src/share/vm/opto/superword.cpp

Fri, 20 Aug 2010 23:40:30 -0700

author
jrose
date
Fri, 20 Aug 2010 23:40:30 -0700
changeset 2101
4b29a725c43c
parent 1976
6027dddc26c6
child 2314
f95d63e2154a
permissions
-rw-r--r--

6912064: type profiles need to be exploited more for dynamic language support
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "incls/_precompiled.incl"
    25 #include "incls/_superword.cpp.incl"
    27 //
    28 //                  S U P E R W O R D   T R A N S F O R M
    29 //=============================================================================
    31 //------------------------------SuperWord---------------------------
    32 SuperWord::SuperWord(PhaseIdealLoop* phase) :
    33   _phase(phase),
    34   _igvn(phase->_igvn),
    35   _arena(phase->C->comp_arena()),
    36   _packset(arena(), 8,  0, NULL),         // packs for the current block
    37   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
    38   _block(arena(), 8,  0, NULL),           // nodes in current block
    39   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
    40   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
    41   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
    42   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
    43   _align_to_ref(NULL),                    // memory reference to align vectors to
    44   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
    45   _dg(_arena),                            // dependence graph
    46   _visited(arena()),                      // visited node set
    47   _post_visited(arena()),                 // post visited node set
    48   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
    49   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
    50   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
    51   _lpt(NULL),                             // loop tree node
    52   _lp(NULL),                              // LoopNode
    53   _bb(NULL),                              // basic block
    54   _iv(NULL)                               // induction var
    55 {}
    57 //------------------------------transform_loop---------------------------
    58 void SuperWord::transform_loop(IdealLoopTree* lpt) {
    59   assert(lpt->_head->is_CountedLoop(), "must be");
    60   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
    62   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
    64   // Check for no control flow in body (other than exit)
    65   Node *cl_exit = cl->loopexit();
    66   if (cl_exit->in(0) != lpt->_head) return;
    68   // Make sure the are no extra control users of the loop backedge
    69   if (cl->back_control()->outcnt() != 1) {
    70     return;
    71   }
    73   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
    74   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
    75   if (pre_end == NULL) return;
    76   Node *pre_opaq1 = pre_end->limit();
    77   if (pre_opaq1->Opcode() != Op_Opaque1) return;
    79   // Do vectors exist on this architecture?
    80   if (vector_width_in_bytes() == 0) return;
    82   init(); // initialize data structures
    84   set_lpt(lpt);
    85   set_lp(cl);
    87  // For now, define one block which is the entire loop body
    88   set_bb(cl);
    90   assert(_packset.length() == 0, "packset must be empty");
    91   SLP_extract();
    92 }
    94 //------------------------------SLP_extract---------------------------
    95 // Extract the superword level parallelism
    96 //
    97 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
    98 //    this list from first to last, all definitions are visited before their uses.
    99 //
   100 // 2) A point-to-point dependence graph is constructed between memory references.
   101 //    This simplies the upcoming "independence" checker.
   102 //
   103 // 3) The maximum depth in the node graph from the beginning of the block
   104 //    to each node is computed.  This is used to prune the graph search
   105 //    in the independence checker.
   106 //
   107 // 4) For integer types, the necessary bit width is propagated backwards
   108 //    from stores to allow packed operations on byte, char, and short
   109 //    integers.  This reverses the promotion to type "int" that javac
   110 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
   111 //
   112 // 5) One of the memory references is picked to be an aligned vector reference.
   113 //    The pre-loop trip count is adjusted to align this reference in the
   114 //    unrolled body.
   115 //
   116 // 6) The initial set of pack pairs is seeded with memory references.
   117 //
   118 // 7) The set of pack pairs is extended by following use->def and def->use links.
   119 //
   120 // 8) The pairs are combined into vector sized packs.
   121 //
   122 // 9) Reorder the memory slices to co-locate members of the memory packs.
   123 //
   124 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
   125 //    inserting scalar promotion, vector creation from multiple scalars, and
   126 //    extraction of scalar values from vectors.
   127 //
   128 void SuperWord::SLP_extract() {
   130   // Ready the block
   132   construct_bb();
   134   dependence_graph();
   136   compute_max_depth();
   138   compute_vector_element_type();
   140   // Attempt vectorization
   142   find_adjacent_refs();
   144   extend_packlist();
   146   combine_packs();
   148   construct_my_pack_map();
   150   filter_packs();
   152   schedule();
   154   output();
   155 }
   157 //------------------------------find_adjacent_refs---------------------------
   158 // Find the adjacent memory references and create pack pairs for them.
   159 // This is the initial set of packs that will then be extended by
   160 // following use->def and def->use links.  The align positions are
   161 // assigned relative to the reference "align_to_ref"
   162 void SuperWord::find_adjacent_refs() {
   163   // Get list of memory operations
   164   Node_List memops;
   165   for (int i = 0; i < _block.length(); i++) {
   166     Node* n = _block.at(i);
   167     if (n->is_Mem() && in_bb(n) &&
   168         is_java_primitive(n->as_Mem()->memory_type())) {
   169       int align = memory_alignment(n->as_Mem(), 0);
   170       if (align != bottom_align) {
   171         memops.push(n);
   172       }
   173     }
   174   }
   175   if (memops.size() == 0) return;
   177   // Find a memory reference to align to.  The pre-loop trip count
   178   // is modified to align this reference to a vector-aligned address
   179   find_align_to_ref(memops);
   180   if (align_to_ref() == NULL) return;
   182   SWPointer align_to_ref_p(align_to_ref(), this);
   183   int offset = align_to_ref_p.offset_in_bytes();
   184   int scale  = align_to_ref_p.scale_in_bytes();
   185   int vw              = vector_width_in_bytes();
   186   int stride_sign     = (scale * iv_stride()) > 0 ? 1 : -1;
   187   int iv_adjustment   = (stride_sign * vw - (offset % vw)) % vw;
   189 #ifndef PRODUCT
   190   if (TraceSuperWord)
   191     tty->print_cr("\noffset = %d iv_adjustment = %d  elt_align = %d scale = %d iv_stride = %d",
   192                   offset, iv_adjustment, align_to_ref_p.memory_size(), align_to_ref_p.scale_in_bytes(), iv_stride());
   193 #endif
   195   // Set alignment relative to "align_to_ref"
   196   for (int i = memops.size() - 1; i >= 0; i--) {
   197     MemNode* s = memops.at(i)->as_Mem();
   198     SWPointer p2(s, this);
   199     if (p2.comparable(align_to_ref_p)) {
   200       int align = memory_alignment(s, iv_adjustment);
   201       set_alignment(s, align);
   202     } else {
   203       memops.remove(i);
   204     }
   205   }
   207   // Create initial pack pairs of memory operations
   208   for (uint i = 0; i < memops.size(); i++) {
   209     Node* s1 = memops.at(i);
   210     for (uint j = 0; j < memops.size(); j++) {
   211       Node* s2 = memops.at(j);
   212       if (s1 != s2 && are_adjacent_refs(s1, s2)) {
   213         int align = alignment(s1);
   214         if (stmts_can_pack(s1, s2, align)) {
   215           Node_List* pair = new Node_List();
   216           pair->push(s1);
   217           pair->push(s2);
   218           _packset.append(pair);
   219         }
   220       }
   221     }
   222   }
   224 #ifndef PRODUCT
   225   if (TraceSuperWord) {
   226     tty->print_cr("\nAfter find_adjacent_refs");
   227     print_packset();
   228   }
   229 #endif
   230 }
   232 //------------------------------find_align_to_ref---------------------------
   233 // Find a memory reference to align the loop induction variable to.
   234 // Looks first at stores then at loads, looking for a memory reference
   235 // with the largest number of references similar to it.
   236 void SuperWord::find_align_to_ref(Node_List &memops) {
   237   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
   239   // Count number of comparable memory ops
   240   for (uint i = 0; i < memops.size(); i++) {
   241     MemNode* s1 = memops.at(i)->as_Mem();
   242     SWPointer p1(s1, this);
   243     // Discard if pre loop can't align this reference
   244     if (!ref_is_alignable(p1)) {
   245       *cmp_ct.adr_at(i) = 0;
   246       continue;
   247     }
   248     for (uint j = i+1; j < memops.size(); j++) {
   249       MemNode* s2 = memops.at(j)->as_Mem();
   250       if (isomorphic(s1, s2)) {
   251         SWPointer p2(s2, this);
   252         if (p1.comparable(p2)) {
   253           (*cmp_ct.adr_at(i))++;
   254           (*cmp_ct.adr_at(j))++;
   255         }
   256       }
   257     }
   258   }
   260   // Find Store (or Load) with the greatest number of "comparable" references
   261   int max_ct        = 0;
   262   int max_idx       = -1;
   263   int min_size      = max_jint;
   264   int min_iv_offset = max_jint;
   265   for (uint j = 0; j < memops.size(); j++) {
   266     MemNode* s = memops.at(j)->as_Mem();
   267     if (s->is_Store()) {
   268       SWPointer p(s, this);
   269       if (cmp_ct.at(j) > max_ct ||
   270           cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
   271                                      data_size(s) == min_size &&
   272                                         p.offset_in_bytes() < min_iv_offset)) {
   273         max_ct = cmp_ct.at(j);
   274         max_idx = j;
   275         min_size = data_size(s);
   276         min_iv_offset = p.offset_in_bytes();
   277       }
   278     }
   279   }
   280   // If no stores, look at loads
   281   if (max_ct == 0) {
   282     for (uint j = 0; j < memops.size(); j++) {
   283       MemNode* s = memops.at(j)->as_Mem();
   284       if (s->is_Load()) {
   285         SWPointer p(s, this);
   286         if (cmp_ct.at(j) > max_ct ||
   287             cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
   288                                        data_size(s) == min_size &&
   289                                           p.offset_in_bytes() < min_iv_offset)) {
   290           max_ct = cmp_ct.at(j);
   291           max_idx = j;
   292           min_size = data_size(s);
   293           min_iv_offset = p.offset_in_bytes();
   294         }
   295       }
   296     }
   297   }
   299   if (max_ct > 0)
   300     set_align_to_ref(memops.at(max_idx)->as_Mem());
   302 #ifndef PRODUCT
   303   if (TraceSuperWord && Verbose) {
   304     tty->print_cr("\nVector memops after find_align_to_refs");
   305     for (uint i = 0; i < memops.size(); i++) {
   306       MemNode* s = memops.at(i)->as_Mem();
   307       s->dump();
   308     }
   309   }
   310 #endif
   311 }
   313 //------------------------------ref_is_alignable---------------------------
   314 // Can the preloop align the reference to position zero in the vector?
   315 bool SuperWord::ref_is_alignable(SWPointer& p) {
   316   if (!p.has_iv()) {
   317     return true;   // no induction variable
   318   }
   319   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
   320   assert(pre_end->stride_is_con(), "pre loop stride is constant");
   321   int preloop_stride = pre_end->stride_con();
   323   int span = preloop_stride * p.scale_in_bytes();
   325   // Stride one accesses are alignable.
   326   if (ABS(span) == p.memory_size())
   327     return true;
   329   // If initial offset from start of object is computable,
   330   // compute alignment within the vector.
   331   int vw = vector_width_in_bytes();
   332   if (vw % span == 0) {
   333     Node* init_nd = pre_end->init_trip();
   334     if (init_nd->is_Con() && p.invar() == NULL) {
   335       int init = init_nd->bottom_type()->is_int()->get_con();
   337       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
   338       assert(init_offset >= 0, "positive offset from object start");
   340       if (span > 0) {
   341         return (vw - (init_offset % vw)) % span == 0;
   342       } else {
   343         assert(span < 0, "nonzero stride * scale");
   344         return (init_offset % vw) % -span == 0;
   345       }
   346     }
   347   }
   348   return false;
   349 }
   351 //---------------------------dependence_graph---------------------------
   352 // Construct dependency graph.
   353 // Add dependence edges to load/store nodes for memory dependence
   354 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
   355 void SuperWord::dependence_graph() {
   356   // First, assign a dependence node to each memory node
   357   for (int i = 0; i < _block.length(); i++ ) {
   358     Node *n = _block.at(i);
   359     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
   360       _dg.make_node(n);
   361     }
   362   }
   364   // For each memory slice, create the dependences
   365   for (int i = 0; i < _mem_slice_head.length(); i++) {
   366     Node* n      = _mem_slice_head.at(i);
   367     Node* n_tail = _mem_slice_tail.at(i);
   369     // Get slice in predecessor order (last is first)
   370     mem_slice_preds(n_tail, n, _nlist);
   372     // Make the slice dependent on the root
   373     DepMem* slice = _dg.dep(n);
   374     _dg.make_edge(_dg.root(), slice);
   376     // Create a sink for the slice
   377     DepMem* slice_sink = _dg.make_node(NULL);
   378     _dg.make_edge(slice_sink, _dg.tail());
   380     // Now visit each pair of memory ops, creating the edges
   381     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
   382       Node* s1 = _nlist.at(j);
   384       // If no dependency yet, use slice
   385       if (_dg.dep(s1)->in_cnt() == 0) {
   386         _dg.make_edge(slice, s1);
   387       }
   388       SWPointer p1(s1->as_Mem(), this);
   389       bool sink_dependent = true;
   390       for (int k = j - 1; k >= 0; k--) {
   391         Node* s2 = _nlist.at(k);
   392         if (s1->is_Load() && s2->is_Load())
   393           continue;
   394         SWPointer p2(s2->as_Mem(), this);
   396         int cmp = p1.cmp(p2);
   397         if (SuperWordRTDepCheck &&
   398             p1.base() != p2.base() && p1.valid() && p2.valid()) {
   399           // Create a runtime check to disambiguate
   400           OrderedPair pp(p1.base(), p2.base());
   401           _disjoint_ptrs.append_if_missing(pp);
   402         } else if (!SWPointer::not_equal(cmp)) {
   403           // Possibly same address
   404           _dg.make_edge(s1, s2);
   405           sink_dependent = false;
   406         }
   407       }
   408       if (sink_dependent) {
   409         _dg.make_edge(s1, slice_sink);
   410       }
   411     }
   412 #ifndef PRODUCT
   413     if (TraceSuperWord) {
   414       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
   415       for (int q = 0; q < _nlist.length(); q++) {
   416         _dg.print(_nlist.at(q));
   417       }
   418       tty->cr();
   419     }
   420 #endif
   421     _nlist.clear();
   422   }
   424 #ifndef PRODUCT
   425   if (TraceSuperWord) {
   426     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
   427     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
   428       _disjoint_ptrs.at(r).print();
   429       tty->cr();
   430     }
   431     tty->cr();
   432   }
   433 #endif
   434 }
   436 //---------------------------mem_slice_preds---------------------------
   437 // Return a memory slice (node list) in predecessor order starting at "start"
   438 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
   439   assert(preds.length() == 0, "start empty");
   440   Node* n = start;
   441   Node* prev = NULL;
   442   while (true) {
   443     assert(in_bb(n), "must be in block");
   444     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   445       Node* out = n->fast_out(i);
   446       if (out->is_Load()) {
   447         if (in_bb(out)) {
   448           preds.push(out);
   449         }
   450       } else {
   451         // FIXME
   452         if (out->is_MergeMem() && !in_bb(out)) {
   453           // Either unrolling is causing a memory edge not to disappear,
   454           // or need to run igvn.optimize() again before SLP
   455         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
   456           // Ditto.  Not sure what else to check further.
   457         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
   458           // StoreCM has an input edge used as a precedence edge.
   459           // Maybe an issue when oop stores are vectorized.
   460         } else {
   461           assert(out == prev || prev == NULL, "no branches off of store slice");
   462         }
   463       }
   464     }
   465     if (n == stop) break;
   466     preds.push(n);
   467     prev = n;
   468     n = n->in(MemNode::Memory);
   469   }
   470 }
   472 //------------------------------stmts_can_pack---------------------------
   473 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
   474 // s1 aligned at "align"
   475 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
   477   // Do not use superword for non-primitives
   478   if((s1->is_Mem() && !is_java_primitive(s1->as_Mem()->memory_type())) ||
   479      (s2->is_Mem() && !is_java_primitive(s2->as_Mem()->memory_type())))
   480     return false;
   482   if (isomorphic(s1, s2)) {
   483     if (independent(s1, s2)) {
   484       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
   485         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
   486           int s1_align = alignment(s1);
   487           int s2_align = alignment(s2);
   488           if (s1_align == top_align || s1_align == align) {
   489             if (s2_align == top_align || s2_align == align + data_size(s1)) {
   490               return true;
   491             }
   492           }
   493         }
   494       }
   495     }
   496   }
   497   return false;
   498 }
   500 //------------------------------exists_at---------------------------
   501 // Does s exist in a pack at position pos?
   502 bool SuperWord::exists_at(Node* s, uint pos) {
   503   for (int i = 0; i < _packset.length(); i++) {
   504     Node_List* p = _packset.at(i);
   505     if (p->at(pos) == s) {
   506       return true;
   507     }
   508   }
   509   return false;
   510 }
   512 //------------------------------are_adjacent_refs---------------------------
   513 // Is s1 immediately before s2 in memory?
   514 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
   515   if (!s1->is_Mem() || !s2->is_Mem()) return false;
   516   if (!in_bb(s1)    || !in_bb(s2))    return false;
   518   // Do not use superword for non-primitives
   519   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
   520       !is_java_primitive(s2->as_Mem()->memory_type())) {
   521     return false;
   522   }
   524   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
   525   // only pack memops that are in the same alias set until that's fixed.
   526   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
   527       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
   528     return false;
   529   SWPointer p1(s1->as_Mem(), this);
   530   SWPointer p2(s2->as_Mem(), this);
   531   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
   532   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
   533   return diff == data_size(s1);
   534 }
   536 //------------------------------isomorphic---------------------------
   537 // Are s1 and s2 similar?
   538 bool SuperWord::isomorphic(Node* s1, Node* s2) {
   539   if (s1->Opcode() != s2->Opcode()) return false;
   540   if (s1->req() != s2->req()) return false;
   541   if (s1->in(0) != s2->in(0)) return false;
   542   if (velt_type(s1) != velt_type(s2)) return false;
   543   return true;
   544 }
   546 //------------------------------independent---------------------------
   547 // Is there no data path from s1 to s2 or s2 to s1?
   548 bool SuperWord::independent(Node* s1, Node* s2) {
   549   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
   550   int d1 = depth(s1);
   551   int d2 = depth(s2);
   552   if (d1 == d2) return s1 != s2;
   553   Node* deep    = d1 > d2 ? s1 : s2;
   554   Node* shallow = d1 > d2 ? s2 : s1;
   556   visited_clear();
   558   return independent_path(shallow, deep);
   559 }
   561 //------------------------------independent_path------------------------------
   562 // Helper for independent
   563 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
   564   if (dp >= 1000) return false; // stop deep recursion
   565   visited_set(deep);
   566   int shal_depth = depth(shallow);
   567   assert(shal_depth <= depth(deep), "must be");
   568   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
   569     Node* pred = preds.current();
   570     if (in_bb(pred) && !visited_test(pred)) {
   571       if (shallow == pred) {
   572         return false;
   573       }
   574       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
   575         return false;
   576       }
   577     }
   578   }
   579   return true;
   580 }
   582 //------------------------------set_alignment---------------------------
   583 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
   584   set_alignment(s1, align);
   585   set_alignment(s2, align + data_size(s1));
   586 }
   588 //------------------------------data_size---------------------------
   589 int SuperWord::data_size(Node* s) {
   590   const Type* t = velt_type(s);
   591   BasicType  bt = t->array_element_basic_type();
   592   int bsize = type2aelembytes(bt);
   593   assert(bsize != 0, "valid size");
   594   return bsize;
   595 }
   597 //------------------------------extend_packlist---------------------------
   598 // Extend packset by following use->def and def->use links from pack members.
   599 void SuperWord::extend_packlist() {
   600   bool changed;
   601   do {
   602     changed = false;
   603     for (int i = 0; i < _packset.length(); i++) {
   604       Node_List* p = _packset.at(i);
   605       changed |= follow_use_defs(p);
   606       changed |= follow_def_uses(p);
   607     }
   608   } while (changed);
   610 #ifndef PRODUCT
   611   if (TraceSuperWord) {
   612     tty->print_cr("\nAfter extend_packlist");
   613     print_packset();
   614   }
   615 #endif
   616 }
   618 //------------------------------follow_use_defs---------------------------
   619 // Extend the packset by visiting operand definitions of nodes in pack p
   620 bool SuperWord::follow_use_defs(Node_List* p) {
   621   Node* s1 = p->at(0);
   622   Node* s2 = p->at(1);
   623   assert(p->size() == 2, "just checking");
   624   assert(s1->req() == s2->req(), "just checking");
   625   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   627   if (s1->is_Load()) return false;
   629   int align = alignment(s1);
   630   bool changed = false;
   631   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
   632   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
   633   for (int j = start; j < end; j++) {
   634     Node* t1 = s1->in(j);
   635     Node* t2 = s2->in(j);
   636     if (!in_bb(t1) || !in_bb(t2))
   637       continue;
   638     if (stmts_can_pack(t1, t2, align)) {
   639       if (est_savings(t1, t2) >= 0) {
   640         Node_List* pair = new Node_List();
   641         pair->push(t1);
   642         pair->push(t2);
   643         _packset.append(pair);
   644         set_alignment(t1, t2, align);
   645         changed = true;
   646       }
   647     }
   648   }
   649   return changed;
   650 }
   652 //------------------------------follow_def_uses---------------------------
   653 // Extend the packset by visiting uses of nodes in pack p
   654 bool SuperWord::follow_def_uses(Node_List* p) {
   655   bool changed = false;
   656   Node* s1 = p->at(0);
   657   Node* s2 = p->at(1);
   658   assert(p->size() == 2, "just checking");
   659   assert(s1->req() == s2->req(), "just checking");
   660   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   662   if (s1->is_Store()) return false;
   664   int align = alignment(s1);
   665   int savings = -1;
   666   Node* u1 = NULL;
   667   Node* u2 = NULL;
   668   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   669     Node* t1 = s1->fast_out(i);
   670     if (!in_bb(t1)) continue;
   671     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
   672       Node* t2 = s2->fast_out(j);
   673       if (!in_bb(t2)) continue;
   674       if (!opnd_positions_match(s1, t1, s2, t2))
   675         continue;
   676       if (stmts_can_pack(t1, t2, align)) {
   677         int my_savings = est_savings(t1, t2);
   678         if (my_savings > savings) {
   679           savings = my_savings;
   680           u1 = t1;
   681           u2 = t2;
   682         }
   683       }
   684     }
   685   }
   686   if (savings >= 0) {
   687     Node_List* pair = new Node_List();
   688     pair->push(u1);
   689     pair->push(u2);
   690     _packset.append(pair);
   691     set_alignment(u1, u2, align);
   692     changed = true;
   693   }
   694   return changed;
   695 }
   697 //---------------------------opnd_positions_match-------------------------
   698 // Is the use of d1 in u1 at the same operand position as d2 in u2?
   699 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
   700   uint ct = u1->req();
   701   if (ct != u2->req()) return false;
   702   uint i1 = 0;
   703   uint i2 = 0;
   704   do {
   705     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
   706     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
   707     if (i1 != i2) {
   708       return false;
   709     }
   710   } while (i1 < ct);
   711   return true;
   712 }
   714 //------------------------------est_savings---------------------------
   715 // Estimate the savings from executing s1 and s2 as a pack
   716 int SuperWord::est_savings(Node* s1, Node* s2) {
   717   int save = 2 - 1; // 2 operations per instruction in packed form
   719   // inputs
   720   for (uint i = 1; i < s1->req(); i++) {
   721     Node* x1 = s1->in(i);
   722     Node* x2 = s2->in(i);
   723     if (x1 != x2) {
   724       if (are_adjacent_refs(x1, x2)) {
   725         save += adjacent_profit(x1, x2);
   726       } else if (!in_packset(x1, x2)) {
   727         save -= pack_cost(2);
   728       } else {
   729         save += unpack_cost(2);
   730       }
   731     }
   732   }
   734   // uses of result
   735   uint ct = 0;
   736   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   737     Node* s1_use = s1->fast_out(i);
   738     for (int j = 0; j < _packset.length(); j++) {
   739       Node_List* p = _packset.at(j);
   740       if (p->at(0) == s1_use) {
   741         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
   742           Node* s2_use = s2->fast_out(k);
   743           if (p->at(p->size()-1) == s2_use) {
   744             ct++;
   745             if (are_adjacent_refs(s1_use, s2_use)) {
   746               save += adjacent_profit(s1_use, s2_use);
   747             }
   748           }
   749         }
   750       }
   751     }
   752   }
   754   if (ct < s1->outcnt()) save += unpack_cost(1);
   755   if (ct < s2->outcnt()) save += unpack_cost(1);
   757   return save;
   758 }
   760 //------------------------------costs---------------------------
   761 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
   762 int SuperWord::pack_cost(int ct)   { return ct; }
   763 int SuperWord::unpack_cost(int ct) { return ct; }
   765 //------------------------------combine_packs---------------------------
   766 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
   767 void SuperWord::combine_packs() {
   768   bool changed;
   769   do {
   770     changed = false;
   771     for (int i = 0; i < _packset.length(); i++) {
   772       Node_List* p1 = _packset.at(i);
   773       if (p1 == NULL) continue;
   774       for (int j = 0; j < _packset.length(); j++) {
   775         Node_List* p2 = _packset.at(j);
   776         if (p2 == NULL) continue;
   777         if (p1->at(p1->size()-1) == p2->at(0)) {
   778           for (uint k = 1; k < p2->size(); k++) {
   779             p1->push(p2->at(k));
   780           }
   781           _packset.at_put(j, NULL);
   782           changed = true;
   783         }
   784       }
   785     }
   786   } while (changed);
   788   for (int i = _packset.length() - 1; i >= 0; i--) {
   789     Node_List* p1 = _packset.at(i);
   790     if (p1 == NULL) {
   791       _packset.remove_at(i);
   792     }
   793   }
   795 #ifndef PRODUCT
   796   if (TraceSuperWord) {
   797     tty->print_cr("\nAfter combine_packs");
   798     print_packset();
   799   }
   800 #endif
   801 }
   803 //-----------------------------construct_my_pack_map--------------------------
   804 // Construct the map from nodes to packs.  Only valid after the
   805 // point where a node is only in one pack (after combine_packs).
   806 void SuperWord::construct_my_pack_map() {
   807   Node_List* rslt = NULL;
   808   for (int i = 0; i < _packset.length(); i++) {
   809     Node_List* p = _packset.at(i);
   810     for (uint j = 0; j < p->size(); j++) {
   811       Node* s = p->at(j);
   812       assert(my_pack(s) == NULL, "only in one pack");
   813       set_my_pack(s, p);
   814     }
   815   }
   816 }
   818 //------------------------------filter_packs---------------------------
   819 // Remove packs that are not implemented or not profitable.
   820 void SuperWord::filter_packs() {
   822   // Remove packs that are not implemented
   823   for (int i = _packset.length() - 1; i >= 0; i--) {
   824     Node_List* pk = _packset.at(i);
   825     bool impl = implemented(pk);
   826     if (!impl) {
   827 #ifndef PRODUCT
   828       if (TraceSuperWord && Verbose) {
   829         tty->print_cr("Unimplemented");
   830         pk->at(0)->dump();
   831       }
   832 #endif
   833       remove_pack_at(i);
   834     }
   835   }
   837   // Remove packs that are not profitable
   838   bool changed;
   839   do {
   840     changed = false;
   841     for (int i = _packset.length() - 1; i >= 0; i--) {
   842       Node_List* pk = _packset.at(i);
   843       bool prof = profitable(pk);
   844       if (!prof) {
   845 #ifndef PRODUCT
   846         if (TraceSuperWord && Verbose) {
   847           tty->print_cr("Unprofitable");
   848           pk->at(0)->dump();
   849         }
   850 #endif
   851         remove_pack_at(i);
   852         changed = true;
   853       }
   854     }
   855   } while (changed);
   857 #ifndef PRODUCT
   858   if (TraceSuperWord) {
   859     tty->print_cr("\nAfter filter_packs");
   860     print_packset();
   861     tty->cr();
   862   }
   863 #endif
   864 }
   866 //------------------------------implemented---------------------------
   867 // Can code be generated for pack p?
   868 bool SuperWord::implemented(Node_List* p) {
   869   Node* p0 = p->at(0);
   870   int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
   871   return vopc > 0 && Matcher::has_match_rule(vopc);
   872 }
   874 //------------------------------profitable---------------------------
   875 // For pack p, are all operands and all uses (with in the block) vector?
   876 bool SuperWord::profitable(Node_List* p) {
   877   Node* p0 = p->at(0);
   878   uint start, end;
   879   vector_opd_range(p0, &start, &end);
   881   // Return false if some input is not vector and inside block
   882   for (uint i = start; i < end; i++) {
   883     if (!is_vector_use(p0, i)) {
   884       // For now, return false if not scalar promotion case (inputs are the same.)
   885       // Later, implement PackNode and allow differing, non-vector inputs
   886       // (maybe just the ones from outside the block.)
   887       Node* p0_def = p0->in(i);
   888       for (uint j = 1; j < p->size(); j++) {
   889         Node* use = p->at(j);
   890         Node* def = use->in(i);
   891         if (p0_def != def)
   892           return false;
   893       }
   894     }
   895   }
   896   if (!p0->is_Store()) {
   897     // For now, return false if not all uses are vector.
   898     // Later, implement ExtractNode and allow non-vector uses (maybe
   899     // just the ones outside the block.)
   900     for (uint i = 0; i < p->size(); i++) {
   901       Node* def = p->at(i);
   902       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
   903         Node* use = def->fast_out(j);
   904         for (uint k = 0; k < use->req(); k++) {
   905           Node* n = use->in(k);
   906           if (def == n) {
   907             if (!is_vector_use(use, k)) {
   908               return false;
   909             }
   910           }
   911         }
   912       }
   913     }
   914   }
   915   return true;
   916 }
   918 //------------------------------schedule---------------------------
   919 // Adjust the memory graph for the packed operations
   920 void SuperWord::schedule() {
   922   // Co-locate in the memory graph the members of each memory pack
   923   for (int i = 0; i < _packset.length(); i++) {
   924     co_locate_pack(_packset.at(i));
   925   }
   926 }
   928 //-------------------------------remove_and_insert-------------------
   929 //remove "current" from its current position in the memory graph and insert
   930 //it after the appropriate insertion point (lip or uip)
   931 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
   932                                   Node *uip, Unique_Node_List &sched_before) {
   933   Node* my_mem = current->in(MemNode::Memory);
   934   _igvn.hash_delete(current);
   935   _igvn.hash_delete(my_mem);
   937   //remove current_store from its current position in the memmory graph
   938   for (DUIterator i = current->outs(); current->has_out(i); i++) {
   939     Node* use = current->out(i);
   940     if (use->is_Mem()) {
   941       assert(use->in(MemNode::Memory) == current, "must be");
   942       _igvn.hash_delete(use);
   943       if (use == prev) { // connect prev to my_mem
   944         use->set_req(MemNode::Memory, my_mem);
   945       } else if (sched_before.member(use)) {
   946         _igvn.hash_delete(uip);
   947         use->set_req(MemNode::Memory, uip);
   948       } else {
   949         _igvn.hash_delete(lip);
   950         use->set_req(MemNode::Memory, lip);
   951       }
   952       _igvn._worklist.push(use);
   953       --i; //deleted this edge; rescan position
   954     }
   955   }
   957   bool sched_up = sched_before.member(current);
   958   Node *insert_pt =  sched_up ?  uip : lip;
   959   _igvn.hash_delete(insert_pt);
   961   // all uses of insert_pt's memory state should use current's instead
   962   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
   963     Node* use = insert_pt->out(i);
   964     if (use->is_Mem()) {
   965       assert(use->in(MemNode::Memory) == insert_pt, "must be");
   966       _igvn.hash_delete(use);
   967       use->set_req(MemNode::Memory, current);
   968       _igvn._worklist.push(use);
   969       --i; //deleted this edge; rescan position
   970     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
   971       uint pos; //lip (lower insert point) must be the last one in the memory slice
   972       _igvn.hash_delete(use);
   973       for (pos=1; pos < use->req(); pos++) {
   974         if (use->in(pos) == insert_pt) break;
   975       }
   976       use->set_req(pos, current);
   977       _igvn._worklist.push(use);
   978       --i;
   979     }
   980   }
   982   //connect current to insert_pt
   983   current->set_req(MemNode::Memory, insert_pt);
   984   _igvn._worklist.push(current);
   985 }
   987 //------------------------------co_locate_pack----------------------------------
   988 // To schedule a store pack, we need to move any sandwiched memory ops either before
   989 // or after the pack, based upon dependence information:
   990 // (1) If any store in the pack depends on the sandwiched memory op, the
   991 //     sandwiched memory op must be scheduled BEFORE the pack;
   992 // (2) If a sandwiched memory op depends on any store in the pack, the
   993 //     sandwiched memory op must be scheduled AFTER the pack;
   994 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
   995 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
   996 //     scheduled before the pack, memB must also be scheduled before the pack;
   997 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
   998 //     schedule this store AFTER the pack
   999 // (5) We know there is no dependence cycle, so there in no other case;
  1000 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
  1001 //
  1002 // To schedule a load pack, we use the memory state of either the first or the last load in
  1003 // the pack, based on the dependence constraint.
  1004 void SuperWord::co_locate_pack(Node_List* pk) {
  1005   if (pk->at(0)->is_Store()) {
  1006     MemNode* first     = executed_first(pk)->as_Mem();
  1007     MemNode* last      = executed_last(pk)->as_Mem();
  1008     Unique_Node_List schedule_before_pack;
  1009     Unique_Node_List memops;
  1011     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
  1012     MemNode* previous  = last;
  1013     while (true) {
  1014       assert(in_bb(current), "stay in block");
  1015       memops.push(previous);
  1016       for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1017         Node* use = current->out(i);
  1018         if (use->is_Mem() && use != previous)
  1019           memops.push(use);
  1021       if(current == first) break;
  1022       previous = current;
  1023       current  = current->in(MemNode::Memory)->as_Mem();
  1026     // determine which memory operations should be scheduled before the pack
  1027     for (uint i = 1; i < memops.size(); i++) {
  1028       Node *s1 = memops.at(i);
  1029       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
  1030         for (uint j = 0; j< i; j++) {
  1031           Node *s2 = memops.at(j);
  1032           if (!independent(s1, s2)) {
  1033             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
  1034               schedule_before_pack.push(s1); //s1 must be scheduled before
  1035               Node_List* mem_pk = my_pack(s1);
  1036               if (mem_pk != NULL) {
  1037                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
  1038                   Node* s = mem_pk->at(ii); // follow partner
  1039                   if (memops.member(s) && !schedule_before_pack.member(s))
  1040                     schedule_before_pack.push(s);
  1049     MemNode* lower_insert_pt = last;
  1050     Node*    upper_insert_pt = first->in(MemNode::Memory);
  1051     previous                 = last; //previous store in pk
  1052     current                  = last->in(MemNode::Memory)->as_Mem();
  1054     //start scheduling from "last" to "first"
  1055     while (true) {
  1056       assert(in_bb(current), "stay in block");
  1057       assert(in_pack(previous, pk), "previous stays in pack");
  1058       Node* my_mem = current->in(MemNode::Memory);
  1060       if (in_pack(current, pk)) {
  1061         // Forward users of my memory state (except "previous) to my input memory state
  1062         _igvn.hash_delete(current);
  1063         for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1064           Node* use = current->out(i);
  1065           if (use->is_Mem() && use != previous) {
  1066             assert(use->in(MemNode::Memory) == current, "must be");
  1067             _igvn.hash_delete(use);
  1068             if (schedule_before_pack.member(use)) {
  1069               _igvn.hash_delete(upper_insert_pt);
  1070               use->set_req(MemNode::Memory, upper_insert_pt);
  1071             } else {
  1072               _igvn.hash_delete(lower_insert_pt);
  1073               use->set_req(MemNode::Memory, lower_insert_pt);
  1075             _igvn._worklist.push(use);
  1076             --i; // deleted this edge; rescan position
  1079         previous = current;
  1080       } else { // !in_pack(current, pk) ==> a sandwiched store
  1081         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
  1084       if (current == first) break;
  1085       current = my_mem->as_Mem();
  1086     } // end while
  1087   } else if (pk->at(0)->is_Load()) { //load
  1088     // all loads in the pack should have the same memory state. By default,
  1089     // we use the memory state of the last load. However, if any load could
  1090     // not be moved down due to the dependence constraint, we use the memory
  1091     // state of the first load.
  1092     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
  1093     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
  1094     bool schedule_last = true;
  1095     for (uint i = 0; i < pk->size(); i++) {
  1096       Node* ld = pk->at(i);
  1097       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
  1098            current=current->in(MemNode::Memory)) {
  1099         assert(current != first_mem, "corrupted memory graph");
  1100         if(current->is_Mem() && !independent(current, ld)){
  1101           schedule_last = false; // a later store depends on this load
  1102           break;
  1107     Node* mem_input = schedule_last ? last_mem : first_mem;
  1108     _igvn.hash_delete(mem_input);
  1109     // Give each load the same memory state
  1110     for (uint i = 0; i < pk->size(); i++) {
  1111       LoadNode* ld = pk->at(i)->as_Load();
  1112       _igvn.hash_delete(ld);
  1113       ld->set_req(MemNode::Memory, mem_input);
  1114       _igvn._worklist.push(ld);
  1119 //------------------------------output---------------------------
  1120 // Convert packs into vector node operations
  1121 void SuperWord::output() {
  1122   if (_packset.length() == 0) return;
  1124   // MUST ENSURE main loop's initial value is properly aligned:
  1125   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
  1127   align_initial_loop_index(align_to_ref());
  1129   // Insert extract (unpack) operations for scalar uses
  1130   for (int i = 0; i < _packset.length(); i++) {
  1131     insert_extracts(_packset.at(i));
  1134   for (int i = 0; i < _block.length(); i++) {
  1135     Node* n = _block.at(i);
  1136     Node_List* p = my_pack(n);
  1137     if (p && n == executed_last(p)) {
  1138       uint vlen = p->size();
  1139       Node* vn = NULL;
  1140       Node* low_adr = p->at(0);
  1141       Node* first   = executed_first(p);
  1142       if (n->is_Load()) {
  1143         int   opc = n->Opcode();
  1144         Node* ctl = n->in(MemNode::Control);
  1145         Node* mem = first->in(MemNode::Memory);
  1146         Node* adr = low_adr->in(MemNode::Address);
  1147         const TypePtr* atyp = n->adr_type();
  1148         vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
  1150       } else if (n->is_Store()) {
  1151         // Promote value to be stored to vector
  1152         VectorNode* val = vector_opd(p, MemNode::ValueIn);
  1154         int   opc = n->Opcode();
  1155         Node* ctl = n->in(MemNode::Control);
  1156         Node* mem = first->in(MemNode::Memory);
  1157         Node* adr = low_adr->in(MemNode::Address);
  1158         const TypePtr* atyp = n->adr_type();
  1159         vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
  1161       } else if (n->req() == 3) {
  1162         // Promote operands to vector
  1163         Node* in1 = vector_opd(p, 1);
  1164         Node* in2 = vector_opd(p, 2);
  1165         vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
  1167       } else {
  1168         ShouldNotReachHere();
  1171       _phase->_igvn.register_new_node_with_optimizer(vn);
  1172       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
  1173       for (uint j = 0; j < p->size(); j++) {
  1174         Node* pm = p->at(j);
  1175         _igvn.replace_node(pm, vn);
  1177       _igvn._worklist.push(vn);
  1182 //------------------------------vector_opd---------------------------
  1183 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
  1184 VectorNode* SuperWord::vector_opd(Node_List* p, int opd_idx) {
  1185   Node* p0 = p->at(0);
  1186   uint vlen = p->size();
  1187   Node* opd = p0->in(opd_idx);
  1189   bool same_opd = true;
  1190   for (uint i = 1; i < vlen; i++) {
  1191     Node* pi = p->at(i);
  1192     Node* in = pi->in(opd_idx);
  1193     if (opd != in) {
  1194       same_opd = false;
  1195       break;
  1199   if (same_opd) {
  1200     if (opd->is_Vector()) {
  1201       return (VectorNode*)opd; // input is matching vector
  1203     // Convert scalar input to vector. Use p0's type because it's container
  1204     // maybe smaller than the operand's container.
  1205     const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
  1206     const Type* p0_t  = velt_type(p0);
  1207     if (p0_t->higher_equal(opd_t)) opd_t = p0_t;
  1208     VectorNode* vn    = VectorNode::scalar2vector(_phase->C, opd, vlen, opd_t);
  1210     _phase->_igvn.register_new_node_with_optimizer(vn);
  1211     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
  1212     return vn;
  1215   // Insert pack operation
  1216   const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
  1217   PackNode* pk = PackNode::make(_phase->C, opd, opd_t);
  1219   for (uint i = 1; i < vlen; i++) {
  1220     Node* pi = p->at(i);
  1221     Node* in = pi->in(opd_idx);
  1222     assert(my_pack(in) == NULL, "Should already have been unpacked");
  1223     assert(opd_t == velt_type(!in_bb(in) ? pi : in), "all same type");
  1224     pk->add_opd(in);
  1226   _phase->_igvn.register_new_node_with_optimizer(pk);
  1227   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
  1228   return pk;
  1231 //------------------------------insert_extracts---------------------------
  1232 // If a use of pack p is not a vector use, then replace the
  1233 // use with an extract operation.
  1234 void SuperWord::insert_extracts(Node_List* p) {
  1235   if (p->at(0)->is_Store()) return;
  1236   assert(_n_idx_list.is_empty(), "empty (node,index) list");
  1238   // Inspect each use of each pack member.  For each use that is
  1239   // not a vector use, replace the use with an extract operation.
  1241   for (uint i = 0; i < p->size(); i++) {
  1242     Node* def = p->at(i);
  1243     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1244       Node* use = def->fast_out(j);
  1245       for (uint k = 0; k < use->req(); k++) {
  1246         Node* n = use->in(k);
  1247         if (def == n) {
  1248           if (!is_vector_use(use, k)) {
  1249             _n_idx_list.push(use, k);
  1256   while (_n_idx_list.is_nonempty()) {
  1257     Node* use = _n_idx_list.node();
  1258     int   idx = _n_idx_list.index();
  1259     _n_idx_list.pop();
  1260     Node* def = use->in(idx);
  1262     // Insert extract operation
  1263     _igvn.hash_delete(def);
  1264     _igvn.hash_delete(use);
  1265     int def_pos = alignment(def) / data_size(def);
  1266     const Type* def_t = velt_type(def);
  1268     Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
  1269     _phase->_igvn.register_new_node_with_optimizer(ex);
  1270     _phase->set_ctrl(ex, _phase->get_ctrl(def));
  1271     use->set_req(idx, ex);
  1272     _igvn._worklist.push(def);
  1273     _igvn._worklist.push(use);
  1275     bb_insert_after(ex, bb_idx(def));
  1276     set_velt_type(ex, def_t);
  1280 //------------------------------is_vector_use---------------------------
  1281 // Is use->in(u_idx) a vector use?
  1282 bool SuperWord::is_vector_use(Node* use, int u_idx) {
  1283   Node_List* u_pk = my_pack(use);
  1284   if (u_pk == NULL) return false;
  1285   Node* def = use->in(u_idx);
  1286   Node_List* d_pk = my_pack(def);
  1287   if (d_pk == NULL) {
  1288     // check for scalar promotion
  1289     Node* n = u_pk->at(0)->in(u_idx);
  1290     for (uint i = 1; i < u_pk->size(); i++) {
  1291       if (u_pk->at(i)->in(u_idx) != n) return false;
  1293     return true;
  1295   if (u_pk->size() != d_pk->size())
  1296     return false;
  1297   for (uint i = 0; i < u_pk->size(); i++) {
  1298     Node* ui = u_pk->at(i);
  1299     Node* di = d_pk->at(i);
  1300     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
  1301       return false;
  1303   return true;
  1306 //------------------------------construct_bb---------------------------
  1307 // Construct reverse postorder list of block members
  1308 void SuperWord::construct_bb() {
  1309   Node* entry = bb();
  1311   assert(_stk.length() == 0,            "stk is empty");
  1312   assert(_block.length() == 0,          "block is empty");
  1313   assert(_data_entry.length() == 0,     "data_entry is empty");
  1314   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
  1315   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
  1317   // Find non-control nodes with no inputs from within block,
  1318   // create a temporary map from node _idx to bb_idx for use
  1319   // by the visited and post_visited sets,
  1320   // and count number of nodes in block.
  1321   int bb_ct = 0;
  1322   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
  1323     Node *n = lpt()->_body.at(i);
  1324     set_bb_idx(n, i); // Create a temporary map
  1325     if (in_bb(n)) {
  1326       bb_ct++;
  1327       if (!n->is_CFG()) {
  1328         bool found = false;
  1329         for (uint j = 0; j < n->req(); j++) {
  1330           Node* def = n->in(j);
  1331           if (def && in_bb(def)) {
  1332             found = true;
  1333             break;
  1336         if (!found) {
  1337           assert(n != entry, "can't be entry");
  1338           _data_entry.push(n);
  1344   // Find memory slices (head and tail)
  1345   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
  1346     Node *n = lp()->fast_out(i);
  1347     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
  1348       Node* n_tail  = n->in(LoopNode::LoopBackControl);
  1349       if (n_tail != n->in(LoopNode::EntryControl)) {
  1350         _mem_slice_head.push(n);
  1351         _mem_slice_tail.push(n_tail);
  1356   // Create an RPO list of nodes in block
  1358   visited_clear();
  1359   post_visited_clear();
  1361   // Push all non-control nodes with no inputs from within block, then control entry
  1362   for (int j = 0; j < _data_entry.length(); j++) {
  1363     Node* n = _data_entry.at(j);
  1364     visited_set(n);
  1365     _stk.push(n);
  1367   visited_set(entry);
  1368   _stk.push(entry);
  1370   // Do a depth first walk over out edges
  1371   int rpo_idx = bb_ct - 1;
  1372   int size;
  1373   while ((size = _stk.length()) > 0) {
  1374     Node* n = _stk.top(); // Leave node on stack
  1375     if (!visited_test_set(n)) {
  1376       // forward arc in graph
  1377     } else if (!post_visited_test(n)) {
  1378       // cross or back arc
  1379       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1380         Node *use = n->fast_out(i);
  1381         if (in_bb(use) && !visited_test(use) &&
  1382             // Don't go around backedge
  1383             (!use->is_Phi() || n == entry)) {
  1384           _stk.push(use);
  1387       if (_stk.length() == size) {
  1388         // There were no additional uses, post visit node now
  1389         _stk.pop(); // Remove node from stack
  1390         assert(rpo_idx >= 0, "");
  1391         _block.at_put_grow(rpo_idx, n);
  1392         rpo_idx--;
  1393         post_visited_set(n);
  1394         assert(rpo_idx >= 0 || _stk.is_empty(), "");
  1396     } else {
  1397       _stk.pop(); // Remove post-visited node from stack
  1401   // Create real map of block indices for nodes
  1402   for (int j = 0; j < _block.length(); j++) {
  1403     Node* n = _block.at(j);
  1404     set_bb_idx(n, j);
  1407   initialize_bb(); // Ensure extra info is allocated.
  1409 #ifndef PRODUCT
  1410   if (TraceSuperWord) {
  1411     print_bb();
  1412     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
  1413     for (int m = 0; m < _data_entry.length(); m++) {
  1414       tty->print("%3d ", m);
  1415       _data_entry.at(m)->dump();
  1417     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
  1418     for (int m = 0; m < _mem_slice_head.length(); m++) {
  1419       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
  1420       tty->print("    ");    _mem_slice_tail.at(m)->dump();
  1423 #endif
  1424   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
  1427 //------------------------------initialize_bb---------------------------
  1428 // Initialize per node info
  1429 void SuperWord::initialize_bb() {
  1430   Node* last = _block.at(_block.length() - 1);
  1431   grow_node_info(bb_idx(last));
  1434 //------------------------------bb_insert_after---------------------------
  1435 // Insert n into block after pos
  1436 void SuperWord::bb_insert_after(Node* n, int pos) {
  1437   int n_pos = pos + 1;
  1438   // Make room
  1439   for (int i = _block.length() - 1; i >= n_pos; i--) {
  1440     _block.at_put_grow(i+1, _block.at(i));
  1442   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
  1443     _node_info.at_put_grow(j+1, _node_info.at(j));
  1445   // Set value
  1446   _block.at_put_grow(n_pos, n);
  1447   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
  1448   // Adjust map from node->_idx to _block index
  1449   for (int i = n_pos; i < _block.length(); i++) {
  1450     set_bb_idx(_block.at(i), i);
  1454 //------------------------------compute_max_depth---------------------------
  1455 // Compute max depth for expressions from beginning of block
  1456 // Use to prune search paths during test for independence.
  1457 void SuperWord::compute_max_depth() {
  1458   int ct = 0;
  1459   bool again;
  1460   do {
  1461     again = false;
  1462     for (int i = 0; i < _block.length(); i++) {
  1463       Node* n = _block.at(i);
  1464       if (!n->is_Phi()) {
  1465         int d_orig = depth(n);
  1466         int d_in   = 0;
  1467         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
  1468           Node* pred = preds.current();
  1469           if (in_bb(pred)) {
  1470             d_in = MAX2(d_in, depth(pred));
  1473         if (d_in + 1 != d_orig) {
  1474           set_depth(n, d_in + 1);
  1475           again = true;
  1479     ct++;
  1480   } while (again);
  1481 #ifndef PRODUCT
  1482   if (TraceSuperWord && Verbose)
  1483     tty->print_cr("compute_max_depth iterated: %d times", ct);
  1484 #endif
  1487 //-------------------------compute_vector_element_type-----------------------
  1488 // Compute necessary vector element type for expressions
  1489 // This propagates backwards a narrower integer type when the
  1490 // upper bits of the value are not needed.
  1491 // Example:  char a,b,c;  a = b + c;
  1492 // Normally the type of the add is integer, but for packed character
  1493 // operations the type of the add needs to be char.
  1494 void SuperWord::compute_vector_element_type() {
  1495 #ifndef PRODUCT
  1496   if (TraceSuperWord && Verbose)
  1497     tty->print_cr("\ncompute_velt_type:");
  1498 #endif
  1500   // Initial type
  1501   for (int i = 0; i < _block.length(); i++) {
  1502     Node* n = _block.at(i);
  1503     const Type* t  = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
  1504                                  : _igvn.type(n);
  1505     const Type* vt = container_type(t);
  1506     set_velt_type(n, vt);
  1509   // Propagate narrowed type backwards through operations
  1510   // that don't depend on higher order bits
  1511   for (int i = _block.length() - 1; i >= 0; i--) {
  1512     Node* n = _block.at(i);
  1513     // Only integer types need be examined
  1514     if (n->bottom_type()->isa_int()) {
  1515       uint start, end;
  1516       vector_opd_range(n, &start, &end);
  1517       const Type* vt = velt_type(n);
  1519       for (uint j = start; j < end; j++) {
  1520         Node* in  = n->in(j);
  1521         // Don't propagate through a type conversion
  1522         if (n->bottom_type() != in->bottom_type())
  1523           continue;
  1524         switch(in->Opcode()) {
  1525         case Op_AddI:    case Op_AddL:
  1526         case Op_SubI:    case Op_SubL:
  1527         case Op_MulI:    case Op_MulL:
  1528         case Op_AndI:    case Op_AndL:
  1529         case Op_OrI:     case Op_OrL:
  1530         case Op_XorI:    case Op_XorL:
  1531         case Op_LShiftI: case Op_LShiftL:
  1532         case Op_CMoveI:  case Op_CMoveL:
  1533           if (in_bb(in)) {
  1534             bool same_type = true;
  1535             for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
  1536               Node *use = in->fast_out(k);
  1537               if (!in_bb(use) || velt_type(use) != vt) {
  1538                 same_type = false;
  1539                 break;
  1542             if (same_type) {
  1543               set_velt_type(in, vt);
  1550 #ifndef PRODUCT
  1551   if (TraceSuperWord && Verbose) {
  1552     for (int i = 0; i < _block.length(); i++) {
  1553       Node* n = _block.at(i);
  1554       velt_type(n)->dump();
  1555       tty->print("\t");
  1556       n->dump();
  1559 #endif
  1562 //------------------------------memory_alignment---------------------------
  1563 // Alignment within a vector memory reference
  1564 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
  1565   SWPointer p(s, this);
  1566   if (!p.valid()) {
  1567     return bottom_align;
  1569   int offset  = p.offset_in_bytes();
  1570   offset     += iv_adjust_in_bytes;
  1571   int off_rem = offset % vector_width_in_bytes();
  1572   int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
  1573   return off_mod;
  1576 //---------------------------container_type---------------------------
  1577 // Smallest type containing range of values
  1578 const Type* SuperWord::container_type(const Type* t) {
  1579   const Type* tp = t->make_ptr();
  1580   if (tp && tp->isa_aryptr()) {
  1581     t = tp->is_aryptr()->elem();
  1583   if (t->basic_type() == T_INT) {
  1584     if (t->higher_equal(TypeInt::BOOL))  return TypeInt::BOOL;
  1585     if (t->higher_equal(TypeInt::BYTE))  return TypeInt::BYTE;
  1586     if (t->higher_equal(TypeInt::CHAR))  return TypeInt::CHAR;
  1587     if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
  1588     return TypeInt::INT;
  1590   return t;
  1593 //-------------------------vector_opd_range-----------------------
  1594 // (Start, end] half-open range defining which operands are vector
  1595 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
  1596   switch (n->Opcode()) {
  1597   case Op_LoadB:   case Op_LoadUS:
  1598   case Op_LoadI:   case Op_LoadL:
  1599   case Op_LoadF:   case Op_LoadD:
  1600   case Op_LoadP:
  1601     *start = 0;
  1602     *end   = 0;
  1603     return;
  1604   case Op_StoreB:  case Op_StoreC:
  1605   case Op_StoreI:  case Op_StoreL:
  1606   case Op_StoreF:  case Op_StoreD:
  1607   case Op_StoreP:
  1608     *start = MemNode::ValueIn;
  1609     *end   = *start + 1;
  1610     return;
  1611   case Op_LShiftI: case Op_LShiftL:
  1612     *start = 1;
  1613     *end   = 2;
  1614     return;
  1615   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
  1616     *start = 2;
  1617     *end   = n->req();
  1618     return;
  1620   *start = 1;
  1621   *end   = n->req(); // default is all operands
  1624 //------------------------------in_packset---------------------------
  1625 // Are s1 and s2 in a pack pair and ordered as s1,s2?
  1626 bool SuperWord::in_packset(Node* s1, Node* s2) {
  1627   for (int i = 0; i < _packset.length(); i++) {
  1628     Node_List* p = _packset.at(i);
  1629     assert(p->size() == 2, "must be");
  1630     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
  1631       return true;
  1634   return false;
  1637 //------------------------------in_pack---------------------------
  1638 // Is s in pack p?
  1639 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
  1640   for (uint i = 0; i < p->size(); i++) {
  1641     if (p->at(i) == s) {
  1642       return p;
  1645   return NULL;
  1648 //------------------------------remove_pack_at---------------------------
  1649 // Remove the pack at position pos in the packset
  1650 void SuperWord::remove_pack_at(int pos) {
  1651   Node_List* p = _packset.at(pos);
  1652   for (uint i = 0; i < p->size(); i++) {
  1653     Node* s = p->at(i);
  1654     set_my_pack(s, NULL);
  1656   _packset.remove_at(pos);
  1659 //------------------------------executed_first---------------------------
  1660 // Return the node executed first in pack p.  Uses the RPO block list
  1661 // to determine order.
  1662 Node* SuperWord::executed_first(Node_List* p) {
  1663   Node* n = p->at(0);
  1664   int n_rpo = bb_idx(n);
  1665   for (uint i = 1; i < p->size(); i++) {
  1666     Node* s = p->at(i);
  1667     int s_rpo = bb_idx(s);
  1668     if (s_rpo < n_rpo) {
  1669       n = s;
  1670       n_rpo = s_rpo;
  1673   return n;
  1676 //------------------------------executed_last---------------------------
  1677 // Return the node executed last in pack p.
  1678 Node* SuperWord::executed_last(Node_List* p) {
  1679   Node* n = p->at(0);
  1680   int n_rpo = bb_idx(n);
  1681   for (uint i = 1; i < p->size(); i++) {
  1682     Node* s = p->at(i);
  1683     int s_rpo = bb_idx(s);
  1684     if (s_rpo > n_rpo) {
  1685       n = s;
  1686       n_rpo = s_rpo;
  1689   return n;
  1692 //----------------------------align_initial_loop_index---------------------------
  1693 // Adjust pre-loop limit so that in main loop, a load/store reference
  1694 // to align_to_ref will be a position zero in the vector.
  1695 //   (iv + k) mod vector_align == 0
  1696 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
  1697   CountedLoopNode *main_head = lp()->as_CountedLoop();
  1698   assert(main_head->is_main_loop(), "");
  1699   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
  1700   assert(pre_end != NULL, "");
  1701   Node *pre_opaq1 = pre_end->limit();
  1702   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
  1703   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1704   Node *lim0 = pre_opaq->in(1);
  1706   // Where we put new limit calculations
  1707   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1709   // Ensure the original loop limit is available from the
  1710   // pre-loop Opaque1 node.
  1711   Node *orig_limit = pre_opaq->original_loop_limit();
  1712   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
  1714   SWPointer align_to_ref_p(align_to_ref, this);
  1716   // Given:
  1717   //     lim0 == original pre loop limit
  1718   //     V == v_align (power of 2)
  1719   //     invar == extra invariant piece of the address expression
  1720   //     e == k [ +/- invar ]
  1721   //
  1722   // When reassociating expressions involving '%' the basic rules are:
  1723   //     (a - b) % k == 0   =>  a % k == b % k
  1724   // and:
  1725   //     (a + b) % k == 0   =>  a % k == (k - b) % k
  1726   //
  1727   // For stride > 0 && scale > 0,
  1728   //   Derive the new pre-loop limit "lim" such that the two constraints:
  1729   //     (1) lim = lim0 + N           (where N is some positive integer < V)
  1730   //     (2) (e + lim) % V == 0
  1731   //   are true.
  1732   //
  1733   //   Substituting (1) into (2),
  1734   //     (e + lim0 + N) % V == 0
  1735   //   solve for N:
  1736   //     N = (V - (e + lim0)) % V
  1737   //   substitute back into (1), so that new limit
  1738   //     lim = lim0 + (V - (e + lim0)) % V
  1739   //
  1740   // For stride > 0 && scale < 0
  1741   //   Constraints:
  1742   //     lim = lim0 + N
  1743   //     (e - lim) % V == 0
  1744   //   Solving for lim:
  1745   //     (e - lim0 - N) % V == 0
  1746   //     N = (e - lim0) % V
  1747   //     lim = lim0 + (e - lim0) % V
  1748   //
  1749   // For stride < 0 && scale > 0
  1750   //   Constraints:
  1751   //     lim = lim0 - N
  1752   //     (e + lim) % V == 0
  1753   //   Solving for lim:
  1754   //     (e + lim0 - N) % V == 0
  1755   //     N = (e + lim0) % V
  1756   //     lim = lim0 - (e + lim0) % V
  1757   //
  1758   // For stride < 0 && scale < 0
  1759   //   Constraints:
  1760   //     lim = lim0 - N
  1761   //     (e - lim) % V == 0
  1762   //   Solving for lim:
  1763   //     (e - lim0 + N) % V == 0
  1764   //     N = (V - (e - lim0)) % V
  1765   //     lim = lim0 - (V - (e - lim0)) % V
  1767   int stride   = iv_stride();
  1768   int scale    = align_to_ref_p.scale_in_bytes();
  1769   int elt_size = align_to_ref_p.memory_size();
  1770   int v_align  = vector_width_in_bytes() / elt_size;
  1771   int k        = align_to_ref_p.offset_in_bytes() / elt_size;
  1773   Node *kn   = _igvn.intcon(k);
  1775   Node *e = kn;
  1776   if (align_to_ref_p.invar() != NULL) {
  1777     // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
  1778     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  1779     Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
  1780     _phase->_igvn.register_new_node_with_optimizer(aref);
  1781     _phase->set_ctrl(aref, pre_ctrl);
  1782     if (align_to_ref_p.negate_invar()) {
  1783       e = new (_phase->C, 3) SubINode(e, aref);
  1784     } else {
  1785       e = new (_phase->C, 3) AddINode(e, aref);
  1787     _phase->_igvn.register_new_node_with_optimizer(e);
  1788     _phase->set_ctrl(e, pre_ctrl);
  1791   // compute e +/- lim0
  1792   if (scale < 0) {
  1793     e = new (_phase->C, 3) SubINode(e, lim0);
  1794   } else {
  1795     e = new (_phase->C, 3) AddINode(e, lim0);
  1797   _phase->_igvn.register_new_node_with_optimizer(e);
  1798   _phase->set_ctrl(e, pre_ctrl);
  1800   if (stride * scale > 0) {
  1801     // compute V - (e +/- lim0)
  1802     Node* va  = _igvn.intcon(v_align);
  1803     e = new (_phase->C, 3) SubINode(va, e);
  1804     _phase->_igvn.register_new_node_with_optimizer(e);
  1805     _phase->set_ctrl(e, pre_ctrl);
  1807   // compute N = (exp) % V
  1808   Node* va_msk = _igvn.intcon(v_align - 1);
  1809   Node* N = new (_phase->C, 3) AndINode(e, va_msk);
  1810   _phase->_igvn.register_new_node_with_optimizer(N);
  1811   _phase->set_ctrl(N, pre_ctrl);
  1813   //   substitute back into (1), so that new limit
  1814   //     lim = lim0 + N
  1815   Node* lim;
  1816   if (stride < 0) {
  1817     lim = new (_phase->C, 3) SubINode(lim0, N);
  1818   } else {
  1819     lim = new (_phase->C, 3) AddINode(lim0, N);
  1821   _phase->_igvn.register_new_node_with_optimizer(lim);
  1822   _phase->set_ctrl(lim, pre_ctrl);
  1823   Node* constrained =
  1824     (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
  1825                  : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
  1826   _phase->_igvn.register_new_node_with_optimizer(constrained);
  1827   _phase->set_ctrl(constrained, pre_ctrl);
  1828   _igvn.hash_delete(pre_opaq);
  1829   pre_opaq->set_req(1, constrained);
  1832 //----------------------------get_pre_loop_end---------------------------
  1833 // Find pre loop end from main loop.  Returns null if none.
  1834 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
  1835   Node *ctrl = cl->in(LoopNode::EntryControl);
  1836   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
  1837   Node *iffm = ctrl->in(0);
  1838   if (!iffm->is_If()) return NULL;
  1839   Node *p_f = iffm->in(0);
  1840   if (!p_f->is_IfFalse()) return NULL;
  1841   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
  1842   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1843   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
  1844   return pre_end;
  1848 //------------------------------init---------------------------
  1849 void SuperWord::init() {
  1850   _dg.init();
  1851   _packset.clear();
  1852   _disjoint_ptrs.clear();
  1853   _block.clear();
  1854   _data_entry.clear();
  1855   _mem_slice_head.clear();
  1856   _mem_slice_tail.clear();
  1857   _node_info.clear();
  1858   _align_to_ref = NULL;
  1859   _lpt = NULL;
  1860   _lp = NULL;
  1861   _bb = NULL;
  1862   _iv = NULL;
  1865 //------------------------------print_packset---------------------------
  1866 void SuperWord::print_packset() {
  1867 #ifndef PRODUCT
  1868   tty->print_cr("packset");
  1869   for (int i = 0; i < _packset.length(); i++) {
  1870     tty->print_cr("Pack: %d", i);
  1871     Node_List* p = _packset.at(i);
  1872     print_pack(p);
  1874 #endif
  1877 //------------------------------print_pack---------------------------
  1878 void SuperWord::print_pack(Node_List* p) {
  1879   for (uint i = 0; i < p->size(); i++) {
  1880     print_stmt(p->at(i));
  1884 //------------------------------print_bb---------------------------
  1885 void SuperWord::print_bb() {
  1886 #ifndef PRODUCT
  1887   tty->print_cr("\nBlock");
  1888   for (int i = 0; i < _block.length(); i++) {
  1889     Node* n = _block.at(i);
  1890     tty->print("%d ", i);
  1891     if (n) {
  1892       n->dump();
  1895 #endif
  1898 //------------------------------print_stmt---------------------------
  1899 void SuperWord::print_stmt(Node* s) {
  1900 #ifndef PRODUCT
  1901   tty->print(" align: %d \t", alignment(s));
  1902   s->dump();
  1903 #endif
  1906 //------------------------------blank---------------------------
  1907 char* SuperWord::blank(uint depth) {
  1908   static char blanks[101];
  1909   assert(depth < 101, "too deep");
  1910   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
  1911   blanks[depth] = '\0';
  1912   return blanks;
  1916 //==============================SWPointer===========================
  1918 //----------------------------SWPointer------------------------
  1919 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
  1920   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
  1921   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
  1923   Node* adr = mem->in(MemNode::Address);
  1924   if (!adr->is_AddP()) {
  1925     assert(!valid(), "too complex");
  1926     return;
  1928   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
  1929   Node* base = adr->in(AddPNode::Base);
  1930   //unsafe reference could not be aligned appropriately without runtime checking
  1931   if (base == NULL || base->bottom_type() == Type::TOP) {
  1932     assert(!valid(), "unsafe access");
  1933     return;
  1935   for (int i = 0; i < 3; i++) {
  1936     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
  1937       assert(!valid(), "too complex");
  1938       return;
  1940     adr = adr->in(AddPNode::Address);
  1941     if (base == adr || !adr->is_AddP()) {
  1942       break; // stop looking at addp's
  1945   _base = base;
  1946   _adr  = adr;
  1947   assert(valid(), "Usable");
  1950 // Following is used to create a temporary object during
  1951 // the pattern match of an address expression.
  1952 SWPointer::SWPointer(SWPointer* p) :
  1953   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
  1954   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
  1956 //------------------------scaled_iv_plus_offset--------------------
  1957 // Match: k*iv + offset
  1958 // where: k is a constant that maybe zero, and
  1959 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
  1960 bool SWPointer::scaled_iv_plus_offset(Node* n) {
  1961   if (scaled_iv(n)) {
  1962     return true;
  1964   if (offset_plus_k(n)) {
  1965     return true;
  1967   int opc = n->Opcode();
  1968   if (opc == Op_AddI) {
  1969     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
  1970       return true;
  1972     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  1973       return true;
  1975   } else if (opc == Op_SubI) {
  1976     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
  1977       return true;
  1979     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  1980       _scale *= -1;
  1981       return true;
  1984   return false;
  1987 //----------------------------scaled_iv------------------------
  1988 // Match: k*iv where k is a constant that's not zero
  1989 bool SWPointer::scaled_iv(Node* n) {
  1990   if (_scale != 0) {
  1991     return false;  // already found a scale
  1993   if (n == iv()) {
  1994     _scale = 1;
  1995     return true;
  1997   int opc = n->Opcode();
  1998   if (opc == Op_MulI) {
  1999     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2000       _scale = n->in(2)->get_int();
  2001       return true;
  2002     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
  2003       _scale = n->in(1)->get_int();
  2004       return true;
  2006   } else if (opc == Op_LShiftI) {
  2007     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2008       _scale = 1 << n->in(2)->get_int();
  2009       return true;
  2011   } else if (opc == Op_ConvI2L) {
  2012     if (scaled_iv_plus_offset(n->in(1))) {
  2013       return true;
  2015   } else if (opc == Op_LShiftL) {
  2016     if (!has_iv() && _invar == NULL) {
  2017       // Need to preserve the current _offset value, so
  2018       // create a temporary object for this expression subtree.
  2019       // Hacky, so should re-engineer the address pattern match.
  2020       SWPointer tmp(this);
  2021       if (tmp.scaled_iv_plus_offset(n->in(1))) {
  2022         if (tmp._invar == NULL) {
  2023           int mult = 1 << n->in(2)->get_int();
  2024           _scale   = tmp._scale  * mult;
  2025           _offset += tmp._offset * mult;
  2026           return true;
  2031   return false;
  2034 //----------------------------offset_plus_k------------------------
  2035 // Match: offset is (k [+/- invariant])
  2036 // where k maybe zero and invariant is optional, but not both.
  2037 bool SWPointer::offset_plus_k(Node* n, bool negate) {
  2038   int opc = n->Opcode();
  2039   if (opc == Op_ConI) {
  2040     _offset += negate ? -(n->get_int()) : n->get_int();
  2041     return true;
  2042   } else if (opc == Op_ConL) {
  2043     // Okay if value fits into an int
  2044     const TypeLong* t = n->find_long_type();
  2045     if (t->higher_equal(TypeLong::INT)) {
  2046       jlong loff = n->get_long();
  2047       jint  off  = (jint)loff;
  2048       _offset += negate ? -off : loff;
  2049       return true;
  2051     return false;
  2053   if (_invar != NULL) return false; // already have an invariant
  2054   if (opc == Op_AddI) {
  2055     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2056       _negate_invar = negate;
  2057       _invar = n->in(1);
  2058       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2059       return true;
  2060     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2061       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2062       _negate_invar = negate;
  2063       _invar = n->in(2);
  2064       return true;
  2067   if (opc == Op_SubI) {
  2068     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2069       _negate_invar = negate;
  2070       _invar = n->in(1);
  2071       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2072       return true;
  2073     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2074       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2075       _negate_invar = !negate;
  2076       _invar = n->in(2);
  2077       return true;
  2080   if (invariant(n)) {
  2081     _negate_invar = negate;
  2082     _invar = n;
  2083     return true;
  2085   return false;
  2088 //----------------------------print------------------------
  2089 void SWPointer::print() {
  2090 #ifndef PRODUCT
  2091   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
  2092              _base != NULL ? _base->_idx : 0,
  2093              _adr  != NULL ? _adr->_idx  : 0,
  2094              _scale, _offset,
  2095              _negate_invar?'-':'+',
  2096              _invar != NULL ? _invar->_idx : 0);
  2097 #endif
  2100 // ========================= OrderedPair =====================
  2102 const OrderedPair OrderedPair::initial;
  2104 // ========================= SWNodeInfo =====================
  2106 const SWNodeInfo SWNodeInfo::initial;
  2109 // ============================ DepGraph ===========================
  2111 //------------------------------make_node---------------------------
  2112 // Make a new dependence graph node for an ideal node.
  2113 DepMem* DepGraph::make_node(Node* node) {
  2114   DepMem* m = new (_arena) DepMem(node);
  2115   if (node != NULL) {
  2116     assert(_map.at_grow(node->_idx) == NULL, "one init only");
  2117     _map.at_put_grow(node->_idx, m);
  2119   return m;
  2122 //------------------------------make_edge---------------------------
  2123 // Make a new dependence graph edge from dpred -> dsucc
  2124 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
  2125   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
  2126   dpred->set_out_head(e);
  2127   dsucc->set_in_head(e);
  2128   return e;
  2131 // ========================== DepMem ========================
  2133 //------------------------------in_cnt---------------------------
  2134 int DepMem::in_cnt() {
  2135   int ct = 0;
  2136   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
  2137   return ct;
  2140 //------------------------------out_cnt---------------------------
  2141 int DepMem::out_cnt() {
  2142   int ct = 0;
  2143   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
  2144   return ct;
  2147 //------------------------------print-----------------------------
  2148 void DepMem::print() {
  2149 #ifndef PRODUCT
  2150   tty->print("  DepNode %d (", _node->_idx);
  2151   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
  2152     Node* pred = p->pred()->node();
  2153     tty->print(" %d", pred != NULL ? pred->_idx : 0);
  2155   tty->print(") [");
  2156   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
  2157     Node* succ = s->succ()->node();
  2158     tty->print(" %d", succ != NULL ? succ->_idx : 0);
  2160   tty->print_cr(" ]");
  2161 #endif
  2164 // =========================== DepEdge =========================
  2166 //------------------------------DepPreds---------------------------
  2167 void DepEdge::print() {
  2168 #ifndef PRODUCT
  2169   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
  2170 #endif
  2173 // =========================== DepPreds =========================
  2174 // Iterator over predecessor edges in the dependence graph.
  2176 //------------------------------DepPreds---------------------------
  2177 DepPreds::DepPreds(Node* n, DepGraph& dg) {
  2178   _n = n;
  2179   _done = false;
  2180   if (_n->is_Store() || _n->is_Load()) {
  2181     _next_idx = MemNode::Address;
  2182     _end_idx  = n->req();
  2183     _dep_next = dg.dep(_n)->in_head();
  2184   } else if (_n->is_Mem()) {
  2185     _next_idx = 0;
  2186     _end_idx  = 0;
  2187     _dep_next = dg.dep(_n)->in_head();
  2188   } else {
  2189     _next_idx = 1;
  2190     _end_idx  = _n->req();
  2191     _dep_next = NULL;
  2193   next();
  2196 //------------------------------next---------------------------
  2197 void DepPreds::next() {
  2198   if (_dep_next != NULL) {
  2199     _current  = _dep_next->pred()->node();
  2200     _dep_next = _dep_next->next_in();
  2201   } else if (_next_idx < _end_idx) {
  2202     _current  = _n->in(_next_idx++);
  2203   } else {
  2204     _done = true;
  2208 // =========================== DepSuccs =========================
  2209 // Iterator over successor edges in the dependence graph.
  2211 //------------------------------DepSuccs---------------------------
  2212 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
  2213   _n = n;
  2214   _done = false;
  2215   if (_n->is_Load()) {
  2216     _next_idx = 0;
  2217     _end_idx  = _n->outcnt();
  2218     _dep_next = dg.dep(_n)->out_head();
  2219   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
  2220     _next_idx = 0;
  2221     _end_idx  = 0;
  2222     _dep_next = dg.dep(_n)->out_head();
  2223   } else {
  2224     _next_idx = 0;
  2225     _end_idx  = _n->outcnt();
  2226     _dep_next = NULL;
  2228   next();
  2231 //-------------------------------next---------------------------
  2232 void DepSuccs::next() {
  2233   if (_dep_next != NULL) {
  2234     _current  = _dep_next->succ()->node();
  2235     _dep_next = _dep_next->next_out();
  2236   } else if (_next_idx < _end_idx) {
  2237     _current  = _n->raw_out(_next_idx++);
  2238   } else {
  2239     _done = true;

mercurial