src/share/vm/opto/vectornode.cpp

Tue, 21 Aug 2012 14:50:02 -0700

author
kvn
date
Tue, 21 Aug 2012 14:50:02 -0700
changeset 4004
4b0d6fd74911
parent 4001
006050192a5a
child 4006
5af51c882207
permissions
-rw-r--r--

7192964: assert(false) failed: bad AD file
Summary: Shifts with loop variant counts "a[i]=1<<b[i];" should not be vectorized since hw does not support it.
Reviewed-by: twisti

     1 /*
     2  * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "precompiled.hpp"
    25 #include "memory/allocation.inline.hpp"
    26 #include "opto/connode.hpp"
    27 #include "opto/vectornode.hpp"
    29 //------------------------------VectorNode--------------------------------------
    31 // Return the vector operator for the specified scalar operation
    32 // and vector length.  Also used to check if the code generator
    33 // supports the vector operation.
    34 int VectorNode::opcode(int sopc, uint vlen, BasicType bt) {
    35   switch (sopc) {
    36   case Op_AddI:
    37     switch (bt) {
    38     case T_BOOLEAN:
    39     case T_BYTE:      return Op_AddVB;
    40     case T_CHAR:
    41     case T_SHORT:     return Op_AddVS;
    42     case T_INT:       return Op_AddVI;
    43     }
    44     ShouldNotReachHere();
    45   case Op_AddL:
    46     assert(bt == T_LONG, "must be");
    47     return Op_AddVL;
    48   case Op_AddF:
    49     assert(bt == T_FLOAT, "must be");
    50     return Op_AddVF;
    51   case Op_AddD:
    52     assert(bt == T_DOUBLE, "must be");
    53     return Op_AddVD;
    54   case Op_SubI:
    55     switch (bt) {
    56     case T_BOOLEAN:
    57     case T_BYTE:   return Op_SubVB;
    58     case T_CHAR:
    59     case T_SHORT:  return Op_SubVS;
    60     case T_INT:    return Op_SubVI;
    61     }
    62     ShouldNotReachHere();
    63   case Op_SubL:
    64     assert(bt == T_LONG, "must be");
    65     return Op_SubVL;
    66   case Op_SubF:
    67     assert(bt == T_FLOAT, "must be");
    68     return Op_SubVF;
    69   case Op_SubD:
    70     assert(bt == T_DOUBLE, "must be");
    71     return Op_SubVD;
    72   case Op_MulI:
    73     switch (bt) {
    74     case T_BOOLEAN:
    75     case T_BYTE:   return 0;   // Unimplemented
    76     case T_CHAR:
    77     case T_SHORT:  return Op_MulVS;
    78     case T_INT:    return Matcher::match_rule_supported(Op_MulVI) ? Op_MulVI : 0; // SSE4_1
    79     }
    80     ShouldNotReachHere();
    81   case Op_MulF:
    82     assert(bt == T_FLOAT, "must be");
    83     return Op_MulVF;
    84   case Op_MulD:
    85     assert(bt == T_DOUBLE, "must be");
    86     return Op_MulVD;
    87   case Op_DivF:
    88     assert(bt == T_FLOAT, "must be");
    89     return Op_DivVF;
    90   case Op_DivD:
    91     assert(bt == T_DOUBLE, "must be");
    92     return Op_DivVD;
    93   case Op_LShiftI:
    94     switch (bt) {
    95     case T_BOOLEAN:
    96     case T_BYTE:   return Op_LShiftVB;
    97     case T_CHAR:
    98     case T_SHORT:  return Op_LShiftVS;
    99     case T_INT:    return Op_LShiftVI;
   100     }
   101     ShouldNotReachHere();
   102   case Op_LShiftL:
   103     assert(bt == T_LONG, "must be");
   104     return Op_LShiftVL;
   105   case Op_RShiftI:
   106     switch (bt) {
   107     case T_BOOLEAN:
   108     case T_BYTE:   return Op_RShiftVB;
   109     case T_CHAR:
   110     case T_SHORT:  return Op_RShiftVS;
   111     case T_INT:    return Op_RShiftVI;
   112     }
   113     ShouldNotReachHere();
   114   case Op_RShiftL:
   115     assert(bt == T_LONG, "must be");
   116     return Op_RShiftVL;
   117   case Op_URShiftI:
   118     switch (bt) {
   119     case T_BOOLEAN:
   120     case T_BYTE:   return Op_URShiftVB;
   121     case T_CHAR:
   122     case T_SHORT:  return Op_URShiftVS;
   123     case T_INT:    return Op_URShiftVI;
   124     }
   125     ShouldNotReachHere();
   126   case Op_URShiftL:
   127     assert(bt == T_LONG, "must be");
   128     return Op_URShiftVL;
   129   case Op_AndI:
   130   case Op_AndL:
   131     return Op_AndV;
   132   case Op_OrI:
   133   case Op_OrL:
   134     return Op_OrV;
   135   case Op_XorI:
   136   case Op_XorL:
   137     return Op_XorV;
   139   case Op_LoadB:
   140   case Op_LoadUB:
   141   case Op_LoadUS:
   142   case Op_LoadS:
   143   case Op_LoadI:
   144   case Op_LoadL:
   145   case Op_LoadF:
   146   case Op_LoadD:
   147     return Op_LoadVector;
   149   case Op_StoreB:
   150   case Op_StoreC:
   151   case Op_StoreI:
   152   case Op_StoreL:
   153   case Op_StoreF:
   154   case Op_StoreD:
   155     return Op_StoreVector;
   156   }
   157   return 0; // Unimplemented
   158 }
   160 bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
   161   if (is_java_primitive(bt) &&
   162       (vlen > 1) && is_power_of_2(vlen) &&
   163       Matcher::vector_size_supported(bt, vlen)) {
   164     int vopc = VectorNode::opcode(opc, vlen, bt);
   165     return vopc > 0 && Matcher::has_match_rule(vopc);
   166   }
   167   return false;
   168 }
   170 bool VectorNode::is_shift(Node* n) {
   171   switch (n->Opcode()) {
   172   case Op_LShiftI:
   173   case Op_LShiftL:
   174   case Op_RShiftI:
   175   case Op_RShiftL:
   176   case Op_URShiftI:
   177   case Op_URShiftL:
   178     return true;
   179   }
   180   return false;
   181 }
   183 // Check if input is loop invariant vector.
   184 bool VectorNode::is_invariant_vector(Node* n) {
   185   // Only Replicate vector nodes are loop invariant for now.
   186   switch (n->Opcode()) {
   187   case Op_ReplicateB:
   188   case Op_ReplicateS:
   189   case Op_ReplicateI:
   190   case Op_ReplicateL:
   191   case Op_ReplicateF:
   192   case Op_ReplicateD:
   193     return true;
   194   }
   195   return false;
   196 }
   198 // Return the vector version of a scalar operation node.
   199 VectorNode* VectorNode::make(Compile* C, int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
   200   const TypeVect* vt = TypeVect::make(bt, vlen);
   201   int vopc = VectorNode::opcode(opc, vlen, bt);
   203   switch (vopc) {
   204   case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vt);
   205   case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vt);
   206   case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vt);
   207   case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vt);
   208   case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vt);
   209   case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vt);
   211   case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vt);
   212   case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vt);
   213   case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vt);
   214   case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vt);
   215   case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vt);
   216   case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vt);
   218   case Op_MulVS: return new (C, 3) MulVSNode(n1, n2, vt);
   219   case Op_MulVI: return new (C, 3) MulVINode(n1, n2, vt);
   220   case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vt);
   221   case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vt);
   223   case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vt);
   224   case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vt);
   226   case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vt);
   227   case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vt);
   228   case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vt);
   229   case Op_LShiftVL: return new (C, 3) LShiftVLNode(n1, n2, vt);
   231   case Op_RShiftVB: return new (C, 3) RShiftVBNode(n1, n2, vt);
   232   case Op_RShiftVS: return new (C, 3) RShiftVSNode(n1, n2, vt);
   233   case Op_RShiftVI: return new (C, 3) RShiftVINode(n1, n2, vt);
   234   case Op_RShiftVL: return new (C, 3) RShiftVLNode(n1, n2, vt);
   236   case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vt);
   237   case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vt);
   238   case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vt);
   239   case Op_URShiftVL: return new (C, 3) URShiftVLNode(n1, n2, vt);
   241   case Op_AndV: return new (C, 3) AndVNode(n1, n2, vt);
   242   case Op_OrV:  return new (C, 3) OrVNode (n1, n2, vt);
   243   case Op_XorV: return new (C, 3) XorVNode(n1, n2, vt);
   244   }
   245   ShouldNotReachHere();
   246   return NULL;
   248 }
   250 // Scalar promotion
   251 VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
   252   BasicType bt = opd_t->array_element_basic_type();
   253   const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
   254                                           : TypeVect::make(bt, vlen);
   255   switch (bt) {
   256   case T_BOOLEAN:
   257   case T_BYTE:
   258     return new (C, 2) ReplicateBNode(s, vt);
   259   case T_CHAR:
   260   case T_SHORT:
   261     return new (C, 2) ReplicateSNode(s, vt);
   262   case T_INT:
   263     return new (C, 2) ReplicateINode(s, vt);
   264   case T_LONG:
   265     return new (C, 2) ReplicateLNode(s, vt);
   266   case T_FLOAT:
   267     return new (C, 2) ReplicateFNode(s, vt);
   268   case T_DOUBLE:
   269     return new (C, 2) ReplicateDNode(s, vt);
   270   }
   271   ShouldNotReachHere();
   272   return NULL;
   273 }
   275 // Return initial Pack node. Additional operands added with add_opd() calls.
   276 PackNode* PackNode::make(Compile* C, Node* s, uint vlen, BasicType bt) {
   277   const TypeVect* vt = TypeVect::make(bt, vlen);
   278   switch (bt) {
   279   case T_BOOLEAN:
   280   case T_BYTE:
   281     return new (C, vlen+1) PackBNode(s, vt);
   282   case T_CHAR:
   283   case T_SHORT:
   284     return new (C, vlen+1) PackSNode(s, vt);
   285   case T_INT:
   286     return new (C, vlen+1) PackINode(s, vt);
   287   case T_LONG:
   288     return new (C, vlen+1) PackLNode(s, vt);
   289   case T_FLOAT:
   290     return new (C, vlen+1) PackFNode(s, vt);
   291   case T_DOUBLE:
   292     return new (C, vlen+1) PackDNode(s, vt);
   293   }
   294   ShouldNotReachHere();
   295   return NULL;
   296 }
   298 // Create a binary tree form for Packs. [lo, hi) (half-open) range
   299 Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
   300   int ct = hi - lo;
   301   assert(is_power_of_2(ct), "power of 2");
   302   if (ct == 2) {
   303     PackNode* pk = PackNode::make(C, in(lo), 2, vect_type()->element_basic_type());
   304     pk->add_opd(1, in(lo+1));
   305     return pk;
   307   } else {
   308     int mid = lo + ct/2;
   309     Node* n1 = binaryTreePack(C, lo,  mid);
   310     Node* n2 = binaryTreePack(C, mid, hi );
   312     BasicType bt = vect_type()->element_basic_type();
   313     switch (bt) {
   314     case T_BOOLEAN:
   315     case T_BYTE:
   316       return new (C, 3) PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
   317     case T_CHAR:
   318     case T_SHORT:
   319       return new (C, 3) PackINode(n1, n2, TypeVect::make(T_INT, 2));
   320     case T_INT:
   321       return new (C, 3) PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
   322     case T_LONG:
   323       return new (C, 3) Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
   324     case T_FLOAT:
   325       return new (C, 3) PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
   326     case T_DOUBLE:
   327       return new (C, 3) Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
   328     }
   329     ShouldNotReachHere();
   330   }
   331   return NULL;
   332 }
   334 // Return the vector version of a scalar load node.
   335 LoadVectorNode* LoadVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
   336                                      Node* adr, const TypePtr* atyp, uint vlen, BasicType bt) {
   337   const TypeVect* vt = TypeVect::make(bt, vlen);
   338   return new (C, 3) LoadVectorNode(ctl, mem, adr, atyp, vt);
   339   return NULL;
   340 }
   342 // Return the vector version of a scalar store node.
   343 StoreVectorNode* StoreVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
   344                                        Node* adr, const TypePtr* atyp, Node* val,
   345                                        uint vlen) {
   346   return new (C, 4) StoreVectorNode(ctl, mem, adr, atyp, val);
   347 }
   349 // Extract a scalar element of vector.
   350 Node* ExtractNode::make(Compile* C, Node* v, uint position, BasicType bt) {
   351   assert((int)position < Matcher::max_vector_size(bt), "pos in range");
   352   ConINode* pos = ConINode::make(C, (int)position);
   353   switch (bt) {
   354   case T_BOOLEAN:
   355     return new (C, 3) ExtractUBNode(v, pos);
   356   case T_BYTE:
   357     return new (C, 3) ExtractBNode(v, pos);
   358   case T_CHAR:
   359     return new (C, 3) ExtractCNode(v, pos);
   360   case T_SHORT:
   361     return new (C, 3) ExtractSNode(v, pos);
   362   case T_INT:
   363     return new (C, 3) ExtractINode(v, pos);
   364   case T_LONG:
   365     return new (C, 3) ExtractLNode(v, pos);
   366   case T_FLOAT:
   367     return new (C, 3) ExtractFNode(v, pos);
   368   case T_DOUBLE:
   369     return new (C, 3) ExtractDNode(v, pos);
   370   }
   371   ShouldNotReachHere();
   372   return NULL;
   373 }

mercurial