num_q;
   862       }
   863     }
   864   }
   865 #ifdef ASSERT
   866   size_t balanced_total_refs = 0;
   867   for (uint i = 0; i < _max_num_q; ++i) {
   868     balanced_total_refs += ref_lists[i].length();
   869     if (TraceReferenceGC && PrintGCDetails) {
   870       gclog_or_tty->print("%d ", ref_lists[i].length());
   871     }
   872   }
   873   if (TraceReferenceGC && PrintGCDetails) {
   874     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   875     gclog_or_tty->flush();
   876   }
   877   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   878 #endif
   879 }
   881 void ReferenceProcessor::balance_all_queues() {
   882   balance_queues(_discoveredSoftRefs);
   883   balance_queues(_discoveredWeakRefs);
   884   balance_queues(_discoveredFinalRefs);
   885   balance_queues(_discoveredPhantomRefs);
   886 }
   888 size_t
   889 ReferenceProcessor::process_discovered_reflist(
   890   DiscoveredList               refs_lists[],
   891   ReferencePolicy*             policy,
   892   bool                         clear_referent,
   893   BoolObjectClosure*           is_alive,
   894   OopClosure*                  keep_alive,
   895   VoidClosure*                 complete_gc,
   896   AbstractRefProcTaskExecutor* task_executor)
   897 {
   898   bool mt_processing = task_executor != NULL && _processing_is_mt;
   899   // If discovery used MT and a dynamic number of GC threads, then
   900   // the queues must be balanced for correctness if fewer than the
   901   // maximum number of queues were used.  The number of queue used
   902   // during discovery may be different than the number to be used
   903   // for processing so don't depend of _num_q < _max_num_q as part
   904   // of the test.
   905   bool must_balance = _discovery_is_mt;
   907   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   908       must_balance) {
   909     balance_queues(refs_lists);
   910   }
   912   size_t total_list_count = total_count(refs_lists);
   914   if (PrintReferenceGC && PrintGCDetails) {
   915     gclog_or_tty->print(", %u refs", total_list_count);
   916   }
   918   // Phase 1 (soft refs only):
   919   // . Traverse the list and remove any SoftReferences whose
   920   //   referents are not alive, but that should be kept alive for
   921   //   policy reasons. Keep alive the transitive closure of all
   922   //   such referents.
   923   if (policy != NULL) {
   924     if (mt_processing) {
   925       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   926       task_executor->execute(phase1);
   927     } else {
   928       for (uint i = 0; i < _max_num_q; i++) {
   929         process_phase1(refs_lists[i], policy,
   930                        is_alive, keep_alive, complete_gc);
   931       }
   932     }
   933   } else { // policy == NULL
   934     assert(refs_lists != _discoveredSoftRefs,
   935            "Policy must be specified for soft references.");
   936   }
   938   // Phase 2:
   939   // . Traverse the list and remove any refs whose referents are alive.
   940   if (mt_processing) {
   941     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   942     task_executor->execute(phase2);
   943   } else {
   944     for (uint i = 0; i < _max_num_q; i++) {
   945       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   946     }
   947   }
   949   // Phase 3:
   950   // . Traverse the list and process referents as appropriate.
   951   if (mt_processing) {
   952     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   953     task_executor->execute(phase3);
   954   } else {
   955     for (uint i = 0; i < _max_num_q; i++) {
   956       process_phase3(refs_lists[i], clear_referent,
   957                      is_alive, keep_alive, complete_gc);
   958     }
   959   }
   961   return total_list_count;
   962 }
   964 void ReferenceProcessor::clean_up_discovered_references() {
   965   // loop over the lists
   966   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   967     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   968       gclog_or_tty->print_cr(
   969         "\nScrubbing %s discovered list of Null referents",
   970         list_name(i));
   971     }
   972     clean_up_discovered_reflist(_discovered_refs[i]);
   973   }
   974 }
   976 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   977   assert(!discovery_is_atomic(), "Else why call this method?");
   978   DiscoveredListIterator iter(refs_list, NULL, NULL);
   979   while (iter.has_next()) {
   980     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   981     oop next = java_lang_ref_Reference::next(iter.obj());
   982     assert(next->is_oop_or_null(), "bad next field");
   983     // If referent has been cleared or Reference is not active,
   984     // drop it.
   985     if (iter.referent() == NULL || next != NULL) {
   986       debug_only(
   987         if (PrintGCDetails && TraceReferenceGC) {
   988           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   989             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   990             " and referent: " INTPTR_FORMAT,
   991             (void *)iter.obj(), (void *)next, (void *)iter.referent());
   992         }
   993       )
   994       // Remove Reference object from list
   995       iter.remove();
   996       iter.move_to_next();
   997     } else {
   998       iter.next();
   999     }
  1001   NOT_PRODUCT(
  1002     if (PrintGCDetails && TraceReferenceGC) {
  1003       gclog_or_tty->print(
  1004         " Removed %d Refs with NULL referents out of %d discovered Refs",
  1005         iter.removed(), iter.processed());
  1010 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1011   uint id = 0;
  1012   // Determine the queue index to use for this object.
  1013   if (_discovery_is_mt) {
  1014     // During a multi-threaded discovery phase,
  1015     // each thread saves to its "own" list.
  1016     Thread* thr = Thread::current();
  1017     id = thr->as_Worker_thread()->id();
  1018   } else {
  1019     // single-threaded discovery, we save in round-robin
  1020     // fashion to each of the lists.
  1021     if (_processing_is_mt) {
  1022       id = next_id();
  1025   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1027   // Get the discovered queue to which we will add
  1028   DiscoveredList* list = NULL;
  1029   switch (rt) {
  1030     case REF_OTHER:
  1031       // Unknown reference type, no special treatment
  1032       break;
  1033     case REF_SOFT:
  1034       list = &_discoveredSoftRefs[id];
  1035       break;
  1036     case REF_WEAK:
  1037       list = &_discoveredWeakRefs[id];
  1038       break;
  1039     case REF_FINAL:
  1040       list = &_discoveredFinalRefs[id];
  1041       break;
  1042     case REF_PHANTOM:
  1043       list = &_discoveredPhantomRefs[id];
  1044       break;
  1045     case REF_NONE:
  1046       // we should not reach here if we are an InstanceRefKlass
  1047     default:
  1048       ShouldNotReachHere();
  1050   if (TraceReferenceGC && PrintGCDetails) {
  1051     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1053   return list;
  1056 inline void
  1057 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1058                                               oop             obj,
  1059                                               HeapWord*       discovered_addr) {
  1060   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1061   // First we must make sure this object is only enqueued once. CAS in a non null
  1062   // discovered_addr.
  1063   oop current_head = refs_list.head();
  1064   // The last ref must have its discovered field pointing to itself.
  1065   oop next_discovered = (current_head != NULL) ? current_head : obj;
  1067   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
  1068                                                     NULL);
  1069   if (retest == NULL) {
  1070     // This thread just won the right to enqueue the object.
  1071     // We have separate lists for enqueueing, so no synchronization
  1072     // is necessary.
  1073     refs_list.set_head(obj);
  1074     refs_list.inc_length(1);
  1076     if (TraceReferenceGC) {
  1077       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
  1078                              (void *)obj, obj->klass()->internal_name());
  1080   } else {
  1081     // If retest was non NULL, another thread beat us to it:
  1082     // The reference has already been discovered...
  1083     if (TraceReferenceGC) {
  1084       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1085                              (void *)obj, obj->klass()->internal_name());
  1090 #ifndef PRODUCT
  1091 // Non-atomic (i.e. concurrent) discovery might allow us
  1092 // to observe j.l.References with NULL referents, being those
  1093 // cleared concurrently by mutators during (or after) discovery.
  1094 void ReferenceProcessor::verify_referent(oop obj) {
  1095   bool da = discovery_is_atomic();
  1096   oop referent = java_lang_ref_Reference::referent(obj);
  1097   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1098          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1099                  INTPTR_FORMAT " during %satomic discovery ",
  1100                  (void *)referent, (void *)obj, da ? "" : "non-"));
  1102 #endif
  1104 // We mention two of several possible choices here:
  1105 // #0: if the reference object is not in the "originating generation"
  1106 //     (or part of the heap being collected, indicated by our "span"
  1107 //     we don't treat it specially (i.e. we scan it as we would
  1108 //     a normal oop, treating its references as strong references).
  1109 //     This means that references can't be discovered unless their
  1110 //     referent is also in the same span. This is the simplest,
  1111 //     most "local" and most conservative approach, albeit one
  1112 //     that may cause weak references to be enqueued least promptly.
  1113 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1114 // #1: the reference object may be in any generation (span), but if
  1115 //     the referent is in the generation (span) being currently collected
  1116 //     then we can discover the reference object, provided
  1117 //     the object has not already been discovered by
  1118 //     a different concurrently running collector (as may be the
  1119 //     case, for instance, if the reference object is in CMS and
  1120 //     the referent in DefNewGeneration), and provided the processing
  1121 //     of this reference object by the current collector will
  1122 //     appear atomic to every other collector in the system.
  1123 //     (Thus, for instance, a concurrent collector may not
  1124 //     discover references in other generations even if the
  1125 //     referent is in its own generation). This policy may,
  1126 //     in certain cases, enqueue references somewhat sooner than
  1127 //     might Policy #0 above, but at marginally increased cost
  1128 //     and complexity in processing these references.
  1129 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1130 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1131   // Make sure we are discovering refs (rather than processing discovered refs).
  1132   if (!_discovering_refs || !RegisterReferences) {
  1133     return false;
  1135   // We only discover active references.
  1136   oop next = java_lang_ref_Reference::next(obj);
  1137   if (next != NULL) {   // Ref is no longer active
  1138     return false;
  1141   HeapWord* obj_addr = (HeapWord*)obj;
  1142   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1143       !_span.contains(obj_addr)) {
  1144     // Reference is not in the originating generation;
  1145     // don't treat it specially (i.e. we want to scan it as a normal
  1146     // object with strong references).
  1147     return false;
  1150   // We only discover references whose referents are not (yet)
  1151   // known to be strongly reachable.
  1152   if (is_alive_non_header() != NULL) {
  1153     verify_referent(obj);
  1154     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1155       return false;  // referent is reachable
  1158   if (rt == REF_SOFT) {
  1159     // For soft refs we can decide now if these are not
  1160     // current candidates for clearing, in which case we
  1161     // can mark through them now, rather than delaying that
  1162     // to the reference-processing phase. Since all current
  1163     // time-stamp policies advance the soft-ref clock only
  1164     // at a major collection cycle, this is always currently
  1165     // accurate.
  1166     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
  1167       return false;
  1171   ResourceMark rm;      // Needed for tracing.
  1173   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1174   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1175   assert(discovered->is_oop_or_null(), "bad discovered field");
  1176   if (discovered != NULL) {
  1177     // The reference has already been discovered...
  1178     if (TraceReferenceGC) {
  1179       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1180                              (void *)obj, obj->klass()->internal_name());
  1182     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1183       // assumes that an object is not processed twice;
  1184       // if it's been already discovered it must be on another
  1185       // generation's discovered list; so we won't discover it.
  1186       return false;
  1187     } else {
  1188       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1189              "Unrecognized policy");
  1190       // Check assumption that an object is not potentially
  1191       // discovered twice except by concurrent collectors that potentially
  1192       // trace the same Reference object twice.
  1193       assert(UseConcMarkSweepGC || UseG1GC,
  1194              "Only possible with a concurrent marking collector");
  1195       return true;
  1199   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1200     verify_referent(obj);
  1201     // Discover if and only if EITHER:
  1202     // .. reference is in our span, OR
  1203     // .. we are an atomic collector and referent is in our span
  1204     if (_span.contains(obj_addr) ||
  1205         (discovery_is_atomic() &&
  1206          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1207       // should_enqueue = true;
  1208     } else {
  1209       return false;
  1211   } else {
  1212     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1213            _span.contains(obj_addr), "code inconsistency");
  1216   // Get the right type of discovered queue head.
  1217   DiscoveredList* list = get_discovered_list(rt);
  1218   if (list == NULL) {
  1219     return false;   // nothing special needs to be done
  1222   if (_discovery_is_mt) {
  1223     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1224   } else {
  1225     // We do a raw store here: the field will be visited later when processing
  1226     // the discovered references.
  1227     oop current_head = list->head();
  1228     // The last ref must have its discovered field pointing to itself.
  1229     oop next_discovered = (current_head != NULL) ? current_head : obj;
  1231     assert(discovered == NULL, "control point invariant");
  1232     oop_store_raw(discovered_addr, next_discovered);
  1233     list->set_head(obj);
  1234     list->inc_length(1);
  1236     if (TraceReferenceGC) {
  1237       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
  1238                                 (void *)obj, obj->klass()->internal_name());
  1241   assert(obj->is_oop(), "Discovered a bad reference");
  1242   verify_referent(obj);
  1243   return true;
  1246 // Preclean the discovered references by removing those
  1247 // whose referents are alive, and by marking from those that
  1248 // are not active. These lists can be handled here
  1249 // in any order and, indeed, concurrently.
  1250 void ReferenceProcessor::preclean_discovered_references(
  1251   BoolObjectClosure* is_alive,
  1252   OopClosure* keep_alive,
  1253   VoidClosure* complete_gc,
  1254   YieldClosure* yield,
  1255   GCTimer* gc_timer,
  1256   GCId     gc_id) {
  1258   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1260   // Soft references
  1262     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1263               false, gc_timer, gc_id);
  1264     for (uint i = 0; i < _max_num_q; i++) {
  1265       if (yield->should_return()) {
  1266         return;
  1268       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1269                                   keep_alive, complete_gc, yield);
  1273   // Weak references
  1275     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1276               false, gc_timer, gc_id);
  1277     for (uint i = 0; i < _max_num_q; i++) {
  1278       if (yield->should_return()) {
  1279         return;
  1281       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1282                                   keep_alive, complete_gc, yield);
  1286   // Final references
  1288     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1289               false, gc_timer, gc_id);
  1290     for (uint i = 0; i < _max_num_q; i++) {
  1291       if (yield->should_return()) {
  1292         return;
  1294       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1295                                   keep_alive, complete_gc, yield);
  1299   // Phantom references
  1301     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1302               false, gc_timer, gc_id);
  1303     for (uint i = 0; i < _max_num_q; i++) {
  1304       if (yield->should_return()) {
  1305         return;
  1307       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1308                                   keep_alive, complete_gc, yield);
  1313 // Walk the given discovered ref list, and remove all reference objects
  1314 // whose referents are still alive, whose referents are NULL or which
  1315 // are not active (have a non-NULL next field). NOTE: When we are
  1316 // thus precleaning the ref lists (which happens single-threaded today),
  1317 // we do not disable refs discovery to honour the correct semantics of
  1318 // java.lang.Reference. As a result, we need to be careful below
  1319 // that ref removal steps interleave safely with ref discovery steps
  1320 // (in this thread).
  1321 void
  1322 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1323                                                 BoolObjectClosure* is_alive,
  1324                                                 OopClosure*        keep_alive,
  1325                                                 VoidClosure*       complete_gc,
  1326                                                 YieldClosure*      yield) {
  1327   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1328   while (iter.has_next()) {
  1329     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1330     oop obj = iter.obj();
  1331     oop next = java_lang_ref_Reference::next(obj);
  1332     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1333         next != NULL) {
  1334       // The referent has been cleared, or is alive, or the Reference is not
  1335       // active; we need to trace and mark its cohort.
  1336       if (TraceReferenceGC) {
  1337         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1338                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
  1340       // Remove Reference object from list
  1341       iter.remove();
  1342       // Keep alive its cohort.
  1343       iter.make_referent_alive();
  1344       if (UseCompressedOops) {
  1345         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1346         keep_alive->do_oop(next_addr);
  1347       } else {
  1348         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1349         keep_alive->do_oop(next_addr);
  1351       iter.move_to_next();
  1352     } else {
  1353       iter.next();
  1356   // Close the reachable set
  1357   complete_gc->do_void();
  1359   NOT_PRODUCT(
  1360     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1361       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1362         "Refs in discovered list " INTPTR_FORMAT,
  1363         iter.removed(), iter.processed(), (address)refs_list.head());
  1368 const char* ReferenceProcessor::list_name(uint i) {
  1369    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
  1370           "Out of bounds index");
  1372    int j = i / _max_num_q;
  1373    switch (j) {
  1374      case 0: return "SoftRef";
  1375      case 1: return "WeakRef";
  1376      case 2: return "FinalRef";
  1377      case 3: return "PhantomRef";
  1379    ShouldNotReachHere();
  1380    return NULL;
  1383 #ifndef PRODUCT
  1384 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1385   // empty for now
  1387 #endif
  1389 #ifndef PRODUCT
  1390 void ReferenceProcessor::clear_discovered_references() {
  1391   guarantee(!_discovering_refs, "Discovering refs?");
  1392   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  1393     clear_discovered_references(_discovered_refs[i]);
  1397 #endif // PRODUCT

mercurial