src/share/vm/memory/space.hpp

Fri, 21 Feb 2014 10:01:20 +0100

author
stefank
date
Fri, 21 Feb 2014 10:01:20 +0100
changeset 6973
4af19b914f53
parent 6912
c49dcaf78a65
child 6978
30c99d8e0f02
permissions
-rw-r--r--

8035393: Use CLDClosure instead of CLDToOopClosure in frame::oops_interpreted_do
Reviewed-by: tschatzl, coleenp

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_SPACE_HPP
    26 #define SHARE_VM_MEMORY_SPACE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/blockOffsetTable.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/iterator.hpp"
    32 #include "memory/memRegion.hpp"
    33 #include "memory/watermark.hpp"
    34 #include "oops/markOop.hpp"
    35 #include "runtime/mutexLocker.hpp"
    36 #include "utilities/macros.hpp"
    37 #include "utilities/workgroup.hpp"
    39 // A space is an abstraction for the "storage units" backing
    40 // up the generation abstraction. It includes specific
    41 // implementations for keeping track of free and used space,
    42 // for iterating over objects and free blocks, etc.
    44 // Here's the Space hierarchy:
    45 //
    46 // - Space               -- an asbtract base class describing a heap area
    47 //   - CompactibleSpace  -- a space supporting compaction
    48 //     - CompactibleFreeListSpace -- (used for CMS generation)
    49 //     - ContiguousSpace -- a compactible space in which all free space
    50 //                          is contiguous
    51 //       - EdenSpace     -- contiguous space used as nursery
    52 //         - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
    53 //       - OffsetTableContigSpace -- contiguous space with a block offset array
    54 //                          that allows "fast" block_start calls
    55 //         - TenuredSpace -- (used for TenuredGeneration)
    57 // Forward decls.
    58 class Space;
    59 class BlockOffsetArray;
    60 class BlockOffsetArrayContigSpace;
    61 class Generation;
    62 class CompactibleSpace;
    63 class BlockOffsetTable;
    64 class GenRemSet;
    65 class CardTableRS;
    66 class DirtyCardToOopClosure;
    68 // An oop closure that is circumscribed by a filtering memory region.
    69 class SpaceMemRegionOopsIterClosure: public ExtendedOopClosure {
    70  private:
    71   ExtendedOopClosure* _cl;
    72   MemRegion   _mr;
    73  protected:
    74   template <class T> void do_oop_work(T* p) {
    75     if (_mr.contains(p)) {
    76       _cl->do_oop(p);
    77     }
    78   }
    79  public:
    80   SpaceMemRegionOopsIterClosure(ExtendedOopClosure* cl, MemRegion mr):
    81     _cl(cl), _mr(mr) {}
    82   virtual void do_oop(oop* p);
    83   virtual void do_oop(narrowOop* p);
    84   virtual bool do_metadata() {
    85     // _cl is of type ExtendedOopClosure instead of OopClosure, so that we can check this.
    86     assert(!_cl->do_metadata(), "I've checked all call paths, this shouldn't happen.");
    87     return false;
    88   }
    89   virtual void do_klass(Klass* k)                         { ShouldNotReachHere(); }
    90   virtual void do_class_loader_data(ClassLoaderData* cld) { ShouldNotReachHere(); }
    91 };
    93 // A Space describes a heap area. Class Space is an abstract
    94 // base class.
    95 //
    96 // Space supports allocation, size computation and GC support is provided.
    97 //
    98 // Invariant: bottom() and end() are on page_size boundaries and
    99 // bottom() <= top() <= end()
   100 // top() is inclusive and end() is exclusive.
   102 class Space: public CHeapObj<mtGC> {
   103   friend class VMStructs;
   104  protected:
   105   HeapWord* _bottom;
   106   HeapWord* _end;
   108   // Used in support of save_marks()
   109   HeapWord* _saved_mark_word;
   111   MemRegionClosure* _preconsumptionDirtyCardClosure;
   113   // A sequential tasks done structure. This supports
   114   // parallel GC, where we have threads dynamically
   115   // claiming sub-tasks from a larger parallel task.
   116   SequentialSubTasksDone _par_seq_tasks;
   118   Space():
   119     _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
   121  public:
   122   // Accessors
   123   HeapWord* bottom() const         { return _bottom; }
   124   HeapWord* end() const            { return _end;    }
   125   virtual void set_bottom(HeapWord* value) { _bottom = value; }
   126   virtual void set_end(HeapWord* value)    { _end = value; }
   128   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
   130   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
   132   MemRegionClosure* preconsumptionDirtyCardClosure() const {
   133     return _preconsumptionDirtyCardClosure;
   134   }
   135   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
   136     _preconsumptionDirtyCardClosure = cl;
   137   }
   139   // Returns a subregion of the space containing all the objects in
   140   // the space.
   141   virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
   143   // Returns a region that is guaranteed to contain (at least) all objects
   144   // allocated at the time of the last call to "save_marks".  If the space
   145   // initializes its DirtyCardToOopClosure's specifying the "contig" option
   146   // (that is, if the space is contiguous), then this region must contain only
   147   // such objects: the memregion will be from the bottom of the region to the
   148   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
   149   // the space must distiguish between objects in the region allocated before
   150   // and after the call to save marks.
   151   virtual MemRegion used_region_at_save_marks() const {
   152     return MemRegion(bottom(), saved_mark_word());
   153   }
   155   // Initialization.
   156   // "initialize" should be called once on a space, before it is used for
   157   // any purpose.  The "mr" arguments gives the bounds of the space, and
   158   // the "clear_space" argument should be true unless the memory in "mr" is
   159   // known to be zeroed.
   160   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   162   // The "clear" method must be called on a region that may have
   163   // had allocation performed in it, but is now to be considered empty.
   164   virtual void clear(bool mangle_space);
   166   // For detecting GC bugs.  Should only be called at GC boundaries, since
   167   // some unused space may be used as scratch space during GC's.
   168   // Default implementation does nothing. We also call this when expanding
   169   // a space to satisfy an allocation request. See bug #4668531
   170   virtual void mangle_unused_area() {}
   171   virtual void mangle_unused_area_complete() {}
   172   virtual void mangle_region(MemRegion mr) {}
   174   // Testers
   175   bool is_empty() const              { return used() == 0; }
   176   bool not_empty() const             { return used() > 0; }
   178   // Returns true iff the given the space contains the
   179   // given address as part of an allocated object. For
   180   // ceratin kinds of spaces, this might be a potentially
   181   // expensive operation. To prevent performance problems
   182   // on account of its inadvertent use in product jvm's,
   183   // we restrict its use to assertion checks only.
   184   virtual bool is_in(const void* p) const = 0;
   186   // Returns true iff the given reserved memory of the space contains the
   187   // given address.
   188   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
   190   // Returns true iff the given block is not allocated.
   191   virtual bool is_free_block(const HeapWord* p) const = 0;
   193   // Test whether p is double-aligned
   194   static bool is_aligned(void* p) {
   195     return ((intptr_t)p & (sizeof(double)-1)) == 0;
   196   }
   198   // Size computations.  Sizes are in bytes.
   199   size_t capacity()     const { return byte_size(bottom(), end()); }
   200   virtual size_t used() const = 0;
   201   virtual size_t free() const = 0;
   203   // Iterate over all the ref-containing fields of all objects in the
   204   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
   205   // applications of the closure are not included in the iteration.
   206   virtual void oop_iterate(ExtendedOopClosure* cl);
   208   // Same as above, restricted to the intersection of a memory region and
   209   // the space.  Fields in objects allocated by applications of the closure
   210   // are not included in the iteration.
   211   virtual void oop_iterate(MemRegion mr, ExtendedOopClosure* cl) = 0;
   213   // Iterate over all objects in the space, calling "cl.do_object" on
   214   // each.  Objects allocated by applications of the closure are not
   215   // included in the iteration.
   216   virtual void object_iterate(ObjectClosure* blk) = 0;
   217   // Similar to object_iterate() except only iterates over
   218   // objects whose internal references point to objects in the space.
   219   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
   221   // Iterate over all objects that intersect with mr, calling "cl->do_object"
   222   // on each.  There is an exception to this: if this closure has already
   223   // been invoked on an object, it may skip such objects in some cases.  This is
   224   // Most likely to happen in an "upwards" (ascending address) iteration of
   225   // MemRegions.
   226   virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   228   // Iterate over as many initialized objects in the space as possible,
   229   // calling "cl.do_object_careful" on each. Return NULL if all objects
   230   // in the space (at the start of the iteration) were iterated over.
   231   // Return an address indicating the extent of the iteration in the
   232   // event that the iteration had to return because of finding an
   233   // uninitialized object in the space, or if the closure "cl"
   234   // signalled early termination.
   235   virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   236   virtual HeapWord* object_iterate_careful_m(MemRegion mr,
   237                                              ObjectClosureCareful* cl);
   239   // Create and return a new dirty card to oop closure. Can be
   240   // overriden to return the appropriate type of closure
   241   // depending on the type of space in which the closure will
   242   // operate. ResourceArea allocated.
   243   virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
   244                                              CardTableModRefBS::PrecisionStyle precision,
   245                                              HeapWord* boundary = NULL);
   247   // If "p" is in the space, returns the address of the start of the
   248   // "block" that contains "p".  We say "block" instead of "object" since
   249   // some heaps may not pack objects densely; a chunk may either be an
   250   // object or a non-object.  If "p" is not in the space, return NULL.
   251   virtual HeapWord* block_start_const(const void* p) const = 0;
   253   // The non-const version may have benevolent side effects on the data
   254   // structure supporting these calls, possibly speeding up future calls.
   255   // The default implementation, however, is simply to call the const
   256   // version.
   257   inline virtual HeapWord* block_start(const void* p);
   259   // Requires "addr" to be the start of a chunk, and returns its size.
   260   // "addr + size" is required to be the start of a new chunk, or the end
   261   // of the active area of the heap.
   262   virtual size_t block_size(const HeapWord* addr) const = 0;
   264   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   265   // the block is an object.
   266   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   268   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   269   // the block is an object and the object is alive.
   270   virtual bool obj_is_alive(const HeapWord* addr) const;
   272   // Allocation (return NULL if full).  Assumes the caller has established
   273   // mutually exclusive access to the space.
   274   virtual HeapWord* allocate(size_t word_size) = 0;
   276   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
   277   virtual HeapWord* par_allocate(size_t word_size) = 0;
   279   // Returns true if this object has been allocated since a
   280   // generation's "save_marks" call.
   281   virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
   283   // Mark-sweep-compact support: all spaces can update pointers to objects
   284   // moving as a part of compaction.
   285   virtual void adjust_pointers();
   287   // PrintHeapAtGC support
   288   virtual void print() const;
   289   virtual void print_on(outputStream* st) const;
   290   virtual void print_short() const;
   291   virtual void print_short_on(outputStream* st) const;
   294   // Accessor for parallel sequential tasks.
   295   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
   297   // IF "this" is a ContiguousSpace, return it, else return NULL.
   298   virtual ContiguousSpace* toContiguousSpace() {
   299     return NULL;
   300   }
   302   // Debugging
   303   virtual void verify() const = 0;
   304 };
   306 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
   307 // OopClosure to (the addresses of) all the ref-containing fields that could
   308 // be modified by virtue of the given MemRegion being dirty. (Note that
   309 // because of the imprecise nature of the write barrier, this may iterate
   310 // over oops beyond the region.)
   311 // This base type for dirty card to oop closures handles memory regions
   312 // in non-contiguous spaces with no boundaries, and should be sub-classed
   313 // to support other space types. See ContiguousDCTOC for a sub-class
   314 // that works with ContiguousSpaces.
   316 class DirtyCardToOopClosure: public MemRegionClosureRO {
   317 protected:
   318   ExtendedOopClosure* _cl;
   319   Space* _sp;
   320   CardTableModRefBS::PrecisionStyle _precision;
   321   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
   322                                 // pointing below boundary.
   323   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
   324                                 // a downwards traversal; this is the
   325                                 // lowest location already done (or,
   326                                 // alternatively, the lowest address that
   327                                 // shouldn't be done again.  NULL means infinity.)
   328   NOT_PRODUCT(HeapWord* _last_bottom;)
   329   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
   331   // Get the actual top of the area on which the closure will
   332   // operate, given where the top is assumed to be (the end of the
   333   // memory region passed to do_MemRegion) and where the object
   334   // at the top is assumed to start. For example, an object may
   335   // start at the top but actually extend past the assumed top,
   336   // in which case the top becomes the end of the object.
   337   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
   339   // Walk the given memory region from bottom to (actual) top
   340   // looking for objects and applying the oop closure (_cl) to
   341   // them. The base implementation of this treats the area as
   342   // blocks, where a block may or may not be an object. Sub-
   343   // classes should override this to provide more accurate
   344   // or possibly more efficient walking.
   345   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
   347 public:
   348   DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl,
   349                         CardTableModRefBS::PrecisionStyle precision,
   350                         HeapWord* boundary) :
   351     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
   352     _min_done(NULL) {
   353     NOT_PRODUCT(_last_bottom = NULL);
   354     NOT_PRODUCT(_last_explicit_min_done = NULL);
   355   }
   357   void do_MemRegion(MemRegion mr);
   359   void set_min_done(HeapWord* min_done) {
   360     _min_done = min_done;
   361     NOT_PRODUCT(_last_explicit_min_done = _min_done);
   362   }
   363 #ifndef PRODUCT
   364   void set_last_bottom(HeapWord* last_bottom) {
   365     _last_bottom = last_bottom;
   366   }
   367 #endif
   368 };
   370 // A structure to represent a point at which objects are being copied
   371 // during compaction.
   372 class CompactPoint : public StackObj {
   373 public:
   374   Generation* gen;
   375   CompactibleSpace* space;
   376   HeapWord* threshold;
   377   CompactPoint(Generation* _gen, CompactibleSpace* _space,
   378                HeapWord* _threshold) :
   379     gen(_gen), space(_space), threshold(_threshold) {}
   380 };
   383 // A space that supports compaction operations.  This is usually, but not
   384 // necessarily, a space that is normally contiguous.  But, for example, a
   385 // free-list-based space whose normal collection is a mark-sweep without
   386 // compaction could still support compaction in full GC's.
   388 class CompactibleSpace: public Space {
   389   friend class VMStructs;
   390   friend class CompactibleFreeListSpace;
   391 private:
   392   HeapWord* _compaction_top;
   393   CompactibleSpace* _next_compaction_space;
   395 public:
   396   CompactibleSpace() :
   397    _compaction_top(NULL), _next_compaction_space(NULL) {}
   399   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   400   virtual void clear(bool mangle_space);
   402   // Used temporarily during a compaction phase to hold the value
   403   // top should have when compaction is complete.
   404   HeapWord* compaction_top() const { return _compaction_top;    }
   406   void set_compaction_top(HeapWord* value) {
   407     assert(value == NULL || (value >= bottom() && value <= end()),
   408       "should point inside space");
   409     _compaction_top = value;
   410   }
   412   // Perform operations on the space needed after a compaction
   413   // has been performed.
   414   virtual void reset_after_compaction() {}
   416   // Returns the next space (in the current generation) to be compacted in
   417   // the global compaction order.  Also is used to select the next
   418   // space into which to compact.
   420   virtual CompactibleSpace* next_compaction_space() const {
   421     return _next_compaction_space;
   422   }
   424   void set_next_compaction_space(CompactibleSpace* csp) {
   425     _next_compaction_space = csp;
   426   }
   428   // MarkSweep support phase2
   430   // Start the process of compaction of the current space: compute
   431   // post-compaction addresses, and insert forwarding pointers.  The fields
   432   // "cp->gen" and "cp->compaction_space" are the generation and space into
   433   // which we are currently compacting.  This call updates "cp" as necessary,
   434   // and leaves the "compaction_top" of the final value of
   435   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
   436   // this phase as if the final copy had occurred; if so, "cp->threshold"
   437   // indicates when the next such action should be taken.
   438   virtual void prepare_for_compaction(CompactPoint* cp);
   439   // MarkSweep support phase3
   440   virtual void adjust_pointers();
   441   // MarkSweep support phase4
   442   virtual void compact();
   444   // The maximum percentage of objects that can be dead in the compacted
   445   // live part of a compacted space ("deadwood" support.)
   446   virtual size_t allowed_dead_ratio() const { return 0; };
   448   // Some contiguous spaces may maintain some data structures that should
   449   // be updated whenever an allocation crosses a boundary.  This function
   450   // returns the first such boundary.
   451   // (The default implementation returns the end of the space, so the
   452   // boundary is never crossed.)
   453   virtual HeapWord* initialize_threshold() { return end(); }
   455   // "q" is an object of the given "size" that should be forwarded;
   456   // "cp" names the generation ("gen") and containing "this" (which must
   457   // also equal "cp->space").  "compact_top" is where in "this" the
   458   // next object should be forwarded to.  If there is room in "this" for
   459   // the object, insert an appropriate forwarding pointer in "q".
   460   // If not, go to the next compaction space (there must
   461   // be one, since compaction must succeed -- we go to the first space of
   462   // the previous generation if necessary, updating "cp"), reset compact_top
   463   // and then forward.  In either case, returns the new value of "compact_top".
   464   // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
   465   // function of the then-current compaction space, and updates "cp->threshold
   466   // accordingly".
   467   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
   468                     HeapWord* compact_top);
   470   // Return a size with adjusments as required of the space.
   471   virtual size_t adjust_object_size_v(size_t size) const { return size; }
   473 protected:
   474   // Used during compaction.
   475   HeapWord* _first_dead;
   476   HeapWord* _end_of_live;
   478   // Minimum size of a free block.
   479   virtual size_t minimum_free_block_size() const = 0;
   481   // This the function is invoked when an allocation of an object covering
   482   // "start" to "end occurs crosses the threshold; returns the next
   483   // threshold.  (The default implementation does nothing.)
   484   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
   485     return end();
   486   }
   488   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
   489   // free block of the given "word_len", and that "q", were it an object,
   490   // would not move if forwared.  If the size allows, fill the free
   491   // block with an object, to prevent excessive compaction.  Returns "true"
   492   // iff the free region was made deadspace, and modifies
   493   // "allowed_deadspace_words" to reflect the number of available deadspace
   494   // words remaining after this operation.
   495   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
   496                         size_t word_len);
   497 };
   499 class GenSpaceMangler;
   501 // A space in which the free area is contiguous.  It therefore supports
   502 // faster allocation, and compaction.
   503 class ContiguousSpace: public CompactibleSpace {
   504   friend class OneContigSpaceCardGeneration;
   505   friend class VMStructs;
   506  protected:
   507   HeapWord* _top;
   508   HeapWord* _concurrent_iteration_safe_limit;
   509   // A helper for mangling the unused area of the space in debug builds.
   510   GenSpaceMangler* _mangler;
   512   GenSpaceMangler* mangler() { return _mangler; }
   514   // Allocation helpers (return NULL if full).
   515   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
   516   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
   518  public:
   519   ContiguousSpace();
   520   ~ContiguousSpace();
   522   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   523   virtual void clear(bool mangle_space);
   525   // Accessors
   526   HeapWord* top() const            { return _top;    }
   527   void set_top(HeapWord* value)    { _top = value; }
   529   virtual void set_saved_mark()    { _saved_mark_word = top();    }
   530   void reset_saved_mark()          { _saved_mark_word = bottom(); }
   532   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
   533   WaterMark top_mark()        { return WaterMark(this, top()); }
   534   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
   535   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
   537   // In debug mode mangle (write it with a particular bit
   538   // pattern) the unused part of a space.
   540   // Used to save the an address in a space for later use during mangling.
   541   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
   542   // Used to save the space's current top for later use during mangling.
   543   void set_top_for_allocations() PRODUCT_RETURN;
   545   // Mangle regions in the space from the current top up to the
   546   // previously mangled part of the space.
   547   void mangle_unused_area() PRODUCT_RETURN;
   548   // Mangle [top, end)
   549   void mangle_unused_area_complete() PRODUCT_RETURN;
   550   // Mangle the given MemRegion.
   551   void mangle_region(MemRegion mr) PRODUCT_RETURN;
   553   // Do some sparse checking on the area that should have been mangled.
   554   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
   555   // Check the complete area that should have been mangled.
   556   // This code may be NULL depending on the macro DEBUG_MANGLING.
   557   void check_mangled_unused_area_complete() PRODUCT_RETURN;
   559   // Size computations: sizes in bytes.
   560   size_t capacity() const        { return byte_size(bottom(), end()); }
   561   size_t used() const            { return byte_size(bottom(), top()); }
   562   size_t free() const            { return byte_size(top(),    end()); }
   564   // Override from space.
   565   bool is_in(const void* p) const;
   567   virtual bool is_free_block(const HeapWord* p) const;
   569   // In a contiguous space we have a more obvious bound on what parts
   570   // contain objects.
   571   MemRegion used_region() const { return MemRegion(bottom(), top()); }
   573   MemRegion used_region_at_save_marks() const {
   574     return MemRegion(bottom(), saved_mark_word());
   575   }
   577   // Allocation (return NULL if full)
   578   virtual HeapWord* allocate(size_t word_size);
   579   virtual HeapWord* par_allocate(size_t word_size);
   581   virtual bool obj_allocated_since_save_marks(const oop obj) const {
   582     return (HeapWord*)obj >= saved_mark_word();
   583   }
   585   // Iteration
   586   void oop_iterate(ExtendedOopClosure* cl);
   587   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
   588   void object_iterate(ObjectClosure* blk);
   589   // For contiguous spaces this method will iterate safely over objects
   590   // in the space (i.e., between bottom and top) when at a safepoint.
   591   void safe_object_iterate(ObjectClosure* blk);
   592   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   593   // iterates on objects up to the safe limit
   594   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   595   HeapWord* concurrent_iteration_safe_limit() {
   596     assert(_concurrent_iteration_safe_limit <= top(),
   597            "_concurrent_iteration_safe_limit update missed");
   598     return _concurrent_iteration_safe_limit;
   599   }
   600   // changes the safe limit, all objects from bottom() to the new
   601   // limit should be properly initialized
   602   void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
   603     assert(new_limit <= top(), "uninitialized objects in the safe range");
   604     _concurrent_iteration_safe_limit = new_limit;
   605   }
   608 #if INCLUDE_ALL_GCS
   609   // In support of parallel oop_iterate.
   610   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
   611     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
   613     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
   614   #undef ContigSpace_PAR_OOP_ITERATE_DECL
   615 #endif // INCLUDE_ALL_GCS
   617   // Compaction support
   618   virtual void reset_after_compaction() {
   619     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
   620     set_top(compaction_top());
   621     // set new iteration safe limit
   622     set_concurrent_iteration_safe_limit(compaction_top());
   623   }
   624   virtual size_t minimum_free_block_size() const { return 0; }
   626   // Override.
   627   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
   628                                      CardTableModRefBS::PrecisionStyle precision,
   629                                      HeapWord* boundary = NULL);
   631   // Apply "blk->do_oop" to the addresses of all reference fields in objects
   632   // starting with the _saved_mark_word, which was noted during a generation's
   633   // save_marks and is required to denote the head of an object.
   634   // Fields in objects allocated by applications of the closure
   635   // *are* included in the iteration.
   636   // Updates _saved_mark_word to point to just after the last object
   637   // iterated over.
   638 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   639   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   641   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
   642 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
   644   // Same as object_iterate, but starting from "mark", which is required
   645   // to denote the start of an object.  Objects allocated by
   646   // applications of the closure *are* included in the iteration.
   647   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
   649   // Very inefficient implementation.
   650   virtual HeapWord* block_start_const(const void* p) const;
   651   size_t block_size(const HeapWord* p) const;
   652   // If a block is in the allocated area, it is an object.
   653   bool block_is_obj(const HeapWord* p) const { return p < top(); }
   655   // Addresses for inlined allocation
   656   HeapWord** top_addr() { return &_top; }
   657   HeapWord** end_addr() { return &_end; }
   659   // Overrides for more efficient compaction support.
   660   void prepare_for_compaction(CompactPoint* cp);
   662   // PrintHeapAtGC support.
   663   virtual void print_on(outputStream* st) const;
   665   // Checked dynamic downcasts.
   666   virtual ContiguousSpace* toContiguousSpace() {
   667     return this;
   668   }
   670   // Debugging
   671   virtual void verify() const;
   673   // Used to increase collection frequency.  "factor" of 0 means entire
   674   // space.
   675   void allocate_temporary_filler(int factor);
   677 };
   680 // A dirty card to oop closure that does filtering.
   681 // It knows how to filter out objects that are outside of the _boundary.
   682 class Filtering_DCTOC : public DirtyCardToOopClosure {
   683 protected:
   684   // Override.
   685   void walk_mem_region(MemRegion mr,
   686                        HeapWord* bottom, HeapWord* top);
   688   // Walk the given memory region, from bottom to top, applying
   689   // the given oop closure to (possibly) all objects found. The
   690   // given oop closure may or may not be the same as the oop
   691   // closure with which this closure was created, as it may
   692   // be a filtering closure which makes use of the _boundary.
   693   // We offer two signatures, so the FilteringClosure static type is
   694   // apparent.
   695   virtual void walk_mem_region_with_cl(MemRegion mr,
   696                                        HeapWord* bottom, HeapWord* top,
   697                                        ExtendedOopClosure* cl) = 0;
   698   virtual void walk_mem_region_with_cl(MemRegion mr,
   699                                        HeapWord* bottom, HeapWord* top,
   700                                        FilteringClosure* cl) = 0;
   702 public:
   703   Filtering_DCTOC(Space* sp, ExtendedOopClosure* cl,
   704                   CardTableModRefBS::PrecisionStyle precision,
   705                   HeapWord* boundary) :
   706     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
   707 };
   709 // A dirty card to oop closure for contiguous spaces
   710 // (ContiguousSpace and sub-classes).
   711 // It is a FilteringClosure, as defined above, and it knows:
   712 //
   713 // 1. That the actual top of any area in a memory region
   714 //    contained by the space is bounded by the end of the contiguous
   715 //    region of the space.
   716 // 2. That the space is really made up of objects and not just
   717 //    blocks.
   719 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
   720 protected:
   721   // Overrides.
   722   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
   724   virtual void walk_mem_region_with_cl(MemRegion mr,
   725                                        HeapWord* bottom, HeapWord* top,
   726                                        ExtendedOopClosure* cl);
   727   virtual void walk_mem_region_with_cl(MemRegion mr,
   728                                        HeapWord* bottom, HeapWord* top,
   729                                        FilteringClosure* cl);
   731 public:
   732   ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl,
   733                        CardTableModRefBS::PrecisionStyle precision,
   734                        HeapWord* boundary) :
   735     Filtering_DCTOC(sp, cl, precision, boundary)
   736   {}
   737 };
   740 // Class EdenSpace describes eden-space in new generation.
   742 class DefNewGeneration;
   744 class EdenSpace : public ContiguousSpace {
   745   friend class VMStructs;
   746  private:
   747   DefNewGeneration* _gen;
   749   // _soft_end is used as a soft limit on allocation.  As soft limits are
   750   // reached, the slow-path allocation code can invoke other actions and then
   751   // adjust _soft_end up to a new soft limit or to end().
   752   HeapWord* _soft_end;
   754  public:
   755   EdenSpace(DefNewGeneration* gen) :
   756    _gen(gen), _soft_end(NULL) {}
   758   // Get/set just the 'soft' limit.
   759   HeapWord* soft_end()               { return _soft_end; }
   760   HeapWord** soft_end_addr()         { return &_soft_end; }
   761   void set_soft_end(HeapWord* value) { _soft_end = value; }
   763   // Override.
   764   void clear(bool mangle_space);
   766   // Set both the 'hard' and 'soft' limits (_end and _soft_end).
   767   void set_end(HeapWord* value) {
   768     set_soft_end(value);
   769     ContiguousSpace::set_end(value);
   770   }
   772   // Allocation (return NULL if full)
   773   HeapWord* allocate(size_t word_size);
   774   HeapWord* par_allocate(size_t word_size);
   775 };
   777 // Class ConcEdenSpace extends EdenSpace for the sake of safe
   778 // allocation while soft-end is being modified concurrently
   780 class ConcEdenSpace : public EdenSpace {
   781  public:
   782   ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
   784   // Allocation (return NULL if full)
   785   HeapWord* par_allocate(size_t word_size);
   786 };
   789 // A ContigSpace that Supports an efficient "block_start" operation via
   790 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
   791 // other spaces.)  This is the abstract base class for old generation
   792 // (tenured) spaces.
   794 class OffsetTableContigSpace: public ContiguousSpace {
   795   friend class VMStructs;
   796  protected:
   797   BlockOffsetArrayContigSpace _offsets;
   798   Mutex _par_alloc_lock;
   800  public:
   801   // Constructor
   802   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   803                          MemRegion mr);
   805   void set_bottom(HeapWord* value);
   806   void set_end(HeapWord* value);
   808   void clear(bool mangle_space);
   810   inline HeapWord* block_start_const(const void* p) const;
   812   // Add offset table update.
   813   virtual inline HeapWord* allocate(size_t word_size);
   814   inline HeapWord* par_allocate(size_t word_size);
   816   // MarkSweep support phase3
   817   virtual HeapWord* initialize_threshold();
   818   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   820   virtual void print_on(outputStream* st) const;
   822   // Debugging
   823   void verify() const;
   824 };
   827 // Class TenuredSpace is used by TenuredGeneration
   829 class TenuredSpace: public OffsetTableContigSpace {
   830   friend class VMStructs;
   831  protected:
   832   // Mark sweep support
   833   size_t allowed_dead_ratio() const;
   834  public:
   835   // Constructor
   836   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
   837                MemRegion mr) :
   838     OffsetTableContigSpace(sharedOffsetArray, mr) {}
   839 };
   840 #endif // SHARE_VM_MEMORY_SPACE_HPP

mercurial