src/share/vm/memory/genCollectedHeap.hpp

Fri, 21 Feb 2014 10:01:20 +0100

author
stefank
date
Fri, 21 Feb 2014 10:01:20 +0100
changeset 6973
4af19b914f53
parent 6971
7426d8d76305
child 6978
30c99d8e0f02
permissions
-rw-r--r--

8035393: Use CLDClosure instead of CLDToOopClosure in frame::oops_interpreted_do
Reviewed-by: tschatzl, coleenp

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    29 #include "memory/collectorPolicy.hpp"
    30 #include "memory/generation.hpp"
    31 #include "memory/sharedHeap.hpp"
    33 class SubTasksDone;
    35 // A "GenCollectedHeap" is a SharedHeap that uses generational
    36 // collection.  It is represented with a sequence of Generation's.
    37 class GenCollectedHeap : public SharedHeap {
    38   friend class GenCollectorPolicy;
    39   friend class Generation;
    40   friend class DefNewGeneration;
    41   friend class TenuredGeneration;
    42   friend class ConcurrentMarkSweepGeneration;
    43   friend class CMSCollector;
    44   friend class GenMarkSweep;
    45   friend class VM_GenCollectForAllocation;
    46   friend class VM_GenCollectFull;
    47   friend class VM_GenCollectFullConcurrent;
    48   friend class VM_GC_HeapInspection;
    49   friend class VM_HeapDumper;
    50   friend class HeapInspection;
    51   friend class GCCauseSetter;
    52   friend class VMStructs;
    53 public:
    54   enum SomeConstants {
    55     max_gens = 10
    56   };
    58   friend class VM_PopulateDumpSharedSpace;
    60  protected:
    61   // Fields:
    62   static GenCollectedHeap* _gch;
    64  private:
    65   int _n_gens;
    66   Generation* _gens[max_gens];
    67   GenerationSpec** _gen_specs;
    69   // The generational collector policy.
    70   GenCollectorPolicy* _gen_policy;
    72   // Indicates that the most recent previous incremental collection failed.
    73   // The flag is cleared when an action is taken that might clear the
    74   // condition that caused that incremental collection to fail.
    75   bool _incremental_collection_failed;
    77   // In support of ExplicitGCInvokesConcurrent functionality
    78   unsigned int _full_collections_completed;
    80   // Data structure for claiming the (potentially) parallel tasks in
    81   // (gen-specific) strong roots processing.
    82   SubTasksDone* _gen_process_strong_tasks;
    83   SubTasksDone* gen_process_strong_tasks() { return _gen_process_strong_tasks; }
    85   // In block contents verification, the number of header words to skip
    86   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
    88 protected:
    89   // Helper functions for allocation
    90   HeapWord* attempt_allocation(size_t size,
    91                                bool   is_tlab,
    92                                bool   first_only);
    94   // Helper function for two callbacks below.
    95   // Considers collection of the first max_level+1 generations.
    96   void do_collection(bool   full,
    97                      bool   clear_all_soft_refs,
    98                      size_t size,
    99                      bool   is_tlab,
   100                      int    max_level);
   102   // Callback from VM_GenCollectForAllocation operation.
   103   // This function does everything necessary/possible to satisfy an
   104   // allocation request that failed in the youngest generation that should
   105   // have handled it (including collection, expansion, etc.)
   106   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
   108   // Callback from VM_GenCollectFull operation.
   109   // Perform a full collection of the first max_level+1 generations.
   110   virtual void do_full_collection(bool clear_all_soft_refs);
   111   void do_full_collection(bool clear_all_soft_refs, int max_level);
   113   // Does the "cause" of GC indicate that
   114   // we absolutely __must__ clear soft refs?
   115   bool must_clear_all_soft_refs();
   117 public:
   118   GenCollectedHeap(GenCollectorPolicy *policy);
   120   GCStats* gc_stats(int level) const;
   122   // Returns JNI_OK on success
   123   virtual jint initialize();
   124   char* allocate(size_t alignment,
   125                  size_t* _total_reserved, int* _n_covered_regions,
   126                  ReservedSpace* heap_rs);
   128   // Does operations required after initialization has been done.
   129   void post_initialize();
   131   // Initialize ("weak") refs processing support
   132   virtual void ref_processing_init();
   134   virtual CollectedHeap::Name kind() const {
   135     return CollectedHeap::GenCollectedHeap;
   136   }
   138   // The generational collector policy.
   139   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
   140   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
   142   // Adaptive size policy
   143   virtual AdaptiveSizePolicy* size_policy() {
   144     return gen_policy()->size_policy();
   145   }
   147   // Return the (conservative) maximum heap alignment
   148   static size_t conservative_max_heap_alignment() {
   149     return Generation::GenGrain;
   150   }
   152   size_t capacity() const;
   153   size_t used() const;
   155   // Save the "used_region" for generations level and lower.
   156   void save_used_regions(int level);
   158   size_t max_capacity() const;
   160   HeapWord* mem_allocate(size_t size,
   161                          bool*  gc_overhead_limit_was_exceeded);
   163   // We may support a shared contiguous allocation area, if the youngest
   164   // generation does.
   165   bool supports_inline_contig_alloc() const;
   166   HeapWord** top_addr() const;
   167   HeapWord** end_addr() const;
   169   // Return an estimate of the maximum allocation that could be performed
   170   // without triggering any collection activity.  In a generational
   171   // collector, for example, this is probably the largest allocation that
   172   // could be supported in the youngest generation.  It is "unsafe" because
   173   // no locks are taken; the result should be treated as an approximation,
   174   // not a guarantee.
   175   size_t unsafe_max_alloc();
   177   // Does this heap support heap inspection? (+PrintClassHistogram)
   178   virtual bool supports_heap_inspection() const { return true; }
   180   // Perform a full collection of the heap; intended for use in implementing
   181   // "System.gc". This implies as full a collection as the CollectedHeap
   182   // supports. Caller does not hold the Heap_lock on entry.
   183   void collect(GCCause::Cause cause);
   185   // The same as above but assume that the caller holds the Heap_lock.
   186   void collect_locked(GCCause::Cause cause);
   188   // Perform a full collection of the first max_level+1 generations.
   189   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
   190   void collect(GCCause::Cause cause, int max_level);
   192   // Returns "TRUE" iff "p" points into the committed areas of the heap.
   193   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
   194   // be expensive to compute in general, so, to prevent
   195   // their inadvertent use in product jvm's, we restrict their use to
   196   // assertion checking or verification only.
   197   bool is_in(const void* p) const;
   199   // override
   200   bool is_in_closed_subset(const void* p) const {
   201     if (UseConcMarkSweepGC) {
   202       return is_in_reserved(p);
   203     } else {
   204       return is_in(p);
   205     }
   206   }
   208   // Returns true if the reference is to an object in the reserved space
   209   // for the young generation.
   210   // Assumes the the young gen address range is less than that of the old gen.
   211   bool is_in_young(oop p);
   213 #ifdef ASSERT
   214   virtual bool is_in_partial_collection(const void* p);
   215 #endif
   217   virtual bool is_scavengable(const void* addr) {
   218     return is_in_young((oop)addr);
   219   }
   221   // Iteration functions.
   222   void oop_iterate(ExtendedOopClosure* cl);
   223   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
   224   void object_iterate(ObjectClosure* cl);
   225   void safe_object_iterate(ObjectClosure* cl);
   226   Space* space_containing(const void* addr) const;
   228   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   229   // each address in the (reserved) heap is a member of exactly
   230   // one block.  The defining characteristic of a block is that it is
   231   // possible to find its size, and thus to progress forward to the next
   232   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   233   // represent Java objects, or they might be free blocks in a
   234   // free-list-based heap (or subheap), as long as the two kinds are
   235   // distinguishable and the size of each is determinable.
   237   // Returns the address of the start of the "block" that contains the
   238   // address "addr".  We say "blocks" instead of "object" since some heaps
   239   // may not pack objects densely; a chunk may either be an object or a
   240   // non-object.
   241   virtual HeapWord* block_start(const void* addr) const;
   243   // Requires "addr" to be the start of a chunk, and returns its size.
   244   // "addr + size" is required to be the start of a new chunk, or the end
   245   // of the active area of the heap. Assumes (and verifies in non-product
   246   // builds) that addr is in the allocated part of the heap and is
   247   // the start of a chunk.
   248   virtual size_t block_size(const HeapWord* addr) const;
   250   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   251   // the block is an object. Assumes (and verifies in non-product
   252   // builds) that addr is in the allocated part of the heap and is
   253   // the start of a chunk.
   254   virtual bool block_is_obj(const HeapWord* addr) const;
   256   // Section on TLAB's.
   257   virtual bool supports_tlab_allocation() const;
   258   virtual size_t tlab_capacity(Thread* thr) const;
   259   virtual size_t tlab_used(Thread* thr) const;
   260   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
   261   virtual HeapWord* allocate_new_tlab(size_t size);
   263   // Can a compiler initialize a new object without store barriers?
   264   // This permission only extends from the creation of a new object
   265   // via a TLAB up to the first subsequent safepoint.
   266   virtual bool can_elide_tlab_store_barriers() const {
   267     return true;
   268   }
   270   virtual bool card_mark_must_follow_store() const {
   271     return UseConcMarkSweepGC;
   272   }
   274   // We don't need barriers for stores to objects in the
   275   // young gen and, a fortiori, for initializing stores to
   276   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
   277   // only and may need to be re-examined in case other
   278   // kinds of collectors are implemented in the future.
   279   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
   280     // We wanted to assert that:-
   281     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
   282     //       "Check can_elide_initializing_store_barrier() for this collector");
   283     // but unfortunately the flag UseSerialGC need not necessarily always
   284     // be set when DefNew+Tenured are being used.
   285     return is_in_young(new_obj);
   286   }
   288   // The "requestor" generation is performing some garbage collection
   289   // action for which it would be useful to have scratch space.  The
   290   // requestor promises to allocate no more than "max_alloc_words" in any
   291   // older generation (via promotion say.)   Any blocks of space that can
   292   // be provided are returned as a list of ScratchBlocks, sorted by
   293   // decreasing size.
   294   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
   295   // Allow each generation to reset any scratch space that it has
   296   // contributed as it needs.
   297   void release_scratch();
   299   // Ensure parsability: override
   300   virtual void ensure_parsability(bool retire_tlabs);
   302   // Time in ms since the longest time a collector ran in
   303   // in any generation.
   304   virtual jlong millis_since_last_gc();
   306   // Total number of full collections completed.
   307   unsigned int total_full_collections_completed() {
   308     assert(_full_collections_completed <= _total_full_collections,
   309            "Can't complete more collections than were started");
   310     return _full_collections_completed;
   311   }
   313   // Update above counter, as appropriate, at the end of a stop-world GC cycle
   314   unsigned int update_full_collections_completed();
   315   // Update above counter, as appropriate, at the end of a concurrent GC cycle
   316   unsigned int update_full_collections_completed(unsigned int count);
   318   // Update "time of last gc" for all constituent generations
   319   // to "now".
   320   void update_time_of_last_gc(jlong now) {
   321     for (int i = 0; i < _n_gens; i++) {
   322       _gens[i]->update_time_of_last_gc(now);
   323     }
   324   }
   326   // Update the gc statistics for each generation.
   327   // "level" is the level of the lastest collection
   328   void update_gc_stats(int current_level, bool full) {
   329     for (int i = 0; i < _n_gens; i++) {
   330       _gens[i]->update_gc_stats(current_level, full);
   331     }
   332   }
   334   // Override.
   335   bool no_gc_in_progress() { return !is_gc_active(); }
   337   // Override.
   338   void prepare_for_verify();
   340   // Override.
   341   void verify(bool silent, VerifyOption option);
   343   // Override.
   344   virtual void print_on(outputStream* st) const;
   345   virtual void print_gc_threads_on(outputStream* st) const;
   346   virtual void gc_threads_do(ThreadClosure* tc) const;
   347   virtual void print_tracing_info() const;
   348   virtual void print_on_error(outputStream* st) const;
   350   // PrintGC, PrintGCDetails support
   351   void print_heap_change(size_t prev_used) const;
   353   // The functions below are helper functions that a subclass of
   354   // "CollectedHeap" can use in the implementation of its virtual
   355   // functions.
   357   class GenClosure : public StackObj {
   358    public:
   359     virtual void do_generation(Generation* gen) = 0;
   360   };
   362   // Apply "cl.do_generation" to all generations in the heap
   363   // If "old_to_young" determines the order.
   364   void generation_iterate(GenClosure* cl, bool old_to_young);
   366   void space_iterate(SpaceClosure* cl);
   368   // Return "true" if all generations have reached the
   369   // maximal committed limit that they can reach, without a garbage
   370   // collection.
   371   virtual bool is_maximal_no_gc() const;
   373   // Return the generation before "gen".
   374   Generation* prev_gen(Generation* gen) const {
   375     int l = gen->level();
   376     guarantee(l > 0, "Out of bounds");
   377     return _gens[l-1];
   378   }
   380   // Return the generation after "gen".
   381   Generation* next_gen(Generation* gen) const {
   382     int l = gen->level() + 1;
   383     guarantee(l < _n_gens, "Out of bounds");
   384     return _gens[l];
   385   }
   387   Generation* get_gen(int i) const {
   388     guarantee(i >= 0 && i < _n_gens, "Out of bounds");
   389     return _gens[i];
   390   }
   392   int n_gens() const {
   393     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
   394     return _n_gens;
   395   }
   397   // Convenience function to be used in situations where the heap type can be
   398   // asserted to be this type.
   399   static GenCollectedHeap* heap();
   401   void set_par_threads(uint t);
   403   // Invoke the "do_oop" method of one of the closures "not_older_gens"
   404   // or "older_gens" on root locations for the generation at
   405   // "level".  (The "older_gens" closure is used for scanning references
   406   // from older generations; "not_older_gens" is used everywhere else.)
   407   // If "younger_gens_as_roots" is false, younger generations are
   408   // not scanned as roots; in this case, the caller must be arranging to
   409   // scan the younger generations itself.  (For example, a generation might
   410   // explicitly mark reachable objects in younger generations, to avoid
   411   // excess storage retention.)
   412   // The "so" argument determines which of the roots
   413   // the closure is applied to:
   414   // "SO_None" does none;
   415   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
   416   // "SO_SystemClasses" to all the "system" classes and loaders;
   417   // "SO_Strings" applies the closure to all entries in the StringTable.
   418   void gen_process_strong_roots(int level,
   419                                 bool younger_gens_as_roots,
   420                                 // The remaining arguments are in an order
   421                                 // consistent with SharedHeap::process_strong_roots:
   422                                 bool activate_scope,
   423                                 SharedHeap::ScanningOption so,
   424                                 OopsInGenClosure* not_older_gens,
   425                                 OopsInGenClosure* older_gens,
   426                                 KlassClosure* klass_closure);
   428   // Apply "root_closure" to all the weak roots of the system.
   429   // These include JNI weak roots, string table,
   430   // and referents of reachable weak refs.
   431   void gen_process_weak_roots(OopClosure* root_closure);
   433   // Set the saved marks of generations, if that makes sense.
   434   // In particular, if any generation might iterate over the oops
   435   // in other generations, it should call this method.
   436   void save_marks();
   438   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
   439   // allocated since the last call to save_marks in generations at or above
   440   // "level".  The "cur" closure is
   441   // applied to references in the generation at "level", and the "older"
   442   // closure to older generations.
   443 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
   444   void oop_since_save_marks_iterate(int level,                          \
   445                                     OopClosureType* cur,                \
   446                                     OopClosureType* older);
   448   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
   450 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
   452   // Returns "true" iff no allocations have occurred in any generation at
   453   // "level" or above since the last
   454   // call to "save_marks".
   455   bool no_allocs_since_save_marks(int level);
   457   // Returns true if an incremental collection is likely to fail.
   458   // We optionally consult the young gen, if asked to do so;
   459   // otherwise we base our answer on whether the previous incremental
   460   // collection attempt failed with no corrective action as of yet.
   461   bool incremental_collection_will_fail(bool consult_young) {
   462     // Assumes a 2-generation system; the first disjunct remembers if an
   463     // incremental collection failed, even when we thought (second disjunct)
   464     // that it would not.
   465     assert(heap()->collector_policy()->is_two_generation_policy(),
   466            "the following definition may not be suitable for an n(>2)-generation system");
   467     return incremental_collection_failed() ||
   468            (consult_young && !get_gen(0)->collection_attempt_is_safe());
   469   }
   471   // If a generation bails out of an incremental collection,
   472   // it sets this flag.
   473   bool incremental_collection_failed() const {
   474     return _incremental_collection_failed;
   475   }
   476   void set_incremental_collection_failed() {
   477     _incremental_collection_failed = true;
   478   }
   479   void clear_incremental_collection_failed() {
   480     _incremental_collection_failed = false;
   481   }
   483   // Promotion of obj into gen failed.  Try to promote obj to higher
   484   // gens in ascending order; return the new location of obj if successful.
   485   // Otherwise, try expand-and-allocate for obj in both the young and old
   486   // generation; return the new location of obj if successful.  Otherwise, return NULL.
   487   oop handle_failed_promotion(Generation* old_gen,
   488                               oop obj,
   489                               size_t obj_size);
   491 private:
   492   // Accessor for memory state verification support
   493   NOT_PRODUCT(
   494     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
   495   )
   497   // Override
   498   void check_for_non_bad_heap_word_value(HeapWord* addr,
   499     size_t size) PRODUCT_RETURN;
   501   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
   502   // in an essential way: compaction is performed across generations, by
   503   // iterating over spaces.
   504   void prepare_for_compaction();
   506   // Perform a full collection of the first max_level+1 generations.
   507   // This is the low level interface used by the public versions of
   508   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
   509   void collect_locked(GCCause::Cause cause, int max_level);
   511   // Returns success or failure.
   512   bool create_cms_collector();
   514   // In support of ExplicitGCInvokesConcurrent functionality
   515   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   516   void collect_mostly_concurrent(GCCause::Cause cause);
   518   // Save the tops of the spaces in all generations
   519   void record_gen_tops_before_GC() PRODUCT_RETURN;
   521 protected:
   522   virtual void gc_prologue(bool full);
   523   virtual void gc_epilogue(bool full);
   524 };
   526 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP

mercurial