src/share/vm/memory/space.cpp

Fri, 21 Feb 2014 10:01:20 +0100

author
stefank
date
Fri, 21 Feb 2014 10:01:20 +0100
changeset 6973
4af19b914f53
parent 6912
c49dcaf78a65
child 6978
30c99d8e0f02
permissions
-rw-r--r--

8035393: Use CLDClosure instead of CLDToOopClosure in frame::oops_interpreted_do
Reviewed-by: tschatzl, coleenp

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "gc_implementation/shared/liveRange.hpp"
    29 #include "gc_implementation/shared/markSweep.hpp"
    30 #include "gc_implementation/shared/spaceDecorator.hpp"
    31 #include "memory/blockOffsetTable.inline.hpp"
    32 #include "memory/defNewGeneration.hpp"
    33 #include "memory/genCollectedHeap.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/space.inline.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/oop.inline2.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/prefetch.inline.hpp"
    41 #include "runtime/orderAccess.inline.hpp"
    42 #include "runtime/safepoint.hpp"
    43 #include "utilities/copy.hpp"
    44 #include "utilities/globalDefinitions.hpp"
    45 #include "utilities/macros.hpp"
    47 void SpaceMemRegionOopsIterClosure::do_oop(oop* p)       { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    48 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    50 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    52 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
    53                                                 HeapWord* top_obj) {
    54   if (top_obj != NULL) {
    55     if (_sp->block_is_obj(top_obj)) {
    56       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
    57         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
    58           // An arrayOop is starting on the dirty card - since we do exact
    59           // store checks for objArrays we are done.
    60         } else {
    61           // Otherwise, it is possible that the object starting on the dirty
    62           // card spans the entire card, and that the store happened on a
    63           // later card.  Figure out where the object ends.
    64           // Use the block_size() method of the space over which
    65           // the iteration is being done.  That space (e.g. CMS) may have
    66           // specific requirements on object sizes which will
    67           // be reflected in the block_size() method.
    68           top = top_obj + oop(top_obj)->size();
    69         }
    70       }
    71     } else {
    72       top = top_obj;
    73     }
    74   } else {
    75     assert(top == _sp->end(), "only case where top_obj == NULL");
    76   }
    77   return top;
    78 }
    80 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
    81                                             HeapWord* bottom,
    82                                             HeapWord* top) {
    83   // 1. Blocks may or may not be objects.
    84   // 2. Even when a block_is_obj(), it may not entirely
    85   //    occupy the block if the block quantum is larger than
    86   //    the object size.
    87   // We can and should try to optimize by calling the non-MemRegion
    88   // version of oop_iterate() for all but the extremal objects
    89   // (for which we need to call the MemRegion version of
    90   // oop_iterate()) To be done post-beta XXX
    91   for (; bottom < top; bottom += _sp->block_size(bottom)) {
    92     // As in the case of contiguous space above, we'd like to
    93     // just use the value returned by oop_iterate to increment the
    94     // current pointer; unfortunately, that won't work in CMS because
    95     // we'd need an interface change (it seems) to have the space
    96     // "adjust the object size" (for instance pad it up to its
    97     // block alignment or minimum block size restrictions. XXX
    98     if (_sp->block_is_obj(bottom) &&
    99         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
   100       oop(bottom)->oop_iterate(_cl, mr);
   101     }
   102   }
   103 }
   105 // We get called with "mr" representing the dirty region
   106 // that we want to process. Because of imprecise marking,
   107 // we may need to extend the incoming "mr" to the right,
   108 // and scan more. However, because we may already have
   109 // scanned some of that extended region, we may need to
   110 // trim its right-end back some so we do not scan what
   111 // we (or another worker thread) may already have scanned
   112 // or planning to scan.
   113 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
   115   // Some collectors need to do special things whenever their dirty
   116   // cards are processed. For instance, CMS must remember mutator updates
   117   // (i.e. dirty cards) so as to re-scan mutated objects.
   118   // Such work can be piggy-backed here on dirty card scanning, so as to make
   119   // it slightly more efficient than doing a complete non-detructive pre-scan
   120   // of the card table.
   121   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
   122   if (pCl != NULL) {
   123     pCl->do_MemRegion(mr);
   124   }
   126   HeapWord* bottom = mr.start();
   127   HeapWord* last = mr.last();
   128   HeapWord* top = mr.end();
   129   HeapWord* bottom_obj;
   130   HeapWord* top_obj;
   132   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
   133          _precision == CardTableModRefBS::Precise,
   134          "Only ones we deal with for now.");
   136   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   137          _cl->idempotent() || _last_bottom == NULL ||
   138          top <= _last_bottom,
   139          "Not decreasing");
   140   NOT_PRODUCT(_last_bottom = mr.start());
   142   bottom_obj = _sp->block_start(bottom);
   143   top_obj    = _sp->block_start(last);
   145   assert(bottom_obj <= bottom, "just checking");
   146   assert(top_obj    <= top,    "just checking");
   148   // Given what we think is the top of the memory region and
   149   // the start of the object at the top, get the actual
   150   // value of the top.
   151   top = get_actual_top(top, top_obj);
   153   // If the previous call did some part of this region, don't redo.
   154   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
   155       _min_done != NULL &&
   156       _min_done < top) {
   157     top = _min_done;
   158   }
   160   // Top may have been reset, and in fact may be below bottom,
   161   // e.g. the dirty card region is entirely in a now free object
   162   // -- something that could happen with a concurrent sweeper.
   163   bottom = MIN2(bottom, top);
   164   MemRegion extended_mr = MemRegion(bottom, top);
   165   assert(bottom <= top &&
   166          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   167           _min_done == NULL ||
   168           top <= _min_done),
   169          "overlap!");
   171   // Walk the region if it is not empty; otherwise there is nothing to do.
   172   if (!extended_mr.is_empty()) {
   173     walk_mem_region(extended_mr, bottom_obj, top);
   174   }
   176   // An idempotent closure might be applied in any order, so we don't
   177   // record a _min_done for it.
   178   if (!_cl->idempotent()) {
   179     _min_done = bottom;
   180   } else {
   181     assert(_min_done == _last_explicit_min_done,
   182            "Don't update _min_done for idempotent cl");
   183   }
   184 }
   186 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
   187                                           CardTableModRefBS::PrecisionStyle precision,
   188                                           HeapWord* boundary) {
   189   return new DirtyCardToOopClosure(this, cl, precision, boundary);
   190 }
   192 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
   193                                                HeapWord* top_obj) {
   194   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
   195     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
   196       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   197         // An arrayOop is starting on the dirty card - since we do exact
   198         // store checks for objArrays we are done.
   199       } else {
   200         // Otherwise, it is possible that the object starting on the dirty
   201         // card spans the entire card, and that the store happened on a
   202         // later card.  Figure out where the object ends.
   203         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
   204           "Block size and object size mismatch");
   205         top = top_obj + oop(top_obj)->size();
   206       }
   207     }
   208   } else {
   209     top = (_sp->toContiguousSpace())->top();
   210   }
   211   return top;
   212 }
   214 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
   215                                       HeapWord* bottom,
   216                                       HeapWord* top) {
   217   // Note that this assumption won't hold if we have a concurrent
   218   // collector in this space, which may have freed up objects after
   219   // they were dirtied and before the stop-the-world GC that is
   220   // examining cards here.
   221   assert(bottom < top, "ought to be at least one obj on a dirty card.");
   223   if (_boundary != NULL) {
   224     // We have a boundary outside of which we don't want to look
   225     // at objects, so create a filtering closure around the
   226     // oop closure before walking the region.
   227     FilteringClosure filter(_boundary, _cl);
   228     walk_mem_region_with_cl(mr, bottom, top, &filter);
   229   } else {
   230     // No boundary, simply walk the heap with the oop closure.
   231     walk_mem_region_with_cl(mr, bottom, top, _cl);
   232   }
   234 }
   236 // We must replicate this so that the static type of "FilteringClosure"
   237 // (see above) is apparent at the oop_iterate calls.
   238 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
   239 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
   240                                                    HeapWord* bottom,    \
   241                                                    HeapWord* top,       \
   242                                                    ClosureType* cl) {   \
   243   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
   244   if (bottom < top) {                                                   \
   245     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
   246     while (next_obj < top) {                                            \
   247       /* Bottom lies entirely below top, so we can call the */          \
   248       /* non-memRegion version of oop_iterate below. */                 \
   249       oop(bottom)->oop_iterate(cl);                                     \
   250       bottom = next_obj;                                                \
   251       next_obj = bottom + oop(bottom)->size();                          \
   252     }                                                                   \
   253     /* Last object. */                                                  \
   254     oop(bottom)->oop_iterate(cl, mr);                                   \
   255   }                                                                     \
   256 }
   258 // (There are only two of these, rather than N, because the split is due
   259 // only to the introduction of the FilteringClosure, a local part of the
   260 // impl of this abstraction.)
   261 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
   262 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
   264 DirtyCardToOopClosure*
   265 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
   266                              CardTableModRefBS::PrecisionStyle precision,
   267                              HeapWord* boundary) {
   268   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
   269 }
   271 void Space::initialize(MemRegion mr,
   272                        bool clear_space,
   273                        bool mangle_space) {
   274   HeapWord* bottom = mr.start();
   275   HeapWord* end    = mr.end();
   276   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
   277          "invalid space boundaries");
   278   set_bottom(bottom);
   279   set_end(end);
   280   if (clear_space) clear(mangle_space);
   281 }
   283 void Space::clear(bool mangle_space) {
   284   if (ZapUnusedHeapArea && mangle_space) {
   285     mangle_unused_area();
   286   }
   287 }
   289 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
   290     _concurrent_iteration_safe_limit(NULL) {
   291   _mangler = new GenSpaceMangler(this);
   292 }
   294 ContiguousSpace::~ContiguousSpace() {
   295   delete _mangler;
   296 }
   298 void ContiguousSpace::initialize(MemRegion mr,
   299                                  bool clear_space,
   300                                  bool mangle_space)
   301 {
   302   CompactibleSpace::initialize(mr, clear_space, mangle_space);
   303   set_concurrent_iteration_safe_limit(top());
   304 }
   306 void ContiguousSpace::clear(bool mangle_space) {
   307   set_top(bottom());
   308   set_saved_mark();
   309   CompactibleSpace::clear(mangle_space);
   310 }
   312 bool ContiguousSpace::is_in(const void* p) const {
   313   return _bottom <= p && p < _top;
   314 }
   316 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
   317   return p >= _top;
   318 }
   320 void OffsetTableContigSpace::clear(bool mangle_space) {
   321   ContiguousSpace::clear(mangle_space);
   322   _offsets.initialize_threshold();
   323 }
   325 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   326   Space::set_bottom(new_bottom);
   327   _offsets.set_bottom(new_bottom);
   328 }
   330 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
   331   // Space should not advertize an increase in size
   332   // until after the underlying offest table has been enlarged.
   333   _offsets.resize(pointer_delta(new_end, bottom()));
   334   Space::set_end(new_end);
   335 }
   337 #ifndef PRODUCT
   339 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
   340   mangler()->set_top_for_allocations(v);
   341 }
   342 void ContiguousSpace::set_top_for_allocations() {
   343   mangler()->set_top_for_allocations(top());
   344 }
   345 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
   346   mangler()->check_mangled_unused_area(limit);
   347 }
   349 void ContiguousSpace::check_mangled_unused_area_complete() {
   350   mangler()->check_mangled_unused_area_complete();
   351 }
   353 // Mangled only the unused space that has not previously
   354 // been mangled and that has not been allocated since being
   355 // mangled.
   356 void ContiguousSpace::mangle_unused_area() {
   357   mangler()->mangle_unused_area();
   358 }
   359 void ContiguousSpace::mangle_unused_area_complete() {
   360   mangler()->mangle_unused_area_complete();
   361 }
   362 void ContiguousSpace::mangle_region(MemRegion mr) {
   363   // Although this method uses SpaceMangler::mangle_region() which
   364   // is not specific to a space, the when the ContiguousSpace version
   365   // is called, it is always with regard to a space and this
   366   // bounds checking is appropriate.
   367   MemRegion space_mr(bottom(), end());
   368   assert(space_mr.contains(mr), "Mangling outside space");
   369   SpaceMangler::mangle_region(mr);
   370 }
   371 #endif  // NOT_PRODUCT
   373 void CompactibleSpace::initialize(MemRegion mr,
   374                                   bool clear_space,
   375                                   bool mangle_space) {
   376   Space::initialize(mr, clear_space, mangle_space);
   377   set_compaction_top(bottom());
   378   _next_compaction_space = NULL;
   379 }
   381 void CompactibleSpace::clear(bool mangle_space) {
   382   Space::clear(mangle_space);
   383   _compaction_top = bottom();
   384 }
   386 HeapWord* CompactibleSpace::forward(oop q, size_t size,
   387                                     CompactPoint* cp, HeapWord* compact_top) {
   388   // q is alive
   389   // First check if we should switch compaction space
   390   assert(this == cp->space, "'this' should be current compaction space.");
   391   size_t compaction_max_size = pointer_delta(end(), compact_top);
   392   while (size > compaction_max_size) {
   393     // switch to next compaction space
   394     cp->space->set_compaction_top(compact_top);
   395     cp->space = cp->space->next_compaction_space();
   396     if (cp->space == NULL) {
   397       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
   398       assert(cp->gen != NULL, "compaction must succeed");
   399       cp->space = cp->gen->first_compaction_space();
   400       assert(cp->space != NULL, "generation must have a first compaction space");
   401     }
   402     compact_top = cp->space->bottom();
   403     cp->space->set_compaction_top(compact_top);
   404     cp->threshold = cp->space->initialize_threshold();
   405     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
   406   }
   408   // store the forwarding pointer into the mark word
   409   if ((HeapWord*)q != compact_top) {
   410     q->forward_to(oop(compact_top));
   411     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
   412   } else {
   413     // if the object isn't moving we can just set the mark to the default
   414     // mark and handle it specially later on.
   415     q->init_mark();
   416     assert(q->forwardee() == NULL, "should be forwarded to NULL");
   417   }
   419   compact_top += size;
   421   // we need to update the offset table so that the beginnings of objects can be
   422   // found during scavenge.  Note that we are updating the offset table based on
   423   // where the object will be once the compaction phase finishes.
   424   if (compact_top > cp->threshold)
   425     cp->threshold =
   426       cp->space->cross_threshold(compact_top - size, compact_top);
   427   return compact_top;
   428 }
   431 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
   432                                         HeapWord* q, size_t deadlength) {
   433   if (allowed_deadspace_words >= deadlength) {
   434     allowed_deadspace_words -= deadlength;
   435     CollectedHeap::fill_with_object(q, deadlength);
   436     oop(q)->set_mark(oop(q)->mark()->set_marked());
   437     assert((int) deadlength == oop(q)->size(), "bad filler object size");
   438     // Recall that we required "q == compaction_top".
   439     return true;
   440   } else {
   441     allowed_deadspace_words = 0;
   442     return false;
   443   }
   444 }
   446 #define block_is_always_obj(q) true
   447 #define obj_size(q) oop(q)->size()
   448 #define adjust_obj_size(s) s
   450 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
   451   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
   452 }
   454 // Faster object search.
   455 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
   456   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
   457 }
   459 void Space::adjust_pointers() {
   460   // adjust all the interior pointers to point at the new locations of objects
   461   // Used by MarkSweep::mark_sweep_phase3()
   463   // First check to see if there is any work to be done.
   464   if (used() == 0) {
   465     return;  // Nothing to do.
   466   }
   468   // Otherwise...
   469   HeapWord* q = bottom();
   470   HeapWord* t = end();
   472   debug_only(HeapWord* prev_q = NULL);
   473   while (q < t) {
   474     if (oop(q)->is_gc_marked()) {
   475       // q is alive
   477       // point all the oops to the new location
   478       size_t size = oop(q)->adjust_pointers();
   480       debug_only(prev_q = q);
   482       q += size;
   483     } else {
   484       // q is not a live object.  But we're not in a compactible space,
   485       // So we don't have live ranges.
   486       debug_only(prev_q = q);
   487       q += block_size(q);
   488       assert(q > prev_q, "we should be moving forward through memory");
   489     }
   490   }
   491   assert(q == t, "just checking");
   492 }
   494 void CompactibleSpace::adjust_pointers() {
   495   // Check first is there is any work to do.
   496   if (used() == 0) {
   497     return;   // Nothing to do.
   498   }
   500   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
   501 }
   503 void CompactibleSpace::compact() {
   504   SCAN_AND_COMPACT(obj_size);
   505 }
   507 void Space::print_short() const { print_short_on(tty); }
   509 void Space::print_short_on(outputStream* st) const {
   510   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
   511               (int) ((double) used() * 100 / capacity()));
   512 }
   514 void Space::print() const { print_on(tty); }
   516 void Space::print_on(outputStream* st) const {
   517   print_short_on(st);
   518   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   519                 bottom(), end());
   520 }
   522 void ContiguousSpace::print_on(outputStream* st) const {
   523   print_short_on(st);
   524   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   525                 bottom(), top(), end());
   526 }
   528 void OffsetTableContigSpace::print_on(outputStream* st) const {
   529   print_short_on(st);
   530   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   531                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   532               bottom(), top(), _offsets.threshold(), end());
   533 }
   535 void ContiguousSpace::verify() const {
   536   HeapWord* p = bottom();
   537   HeapWord* t = top();
   538   HeapWord* prev_p = NULL;
   539   while (p < t) {
   540     oop(p)->verify();
   541     prev_p = p;
   542     p += oop(p)->size();
   543   }
   544   guarantee(p == top(), "end of last object must match end of space");
   545   if (top() != end()) {
   546     guarantee(top() == block_start_const(end()-1) &&
   547               top() == block_start_const(top()),
   548               "top should be start of unallocated block, if it exists");
   549   }
   550 }
   552 void Space::oop_iterate(ExtendedOopClosure* blk) {
   553   ObjectToOopClosure blk2(blk);
   554   object_iterate(&blk2);
   555 }
   557 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
   558   guarantee(false, "NYI");
   559   return bottom();
   560 }
   562 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
   563                                           ObjectClosureCareful* cl) {
   564   guarantee(false, "NYI");
   565   return bottom();
   566 }
   569 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   570   assert(!mr.is_empty(), "Should be non-empty");
   571   // We use MemRegion(bottom(), end()) rather than used_region() below
   572   // because the two are not necessarily equal for some kinds of
   573   // spaces, in particular, certain kinds of free list spaces.
   574   // We could use the more complicated but more precise:
   575   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
   576   // but the slight imprecision seems acceptable in the assertion check.
   577   assert(MemRegion(bottom(), end()).contains(mr),
   578          "Should be within used space");
   579   HeapWord* prev = cl->previous();   // max address from last time
   580   if (prev >= mr.end()) { // nothing to do
   581     return;
   582   }
   583   // This assert will not work when we go from cms space to perm
   584   // space, and use same closure. Easy fix deferred for later. XXX YSR
   585   // assert(prev == NULL || contains(prev), "Should be within space");
   587   bool last_was_obj_array = false;
   588   HeapWord *blk_start_addr, *region_start_addr;
   589   if (prev > mr.start()) {
   590     region_start_addr = prev;
   591     blk_start_addr    = prev;
   592     // The previous invocation may have pushed "prev" beyond the
   593     // last allocated block yet there may be still be blocks
   594     // in this region due to a particular coalescing policy.
   595     // Relax the assertion so that the case where the unallocated
   596     // block is maintained and "prev" is beyond the unallocated
   597     // block does not cause the assertion to fire.
   598     assert((BlockOffsetArrayUseUnallocatedBlock &&
   599             (!is_in(prev))) ||
   600            (blk_start_addr == block_start(region_start_addr)), "invariant");
   601   } else {
   602     region_start_addr = mr.start();
   603     blk_start_addr    = block_start(region_start_addr);
   604   }
   605   HeapWord* region_end_addr = mr.end();
   606   MemRegion derived_mr(region_start_addr, region_end_addr);
   607   while (blk_start_addr < region_end_addr) {
   608     const size_t size = block_size(blk_start_addr);
   609     if (block_is_obj(blk_start_addr)) {
   610       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
   611     } else {
   612       last_was_obj_array = false;
   613     }
   614     blk_start_addr += size;
   615   }
   616   if (!last_was_obj_array) {
   617     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
   618            "Should be within (closed) used space");
   619     assert(blk_start_addr > prev, "Invariant");
   620     cl->set_previous(blk_start_addr); // min address for next time
   621   }
   622 }
   624 bool Space::obj_is_alive(const HeapWord* p) const {
   625   assert (block_is_obj(p), "The address should point to an object");
   626   return true;
   627 }
   629 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   630   assert(!mr.is_empty(), "Should be non-empty");
   631   assert(used_region().contains(mr), "Should be within used space");
   632   HeapWord* prev = cl->previous();   // max address from last time
   633   if (prev >= mr.end()) { // nothing to do
   634     return;
   635   }
   636   // See comment above (in more general method above) in case you
   637   // happen to use this method.
   638   assert(prev == NULL || is_in_reserved(prev), "Should be within space");
   640   bool last_was_obj_array = false;
   641   HeapWord *obj_start_addr, *region_start_addr;
   642   if (prev > mr.start()) {
   643     region_start_addr = prev;
   644     obj_start_addr    = prev;
   645     assert(obj_start_addr == block_start(region_start_addr), "invariant");
   646   } else {
   647     region_start_addr = mr.start();
   648     obj_start_addr    = block_start(region_start_addr);
   649   }
   650   HeapWord* region_end_addr = mr.end();
   651   MemRegion derived_mr(region_start_addr, region_end_addr);
   652   while (obj_start_addr < region_end_addr) {
   653     oop obj = oop(obj_start_addr);
   654     const size_t size = obj->size();
   655     last_was_obj_array = cl->do_object_bm(obj, derived_mr);
   656     obj_start_addr += size;
   657   }
   658   if (!last_was_obj_array) {
   659     assert((bottom() <= obj_start_addr)  && (obj_start_addr <= end()),
   660            "Should be within (closed) used space");
   661     assert(obj_start_addr > prev, "Invariant");
   662     cl->set_previous(obj_start_addr); // min address for next time
   663   }
   664 }
   666 #if INCLUDE_ALL_GCS
   667 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
   668                                                                             \
   669   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
   670     HeapWord* obj_addr = mr.start();                                        \
   671     HeapWord* t = mr.end();                                                 \
   672     while (obj_addr < t) {                                                  \
   673       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
   674       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
   675     }                                                                       \
   676   }
   678   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
   680 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
   681 #endif // INCLUDE_ALL_GCS
   683 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
   684   if (is_empty()) return;
   685   HeapWord* obj_addr = bottom();
   686   HeapWord* t = top();
   687   // Could call objects iterate, but this is easier.
   688   while (obj_addr < t) {
   689     obj_addr += oop(obj_addr)->oop_iterate(blk);
   690   }
   691 }
   693 void ContiguousSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* blk) {
   694   if (is_empty()) {
   695     return;
   696   }
   697   MemRegion cur = MemRegion(bottom(), top());
   698   mr = mr.intersection(cur);
   699   if (mr.is_empty()) {
   700     return;
   701   }
   702   if (mr.equals(cur)) {
   703     oop_iterate(blk);
   704     return;
   705   }
   706   assert(mr.end() <= top(), "just took an intersection above");
   707   HeapWord* obj_addr = block_start(mr.start());
   708   HeapWord* t = mr.end();
   710   // Handle first object specially.
   711   oop obj = oop(obj_addr);
   712   SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
   713   obj_addr += obj->oop_iterate(&smr_blk);
   714   while (obj_addr < t) {
   715     oop obj = oop(obj_addr);
   716     assert(obj->is_oop(), "expected an oop");
   717     obj_addr += obj->size();
   718     // If "obj_addr" is not greater than top, then the
   719     // entire object "obj" is within the region.
   720     if (obj_addr <= t) {
   721       obj->oop_iterate(blk);
   722     } else {
   723       // "obj" extends beyond end of region
   724       obj->oop_iterate(&smr_blk);
   725       break;
   726     }
   727   };
   728 }
   730 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
   731   if (is_empty()) return;
   732   WaterMark bm = bottom_mark();
   733   object_iterate_from(bm, blk);
   734 }
   736 // For a continguous space object_iterate() and safe_object_iterate()
   737 // are the same.
   738 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
   739   object_iterate(blk);
   740 }
   742 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
   743   assert(mark.space() == this, "Mark does not match space");
   744   HeapWord* p = mark.point();
   745   while (p < top()) {
   746     blk->do_object(oop(p));
   747     p += oop(p)->size();
   748   }
   749 }
   751 HeapWord*
   752 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
   753   HeapWord * limit = concurrent_iteration_safe_limit();
   754   assert(limit <= top(), "sanity check");
   755   for (HeapWord* p = bottom(); p < limit;) {
   756     size_t size = blk->do_object_careful(oop(p));
   757     if (size == 0) {
   758       return p;  // failed at p
   759     } else {
   760       p += size;
   761     }
   762   }
   763   return NULL; // all done
   764 }
   766 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
   767                                                                           \
   768 void ContiguousSpace::                                                    \
   769 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
   770   HeapWord* t;                                                            \
   771   HeapWord* p = saved_mark_word();                                        \
   772   assert(p != NULL, "expected saved mark");                               \
   773                                                                           \
   774   const intx interval = PrefetchScanIntervalInBytes;                      \
   775   do {                                                                    \
   776     t = top();                                                            \
   777     while (p < t) {                                                       \
   778       Prefetch::write(p, interval);                                       \
   779       debug_only(HeapWord* prev = p);                                     \
   780       oop m = oop(p);                                                     \
   781       p += m->oop_iterate(blk);                                           \
   782     }                                                                     \
   783   } while (t < top());                                                    \
   784                                                                           \
   785   set_saved_mark_word(p);                                                 \
   786 }
   788 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
   790 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
   792 // Very general, slow implementation.
   793 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
   794   assert(MemRegion(bottom(), end()).contains(p),
   795          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
   796                   p, bottom(), end()));
   797   if (p >= top()) {
   798     return top();
   799   } else {
   800     HeapWord* last = bottom();
   801     HeapWord* cur = last;
   802     while (cur <= p) {
   803       last = cur;
   804       cur += oop(cur)->size();
   805     }
   806     assert(oop(last)->is_oop(),
   807            err_msg(PTR_FORMAT " should be an object start", last));
   808     return last;
   809   }
   810 }
   812 size_t ContiguousSpace::block_size(const HeapWord* p) const {
   813   assert(MemRegion(bottom(), end()).contains(p),
   814          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
   815                   p, bottom(), end()));
   816   HeapWord* current_top = top();
   817   assert(p <= current_top,
   818          err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
   819                   p, current_top));
   820   assert(p == current_top || oop(p)->is_oop(),
   821          err_msg("p (" PTR_FORMAT ") is not a block start - "
   822                  "current_top: " PTR_FORMAT ", is_oop: %s",
   823                  p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
   824   if (p < current_top) {
   825     return oop(p)->size();
   826   } else {
   827     assert(p == current_top, "just checking");
   828     return pointer_delta(end(), (HeapWord*) p);
   829   }
   830 }
   832 // This version requires locking.
   833 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
   834                                                 HeapWord* const end_value) {
   835   // In G1 there are places where a GC worker can allocates into a
   836   // region using this serial allocation code without being prone to a
   837   // race with other GC workers (we ensure that no other GC worker can
   838   // access the same region at the same time). So the assert below is
   839   // too strong in the case of G1.
   840   assert(Heap_lock->owned_by_self() ||
   841          (SafepointSynchronize::is_at_safepoint() &&
   842                                (Thread::current()->is_VM_thread() || UseG1GC)),
   843          "not locked");
   844   HeapWord* obj = top();
   845   if (pointer_delta(end_value, obj) >= size) {
   846     HeapWord* new_top = obj + size;
   847     set_top(new_top);
   848     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   849     return obj;
   850   } else {
   851     return NULL;
   852   }
   853 }
   855 // This version is lock-free.
   856 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
   857                                                     HeapWord* const end_value) {
   858   do {
   859     HeapWord* obj = top();
   860     if (pointer_delta(end_value, obj) >= size) {
   861       HeapWord* new_top = obj + size;
   862       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   863       // result can be one of two:
   864       //  the old top value: the exchange succeeded
   865       //  otherwise: the new value of the top is returned.
   866       if (result == obj) {
   867         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   868         return obj;
   869       }
   870     } else {
   871       return NULL;
   872     }
   873   } while (true);
   874 }
   876 // Requires locking.
   877 HeapWord* ContiguousSpace::allocate(size_t size) {
   878   return allocate_impl(size, end());
   879 }
   881 // Lock-free.
   882 HeapWord* ContiguousSpace::par_allocate(size_t size) {
   883   return par_allocate_impl(size, end());
   884 }
   886 void ContiguousSpace::allocate_temporary_filler(int factor) {
   887   // allocate temporary type array decreasing free size with factor 'factor'
   888   assert(factor >= 0, "just checking");
   889   size_t size = pointer_delta(end(), top());
   891   // if space is full, return
   892   if (size == 0) return;
   894   if (factor > 0) {
   895     size -= size/factor;
   896   }
   897   size = align_object_size(size);
   899   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
   900   if (size >= (size_t)align_object_size(array_header_size)) {
   901     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
   902     // allocate uninitialized int array
   903     typeArrayOop t = (typeArrayOop) allocate(size);
   904     assert(t != NULL, "allocation should succeed");
   905     t->set_mark(markOopDesc::prototype());
   906     t->set_klass(Universe::intArrayKlassObj());
   907     t->set_length((int)length);
   908   } else {
   909     assert(size == CollectedHeap::min_fill_size(),
   910            "size for smallest fake object doesn't match");
   911     instanceOop obj = (instanceOop) allocate(size);
   912     obj->set_mark(markOopDesc::prototype());
   913     obj->set_klass_gap(0);
   914     obj->set_klass(SystemDictionary::Object_klass());
   915   }
   916 }
   918 void EdenSpace::clear(bool mangle_space) {
   919   ContiguousSpace::clear(mangle_space);
   920   set_soft_end(end());
   921 }
   923 // Requires locking.
   924 HeapWord* EdenSpace::allocate(size_t size) {
   925   return allocate_impl(size, soft_end());
   926 }
   928 // Lock-free.
   929 HeapWord* EdenSpace::par_allocate(size_t size) {
   930   return par_allocate_impl(size, soft_end());
   931 }
   933 HeapWord* ConcEdenSpace::par_allocate(size_t size)
   934 {
   935   do {
   936     // The invariant is top() should be read before end() because
   937     // top() can't be greater than end(), so if an update of _soft_end
   938     // occurs between 'end_val = end();' and 'top_val = top();' top()
   939     // also can grow up to the new end() and the condition
   940     // 'top_val > end_val' is true. To ensure the loading order
   941     // OrderAccess::loadload() is required after top() read.
   942     HeapWord* obj = top();
   943     OrderAccess::loadload();
   944     if (pointer_delta(*soft_end_addr(), obj) >= size) {
   945       HeapWord* new_top = obj + size;
   946       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   947       // result can be one of two:
   948       //  the old top value: the exchange succeeded
   949       //  otherwise: the new value of the top is returned.
   950       if (result == obj) {
   951         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   952         return obj;
   953       }
   954     } else {
   955       return NULL;
   956     }
   957   } while (true);
   958 }
   961 HeapWord* OffsetTableContigSpace::initialize_threshold() {
   962   return _offsets.initialize_threshold();
   963 }
   965 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
   966   _offsets.alloc_block(start, end);
   967   return _offsets.threshold();
   968 }
   970 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   971                                                MemRegion mr) :
   972   _offsets(sharedOffsetArray, mr),
   973   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
   974 {
   975   _offsets.set_contig_space(this);
   976   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   977 }
   979 #define OBJ_SAMPLE_INTERVAL 0
   980 #define BLOCK_SAMPLE_INTERVAL 100
   982 void OffsetTableContigSpace::verify() const {
   983   HeapWord* p = bottom();
   984   HeapWord* prev_p = NULL;
   985   int objs = 0;
   986   int blocks = 0;
   988   if (VerifyObjectStartArray) {
   989     _offsets.verify();
   990   }
   992   while (p < top()) {
   993     size_t size = oop(p)->size();
   994     // For a sampling of objects in the space, find it using the
   995     // block offset table.
   996     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   997       guarantee(p == block_start_const(p + (size/2)),
   998                 "check offset computation");
   999       blocks = 0;
  1000     } else {
  1001       blocks++;
  1004     if (objs == OBJ_SAMPLE_INTERVAL) {
  1005       oop(p)->verify();
  1006       objs = 0;
  1007     } else {
  1008       objs++;
  1010     prev_p = p;
  1011     p += size;
  1013   guarantee(p == top(), "end of last object must match end of space");
  1017 size_t TenuredSpace::allowed_dead_ratio() const {
  1018   return MarkSweepDeadRatio;

mercurial