src/share/vm/opto/output.cpp

Fri, 20 Aug 2010 23:40:30 -0700

author
jrose
date
Fri, 20 Aug 2010 23:40:30 -0700
changeset 2101
4b29a725c43c
parent 2041
0e09207fc81b
child 2103
3e8fbc61cee8
permissions
-rw-r--r--

6912064: type profiles need to be exploited more for dynamic language support
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_output.cpp.incl"
    28 extern uint size_java_to_interp();
    29 extern uint reloc_java_to_interp();
    30 extern uint size_exception_handler();
    31 extern uint size_deopt_handler();
    33 #ifndef PRODUCT
    34 #define DEBUG_ARG(x) , x
    35 #else
    36 #define DEBUG_ARG(x)
    37 #endif
    39 extern int emit_exception_handler(CodeBuffer &cbuf);
    40 extern int emit_deopt_handler(CodeBuffer &cbuf);
    42 //------------------------------Output-----------------------------------------
    43 // Convert Nodes to instruction bits and pass off to the VM
    44 void Compile::Output() {
    45   // RootNode goes
    46   assert( _cfg->_broot->_nodes.size() == 0, "" );
    48   // Initialize the space for the BufferBlob used to find and verify
    49   // instruction size in MachNode::emit_size()
    50   init_scratch_buffer_blob();
    51   if (failing())  return; // Out of memory
    53   // The number of new nodes (mostly MachNop) is proportional to
    54   // the number of java calls and inner loops which are aligned.
    55   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
    56                             C->inner_loops()*(OptoLoopAlignment-1)),
    57                            "out of nodes before code generation" ) ) {
    58     return;
    59   }
    60   // Make sure I can find the Start Node
    61   Block_Array& bbs = _cfg->_bbs;
    62   Block *entry = _cfg->_blocks[1];
    63   Block *broot = _cfg->_broot;
    65   const StartNode *start = entry->_nodes[0]->as_Start();
    67   // Replace StartNode with prolog
    68   MachPrologNode *prolog = new (this) MachPrologNode();
    69   entry->_nodes.map( 0, prolog );
    70   bbs.map( prolog->_idx, entry );
    71   bbs.map( start->_idx, NULL ); // start is no longer in any block
    73   // Virtual methods need an unverified entry point
    75   if( is_osr_compilation() ) {
    76     if( PoisonOSREntry ) {
    77       // TODO: Should use a ShouldNotReachHereNode...
    78       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    79     }
    80   } else {
    81     if( _method && !_method->flags().is_static() ) {
    82       // Insert unvalidated entry point
    83       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    84     }
    86   }
    89   // Break before main entry point
    90   if( (_method && _method->break_at_execute())
    91 #ifndef PRODUCT
    92     ||(OptoBreakpoint && is_method_compilation())
    93     ||(OptoBreakpointOSR && is_osr_compilation())
    94     ||(OptoBreakpointC2R && !_method)
    95 #endif
    96     ) {
    97     // checking for _method means that OptoBreakpoint does not apply to
    98     // runtime stubs or frame converters
    99     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
   100   }
   102   // Insert epilogs before every return
   103   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   104     Block *b = _cfg->_blocks[i];
   105     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
   106       Node *m = b->end();
   107       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
   108         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   109         b->add_inst( epilog );
   110         bbs.map(epilog->_idx, b);
   111         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
   112       }
   113     }
   114   }
   116 # ifdef ENABLE_ZAP_DEAD_LOCALS
   117   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
   118 # endif
   120   ScheduleAndBundle();
   122 #ifndef PRODUCT
   123   if (trace_opto_output()) {
   124     tty->print("\n---- After ScheduleAndBundle ----\n");
   125     for (uint i = 0; i < _cfg->_num_blocks; i++) {
   126       tty->print("\nBB#%03d:\n", i);
   127       Block *bb = _cfg->_blocks[i];
   128       for (uint j = 0; j < bb->_nodes.size(); j++) {
   129         Node *n = bb->_nodes[j];
   130         OptoReg::Name reg = _regalloc->get_reg_first(n);
   131         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   132         n->dump();
   133       }
   134     }
   135   }
   136 #endif
   138   if (failing())  return;
   140   BuildOopMaps();
   142   if (failing())  return;
   144   Fill_buffer();
   145 }
   147 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   148   // Determine if we need to generate a stack overflow check.
   149   // Do it if the method is not a stub function and
   150   // has java calls or has frame size > vm_page_size/8.
   151   return (stub_function() == NULL &&
   152           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
   153 }
   155 bool Compile::need_register_stack_bang() const {
   156   // Determine if we need to generate a register stack overflow check.
   157   // This is only used on architectures which have split register
   158   // and memory stacks (ie. IA64).
   159   // Bang if the method is not a stub function and has java calls
   160   return (stub_function() == NULL && has_java_calls());
   161 }
   163 # ifdef ENABLE_ZAP_DEAD_LOCALS
   166 // In order to catch compiler oop-map bugs, we have implemented
   167 // a debugging mode called ZapDeadCompilerLocals.
   168 // This mode causes the compiler to insert a call to a runtime routine,
   169 // "zap_dead_locals", right before each place in compiled code
   170 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   171 // The runtime routine checks that locations mapped as oops are really
   172 // oops, that locations mapped as values do not look like oops,
   173 // and that locations mapped as dead are not used later
   174 // (by zapping them to an invalid address).
   176 int Compile::_CompiledZap_count = 0;
   178 void Compile::Insert_zap_nodes() {
   179   bool skip = false;
   182   // Dink with static counts because code code without the extra
   183   // runtime calls is MUCH faster for debugging purposes
   185        if ( CompileZapFirst  ==  0  ) ; // nothing special
   186   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   187   else if ( CompileZapFirst  == CompiledZap_count() )
   188     warning("starting zap compilation after skipping");
   190        if ( CompileZapLast  ==  -1  ) ; // nothing special
   191   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   192   else if ( CompileZapLast  ==  CompiledZap_count() )
   193     warning("about to compile last zap");
   195   ++_CompiledZap_count; // counts skipped zaps, too
   197   if ( skip )  return;
   200   if ( _method == NULL )
   201     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   203   // Insert call to zap runtime stub before every node with an oop map
   204   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   205     Block *b = _cfg->_blocks[i];
   206     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
   207       Node *n = b->_nodes[j];
   209       // Determining if we should insert a zap-a-lot node in output.
   210       // We do that for all nodes that has oopmap info, except for calls
   211       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   212       // and expect the C code to reset it.  Hence, there can be no safepoints between
   213       // the inlined-allocation and the call to new_Java, etc.
   214       // We also cannot zap monitor calls, as they must hold the microlock
   215       // during the call to Zap, which also wants to grab the microlock.
   216       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   217       if ( insert ) { // it is MachSafePoint
   218         if ( !n->is_MachCall() ) {
   219           insert = false;
   220         } else if ( n->is_MachCall() ) {
   221           MachCallNode* call = n->as_MachCall();
   222           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   223               call->entry_point() == OptoRuntime::new_array_Java() ||
   224               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   225               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   226               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   227               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   228               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   229               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   230               ) {
   231             insert = false;
   232           }
   233         }
   234         if (insert) {
   235           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   236           b->_nodes.insert( j, zap );
   237           _cfg->_bbs.map( zap->_idx, b );
   238           ++j;
   239         }
   240       }
   241     }
   242   }
   243 }
   246 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   247   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   248   CallStaticJavaNode* ideal_node =
   249     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
   250          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   251                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
   252   // We need to copy the OopMap from the site we're zapping at.
   253   // We have to make a copy, because the zap site might not be
   254   // a call site, and zap_dead is a call site.
   255   OopMap* clone = node_to_check->oop_map()->deep_copy();
   257   // Add the cloned OopMap to the zap node
   258   ideal_node->set_oop_map(clone);
   259   return _matcher->match_sfpt(ideal_node);
   260 }
   262 //------------------------------is_node_getting_a_safepoint--------------------
   263 bool Compile::is_node_getting_a_safepoint( Node* n) {
   264   // This code duplicates the logic prior to the call of add_safepoint
   265   // below in this file.
   266   if( n->is_MachSafePoint() ) return true;
   267   return false;
   268 }
   270 # endif // ENABLE_ZAP_DEAD_LOCALS
   272 //------------------------------compute_loop_first_inst_sizes------------------
   273 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
   274 // of a loop. When aligning a loop we need to provide enough instructions
   275 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   276 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   277 // By default, the size is set to 999999 by Block's constructor so that
   278 // a loop will be aligned if the size is not reset here.
   279 //
   280 // Note: Mach instructions could contain several HW instructions
   281 // so the size is estimated only.
   282 //
   283 void Compile::compute_loop_first_inst_sizes() {
   284   // The next condition is used to gate the loop alignment optimization.
   285   // Don't aligned a loop if there are enough instructions at the head of a loop
   286   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   287   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   288   // equal to 11 bytes which is the largest address NOP instruction.
   289   if( MaxLoopPad < OptoLoopAlignment-1 ) {
   290     uint last_block = _cfg->_num_blocks-1;
   291     for( uint i=1; i <= last_block; i++ ) {
   292       Block *b = _cfg->_blocks[i];
   293       // Check the first loop's block which requires an alignment.
   294       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
   295         uint sum_size = 0;
   296         uint inst_cnt = NumberOfLoopInstrToAlign;
   297         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   299         // Check subsequent fallthrough blocks if the loop's first
   300         // block(s) does not have enough instructions.
   301         Block *nb = b;
   302         while( inst_cnt > 0 &&
   303                i < last_block &&
   304                !_cfg->_blocks[i+1]->has_loop_alignment() &&
   305                !nb->has_successor(b) ) {
   306           i++;
   307           nb = _cfg->_blocks[i];
   308           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   309         } // while( inst_cnt > 0 && i < last_block  )
   311         b->set_first_inst_size(sum_size);
   312       } // f( b->head()->is_Loop() )
   313     } // for( i <= last_block )
   314   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   315 }
   317 //----------------------Shorten_branches---------------------------------------
   318 // The architecture description provides short branch variants for some long
   319 // branch instructions. Replace eligible long branches with short branches.
   320 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
   322   // fill in the nop array for bundling computations
   323   MachNode *_nop_list[Bundle::_nop_count];
   324   Bundle::initialize_nops(_nop_list, this);
   326   // ------------------
   327   // Compute size of each block, method size, and relocation information size
   328   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
   329   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
   330   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   331   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   332   blk_starts[0]    = 0;
   334   // Initialize the sizes to 0
   335   code_size  = 0;          // Size in bytes of generated code
   336   stub_size  = 0;          // Size in bytes of all stub entries
   337   // Size in bytes of all relocation entries, including those in local stubs.
   338   // Start with 2-bytes of reloc info for the unvalidated entry point
   339   reloc_size = 1;          // Number of relocation entries
   340   const_size = 0;          // size of fp constants in words
   342   // Make three passes.  The first computes pessimistic blk_starts,
   343   // relative jmp_end, reloc_size and const_size information.
   344   // The second performs short branch substitution using the pessimistic
   345   // sizing. The third inserts nops where needed.
   347   Node *nj; // tmp
   349   // Step one, perform a pessimistic sizing pass.
   350   uint i;
   351   uint min_offset_from_last_call = 1;  // init to a positive value
   352   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   353   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   354     Block *b = _cfg->_blocks[i];
   356     // Sum all instruction sizes to compute block size
   357     uint last_inst = b->_nodes.size();
   358     uint blk_size = 0;
   359     for( uint j = 0; j<last_inst; j++ ) {
   360       nj = b->_nodes[j];
   361       uint inst_size = nj->size(_regalloc);
   362       blk_size += inst_size;
   363       // Handle machine instruction nodes
   364       if( nj->is_Mach() ) {
   365         MachNode *mach = nj->as_Mach();
   366         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   367         reloc_size += mach->reloc();
   368         const_size += mach->const_size();
   369         if( mach->is_MachCall() ) {
   370           MachCallNode *mcall = mach->as_MachCall();
   371           // This destination address is NOT PC-relative
   373           mcall->method_set((intptr_t)mcall->entry_point());
   375           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
   376             stub_size  += size_java_to_interp();
   377             reloc_size += reloc_java_to_interp();
   378           }
   379         } else if (mach->is_MachSafePoint()) {
   380           // If call/safepoint are adjacent, account for possible
   381           // nop to disambiguate the two safepoints.
   382           if (min_offset_from_last_call == 0) {
   383             blk_size += nop_size;
   384           }
   385         } else if (mach->ideal_Opcode() == Op_Jump) {
   386           const_size += b->_num_succs; // Address table size
   387           // The size is valid even for 64 bit since it is
   388           // multiplied by 2*jintSize on this method exit.
   389         }
   390       }
   391       min_offset_from_last_call += inst_size;
   392       // Remember end of call offset
   393       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   394         min_offset_from_last_call = 0;
   395       }
   396     }
   398     // During short branch replacement, we store the relative (to blk_starts)
   399     // end of jump in jmp_end, rather than the absolute end of jump.  This
   400     // is so that we do not need to recompute sizes of all nodes when we compute
   401     // correct blk_starts in our next sizing pass.
   402     jmp_end[i] = blk_size;
   403     DEBUG_ONLY( jmp_target[i] = 0; )
   405     // When the next block starts a loop, we may insert pad NOP
   406     // instructions.  Since we cannot know our future alignment,
   407     // assume the worst.
   408     if( i<_cfg->_num_blocks-1 ) {
   409       Block *nb = _cfg->_blocks[i+1];
   410       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   411       if( max_loop_pad > 0 ) {
   412         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   413         blk_size += max_loop_pad;
   414       }
   415     }
   417     // Save block size; update total method size
   418     blk_starts[i+1] = blk_starts[i]+blk_size;
   419   }
   421   // Step two, replace eligible long jumps.
   423   // Note: this will only get the long branches within short branch
   424   //   range. Another pass might detect more branches that became
   425   //   candidates because the shortening in the first pass exposed
   426   //   more opportunities. Unfortunately, this would require
   427   //   recomputing the starting and ending positions for the blocks
   428   for( i=0; i<_cfg->_num_blocks; i++ ) {
   429     Block *b = _cfg->_blocks[i];
   431     int j;
   432     // Find the branch; ignore trailing NOPs.
   433     for( j = b->_nodes.size()-1; j>=0; j-- ) {
   434       nj = b->_nodes[j];
   435       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
   436         break;
   437     }
   439     if (j >= 0) {
   440       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
   441         MachNode *mach = nj->as_Mach();
   442         // This requires the TRUE branch target be in succs[0]
   443         uint bnum = b->non_connector_successor(0)->_pre_order;
   444         uintptr_t target = blk_starts[bnum];
   445         if( mach->is_pc_relative() ) {
   446           int offset = target-(blk_starts[i] + jmp_end[i]);
   447           if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
   448             // We've got a winner.  Replace this branch.
   449             MachNode* replacement = mach->short_branch_version(this);
   450             b->_nodes.map(j, replacement);
   451             mach->subsume_by(replacement);
   453             // Update the jmp_end size to save time in our
   454             // next pass.
   455             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
   456             DEBUG_ONLY( jmp_target[i] = bnum; );
   457             DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
   458           }
   459         } else {
   460 #ifndef PRODUCT
   461           mach->dump(3);
   462 #endif
   463           Unimplemented();
   464         }
   465       }
   466     }
   467   }
   469   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
   470   // of a loop. It is used to determine the padding for loop alignment.
   471   compute_loop_first_inst_sizes();
   473   // Step 3, compute the offsets of all the labels
   474   uint last_call_adr = max_uint;
   475   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   476     // copy the offset of the beginning to the corresponding label
   477     assert(labels[i].is_unused(), "cannot patch at this point");
   478     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
   480     // insert padding for any instructions that need it
   481     Block *b = _cfg->_blocks[i];
   482     uint last_inst = b->_nodes.size();
   483     uint adr = blk_starts[i];
   484     for( uint j = 0; j<last_inst; j++ ) {
   485       nj = b->_nodes[j];
   486       if( nj->is_Mach() ) {
   487         int padding = nj->as_Mach()->compute_padding(adr);
   488         // If call/safepoint are adjacent insert a nop (5010568)
   489         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
   490             adr == last_call_adr ) {
   491           padding = nop_size;
   492         }
   493         if(padding > 0) {
   494           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
   495           int nops_cnt = padding / nop_size;
   496           MachNode *nop = new (this) MachNopNode(nops_cnt);
   497           b->_nodes.insert(j++, nop);
   498           _cfg->_bbs.map( nop->_idx, b );
   499           adr += padding;
   500           last_inst++;
   501         }
   502       }
   503       adr += nj->size(_regalloc);
   505       // Remember end of call offset
   506       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   507         last_call_adr = adr;
   508       }
   509     }
   511     if ( i != _cfg->_num_blocks-1) {
   512       // Get the size of the block
   513       uint blk_size = adr - blk_starts[i];
   515       // When the next block is the top of a loop, we may insert pad NOP
   516       // instructions.
   517       Block *nb = _cfg->_blocks[i+1];
   518       int current_offset = blk_starts[i] + blk_size;
   519       current_offset += nb->alignment_padding(current_offset);
   520       // Save block size; update total method size
   521       blk_starts[i+1] = current_offset;
   522     }
   523   }
   525 #ifdef ASSERT
   526   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   527     if( jmp_target[i] != 0 ) {
   528       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
   529       if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
   530         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
   531       }
   532       assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
   533     }
   534   }
   535 #endif
   537   // ------------------
   538   // Compute size for code buffer
   539   code_size   = blk_starts[i-1] + jmp_end[i-1];
   541   // Relocation records
   542   reloc_size += 1;              // Relo entry for exception handler
   544   // Adjust reloc_size to number of record of relocation info
   545   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   546   // a relocation index.
   547   // The CodeBuffer will expand the locs array if this estimate is too low.
   548   reloc_size   *= 10 / sizeof(relocInfo);
   550   // Adjust const_size to number of bytes
   551   const_size   *= 2*jintSize; // both float and double take two words per entry
   553 }
   555 //------------------------------FillLocArray-----------------------------------
   556 // Create a bit of debug info and append it to the array.  The mapping is from
   557 // Java local or expression stack to constant, register or stack-slot.  For
   558 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   559 // entry has been taken care of and caller should skip it).
   560 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   561   // This should never have accepted Bad before
   562   assert(OptoReg::is_valid(regnum), "location must be valid");
   563   return (OptoReg::is_reg(regnum))
   564     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   565     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   566 }
   569 ObjectValue*
   570 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
   571   for (int i = 0; i < objs->length(); i++) {
   572     assert(objs->at(i)->is_object(), "corrupt object cache");
   573     ObjectValue* sv = (ObjectValue*) objs->at(i);
   574     if (sv->id() == id) {
   575       return sv;
   576     }
   577   }
   578   // Otherwise..
   579   return NULL;
   580 }
   582 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
   583                                      ObjectValue* sv ) {
   584   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
   585   objs->append(sv);
   586 }
   589 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
   590                             GrowableArray<ScopeValue*> *array,
   591                             GrowableArray<ScopeValue*> *objs ) {
   592   assert( local, "use _top instead of null" );
   593   if (array->length() != idx) {
   594     assert(array->length() == idx + 1, "Unexpected array count");
   595     // Old functionality:
   596     //   return
   597     // New functionality:
   598     //   Assert if the local is not top. In product mode let the new node
   599     //   override the old entry.
   600     assert(local == top(), "LocArray collision");
   601     if (local == top()) {
   602       return;
   603     }
   604     array->pop();
   605   }
   606   const Type *t = local->bottom_type();
   608   // Is it a safepoint scalar object node?
   609   if (local->is_SafePointScalarObject()) {
   610     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
   612     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
   613     if (sv == NULL) {
   614       ciKlass* cik = t->is_oopptr()->klass();
   615       assert(cik->is_instance_klass() ||
   616              cik->is_array_klass(), "Not supported allocation.");
   617       sv = new ObjectValue(spobj->_idx,
   618                            new ConstantOopWriteValue(cik->constant_encoding()));
   619       Compile::set_sv_for_object_node(objs, sv);
   621       uint first_ind = spobj->first_index();
   622       for (uint i = 0; i < spobj->n_fields(); i++) {
   623         Node* fld_node = sfpt->in(first_ind+i);
   624         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
   625       }
   626     }
   627     array->append(sv);
   628     return;
   629   }
   631   // Grab the register number for the local
   632   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   633   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   634     // Record the double as two float registers.
   635     // The register mask for such a value always specifies two adjacent
   636     // float registers, with the lower register number even.
   637     // Normally, the allocation of high and low words to these registers
   638     // is irrelevant, because nearly all operations on register pairs
   639     // (e.g., StoreD) treat them as a single unit.
   640     // Here, we assume in addition that the words in these two registers
   641     // stored "naturally" (by operations like StoreD and double stores
   642     // within the interpreter) such that the lower-numbered register
   643     // is written to the lower memory address.  This may seem like
   644     // a machine dependency, but it is not--it is a requirement on
   645     // the author of the <arch>.ad file to ensure that, for every
   646     // even/odd double-register pair to which a double may be allocated,
   647     // the word in the even single-register is stored to the first
   648     // memory word.  (Note that register numbers are completely
   649     // arbitrary, and are not tied to any machine-level encodings.)
   650 #ifdef _LP64
   651     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   652       array->append(new ConstantIntValue(0));
   653       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   654     } else if ( t->base() == Type::Long ) {
   655       array->append(new ConstantIntValue(0));
   656       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   657     } else if ( t->base() == Type::RawPtr ) {
   658       // jsr/ret return address which must be restored into a the full
   659       // width 64-bit stack slot.
   660       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   661     }
   662 #else //_LP64
   663 #ifdef SPARC
   664     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   665       // For SPARC we have to swap high and low words for
   666       // long values stored in a single-register (g0-g7).
   667       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   668       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   669     } else
   670 #endif //SPARC
   671     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   672       // Repack the double/long as two jints.
   673       // The convention the interpreter uses is that the second local
   674       // holds the first raw word of the native double representation.
   675       // This is actually reasonable, since locals and stack arrays
   676       // grow downwards in all implementations.
   677       // (If, on some machine, the interpreter's Java locals or stack
   678       // were to grow upwards, the embedded doubles would be word-swapped.)
   679       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   680       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   681     }
   682 #endif //_LP64
   683     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   684                OptoReg::is_reg(regnum) ) {
   685       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
   686                                    ? Location::float_in_dbl : Location::normal ));
   687     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   688       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   689                                    ? Location::int_in_long : Location::normal ));
   690     } else if( t->base() == Type::NarrowOop ) {
   691       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
   692     } else {
   693       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   694     }
   695     return;
   696   }
   698   // No register.  It must be constant data.
   699   switch (t->base()) {
   700   case Type::Half:              // Second half of a double
   701     ShouldNotReachHere();       // Caller should skip 2nd halves
   702     break;
   703   case Type::AnyPtr:
   704     array->append(new ConstantOopWriteValue(NULL));
   705     break;
   706   case Type::AryPtr:
   707   case Type::InstPtr:
   708   case Type::KlassPtr:          // fall through
   709     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
   710     break;
   711   case Type::NarrowOop:
   712     if (t == TypeNarrowOop::NULL_PTR) {
   713       array->append(new ConstantOopWriteValue(NULL));
   714     } else {
   715       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
   716     }
   717     break;
   718   case Type::Int:
   719     array->append(new ConstantIntValue(t->is_int()->get_con()));
   720     break;
   721   case Type::RawPtr:
   722     // A return address (T_ADDRESS).
   723     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   724 #ifdef _LP64
   725     // Must be restored to the full-width 64-bit stack slot.
   726     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   727 #else
   728     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   729 #endif
   730     break;
   731   case Type::FloatCon: {
   732     float f = t->is_float_constant()->getf();
   733     array->append(new ConstantIntValue(jint_cast(f)));
   734     break;
   735   }
   736   case Type::DoubleCon: {
   737     jdouble d = t->is_double_constant()->getd();
   738 #ifdef _LP64
   739     array->append(new ConstantIntValue(0));
   740     array->append(new ConstantDoubleValue(d));
   741 #else
   742     // Repack the double as two jints.
   743     // The convention the interpreter uses is that the second local
   744     // holds the first raw word of the native double representation.
   745     // This is actually reasonable, since locals and stack arrays
   746     // grow downwards in all implementations.
   747     // (If, on some machine, the interpreter's Java locals or stack
   748     // were to grow upwards, the embedded doubles would be word-swapped.)
   749     jint   *dp = (jint*)&d;
   750     array->append(new ConstantIntValue(dp[1]));
   751     array->append(new ConstantIntValue(dp[0]));
   752 #endif
   753     break;
   754   }
   755   case Type::Long: {
   756     jlong d = t->is_long()->get_con();
   757 #ifdef _LP64
   758     array->append(new ConstantIntValue(0));
   759     array->append(new ConstantLongValue(d));
   760 #else
   761     // Repack the long as two jints.
   762     // The convention the interpreter uses is that the second local
   763     // holds the first raw word of the native double representation.
   764     // This is actually reasonable, since locals and stack arrays
   765     // grow downwards in all implementations.
   766     // (If, on some machine, the interpreter's Java locals or stack
   767     // were to grow upwards, the embedded doubles would be word-swapped.)
   768     jint *dp = (jint*)&d;
   769     array->append(new ConstantIntValue(dp[1]));
   770     array->append(new ConstantIntValue(dp[0]));
   771 #endif
   772     break;
   773   }
   774   case Type::Top:               // Add an illegal value here
   775     array->append(new LocationValue(Location()));
   776     break;
   777   default:
   778     ShouldNotReachHere();
   779     break;
   780   }
   781 }
   783 // Determine if this node starts a bundle
   784 bool Compile::starts_bundle(const Node *n) const {
   785   return (_node_bundling_limit > n->_idx &&
   786           _node_bundling_base[n->_idx].starts_bundle());
   787 }
   789 //--------------------------Process_OopMap_Node--------------------------------
   790 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   792   // Handle special safepoint nodes for synchronization
   793   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   794   MachCallNode      *mcall;
   796 #ifdef ENABLE_ZAP_DEAD_LOCALS
   797   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   798 #endif
   800   int safepoint_pc_offset = current_offset;
   801   bool is_method_handle_invoke = false;
   802   bool return_oop = false;
   804   // Add the safepoint in the DebugInfoRecorder
   805   if( !mach->is_MachCall() ) {
   806     mcall = NULL;
   807     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   808   } else {
   809     mcall = mach->as_MachCall();
   811     // Is the call a MethodHandle call?
   812     if (mcall->is_MachCallJava()) {
   813       if (mcall->as_MachCallJava()->_method_handle_invoke) {
   814         assert(has_method_handle_invokes(), "must have been set during call generation");
   815         is_method_handle_invoke = true;
   816       }
   817     }
   819     // Check if a call returns an object.
   820     if (mcall->return_value_is_used() &&
   821         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
   822       return_oop = true;
   823     }
   824     safepoint_pc_offset += mcall->ret_addr_offset();
   825     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   826   }
   828   // Loop over the JVMState list to add scope information
   829   // Do not skip safepoints with a NULL method, they need monitor info
   830   JVMState* youngest_jvms = sfn->jvms();
   831   int max_depth = youngest_jvms->depth();
   833   // Allocate the object pool for scalar-replaced objects -- the map from
   834   // small-integer keys (which can be recorded in the local and ostack
   835   // arrays) to descriptions of the object state.
   836   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
   838   // Visit scopes from oldest to youngest.
   839   for (int depth = 1; depth <= max_depth; depth++) {
   840     JVMState* jvms = youngest_jvms->of_depth(depth);
   841     int idx;
   842     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   843     // Safepoints that do not have method() set only provide oop-map and monitor info
   844     // to support GC; these do not support deoptimization.
   845     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   846     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   847     int num_mon  = jvms->nof_monitors();
   848     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   849            "JVMS local count must match that of the method");
   851     // Add Local and Expression Stack Information
   853     // Insert locals into the locarray
   854     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   855     for( idx = 0; idx < num_locs; idx++ ) {
   856       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
   857     }
   859     // Insert expression stack entries into the exparray
   860     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   861     for( idx = 0; idx < num_exps; idx++ ) {
   862       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
   863     }
   865     // Add in mappings of the monitors
   866     assert( !method ||
   867             !method->is_synchronized() ||
   868             method->is_native() ||
   869             num_mon > 0 ||
   870             !GenerateSynchronizationCode,
   871             "monitors must always exist for synchronized methods");
   873     // Build the growable array of ScopeValues for exp stack
   874     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   876     // Loop over monitors and insert into array
   877     for(idx = 0; idx < num_mon; idx++) {
   878       // Grab the node that defines this monitor
   879       Node* box_node = sfn->monitor_box(jvms, idx);
   880       Node* obj_node = sfn->monitor_obj(jvms, idx);
   882       // Create ScopeValue for object
   883       ScopeValue *scval = NULL;
   885       if( obj_node->is_SafePointScalarObject() ) {
   886         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
   887         scval = Compile::sv_for_node_id(objs, spobj->_idx);
   888         if (scval == NULL) {
   889           const Type *t = obj_node->bottom_type();
   890           ciKlass* cik = t->is_oopptr()->klass();
   891           assert(cik->is_instance_klass() ||
   892                  cik->is_array_klass(), "Not supported allocation.");
   893           ObjectValue* sv = new ObjectValue(spobj->_idx,
   894                                 new ConstantOopWriteValue(cik->constant_encoding()));
   895           Compile::set_sv_for_object_node(objs, sv);
   897           uint first_ind = spobj->first_index();
   898           for (uint i = 0; i < spobj->n_fields(); i++) {
   899             Node* fld_node = sfn->in(first_ind+i);
   900             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
   901           }
   902           scval = sv;
   903         }
   904       } else if( !obj_node->is_Con() ) {
   905         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   906         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
   907           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
   908         } else {
   909           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   910         }
   911       } else {
   912         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
   913         scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->constant_encoding());
   914       }
   916       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
   917       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
   918       while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
   919       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
   920     }
   922     // We dump the object pool first, since deoptimization reads it in first.
   923     debug_info()->dump_object_pool(objs);
   925     // Build first class objects to pass to scope
   926     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   927     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   928     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   930     // Make method available for all Safepoints
   931     ciMethod* scope_method = method ? method : _method;
   932     // Describe the scope here
   933     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
   934     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
   935     // Now we can describe the scope.
   936     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
   937   } // End jvms loop
   939   // Mark the end of the scope set.
   940   debug_info()->end_safepoint(safepoint_pc_offset);
   941 }
   945 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
   946 class NonSafepointEmitter {
   947   Compile*  C;
   948   JVMState* _pending_jvms;
   949   int       _pending_offset;
   951   void emit_non_safepoint();
   953  public:
   954   NonSafepointEmitter(Compile* compile) {
   955     this->C = compile;
   956     _pending_jvms = NULL;
   957     _pending_offset = 0;
   958   }
   960   void observe_instruction(Node* n, int pc_offset) {
   961     if (!C->debug_info()->recording_non_safepoints())  return;
   963     Node_Notes* nn = C->node_notes_at(n->_idx);
   964     if (nn == NULL || nn->jvms() == NULL)  return;
   965     if (_pending_jvms != NULL &&
   966         _pending_jvms->same_calls_as(nn->jvms())) {
   967       // Repeated JVMS?  Stretch it up here.
   968       _pending_offset = pc_offset;
   969     } else {
   970       if (_pending_jvms != NULL &&
   971           _pending_offset < pc_offset) {
   972         emit_non_safepoint();
   973       }
   974       _pending_jvms = NULL;
   975       if (pc_offset > C->debug_info()->last_pc_offset()) {
   976         // This is the only way _pending_jvms can become non-NULL:
   977         _pending_jvms = nn->jvms();
   978         _pending_offset = pc_offset;
   979       }
   980     }
   981   }
   983   // Stay out of the way of real safepoints:
   984   void observe_safepoint(JVMState* jvms, int pc_offset) {
   985     if (_pending_jvms != NULL &&
   986         !_pending_jvms->same_calls_as(jvms) &&
   987         _pending_offset < pc_offset) {
   988       emit_non_safepoint();
   989     }
   990     _pending_jvms = NULL;
   991   }
   993   void flush_at_end() {
   994     if (_pending_jvms != NULL) {
   995       emit_non_safepoint();
   996     }
   997     _pending_jvms = NULL;
   998   }
   999 };
  1001 void NonSafepointEmitter::emit_non_safepoint() {
  1002   JVMState* youngest_jvms = _pending_jvms;
  1003   int       pc_offset     = _pending_offset;
  1005   // Clear it now:
  1006   _pending_jvms = NULL;
  1008   DebugInformationRecorder* debug_info = C->debug_info();
  1009   assert(debug_info->recording_non_safepoints(), "sanity");
  1011   debug_info->add_non_safepoint(pc_offset);
  1012   int max_depth = youngest_jvms->depth();
  1014   // Visit scopes from oldest to youngest.
  1015   for (int depth = 1; depth <= max_depth; depth++) {
  1016     JVMState* jvms = youngest_jvms->of_depth(depth);
  1017     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
  1018     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
  1019     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
  1022   // Mark the end of the scope set.
  1023   debug_info->end_non_safepoint(pc_offset);
  1028 // helper for Fill_buffer bailout logic
  1029 static void turn_off_compiler(Compile* C) {
  1030   if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
  1031     // Do not turn off compilation if a single giant method has
  1032     // blown the code cache size.
  1033     C->record_failure("excessive request to CodeCache");
  1034   } else {
  1035     // Let CompilerBroker disable further compilations.
  1036     C->record_failure("CodeCache is full");
  1041 //------------------------------Fill_buffer------------------------------------
  1042 void Compile::Fill_buffer() {
  1044   // Set the initially allocated size
  1045   int  code_req   = initial_code_capacity;
  1046   int  locs_req   = initial_locs_capacity;
  1047   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  1048   int  const_req  = initial_const_capacity;
  1049   bool labels_not_set = true;
  1051   int  pad_req    = NativeCall::instruction_size;
  1052   // The extra spacing after the code is necessary on some platforms.
  1053   // Sometimes we need to patch in a jump after the last instruction,
  1054   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
  1056   uint i;
  1057   // Compute the byte offset where we can store the deopt pc.
  1058   if (fixed_slots() != 0) {
  1059     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  1062   // Compute prolog code size
  1063   _method_size = 0;
  1064   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
  1065 #ifdef IA64
  1066   if (save_argument_registers()) {
  1067     // 4815101: this is a stub with implicit and unknown precision fp args.
  1068     // The usual spill mechanism can only generate stfd's in this case, which
  1069     // doesn't work if the fp reg to spill contains a single-precision denorm.
  1070     // Instead, we hack around the normal spill mechanism using stfspill's and
  1071     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
  1072     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
  1073     //
  1074     // If we ever implement 16-byte 'registers' == stack slots, we can
  1075     // get rid of this hack and have SpillCopy generate stfspill/ldffill
  1076     // instead of stfd/stfs/ldfd/ldfs.
  1077     _frame_slots += 8*(16/BytesPerInt);
  1079 #endif
  1080   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
  1082   // Create an array of unused labels, one for each basic block
  1083   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
  1085   for( i=0; i <= _cfg->_num_blocks; i++ ) {
  1086     blk_labels[i].init();
  1089   // If this machine supports different size branch offsets, then pre-compute
  1090   // the length of the blocks
  1091   if( _matcher->is_short_branch_offset(-1, 0) ) {
  1092     Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
  1093     labels_not_set = false;
  1096   // nmethod and CodeBuffer count stubs & constants as part of method's code.
  1097   int exception_handler_req = size_exception_handler();
  1098   int deopt_handler_req = size_deopt_handler();
  1099   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
  1100   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
  1101   stub_req += MAX_stubs_size;   // ensure per-stub margin
  1102   code_req += MAX_inst_size;    // ensure per-instruction margin
  1104   if (StressCodeBuffers)
  1105     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  1107   int total_req =
  1108     code_req +
  1109     pad_req +
  1110     stub_req +
  1111     exception_handler_req +
  1112     deopt_handler_req +              // deopt handler
  1113     const_req;
  1115   if (has_method_handle_invokes())
  1116     total_req += deopt_handler_req;  // deopt MH handler
  1118   CodeBuffer* cb = code_buffer();
  1119   cb->initialize(total_req, locs_req);
  1121   // Have we run out of code space?
  1122   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1123     turn_off_compiler(this);
  1124     return;
  1126   // Configure the code buffer.
  1127   cb->initialize_consts_size(const_req);
  1128   cb->initialize_stubs_size(stub_req);
  1129   cb->initialize_oop_recorder(env()->oop_recorder());
  1131   // fill in the nop array for bundling computations
  1132   MachNode *_nop_list[Bundle::_nop_count];
  1133   Bundle::initialize_nops(_nop_list, this);
  1135   // Create oopmap set.
  1136   _oop_map_set = new OopMapSet();
  1138   // !!!!! This preserves old handling of oopmaps for now
  1139   debug_info()->set_oopmaps(_oop_map_set);
  1141   // Count and start of implicit null check instructions
  1142   uint inct_cnt = 0;
  1143   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1145   // Count and start of calls
  1146   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1148   uint  return_offset = 0;
  1149   int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1151   int previous_offset = 0;
  1152   int current_offset  = 0;
  1153   int last_call_offset = -1;
  1155   // Create an array of unused labels, one for each basic block, if printing is enabled
  1156 #ifndef PRODUCT
  1157   int *node_offsets      = NULL;
  1158   uint  node_offset_limit = unique();
  1161   if ( print_assembly() )
  1162     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1163 #endif
  1165   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1167   // ------------------
  1168   // Now fill in the code buffer
  1169   Node *delay_slot = NULL;
  1171   for( i=0; i < _cfg->_num_blocks; i++ ) {
  1172     Block *b = _cfg->_blocks[i];
  1174     Node *head = b->head();
  1176     // If this block needs to start aligned (i.e, can be reached other
  1177     // than by falling-thru from the previous block), then force the
  1178     // start of a new bundle.
  1179     if( Pipeline::requires_bundling() && starts_bundle(head) )
  1180       cb->flush_bundle(true);
  1182     // Define the label at the beginning of the basic block
  1183     if( labels_not_set )
  1184       MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
  1186     else
  1187       assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
  1188               "label position does not match code offset" );
  1190     uint last_inst = b->_nodes.size();
  1192     // Emit block normally, except for last instruction.
  1193     // Emit means "dump code bits into code buffer".
  1194     for( uint j = 0; j<last_inst; j++ ) {
  1196       // Get the node
  1197       Node* n = b->_nodes[j];
  1199       // See if delay slots are supported
  1200       if (valid_bundle_info(n) &&
  1201           node_bundling(n)->used_in_unconditional_delay()) {
  1202         assert(delay_slot == NULL, "no use of delay slot node");
  1203         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1205         delay_slot = n;
  1206         continue;
  1209       // If this starts a new instruction group, then flush the current one
  1210       // (but allow split bundles)
  1211       if( Pipeline::requires_bundling() && starts_bundle(n) )
  1212         cb->flush_bundle(false);
  1214       // The following logic is duplicated in the code ifdeffed for
  1215       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
  1216       // should be factored out.  Or maybe dispersed to the nodes?
  1218       // Special handling for SafePoint/Call Nodes
  1219       bool is_mcall = false;
  1220       if( n->is_Mach() ) {
  1221         MachNode *mach = n->as_Mach();
  1222         is_mcall = n->is_MachCall();
  1223         bool is_sfn = n->is_MachSafePoint();
  1225         // If this requires all previous instructions be flushed, then do so
  1226         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
  1227           cb->flush_bundle(true);
  1228           current_offset = cb->code_size();
  1231         // align the instruction if necessary
  1232         int padding = mach->compute_padding(current_offset);
  1233         // Make sure safepoint node for polling is distinct from a call's
  1234         // return by adding a nop if needed.
  1235         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
  1236           padding = nop_size;
  1238         assert( labels_not_set || padding == 0, "instruction should already be aligned");
  1240         if(padding > 0) {
  1241           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1242           int nops_cnt = padding / nop_size;
  1243           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1244           b->_nodes.insert(j++, nop);
  1245           last_inst++;
  1246           _cfg->_bbs.map( nop->_idx, b );
  1247           nop->emit(*cb, _regalloc);
  1248           cb->flush_bundle(true);
  1249           current_offset = cb->code_size();
  1252         // Remember the start of the last call in a basic block
  1253         if (is_mcall) {
  1254           MachCallNode *mcall = mach->as_MachCall();
  1256           // This destination address is NOT PC-relative
  1257           mcall->method_set((intptr_t)mcall->entry_point());
  1259           // Save the return address
  1260           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
  1262           if (!mcall->is_safepoint_node()) {
  1263             is_mcall = false;
  1264             is_sfn = false;
  1268         // sfn will be valid whenever mcall is valid now because of inheritance
  1269         if( is_sfn || is_mcall ) {
  1271           // Handle special safepoint nodes for synchronization
  1272           if( !is_mcall ) {
  1273             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1274             // !!!!! Stubs only need an oopmap right now, so bail out
  1275             if( sfn->jvms()->method() == NULL) {
  1276               // Write the oopmap directly to the code blob??!!
  1277 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1278               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1279 #             endif
  1280               continue;
  1282           } // End synchronization
  1284           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1285                                            current_offset);
  1286           Process_OopMap_Node(mach, current_offset);
  1287         } // End if safepoint
  1289         // If this is a null check, then add the start of the previous instruction to the list
  1290         else if( mach->is_MachNullCheck() ) {
  1291           inct_starts[inct_cnt++] = previous_offset;
  1294         // If this is a branch, then fill in the label with the target BB's label
  1295         else if ( mach->is_Branch() ) {
  1297           if ( mach->ideal_Opcode() == Op_Jump ) {
  1298             for (uint h = 0; h < b->_num_succs; h++ ) {
  1299               Block* succs_block = b->_succs[h];
  1300               for (uint j = 1; j < succs_block->num_preds(); j++) {
  1301                 Node* jpn = succs_block->pred(j);
  1302                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
  1303                   uint block_num = succs_block->non_connector()->_pre_order;
  1304                   Label *blkLabel = &blk_labels[block_num];
  1305                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1309           } else {
  1310             // For Branchs
  1311             // This requires the TRUE branch target be in succs[0]
  1312             uint block_num = b->non_connector_successor(0)->_pre_order;
  1313             mach->label_set( blk_labels[block_num], block_num );
  1317 #ifdef ASSERT
  1318         // Check that oop-store precedes the card-mark
  1319         else if( mach->ideal_Opcode() == Op_StoreCM ) {
  1320           uint storeCM_idx = j;
  1321           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
  1322           assert( oop_store != NULL, "storeCM expects a precedence edge");
  1323           uint i4;
  1324           for( i4 = 0; i4 < last_inst; ++i4 ) {
  1325             if( b->_nodes[i4] == oop_store ) break;
  1327           // Note: This test can provide a false failure if other precedence
  1328           // edges have been added to the storeCMNode.
  1329           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1331 #endif
  1333         else if( !n->is_Proj() ) {
  1334           // Remember the beginning of the previous instruction, in case
  1335           // it's followed by a flag-kill and a null-check.  Happens on
  1336           // Intel all the time, with add-to-memory kind of opcodes.
  1337           previous_offset = current_offset;
  1341       // Verify that there is sufficient space remaining
  1342       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1343       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1344         turn_off_compiler(this);
  1345         return;
  1348       // Save the offset for the listing
  1349 #ifndef PRODUCT
  1350       if( node_offsets && n->_idx < node_offset_limit )
  1351         node_offsets[n->_idx] = cb->code_size();
  1352 #endif
  1354       // "Normal" instruction case
  1355       n->emit(*cb, _regalloc);
  1356       current_offset  = cb->code_size();
  1357       non_safepoints.observe_instruction(n, current_offset);
  1359       // mcall is last "call" that can be a safepoint
  1360       // record it so we can see if a poll will directly follow it
  1361       // in which case we'll need a pad to make the PcDesc sites unique
  1362       // see  5010568. This can be slightly inaccurate but conservative
  1363       // in the case that return address is not actually at current_offset.
  1364       // This is a small price to pay.
  1366       if (is_mcall) {
  1367         last_call_offset = current_offset;
  1370       // See if this instruction has a delay slot
  1371       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1372         assert(delay_slot != NULL, "expecting delay slot node");
  1374         // Back up 1 instruction
  1375         cb->set_code_end(
  1376           cb->code_end()-Pipeline::instr_unit_size());
  1378         // Save the offset for the listing
  1379 #ifndef PRODUCT
  1380         if( node_offsets && delay_slot->_idx < node_offset_limit )
  1381           node_offsets[delay_slot->_idx] = cb->code_size();
  1382 #endif
  1384         // Support a SafePoint in the delay slot
  1385         if( delay_slot->is_MachSafePoint() ) {
  1386           MachNode *mach = delay_slot->as_Mach();
  1387           // !!!!! Stubs only need an oopmap right now, so bail out
  1388           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
  1389             // Write the oopmap directly to the code blob??!!
  1390 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1391             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1392 #           endif
  1393             delay_slot = NULL;
  1394             continue;
  1397           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1398           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1399                                            adjusted_offset);
  1400           // Generate an OopMap entry
  1401           Process_OopMap_Node(mach, adjusted_offset);
  1404         // Insert the delay slot instruction
  1405         delay_slot->emit(*cb, _regalloc);
  1407         // Don't reuse it
  1408         delay_slot = NULL;
  1411     } // End for all instructions in block
  1413     // If the next block is the top of a loop, pad this block out to align
  1414     // the loop top a little. Helps prevent pipe stalls at loop back branches.
  1415     if( i<_cfg->_num_blocks-1 ) {
  1416       Block *nb = _cfg->_blocks[i+1];
  1417       uint padding = nb->alignment_padding(current_offset);
  1418       if( padding > 0 ) {
  1419         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1420         b->_nodes.insert( b->_nodes.size(), nop );
  1421         _cfg->_bbs.map( nop->_idx, b );
  1422         nop->emit(*cb, _regalloc);
  1423         current_offset = cb->code_size();
  1427   } // End of for all blocks
  1429   non_safepoints.flush_at_end();
  1431   // Offset too large?
  1432   if (failing())  return;
  1434   // Define a pseudo-label at the end of the code
  1435   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
  1437   // Compute the size of the first block
  1438   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1440   assert(cb->code_size() < 500000, "method is unreasonably large");
  1442   // ------------------
  1444 #ifndef PRODUCT
  1445   // Information on the size of the method, without the extraneous code
  1446   Scheduling::increment_method_size(cb->code_size());
  1447 #endif
  1449   // ------------------
  1450   // Fill in exception table entries.
  1451   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1453   // Only java methods have exception handlers and deopt handlers
  1454   if (_method) {
  1455     // Emit the exception handler code.
  1456     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
  1457     // Emit the deopt handler code.
  1458     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
  1460     // Emit the MethodHandle deopt handler code (if required).
  1461     if (has_method_handle_invokes()) {
  1462       // We can use the same code as for the normal deopt handler, we
  1463       // just need a different entry point address.
  1464       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
  1468   // One last check for failed CodeBuffer::expand:
  1469   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1470     turn_off_compiler(this);
  1471     return;
  1474 #ifndef PRODUCT
  1475   // Dump the assembly code, including basic-block numbers
  1476   if (print_assembly()) {
  1477     ttyLocker ttyl;  // keep the following output all in one block
  1478     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1479       // This output goes directly to the tty, not the compiler log.
  1480       // To enable tools to match it up with the compilation activity,
  1481       // be sure to tag this tty output with the compile ID.
  1482       if (xtty != NULL) {
  1483         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1484                    is_osr_compilation()    ? " compile_kind='osr'" :
  1485                    "");
  1487       if (method() != NULL) {
  1488         method()->print_oop();
  1489         print_codes();
  1491       dump_asm(node_offsets, node_offset_limit);
  1492       if (xtty != NULL) {
  1493         xtty->tail("opto_assembly");
  1497 #endif
  1501 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1502   _inc_table.set_size(cnt);
  1504   uint inct_cnt = 0;
  1505   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1506     Block *b = _cfg->_blocks[i];
  1507     Node *n = NULL;
  1508     int j;
  1510     // Find the branch; ignore trailing NOPs.
  1511     for( j = b->_nodes.size()-1; j>=0; j-- ) {
  1512       n = b->_nodes[j];
  1513       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
  1514         break;
  1517     // If we didn't find anything, continue
  1518     if( j < 0 ) continue;
  1520     // Compute ExceptionHandlerTable subtable entry and add it
  1521     // (skip empty blocks)
  1522     if( n->is_Catch() ) {
  1524       // Get the offset of the return from the call
  1525       uint call_return = call_returns[b->_pre_order];
  1526 #ifdef ASSERT
  1527       assert( call_return > 0, "no call seen for this basic block" );
  1528       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
  1529       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
  1530 #endif
  1531       // last instruction is a CatchNode, find it's CatchProjNodes
  1532       int nof_succs = b->_num_succs;
  1533       // allocate space
  1534       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1535       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1536       // iterate through all successors
  1537       for (int j = 0; j < nof_succs; j++) {
  1538         Block* s = b->_succs[j];
  1539         bool found_p = false;
  1540         for( uint k = 1; k < s->num_preds(); k++ ) {
  1541           Node *pk = s->pred(k);
  1542           if( pk->is_CatchProj() && pk->in(0) == n ) {
  1543             const CatchProjNode* p = pk->as_CatchProj();
  1544             found_p = true;
  1545             // add the corresponding handler bci & pco information
  1546             if( p->_con != CatchProjNode::fall_through_index ) {
  1547               // p leads to an exception handler (and is not fall through)
  1548               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
  1549               // no duplicates, please
  1550               if( !handler_bcis.contains(p->handler_bci()) ) {
  1551                 uint block_num = s->non_connector()->_pre_order;
  1552                 handler_bcis.append(p->handler_bci());
  1553                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1558         assert(found_p, "no matching predecessor found");
  1559         // Note:  Due to empty block removal, one block may have
  1560         // several CatchProj inputs, from the same Catch.
  1563       // Set the offset of the return from the call
  1564       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1565       continue;
  1568     // Handle implicit null exception table updates
  1569     if( n->is_MachNullCheck() ) {
  1570       uint block_num = b->non_connector_successor(0)->_pre_order;
  1571       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
  1572       continue;
  1574   } // End of for all blocks fill in exception table entries
  1577 // Static Variables
  1578 #ifndef PRODUCT
  1579 uint Scheduling::_total_nop_size = 0;
  1580 uint Scheduling::_total_method_size = 0;
  1581 uint Scheduling::_total_branches = 0;
  1582 uint Scheduling::_total_unconditional_delays = 0;
  1583 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1584 #endif
  1586 // Initializer for class Scheduling
  1588 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1589   : _arena(arena),
  1590     _cfg(compile.cfg()),
  1591     _bbs(compile.cfg()->_bbs),
  1592     _regalloc(compile.regalloc()),
  1593     _reg_node(arena),
  1594     _bundle_instr_count(0),
  1595     _bundle_cycle_number(0),
  1596     _scheduled(arena),
  1597     _available(arena),
  1598     _next_node(NULL),
  1599     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1600     _pinch_free_list(arena)
  1601 #ifndef PRODUCT
  1602   , _branches(0)
  1603   , _unconditional_delays(0)
  1604 #endif
  1606   // Create a MachNopNode
  1607   _nop = new (&compile) MachNopNode();
  1609   // Now that the nops are in the array, save the count
  1610   // (but allow entries for the nops)
  1611   _node_bundling_limit = compile.unique();
  1612   uint node_max = _regalloc->node_regs_max_index();
  1614   compile.set_node_bundling_limit(_node_bundling_limit);
  1616   // This one is persistent within the Compile class
  1617   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1619   // Allocate space for fixed-size arrays
  1620   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1621   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1622   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1624   // Clear the arrays
  1625   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1626   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1627   memset(_uses,               0, node_max * sizeof(short));
  1628   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1630   // Clear the bundling information
  1631   memcpy(_bundle_use_elements,
  1632     Pipeline_Use::elaborated_elements,
  1633     sizeof(Pipeline_Use::elaborated_elements));
  1635   // Get the last node
  1636   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
  1638   _next_node = bb->_nodes[bb->_nodes.size()-1];
  1641 #ifndef PRODUCT
  1642 // Scheduling destructor
  1643 Scheduling::~Scheduling() {
  1644   _total_branches             += _branches;
  1645   _total_unconditional_delays += _unconditional_delays;
  1647 #endif
  1649 // Step ahead "i" cycles
  1650 void Scheduling::step(uint i) {
  1652   Bundle *bundle = node_bundling(_next_node);
  1653   bundle->set_starts_bundle();
  1655   // Update the bundle record, but leave the flags information alone
  1656   if (_bundle_instr_count > 0) {
  1657     bundle->set_instr_count(_bundle_instr_count);
  1658     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1661   // Update the state information
  1662   _bundle_instr_count = 0;
  1663   _bundle_cycle_number += i;
  1664   _bundle_use.step(i);
  1667 void Scheduling::step_and_clear() {
  1668   Bundle *bundle = node_bundling(_next_node);
  1669   bundle->set_starts_bundle();
  1671   // Update the bundle record
  1672   if (_bundle_instr_count > 0) {
  1673     bundle->set_instr_count(_bundle_instr_count);
  1674     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1676     _bundle_cycle_number += 1;
  1679   // Clear the bundling information
  1680   _bundle_instr_count = 0;
  1681   _bundle_use.reset();
  1683   memcpy(_bundle_use_elements,
  1684     Pipeline_Use::elaborated_elements,
  1685     sizeof(Pipeline_Use::elaborated_elements));
  1688 //------------------------------ScheduleAndBundle------------------------------
  1689 // Perform instruction scheduling and bundling over the sequence of
  1690 // instructions in backwards order.
  1691 void Compile::ScheduleAndBundle() {
  1693   // Don't optimize this if it isn't a method
  1694   if (!_method)
  1695     return;
  1697   // Don't optimize this if scheduling is disabled
  1698   if (!do_scheduling())
  1699     return;
  1701   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1703   // Create a data structure for all the scheduling information
  1704   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1706   // Walk backwards over each basic block, computing the needed alignment
  1707   // Walk over all the basic blocks
  1708   scheduling.DoScheduling();
  1711 //------------------------------ComputeLocalLatenciesForward-------------------
  1712 // Compute the latency of all the instructions.  This is fairly simple,
  1713 // because we already have a legal ordering.  Walk over the instructions
  1714 // from first to last, and compute the latency of the instruction based
  1715 // on the latency of the preceding instruction(s).
  1716 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1717 #ifndef PRODUCT
  1718   if (_cfg->C->trace_opto_output())
  1719     tty->print("# -> ComputeLocalLatenciesForward\n");
  1720 #endif
  1722   // Walk over all the schedulable instructions
  1723   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1725     // This is a kludge, forcing all latency calculations to start at 1.
  1726     // Used to allow latency 0 to force an instruction to the beginning
  1727     // of the bb
  1728     uint latency = 1;
  1729     Node *use = bb->_nodes[j];
  1730     uint nlen = use->len();
  1732     // Walk over all the inputs
  1733     for ( uint k=0; k < nlen; k++ ) {
  1734       Node *def = use->in(k);
  1735       if (!def)
  1736         continue;
  1738       uint l = _node_latency[def->_idx] + use->latency(k);
  1739       if (latency < l)
  1740         latency = l;
  1743     _node_latency[use->_idx] = latency;
  1745 #ifndef PRODUCT
  1746     if (_cfg->C->trace_opto_output()) {
  1747       tty->print("# latency %4d: ", latency);
  1748       use->dump();
  1750 #endif
  1753 #ifndef PRODUCT
  1754   if (_cfg->C->trace_opto_output())
  1755     tty->print("# <- ComputeLocalLatenciesForward\n");
  1756 #endif
  1758 } // end ComputeLocalLatenciesForward
  1760 // See if this node fits into the present instruction bundle
  1761 bool Scheduling::NodeFitsInBundle(Node *n) {
  1762   uint n_idx = n->_idx;
  1764   // If this is the unconditional delay instruction, then it fits
  1765   if (n == _unconditional_delay_slot) {
  1766 #ifndef PRODUCT
  1767     if (_cfg->C->trace_opto_output())
  1768       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  1769 #endif
  1770     return (true);
  1773   // If the node cannot be scheduled this cycle, skip it
  1774   if (_current_latency[n_idx] > _bundle_cycle_number) {
  1775 #ifndef PRODUCT
  1776     if (_cfg->C->trace_opto_output())
  1777       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  1778         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  1779 #endif
  1780     return (false);
  1783   const Pipeline *node_pipeline = n->pipeline();
  1785   uint instruction_count = node_pipeline->instructionCount();
  1786   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1787     instruction_count = 0;
  1788   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1789     instruction_count++;
  1791   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  1792 #ifndef PRODUCT
  1793     if (_cfg->C->trace_opto_output())
  1794       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  1795         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  1796 #endif
  1797     return (false);
  1800   // Don't allow non-machine nodes to be handled this way
  1801   if (!n->is_Mach() && instruction_count == 0)
  1802     return (false);
  1804   // See if there is any overlap
  1805   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  1807   if (delay > 0) {
  1808 #ifndef PRODUCT
  1809     if (_cfg->C->trace_opto_output())
  1810       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  1811 #endif
  1812     return false;
  1815 #ifndef PRODUCT
  1816   if (_cfg->C->trace_opto_output())
  1817     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  1818 #endif
  1820   return true;
  1823 Node * Scheduling::ChooseNodeToBundle() {
  1824   uint siz = _available.size();
  1826   if (siz == 0) {
  1828 #ifndef PRODUCT
  1829     if (_cfg->C->trace_opto_output())
  1830       tty->print("#   ChooseNodeToBundle: NULL\n");
  1831 #endif
  1832     return (NULL);
  1835   // Fast path, if only 1 instruction in the bundle
  1836   if (siz == 1) {
  1837 #ifndef PRODUCT
  1838     if (_cfg->C->trace_opto_output()) {
  1839       tty->print("#   ChooseNodeToBundle (only 1): ");
  1840       _available[0]->dump();
  1842 #endif
  1843     return (_available[0]);
  1846   // Don't bother, if the bundle is already full
  1847   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  1848     for ( uint i = 0; i < siz; i++ ) {
  1849       Node *n = _available[i];
  1851       // Skip projections, we'll handle them another way
  1852       if (n->is_Proj())
  1853         continue;
  1855       // This presupposed that instructions are inserted into the
  1856       // available list in a legality order; i.e. instructions that
  1857       // must be inserted first are at the head of the list
  1858       if (NodeFitsInBundle(n)) {
  1859 #ifndef PRODUCT
  1860         if (_cfg->C->trace_opto_output()) {
  1861           tty->print("#   ChooseNodeToBundle: ");
  1862           n->dump();
  1864 #endif
  1865         return (n);
  1870   // Nothing fits in this bundle, choose the highest priority
  1871 #ifndef PRODUCT
  1872   if (_cfg->C->trace_opto_output()) {
  1873     tty->print("#   ChooseNodeToBundle: ");
  1874     _available[0]->dump();
  1876 #endif
  1878   return _available[0];
  1881 //------------------------------AddNodeToAvailableList-------------------------
  1882 void Scheduling::AddNodeToAvailableList(Node *n) {
  1883   assert( !n->is_Proj(), "projections never directly made available" );
  1884 #ifndef PRODUCT
  1885   if (_cfg->C->trace_opto_output()) {
  1886     tty->print("#   AddNodeToAvailableList: ");
  1887     n->dump();
  1889 #endif
  1891   int latency = _current_latency[n->_idx];
  1893   // Insert in latency order (insertion sort)
  1894   uint i;
  1895   for ( i=0; i < _available.size(); i++ )
  1896     if (_current_latency[_available[i]->_idx] > latency)
  1897       break;
  1899   // Special Check for compares following branches
  1900   if( n->is_Mach() && _scheduled.size() > 0 ) {
  1901     int op = n->as_Mach()->ideal_Opcode();
  1902     Node *last = _scheduled[0];
  1903     if( last->is_MachIf() && last->in(1) == n &&
  1904         ( op == Op_CmpI ||
  1905           op == Op_CmpU ||
  1906           op == Op_CmpP ||
  1907           op == Op_CmpF ||
  1908           op == Op_CmpD ||
  1909           op == Op_CmpL ) ) {
  1911       // Recalculate position, moving to front of same latency
  1912       for ( i=0 ; i < _available.size(); i++ )
  1913         if (_current_latency[_available[i]->_idx] >= latency)
  1914           break;
  1918   // Insert the node in the available list
  1919   _available.insert(i, n);
  1921 #ifndef PRODUCT
  1922   if (_cfg->C->trace_opto_output())
  1923     dump_available();
  1924 #endif
  1927 //------------------------------DecrementUseCounts-----------------------------
  1928 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  1929   for ( uint i=0; i < n->len(); i++ ) {
  1930     Node *def = n->in(i);
  1931     if (!def) continue;
  1932     if( def->is_Proj() )        // If this is a machine projection, then
  1933       def = def->in(0);         // propagate usage thru to the base instruction
  1935     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
  1936       continue;
  1938     // Compute the latency
  1939     uint l = _bundle_cycle_number + n->latency(i);
  1940     if (_current_latency[def->_idx] < l)
  1941       _current_latency[def->_idx] = l;
  1943     // If this does not have uses then schedule it
  1944     if ((--_uses[def->_idx]) == 0)
  1945       AddNodeToAvailableList(def);
  1949 //------------------------------AddNodeToBundle--------------------------------
  1950 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  1951 #ifndef PRODUCT
  1952   if (_cfg->C->trace_opto_output()) {
  1953     tty->print("#   AddNodeToBundle: ");
  1954     n->dump();
  1956 #endif
  1958   // Remove this from the available list
  1959   uint i;
  1960   for (i = 0; i < _available.size(); i++)
  1961     if (_available[i] == n)
  1962       break;
  1963   assert(i < _available.size(), "entry in _available list not found");
  1964   _available.remove(i);
  1966   // See if this fits in the current bundle
  1967   const Pipeline *node_pipeline = n->pipeline();
  1968   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  1970   // Check for instructions to be placed in the delay slot. We
  1971   // do this before we actually schedule the current instruction,
  1972   // because the delay slot follows the current instruction.
  1973   if (Pipeline::_branch_has_delay_slot &&
  1974       node_pipeline->hasBranchDelay() &&
  1975       !_unconditional_delay_slot) {
  1977     uint siz = _available.size();
  1979     // Conditional branches can support an instruction that
  1980     // is unconditionally executed and not dependent by the
  1981     // branch, OR a conditionally executed instruction if
  1982     // the branch is taken.  In practice, this means that
  1983     // the first instruction at the branch target is
  1984     // copied to the delay slot, and the branch goes to
  1985     // the instruction after that at the branch target
  1986     if ( n->is_Mach() && n->is_Branch() ) {
  1988       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  1989       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  1991 #ifndef PRODUCT
  1992       _branches++;
  1993 #endif
  1995       // At least 1 instruction is on the available list
  1996       // that is not dependent on the branch
  1997       for (uint i = 0; i < siz; i++) {
  1998         Node *d = _available[i];
  1999         const Pipeline *avail_pipeline = d->pipeline();
  2001         // Don't allow safepoints in the branch shadow, that will
  2002         // cause a number of difficulties
  2003         if ( avail_pipeline->instructionCount() == 1 &&
  2004             !avail_pipeline->hasMultipleBundles() &&
  2005             !avail_pipeline->hasBranchDelay() &&
  2006             Pipeline::instr_has_unit_size() &&
  2007             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  2008             NodeFitsInBundle(d) &&
  2009             !node_bundling(d)->used_in_delay()) {
  2011           if (d->is_Mach() && !d->is_MachSafePoint()) {
  2012             // A node that fits in the delay slot was found, so we need to
  2013             // set the appropriate bits in the bundle pipeline information so
  2014             // that it correctly indicates resource usage.  Later, when we
  2015             // attempt to add this instruction to the bundle, we will skip
  2016             // setting the resource usage.
  2017             _unconditional_delay_slot = d;
  2018             node_bundling(n)->set_use_unconditional_delay();
  2019             node_bundling(d)->set_used_in_unconditional_delay();
  2020             _bundle_use.add_usage(avail_pipeline->resourceUse());
  2021             _current_latency[d->_idx] = _bundle_cycle_number;
  2022             _next_node = d;
  2023             ++_bundle_instr_count;
  2024 #ifndef PRODUCT
  2025             _unconditional_delays++;
  2026 #endif
  2027             break;
  2033     // No delay slot, add a nop to the usage
  2034     if (!_unconditional_delay_slot) {
  2035       // See if adding an instruction in the delay slot will overflow
  2036       // the bundle.
  2037       if (!NodeFitsInBundle(_nop)) {
  2038 #ifndef PRODUCT
  2039         if (_cfg->C->trace_opto_output())
  2040           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  2041 #endif
  2042         step(1);
  2045       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  2046       _next_node = _nop;
  2047       ++_bundle_instr_count;
  2050     // See if the instruction in the delay slot requires a
  2051     // step of the bundles
  2052     if (!NodeFitsInBundle(n)) {
  2053 #ifndef PRODUCT
  2054         if (_cfg->C->trace_opto_output())
  2055           tty->print("#  *** STEP(branch won't fit) ***\n");
  2056 #endif
  2057         // Update the state information
  2058         _bundle_instr_count = 0;
  2059         _bundle_cycle_number += 1;
  2060         _bundle_use.step(1);
  2064   // Get the number of instructions
  2065   uint instruction_count = node_pipeline->instructionCount();
  2066   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2067     instruction_count = 0;
  2069   // Compute the latency information
  2070   uint delay = 0;
  2072   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  2073     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  2074     if (relative_latency < 0)
  2075       relative_latency = 0;
  2077     delay = _bundle_use.full_latency(relative_latency, node_usage);
  2079     // Does not fit in this bundle, start a new one
  2080     if (delay > 0) {
  2081       step(delay);
  2083 #ifndef PRODUCT
  2084       if (_cfg->C->trace_opto_output())
  2085         tty->print("#  *** STEP(%d) ***\n", delay);
  2086 #endif
  2090   // If this was placed in the delay slot, ignore it
  2091   if (n != _unconditional_delay_slot) {
  2093     if (delay == 0) {
  2094       if (node_pipeline->hasMultipleBundles()) {
  2095 #ifndef PRODUCT
  2096         if (_cfg->C->trace_opto_output())
  2097           tty->print("#  *** STEP(multiple instructions) ***\n");
  2098 #endif
  2099         step(1);
  2102       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  2103 #ifndef PRODUCT
  2104         if (_cfg->C->trace_opto_output())
  2105           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  2106             instruction_count + _bundle_instr_count,
  2107             Pipeline::_max_instrs_per_cycle);
  2108 #endif
  2109         step(1);
  2113     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2114       _bundle_instr_count++;
  2116     // Set the node's latency
  2117     _current_latency[n->_idx] = _bundle_cycle_number;
  2119     // Now merge the functional unit information
  2120     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  2121       _bundle_use.add_usage(node_usage);
  2123     // Increment the number of instructions in this bundle
  2124     _bundle_instr_count += instruction_count;
  2126     // Remember this node for later
  2127     if (n->is_Mach())
  2128       _next_node = n;
  2131   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2132   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2133   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2134   // into the block.  All other scheduled nodes get put in the schedule here.
  2135   int op = n->Opcode();
  2136   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2137       (op != Op_Node &&         // Not an unused antidepedence node and
  2138        // not an unallocated boxlock
  2139        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2141     // Push any trailing projections
  2142     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
  2143       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2144         Node *foi = n->fast_out(i);
  2145         if( foi->is_Proj() )
  2146           _scheduled.push(foi);
  2150     // Put the instruction in the schedule list
  2151     _scheduled.push(n);
  2154 #ifndef PRODUCT
  2155   if (_cfg->C->trace_opto_output())
  2156     dump_available();
  2157 #endif
  2159   // Walk all the definitions, decrementing use counts, and
  2160   // if a definition has a 0 use count, place it in the available list.
  2161   DecrementUseCounts(n,bb);
  2164 //------------------------------ComputeUseCount--------------------------------
  2165 // This method sets the use count within a basic block.  We will ignore all
  2166 // uses outside the current basic block.  As we are doing a backwards walk,
  2167 // any node we reach that has a use count of 0 may be scheduled.  This also
  2168 // avoids the problem of cyclic references from phi nodes, as long as phi
  2169 // nodes are at the front of the basic block.  This method also initializes
  2170 // the available list to the set of instructions that have no uses within this
  2171 // basic block.
  2172 void Scheduling::ComputeUseCount(const Block *bb) {
  2173 #ifndef PRODUCT
  2174   if (_cfg->C->trace_opto_output())
  2175     tty->print("# -> ComputeUseCount\n");
  2176 #endif
  2178   // Clear the list of available and scheduled instructions, just in case
  2179   _available.clear();
  2180   _scheduled.clear();
  2182   // No delay slot specified
  2183   _unconditional_delay_slot = NULL;
  2185 #ifdef ASSERT
  2186   for( uint i=0; i < bb->_nodes.size(); i++ )
  2187     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
  2188 #endif
  2190   // Force the _uses count to never go to zero for unscheduable pieces
  2191   // of the block
  2192   for( uint k = 0; k < _bb_start; k++ )
  2193     _uses[bb->_nodes[k]->_idx] = 1;
  2194   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
  2195     _uses[bb->_nodes[l]->_idx] = 1;
  2197   // Iterate backwards over the instructions in the block.  Don't count the
  2198   // branch projections at end or the block header instructions.
  2199   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2200     Node *n = bb->_nodes[j];
  2201     if( n->is_Proj() ) continue; // Projections handled another way
  2203     // Account for all uses
  2204     for ( uint k = 0; k < n->len(); k++ ) {
  2205       Node *inp = n->in(k);
  2206       if (!inp) continue;
  2207       assert(inp != n, "no cycles allowed" );
  2208       if( _bbs[inp->_idx] == bb ) { // Block-local use?
  2209         if( inp->is_Proj() )    // Skip through Proj's
  2210           inp = inp->in(0);
  2211         ++_uses[inp->_idx];     // Count 1 block-local use
  2215     // If this instruction has a 0 use count, then it is available
  2216     if (!_uses[n->_idx]) {
  2217       _current_latency[n->_idx] = _bundle_cycle_number;
  2218       AddNodeToAvailableList(n);
  2221 #ifndef PRODUCT
  2222     if (_cfg->C->trace_opto_output()) {
  2223       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2224       n->dump();
  2226 #endif
  2229 #ifndef PRODUCT
  2230   if (_cfg->C->trace_opto_output())
  2231     tty->print("# <- ComputeUseCount\n");
  2232 #endif
  2235 // This routine performs scheduling on each basic block in reverse order,
  2236 // using instruction latencies and taking into account function unit
  2237 // availability.
  2238 void Scheduling::DoScheduling() {
  2239 #ifndef PRODUCT
  2240   if (_cfg->C->trace_opto_output())
  2241     tty->print("# -> DoScheduling\n");
  2242 #endif
  2244   Block *succ_bb = NULL;
  2245   Block *bb;
  2247   // Walk over all the basic blocks in reverse order
  2248   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
  2249     bb = _cfg->_blocks[i];
  2251 #ifndef PRODUCT
  2252     if (_cfg->C->trace_opto_output()) {
  2253       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2254       for (uint j = 0; j < bb->_nodes.size(); j++)
  2255         bb->_nodes[j]->dump();
  2257 #endif
  2259     // On the head node, skip processing
  2260     if( bb == _cfg->_broot )
  2261       continue;
  2263     // Skip empty, connector blocks
  2264     if (bb->is_connector())
  2265       continue;
  2267     // If the following block is not the sole successor of
  2268     // this one, then reset the pipeline information
  2269     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2270 #ifndef PRODUCT
  2271       if (_cfg->C->trace_opto_output()) {
  2272         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2273                    _next_node->_idx, _bundle_instr_count);
  2275 #endif
  2276       step_and_clear();
  2279     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2280     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
  2281     _bb_end = bb->_nodes.size()-1;
  2282     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2283       Node *n = bb->_nodes[_bb_start];
  2284       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2285       // Also, MachIdealNodes do not get scheduled
  2286       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2287       MachNode *mach = n->as_Mach();
  2288       int iop = mach->ideal_Opcode();
  2289       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2290       if( iop == Op_Con ) continue;      // Do not schedule Top
  2291       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2292           mach->pipeline() == MachNode::pipeline_class() &&
  2293           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
  2294         continue;
  2295       break;                    // Funny loop structure to be sure...
  2297     // Compute last "interesting" instruction in block - last instruction we
  2298     // might schedule.  _bb_end points just after last schedulable inst.  We
  2299     // normally schedule conditional branches (despite them being forced last
  2300     // in the block), because they have delay slots we can fill.  Calls all
  2301     // have their delay slots filled in the template expansions, so we don't
  2302     // bother scheduling them.
  2303     Node *last = bb->_nodes[_bb_end];
  2304     if( last->is_Catch() ||
  2305        // Exclude unreachable path case when Halt node is in a separate block.
  2306        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2307       // There must be a prior call.  Skip it.
  2308       while( !bb->_nodes[--_bb_end]->is_Call() ) {
  2309         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
  2311     } else if( last->is_MachNullCheck() ) {
  2312       // Backup so the last null-checked memory instruction is
  2313       // outside the schedulable range. Skip over the nullcheck,
  2314       // projection, and the memory nodes.
  2315       Node *mem = last->in(1);
  2316       do {
  2317         _bb_end--;
  2318       } while (mem != bb->_nodes[_bb_end]);
  2319     } else {
  2320       // Set _bb_end to point after last schedulable inst.
  2321       _bb_end++;
  2324     assert( _bb_start <= _bb_end, "inverted block ends" );
  2326     // Compute the register antidependencies for the basic block
  2327     ComputeRegisterAntidependencies(bb);
  2328     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2330     // Compute intra-bb latencies for the nodes
  2331     ComputeLocalLatenciesForward(bb);
  2333     // Compute the usage within the block, and set the list of all nodes
  2334     // in the block that have no uses within the block.
  2335     ComputeUseCount(bb);
  2337     // Schedule the remaining instructions in the block
  2338     while ( _available.size() > 0 ) {
  2339       Node *n = ChooseNodeToBundle();
  2340       AddNodeToBundle(n,bb);
  2343     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2344 #ifdef ASSERT
  2345     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2346       Node *n = bb->_nodes[l];
  2347       uint m;
  2348       for( m = 0; m < _bb_end-_bb_start; m++ )
  2349         if( _scheduled[m] == n )
  2350           break;
  2351       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2353 #endif
  2355     // Now copy the instructions (in reverse order) back to the block
  2356     for ( uint k = _bb_start; k < _bb_end; k++ )
  2357       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
  2359 #ifndef PRODUCT
  2360     if (_cfg->C->trace_opto_output()) {
  2361       tty->print("#  Schedule BB#%03d (final)\n", i);
  2362       uint current = 0;
  2363       for (uint j = 0; j < bb->_nodes.size(); j++) {
  2364         Node *n = bb->_nodes[j];
  2365         if( valid_bundle_info(n) ) {
  2366           Bundle *bundle = node_bundling(n);
  2367           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2368             tty->print("*** Bundle: ");
  2369             bundle->dump();
  2371           n->dump();
  2375 #endif
  2376 #ifdef ASSERT
  2377   verify_good_schedule(bb,"after block local scheduling");
  2378 #endif
  2381 #ifndef PRODUCT
  2382   if (_cfg->C->trace_opto_output())
  2383     tty->print("# <- DoScheduling\n");
  2384 #endif
  2386   // Record final node-bundling array location
  2387   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2389 } // end DoScheduling
  2391 //------------------------------verify_good_schedule---------------------------
  2392 // Verify that no live-range used in the block is killed in the block by a
  2393 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2395 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2396 static bool edge_from_to( Node *from, Node *to ) {
  2397   for( uint i=0; i<from->len(); i++ )
  2398     if( from->in(i) == to )
  2399       return true;
  2400   return false;
  2403 #ifdef ASSERT
  2404 //------------------------------verify_do_def----------------------------------
  2405 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2406   // Check for bad kills
  2407   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2408     Node *prior_use = _reg_node[def];
  2409     if( prior_use && !edge_from_to(prior_use,n) ) {
  2410       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2411       n->dump();
  2412       tty->print_cr("...");
  2413       prior_use->dump();
  2414       assert(edge_from_to(prior_use,n),msg);
  2416     _reg_node.map(def,NULL); // Kill live USEs
  2420 //------------------------------verify_good_schedule---------------------------
  2421 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2423   // Zap to something reasonable for the verify code
  2424   _reg_node.clear();
  2426   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2427   // kill a live value (other than the one it's supposed to).  Add each
  2428   // USE to the live set.
  2429   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
  2430     Node *n = b->_nodes[i];
  2431     int n_op = n->Opcode();
  2432     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2433       // Fat-proj kills a slew of registers
  2434       RegMask rm = n->out_RegMask();// Make local copy
  2435       while( rm.is_NotEmpty() ) {
  2436         OptoReg::Name kill = rm.find_first_elem();
  2437         rm.Remove(kill);
  2438         verify_do_def( n, kill, msg );
  2440     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2441       // Get DEF'd registers the normal way
  2442       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2443       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2446     // Now make all USEs live
  2447     for( uint i=1; i<n->req(); i++ ) {
  2448       Node *def = n->in(i);
  2449       assert(def != 0, "input edge required");
  2450       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2451       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2452       if( OptoReg::is_valid(reg_lo) ) {
  2453         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
  2454         _reg_node.map(reg_lo,n);
  2456       if( OptoReg::is_valid(reg_hi) ) {
  2457         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
  2458         _reg_node.map(reg_hi,n);
  2464   // Zap to something reasonable for the Antidependence code
  2465   _reg_node.clear();
  2467 #endif
  2469 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2470 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2471   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2472     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2473     from = from->in(0);
  2475   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2476       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2477     from->add_prec(to);
  2480 //------------------------------anti_do_def------------------------------------
  2481 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2482   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2483     return;
  2485   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2486   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
  2487       is_def ) {    // Check for a true def (not a kill)
  2488     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2489     return;
  2492   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2493   debug_only( def = (Node*)0xdeadbeef; )
  2495   // After some number of kills there _may_ be a later def
  2496   Node *later_def = NULL;
  2498   // Finding a kill requires a real pinch-point.
  2499   // Check for not already having a pinch-point.
  2500   // Pinch points are Op_Node's.
  2501   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2502     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2503     if ( _pinch_free_list.size() > 0) {
  2504       pinch = _pinch_free_list.pop();
  2505     } else {
  2506       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
  2508     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2509       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2510       return;
  2512     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
  2513     _reg_node.map(def_reg,pinch); // Record pinch-point
  2514     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2515     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2516       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2517       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2518       later_def = NULL;           // and no later def
  2520     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2521   } else {                        // Else have valid pinch point
  2522     if( pinch->in(0) )            // If there is a later-def
  2523       later_def = pinch->in(0);   // Get it
  2526   // Add output-dependence edge from later def to kill
  2527   if( later_def )               // If there is some original def
  2528     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2530   // See if current kill is also a use, and so is forced to be the pinch-point.
  2531   if( pinch->Opcode() == Op_Node ) {
  2532     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2533     for( uint i=1; i<uses->req(); i++ ) {
  2534       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2535           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2536         // Yes, found a use/kill pinch-point
  2537         pinch->set_req(0,NULL);  //
  2538         pinch->replace_by(kill); // Move anti-dep edges up
  2539         pinch = kill;
  2540         _reg_node.map(def_reg,pinch);
  2541         return;
  2546   // Add edge from kill to pinch-point
  2547   add_prec_edge_from_to(kill,pinch);
  2550 //------------------------------anti_do_use------------------------------------
  2551 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2552   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2553     return;
  2554   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2555   // Check for no later def_reg/kill in block
  2556   if( pinch && _bbs[pinch->_idx] == b &&
  2557       // Use has to be block-local as well
  2558       _bbs[use->_idx] == b ) {
  2559     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2560         pinch->req() == 1 ) {   // pinch not yet in block?
  2561       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2562       // Insert the pinch-point in the block just after the last use
  2563       b->_nodes.insert(b->find_node(use)+1,pinch);
  2564       _bb_end++;                // Increase size scheduled region in block
  2567     add_prec_edge_from_to(pinch,use);
  2571 //------------------------------ComputeRegisterAntidependences-----------------
  2572 // We insert antidependences between the reads and following write of
  2573 // allocated registers to prevent illegal code motion. Hopefully, the
  2574 // number of added references should be fairly small, especially as we
  2575 // are only adding references within the current basic block.
  2576 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2578 #ifdef ASSERT
  2579   verify_good_schedule(b,"before block local scheduling");
  2580 #endif
  2582   // A valid schedule, for each register independently, is an endless cycle
  2583   // of: a def, then some uses (connected to the def by true dependencies),
  2584   // then some kills (defs with no uses), finally the cycle repeats with a new
  2585   // def.  The uses are allowed to float relative to each other, as are the
  2586   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2587   // antidependencies between all uses of a single def and all kills that
  2588   // follow, up to the next def.  More edges are redundant, because later defs
  2589   // & kills are already serialized with true or antidependencies.  To keep
  2590   // the edge count down, we add a 'pinch point' node if there's more than
  2591   // one use or more than one kill/def.
  2593   // We add dependencies in one bottom-up pass.
  2595   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2597   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2598   // register.  If not, we record the DEF/KILL in _reg_node, the
  2599   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2600   // "pinch point", a new Node that's in the graph but not in the block.
  2601   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2602   // We put the pinch point in _reg_node.  If there's already a pinch point
  2603   // we merely add an edge from the current DEF/KILL to the pinch point.
  2605   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2606   // put an edge from the pinch point to the USE.
  2608   // To be expedient, the _reg_node array is pre-allocated for the whole
  2609   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2610   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2611   // block.  Leftover node from some prior block is treated like a NULL (no
  2612   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2613   // it being in the current block.
  2614   bool fat_proj_seen = false;
  2615   uint last_safept = _bb_end-1;
  2616   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
  2617   Node* last_safept_node = end_node;
  2618   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2619     Node *n = b->_nodes[i];
  2620     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2621     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2622       // Fat-proj kills a slew of registers
  2623       // This can add edges to 'n' and obscure whether or not it was a def,
  2624       // hence the is_def flag.
  2625       fat_proj_seen = true;
  2626       RegMask rm = n->out_RegMask();// Make local copy
  2627       while( rm.is_NotEmpty() ) {
  2628         OptoReg::Name kill = rm.find_first_elem();
  2629         rm.Remove(kill);
  2630         anti_do_def( b, n, kill, is_def );
  2632     } else {
  2633       // Get DEF'd registers the normal way
  2634       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2635       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2638     // Check each register used by this instruction for a following DEF/KILL
  2639     // that must occur afterward and requires an anti-dependence edge.
  2640     for( uint j=0; j<n->req(); j++ ) {
  2641       Node *def = n->in(j);
  2642       if( def ) {
  2643         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2644         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2645         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2648     // Do not allow defs of new derived values to float above GC
  2649     // points unless the base is definitely available at the GC point.
  2651     Node *m = b->_nodes[i];
  2653     // Add precedence edge from following safepoint to use of derived pointer
  2654     if( last_safept_node != end_node &&
  2655         m != last_safept_node) {
  2656       for (uint k = 1; k < m->req(); k++) {
  2657         const Type *t = m->in(k)->bottom_type();
  2658         if( t->isa_oop_ptr() &&
  2659             t->is_ptr()->offset() != 0 ) {
  2660           last_safept_node->add_prec( m );
  2661           break;
  2666     if( n->jvms() ) {           // Precedence edge from derived to safept
  2667       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2668       if( b->_nodes[last_safept] != last_safept_node ) {
  2669         last_safept = b->find_node(last_safept_node);
  2671       for( uint j=last_safept; j > i; j-- ) {
  2672         Node *mach = b->_nodes[j];
  2673         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2674           mach->add_prec( n );
  2676       last_safept = i;
  2677       last_safept_node = m;
  2681   if (fat_proj_seen) {
  2682     // Garbage collect pinch nodes that were not consumed.
  2683     // They are usually created by a fat kill MachProj for a call.
  2684     garbage_collect_pinch_nodes();
  2688 //------------------------------garbage_collect_pinch_nodes-------------------------------
  2690 // Garbage collect pinch nodes for reuse by other blocks.
  2691 //
  2692 // The block scheduler's insertion of anti-dependence
  2693 // edges creates many pinch nodes when the block contains
  2694 // 2 or more Calls.  A pinch node is used to prevent a
  2695 // combinatorial explosion of edges.  If a set of kills for a
  2696 // register is anti-dependent on a set of uses (or defs), rather
  2697 // than adding an edge in the graph between each pair of kill
  2698 // and use (or def), a pinch is inserted between them:
  2699 //
  2700 //            use1   use2  use3
  2701 //                \   |   /
  2702 //                 \  |  /
  2703 //                  pinch
  2704 //                 /  |  \
  2705 //                /   |   \
  2706 //            kill1 kill2 kill3
  2707 //
  2708 // One pinch node is created per register killed when
  2709 // the second call is encountered during a backwards pass
  2710 // over the block.  Most of these pinch nodes are never
  2711 // wired into the graph because the register is never
  2712 // used or def'ed in the block.
  2713 //
  2714 void Scheduling::garbage_collect_pinch_nodes() {
  2715 #ifndef PRODUCT
  2716     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2717 #endif
  2718     int trace_cnt = 0;
  2719     for (uint k = 0; k < _reg_node.Size(); k++) {
  2720       Node* pinch = _reg_node[k];
  2721       if (pinch != NULL && pinch->Opcode() == Op_Node &&
  2722           // no predecence input edges
  2723           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2724         cleanup_pinch(pinch);
  2725         _pinch_free_list.push(pinch);
  2726         _reg_node.map(k, NULL);
  2727 #ifndef PRODUCT
  2728         if (_cfg->C->trace_opto_output()) {
  2729           trace_cnt++;
  2730           if (trace_cnt > 40) {
  2731             tty->print("\n");
  2732             trace_cnt = 0;
  2734           tty->print(" %d", pinch->_idx);
  2736 #endif
  2739 #ifndef PRODUCT
  2740     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2741 #endif
  2744 // Clean up a pinch node for reuse.
  2745 void Scheduling::cleanup_pinch( Node *pinch ) {
  2746   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  2748   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  2749     Node* use = pinch->last_out(i);
  2750     uint uses_found = 0;
  2751     for (uint j = use->req(); j < use->len(); j++) {
  2752       if (use->in(j) == pinch) {
  2753         use->rm_prec(j);
  2754         uses_found++;
  2757     assert(uses_found > 0, "must be a precedence edge");
  2758     i -= uses_found;    // we deleted 1 or more copies of this edge
  2760   // May have a later_def entry
  2761   pinch->set_req(0, NULL);
  2764 //------------------------------print_statistics-------------------------------
  2765 #ifndef PRODUCT
  2767 void Scheduling::dump_available() const {
  2768   tty->print("#Availist  ");
  2769   for (uint i = 0; i < _available.size(); i++)
  2770     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  2771   tty->cr();
  2774 // Print Scheduling Statistics
  2775 void Scheduling::print_statistics() {
  2776   // Print the size added by nops for bundling
  2777   tty->print("Nops added %d bytes to total of %d bytes",
  2778     _total_nop_size, _total_method_size);
  2779   if (_total_method_size > 0)
  2780     tty->print(", for %.2f%%",
  2781       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  2782   tty->print("\n");
  2784   // Print the number of branch shadows filled
  2785   if (Pipeline::_branch_has_delay_slot) {
  2786     tty->print("Of %d branches, %d had unconditional delay slots filled",
  2787       _total_branches, _total_unconditional_delays);
  2788     if (_total_branches > 0)
  2789       tty->print(", for %.2f%%",
  2790         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  2791     tty->print("\n");
  2794   uint total_instructions = 0, total_bundles = 0;
  2796   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  2797     uint bundle_count   = _total_instructions_per_bundle[i];
  2798     total_instructions += bundle_count * i;
  2799     total_bundles      += bundle_count;
  2802   if (total_bundles > 0)
  2803     tty->print("Average ILP (excluding nops) is %.2f\n",
  2804       ((double)total_instructions) / ((double)total_bundles));
  2806 #endif

mercurial