src/share/vm/opto/superword.cpp

Tue, 21 Aug 2012 14:50:02 -0700

author
kvn
date
Tue, 21 Aug 2012 14:50:02 -0700
changeset 4004
4b0d6fd74911
parent 4001
006050192a5a
child 4006
5af51c882207
permissions
-rw-r--r--

7192964: assert(false) failed: bad AD file
Summary: Shifts with loop variant counts "a[i]=1<<b[i];" should not be vectorized since hw does not support it.
Reviewed-by: twisti

     1 /*
     2  * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "precompiled.hpp"
    25 #include "compiler/compileLog.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/divnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/superword.hpp"
    36 #include "opto/vectornode.hpp"
    38 //
    39 //                  S U P E R W O R D   T R A N S F O R M
    40 //=============================================================================
    42 //------------------------------SuperWord---------------------------
    43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
    44   _phase(phase),
    45   _igvn(phase->_igvn),
    46   _arena(phase->C->comp_arena()),
    47   _packset(arena(), 8,  0, NULL),         // packs for the current block
    48   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
    49   _block(arena(), 8,  0, NULL),           // nodes in current block
    50   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
    51   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
    52   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
    53   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
    54   _align_to_ref(NULL),                    // memory reference to align vectors to
    55   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
    56   _dg(_arena),                            // dependence graph
    57   _visited(arena()),                      // visited node set
    58   _post_visited(arena()),                 // post visited node set
    59   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
    60   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
    61   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
    62   _lpt(NULL),                             // loop tree node
    63   _lp(NULL),                              // LoopNode
    64   _bb(NULL),                              // basic block
    65   _iv(NULL)                               // induction var
    66 {}
    68 //------------------------------transform_loop---------------------------
    69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
    70   assert(UseSuperWord, "should be");
    71   // Do vectors exist on this architecture?
    72   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
    74   assert(lpt->_head->is_CountedLoop(), "must be");
    75   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
    77   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
    79   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
    81   // Check for no control flow in body (other than exit)
    82   Node *cl_exit = cl->loopexit();
    83   if (cl_exit->in(0) != lpt->_head) return;
    85   // Make sure the are no extra control users of the loop backedge
    86   if (cl->back_control()->outcnt() != 1) {
    87     return;
    88   }
    90   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
    91   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
    92   if (pre_end == NULL) return;
    93   Node *pre_opaq1 = pre_end->limit();
    94   if (pre_opaq1->Opcode() != Op_Opaque1) return;
    96   init(); // initialize data structures
    98   set_lpt(lpt);
    99   set_lp(cl);
   101   // For now, define one block which is the entire loop body
   102   set_bb(cl);
   104   assert(_packset.length() == 0, "packset must be empty");
   105   SLP_extract();
   106 }
   108 //------------------------------SLP_extract---------------------------
   109 // Extract the superword level parallelism
   110 //
   111 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
   112 //    this list from first to last, all definitions are visited before their uses.
   113 //
   114 // 2) A point-to-point dependence graph is constructed between memory references.
   115 //    This simplies the upcoming "independence" checker.
   116 //
   117 // 3) The maximum depth in the node graph from the beginning of the block
   118 //    to each node is computed.  This is used to prune the graph search
   119 //    in the independence checker.
   120 //
   121 // 4) For integer types, the necessary bit width is propagated backwards
   122 //    from stores to allow packed operations on byte, char, and short
   123 //    integers.  This reverses the promotion to type "int" that javac
   124 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
   125 //
   126 // 5) One of the memory references is picked to be an aligned vector reference.
   127 //    The pre-loop trip count is adjusted to align this reference in the
   128 //    unrolled body.
   129 //
   130 // 6) The initial set of pack pairs is seeded with memory references.
   131 //
   132 // 7) The set of pack pairs is extended by following use->def and def->use links.
   133 //
   134 // 8) The pairs are combined into vector sized packs.
   135 //
   136 // 9) Reorder the memory slices to co-locate members of the memory packs.
   137 //
   138 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
   139 //    inserting scalar promotion, vector creation from multiple scalars, and
   140 //    extraction of scalar values from vectors.
   141 //
   142 void SuperWord::SLP_extract() {
   144   // Ready the block
   146   construct_bb();
   148   dependence_graph();
   150   compute_max_depth();
   152   compute_vector_element_type();
   154   // Attempt vectorization
   156   find_adjacent_refs();
   158   extend_packlist();
   160   combine_packs();
   162   construct_my_pack_map();
   164   filter_packs();
   166   schedule();
   168   output();
   169 }
   171 //------------------------------find_adjacent_refs---------------------------
   172 // Find the adjacent memory references and create pack pairs for them.
   173 // This is the initial set of packs that will then be extended by
   174 // following use->def and def->use links.  The align positions are
   175 // assigned relative to the reference "align_to_ref"
   176 void SuperWord::find_adjacent_refs() {
   177   // Get list of memory operations
   178   Node_List memops;
   179   for (int i = 0; i < _block.length(); i++) {
   180     Node* n = _block.at(i);
   181     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
   182         is_java_primitive(n->as_Mem()->memory_type())) {
   183       int align = memory_alignment(n->as_Mem(), 0);
   184       if (align != bottom_align) {
   185         memops.push(n);
   186       }
   187     }
   188   }
   190   Node_List align_to_refs;
   191   int best_iv_adjustment = 0;
   192   MemNode* best_align_to_mem_ref = NULL;
   194   while (memops.size() != 0) {
   195     // Find a memory reference to align to.
   196     MemNode* mem_ref = find_align_to_ref(memops);
   197     if (mem_ref == NULL) break;
   198     align_to_refs.push(mem_ref);
   199     int iv_adjustment = get_iv_adjustment(mem_ref);
   201     if (best_align_to_mem_ref == NULL) {
   202       // Set memory reference which is the best from all memory operations
   203       // to be used for alignment. The pre-loop trip count is modified to align
   204       // this reference to a vector-aligned address.
   205       best_align_to_mem_ref = mem_ref;
   206       best_iv_adjustment = iv_adjustment;
   207     }
   209     SWPointer align_to_ref_p(mem_ref, this);
   210     // Set alignment relative to "align_to_ref" for all related memory operations.
   211     for (int i = memops.size() - 1; i >= 0; i--) {
   212       MemNode* s = memops.at(i)->as_Mem();
   213       if (isomorphic(s, mem_ref)) {
   214         SWPointer p2(s, this);
   215         if (p2.comparable(align_to_ref_p)) {
   216           int align = memory_alignment(s, iv_adjustment);
   217           set_alignment(s, align);
   218         }
   219       }
   220     }
   222     // Create initial pack pairs of memory operations for which
   223     // alignment is set and vectors will be aligned.
   224     bool create_pack = true;
   225     if (memory_alignment(mem_ref, best_iv_adjustment) == 0) {
   226       if (!Matcher::misaligned_vectors_ok()) {
   227         int vw = vector_width(mem_ref);
   228         int vw_best = vector_width(best_align_to_mem_ref);
   229         if (vw > vw_best) {
   230           // Do not vectorize a memory access with more elements per vector
   231           // if unaligned memory access is not allowed because number of
   232           // iterations in pre-loop will be not enough to align it.
   233           create_pack = false;
   234         }
   235       }
   236     } else {
   237       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
   238         // Can't allow vectorization of unaligned memory accesses with the
   239         // same type since it could be overlapped accesses to the same array.
   240         create_pack = false;
   241       } else {
   242         // Allow independent (different type) unaligned memory operations
   243         // if HW supports them.
   244         if (!Matcher::misaligned_vectors_ok()) {
   245           create_pack = false;
   246         } else {
   247           // Check if packs of the same memory type but
   248           // with a different alignment were created before.
   249           for (uint i = 0; i < align_to_refs.size(); i++) {
   250             MemNode* mr = align_to_refs.at(i)->as_Mem();
   251             if (same_velt_type(mr, mem_ref) &&
   252                 memory_alignment(mr, iv_adjustment) != 0)
   253               create_pack = false;
   254           }
   255         }
   256       }
   257     }
   258     if (create_pack) {
   259       for (uint i = 0; i < memops.size(); i++) {
   260         Node* s1 = memops.at(i);
   261         int align = alignment(s1);
   262         if (align == top_align) continue;
   263         for (uint j = 0; j < memops.size(); j++) {
   264           Node* s2 = memops.at(j);
   265           if (alignment(s2) == top_align) continue;
   266           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
   267             if (stmts_can_pack(s1, s2, align)) {
   268               Node_List* pair = new Node_List();
   269               pair->push(s1);
   270               pair->push(s2);
   271               _packset.append(pair);
   272             }
   273           }
   274         }
   275       }
   276     } else { // Don't create unaligned pack
   277       // First, remove remaining memory ops of the same type from the list.
   278       for (int i = memops.size() - 1; i >= 0; i--) {
   279         MemNode* s = memops.at(i)->as_Mem();
   280         if (same_velt_type(s, mem_ref)) {
   281           memops.remove(i);
   282         }
   283       }
   285       // Second, remove already constructed packs of the same type.
   286       for (int i = _packset.length() - 1; i >= 0; i--) {
   287         Node_List* p = _packset.at(i);
   288         MemNode* s = p->at(0)->as_Mem();
   289         if (same_velt_type(s, mem_ref)) {
   290           remove_pack_at(i);
   291         }
   292       }
   294       // If needed find the best memory reference for loop alignment again.
   295       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
   296         // Put memory ops from remaining packs back on memops list for
   297         // the best alignment search.
   298         uint orig_msize = memops.size();
   299         for (int i = 0; i < _packset.length(); i++) {
   300           Node_List* p = _packset.at(i);
   301           MemNode* s = p->at(0)->as_Mem();
   302           assert(!same_velt_type(s, mem_ref), "sanity");
   303           memops.push(s);
   304         }
   305         MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
   306         if (best_align_to_mem_ref == NULL) break;
   307         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
   308         // Restore list.
   309         while (memops.size() > orig_msize)
   310           (void)memops.pop();
   311       }
   312     } // unaligned memory accesses
   314     // Remove used mem nodes.
   315     for (int i = memops.size() - 1; i >= 0; i--) {
   316       MemNode* m = memops.at(i)->as_Mem();
   317       if (alignment(m) != top_align) {
   318         memops.remove(i);
   319       }
   320     }
   322   } // while (memops.size() != 0
   323   set_align_to_ref(best_align_to_mem_ref);
   325 #ifndef PRODUCT
   326   if (TraceSuperWord) {
   327     tty->print_cr("\nAfter find_adjacent_refs");
   328     print_packset();
   329   }
   330 #endif
   331 }
   333 //------------------------------find_align_to_ref---------------------------
   334 // Find a memory reference to align the loop induction variable to.
   335 // Looks first at stores then at loads, looking for a memory reference
   336 // with the largest number of references similar to it.
   337 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
   338   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
   340   // Count number of comparable memory ops
   341   for (uint i = 0; i < memops.size(); i++) {
   342     MemNode* s1 = memops.at(i)->as_Mem();
   343     SWPointer p1(s1, this);
   344     // Discard if pre loop can't align this reference
   345     if (!ref_is_alignable(p1)) {
   346       *cmp_ct.adr_at(i) = 0;
   347       continue;
   348     }
   349     for (uint j = i+1; j < memops.size(); j++) {
   350       MemNode* s2 = memops.at(j)->as_Mem();
   351       if (isomorphic(s1, s2)) {
   352         SWPointer p2(s2, this);
   353         if (p1.comparable(p2)) {
   354           (*cmp_ct.adr_at(i))++;
   355           (*cmp_ct.adr_at(j))++;
   356         }
   357       }
   358     }
   359   }
   361   // Find Store (or Load) with the greatest number of "comparable" references,
   362   // biggest vector size, smallest data size and smallest iv offset.
   363   int max_ct        = 0;
   364   int max_vw        = 0;
   365   int max_idx       = -1;
   366   int min_size      = max_jint;
   367   int min_iv_offset = max_jint;
   368   for (uint j = 0; j < memops.size(); j++) {
   369     MemNode* s = memops.at(j)->as_Mem();
   370     if (s->is_Store()) {
   371       int vw = vector_width_in_bytes(s);
   372       assert(vw > 1, "sanity");
   373       SWPointer p(s, this);
   374       if (cmp_ct.at(j) >  max_ct ||
   375           cmp_ct.at(j) == max_ct &&
   376             (vw >  max_vw ||
   377              vw == max_vw &&
   378               (data_size(s) <  min_size ||
   379                data_size(s) == min_size &&
   380                  (p.offset_in_bytes() < min_iv_offset)))) {
   381         max_ct = cmp_ct.at(j);
   382         max_vw = vw;
   383         max_idx = j;
   384         min_size = data_size(s);
   385         min_iv_offset = p.offset_in_bytes();
   386       }
   387     }
   388   }
   389   // If no stores, look at loads
   390   if (max_ct == 0) {
   391     for (uint j = 0; j < memops.size(); j++) {
   392       MemNode* s = memops.at(j)->as_Mem();
   393       if (s->is_Load()) {
   394         int vw = vector_width_in_bytes(s);
   395         assert(vw > 1, "sanity");
   396         SWPointer p(s, this);
   397         if (cmp_ct.at(j) >  max_ct ||
   398             cmp_ct.at(j) == max_ct &&
   399               (vw >  max_vw ||
   400                vw == max_vw &&
   401                 (data_size(s) <  min_size ||
   402                  data_size(s) == min_size &&
   403                    (p.offset_in_bytes() < min_iv_offset)))) {
   404           max_ct = cmp_ct.at(j);
   405           max_vw = vw;
   406           max_idx = j;
   407           min_size = data_size(s);
   408           min_iv_offset = p.offset_in_bytes();
   409         }
   410       }
   411     }
   412   }
   414 #ifdef ASSERT
   415   if (TraceSuperWord && Verbose) {
   416     tty->print_cr("\nVector memops after find_align_to_refs");
   417     for (uint i = 0; i < memops.size(); i++) {
   418       MemNode* s = memops.at(i)->as_Mem();
   419       s->dump();
   420     }
   421   }
   422 #endif
   424   if (max_ct > 0) {
   425 #ifdef ASSERT
   426     if (TraceSuperWord) {
   427       tty->print("\nVector align to node: ");
   428       memops.at(max_idx)->as_Mem()->dump();
   429     }
   430 #endif
   431     return memops.at(max_idx)->as_Mem();
   432   }
   433   return NULL;
   434 }
   436 //------------------------------ref_is_alignable---------------------------
   437 // Can the preloop align the reference to position zero in the vector?
   438 bool SuperWord::ref_is_alignable(SWPointer& p) {
   439   if (!p.has_iv()) {
   440     return true;   // no induction variable
   441   }
   442   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
   443   assert(pre_end->stride_is_con(), "pre loop stride is constant");
   444   int preloop_stride = pre_end->stride_con();
   446   int span = preloop_stride * p.scale_in_bytes();
   448   // Stride one accesses are alignable.
   449   if (ABS(span) == p.memory_size())
   450     return true;
   452   // If initial offset from start of object is computable,
   453   // compute alignment within the vector.
   454   int vw = vector_width_in_bytes(p.mem());
   455   assert(vw > 1, "sanity");
   456   if (vw % span == 0) {
   457     Node* init_nd = pre_end->init_trip();
   458     if (init_nd->is_Con() && p.invar() == NULL) {
   459       int init = init_nd->bottom_type()->is_int()->get_con();
   461       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
   462       assert(init_offset >= 0, "positive offset from object start");
   464       if (span > 0) {
   465         return (vw - (init_offset % vw)) % span == 0;
   466       } else {
   467         assert(span < 0, "nonzero stride * scale");
   468         return (init_offset % vw) % -span == 0;
   469       }
   470     }
   471   }
   472   return false;
   473 }
   475 //---------------------------get_iv_adjustment---------------------------
   476 // Calculate loop's iv adjustment for this memory ops.
   477 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
   478   SWPointer align_to_ref_p(mem_ref, this);
   479   int offset = align_to_ref_p.offset_in_bytes();
   480   int scale  = align_to_ref_p.scale_in_bytes();
   481   int vw       = vector_width_in_bytes(mem_ref);
   482   assert(vw > 1, "sanity");
   483   int stride_sign   = (scale * iv_stride()) > 0 ? 1 : -1;
   484   int iv_adjustment = (stride_sign * vw - (offset % vw)) % vw;
   486 #ifndef PRODUCT
   487   if (TraceSuperWord)
   488     tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
   489                   offset, iv_adjustment, align_to_ref_p.memory_size(), scale, iv_stride(), vw);
   490 #endif
   491   return iv_adjustment;
   492 }
   494 //---------------------------dependence_graph---------------------------
   495 // Construct dependency graph.
   496 // Add dependence edges to load/store nodes for memory dependence
   497 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
   498 void SuperWord::dependence_graph() {
   499   // First, assign a dependence node to each memory node
   500   for (int i = 0; i < _block.length(); i++ ) {
   501     Node *n = _block.at(i);
   502     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
   503       _dg.make_node(n);
   504     }
   505   }
   507   // For each memory slice, create the dependences
   508   for (int i = 0; i < _mem_slice_head.length(); i++) {
   509     Node* n      = _mem_slice_head.at(i);
   510     Node* n_tail = _mem_slice_tail.at(i);
   512     // Get slice in predecessor order (last is first)
   513     mem_slice_preds(n_tail, n, _nlist);
   515     // Make the slice dependent on the root
   516     DepMem* slice = _dg.dep(n);
   517     _dg.make_edge(_dg.root(), slice);
   519     // Create a sink for the slice
   520     DepMem* slice_sink = _dg.make_node(NULL);
   521     _dg.make_edge(slice_sink, _dg.tail());
   523     // Now visit each pair of memory ops, creating the edges
   524     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
   525       Node* s1 = _nlist.at(j);
   527       // If no dependency yet, use slice
   528       if (_dg.dep(s1)->in_cnt() == 0) {
   529         _dg.make_edge(slice, s1);
   530       }
   531       SWPointer p1(s1->as_Mem(), this);
   532       bool sink_dependent = true;
   533       for (int k = j - 1; k >= 0; k--) {
   534         Node* s2 = _nlist.at(k);
   535         if (s1->is_Load() && s2->is_Load())
   536           continue;
   537         SWPointer p2(s2->as_Mem(), this);
   539         int cmp = p1.cmp(p2);
   540         if (SuperWordRTDepCheck &&
   541             p1.base() != p2.base() && p1.valid() && p2.valid()) {
   542           // Create a runtime check to disambiguate
   543           OrderedPair pp(p1.base(), p2.base());
   544           _disjoint_ptrs.append_if_missing(pp);
   545         } else if (!SWPointer::not_equal(cmp)) {
   546           // Possibly same address
   547           _dg.make_edge(s1, s2);
   548           sink_dependent = false;
   549         }
   550       }
   551       if (sink_dependent) {
   552         _dg.make_edge(s1, slice_sink);
   553       }
   554     }
   555 #ifndef PRODUCT
   556     if (TraceSuperWord) {
   557       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
   558       for (int q = 0; q < _nlist.length(); q++) {
   559         _dg.print(_nlist.at(q));
   560       }
   561       tty->cr();
   562     }
   563 #endif
   564     _nlist.clear();
   565   }
   567 #ifndef PRODUCT
   568   if (TraceSuperWord) {
   569     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
   570     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
   571       _disjoint_ptrs.at(r).print();
   572       tty->cr();
   573     }
   574     tty->cr();
   575   }
   576 #endif
   577 }
   579 //---------------------------mem_slice_preds---------------------------
   580 // Return a memory slice (node list) in predecessor order starting at "start"
   581 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
   582   assert(preds.length() == 0, "start empty");
   583   Node* n = start;
   584   Node* prev = NULL;
   585   while (true) {
   586     assert(in_bb(n), "must be in block");
   587     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   588       Node* out = n->fast_out(i);
   589       if (out->is_Load()) {
   590         if (in_bb(out)) {
   591           preds.push(out);
   592         }
   593       } else {
   594         // FIXME
   595         if (out->is_MergeMem() && !in_bb(out)) {
   596           // Either unrolling is causing a memory edge not to disappear,
   597           // or need to run igvn.optimize() again before SLP
   598         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
   599           // Ditto.  Not sure what else to check further.
   600         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
   601           // StoreCM has an input edge used as a precedence edge.
   602           // Maybe an issue when oop stores are vectorized.
   603         } else {
   604           assert(out == prev || prev == NULL, "no branches off of store slice");
   605         }
   606       }
   607     }
   608     if (n == stop) break;
   609     preds.push(n);
   610     prev = n;
   611     n = n->in(MemNode::Memory);
   612   }
   613 }
   615 //------------------------------stmts_can_pack---------------------------
   616 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
   617 // s1 aligned at "align"
   618 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
   620   // Do not use superword for non-primitives
   621   BasicType bt1 = velt_basic_type(s1);
   622   BasicType bt2 = velt_basic_type(s2);
   623   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
   624     return false;
   625   if (Matcher::max_vector_size(bt1) < 2) {
   626     return false; // No vectors for this type
   627   }
   629   if (isomorphic(s1, s2)) {
   630     if (independent(s1, s2)) {
   631       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
   632         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
   633           int s1_align = alignment(s1);
   634           int s2_align = alignment(s2);
   635           if (s1_align == top_align || s1_align == align) {
   636             if (s2_align == top_align || s2_align == align + data_size(s1)) {
   637               return true;
   638             }
   639           }
   640         }
   641       }
   642     }
   643   }
   644   return false;
   645 }
   647 //------------------------------exists_at---------------------------
   648 // Does s exist in a pack at position pos?
   649 bool SuperWord::exists_at(Node* s, uint pos) {
   650   for (int i = 0; i < _packset.length(); i++) {
   651     Node_List* p = _packset.at(i);
   652     if (p->at(pos) == s) {
   653       return true;
   654     }
   655   }
   656   return false;
   657 }
   659 //------------------------------are_adjacent_refs---------------------------
   660 // Is s1 immediately before s2 in memory?
   661 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
   662   if (!s1->is_Mem() || !s2->is_Mem()) return false;
   663   if (!in_bb(s1)    || !in_bb(s2))    return false;
   665   // Do not use superword for non-primitives
   666   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
   667       !is_java_primitive(s2->as_Mem()->memory_type())) {
   668     return false;
   669   }
   671   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
   672   // only pack memops that are in the same alias set until that's fixed.
   673   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
   674       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
   675     return false;
   676   SWPointer p1(s1->as_Mem(), this);
   677   SWPointer p2(s2->as_Mem(), this);
   678   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
   679   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
   680   return diff == data_size(s1);
   681 }
   683 //------------------------------isomorphic---------------------------
   684 // Are s1 and s2 similar?
   685 bool SuperWord::isomorphic(Node* s1, Node* s2) {
   686   if (s1->Opcode() != s2->Opcode()) return false;
   687   if (s1->req() != s2->req()) return false;
   688   if (s1->in(0) != s2->in(0)) return false;
   689   if (!same_velt_type(s1, s2)) return false;
   690   return true;
   691 }
   693 //------------------------------independent---------------------------
   694 // Is there no data path from s1 to s2 or s2 to s1?
   695 bool SuperWord::independent(Node* s1, Node* s2) {
   696   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
   697   int d1 = depth(s1);
   698   int d2 = depth(s2);
   699   if (d1 == d2) return s1 != s2;
   700   Node* deep    = d1 > d2 ? s1 : s2;
   701   Node* shallow = d1 > d2 ? s2 : s1;
   703   visited_clear();
   705   return independent_path(shallow, deep);
   706 }
   708 //------------------------------independent_path------------------------------
   709 // Helper for independent
   710 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
   711   if (dp >= 1000) return false; // stop deep recursion
   712   visited_set(deep);
   713   int shal_depth = depth(shallow);
   714   assert(shal_depth <= depth(deep), "must be");
   715   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
   716     Node* pred = preds.current();
   717     if (in_bb(pred) && !visited_test(pred)) {
   718       if (shallow == pred) {
   719         return false;
   720       }
   721       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
   722         return false;
   723       }
   724     }
   725   }
   726   return true;
   727 }
   729 //------------------------------set_alignment---------------------------
   730 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
   731   set_alignment(s1, align);
   732   if (align == top_align || align == bottom_align) {
   733     set_alignment(s2, align);
   734   } else {
   735     set_alignment(s2, align + data_size(s1));
   736   }
   737 }
   739 //------------------------------data_size---------------------------
   740 int SuperWord::data_size(Node* s) {
   741   int bsize = type2aelembytes(velt_basic_type(s));
   742   assert(bsize != 0, "valid size");
   743   return bsize;
   744 }
   746 //------------------------------extend_packlist---------------------------
   747 // Extend packset by following use->def and def->use links from pack members.
   748 void SuperWord::extend_packlist() {
   749   bool changed;
   750   do {
   751     changed = false;
   752     for (int i = 0; i < _packset.length(); i++) {
   753       Node_List* p = _packset.at(i);
   754       changed |= follow_use_defs(p);
   755       changed |= follow_def_uses(p);
   756     }
   757   } while (changed);
   759 #ifndef PRODUCT
   760   if (TraceSuperWord) {
   761     tty->print_cr("\nAfter extend_packlist");
   762     print_packset();
   763   }
   764 #endif
   765 }
   767 //------------------------------follow_use_defs---------------------------
   768 // Extend the packset by visiting operand definitions of nodes in pack p
   769 bool SuperWord::follow_use_defs(Node_List* p) {
   770   assert(p->size() == 2, "just checking");
   771   Node* s1 = p->at(0);
   772   Node* s2 = p->at(1);
   773   assert(s1->req() == s2->req(), "just checking");
   774   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   776   if (s1->is_Load()) return false;
   778   int align = alignment(s1);
   779   bool changed = false;
   780   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
   781   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
   782   for (int j = start; j < end; j++) {
   783     Node* t1 = s1->in(j);
   784     Node* t2 = s2->in(j);
   785     if (!in_bb(t1) || !in_bb(t2))
   786       continue;
   787     if (stmts_can_pack(t1, t2, align)) {
   788       if (est_savings(t1, t2) >= 0) {
   789         Node_List* pair = new Node_List();
   790         pair->push(t1);
   791         pair->push(t2);
   792         _packset.append(pair);
   793         set_alignment(t1, t2, align);
   794         changed = true;
   795       }
   796     }
   797   }
   798   return changed;
   799 }
   801 //------------------------------follow_def_uses---------------------------
   802 // Extend the packset by visiting uses of nodes in pack p
   803 bool SuperWord::follow_def_uses(Node_List* p) {
   804   bool changed = false;
   805   Node* s1 = p->at(0);
   806   Node* s2 = p->at(1);
   807   assert(p->size() == 2, "just checking");
   808   assert(s1->req() == s2->req(), "just checking");
   809   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   811   if (s1->is_Store()) return false;
   813   int align = alignment(s1);
   814   int savings = -1;
   815   Node* u1 = NULL;
   816   Node* u2 = NULL;
   817   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   818     Node* t1 = s1->fast_out(i);
   819     if (!in_bb(t1)) continue;
   820     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
   821       Node* t2 = s2->fast_out(j);
   822       if (!in_bb(t2)) continue;
   823       if (!opnd_positions_match(s1, t1, s2, t2))
   824         continue;
   825       if (stmts_can_pack(t1, t2, align)) {
   826         int my_savings = est_savings(t1, t2);
   827         if (my_savings > savings) {
   828           savings = my_savings;
   829           u1 = t1;
   830           u2 = t2;
   831         }
   832       }
   833     }
   834   }
   835   if (savings >= 0) {
   836     Node_List* pair = new Node_List();
   837     pair->push(u1);
   838     pair->push(u2);
   839     _packset.append(pair);
   840     set_alignment(u1, u2, align);
   841     changed = true;
   842   }
   843   return changed;
   844 }
   846 //---------------------------opnd_positions_match-------------------------
   847 // Is the use of d1 in u1 at the same operand position as d2 in u2?
   848 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
   849   uint ct = u1->req();
   850   if (ct != u2->req()) return false;
   851   uint i1 = 0;
   852   uint i2 = 0;
   853   do {
   854     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
   855     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
   856     if (i1 != i2) {
   857       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
   858         // Further analysis relies on operands position matching.
   859         u2->swap_edges(i1, i2);
   860       } else {
   861         return false;
   862       }
   863     }
   864   } while (i1 < ct);
   865   return true;
   866 }
   868 //------------------------------est_savings---------------------------
   869 // Estimate the savings from executing s1 and s2 as a pack
   870 int SuperWord::est_savings(Node* s1, Node* s2) {
   871   int save_in = 2 - 1; // 2 operations per instruction in packed form
   873   // inputs
   874   for (uint i = 1; i < s1->req(); i++) {
   875     Node* x1 = s1->in(i);
   876     Node* x2 = s2->in(i);
   877     if (x1 != x2) {
   878       if (are_adjacent_refs(x1, x2)) {
   879         save_in += adjacent_profit(x1, x2);
   880       } else if (!in_packset(x1, x2)) {
   881         save_in -= pack_cost(2);
   882       } else {
   883         save_in += unpack_cost(2);
   884       }
   885     }
   886   }
   888   // uses of result
   889   uint ct = 0;
   890   int save_use = 0;
   891   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   892     Node* s1_use = s1->fast_out(i);
   893     for (int j = 0; j < _packset.length(); j++) {
   894       Node_List* p = _packset.at(j);
   895       if (p->at(0) == s1_use) {
   896         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
   897           Node* s2_use = s2->fast_out(k);
   898           if (p->at(p->size()-1) == s2_use) {
   899             ct++;
   900             if (are_adjacent_refs(s1_use, s2_use)) {
   901               save_use += adjacent_profit(s1_use, s2_use);
   902             }
   903           }
   904         }
   905       }
   906     }
   907   }
   909   if (ct < s1->outcnt()) save_use += unpack_cost(1);
   910   if (ct < s2->outcnt()) save_use += unpack_cost(1);
   912   return MAX2(save_in, save_use);
   913 }
   915 //------------------------------costs---------------------------
   916 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
   917 int SuperWord::pack_cost(int ct)   { return ct; }
   918 int SuperWord::unpack_cost(int ct) { return ct; }
   920 //------------------------------combine_packs---------------------------
   921 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
   922 void SuperWord::combine_packs() {
   923   bool changed = true;
   924   // Combine packs regardless max vector size.
   925   while (changed) {
   926     changed = false;
   927     for (int i = 0; i < _packset.length(); i++) {
   928       Node_List* p1 = _packset.at(i);
   929       if (p1 == NULL) continue;
   930       for (int j = 0; j < _packset.length(); j++) {
   931         Node_List* p2 = _packset.at(j);
   932         if (p2 == NULL) continue;
   933         if (i == j) continue;
   934         if (p1->at(p1->size()-1) == p2->at(0)) {
   935           for (uint k = 1; k < p2->size(); k++) {
   936             p1->push(p2->at(k));
   937           }
   938           _packset.at_put(j, NULL);
   939           changed = true;
   940         }
   941       }
   942     }
   943   }
   945   // Split packs which have size greater then max vector size.
   946   for (int i = 0; i < _packset.length(); i++) {
   947     Node_List* p1 = _packset.at(i);
   948     if (p1 != NULL) {
   949       BasicType bt = velt_basic_type(p1->at(0));
   950       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
   951       assert(is_power_of_2(max_vlen), "sanity");
   952       uint psize = p1->size();
   953       if (!is_power_of_2(psize)) {
   954         // Skip pack which can't be vector.
   955         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
   956         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
   957         _packset.at_put(i, NULL);
   958         continue;
   959       }
   960       if (psize > max_vlen) {
   961         Node_List* pack = new Node_List();
   962         for (uint j = 0; j < psize; j++) {
   963           pack->push(p1->at(j));
   964           if (pack->size() >= max_vlen) {
   965             assert(is_power_of_2(pack->size()), "sanity");
   966             _packset.append(pack);
   967             pack = new Node_List();
   968           }
   969         }
   970         _packset.at_put(i, NULL);
   971       }
   972     }
   973   }
   975   // Compress list.
   976   for (int i = _packset.length() - 1; i >= 0; i--) {
   977     Node_List* p1 = _packset.at(i);
   978     if (p1 == NULL) {
   979       _packset.remove_at(i);
   980     }
   981   }
   983 #ifndef PRODUCT
   984   if (TraceSuperWord) {
   985     tty->print_cr("\nAfter combine_packs");
   986     print_packset();
   987   }
   988 #endif
   989 }
   991 //-----------------------------construct_my_pack_map--------------------------
   992 // Construct the map from nodes to packs.  Only valid after the
   993 // point where a node is only in one pack (after combine_packs).
   994 void SuperWord::construct_my_pack_map() {
   995   Node_List* rslt = NULL;
   996   for (int i = 0; i < _packset.length(); i++) {
   997     Node_List* p = _packset.at(i);
   998     for (uint j = 0; j < p->size(); j++) {
   999       Node* s = p->at(j);
  1000       assert(my_pack(s) == NULL, "only in one pack");
  1001       set_my_pack(s, p);
  1006 //------------------------------filter_packs---------------------------
  1007 // Remove packs that are not implemented or not profitable.
  1008 void SuperWord::filter_packs() {
  1010   // Remove packs that are not implemented
  1011   for (int i = _packset.length() - 1; i >= 0; i--) {
  1012     Node_List* pk = _packset.at(i);
  1013     bool impl = implemented(pk);
  1014     if (!impl) {
  1015 #ifndef PRODUCT
  1016       if (TraceSuperWord && Verbose) {
  1017         tty->print_cr("Unimplemented");
  1018         pk->at(0)->dump();
  1020 #endif
  1021       remove_pack_at(i);
  1025   // Remove packs that are not profitable
  1026   bool changed;
  1027   do {
  1028     changed = false;
  1029     for (int i = _packset.length() - 1; i >= 0; i--) {
  1030       Node_List* pk = _packset.at(i);
  1031       bool prof = profitable(pk);
  1032       if (!prof) {
  1033 #ifndef PRODUCT
  1034         if (TraceSuperWord && Verbose) {
  1035           tty->print_cr("Unprofitable");
  1036           pk->at(0)->dump();
  1038 #endif
  1039         remove_pack_at(i);
  1040         changed = true;
  1043   } while (changed);
  1045 #ifndef PRODUCT
  1046   if (TraceSuperWord) {
  1047     tty->print_cr("\nAfter filter_packs");
  1048     print_packset();
  1049     tty->cr();
  1051 #endif
  1054 //------------------------------implemented---------------------------
  1055 // Can code be generated for pack p?
  1056 bool SuperWord::implemented(Node_List* p) {
  1057   Node* p0 = p->at(0);
  1058   if (VectorNode::is_shift(p0) && in_bb(p0->in(2))) {
  1059     return false; // vector shift count should be loop's invariant.
  1061   return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0));
  1064 //------------------------------profitable---------------------------
  1065 // For pack p, are all operands and all uses (with in the block) vector?
  1066 bool SuperWord::profitable(Node_List* p) {
  1067   Node* p0 = p->at(0);
  1068   uint start, end;
  1069   vector_opd_range(p0, &start, &end);
  1071   // Return false if some input is not vector and inside block
  1072   for (uint i = start; i < end; i++) {
  1073     if (!is_vector_use(p0, i)) {
  1074       // For now, return false if not scalar promotion case (inputs are the same.)
  1075       // Later, implement PackNode and allow differing, non-vector inputs
  1076       // (maybe just the ones from outside the block.)
  1077       Node* p0_def = p0->in(i);
  1078       for (uint j = 1; j < p->size(); j++) {
  1079         Node* use = p->at(j);
  1080         Node* def = use->in(i);
  1081         if (p0_def != def)
  1082           return false;
  1086   if (!p0->is_Store()) {
  1087     // For now, return false if not all uses are vector.
  1088     // Later, implement ExtractNode and allow non-vector uses (maybe
  1089     // just the ones outside the block.)
  1090     for (uint i = 0; i < p->size(); i++) {
  1091       Node* def = p->at(i);
  1092       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1093         Node* use = def->fast_out(j);
  1094         for (uint k = 0; k < use->req(); k++) {
  1095           Node* n = use->in(k);
  1096           if (def == n) {
  1097             if (!is_vector_use(use, k)) {
  1098               return false;
  1105   return true;
  1108 //------------------------------schedule---------------------------
  1109 // Adjust the memory graph for the packed operations
  1110 void SuperWord::schedule() {
  1112   // Co-locate in the memory graph the members of each memory pack
  1113   for (int i = 0; i < _packset.length(); i++) {
  1114     co_locate_pack(_packset.at(i));
  1118 //-------------------------------remove_and_insert-------------------
  1119 // Remove "current" from its current position in the memory graph and insert
  1120 // it after the appropriate insertion point (lip or uip).
  1121 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
  1122                                   Node *uip, Unique_Node_List &sched_before) {
  1123   Node* my_mem = current->in(MemNode::Memory);
  1124   bool sched_up = sched_before.member(current);
  1126   // remove current_store from its current position in the memmory graph
  1127   for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1128     Node* use = current->out(i);
  1129     if (use->is_Mem()) {
  1130       assert(use->in(MemNode::Memory) == current, "must be");
  1131       if (use == prev) { // connect prev to my_mem
  1132           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
  1133           --i; //deleted this edge; rescan position
  1134       } else if (sched_before.member(use)) {
  1135         if (!sched_up) { // Will be moved together with current
  1136           _igvn.replace_input_of(use, MemNode::Memory, uip);
  1137           --i; //deleted this edge; rescan position
  1139       } else {
  1140         if (sched_up) { // Will be moved together with current
  1141           _igvn.replace_input_of(use, MemNode::Memory, lip);
  1142           --i; //deleted this edge; rescan position
  1148   Node *insert_pt =  sched_up ?  uip : lip;
  1150   // all uses of insert_pt's memory state should use current's instead
  1151   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
  1152     Node* use = insert_pt->out(i);
  1153     if (use->is_Mem()) {
  1154       assert(use->in(MemNode::Memory) == insert_pt, "must be");
  1155       _igvn.replace_input_of(use, MemNode::Memory, current);
  1156       --i; //deleted this edge; rescan position
  1157     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
  1158       uint pos; //lip (lower insert point) must be the last one in the memory slice
  1159       for (pos=1; pos < use->req(); pos++) {
  1160         if (use->in(pos) == insert_pt) break;
  1162       _igvn.replace_input_of(use, pos, current);
  1163       --i;
  1167   //connect current to insert_pt
  1168   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
  1171 //------------------------------co_locate_pack----------------------------------
  1172 // To schedule a store pack, we need to move any sandwiched memory ops either before
  1173 // or after the pack, based upon dependence information:
  1174 // (1) If any store in the pack depends on the sandwiched memory op, the
  1175 //     sandwiched memory op must be scheduled BEFORE the pack;
  1176 // (2) If a sandwiched memory op depends on any store in the pack, the
  1177 //     sandwiched memory op must be scheduled AFTER the pack;
  1178 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
  1179 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
  1180 //     scheduled before the pack, memB must also be scheduled before the pack;
  1181 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
  1182 //     schedule this store AFTER the pack
  1183 // (5) We know there is no dependence cycle, so there in no other case;
  1184 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
  1185 //
  1186 // To schedule a load pack, we use the memory state of either the first or the last load in
  1187 // the pack, based on the dependence constraint.
  1188 void SuperWord::co_locate_pack(Node_List* pk) {
  1189   if (pk->at(0)->is_Store()) {
  1190     MemNode* first     = executed_first(pk)->as_Mem();
  1191     MemNode* last      = executed_last(pk)->as_Mem();
  1192     Unique_Node_List schedule_before_pack;
  1193     Unique_Node_List memops;
  1195     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
  1196     MemNode* previous  = last;
  1197     while (true) {
  1198       assert(in_bb(current), "stay in block");
  1199       memops.push(previous);
  1200       for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1201         Node* use = current->out(i);
  1202         if (use->is_Mem() && use != previous)
  1203           memops.push(use);
  1205       if (current == first) break;
  1206       previous = current;
  1207       current  = current->in(MemNode::Memory)->as_Mem();
  1210     // determine which memory operations should be scheduled before the pack
  1211     for (uint i = 1; i < memops.size(); i++) {
  1212       Node *s1 = memops.at(i);
  1213       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
  1214         for (uint j = 0; j< i; j++) {
  1215           Node *s2 = memops.at(j);
  1216           if (!independent(s1, s2)) {
  1217             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
  1218               schedule_before_pack.push(s1); // s1 must be scheduled before
  1219               Node_List* mem_pk = my_pack(s1);
  1220               if (mem_pk != NULL) {
  1221                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
  1222                   Node* s = mem_pk->at(ii);  // follow partner
  1223                   if (memops.member(s) && !schedule_before_pack.member(s))
  1224                     schedule_before_pack.push(s);
  1227               break;
  1234     Node*    upper_insert_pt = first->in(MemNode::Memory);
  1235     // Following code moves loads connected to upper_insert_pt below aliased stores.
  1236     // Collect such loads here and reconnect them back to upper_insert_pt later.
  1237     memops.clear();
  1238     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
  1239       Node* use = upper_insert_pt->out(i);
  1240       if (!use->is_Store())
  1241         memops.push(use);
  1244     MemNode* lower_insert_pt = last;
  1245     previous                 = last; //previous store in pk
  1246     current                  = last->in(MemNode::Memory)->as_Mem();
  1248     // start scheduling from "last" to "first"
  1249     while (true) {
  1250       assert(in_bb(current), "stay in block");
  1251       assert(in_pack(previous, pk), "previous stays in pack");
  1252       Node* my_mem = current->in(MemNode::Memory);
  1254       if (in_pack(current, pk)) {
  1255         // Forward users of my memory state (except "previous) to my input memory state
  1256         for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1257           Node* use = current->out(i);
  1258           if (use->is_Mem() && use != previous) {
  1259             assert(use->in(MemNode::Memory) == current, "must be");
  1260             if (schedule_before_pack.member(use)) {
  1261               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
  1262             } else {
  1263               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
  1265             --i; // deleted this edge; rescan position
  1268         previous = current;
  1269       } else { // !in_pack(current, pk) ==> a sandwiched store
  1270         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
  1273       if (current == first) break;
  1274       current = my_mem->as_Mem();
  1275     } // end while
  1277     // Reconnect loads back to upper_insert_pt.
  1278     for (uint i = 0; i < memops.size(); i++) {
  1279       Node *ld = memops.at(i);
  1280       if (ld->in(MemNode::Memory) != upper_insert_pt) {
  1281         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
  1284   } else if (pk->at(0)->is_Load()) { //load
  1285     // all loads in the pack should have the same memory state. By default,
  1286     // we use the memory state of the last load. However, if any load could
  1287     // not be moved down due to the dependence constraint, we use the memory
  1288     // state of the first load.
  1289     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
  1290     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
  1291     bool schedule_last = true;
  1292     for (uint i = 0; i < pk->size(); i++) {
  1293       Node* ld = pk->at(i);
  1294       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
  1295            current=current->in(MemNode::Memory)) {
  1296         assert(current != first_mem, "corrupted memory graph");
  1297         if(current->is_Mem() && !independent(current, ld)){
  1298           schedule_last = false; // a later store depends on this load
  1299           break;
  1304     Node* mem_input = schedule_last ? last_mem : first_mem;
  1305     _igvn.hash_delete(mem_input);
  1306     // Give each load the same memory state
  1307     for (uint i = 0; i < pk->size(); i++) {
  1308       LoadNode* ld = pk->at(i)->as_Load();
  1309       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
  1314 //------------------------------output---------------------------
  1315 // Convert packs into vector node operations
  1316 void SuperWord::output() {
  1317   if (_packset.length() == 0) return;
  1319 #ifndef PRODUCT
  1320   if (TraceLoopOpts) {
  1321     tty->print("SuperWord    ");
  1322     lpt()->dump_head();
  1324 #endif
  1326   // MUST ENSURE main loop's initial value is properly aligned:
  1327   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
  1329   align_initial_loop_index(align_to_ref());
  1331   // Insert extract (unpack) operations for scalar uses
  1332   for (int i = 0; i < _packset.length(); i++) {
  1333     insert_extracts(_packset.at(i));
  1336   for (int i = 0; i < _block.length(); i++) {
  1337     Node* n = _block.at(i);
  1338     Node_List* p = my_pack(n);
  1339     if (p && n == executed_last(p)) {
  1340       uint vlen = p->size();
  1341       Node* vn = NULL;
  1342       Node* low_adr = p->at(0);
  1343       Node* first   = executed_first(p);
  1344       int   opc = n->Opcode();
  1345       if (n->is_Load()) {
  1346         Node* ctl = n->in(MemNode::Control);
  1347         Node* mem = first->in(MemNode::Memory);
  1348         Node* adr = low_adr->in(MemNode::Address);
  1349         const TypePtr* atyp = n->adr_type();
  1350         vn = LoadVectorNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n));
  1351       } else if (n->is_Store()) {
  1352         // Promote value to be stored to vector
  1353         Node* val = vector_opd(p, MemNode::ValueIn);
  1354         Node* ctl = n->in(MemNode::Control);
  1355         Node* mem = first->in(MemNode::Memory);
  1356         Node* adr = low_adr->in(MemNode::Address);
  1357         const TypePtr* atyp = n->adr_type();
  1358         vn = StoreVectorNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
  1359       } else if (n->req() == 3) {
  1360         // Promote operands to vector
  1361         Node* in1 = vector_opd(p, 1);
  1362         Node* in2 = vector_opd(p, 2);
  1363         if (VectorNode::is_invariant_vector(in1) && (n->is_Add() || n->is_Mul())) {
  1364           // Move invariant vector input into second position to avoid register spilling.
  1365           Node* tmp = in1;
  1366           in1 = in2;
  1367           in2 = tmp;
  1369         vn = VectorNode::make(_phase->C, opc, in1, in2, vlen, velt_basic_type(n));
  1370       } else {
  1371         ShouldNotReachHere();
  1373       assert(vn != NULL, "sanity");
  1374       _phase->_igvn.register_new_node_with_optimizer(vn);
  1375       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
  1376       for (uint j = 0; j < p->size(); j++) {
  1377         Node* pm = p->at(j);
  1378         _igvn.replace_node(pm, vn);
  1380       _igvn._worklist.push(vn);
  1381 #ifdef ASSERT
  1382       if (TraceNewVectors) {
  1383         tty->print("new Vector node: ");
  1384         vn->dump();
  1386 #endif
  1391 //------------------------------vector_opd---------------------------
  1392 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
  1393 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
  1394   Node* p0 = p->at(0);
  1395   uint vlen = p->size();
  1396   Node* opd = p0->in(opd_idx);
  1398   bool same_opd = true;
  1399   for (uint i = 1; i < vlen; i++) {
  1400     Node* pi = p->at(i);
  1401     Node* in = pi->in(opd_idx);
  1402     if (opd != in) {
  1403       same_opd = false;
  1404       break;
  1408   if (same_opd) {
  1409     if (opd->is_Vector() || opd->is_LoadVector()) {
  1410       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
  1411       return opd; // input is matching vector
  1413     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
  1414       // No vector is needed for shift count.
  1415       // Vector instructions do not mask shift count, do it here.
  1416       Compile* C = _phase->C;
  1417       Node* cnt = opd;
  1418       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  1419       const TypeInt* t = opd->find_int_type();
  1420       if (t != NULL && t->is_con()) {
  1421         juint shift = t->get_con();
  1422         if (shift > mask) { // Unsigned cmp
  1423           cnt = ConNode::make(C, TypeInt::make(shift & mask));
  1425       } else {
  1426         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  1427           cnt = ConNode::make(C, TypeInt::make(mask));
  1428           _phase->_igvn.register_new_node_with_optimizer(cnt);
  1429           cnt = new (C, 3) AndINode(opd, cnt);
  1430           _phase->_igvn.register_new_node_with_optimizer(cnt);
  1431           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
  1433         assert(opd->bottom_type()->isa_int(), "int type only");
  1434         // Move non constant shift count into XMM register.
  1435         cnt = new (_phase->C, 2) MoveI2FNode(cnt);
  1437       if (cnt != opd) {
  1438         _phase->_igvn.register_new_node_with_optimizer(cnt);
  1439         _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
  1441       return cnt;
  1443     assert(!opd->is_StoreVector(), "such vector is not expected here");
  1444     // Convert scalar input to vector with the same number of elements as
  1445     // p0's vector. Use p0's type because size of operand's container in
  1446     // vector should match p0's size regardless operand's size.
  1447     const Type* p0_t = velt_type(p0);
  1448     VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
  1450     _phase->_igvn.register_new_node_with_optimizer(vn);
  1451     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
  1452 #ifdef ASSERT
  1453     if (TraceNewVectors) {
  1454       tty->print("new Vector node: ");
  1455       vn->dump();
  1457 #endif
  1458     return vn;
  1461   // Insert pack operation
  1462   BasicType bt = velt_basic_type(p0);
  1463   PackNode* pk = PackNode::make(_phase->C, opd, vlen, bt);
  1464   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
  1466   for (uint i = 1; i < vlen; i++) {
  1467     Node* pi = p->at(i);
  1468     Node* in = pi->in(opd_idx);
  1469     assert(my_pack(in) == NULL, "Should already have been unpacked");
  1470     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
  1471     pk->add_opd(i, in);
  1473   _phase->_igvn.register_new_node_with_optimizer(pk);
  1474   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
  1475 #ifdef ASSERT
  1476     if (TraceNewVectors) {
  1477       tty->print("new Vector node: ");
  1478       pk->dump();
  1480 #endif
  1481   return pk;
  1484 //------------------------------insert_extracts---------------------------
  1485 // If a use of pack p is not a vector use, then replace the
  1486 // use with an extract operation.
  1487 void SuperWord::insert_extracts(Node_List* p) {
  1488   if (p->at(0)->is_Store()) return;
  1489   assert(_n_idx_list.is_empty(), "empty (node,index) list");
  1491   // Inspect each use of each pack member.  For each use that is
  1492   // not a vector use, replace the use with an extract operation.
  1494   for (uint i = 0; i < p->size(); i++) {
  1495     Node* def = p->at(i);
  1496     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1497       Node* use = def->fast_out(j);
  1498       for (uint k = 0; k < use->req(); k++) {
  1499         Node* n = use->in(k);
  1500         if (def == n) {
  1501           if (!is_vector_use(use, k)) {
  1502             _n_idx_list.push(use, k);
  1509   while (_n_idx_list.is_nonempty()) {
  1510     Node* use = _n_idx_list.node();
  1511     int   idx = _n_idx_list.index();
  1512     _n_idx_list.pop();
  1513     Node* def = use->in(idx);
  1515     // Insert extract operation
  1516     _igvn.hash_delete(def);
  1517     int def_pos = alignment(def) / data_size(def);
  1519     Node* ex = ExtractNode::make(_phase->C, def, def_pos, velt_basic_type(def));
  1520     _phase->_igvn.register_new_node_with_optimizer(ex);
  1521     _phase->set_ctrl(ex, _phase->get_ctrl(def));
  1522     _igvn.replace_input_of(use, idx, ex);
  1523     _igvn._worklist.push(def);
  1525     bb_insert_after(ex, bb_idx(def));
  1526     set_velt_type(ex, velt_type(def));
  1530 //------------------------------is_vector_use---------------------------
  1531 // Is use->in(u_idx) a vector use?
  1532 bool SuperWord::is_vector_use(Node* use, int u_idx) {
  1533   Node_List* u_pk = my_pack(use);
  1534   if (u_pk == NULL) return false;
  1535   Node* def = use->in(u_idx);
  1536   Node_List* d_pk = my_pack(def);
  1537   if (d_pk == NULL) {
  1538     // check for scalar promotion
  1539     Node* n = u_pk->at(0)->in(u_idx);
  1540     for (uint i = 1; i < u_pk->size(); i++) {
  1541       if (u_pk->at(i)->in(u_idx) != n) return false;
  1543     return true;
  1545   if (u_pk->size() != d_pk->size())
  1546     return false;
  1547   for (uint i = 0; i < u_pk->size(); i++) {
  1548     Node* ui = u_pk->at(i);
  1549     Node* di = d_pk->at(i);
  1550     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
  1551       return false;
  1553   return true;
  1556 //------------------------------construct_bb---------------------------
  1557 // Construct reverse postorder list of block members
  1558 void SuperWord::construct_bb() {
  1559   Node* entry = bb();
  1561   assert(_stk.length() == 0,            "stk is empty");
  1562   assert(_block.length() == 0,          "block is empty");
  1563   assert(_data_entry.length() == 0,     "data_entry is empty");
  1564   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
  1565   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
  1567   // Find non-control nodes with no inputs from within block,
  1568   // create a temporary map from node _idx to bb_idx for use
  1569   // by the visited and post_visited sets,
  1570   // and count number of nodes in block.
  1571   int bb_ct = 0;
  1572   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
  1573     Node *n = lpt()->_body.at(i);
  1574     set_bb_idx(n, i); // Create a temporary map
  1575     if (in_bb(n)) {
  1576       bb_ct++;
  1577       if (!n->is_CFG()) {
  1578         bool found = false;
  1579         for (uint j = 0; j < n->req(); j++) {
  1580           Node* def = n->in(j);
  1581           if (def && in_bb(def)) {
  1582             found = true;
  1583             break;
  1586         if (!found) {
  1587           assert(n != entry, "can't be entry");
  1588           _data_entry.push(n);
  1594   // Find memory slices (head and tail)
  1595   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
  1596     Node *n = lp()->fast_out(i);
  1597     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
  1598       Node* n_tail  = n->in(LoopNode::LoopBackControl);
  1599       if (n_tail != n->in(LoopNode::EntryControl)) {
  1600         _mem_slice_head.push(n);
  1601         _mem_slice_tail.push(n_tail);
  1606   // Create an RPO list of nodes in block
  1608   visited_clear();
  1609   post_visited_clear();
  1611   // Push all non-control nodes with no inputs from within block, then control entry
  1612   for (int j = 0; j < _data_entry.length(); j++) {
  1613     Node* n = _data_entry.at(j);
  1614     visited_set(n);
  1615     _stk.push(n);
  1617   visited_set(entry);
  1618   _stk.push(entry);
  1620   // Do a depth first walk over out edges
  1621   int rpo_idx = bb_ct - 1;
  1622   int size;
  1623   while ((size = _stk.length()) > 0) {
  1624     Node* n = _stk.top(); // Leave node on stack
  1625     if (!visited_test_set(n)) {
  1626       // forward arc in graph
  1627     } else if (!post_visited_test(n)) {
  1628       // cross or back arc
  1629       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1630         Node *use = n->fast_out(i);
  1631         if (in_bb(use) && !visited_test(use) &&
  1632             // Don't go around backedge
  1633             (!use->is_Phi() || n == entry)) {
  1634           _stk.push(use);
  1637       if (_stk.length() == size) {
  1638         // There were no additional uses, post visit node now
  1639         _stk.pop(); // Remove node from stack
  1640         assert(rpo_idx >= 0, "");
  1641         _block.at_put_grow(rpo_idx, n);
  1642         rpo_idx--;
  1643         post_visited_set(n);
  1644         assert(rpo_idx >= 0 || _stk.is_empty(), "");
  1646     } else {
  1647       _stk.pop(); // Remove post-visited node from stack
  1651   // Create real map of block indices for nodes
  1652   for (int j = 0; j < _block.length(); j++) {
  1653     Node* n = _block.at(j);
  1654     set_bb_idx(n, j);
  1657   initialize_bb(); // Ensure extra info is allocated.
  1659 #ifndef PRODUCT
  1660   if (TraceSuperWord) {
  1661     print_bb();
  1662     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
  1663     for (int m = 0; m < _data_entry.length(); m++) {
  1664       tty->print("%3d ", m);
  1665       _data_entry.at(m)->dump();
  1667     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
  1668     for (int m = 0; m < _mem_slice_head.length(); m++) {
  1669       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
  1670       tty->print("    ");    _mem_slice_tail.at(m)->dump();
  1673 #endif
  1674   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
  1677 //------------------------------initialize_bb---------------------------
  1678 // Initialize per node info
  1679 void SuperWord::initialize_bb() {
  1680   Node* last = _block.at(_block.length() - 1);
  1681   grow_node_info(bb_idx(last));
  1684 //------------------------------bb_insert_after---------------------------
  1685 // Insert n into block after pos
  1686 void SuperWord::bb_insert_after(Node* n, int pos) {
  1687   int n_pos = pos + 1;
  1688   // Make room
  1689   for (int i = _block.length() - 1; i >= n_pos; i--) {
  1690     _block.at_put_grow(i+1, _block.at(i));
  1692   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
  1693     _node_info.at_put_grow(j+1, _node_info.at(j));
  1695   // Set value
  1696   _block.at_put_grow(n_pos, n);
  1697   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
  1698   // Adjust map from node->_idx to _block index
  1699   for (int i = n_pos; i < _block.length(); i++) {
  1700     set_bb_idx(_block.at(i), i);
  1704 //------------------------------compute_max_depth---------------------------
  1705 // Compute max depth for expressions from beginning of block
  1706 // Use to prune search paths during test for independence.
  1707 void SuperWord::compute_max_depth() {
  1708   int ct = 0;
  1709   bool again;
  1710   do {
  1711     again = false;
  1712     for (int i = 0; i < _block.length(); i++) {
  1713       Node* n = _block.at(i);
  1714       if (!n->is_Phi()) {
  1715         int d_orig = depth(n);
  1716         int d_in   = 0;
  1717         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
  1718           Node* pred = preds.current();
  1719           if (in_bb(pred)) {
  1720             d_in = MAX2(d_in, depth(pred));
  1723         if (d_in + 1 != d_orig) {
  1724           set_depth(n, d_in + 1);
  1725           again = true;
  1729     ct++;
  1730   } while (again);
  1731 #ifndef PRODUCT
  1732   if (TraceSuperWord && Verbose)
  1733     tty->print_cr("compute_max_depth iterated: %d times", ct);
  1734 #endif
  1737 //-------------------------compute_vector_element_type-----------------------
  1738 // Compute necessary vector element type for expressions
  1739 // This propagates backwards a narrower integer type when the
  1740 // upper bits of the value are not needed.
  1741 // Example:  char a,b,c;  a = b + c;
  1742 // Normally the type of the add is integer, but for packed character
  1743 // operations the type of the add needs to be char.
  1744 void SuperWord::compute_vector_element_type() {
  1745 #ifndef PRODUCT
  1746   if (TraceSuperWord && Verbose)
  1747     tty->print_cr("\ncompute_velt_type:");
  1748 #endif
  1750   // Initial type
  1751   for (int i = 0; i < _block.length(); i++) {
  1752     Node* n = _block.at(i);
  1753     set_velt_type(n, container_type(n));
  1756   // Propagate narrowed type backwards through operations
  1757   // that don't depend on higher order bits
  1758   for (int i = _block.length() - 1; i >= 0; i--) {
  1759     Node* n = _block.at(i);
  1760     // Only integer types need be examined
  1761     const Type* vt = velt_type(n);
  1762     if (vt->basic_type() == T_INT) {
  1763       uint start, end;
  1764       vector_opd_range(n, &start, &end);
  1765       const Type* vt = velt_type(n);
  1767       for (uint j = start; j < end; j++) {
  1768         Node* in  = n->in(j);
  1769         // Don't propagate through a memory
  1770         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
  1771             data_size(n) < data_size(in)) {
  1772           bool same_type = true;
  1773           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
  1774             Node *use = in->fast_out(k);
  1775             if (!in_bb(use) || !same_velt_type(use, n)) {
  1776               same_type = false;
  1777               break;
  1780           if (same_type) {
  1781             set_velt_type(in, vt);
  1787 #ifndef PRODUCT
  1788   if (TraceSuperWord && Verbose) {
  1789     for (int i = 0; i < _block.length(); i++) {
  1790       Node* n = _block.at(i);
  1791       velt_type(n)->dump();
  1792       tty->print("\t");
  1793       n->dump();
  1796 #endif
  1799 //------------------------------memory_alignment---------------------------
  1800 // Alignment within a vector memory reference
  1801 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
  1802   SWPointer p(s, this);
  1803   if (!p.valid()) {
  1804     return bottom_align;
  1806   int vw = vector_width_in_bytes(s);
  1807   if (vw < 2) {
  1808     return bottom_align; // No vectors for this type
  1810   int offset  = p.offset_in_bytes();
  1811   offset     += iv_adjust_in_bytes;
  1812   int off_rem = offset % vw;
  1813   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
  1814   return off_mod;
  1817 //---------------------------container_type---------------------------
  1818 // Smallest type containing range of values
  1819 const Type* SuperWord::container_type(Node* n) {
  1820   if (n->is_Mem()) {
  1821     return Type::get_const_basic_type(n->as_Mem()->memory_type());
  1823   const Type* t = _igvn.type(n);
  1824   if (t->basic_type() == T_INT) {
  1825     // A narrow type of arithmetic operations will be determined by
  1826     // propagating the type of memory operations.
  1827     return TypeInt::INT;
  1829   return t;
  1832 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
  1833   const Type* vt1 = velt_type(n1);
  1834   const Type* vt2 = velt_type(n1);
  1835   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
  1836     // Compare vectors element sizes for integer types.
  1837     return data_size(n1) == data_size(n2);
  1839   return vt1 == vt2;
  1842 //-------------------------vector_opd_range-----------------------
  1843 // (Start, end] half-open range defining which operands are vector
  1844 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
  1845   switch (n->Opcode()) {
  1846   case Op_LoadB:   case Op_LoadUB:
  1847   case Op_LoadS:   case Op_LoadUS:
  1848   case Op_LoadI:   case Op_LoadL:
  1849   case Op_LoadF:   case Op_LoadD:
  1850   case Op_LoadP:
  1851     *start = 0;
  1852     *end   = 0;
  1853     return;
  1854   case Op_StoreB:  case Op_StoreC:
  1855   case Op_StoreI:  case Op_StoreL:
  1856   case Op_StoreF:  case Op_StoreD:
  1857   case Op_StoreP:
  1858     *start = MemNode::ValueIn;
  1859     *end   = *start + 1;
  1860     return;
  1861   case Op_LShiftI: case Op_LShiftL:
  1862     *start = 1;
  1863     *end   = 2;
  1864     return;
  1865   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
  1866     *start = 2;
  1867     *end   = n->req();
  1868     return;
  1870   *start = 1;
  1871   *end   = n->req(); // default is all operands
  1874 //------------------------------in_packset---------------------------
  1875 // Are s1 and s2 in a pack pair and ordered as s1,s2?
  1876 bool SuperWord::in_packset(Node* s1, Node* s2) {
  1877   for (int i = 0; i < _packset.length(); i++) {
  1878     Node_List* p = _packset.at(i);
  1879     assert(p->size() == 2, "must be");
  1880     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
  1881       return true;
  1884   return false;
  1887 //------------------------------in_pack---------------------------
  1888 // Is s in pack p?
  1889 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
  1890   for (uint i = 0; i < p->size(); i++) {
  1891     if (p->at(i) == s) {
  1892       return p;
  1895   return NULL;
  1898 //------------------------------remove_pack_at---------------------------
  1899 // Remove the pack at position pos in the packset
  1900 void SuperWord::remove_pack_at(int pos) {
  1901   Node_List* p = _packset.at(pos);
  1902   for (uint i = 0; i < p->size(); i++) {
  1903     Node* s = p->at(i);
  1904     set_my_pack(s, NULL);
  1906   _packset.remove_at(pos);
  1909 //------------------------------executed_first---------------------------
  1910 // Return the node executed first in pack p.  Uses the RPO block list
  1911 // to determine order.
  1912 Node* SuperWord::executed_first(Node_List* p) {
  1913   Node* n = p->at(0);
  1914   int n_rpo = bb_idx(n);
  1915   for (uint i = 1; i < p->size(); i++) {
  1916     Node* s = p->at(i);
  1917     int s_rpo = bb_idx(s);
  1918     if (s_rpo < n_rpo) {
  1919       n = s;
  1920       n_rpo = s_rpo;
  1923   return n;
  1926 //------------------------------executed_last---------------------------
  1927 // Return the node executed last in pack p.
  1928 Node* SuperWord::executed_last(Node_List* p) {
  1929   Node* n = p->at(0);
  1930   int n_rpo = bb_idx(n);
  1931   for (uint i = 1; i < p->size(); i++) {
  1932     Node* s = p->at(i);
  1933     int s_rpo = bb_idx(s);
  1934     if (s_rpo > n_rpo) {
  1935       n = s;
  1936       n_rpo = s_rpo;
  1939   return n;
  1942 //----------------------------align_initial_loop_index---------------------------
  1943 // Adjust pre-loop limit so that in main loop, a load/store reference
  1944 // to align_to_ref will be a position zero in the vector.
  1945 //   (iv + k) mod vector_align == 0
  1946 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
  1947   CountedLoopNode *main_head = lp()->as_CountedLoop();
  1948   assert(main_head->is_main_loop(), "");
  1949   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
  1950   assert(pre_end != NULL, "");
  1951   Node *pre_opaq1 = pre_end->limit();
  1952   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
  1953   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1954   Node *lim0 = pre_opaq->in(1);
  1956   // Where we put new limit calculations
  1957   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1959   // Ensure the original loop limit is available from the
  1960   // pre-loop Opaque1 node.
  1961   Node *orig_limit = pre_opaq->original_loop_limit();
  1962   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
  1964   SWPointer align_to_ref_p(align_to_ref, this);
  1965   assert(align_to_ref_p.valid(), "sanity");
  1967   // Given:
  1968   //     lim0 == original pre loop limit
  1969   //     V == v_align (power of 2)
  1970   //     invar == extra invariant piece of the address expression
  1971   //     e == offset [ +/- invar ]
  1972   //
  1973   // When reassociating expressions involving '%' the basic rules are:
  1974   //     (a - b) % k == 0   =>  a % k == b % k
  1975   // and:
  1976   //     (a + b) % k == 0   =>  a % k == (k - b) % k
  1977   //
  1978   // For stride > 0 && scale > 0,
  1979   //   Derive the new pre-loop limit "lim" such that the two constraints:
  1980   //     (1) lim = lim0 + N           (where N is some positive integer < V)
  1981   //     (2) (e + lim) % V == 0
  1982   //   are true.
  1983   //
  1984   //   Substituting (1) into (2),
  1985   //     (e + lim0 + N) % V == 0
  1986   //   solve for N:
  1987   //     N = (V - (e + lim0)) % V
  1988   //   substitute back into (1), so that new limit
  1989   //     lim = lim0 + (V - (e + lim0)) % V
  1990   //
  1991   // For stride > 0 && scale < 0
  1992   //   Constraints:
  1993   //     lim = lim0 + N
  1994   //     (e - lim) % V == 0
  1995   //   Solving for lim:
  1996   //     (e - lim0 - N) % V == 0
  1997   //     N = (e - lim0) % V
  1998   //     lim = lim0 + (e - lim0) % V
  1999   //
  2000   // For stride < 0 && scale > 0
  2001   //   Constraints:
  2002   //     lim = lim0 - N
  2003   //     (e + lim) % V == 0
  2004   //   Solving for lim:
  2005   //     (e + lim0 - N) % V == 0
  2006   //     N = (e + lim0) % V
  2007   //     lim = lim0 - (e + lim0) % V
  2008   //
  2009   // For stride < 0 && scale < 0
  2010   //   Constraints:
  2011   //     lim = lim0 - N
  2012   //     (e - lim) % V == 0
  2013   //   Solving for lim:
  2014   //     (e - lim0 + N) % V == 0
  2015   //     N = (V - (e - lim0)) % V
  2016   //     lim = lim0 - (V - (e - lim0)) % V
  2018   int vw = vector_width_in_bytes(align_to_ref);
  2019   int stride   = iv_stride();
  2020   int scale    = align_to_ref_p.scale_in_bytes();
  2021   int elt_size = align_to_ref_p.memory_size();
  2022   int v_align  = vw / elt_size;
  2023   assert(v_align > 1, "sanity");
  2024   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
  2025   Node *offsn  = _igvn.intcon(offset);
  2027   Node *e = offsn;
  2028   if (align_to_ref_p.invar() != NULL) {
  2029     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
  2030     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  2031     Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
  2032     _phase->_igvn.register_new_node_with_optimizer(aref);
  2033     _phase->set_ctrl(aref, pre_ctrl);
  2034     if (align_to_ref_p.negate_invar()) {
  2035       e = new (_phase->C, 3) SubINode(e, aref);
  2036     } else {
  2037       e = new (_phase->C, 3) AddINode(e, aref);
  2039     _phase->_igvn.register_new_node_with_optimizer(e);
  2040     _phase->set_ctrl(e, pre_ctrl);
  2042   if (vw > ObjectAlignmentInBytes) {
  2043     // incorporate base e +/- base && Mask >>> log2(elt)
  2044     Node* xbase = new(_phase->C, 2) CastP2XNode(NULL, align_to_ref_p.base());
  2045     _phase->_igvn.register_new_node_with_optimizer(xbase);
  2046 #ifdef _LP64
  2047     xbase  = new (_phase->C, 2) ConvL2INode(xbase);
  2048     _phase->_igvn.register_new_node_with_optimizer(xbase);
  2049 #endif
  2050     Node* mask = _igvn.intcon(vw-1);
  2051     Node* masked_xbase  = new (_phase->C, 3) AndINode(xbase, mask);
  2052     _phase->_igvn.register_new_node_with_optimizer(masked_xbase);
  2053     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  2054     Node* bref     = new (_phase->C, 3) URShiftINode(masked_xbase, log2_elt);
  2055     _phase->_igvn.register_new_node_with_optimizer(bref);
  2056     _phase->set_ctrl(bref, pre_ctrl);
  2057     e = new (_phase->C, 3) AddINode(e, bref);
  2058     _phase->_igvn.register_new_node_with_optimizer(e);
  2059     _phase->set_ctrl(e, pre_ctrl);
  2062   // compute e +/- lim0
  2063   if (scale < 0) {
  2064     e = new (_phase->C, 3) SubINode(e, lim0);
  2065   } else {
  2066     e = new (_phase->C, 3) AddINode(e, lim0);
  2068   _phase->_igvn.register_new_node_with_optimizer(e);
  2069   _phase->set_ctrl(e, pre_ctrl);
  2071   if (stride * scale > 0) {
  2072     // compute V - (e +/- lim0)
  2073     Node* va  = _igvn.intcon(v_align);
  2074     e = new (_phase->C, 3) SubINode(va, e);
  2075     _phase->_igvn.register_new_node_with_optimizer(e);
  2076     _phase->set_ctrl(e, pre_ctrl);
  2078   // compute N = (exp) % V
  2079   Node* va_msk = _igvn.intcon(v_align - 1);
  2080   Node* N = new (_phase->C, 3) AndINode(e, va_msk);
  2081   _phase->_igvn.register_new_node_with_optimizer(N);
  2082   _phase->set_ctrl(N, pre_ctrl);
  2084   //   substitute back into (1), so that new limit
  2085   //     lim = lim0 + N
  2086   Node* lim;
  2087   if (stride < 0) {
  2088     lim = new (_phase->C, 3) SubINode(lim0, N);
  2089   } else {
  2090     lim = new (_phase->C, 3) AddINode(lim0, N);
  2092   _phase->_igvn.register_new_node_with_optimizer(lim);
  2093   _phase->set_ctrl(lim, pre_ctrl);
  2094   Node* constrained =
  2095     (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
  2096                  : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
  2097   _phase->_igvn.register_new_node_with_optimizer(constrained);
  2098   _phase->set_ctrl(constrained, pre_ctrl);
  2099   _igvn.hash_delete(pre_opaq);
  2100   pre_opaq->set_req(1, constrained);
  2103 //----------------------------get_pre_loop_end---------------------------
  2104 // Find pre loop end from main loop.  Returns null if none.
  2105 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
  2106   Node *ctrl = cl->in(LoopNode::EntryControl);
  2107   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
  2108   Node *iffm = ctrl->in(0);
  2109   if (!iffm->is_If()) return NULL;
  2110   Node *p_f = iffm->in(0);
  2111   if (!p_f->is_IfFalse()) return NULL;
  2112   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
  2113   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  2114   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
  2115   return pre_end;
  2119 //------------------------------init---------------------------
  2120 void SuperWord::init() {
  2121   _dg.init();
  2122   _packset.clear();
  2123   _disjoint_ptrs.clear();
  2124   _block.clear();
  2125   _data_entry.clear();
  2126   _mem_slice_head.clear();
  2127   _mem_slice_tail.clear();
  2128   _node_info.clear();
  2129   _align_to_ref = NULL;
  2130   _lpt = NULL;
  2131   _lp = NULL;
  2132   _bb = NULL;
  2133   _iv = NULL;
  2136 //------------------------------print_packset---------------------------
  2137 void SuperWord::print_packset() {
  2138 #ifndef PRODUCT
  2139   tty->print_cr("packset");
  2140   for (int i = 0; i < _packset.length(); i++) {
  2141     tty->print_cr("Pack: %d", i);
  2142     Node_List* p = _packset.at(i);
  2143     print_pack(p);
  2145 #endif
  2148 //------------------------------print_pack---------------------------
  2149 void SuperWord::print_pack(Node_List* p) {
  2150   for (uint i = 0; i < p->size(); i++) {
  2151     print_stmt(p->at(i));
  2155 //------------------------------print_bb---------------------------
  2156 void SuperWord::print_bb() {
  2157 #ifndef PRODUCT
  2158   tty->print_cr("\nBlock");
  2159   for (int i = 0; i < _block.length(); i++) {
  2160     Node* n = _block.at(i);
  2161     tty->print("%d ", i);
  2162     if (n) {
  2163       n->dump();
  2166 #endif
  2169 //------------------------------print_stmt---------------------------
  2170 void SuperWord::print_stmt(Node* s) {
  2171 #ifndef PRODUCT
  2172   tty->print(" align: %d \t", alignment(s));
  2173   s->dump();
  2174 #endif
  2177 //------------------------------blank---------------------------
  2178 char* SuperWord::blank(uint depth) {
  2179   static char blanks[101];
  2180   assert(depth < 101, "too deep");
  2181   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
  2182   blanks[depth] = '\0';
  2183   return blanks;
  2187 //==============================SWPointer===========================
  2189 //----------------------------SWPointer------------------------
  2190 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
  2191   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
  2192   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
  2194   Node* adr = mem->in(MemNode::Address);
  2195   if (!adr->is_AddP()) {
  2196     assert(!valid(), "too complex");
  2197     return;
  2199   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
  2200   Node* base = adr->in(AddPNode::Base);
  2201   //unsafe reference could not be aligned appropriately without runtime checking
  2202   if (base == NULL || base->bottom_type() == Type::TOP) {
  2203     assert(!valid(), "unsafe access");
  2204     return;
  2206   for (int i = 0; i < 3; i++) {
  2207     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
  2208       assert(!valid(), "too complex");
  2209       return;
  2211     adr = adr->in(AddPNode::Address);
  2212     if (base == adr || !adr->is_AddP()) {
  2213       break; // stop looking at addp's
  2216   _base = base;
  2217   _adr  = adr;
  2218   assert(valid(), "Usable");
  2221 // Following is used to create a temporary object during
  2222 // the pattern match of an address expression.
  2223 SWPointer::SWPointer(SWPointer* p) :
  2224   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
  2225   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
  2227 //------------------------scaled_iv_plus_offset--------------------
  2228 // Match: k*iv + offset
  2229 // where: k is a constant that maybe zero, and
  2230 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
  2231 bool SWPointer::scaled_iv_plus_offset(Node* n) {
  2232   if (scaled_iv(n)) {
  2233     return true;
  2235   if (offset_plus_k(n)) {
  2236     return true;
  2238   int opc = n->Opcode();
  2239   if (opc == Op_AddI) {
  2240     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
  2241       return true;
  2243     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  2244       return true;
  2246   } else if (opc == Op_SubI) {
  2247     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
  2248       return true;
  2250     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  2251       _scale *= -1;
  2252       return true;
  2255   return false;
  2258 //----------------------------scaled_iv------------------------
  2259 // Match: k*iv where k is a constant that's not zero
  2260 bool SWPointer::scaled_iv(Node* n) {
  2261   if (_scale != 0) {
  2262     return false;  // already found a scale
  2264   if (n == iv()) {
  2265     _scale = 1;
  2266     return true;
  2268   int opc = n->Opcode();
  2269   if (opc == Op_MulI) {
  2270     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2271       _scale = n->in(2)->get_int();
  2272       return true;
  2273     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
  2274       _scale = n->in(1)->get_int();
  2275       return true;
  2277   } else if (opc == Op_LShiftI) {
  2278     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2279       _scale = 1 << n->in(2)->get_int();
  2280       return true;
  2282   } else if (opc == Op_ConvI2L) {
  2283     if (scaled_iv_plus_offset(n->in(1))) {
  2284       return true;
  2286   } else if (opc == Op_LShiftL) {
  2287     if (!has_iv() && _invar == NULL) {
  2288       // Need to preserve the current _offset value, so
  2289       // create a temporary object for this expression subtree.
  2290       // Hacky, so should re-engineer the address pattern match.
  2291       SWPointer tmp(this);
  2292       if (tmp.scaled_iv_plus_offset(n->in(1))) {
  2293         if (tmp._invar == NULL) {
  2294           int mult = 1 << n->in(2)->get_int();
  2295           _scale   = tmp._scale  * mult;
  2296           _offset += tmp._offset * mult;
  2297           return true;
  2302   return false;
  2305 //----------------------------offset_plus_k------------------------
  2306 // Match: offset is (k [+/- invariant])
  2307 // where k maybe zero and invariant is optional, but not both.
  2308 bool SWPointer::offset_plus_k(Node* n, bool negate) {
  2309   int opc = n->Opcode();
  2310   if (opc == Op_ConI) {
  2311     _offset += negate ? -(n->get_int()) : n->get_int();
  2312     return true;
  2313   } else if (opc == Op_ConL) {
  2314     // Okay if value fits into an int
  2315     const TypeLong* t = n->find_long_type();
  2316     if (t->higher_equal(TypeLong::INT)) {
  2317       jlong loff = n->get_long();
  2318       jint  off  = (jint)loff;
  2319       _offset += negate ? -off : loff;
  2320       return true;
  2322     return false;
  2324   if (_invar != NULL) return false; // already have an invariant
  2325   if (opc == Op_AddI) {
  2326     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2327       _negate_invar = negate;
  2328       _invar = n->in(1);
  2329       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2330       return true;
  2331     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2332       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2333       _negate_invar = negate;
  2334       _invar = n->in(2);
  2335       return true;
  2338   if (opc == Op_SubI) {
  2339     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2340       _negate_invar = negate;
  2341       _invar = n->in(1);
  2342       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2343       return true;
  2344     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2345       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2346       _negate_invar = !negate;
  2347       _invar = n->in(2);
  2348       return true;
  2351   if (invariant(n)) {
  2352     _negate_invar = negate;
  2353     _invar = n;
  2354     return true;
  2356   return false;
  2359 //----------------------------print------------------------
  2360 void SWPointer::print() {
  2361 #ifndef PRODUCT
  2362   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
  2363              _base != NULL ? _base->_idx : 0,
  2364              _adr  != NULL ? _adr->_idx  : 0,
  2365              _scale, _offset,
  2366              _negate_invar?'-':'+',
  2367              _invar != NULL ? _invar->_idx : 0);
  2368 #endif
  2371 // ========================= OrderedPair =====================
  2373 const OrderedPair OrderedPair::initial;
  2375 // ========================= SWNodeInfo =====================
  2377 const SWNodeInfo SWNodeInfo::initial;
  2380 // ============================ DepGraph ===========================
  2382 //------------------------------make_node---------------------------
  2383 // Make a new dependence graph node for an ideal node.
  2384 DepMem* DepGraph::make_node(Node* node) {
  2385   DepMem* m = new (_arena) DepMem(node);
  2386   if (node != NULL) {
  2387     assert(_map.at_grow(node->_idx) == NULL, "one init only");
  2388     _map.at_put_grow(node->_idx, m);
  2390   return m;
  2393 //------------------------------make_edge---------------------------
  2394 // Make a new dependence graph edge from dpred -> dsucc
  2395 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
  2396   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
  2397   dpred->set_out_head(e);
  2398   dsucc->set_in_head(e);
  2399   return e;
  2402 // ========================== DepMem ========================
  2404 //------------------------------in_cnt---------------------------
  2405 int DepMem::in_cnt() {
  2406   int ct = 0;
  2407   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
  2408   return ct;
  2411 //------------------------------out_cnt---------------------------
  2412 int DepMem::out_cnt() {
  2413   int ct = 0;
  2414   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
  2415   return ct;
  2418 //------------------------------print-----------------------------
  2419 void DepMem::print() {
  2420 #ifndef PRODUCT
  2421   tty->print("  DepNode %d (", _node->_idx);
  2422   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
  2423     Node* pred = p->pred()->node();
  2424     tty->print(" %d", pred != NULL ? pred->_idx : 0);
  2426   tty->print(") [");
  2427   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
  2428     Node* succ = s->succ()->node();
  2429     tty->print(" %d", succ != NULL ? succ->_idx : 0);
  2431   tty->print_cr(" ]");
  2432 #endif
  2435 // =========================== DepEdge =========================
  2437 //------------------------------DepPreds---------------------------
  2438 void DepEdge::print() {
  2439 #ifndef PRODUCT
  2440   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
  2441 #endif
  2444 // =========================== DepPreds =========================
  2445 // Iterator over predecessor edges in the dependence graph.
  2447 //------------------------------DepPreds---------------------------
  2448 DepPreds::DepPreds(Node* n, DepGraph& dg) {
  2449   _n = n;
  2450   _done = false;
  2451   if (_n->is_Store() || _n->is_Load()) {
  2452     _next_idx = MemNode::Address;
  2453     _end_idx  = n->req();
  2454     _dep_next = dg.dep(_n)->in_head();
  2455   } else if (_n->is_Mem()) {
  2456     _next_idx = 0;
  2457     _end_idx  = 0;
  2458     _dep_next = dg.dep(_n)->in_head();
  2459   } else {
  2460     _next_idx = 1;
  2461     _end_idx  = _n->req();
  2462     _dep_next = NULL;
  2464   next();
  2467 //------------------------------next---------------------------
  2468 void DepPreds::next() {
  2469   if (_dep_next != NULL) {
  2470     _current  = _dep_next->pred()->node();
  2471     _dep_next = _dep_next->next_in();
  2472   } else if (_next_idx < _end_idx) {
  2473     _current  = _n->in(_next_idx++);
  2474   } else {
  2475     _done = true;
  2479 // =========================== DepSuccs =========================
  2480 // Iterator over successor edges in the dependence graph.
  2482 //------------------------------DepSuccs---------------------------
  2483 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
  2484   _n = n;
  2485   _done = false;
  2486   if (_n->is_Load()) {
  2487     _next_idx = 0;
  2488     _end_idx  = _n->outcnt();
  2489     _dep_next = dg.dep(_n)->out_head();
  2490   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
  2491     _next_idx = 0;
  2492     _end_idx  = 0;
  2493     _dep_next = dg.dep(_n)->out_head();
  2494   } else {
  2495     _next_idx = 0;
  2496     _end_idx  = _n->outcnt();
  2497     _dep_next = NULL;
  2499   next();
  2502 //-------------------------------next---------------------------
  2503 void DepSuccs::next() {
  2504   if (_dep_next != NULL) {
  2505     _current  = _dep_next->succ()->node();
  2506     _dep_next = _dep_next->next_out();
  2507   } else if (_next_idx < _end_idx) {
  2508     _current  = _n->raw_out(_next_idx++);
  2509   } else {
  2510     _done = true;

mercurial