src/share/vm/opto/macro.cpp

Fri, 20 Aug 2010 23:40:30 -0700

author
jrose
date
Fri, 20 Aug 2010 23:40:30 -0700
changeset 2101
4b29a725c43c
parent 2037
e5dfb3ccb88b
child 2314
f95d63e2154a
permissions
-rw-r--r--

6912064: type profiles need to be exploited more for dynamic language support
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_macro.cpp.incl"
    29 //
    30 // Replace any references to "oldref" in inputs to "use" with "newref".
    31 // Returns the number of replacements made.
    32 //
    33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    34   int nreplacements = 0;
    35   uint req = use->req();
    36   for (uint j = 0; j < use->len(); j++) {
    37     Node *uin = use->in(j);
    38     if (uin == oldref) {
    39       if (j < req)
    40         use->set_req(j, newref);
    41       else
    42         use->set_prec(j, newref);
    43       nreplacements++;
    44     } else if (j >= req && uin == NULL) {
    45       break;
    46     }
    47   }
    48   return nreplacements;
    49 }
    51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    52   // Copy debug information and adjust JVMState information
    53   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    54   uint new_dbg_start = newcall->tf()->domain()->cnt();
    55   int jvms_adj  = new_dbg_start - old_dbg_start;
    56   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    58   Dict* sosn_map = new Dict(cmpkey,hashkey);
    59   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    60     Node* old_in = oldcall->in(i);
    61     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    62     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
    63       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
    64       uint old_unique = C->unique();
    65       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
    66       if (old_unique != C->unique()) {
    67         new_in->set_req(0, newcall->in(0)); // reset control edge
    68         new_in = transform_later(new_in); // Register new node.
    69       }
    70       old_in = new_in;
    71     }
    72     newcall->add_req(old_in);
    73   }
    75   newcall->set_jvms(oldcall->jvms());
    76   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    77     jvms->set_map(newcall);
    78     jvms->set_locoff(jvms->locoff()+jvms_adj);
    79     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    80     jvms->set_monoff(jvms->monoff()+jvms_adj);
    81     jvms->set_scloff(jvms->scloff()+jvms_adj);
    82     jvms->set_endoff(jvms->endoff()+jvms_adj);
    83   }
    84 }
    86 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
    87   Node* cmp;
    88   if (mask != 0) {
    89     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
    90     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
    91   } else {
    92     cmp = word;
    93   }
    94   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
    95   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
    96   transform_later(iff);
    98   // Fast path taken.
    99   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
   101   // Fast path not-taken, i.e. slow path
   102   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
   104   if (return_fast_path) {
   105     region->init_req(edge, slow_taken); // Capture slow-control
   106     return fast_taken;
   107   } else {
   108     region->init_req(edge, fast_taken); // Capture fast-control
   109     return slow_taken;
   110   }
   111 }
   113 //--------------------copy_predefined_input_for_runtime_call--------------------
   114 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
   115   // Set fixed predefined input arguments
   116   call->init_req( TypeFunc::Control, ctrl );
   117   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
   118   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
   119   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
   120   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
   121 }
   123 //------------------------------make_slow_call---------------------------------
   124 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
   126   // Slow-path call
   127   int size = slow_call_type->domain()->cnt();
   128  CallNode *call = leaf_name
   129    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   130    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   132   // Slow path call has no side-effects, uses few values
   133   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   134   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   135   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   136   copy_call_debug_info(oldcall, call);
   137   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   138   _igvn.replace_node(oldcall, call);
   139   transform_later(call);
   141   return call;
   142 }
   144 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   145   _fallthroughproj = NULL;
   146   _fallthroughcatchproj = NULL;
   147   _ioproj_fallthrough = NULL;
   148   _ioproj_catchall = NULL;
   149   _catchallcatchproj = NULL;
   150   _memproj_fallthrough = NULL;
   151   _memproj_catchall = NULL;
   152   _resproj = NULL;
   153   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   154     ProjNode *pn = call->fast_out(i)->as_Proj();
   155     switch (pn->_con) {
   156       case TypeFunc::Control:
   157       {
   158         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   159         _fallthroughproj = pn;
   160         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   161         const Node *cn = pn->fast_out(j);
   162         if (cn->is_Catch()) {
   163           ProjNode *cpn = NULL;
   164           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   165             cpn = cn->fast_out(k)->as_Proj();
   166             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   167             if (cpn->_con == CatchProjNode::fall_through_index)
   168               _fallthroughcatchproj = cpn;
   169             else {
   170               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   171               _catchallcatchproj = cpn;
   172             }
   173           }
   174         }
   175         break;
   176       }
   177       case TypeFunc::I_O:
   178         if (pn->_is_io_use)
   179           _ioproj_catchall = pn;
   180         else
   181           _ioproj_fallthrough = pn;
   182         break;
   183       case TypeFunc::Memory:
   184         if (pn->_is_io_use)
   185           _memproj_catchall = pn;
   186         else
   187           _memproj_fallthrough = pn;
   188         break;
   189       case TypeFunc::Parms:
   190         _resproj = pn;
   191         break;
   192       default:
   193         assert(false, "unexpected projection from allocation node.");
   194     }
   195   }
   197 }
   199 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
   200 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
   201   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
   202   if (!UseG1GC) {
   203     // vanilla/CMS post barrier
   204     Node *shift = p2x->unique_out();
   205     Node *addp = shift->unique_out();
   206     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
   207       Node *st = addp->last_out(j);
   208       assert(st->is_Store(), "store required");
   209       _igvn.replace_node(st, st->in(MemNode::Memory));
   210     }
   211   } else {
   212     // G1 pre/post barriers
   213     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
   214     // It could be only one user, URShift node, in Object.clone() instrinsic
   215     // but the new allocation is passed to arraycopy stub and it could not
   216     // be scalar replaced. So we don't check the case.
   218     // Remove G1 post barrier.
   220     // Search for CastP2X->Xor->URShift->Cmp path which
   221     // checks if the store done to a different from the value's region.
   222     // And replace Cmp with #0 (false) to collapse G1 post barrier.
   223     Node* xorx = NULL;
   224     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
   225       Node* u = p2x->fast_out(i);
   226       if (u->Opcode() == Op_XorX) {
   227         xorx = u;
   228         break;
   229       }
   230     }
   231     assert(xorx != NULL, "missing G1 post barrier");
   232     Node* shift = xorx->unique_out();
   233     Node* cmpx = shift->unique_out();
   234     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
   235     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
   236     "missing region check in G1 post barrier");
   237     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   239     // Remove G1 pre barrier.
   241     // Search "if (marking != 0)" check and set it to "false".
   242     Node* this_region = p2x->in(0);
   243     assert(this_region != NULL, "");
   244     // There is no G1 pre barrier if previous stored value is NULL
   245     // (for example, after initialization).
   246     if (this_region->is_Region() && this_region->req() == 3) {
   247       int ind = 1;
   248       if (!this_region->in(ind)->is_IfFalse()) {
   249         ind = 2;
   250       }
   251       if (this_region->in(ind)->is_IfFalse()) {
   252         Node* bol = this_region->in(ind)->in(0)->in(1);
   253         assert(bol->is_Bool(), "");
   254         cmpx = bol->in(1);
   255         if (bol->as_Bool()->_test._test == BoolTest::ne &&
   256             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
   257             cmpx->in(1)->is_Load()) {
   258           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
   259           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
   260                                               PtrQueue::byte_offset_of_active());
   261           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
   262               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   263               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
   264             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   265           }
   266         }
   267       }
   268     }
   269     // Now CastP2X can be removed since it is used only on dead path
   270     // which currently still alive until igvn optimize it.
   271     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
   272     _igvn.replace_node(p2x, top());
   273   }
   274 }
   276 // Search for a memory operation for the specified memory slice.
   277 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
   278   Node *orig_mem = mem;
   279   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   280   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
   281   while (true) {
   282     if (mem == alloc_mem || mem == start_mem ) {
   283       return mem;  // hit one of our sentinels
   284     } else if (mem->is_MergeMem()) {
   285       mem = mem->as_MergeMem()->memory_at(alias_idx);
   286     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
   287       Node *in = mem->in(0);
   288       // we can safely skip over safepoints, calls, locks and membars because we
   289       // already know that the object is safe to eliminate.
   290       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
   291         return in;
   292       } else if (in->is_Call()) {
   293         CallNode *call = in->as_Call();
   294         if (!call->may_modify(tinst, phase)) {
   295           mem = call->in(TypeFunc::Memory);
   296         }
   297         mem = in->in(TypeFunc::Memory);
   298       } else if (in->is_MemBar()) {
   299         mem = in->in(TypeFunc::Memory);
   300       } else {
   301         assert(false, "unexpected projection");
   302       }
   303     } else if (mem->is_Store()) {
   304       const TypePtr* atype = mem->as_Store()->adr_type();
   305       int adr_idx = Compile::current()->get_alias_index(atype);
   306       if (adr_idx == alias_idx) {
   307         assert(atype->isa_oopptr(), "address type must be oopptr");
   308         int adr_offset = atype->offset();
   309         uint adr_iid = atype->is_oopptr()->instance_id();
   310         // Array elements references have the same alias_idx
   311         // but different offset and different instance_id.
   312         if (adr_offset == offset && adr_iid == alloc->_idx)
   313           return mem;
   314       } else {
   315         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
   316       }
   317       mem = mem->in(MemNode::Memory);
   318     } else if (mem->is_ClearArray()) {
   319       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
   320         // Can not bypass initialization of the instance
   321         // we are looking.
   322         debug_only(intptr_t offset;)
   323         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
   324         InitializeNode* init = alloc->as_Allocate()->initialization();
   325         // We are looking for stored value, return Initialize node
   326         // or memory edge from Allocate node.
   327         if (init != NULL)
   328           return init;
   329         else
   330           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
   331       }
   332       // Otherwise skip it (the call updated 'mem' value).
   333     } else if (mem->Opcode() == Op_SCMemProj) {
   334       assert(mem->in(0)->is_LoadStore(), "sanity");
   335       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
   336       int adr_idx = Compile::current()->get_alias_index(atype);
   337       if (adr_idx == alias_idx) {
   338         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   339         return NULL;
   340       }
   341       mem = mem->in(0)->in(MemNode::Memory);
   342     } else {
   343       return mem;
   344     }
   345     assert(mem != orig_mem, "dead memory loop");
   346   }
   347 }
   349 //
   350 // Given a Memory Phi, compute a value Phi containing the values from stores
   351 // on the input paths.
   352 // Note: this function is recursive, its depth is limied by the "level" argument
   353 // Returns the computed Phi, or NULL if it cannot compute it.
   354 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
   355   assert(mem->is_Phi(), "sanity");
   356   int alias_idx = C->get_alias_index(adr_t);
   357   int offset = adr_t->offset();
   358   int instance_id = adr_t->instance_id();
   360   // Check if an appropriate value phi already exists.
   361   Node* region = mem->in(0);
   362   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   363     Node* phi = region->fast_out(k);
   364     if (phi->is_Phi() && phi != mem &&
   365         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
   366       return phi;
   367     }
   368   }
   369   // Check if an appropriate new value phi already exists.
   370   Node* new_phi = NULL;
   371   uint size = value_phis->size();
   372   for (uint i=0; i < size; i++) {
   373     if ( mem->_idx == value_phis->index_at(i) ) {
   374       return value_phis->node_at(i);
   375     }
   376   }
   378   if (level <= 0) {
   379     return NULL; // Give up: phi tree too deep
   380   }
   381   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   382   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   384   uint length = mem->req();
   385   GrowableArray <Node *> values(length, length, NULL);
   387   // create a new Phi for the value
   388   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
   389   transform_later(phi);
   390   value_phis->push(phi, mem->_idx);
   392   for (uint j = 1; j < length; j++) {
   393     Node *in = mem->in(j);
   394     if (in == NULL || in->is_top()) {
   395       values.at_put(j, in);
   396     } else  {
   397       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
   398       if (val == start_mem || val == alloc_mem) {
   399         // hit a sentinel, return appropriate 0 value
   400         values.at_put(j, _igvn.zerocon(ft));
   401         continue;
   402       }
   403       if (val->is_Initialize()) {
   404         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   405       }
   406       if (val == NULL) {
   407         return NULL;  // can't find a value on this path
   408       }
   409       if (val == mem) {
   410         values.at_put(j, mem);
   411       } else if (val->is_Store()) {
   412         values.at_put(j, val->in(MemNode::ValueIn));
   413       } else if(val->is_Proj() && val->in(0) == alloc) {
   414         values.at_put(j, _igvn.zerocon(ft));
   415       } else if (val->is_Phi()) {
   416         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
   417         if (val == NULL) {
   418           return NULL;
   419         }
   420         values.at_put(j, val);
   421       } else if (val->Opcode() == Op_SCMemProj) {
   422         assert(val->in(0)->is_LoadStore(), "sanity");
   423         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   424         return NULL;
   425       } else {
   426 #ifdef ASSERT
   427         val->dump();
   428         assert(false, "unknown node on this path");
   429 #endif
   430         return NULL;  // unknown node on this path
   431       }
   432     }
   433   }
   434   // Set Phi's inputs
   435   for (uint j = 1; j < length; j++) {
   436     if (values.at(j) == mem) {
   437       phi->init_req(j, phi);
   438     } else {
   439       phi->init_req(j, values.at(j));
   440     }
   441   }
   442   return phi;
   443 }
   445 // Search the last value stored into the object's field.
   446 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
   447   assert(adr_t->is_known_instance_field(), "instance required");
   448   int instance_id = adr_t->instance_id();
   449   assert((uint)instance_id == alloc->_idx, "wrong allocation");
   451   int alias_idx = C->get_alias_index(adr_t);
   452   int offset = adr_t->offset();
   453   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   454   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
   455   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   456   Arena *a = Thread::current()->resource_area();
   457   VectorSet visited(a);
   460   bool done = sfpt_mem == alloc_mem;
   461   Node *mem = sfpt_mem;
   462   while (!done) {
   463     if (visited.test_set(mem->_idx)) {
   464       return NULL;  // found a loop, give up
   465     }
   466     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
   467     if (mem == start_mem || mem == alloc_mem) {
   468       done = true;  // hit a sentinel, return appropriate 0 value
   469     } else if (mem->is_Initialize()) {
   470       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   471       if (mem == NULL) {
   472         done = true; // Something go wrong.
   473       } else if (mem->is_Store()) {
   474         const TypePtr* atype = mem->as_Store()->adr_type();
   475         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
   476         done = true;
   477       }
   478     } else if (mem->is_Store()) {
   479       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
   480       assert(atype != NULL, "address type must be oopptr");
   481       assert(C->get_alias_index(atype) == alias_idx &&
   482              atype->is_known_instance_field() && atype->offset() == offset &&
   483              atype->instance_id() == instance_id, "store is correct memory slice");
   484       done = true;
   485     } else if (mem->is_Phi()) {
   486       // try to find a phi's unique input
   487       Node *unique_input = NULL;
   488       Node *top = C->top();
   489       for (uint i = 1; i < mem->req(); i++) {
   490         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
   491         if (n == NULL || n == top || n == mem) {
   492           continue;
   493         } else if (unique_input == NULL) {
   494           unique_input = n;
   495         } else if (unique_input != n) {
   496           unique_input = top;
   497           break;
   498         }
   499       }
   500       if (unique_input != NULL && unique_input != top) {
   501         mem = unique_input;
   502       } else {
   503         done = true;
   504       }
   505     } else {
   506       assert(false, "unexpected node");
   507     }
   508   }
   509   if (mem != NULL) {
   510     if (mem == start_mem || mem == alloc_mem) {
   511       // hit a sentinel, return appropriate 0 value
   512       return _igvn.zerocon(ft);
   513     } else if (mem->is_Store()) {
   514       return mem->in(MemNode::ValueIn);
   515     } else if (mem->is_Phi()) {
   516       // attempt to produce a Phi reflecting the values on the input paths of the Phi
   517       Node_Stack value_phis(a, 8);
   518       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
   519       if (phi != NULL) {
   520         return phi;
   521       } else {
   522         // Kill all new Phis
   523         while(value_phis.is_nonempty()) {
   524           Node* n = value_phis.node();
   525           _igvn.replace_node(n, C->top());
   526           value_phis.pop();
   527         }
   528       }
   529     }
   530   }
   531   // Something go wrong.
   532   return NULL;
   533 }
   535 // Check the possibility of scalar replacement.
   536 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   537   //  Scan the uses of the allocation to check for anything that would
   538   //  prevent us from eliminating it.
   539   NOT_PRODUCT( const char* fail_eliminate = NULL; )
   540   DEBUG_ONLY( Node* disq_node = NULL; )
   541   bool  can_eliminate = true;
   543   Node* res = alloc->result_cast();
   544   const TypeOopPtr* res_type = NULL;
   545   if (res == NULL) {
   546     // All users were eliminated.
   547   } else if (!res->is_CheckCastPP()) {
   548     alloc->_is_scalar_replaceable = false;  // don't try again
   549     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
   550     can_eliminate = false;
   551   } else {
   552     res_type = _igvn.type(res)->isa_oopptr();
   553     if (res_type == NULL) {
   554       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
   555       can_eliminate = false;
   556     } else if (res_type->isa_aryptr()) {
   557       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   558       if (length < 0) {
   559         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
   560         can_eliminate = false;
   561       }
   562     }
   563   }
   565   if (can_eliminate && res != NULL) {
   566     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
   567                                j < jmax && can_eliminate; j++) {
   568       Node* use = res->fast_out(j);
   570       if (use->is_AddP()) {
   571         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
   572         int offset = addp_type->offset();
   574         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
   575           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
   576           can_eliminate = false;
   577           break;
   578         }
   579         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
   580                                    k < kmax && can_eliminate; k++) {
   581           Node* n = use->fast_out(k);
   582           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
   583             DEBUG_ONLY(disq_node = n;)
   584             if (n->is_Load() || n->is_LoadStore()) {
   585               NOT_PRODUCT(fail_eliminate = "Field load";)
   586             } else {
   587               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
   588             }
   589             can_eliminate = false;
   590           }
   591         }
   592       } else if (use->is_SafePoint()) {
   593         SafePointNode* sfpt = use->as_SafePoint();
   594         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
   595           // Object is passed as argument.
   596           DEBUG_ONLY(disq_node = use;)
   597           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
   598           can_eliminate = false;
   599         }
   600         Node* sfptMem = sfpt->memory();
   601         if (sfptMem == NULL || sfptMem->is_top()) {
   602           DEBUG_ONLY(disq_node = use;)
   603           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
   604           can_eliminate = false;
   605         } else {
   606           safepoints.append_if_missing(sfpt);
   607         }
   608       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
   609         if (use->is_Phi()) {
   610           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
   611             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   612           } else {
   613             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
   614           }
   615           DEBUG_ONLY(disq_node = use;)
   616         } else {
   617           if (use->Opcode() == Op_Return) {
   618             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   619           }else {
   620             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
   621           }
   622           DEBUG_ONLY(disq_node = use;)
   623         }
   624         can_eliminate = false;
   625       }
   626     }
   627   }
   629 #ifndef PRODUCT
   630   if (PrintEliminateAllocations) {
   631     if (can_eliminate) {
   632       tty->print("Scalar ");
   633       if (res == NULL)
   634         alloc->dump();
   635       else
   636         res->dump();
   637     } else {
   638       tty->print("NotScalar (%s)", fail_eliminate);
   639       if (res == NULL)
   640         alloc->dump();
   641       else
   642         res->dump();
   643 #ifdef ASSERT
   644       if (disq_node != NULL) {
   645           tty->print("  >>>> ");
   646           disq_node->dump();
   647       }
   648 #endif /*ASSERT*/
   649     }
   650   }
   651 #endif
   652   return can_eliminate;
   653 }
   655 // Do scalar replacement.
   656 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   657   GrowableArray <SafePointNode *> safepoints_done;
   659   ciKlass* klass = NULL;
   660   ciInstanceKlass* iklass = NULL;
   661   int nfields = 0;
   662   int array_base;
   663   int element_size;
   664   BasicType basic_elem_type;
   665   ciType* elem_type;
   667   Node* res = alloc->result_cast();
   668   const TypeOopPtr* res_type = NULL;
   669   if (res != NULL) { // Could be NULL when there are no users
   670     res_type = _igvn.type(res)->isa_oopptr();
   671   }
   673   if (res != NULL) {
   674     klass = res_type->klass();
   675     if (res_type->isa_instptr()) {
   676       // find the fields of the class which will be needed for safepoint debug information
   677       assert(klass->is_instance_klass(), "must be an instance klass.");
   678       iklass = klass->as_instance_klass();
   679       nfields = iklass->nof_nonstatic_fields();
   680     } else {
   681       // find the array's elements which will be needed for safepoint debug information
   682       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   683       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
   684       elem_type = klass->as_array_klass()->element_type();
   685       basic_elem_type = elem_type->basic_type();
   686       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
   687       element_size = type2aelembytes(basic_elem_type);
   688     }
   689   }
   690   //
   691   // Process the safepoint uses
   692   //
   693   while (safepoints.length() > 0) {
   694     SafePointNode* sfpt = safepoints.pop();
   695     Node* mem = sfpt->memory();
   696     uint first_ind = sfpt->req();
   697     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
   698 #ifdef ASSERT
   699                                                  alloc,
   700 #endif
   701                                                  first_ind, nfields);
   702     sobj->init_req(0, sfpt->in(TypeFunc::Control));
   703     transform_later(sobj);
   705     // Scan object's fields adding an input to the safepoint for each field.
   706     for (int j = 0; j < nfields; j++) {
   707       intptr_t offset;
   708       ciField* field = NULL;
   709       if (iklass != NULL) {
   710         field = iklass->nonstatic_field_at(j);
   711         offset = field->offset();
   712         elem_type = field->type();
   713         basic_elem_type = field->layout_type();
   714       } else {
   715         offset = array_base + j * (intptr_t)element_size;
   716       }
   718       const Type *field_type;
   719       // The next code is taken from Parse::do_get_xxx().
   720       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
   721         if (!elem_type->is_loaded()) {
   722           field_type = TypeInstPtr::BOTTOM;
   723         } else if (field != NULL && field->is_constant() && field->is_static()) {
   724           // This can happen if the constant oop is non-perm.
   725           ciObject* con = field->constant_value().as_object();
   726           // Do not "join" in the previous type; it doesn't add value,
   727           // and may yield a vacuous result if the field is of interface type.
   728           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   729           assert(field_type != NULL, "field singleton type must be consistent");
   730         } else {
   731           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
   732         }
   733         if (UseCompressedOops) {
   734           field_type = field_type->make_narrowoop();
   735           basic_elem_type = T_NARROWOOP;
   736         }
   737       } else {
   738         field_type = Type::get_const_basic_type(basic_elem_type);
   739       }
   741       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
   743       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
   744       if (field_val == NULL) {
   745         // we weren't able to find a value for this field,
   746         // give up on eliminating this allocation
   747         alloc->_is_scalar_replaceable = false;  // don't try again
   748         // remove any extra entries we added to the safepoint
   749         uint last = sfpt->req() - 1;
   750         for (int k = 0;  k < j; k++) {
   751           sfpt->del_req(last--);
   752         }
   753         // rollback processed safepoints
   754         while (safepoints_done.length() > 0) {
   755           SafePointNode* sfpt_done = safepoints_done.pop();
   756           // remove any extra entries we added to the safepoint
   757           last = sfpt_done->req() - 1;
   758           for (int k = 0;  k < nfields; k++) {
   759             sfpt_done->del_req(last--);
   760           }
   761           JVMState *jvms = sfpt_done->jvms();
   762           jvms->set_endoff(sfpt_done->req());
   763           // Now make a pass over the debug information replacing any references
   764           // to SafePointScalarObjectNode with the allocated object.
   765           int start = jvms->debug_start();
   766           int end   = jvms->debug_end();
   767           for (int i = start; i < end; i++) {
   768             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
   769               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
   770               if (scobj->first_index() == sfpt_done->req() &&
   771                   scobj->n_fields() == (uint)nfields) {
   772                 assert(scobj->alloc() == alloc, "sanity");
   773                 sfpt_done->set_req(i, res);
   774               }
   775             }
   776           }
   777         }
   778 #ifndef PRODUCT
   779         if (PrintEliminateAllocations) {
   780           if (field != NULL) {
   781             tty->print("=== At SafePoint node %d can't find value of Field: ",
   782                        sfpt->_idx);
   783             field->print();
   784             int field_idx = C->get_alias_index(field_addr_type);
   785             tty->print(" (alias_idx=%d)", field_idx);
   786           } else { // Array's element
   787             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
   788                        sfpt->_idx, j);
   789           }
   790           tty->print(", which prevents elimination of: ");
   791           if (res == NULL)
   792             alloc->dump();
   793           else
   794             res->dump();
   795         }
   796 #endif
   797         return false;
   798       }
   799       if (UseCompressedOops && field_type->isa_narrowoop()) {
   800         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
   801         // to be able scalar replace the allocation.
   802         if (field_val->is_EncodeP()) {
   803           field_val = field_val->in(1);
   804         } else {
   805           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
   806         }
   807       }
   808       sfpt->add_req(field_val);
   809     }
   810     JVMState *jvms = sfpt->jvms();
   811     jvms->set_endoff(sfpt->req());
   812     // Now make a pass over the debug information replacing any references
   813     // to the allocated object with "sobj"
   814     int start = jvms->debug_start();
   815     int end   = jvms->debug_end();
   816     for (int i = start; i < end; i++) {
   817       if (sfpt->in(i) == res) {
   818         sfpt->set_req(i, sobj);
   819       }
   820     }
   821     safepoints_done.append_if_missing(sfpt); // keep it for rollback
   822   }
   823   return true;
   824 }
   826 // Process users of eliminated allocation.
   827 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
   828   Node* res = alloc->result_cast();
   829   if (res != NULL) {
   830     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
   831       Node *use = res->last_out(j);
   832       uint oc1 = res->outcnt();
   834       if (use->is_AddP()) {
   835         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
   836           Node *n = use->last_out(k);
   837           uint oc2 = use->outcnt();
   838           if (n->is_Store()) {
   839 #ifdef ASSERT
   840             // Verify that there is no dependent MemBarVolatile nodes,
   841             // they should be removed during IGVN, see MemBarNode::Ideal().
   842             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
   843                                        p < pmax; p++) {
   844               Node* mb = n->fast_out(p);
   845               assert(mb->is_Initialize() || !mb->is_MemBar() ||
   846                      mb->req() <= MemBarNode::Precedent ||
   847                      mb->in(MemBarNode::Precedent) != n,
   848                      "MemBarVolatile should be eliminated for non-escaping object");
   849             }
   850 #endif
   851             _igvn.replace_node(n, n->in(MemNode::Memory));
   852           } else {
   853             eliminate_card_mark(n);
   854           }
   855           k -= (oc2 - use->outcnt());
   856         }
   857       } else {
   858         eliminate_card_mark(use);
   859       }
   860       j -= (oc1 - res->outcnt());
   861     }
   862     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
   863     _igvn.remove_dead_node(res);
   864   }
   866   //
   867   // Process other users of allocation's projections
   868   //
   869   if (_resproj != NULL && _resproj->outcnt() != 0) {
   870     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
   871       Node *use = _resproj->last_out(j);
   872       uint oc1 = _resproj->outcnt();
   873       if (use->is_Initialize()) {
   874         // Eliminate Initialize node.
   875         InitializeNode *init = use->as_Initialize();
   876         assert(init->outcnt() <= 2, "only a control and memory projection expected");
   877         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
   878         if (ctrl_proj != NULL) {
   879            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
   880           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
   881         }
   882         Node *mem_proj = init->proj_out(TypeFunc::Memory);
   883         if (mem_proj != NULL) {
   884           Node *mem = init->in(TypeFunc::Memory);
   885 #ifdef ASSERT
   886           if (mem->is_MergeMem()) {
   887             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
   888           } else {
   889             assert(mem == _memproj_fallthrough, "allocation memory projection");
   890           }
   891 #endif
   892           _igvn.replace_node(mem_proj, mem);
   893         }
   894       } else if (use->is_AddP()) {
   895         // raw memory addresses used only by the initialization
   896         _igvn.replace_node(use, C->top());
   897       } else  {
   898         assert(false, "only Initialize or AddP expected");
   899       }
   900       j -= (oc1 - _resproj->outcnt());
   901     }
   902   }
   903   if (_fallthroughcatchproj != NULL) {
   904     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
   905   }
   906   if (_memproj_fallthrough != NULL) {
   907     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
   908   }
   909   if (_memproj_catchall != NULL) {
   910     _igvn.replace_node(_memproj_catchall, C->top());
   911   }
   912   if (_ioproj_fallthrough != NULL) {
   913     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
   914   }
   915   if (_ioproj_catchall != NULL) {
   916     _igvn.replace_node(_ioproj_catchall, C->top());
   917   }
   918   if (_catchallcatchproj != NULL) {
   919     _igvn.replace_node(_catchallcatchproj, C->top());
   920   }
   921 }
   923 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
   925   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
   926     return false;
   927   }
   929   extract_call_projections(alloc);
   931   GrowableArray <SafePointNode *> safepoints;
   932   if (!can_eliminate_allocation(alloc, safepoints)) {
   933     return false;
   934   }
   936   if (!scalar_replacement(alloc, safepoints)) {
   937     return false;
   938   }
   940   CompileLog* log = C->log();
   941   if (log != NULL) {
   942     Node* klass = alloc->in(AllocateNode::KlassNode);
   943     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
   944     log->head("eliminate_allocation type='%d'",
   945               log->identify(tklass->klass()));
   946     JVMState* p = alloc->jvms();
   947     while (p != NULL) {
   948       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
   949       p = p->caller();
   950     }
   951     log->tail("eliminate_allocation");
   952   }
   954   process_users_of_allocation(alloc);
   956 #ifndef PRODUCT
   957   if (PrintEliminateAllocations) {
   958     if (alloc->is_AllocateArray())
   959       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
   960     else
   961       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
   962   }
   963 #endif
   965   return true;
   966 }
   969 //---------------------------set_eden_pointers-------------------------
   970 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
   971   if (UseTLAB) {                // Private allocation: load from TLS
   972     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
   973     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
   974     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
   975     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
   976     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
   977   } else {                      // Shared allocation: load from globals
   978     CollectedHeap* ch = Universe::heap();
   979     address top_adr = (address)ch->top_addr();
   980     address end_adr = (address)ch->end_addr();
   981     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
   982     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
   983   }
   984 }
   987 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
   988   Node* adr = basic_plus_adr(base, offset);
   989   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
   990   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
   991   transform_later(value);
   992   return value;
   993 }
   996 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
   997   Node* adr = basic_plus_adr(base, offset);
   998   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
   999   transform_later(mem);
  1000   return mem;
  1003 //=============================================================================
  1004 //
  1005 //                              A L L O C A T I O N
  1006 //
  1007 // Allocation attempts to be fast in the case of frequent small objects.
  1008 // It breaks down like this:
  1009 //
  1010 // 1) Size in doublewords is computed.  This is a constant for objects and
  1011 // variable for most arrays.  Doubleword units are used to avoid size
  1012 // overflow of huge doubleword arrays.  We need doublewords in the end for
  1013 // rounding.
  1014 //
  1015 // 2) Size is checked for being 'too large'.  Too-large allocations will go
  1016 // the slow path into the VM.  The slow path can throw any required
  1017 // exceptions, and does all the special checks for very large arrays.  The
  1018 // size test can constant-fold away for objects.  For objects with
  1019 // finalizers it constant-folds the otherway: you always go slow with
  1020 // finalizers.
  1021 //
  1022 // 3) If NOT using TLABs, this is the contended loop-back point.
  1023 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
  1024 //
  1025 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
  1026 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
  1027 // "size*8" we always enter the VM, where "largish" is a constant picked small
  1028 // enough that there's always space between the eden max and 4Gig (old space is
  1029 // there so it's quite large) and large enough that the cost of entering the VM
  1030 // is dwarfed by the cost to initialize the space.
  1031 //
  1032 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
  1033 // down.  If contended, repeat at step 3.  If using TLABs normal-store
  1034 // adjusted heap top back down; there is no contention.
  1035 //
  1036 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
  1037 // fields.
  1038 //
  1039 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
  1040 // oop flavor.
  1041 //
  1042 //=============================================================================
  1043 // FastAllocateSizeLimit value is in DOUBLEWORDS.
  1044 // Allocations bigger than this always go the slow route.
  1045 // This value must be small enough that allocation attempts that need to
  1046 // trigger exceptions go the slow route.  Also, it must be small enough so
  1047 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
  1048 //=============================================================================j//
  1049 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
  1050 // The allocator will coalesce int->oop copies away.  See comment in
  1051 // coalesce.cpp about how this works.  It depends critically on the exact
  1052 // code shape produced here, so if you are changing this code shape
  1053 // make sure the GC info for the heap-top is correct in and around the
  1054 // slow-path call.
  1055 //
  1057 void PhaseMacroExpand::expand_allocate_common(
  1058             AllocateNode* alloc, // allocation node to be expanded
  1059             Node* length,  // array length for an array allocation
  1060             const TypeFunc* slow_call_type, // Type of slow call
  1061             address slow_call_address  // Address of slow call
  1065   Node* ctrl = alloc->in(TypeFunc::Control);
  1066   Node* mem  = alloc->in(TypeFunc::Memory);
  1067   Node* i_o  = alloc->in(TypeFunc::I_O);
  1068   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  1069   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  1070   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
  1072   assert(ctrl != NULL, "must have control");
  1073   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  1074   // they will not be used if "always_slow" is set
  1075   enum { slow_result_path = 1, fast_result_path = 2 };
  1076   Node *result_region;
  1077   Node *result_phi_rawmem;
  1078   Node *result_phi_rawoop;
  1079   Node *result_phi_i_o;
  1081   // The initial slow comparison is a size check, the comparison
  1082   // we want to do is a BoolTest::gt
  1083   bool always_slow = false;
  1084   int tv = _igvn.find_int_con(initial_slow_test, -1);
  1085   if (tv >= 0) {
  1086     always_slow = (tv == 1);
  1087     initial_slow_test = NULL;
  1088   } else {
  1089     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  1092   if (C->env()->dtrace_alloc_probes() ||
  1093       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
  1094                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
  1095     // Force slow-path allocation
  1096     always_slow = true;
  1097     initial_slow_test = NULL;
  1101   enum { too_big_or_final_path = 1, need_gc_path = 2 };
  1102   Node *slow_region = NULL;
  1103   Node *toobig_false = ctrl;
  1105   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  1106   // generate the initial test if necessary
  1107   if (initial_slow_test != NULL ) {
  1108     slow_region = new (C, 3) RegionNode(3);
  1110     // Now make the initial failure test.  Usually a too-big test but
  1111     // might be a TRUE for finalizers or a fancy class check for
  1112     // newInstance0.
  1113     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  1114     transform_later(toobig_iff);
  1115     // Plug the failing-too-big test into the slow-path region
  1116     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
  1117     transform_later(toobig_true);
  1118     slow_region    ->init_req( too_big_or_final_path, toobig_true );
  1119     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
  1120     transform_later(toobig_false);
  1121   } else {         // No initial test, just fall into next case
  1122     toobig_false = ctrl;
  1123     debug_only(slow_region = NodeSentinel);
  1126   Node *slow_mem = mem;  // save the current memory state for slow path
  1127   // generate the fast allocation code unless we know that the initial test will always go slow
  1128   if (!always_slow) {
  1129     // Fast path modifies only raw memory.
  1130     if (mem->is_MergeMem()) {
  1131       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  1134     Node* eden_top_adr;
  1135     Node* eden_end_adr;
  1137     set_eden_pointers(eden_top_adr, eden_end_adr);
  1139     // Load Eden::end.  Loop invariant and hoisted.
  1140     //
  1141     // Note: We set the control input on "eden_end" and "old_eden_top" when using
  1142     //       a TLAB to work around a bug where these values were being moved across
  1143     //       a safepoint.  These are not oops, so they cannot be include in the oop
  1144     //       map, but the can be changed by a GC.   The proper way to fix this would
  1145     //       be to set the raw memory state when generating a  SafepointNode.  However
  1146     //       this will require extensive changes to the loop optimization in order to
  1147     //       prevent a degradation of the optimization.
  1148     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  1149     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
  1151     // allocate the Region and Phi nodes for the result
  1152     result_region = new (C, 3) RegionNode(3);
  1153     result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
  1154     result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
  1155     result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
  1157     // We need a Region for the loop-back contended case.
  1158     enum { fall_in_path = 1, contended_loopback_path = 2 };
  1159     Node *contended_region;
  1160     Node *contended_phi_rawmem;
  1161     if( UseTLAB ) {
  1162       contended_region = toobig_false;
  1163       contended_phi_rawmem = mem;
  1164     } else {
  1165       contended_region = new (C, 3) RegionNode(3);
  1166       contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1167       // Now handle the passing-too-big test.  We fall into the contended
  1168       // loop-back merge point.
  1169       contended_region    ->init_req( fall_in_path, toobig_false );
  1170       contended_phi_rawmem->init_req( fall_in_path, mem );
  1171       transform_later(contended_region);
  1172       transform_later(contended_phi_rawmem);
  1175     // Load(-locked) the heap top.
  1176     // See note above concerning the control input when using a TLAB
  1177     Node *old_eden_top = UseTLAB
  1178       ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
  1179       : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
  1181     transform_later(old_eden_top);
  1182     // Add to heap top to get a new heap top
  1183     Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
  1184     transform_later(new_eden_top);
  1185     // Check for needing a GC; compare against heap end
  1186     Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
  1187     transform_later(needgc_cmp);
  1188     Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
  1189     transform_later(needgc_bol);
  1190     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1191     transform_later(needgc_iff);
  1193     // Plug the failing-heap-space-need-gc test into the slow-path region
  1194     Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
  1195     transform_later(needgc_true);
  1196     if( initial_slow_test ) {
  1197       slow_region    ->init_req( need_gc_path, needgc_true );
  1198       // This completes all paths into the slow merge point
  1199       transform_later(slow_region);
  1200     } else {                      // No initial slow path needed!
  1201       // Just fall from the need-GC path straight into the VM call.
  1202       slow_region    = needgc_true;
  1204     // No need for a GC.  Setup for the Store-Conditional
  1205     Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
  1206     transform_later(needgc_false);
  1208     // Grab regular I/O before optional prefetch may change it.
  1209     // Slow-path does no I/O so just set it to the original I/O.
  1210     result_phi_i_o->init_req( slow_result_path, i_o );
  1212     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
  1213                               old_eden_top, new_eden_top, length);
  1215     // Store (-conditional) the modified eden top back down.
  1216     // StorePConditional produces flags for a test PLUS a modified raw
  1217     // memory state.
  1218     Node *store_eden_top;
  1219     Node *fast_oop_ctrl;
  1220     if( UseTLAB ) {
  1221       store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
  1222       transform_later(store_eden_top);
  1223       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
  1224     } else {
  1225       store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
  1226       transform_later(store_eden_top);
  1227       Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
  1228       transform_later(contention_check);
  1229       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
  1230       transform_later(store_eden_top);
  1232       // If not using TLABs, check to see if there was contention.
  1233       IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
  1234       transform_later(contention_iff);
  1235       Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
  1236       transform_later(contention_true);
  1237       // If contention, loopback and try again.
  1238       contended_region->init_req( contended_loopback_path, contention_true );
  1239       contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
  1241       // Fast-path succeeded with no contention!
  1242       Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
  1243       transform_later(contention_false);
  1244       fast_oop_ctrl = contention_false;
  1247     // Rename successful fast-path variables to make meaning more obvious
  1248     Node* fast_oop        = old_eden_top;
  1249     Node* fast_oop_rawmem = store_eden_top;
  1250     fast_oop_rawmem = initialize_object(alloc,
  1251                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
  1252                                         klass_node, length, size_in_bytes);
  1254     if (C->env()->dtrace_extended_probes()) {
  1255       // Slow-path call
  1256       int size = TypeFunc::Parms + 2;
  1257       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
  1258                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
  1259                                                       "dtrace_object_alloc",
  1260                                                       TypeRawPtr::BOTTOM);
  1262       // Get base of thread-local storage area
  1263       Node* thread = new (C, 1) ThreadLocalNode();
  1264       transform_later(thread);
  1266       call->init_req(TypeFunc::Parms+0, thread);
  1267       call->init_req(TypeFunc::Parms+1, fast_oop);
  1268       call->init_req( TypeFunc::Control, fast_oop_ctrl );
  1269       call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
  1270       call->init_req( TypeFunc::Memory , fast_oop_rawmem );
  1271       call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1272       call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1273       transform_later(call);
  1274       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  1275       transform_later(fast_oop_ctrl);
  1276       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  1277       transform_later(fast_oop_rawmem);
  1280     // Plug in the successful fast-path into the result merge point
  1281     result_region    ->init_req( fast_result_path, fast_oop_ctrl );
  1282     result_phi_rawoop->init_req( fast_result_path, fast_oop );
  1283     result_phi_i_o   ->init_req( fast_result_path, i_o );
  1284     result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
  1285   } else {
  1286     slow_region = ctrl;
  1289   // Generate slow-path call
  1290   CallNode *call = new (C, slow_call_type->domain()->cnt())
  1291     CallStaticJavaNode(slow_call_type, slow_call_address,
  1292                        OptoRuntime::stub_name(slow_call_address),
  1293                        alloc->jvms()->bci(),
  1294                        TypePtr::BOTTOM);
  1295   call->init_req( TypeFunc::Control, slow_region );
  1296   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  1297   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  1298   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1299   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1301   call->init_req(TypeFunc::Parms+0, klass_node);
  1302   if (length != NULL) {
  1303     call->init_req(TypeFunc::Parms+1, length);
  1306   // Copy debug information and adjust JVMState information, then replace
  1307   // allocate node with the call
  1308   copy_call_debug_info((CallNode *) alloc,  call);
  1309   if (!always_slow) {
  1310     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  1312   _igvn.replace_node(alloc, call);
  1313   transform_later(call);
  1315   // Identify the output projections from the allocate node and
  1316   // adjust any references to them.
  1317   // The control and io projections look like:
  1318   //
  1319   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  1320   //  Allocate                   Catch
  1321   //        ^---Proj(io) <-------+   ^---CatchProj(io)
  1322   //
  1323   //  We are interested in the CatchProj nodes.
  1324   //
  1325   extract_call_projections(call);
  1327   // An allocate node has separate memory projections for the uses on the control and i_o paths
  1328   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
  1329   if (!always_slow && _memproj_fallthrough != NULL) {
  1330     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1331       Node *use = _memproj_fallthrough->fast_out(i);
  1332       _igvn.hash_delete(use);
  1333       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
  1334       _igvn._worklist.push(use);
  1335       // back up iterator
  1336       --i;
  1339   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
  1340   // we end up with a call that has only 1 memory projection
  1341   if (_memproj_catchall != NULL ) {
  1342     if (_memproj_fallthrough == NULL) {
  1343       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
  1344       transform_later(_memproj_fallthrough);
  1346     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
  1347       Node *use = _memproj_catchall->fast_out(i);
  1348       _igvn.hash_delete(use);
  1349       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
  1350       _igvn._worklist.push(use);
  1351       // back up iterator
  1352       --i;
  1356   // An allocate node has separate i_o projections for the uses on the control and i_o paths
  1357   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
  1358   if (_ioproj_fallthrough == NULL) {
  1359     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
  1360     transform_later(_ioproj_fallthrough);
  1361   } else if (!always_slow) {
  1362     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1363       Node *use = _ioproj_fallthrough->fast_out(i);
  1365       _igvn.hash_delete(use);
  1366       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
  1367       _igvn._worklist.push(use);
  1368       // back up iterator
  1369       --i;
  1372   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
  1373   // we end up with a call that has only 1 control projection
  1374   if (_ioproj_catchall != NULL ) {
  1375     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
  1376       Node *use = _ioproj_catchall->fast_out(i);
  1377       _igvn.hash_delete(use);
  1378       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
  1379       _igvn._worklist.push(use);
  1380       // back up iterator
  1381       --i;
  1385   // if we generated only a slow call, we are done
  1386   if (always_slow)
  1387     return;
  1390   if (_fallthroughcatchproj != NULL) {
  1391     ctrl = _fallthroughcatchproj->clone();
  1392     transform_later(ctrl);
  1393     _igvn.replace_node(_fallthroughcatchproj, result_region);
  1394   } else {
  1395     ctrl = top();
  1397   Node *slow_result;
  1398   if (_resproj == NULL) {
  1399     // no uses of the allocation result
  1400     slow_result = top();
  1401   } else {
  1402     slow_result = _resproj->clone();
  1403     transform_later(slow_result);
  1404     _igvn.replace_node(_resproj, result_phi_rawoop);
  1407   // Plug slow-path into result merge point
  1408   result_region    ->init_req( slow_result_path, ctrl );
  1409   result_phi_rawoop->init_req( slow_result_path, slow_result);
  1410   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  1411   transform_later(result_region);
  1412   transform_later(result_phi_rawoop);
  1413   transform_later(result_phi_rawmem);
  1414   transform_later(result_phi_i_o);
  1415   // This completes all paths into the result merge point
  1419 // Helper for PhaseMacroExpand::expand_allocate_common.
  1420 // Initializes the newly-allocated storage.
  1421 Node*
  1422 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
  1423                                     Node* control, Node* rawmem, Node* object,
  1424                                     Node* klass_node, Node* length,
  1425                                     Node* size_in_bytes) {
  1426   InitializeNode* init = alloc->initialization();
  1427   // Store the klass & mark bits
  1428   Node* mark_node = NULL;
  1429   // For now only enable fast locking for non-array types
  1430   if (UseBiasedLocking && (length == NULL)) {
  1431     mark_node = make_load(control, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
  1432   } else {
  1433     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  1435   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
  1437   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
  1438   int header_size = alloc->minimum_header_size();  // conservatively small
  1440   // Array length
  1441   if (length != NULL) {         // Arrays need length field
  1442     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
  1443     // conservatively small header size:
  1444     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1445     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1446     if (k->is_array_klass())    // we know the exact header size in most cases:
  1447       header_size = Klass::layout_helper_header_size(k->layout_helper());
  1450   // Clear the object body, if necessary.
  1451   if (init == NULL) {
  1452     // The init has somehow disappeared; be cautious and clear everything.
  1453     //
  1454     // This can happen if a node is allocated but an uncommon trap occurs
  1455     // immediately.  In this case, the Initialize gets associated with the
  1456     // trap, and may be placed in a different (outer) loop, if the Allocate
  1457     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
  1458     // there can be two Allocates to one Initialize.  The answer in all these
  1459     // edge cases is safety first.  It is always safe to clear immediately
  1460     // within an Allocate, and then (maybe or maybe not) clear some more later.
  1461     if (!ZeroTLAB)
  1462       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
  1463                                             header_size, size_in_bytes,
  1464                                             &_igvn);
  1465   } else {
  1466     if (!init->is_complete()) {
  1467       // Try to win by zeroing only what the init does not store.
  1468       // We can also try to do some peephole optimizations,
  1469       // such as combining some adjacent subword stores.
  1470       rawmem = init->complete_stores(control, rawmem, object,
  1471                                      header_size, size_in_bytes, &_igvn);
  1473     // We have no more use for this link, since the AllocateNode goes away:
  1474     init->set_req(InitializeNode::RawAddress, top());
  1475     // (If we keep the link, it just confuses the register allocator,
  1476     // who thinks he sees a real use of the address by the membar.)
  1479   return rawmem;
  1482 // Generate prefetch instructions for next allocations.
  1483 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
  1484                                         Node*& contended_phi_rawmem,
  1485                                         Node* old_eden_top, Node* new_eden_top,
  1486                                         Node* length) {
  1487    enum { fall_in_path = 1, pf_path = 2 };
  1488    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
  1489       // Generate prefetch allocation with watermark check.
  1490       // As an allocation hits the watermark, we will prefetch starting
  1491       // at a "distance" away from watermark.
  1493       Node *pf_region = new (C, 3) RegionNode(3);
  1494       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1495                                                 TypeRawPtr::BOTTOM );
  1496       // I/O is used for Prefetch
  1497       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
  1499       Node *thread = new (C, 1) ThreadLocalNode();
  1500       transform_later(thread);
  1502       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
  1503                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
  1504       transform_later(eden_pf_adr);
  1506       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
  1507                                    contended_phi_rawmem, eden_pf_adr,
  1508                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
  1509       transform_later(old_pf_wm);
  1511       // check against new_eden_top
  1512       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
  1513       transform_later(need_pf_cmp);
  1514       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
  1515       transform_later(need_pf_bol);
  1516       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
  1517                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1518       transform_later(need_pf_iff);
  1520       // true node, add prefetchdistance
  1521       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
  1522       transform_later(need_pf_true);
  1524       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
  1525       transform_later(need_pf_false);
  1527       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
  1528                                     _igvn.MakeConX(AllocatePrefetchDistance) );
  1529       transform_later(new_pf_wmt );
  1530       new_pf_wmt->set_req(0, need_pf_true);
  1532       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
  1533                                        contended_phi_rawmem, eden_pf_adr,
  1534                                        TypeRawPtr::BOTTOM, new_pf_wmt );
  1535       transform_later(store_new_wmt);
  1537       // adding prefetches
  1538       pf_phi_abio->init_req( fall_in_path, i_o );
  1540       Node *prefetch_adr;
  1541       Node *prefetch;
  1542       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
  1543       uint step_size = AllocatePrefetchStepSize;
  1544       uint distance = 0;
  1546       for ( uint i = 0; i < lines; i++ ) {
  1547         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
  1548                                             _igvn.MakeConX(distance) );
  1549         transform_later(prefetch_adr);
  1550         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1551         transform_later(prefetch);
  1552         distance += step_size;
  1553         i_o = prefetch;
  1555       pf_phi_abio->set_req( pf_path, i_o );
  1557       pf_region->init_req( fall_in_path, need_pf_false );
  1558       pf_region->init_req( pf_path, need_pf_true );
  1560       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
  1561       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
  1563       transform_later(pf_region);
  1564       transform_later(pf_phi_rawmem);
  1565       transform_later(pf_phi_abio);
  1567       needgc_false = pf_region;
  1568       contended_phi_rawmem = pf_phi_rawmem;
  1569       i_o = pf_phi_abio;
  1570    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
  1571       // Insert a prefetch for each allocation only on the fast-path
  1572       Node *pf_region = new (C, 3) RegionNode(3);
  1573       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1574                                                 TypeRawPtr::BOTTOM );
  1576       // Generate several prefetch instructions only for arrays.
  1577       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1578       uint step_size = AllocatePrefetchStepSize;
  1579       uint distance = AllocatePrefetchDistance;
  1581       // Next cache address.
  1582       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
  1583                                             _igvn.MakeConX(distance));
  1584       transform_later(cache_adr);
  1585       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
  1586       transform_later(cache_adr);
  1587       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
  1588       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
  1589       transform_later(cache_adr);
  1590       cache_adr = new (C, 2) CastX2PNode(cache_adr);
  1591       transform_later(cache_adr);
  1593       // Prefetch
  1594       Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
  1595       prefetch->set_req(0, needgc_false);
  1596       transform_later(prefetch);
  1597       contended_phi_rawmem = prefetch;
  1598       Node *prefetch_adr;
  1599       distance = step_size;
  1600       for ( uint i = 1; i < lines; i++ ) {
  1601         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
  1602                                             _igvn.MakeConX(distance) );
  1603         transform_later(prefetch_adr);
  1604         prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
  1605         transform_later(prefetch);
  1606         distance += step_size;
  1607         contended_phi_rawmem = prefetch;
  1609    } else if( AllocatePrefetchStyle > 0 ) {
  1610       // Insert a prefetch for each allocation only on the fast-path
  1611       Node *prefetch_adr;
  1612       Node *prefetch;
  1613       // Generate several prefetch instructions only for arrays.
  1614       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1615       uint step_size = AllocatePrefetchStepSize;
  1616       uint distance = AllocatePrefetchDistance;
  1617       for ( uint i = 0; i < lines; i++ ) {
  1618         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
  1619                                             _igvn.MakeConX(distance) );
  1620         transform_later(prefetch_adr);
  1621         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1622         // Do not let it float too high, since if eden_top == eden_end,
  1623         // both might be null.
  1624         if( i == 0 ) { // Set control for first prefetch, next follows it
  1625           prefetch->init_req(0, needgc_false);
  1627         transform_later(prefetch);
  1628         distance += step_size;
  1629         i_o = prefetch;
  1632    return i_o;
  1636 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  1637   expand_allocate_common(alloc, NULL,
  1638                          OptoRuntime::new_instance_Type(),
  1639                          OptoRuntime::new_instance_Java());
  1642 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  1643   Node* length = alloc->in(AllocateNode::ALength);
  1644   expand_allocate_common(alloc, length,
  1645                          OptoRuntime::new_array_Type(),
  1646                          OptoRuntime::new_array_Java());
  1650 // we have determined that this lock/unlock can be eliminated, we simply
  1651 // eliminate the node without expanding it.
  1652 //
  1653 // Note:  The membar's associated with the lock/unlock are currently not
  1654 //        eliminated.  This should be investigated as a future enhancement.
  1655 //
  1656 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
  1658   if (!alock->is_eliminated()) {
  1659     return false;
  1661   if (alock->is_Lock() && !alock->is_coarsened()) {
  1662       // Create new "eliminated" BoxLock node and use it
  1663       // in monitor debug info for the same object.
  1664       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  1665       Node* obj = alock->obj_node();
  1666       if (!oldbox->is_eliminated()) {
  1667         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
  1668         newbox->set_eliminated();
  1669         transform_later(newbox);
  1670         // Replace old box node with new box for all users
  1671         // of the same object.
  1672         for (uint i = 0; i < oldbox->outcnt();) {
  1674           bool next_edge = true;
  1675           Node* u = oldbox->raw_out(i);
  1676           if (u == alock) {
  1677             i++;
  1678             continue; // It will be removed below
  1680           if (u->is_Lock() &&
  1681               u->as_Lock()->obj_node() == obj &&
  1682               // oldbox could be referenced in debug info also
  1683               u->as_Lock()->box_node() == oldbox) {
  1684             assert(u->as_Lock()->is_eliminated(), "sanity");
  1685             _igvn.hash_delete(u);
  1686             u->set_req(TypeFunc::Parms + 1, newbox);
  1687             next_edge = false;
  1688 #ifdef ASSERT
  1689           } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
  1690             assert(u->as_Unlock()->is_eliminated(), "sanity");
  1691 #endif
  1693           // Replace old box in monitor debug info.
  1694           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
  1695             SafePointNode* sfn = u->as_SafePoint();
  1696             JVMState* youngest_jvms = sfn->jvms();
  1697             int max_depth = youngest_jvms->depth();
  1698             for (int depth = 1; depth <= max_depth; depth++) {
  1699               JVMState* jvms = youngest_jvms->of_depth(depth);
  1700               int num_mon  = jvms->nof_monitors();
  1701               // Loop over monitors
  1702               for (int idx = 0; idx < num_mon; idx++) {
  1703                 Node* obj_node = sfn->monitor_obj(jvms, idx);
  1704                 Node* box_node = sfn->monitor_box(jvms, idx);
  1705                 if (box_node == oldbox && obj_node == obj) {
  1706                   int j = jvms->monitor_box_offset(idx);
  1707                   _igvn.hash_delete(u);
  1708                   u->set_req(j, newbox);
  1709                   next_edge = false;
  1711               } // for (int idx = 0;
  1712             } // for (int depth = 1;
  1713           } // if (u->is_SafePoint()
  1714           if (next_edge) i++;
  1715         } // for (uint i = 0; i < oldbox->outcnt();)
  1716       } // if (!oldbox->is_eliminated())
  1717   } // if (alock->is_Lock() && !lock->is_coarsened())
  1719   CompileLog* log = C->log();
  1720   if (log != NULL) {
  1721     log->head("eliminate_lock lock='%d'",
  1722               alock->is_Lock());
  1723     JVMState* p = alock->jvms();
  1724     while (p != NULL) {
  1725       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1726       p = p->caller();
  1728     log->tail("eliminate_lock");
  1731   #ifndef PRODUCT
  1732   if (PrintEliminateLocks) {
  1733     if (alock->is_Lock()) {
  1734       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
  1735     } else {
  1736       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
  1739   #endif
  1741   Node* mem  = alock->in(TypeFunc::Memory);
  1742   Node* ctrl = alock->in(TypeFunc::Control);
  1744   extract_call_projections(alock);
  1745   // There are 2 projections from the lock.  The lock node will
  1746   // be deleted when its last use is subsumed below.
  1747   assert(alock->outcnt() == 2 &&
  1748          _fallthroughproj != NULL &&
  1749          _memproj_fallthrough != NULL,
  1750          "Unexpected projections from Lock/Unlock");
  1752   Node* fallthroughproj = _fallthroughproj;
  1753   Node* memproj_fallthrough = _memproj_fallthrough;
  1755   // The memory projection from a lock/unlock is RawMem
  1756   // The input to a Lock is merged memory, so extract its RawMem input
  1757   // (unless the MergeMem has been optimized away.)
  1758   if (alock->is_Lock()) {
  1759     // Seach for MemBarAcquire node and delete it also.
  1760     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
  1761     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
  1762     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
  1763     Node* memproj = membar->proj_out(TypeFunc::Memory);
  1764     _igvn.replace_node(ctrlproj, fallthroughproj);
  1765     _igvn.replace_node(memproj, memproj_fallthrough);
  1767     // Delete FastLock node also if this Lock node is unique user
  1768     // (a loop peeling may clone a Lock node).
  1769     Node* flock = alock->as_Lock()->fastlock_node();
  1770     if (flock->outcnt() == 1) {
  1771       assert(flock->unique_out() == alock, "sanity");
  1772       _igvn.replace_node(flock, top());
  1776   // Seach for MemBarRelease node and delete it also.
  1777   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
  1778       ctrl->in(0)->is_MemBar()) {
  1779     MemBarNode* membar = ctrl->in(0)->as_MemBar();
  1780     assert(membar->Opcode() == Op_MemBarRelease &&
  1781            mem->is_Proj() && membar == mem->in(0), "");
  1782     _igvn.replace_node(fallthroughproj, ctrl);
  1783     _igvn.replace_node(memproj_fallthrough, mem);
  1784     fallthroughproj = ctrl;
  1785     memproj_fallthrough = mem;
  1786     ctrl = membar->in(TypeFunc::Control);
  1787     mem  = membar->in(TypeFunc::Memory);
  1790   _igvn.replace_node(fallthroughproj, ctrl);
  1791   _igvn.replace_node(memproj_fallthrough, mem);
  1792   return true;
  1796 //------------------------------expand_lock_node----------------------
  1797 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
  1799   Node* ctrl = lock->in(TypeFunc::Control);
  1800   Node* mem = lock->in(TypeFunc::Memory);
  1801   Node* obj = lock->obj_node();
  1802   Node* box = lock->box_node();
  1803   Node* flock = lock->fastlock_node();
  1805   // Make the merge point
  1806   Node *region;
  1807   Node *mem_phi;
  1808   Node *slow_path;
  1810   if (UseOptoBiasInlining) {
  1811     /*
  1812      *  See the full description in MacroAssembler::biased_locking_enter().
  1814      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
  1815      *    // The object is biased.
  1816      *    proto_node = klass->prototype_header;
  1817      *    o_node = thread | proto_node;
  1818      *    x_node = o_node ^ mark_word;
  1819      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
  1820      *      // Done.
  1821      *    } else {
  1822      *      if( (x_node & biased_lock_mask) != 0 ) {
  1823      *        // The klass's prototype header is no longer biased.
  1824      *        cas(&mark_word, mark_word, proto_node)
  1825      *        goto cas_lock;
  1826      *      } else {
  1827      *        // The klass's prototype header is still biased.
  1828      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
  1829      *          old = mark_word;
  1830      *          new = o_node;
  1831      *        } else {
  1832      *          // Different thread or anonymous biased.
  1833      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
  1834      *          new = thread | old;
  1835      *        }
  1836      *        // Try to rebias.
  1837      *        if( cas(&mark_word, old, new) == 0 ) {
  1838      *          // Done.
  1839      *        } else {
  1840      *          goto slow_path; // Failed.
  1841      *        }
  1842      *      }
  1843      *    }
  1844      *  } else {
  1845      *    // The object is not biased.
  1846      *    cas_lock:
  1847      *    if( FastLock(obj) == 0 ) {
  1848      *      // Done.
  1849      *    } else {
  1850      *      slow_path:
  1851      *      OptoRuntime::complete_monitor_locking_Java(obj);
  1852      *    }
  1853      *  }
  1854      */
  1856     region  = new (C, 5) RegionNode(5);
  1857     // create a Phi for the memory state
  1858     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1860     Node* fast_lock_region  = new (C, 3) RegionNode(3);
  1861     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1863     // First, check mark word for the biased lock pattern.
  1864     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  1866     // Get fast path - mark word has the biased lock pattern.
  1867     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
  1868                          markOopDesc::biased_lock_mask_in_place,
  1869                          markOopDesc::biased_lock_pattern, true);
  1870     // fast_lock_region->in(1) is set to slow path.
  1871     fast_lock_mem_phi->init_req(1, mem);
  1873     // Now check that the lock is biased to the current thread and has
  1874     // the same epoch and bias as Klass::_prototype_header.
  1876     // Special-case a fresh allocation to avoid building nodes:
  1877     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
  1878     if (klass_node == NULL) {
  1879       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1880       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
  1881 #ifdef _LP64
  1882       if (UseCompressedOops && klass_node->is_DecodeN()) {
  1883         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
  1884         klass_node->in(1)->init_req(0, ctrl);
  1885       } else
  1886 #endif
  1887       klass_node->init_req(0, ctrl);
  1889     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
  1891     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
  1892     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  1893     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
  1894     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
  1896     // Get slow path - mark word does NOT match the value.
  1897     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
  1898                                       (~markOopDesc::age_mask_in_place), 0);
  1899     // region->in(3) is set to fast path - the object is biased to the current thread.
  1900     mem_phi->init_req(3, mem);
  1903     // Mark word does NOT match the value (thread | Klass::_prototype_header).
  1906     // First, check biased pattern.
  1907     // Get fast path - _prototype_header has the same biased lock pattern.
  1908     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
  1909                           markOopDesc::biased_lock_mask_in_place, 0, true);
  1911     not_biased_ctrl = fast_lock_region->in(2); // Slow path
  1912     // fast_lock_region->in(2) - the prototype header is no longer biased
  1913     // and we have to revoke the bias on this object.
  1914     // We are going to try to reset the mark of this object to the prototype
  1915     // value and fall through to the CAS-based locking scheme.
  1916     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  1917     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
  1918                                                  proto_node, mark_node);
  1919     transform_later(cas);
  1920     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
  1921     fast_lock_mem_phi->init_req(2, proj);
  1924     // Second, check epoch bits.
  1925     Node* rebiased_region  = new (C, 3) RegionNode(3);
  1926     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1927     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1929     // Get slow path - mark word does NOT match epoch bits.
  1930     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
  1931                                       markOopDesc::epoch_mask_in_place, 0);
  1932     // The epoch of the current bias is not valid, attempt to rebias the object
  1933     // toward the current thread.
  1934     rebiased_region->init_req(2, epoch_ctrl);
  1935     old_phi->init_req(2, mark_node);
  1936     new_phi->init_req(2, o_node);
  1938     // rebiased_region->in(1) is set to fast path.
  1939     // The epoch of the current bias is still valid but we know
  1940     // nothing about the owner; it might be set or it might be clear.
  1941     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
  1942                              markOopDesc::age_mask_in_place |
  1943                              markOopDesc::epoch_mask_in_place);
  1944     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
  1945     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  1946     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
  1947     old_phi->init_req(1, old);
  1948     new_phi->init_req(1, new_mark);
  1950     transform_later(rebiased_region);
  1951     transform_later(old_phi);
  1952     transform_later(new_phi);
  1954     // Try to acquire the bias of the object using an atomic operation.
  1955     // If this fails we will go in to the runtime to revoke the object's bias.
  1956     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
  1957                                            new_phi, old_phi);
  1958     transform_later(cas);
  1959     proj = transform_later( new (C, 1) SCMemProjNode(cas));
  1961     // Get slow path - Failed to CAS.
  1962     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
  1963     mem_phi->init_req(4, proj);
  1964     // region->in(4) is set to fast path - the object is rebiased to the current thread.
  1966     // Failed to CAS.
  1967     slow_path  = new (C, 3) RegionNode(3);
  1968     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
  1970     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
  1971     slow_mem->init_req(1, proj);
  1973     // Call CAS-based locking scheme (FastLock node).
  1975     transform_later(fast_lock_region);
  1976     transform_later(fast_lock_mem_phi);
  1978     // Get slow path - FastLock failed to lock the object.
  1979     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
  1980     mem_phi->init_req(2, fast_lock_mem_phi);
  1981     // region->in(2) is set to fast path - the object is locked to the current thread.
  1983     slow_path->init_req(2, ctrl); // Capture slow-control
  1984     slow_mem->init_req(2, fast_lock_mem_phi);
  1986     transform_later(slow_path);
  1987     transform_later(slow_mem);
  1988     // Reset lock's memory edge.
  1989     lock->set_req(TypeFunc::Memory, slow_mem);
  1991   } else {
  1992     region  = new (C, 3) RegionNode(3);
  1993     // create a Phi for the memory state
  1994     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1996     // Optimize test; set region slot 2
  1997     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
  1998     mem_phi->init_req(2, mem);
  2001   // Make slow path call
  2002   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
  2004   extract_call_projections(call);
  2006   // Slow path can only throw asynchronous exceptions, which are always
  2007   // de-opted.  So the compiler thinks the slow-call can never throw an
  2008   // exception.  If it DOES throw an exception we would need the debug
  2009   // info removed first (since if it throws there is no monitor).
  2010   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2011            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2013   // Capture slow path
  2014   // disconnect fall-through projection from call and create a new one
  2015   // hook up users of fall-through projection to region
  2016   Node *slow_ctrl = _fallthroughproj->clone();
  2017   transform_later(slow_ctrl);
  2018   _igvn.hash_delete(_fallthroughproj);
  2019   _fallthroughproj->disconnect_inputs(NULL);
  2020   region->init_req(1, slow_ctrl);
  2021   // region inputs are now complete
  2022   transform_later(region);
  2023   _igvn.replace_node(_fallthroughproj, region);
  2025   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2026   mem_phi->init_req(1, memproj );
  2027   transform_later(mem_phi);
  2028   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2031 //------------------------------expand_unlock_node----------------------
  2032 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
  2034   Node* ctrl = unlock->in(TypeFunc::Control);
  2035   Node* mem = unlock->in(TypeFunc::Memory);
  2036   Node* obj = unlock->obj_node();
  2037   Node* box = unlock->box_node();
  2039   // No need for a null check on unlock
  2041   // Make the merge point
  2042   Node *region;
  2043   Node *mem_phi;
  2045   if (UseOptoBiasInlining) {
  2046     // Check for biased locking unlock case, which is a no-op.
  2047     // See the full description in MacroAssembler::biased_locking_exit().
  2048     region  = new (C, 4) RegionNode(4);
  2049     // create a Phi for the memory state
  2050     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2051     mem_phi->init_req(3, mem);
  2053     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2054     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
  2055                          markOopDesc::biased_lock_mask_in_place,
  2056                          markOopDesc::biased_lock_pattern);
  2057   } else {
  2058     region  = new (C, 3) RegionNode(3);
  2059     // create a Phi for the memory state
  2060     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2063   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
  2064   funlock = transform_later( funlock )->as_FastUnlock();
  2065   // Optimize test; set region slot 2
  2066   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
  2068   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
  2070   extract_call_projections(call);
  2072   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2073            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2075   // No exceptions for unlocking
  2076   // Capture slow path
  2077   // disconnect fall-through projection from call and create a new one
  2078   // hook up users of fall-through projection to region
  2079   Node *slow_ctrl = _fallthroughproj->clone();
  2080   transform_later(slow_ctrl);
  2081   _igvn.hash_delete(_fallthroughproj);
  2082   _fallthroughproj->disconnect_inputs(NULL);
  2083   region->init_req(1, slow_ctrl);
  2084   // region inputs are now complete
  2085   transform_later(region);
  2086   _igvn.replace_node(_fallthroughproj, region);
  2088   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2089   mem_phi->init_req(1, memproj );
  2090   mem_phi->init_req(2, mem);
  2091   transform_later(mem_phi);
  2092   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2095 //------------------------------expand_macro_nodes----------------------
  2096 //  Returns true if a failure occurred.
  2097 bool PhaseMacroExpand::expand_macro_nodes() {
  2098   if (C->macro_count() == 0)
  2099     return false;
  2100   // First, attempt to eliminate locks
  2101   bool progress = true;
  2102   while (progress) {
  2103     progress = false;
  2104     for (int i = C->macro_count(); i > 0; i--) {
  2105       Node * n = C->macro_node(i-1);
  2106       bool success = false;
  2107       debug_only(int old_macro_count = C->macro_count(););
  2108       if (n->is_AbstractLock()) {
  2109         success = eliminate_locking_node(n->as_AbstractLock());
  2110       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
  2111         _igvn.replace_node(n, n->in(1));
  2112         success = true;
  2114       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2115       progress = progress || success;
  2118   // Next, attempt to eliminate allocations
  2119   progress = true;
  2120   while (progress) {
  2121     progress = false;
  2122     for (int i = C->macro_count(); i > 0; i--) {
  2123       Node * n = C->macro_node(i-1);
  2124       bool success = false;
  2125       debug_only(int old_macro_count = C->macro_count(););
  2126       switch (n->class_id()) {
  2127       case Node::Class_Allocate:
  2128       case Node::Class_AllocateArray:
  2129         success = eliminate_allocate_node(n->as_Allocate());
  2130         break;
  2131       case Node::Class_Lock:
  2132       case Node::Class_Unlock:
  2133         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
  2134         break;
  2135       default:
  2136         assert(false, "unknown node type in macro list");
  2138       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2139       progress = progress || success;
  2142   // Make sure expansion will not cause node limit to be exceeded.
  2143   // Worst case is a macro node gets expanded into about 50 nodes.
  2144   // Allow 50% more for optimization.
  2145   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
  2146     return true;
  2148   // expand "macro" nodes
  2149   // nodes are removed from the macro list as they are processed
  2150   while (C->macro_count() > 0) {
  2151     int macro_count = C->macro_count();
  2152     Node * n = C->macro_node(macro_count-1);
  2153     assert(n->is_macro(), "only macro nodes expected here");
  2154     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
  2155       // node is unreachable, so don't try to expand it
  2156       C->remove_macro_node(n);
  2157       continue;
  2159     switch (n->class_id()) {
  2160     case Node::Class_Allocate:
  2161       expand_allocate(n->as_Allocate());
  2162       break;
  2163     case Node::Class_AllocateArray:
  2164       expand_allocate_array(n->as_AllocateArray());
  2165       break;
  2166     case Node::Class_Lock:
  2167       expand_lock_node(n->as_Lock());
  2168       break;
  2169     case Node::Class_Unlock:
  2170       expand_unlock_node(n->as_Unlock());
  2171       break;
  2172     default:
  2173       assert(false, "unknown node type in macro list");
  2175     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
  2176     if (C->failing())  return true;
  2179   _igvn.set_delay_transform(false);
  2180   _igvn.optimize();
  2181   return false;

mercurial