src/os/linux/vm/os_linux.cpp

Thu, 01 Jun 2017 20:42:49 -0400

author
gromero
date
Thu, 01 Jun 2017 20:42:49 -0400
changeset 8776
4a575a49e938
parent 8758
e7db67a9ddfd
child 8856
ac27a9c85bea
child 8878
d3cc20285653
child 8982
8f1acbb637e3
permissions
-rw-r--r--

8175813: PPC64: "mbind: Invalid argument" when -XX:+UseNUMA is used
Reviewed-by: dholmes, zgu

     1 /*
     2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/orderAccess.inline.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/perfMemory.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/statSampler.hpp"
    57 #include "runtime/stubRoutines.hpp"
    58 #include "runtime/thread.inline.hpp"
    59 #include "runtime/threadCritical.hpp"
    60 #include "runtime/timer.hpp"
    61 #include "services/attachListener.hpp"
    62 #include "services/memTracker.hpp"
    63 #include "services/runtimeService.hpp"
    64 #include "utilities/decoder.hpp"
    65 #include "utilities/defaultStream.hpp"
    66 #include "utilities/events.hpp"
    67 #include "utilities/elfFile.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    71 // put OS-includes here
    72 # include <sys/types.h>
    73 # include <sys/mman.h>
    74 # include <sys/stat.h>
    75 # include <sys/select.h>
    76 # include <pthread.h>
    77 # include <signal.h>
    78 # include <errno.h>
    79 # include <dlfcn.h>
    80 # include <stdio.h>
    81 # include <unistd.h>
    82 # include <sys/resource.h>
    83 # include <pthread.h>
    84 # include <sys/stat.h>
    85 # include <sys/time.h>
    86 # include <sys/times.h>
    87 # include <sys/utsname.h>
    88 # include <sys/socket.h>
    89 # include <sys/wait.h>
    90 # include <pwd.h>
    91 # include <poll.h>
    92 # include <semaphore.h>
    93 # include <fcntl.h>
    94 # include <string.h>
    95 # include <syscall.h>
    96 # include <sys/sysinfo.h>
    97 # include <gnu/libc-version.h>
    98 # include <sys/ipc.h>
    99 # include <sys/shm.h>
   100 # include <link.h>
   101 # include <stdint.h>
   102 # include <inttypes.h>
   103 # include <sys/ioctl.h>
   105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   107 #ifndef _GNU_SOURCE
   108   #define _GNU_SOURCE
   109   #include <sched.h>
   110   #undef _GNU_SOURCE
   111 #else
   112   #include <sched.h>
   113 #endif
   115 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   116 // getrusage() is prepared to handle the associated failure.
   117 #ifndef RUSAGE_THREAD
   118 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   119 #endif
   121 #define MAX_PATH    (2 * K)
   123 #define MAX_SECS 100000000
   125 // for timer info max values which include all bits
   126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   128 #define LARGEPAGES_BIT (1 << 6)
   129 ////////////////////////////////////////////////////////////////////////////////
   130 // global variables
   131 julong os::Linux::_physical_memory = 0;
   133 address   os::Linux::_initial_thread_stack_bottom = NULL;
   134 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   136 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   137 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   138 Mutex* os::Linux::_createThread_lock = NULL;
   139 pthread_t os::Linux::_main_thread;
   140 int os::Linux::_page_size = -1;
   141 const int os::Linux::_vm_default_page_size = (8 * K);
   142 bool os::Linux::_is_floating_stack = false;
   143 bool os::Linux::_is_NPTL = false;
   144 bool os::Linux::_supports_fast_thread_cpu_time = false;
   145 const char * os::Linux::_glibc_version = NULL;
   146 const char * os::Linux::_libpthread_version = NULL;
   147 pthread_condattr_t os::Linux::_condattr[1];
   149 static jlong initial_time_count=0;
   151 static int clock_tics_per_sec = 100;
   153 // For diagnostics to print a message once. see run_periodic_checks
   154 static sigset_t check_signal_done;
   155 static bool check_signals = true;
   157 static pid_t _initial_pid = 0;
   159 /* Signal number used to suspend/resume a thread */
   161 /* do not use any signal number less than SIGSEGV, see 4355769 */
   162 static int SR_signum = SIGUSR2;
   163 sigset_t SR_sigset;
   165 /* Used to protect dlsym() calls */
   166 static pthread_mutex_t dl_mutex;
   168 // Declarations
   169 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   171 // utility functions
   173 static int SR_initialize();
   175 julong os::available_memory() {
   176   return Linux::available_memory();
   177 }
   179 julong os::Linux::available_memory() {
   180   // values in struct sysinfo are "unsigned long"
   181   struct sysinfo si;
   182   sysinfo(&si);
   184   return (julong)si.freeram * si.mem_unit;
   185 }
   187 julong os::physical_memory() {
   188   return Linux::physical_memory();
   189 }
   191 ////////////////////////////////////////////////////////////////////////////////
   192 // environment support
   194 bool os::getenv(const char* name, char* buf, int len) {
   195   const char* val = ::getenv(name);
   196   if (val != NULL && strlen(val) < (size_t)len) {
   197     strcpy(buf, val);
   198     return true;
   199   }
   200   if (len > 0) buf[0] = 0;  // return a null string
   201   return false;
   202 }
   205 // Return true if user is running as root.
   207 bool os::have_special_privileges() {
   208   static bool init = false;
   209   static bool privileges = false;
   210   if (!init) {
   211     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   212     init = true;
   213   }
   214   return privileges;
   215 }
   218 #ifndef SYS_gettid
   219 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   220   #ifdef __ia64__
   221     #define SYS_gettid 1105
   222   #else
   223     #ifdef __i386__
   224       #define SYS_gettid 224
   225     #else
   226       #ifdef __amd64__
   227         #define SYS_gettid 186
   228       #else
   229         #ifdef __sparc__
   230           #define SYS_gettid 143
   231         #else
   232           #error define gettid for the arch
   233         #endif
   234       #endif
   235     #endif
   236   #endif
   237 #endif
   239 // Cpu architecture string
   240 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   242 // pid_t gettid()
   243 //
   244 // Returns the kernel thread id of the currently running thread. Kernel
   245 // thread id is used to access /proc.
   246 //
   247 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   248 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   249 //
   250 pid_t os::Linux::gettid() {
   251   int rslt = syscall(SYS_gettid);
   252   if (rslt == -1) {
   253      // old kernel, no NPTL support
   254      return getpid();
   255   } else {
   256      return (pid_t)rslt;
   257   }
   258 }
   260 // Most versions of linux have a bug where the number of processors are
   261 // determined by looking at the /proc file system.  In a chroot environment,
   262 // the system call returns 1.  This causes the VM to act as if it is
   263 // a single processor and elide locking (see is_MP() call).
   264 static bool unsafe_chroot_detected = false;
   265 static const char *unstable_chroot_error = "/proc file system not found.\n"
   266                      "Java may be unstable running multithreaded in a chroot "
   267                      "environment on Linux when /proc filesystem is not mounted.";
   269 void os::Linux::initialize_system_info() {
   270   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   271   if (processor_count() == 1) {
   272     pid_t pid = os::Linux::gettid();
   273     char fname[32];
   274     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   275     FILE *fp = fopen(fname, "r");
   276     if (fp == NULL) {
   277       unsafe_chroot_detected = true;
   278     } else {
   279       fclose(fp);
   280     }
   281   }
   282   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   283   assert(processor_count() > 0, "linux error");
   284 }
   286 void os::init_system_properties_values() {
   287   // The next steps are taken in the product version:
   288   //
   289   // Obtain the JAVA_HOME value from the location of libjvm.so.
   290   // This library should be located at:
   291   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   292   //
   293   // If "/jre/lib/" appears at the right place in the path, then we
   294   // assume libjvm.so is installed in a JDK and we use this path.
   295   //
   296   // Otherwise exit with message: "Could not create the Java virtual machine."
   297   //
   298   // The following extra steps are taken in the debugging version:
   299   //
   300   // If "/jre/lib/" does NOT appear at the right place in the path
   301   // instead of exit check for $JAVA_HOME environment variable.
   302   //
   303   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   304   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   305   // it looks like libjvm.so is installed there
   306   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   307   //
   308   // Otherwise exit.
   309   //
   310   // Important note: if the location of libjvm.so changes this
   311   // code needs to be changed accordingly.
   313 // See ld(1):
   314 //      The linker uses the following search paths to locate required
   315 //      shared libraries:
   316 //        1: ...
   317 //        ...
   318 //        7: The default directories, normally /lib and /usr/lib.
   319 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   320 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   321 #else
   322 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   323 #endif
   325 // Base path of extensions installed on the system.
   326 #define SYS_EXT_DIR     "/usr/java/packages"
   327 #define EXTENSIONS_DIR  "/lib/ext"
   328 #define ENDORSED_DIR    "/lib/endorsed"
   330   // Buffer that fits several sprintfs.
   331   // Note that the space for the colon and the trailing null are provided
   332   // by the nulls included by the sizeof operator.
   333   const size_t bufsize =
   334     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   335          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   336          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   337   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   339   // sysclasspath, java_home, dll_dir
   340   {
   341     char *pslash;
   342     os::jvm_path(buf, bufsize);
   344     // Found the full path to libjvm.so.
   345     // Now cut the path to <java_home>/jre if we can.
   346     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   347     pslash = strrchr(buf, '/');
   348     if (pslash != NULL) {
   349       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   350     }
   351     Arguments::set_dll_dir(buf);
   353     if (pslash != NULL) {
   354       pslash = strrchr(buf, '/');
   355       if (pslash != NULL) {
   356         *pslash = '\0';          // Get rid of /<arch>.
   357         pslash = strrchr(buf, '/');
   358         if (pslash != NULL) {
   359           *pslash = '\0';        // Get rid of /lib.
   360         }
   361       }
   362     }
   363     Arguments::set_java_home(buf);
   364     set_boot_path('/', ':');
   365   }
   367   // Where to look for native libraries.
   368   //
   369   // Note: Due to a legacy implementation, most of the library path
   370   // is set in the launcher. This was to accomodate linking restrictions
   371   // on legacy Linux implementations (which are no longer supported).
   372   // Eventually, all the library path setting will be done here.
   373   //
   374   // However, to prevent the proliferation of improperly built native
   375   // libraries, the new path component /usr/java/packages is added here.
   376   // Eventually, all the library path setting will be done here.
   377   {
   378     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   379     // should always exist (until the legacy problem cited above is
   380     // addressed).
   381     const char *v = ::getenv("LD_LIBRARY_PATH");
   382     const char *v_colon = ":";
   383     if (v == NULL) { v = ""; v_colon = ""; }
   384     // That's +1 for the colon and +1 for the trailing '\0'.
   385     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   386                                                      strlen(v) + 1 +
   387                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   388                                                      mtInternal);
   389     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   390     Arguments::set_library_path(ld_library_path);
   391     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   392   }
   394   // Extensions directories.
   395   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   396   Arguments::set_ext_dirs(buf);
   398   // Endorsed standards default directory.
   399   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   400   Arguments::set_endorsed_dirs(buf);
   402   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   404 #undef DEFAULT_LIBPATH
   405 #undef SYS_EXT_DIR
   406 #undef EXTENSIONS_DIR
   407 #undef ENDORSED_DIR
   408 }
   410 ////////////////////////////////////////////////////////////////////////////////
   411 // breakpoint support
   413 void os::breakpoint() {
   414   BREAKPOINT;
   415 }
   417 extern "C" void breakpoint() {
   418   // use debugger to set breakpoint here
   419 }
   421 ////////////////////////////////////////////////////////////////////////////////
   422 // signal support
   424 debug_only(static bool signal_sets_initialized = false);
   425 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   427 bool os::Linux::is_sig_ignored(int sig) {
   428       struct sigaction oact;
   429       sigaction(sig, (struct sigaction*)NULL, &oact);
   430       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   431                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   432       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   433            return true;
   434       else
   435            return false;
   436 }
   438 void os::Linux::signal_sets_init() {
   439   // Should also have an assertion stating we are still single-threaded.
   440   assert(!signal_sets_initialized, "Already initialized");
   441   // Fill in signals that are necessarily unblocked for all threads in
   442   // the VM. Currently, we unblock the following signals:
   443   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   444   //                         by -Xrs (=ReduceSignalUsage));
   445   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   446   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   447   // the dispositions or masks wrt these signals.
   448   // Programs embedding the VM that want to use the above signals for their
   449   // own purposes must, at this time, use the "-Xrs" option to prevent
   450   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   451   // (See bug 4345157, and other related bugs).
   452   // In reality, though, unblocking these signals is really a nop, since
   453   // these signals are not blocked by default.
   454   sigemptyset(&unblocked_sigs);
   455   sigemptyset(&allowdebug_blocked_sigs);
   456   sigaddset(&unblocked_sigs, SIGILL);
   457   sigaddset(&unblocked_sigs, SIGSEGV);
   458   sigaddset(&unblocked_sigs, SIGBUS);
   459   sigaddset(&unblocked_sigs, SIGFPE);
   460 #if defined(PPC64)
   461   sigaddset(&unblocked_sigs, SIGTRAP);
   462 #endif
   463   sigaddset(&unblocked_sigs, SR_signum);
   465   if (!ReduceSignalUsage) {
   466    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   467       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   469    }
   470    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   471       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   472       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   473    }
   474    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   475       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   476       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   477    }
   478   }
   479   // Fill in signals that are blocked by all but the VM thread.
   480   sigemptyset(&vm_sigs);
   481   if (!ReduceSignalUsage)
   482     sigaddset(&vm_sigs, BREAK_SIGNAL);
   483   debug_only(signal_sets_initialized = true);
   485 }
   487 // These are signals that are unblocked while a thread is running Java.
   488 // (For some reason, they get blocked by default.)
   489 sigset_t* os::Linux::unblocked_signals() {
   490   assert(signal_sets_initialized, "Not initialized");
   491   return &unblocked_sigs;
   492 }
   494 // These are the signals that are blocked while a (non-VM) thread is
   495 // running Java. Only the VM thread handles these signals.
   496 sigset_t* os::Linux::vm_signals() {
   497   assert(signal_sets_initialized, "Not initialized");
   498   return &vm_sigs;
   499 }
   501 // These are signals that are blocked during cond_wait to allow debugger in
   502 sigset_t* os::Linux::allowdebug_blocked_signals() {
   503   assert(signal_sets_initialized, "Not initialized");
   504   return &allowdebug_blocked_sigs;
   505 }
   507 void os::Linux::hotspot_sigmask(Thread* thread) {
   509   //Save caller's signal mask before setting VM signal mask
   510   sigset_t caller_sigmask;
   511   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   513   OSThread* osthread = thread->osthread();
   514   osthread->set_caller_sigmask(caller_sigmask);
   516   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   518   if (!ReduceSignalUsage) {
   519     if (thread->is_VM_thread()) {
   520       // Only the VM thread handles BREAK_SIGNAL ...
   521       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   522     } else {
   523       // ... all other threads block BREAK_SIGNAL
   524       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   525     }
   526   }
   527 }
   529 //////////////////////////////////////////////////////////////////////////////
   530 // detecting pthread library
   532 void os::Linux::libpthread_init() {
   533   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   534   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   535   // generic name for earlier versions.
   536   // Define macros here so we can build HotSpot on old systems.
   537 # ifndef _CS_GNU_LIBC_VERSION
   538 # define _CS_GNU_LIBC_VERSION 2
   539 # endif
   540 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   541 # define _CS_GNU_LIBPTHREAD_VERSION 3
   542 # endif
   544   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   545   if (n > 0) {
   546      char *str = (char *)malloc(n, mtInternal);
   547      confstr(_CS_GNU_LIBC_VERSION, str, n);
   548      os::Linux::set_glibc_version(str);
   549   } else {
   550      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   551      static char _gnu_libc_version[32];
   552      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   553               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   554      os::Linux::set_glibc_version(_gnu_libc_version);
   555   }
   557   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   558   if (n > 0) {
   559      char *str = (char *)malloc(n, mtInternal);
   560      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   561      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   562      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   563      // is the case. LinuxThreads has a hard limit on max number of threads.
   564      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   565      // On the other hand, NPTL does not have such a limit, sysconf()
   566      // will return -1 and errno is not changed. Check if it is really NPTL.
   567      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   568          strstr(str, "NPTL") &&
   569          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   570        free(str);
   571        os::Linux::set_libpthread_version("linuxthreads");
   572      } else {
   573        os::Linux::set_libpthread_version(str);
   574      }
   575   } else {
   576     // glibc before 2.3.2 only has LinuxThreads.
   577     os::Linux::set_libpthread_version("linuxthreads");
   578   }
   580   if (strstr(libpthread_version(), "NPTL")) {
   581      os::Linux::set_is_NPTL();
   582   } else {
   583      os::Linux::set_is_LinuxThreads();
   584   }
   586   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   587   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   588   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   589      os::Linux::set_is_floating_stack();
   590   }
   591 }
   593 /////////////////////////////////////////////////////////////////////////////
   594 // thread stack
   596 // Force Linux kernel to expand current thread stack. If "bottom" is close
   597 // to the stack guard, caller should block all signals.
   598 //
   599 // MAP_GROWSDOWN:
   600 //   A special mmap() flag that is used to implement thread stacks. It tells
   601 //   kernel that the memory region should extend downwards when needed. This
   602 //   allows early versions of LinuxThreads to only mmap the first few pages
   603 //   when creating a new thread. Linux kernel will automatically expand thread
   604 //   stack as needed (on page faults).
   605 //
   606 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   607 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   608 //   region, it's hard to tell if the fault is due to a legitimate stack
   609 //   access or because of reading/writing non-exist memory (e.g. buffer
   610 //   overrun). As a rule, if the fault happens below current stack pointer,
   611 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   612 //   application (see Linux kernel fault.c).
   613 //
   614 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   615 //   stack overflow detection.
   616 //
   617 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   618 //   not use this flag. However, the stack of initial thread is not created
   619 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   620 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   621 //   and then attach the thread to JVM.
   622 //
   623 // To get around the problem and allow stack banging on Linux, we need to
   624 // manually expand thread stack after receiving the SIGSEGV.
   625 //
   626 // There are two ways to expand thread stack to address "bottom", we used
   627 // both of them in JVM before 1.5:
   628 //   1. adjust stack pointer first so that it is below "bottom", and then
   629 //      touch "bottom"
   630 //   2. mmap() the page in question
   631 //
   632 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   633 // if current sp is already near the lower end of page 101, and we need to
   634 // call mmap() to map page 100, it is possible that part of the mmap() frame
   635 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   636 // That will destroy the mmap() frame and cause VM to crash.
   637 //
   638 // The following code works by adjusting sp first, then accessing the "bottom"
   639 // page to force a page fault. Linux kernel will then automatically expand the
   640 // stack mapping.
   641 //
   642 // _expand_stack_to() assumes its frame size is less than page size, which
   643 // should always be true if the function is not inlined.
   645 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   646 #define NOINLINE
   647 #else
   648 #define NOINLINE __attribute__ ((noinline))
   649 #endif
   651 static void _expand_stack_to(address bottom) NOINLINE;
   653 static void _expand_stack_to(address bottom) {
   654   address sp;
   655   size_t size;
   656   volatile char *p;
   658   // Adjust bottom to point to the largest address within the same page, it
   659   // gives us a one-page buffer if alloca() allocates slightly more memory.
   660   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   661   bottom += os::Linux::page_size() - 1;
   663   // sp might be slightly above current stack pointer; if that's the case, we
   664   // will alloca() a little more space than necessary, which is OK. Don't use
   665   // os::current_stack_pointer(), as its result can be slightly below current
   666   // stack pointer, causing us to not alloca enough to reach "bottom".
   667   sp = (address)&sp;
   669   if (sp > bottom) {
   670     size = sp - bottom;
   671     p = (volatile char *)alloca(size);
   672     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   673     p[0] = '\0';
   674   }
   675 }
   677 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   678   assert(t!=NULL, "just checking");
   679   assert(t->osthread()->expanding_stack(), "expand should be set");
   680   assert(t->stack_base() != NULL, "stack_base was not initialized");
   682   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   683     sigset_t mask_all, old_sigset;
   684     sigfillset(&mask_all);
   685     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   686     _expand_stack_to(addr);
   687     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   688     return true;
   689   }
   690   return false;
   691 }
   693 //////////////////////////////////////////////////////////////////////////////
   694 // create new thread
   696 static address highest_vm_reserved_address();
   698 // check if it's safe to start a new thread
   699 static bool _thread_safety_check(Thread* thread) {
   700   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   701     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   702     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   703     //   allocated (MAP_FIXED) from high address space. Every thread stack
   704     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   705     //   it to other values if they rebuild LinuxThreads).
   706     //
   707     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   708     // the memory region has already been mmap'ed. That means if we have too
   709     // many threads and/or very large heap, eventually thread stack will
   710     // collide with heap.
   711     //
   712     // Here we try to prevent heap/stack collision by comparing current
   713     // stack bottom with the highest address that has been mmap'ed by JVM
   714     // plus a safety margin for memory maps created by native code.
   715     //
   716     // This feature can be disabled by setting ThreadSafetyMargin to 0
   717     //
   718     if (ThreadSafetyMargin > 0) {
   719       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   721       // not safe if our stack extends below the safety margin
   722       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   723     } else {
   724       return true;
   725     }
   726   } else {
   727     // Floating stack LinuxThreads or NPTL:
   728     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   729     //   there's not enough space left, pthread_create() will fail. If we come
   730     //   here, that means enough space has been reserved for stack.
   731     return true;
   732   }
   733 }
   735 // Thread start routine for all newly created threads
   736 static void *java_start(Thread *thread) {
   737   // Try to randomize the cache line index of hot stack frames.
   738   // This helps when threads of the same stack traces evict each other's
   739   // cache lines. The threads can be either from the same JVM instance, or
   740   // from different JVM instances. The benefit is especially true for
   741   // processors with hyperthreading technology.
   742   static int counter = 0;
   743   int pid = os::current_process_id();
   744   alloca(((pid ^ counter++) & 7) * 128);
   746   ThreadLocalStorage::set_thread(thread);
   748   OSThread* osthread = thread->osthread();
   749   Monitor* sync = osthread->startThread_lock();
   751   // non floating stack LinuxThreads needs extra check, see above
   752   if (!_thread_safety_check(thread)) {
   753     // notify parent thread
   754     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   755     osthread->set_state(ZOMBIE);
   756     sync->notify_all();
   757     return NULL;
   758   }
   760   // thread_id is kernel thread id (similar to Solaris LWP id)
   761   osthread->set_thread_id(os::Linux::gettid());
   763   if (UseNUMA) {
   764     int lgrp_id = os::numa_get_group_id();
   765     if (lgrp_id != -1) {
   766       thread->set_lgrp_id(lgrp_id);
   767     }
   768   }
   769   // initialize signal mask for this thread
   770   os::Linux::hotspot_sigmask(thread);
   772   // initialize floating point control register
   773   os::Linux::init_thread_fpu_state();
   775   // handshaking with parent thread
   776   {
   777     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   779     // notify parent thread
   780     osthread->set_state(INITIALIZED);
   781     sync->notify_all();
   783     // wait until os::start_thread()
   784     while (osthread->get_state() == INITIALIZED) {
   785       sync->wait(Mutex::_no_safepoint_check_flag);
   786     }
   787   }
   789   // call one more level start routine
   790   thread->run();
   792   return 0;
   793 }
   795 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   796   assert(thread->osthread() == NULL, "caller responsible");
   798   // Allocate the OSThread object
   799   OSThread* osthread = new OSThread(NULL, NULL);
   800   if (osthread == NULL) {
   801     return false;
   802   }
   804   // set the correct thread state
   805   osthread->set_thread_type(thr_type);
   807   // Initial state is ALLOCATED but not INITIALIZED
   808   osthread->set_state(ALLOCATED);
   810   thread->set_osthread(osthread);
   812   // init thread attributes
   813   pthread_attr_t attr;
   814   pthread_attr_init(&attr);
   815   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   817   // stack size
   818   if (os::Linux::supports_variable_stack_size()) {
   819     // calculate stack size if it's not specified by caller
   820     if (stack_size == 0) {
   821       stack_size = os::Linux::default_stack_size(thr_type);
   823       switch (thr_type) {
   824       case os::java_thread:
   825         // Java threads use ThreadStackSize which default value can be
   826         // changed with the flag -Xss
   827         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   828         stack_size = JavaThread::stack_size_at_create();
   829         break;
   830       case os::compiler_thread:
   831         if (CompilerThreadStackSize > 0) {
   832           stack_size = (size_t)(CompilerThreadStackSize * K);
   833           break;
   834         } // else fall through:
   835           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   836       case os::vm_thread:
   837       case os::pgc_thread:
   838       case os::cgc_thread:
   839       case os::watcher_thread:
   840         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   841         break;
   842       }
   843     }
   845     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   846     pthread_attr_setstacksize(&attr, stack_size);
   847   } else {
   848     // let pthread_create() pick the default value.
   849   }
   851   // glibc guard page
   852   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   854   ThreadState state;
   856   {
   857     // Serialize thread creation if we are running with fixed stack LinuxThreads
   858     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   859     if (lock) {
   860       os::Linux::createThread_lock()->lock_without_safepoint_check();
   861     }
   863     pthread_t tid;
   864     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   866     pthread_attr_destroy(&attr);
   868     if (ret != 0) {
   869       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   870         perror("pthread_create()");
   871       }
   872       // Need to clean up stuff we've allocated so far
   873       thread->set_osthread(NULL);
   874       delete osthread;
   875       if (lock) os::Linux::createThread_lock()->unlock();
   876       return false;
   877     }
   879     // Store pthread info into the OSThread
   880     osthread->set_pthread_id(tid);
   882     // Wait until child thread is either initialized or aborted
   883     {
   884       Monitor* sync_with_child = osthread->startThread_lock();
   885       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   886       while ((state = osthread->get_state()) == ALLOCATED) {
   887         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   888       }
   889     }
   891     if (lock) {
   892       os::Linux::createThread_lock()->unlock();
   893     }
   894   }
   896   // Aborted due to thread limit being reached
   897   if (state == ZOMBIE) {
   898       thread->set_osthread(NULL);
   899       delete osthread;
   900       return false;
   901   }
   903   // The thread is returned suspended (in state INITIALIZED),
   904   // and is started higher up in the call chain
   905   assert(state == INITIALIZED, "race condition");
   906   return true;
   907 }
   909 /////////////////////////////////////////////////////////////////////////////
   910 // attach existing thread
   912 // bootstrap the main thread
   913 bool os::create_main_thread(JavaThread* thread) {
   914   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   915   return create_attached_thread(thread);
   916 }
   918 bool os::create_attached_thread(JavaThread* thread) {
   919 #ifdef ASSERT
   920     thread->verify_not_published();
   921 #endif
   923   // Allocate the OSThread object
   924   OSThread* osthread = new OSThread(NULL, NULL);
   926   if (osthread == NULL) {
   927     return false;
   928   }
   930   // Store pthread info into the OSThread
   931   osthread->set_thread_id(os::Linux::gettid());
   932   osthread->set_pthread_id(::pthread_self());
   934   // initialize floating point control register
   935   os::Linux::init_thread_fpu_state();
   937   // Initial thread state is RUNNABLE
   938   osthread->set_state(RUNNABLE);
   940   thread->set_osthread(osthread);
   942   if (UseNUMA) {
   943     int lgrp_id = os::numa_get_group_id();
   944     if (lgrp_id != -1) {
   945       thread->set_lgrp_id(lgrp_id);
   946     }
   947   }
   949   if (os::Linux::is_initial_thread()) {
   950     // If current thread is initial thread, its stack is mapped on demand,
   951     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   952     // the entire stack region to avoid SEGV in stack banging.
   953     // It is also useful to get around the heap-stack-gap problem on SuSE
   954     // kernel (see 4821821 for details). We first expand stack to the top
   955     // of yellow zone, then enable stack yellow zone (order is significant,
   956     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   957     // is no gap between the last two virtual memory regions.
   959     JavaThread *jt = (JavaThread *)thread;
   960     address addr = jt->stack_yellow_zone_base();
   961     assert(addr != NULL, "initialization problem?");
   962     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
   964     osthread->set_expanding_stack();
   965     os::Linux::manually_expand_stack(jt, addr);
   966     osthread->clear_expanding_stack();
   967   }
   969   // initialize signal mask for this thread
   970   // and save the caller's signal mask
   971   os::Linux::hotspot_sigmask(thread);
   973   return true;
   974 }
   976 void os::pd_start_thread(Thread* thread) {
   977   OSThread * osthread = thread->osthread();
   978   assert(osthread->get_state() != INITIALIZED, "just checking");
   979   Monitor* sync_with_child = osthread->startThread_lock();
   980   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   981   sync_with_child->notify();
   982 }
   984 // Free Linux resources related to the OSThread
   985 void os::free_thread(OSThread* osthread) {
   986   assert(osthread != NULL, "osthread not set");
   988   if (Thread::current()->osthread() == osthread) {
   989     // Restore caller's signal mask
   990     sigset_t sigmask = osthread->caller_sigmask();
   991     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   992    }
   994   delete osthread;
   995 }
   997 //////////////////////////////////////////////////////////////////////////////
   998 // thread local storage
  1000 // Restore the thread pointer if the destructor is called. This is in case
  1001 // someone from JNI code sets up a destructor with pthread_key_create to run
  1002 // detachCurrentThread on thread death. Unless we restore the thread pointer we
  1003 // will hang or crash. When detachCurrentThread is called the key will be set
  1004 // to null and we will not be called again. If detachCurrentThread is never
  1005 // called we could loop forever depending on the pthread implementation.
  1006 static void restore_thread_pointer(void* p) {
  1007   Thread* thread = (Thread*) p;
  1008   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1011 int os::allocate_thread_local_storage() {
  1012   pthread_key_t key;
  1013   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1014   assert(rslt == 0, "cannot allocate thread local storage");
  1015   return (int)key;
  1018 // Note: This is currently not used by VM, as we don't destroy TLS key
  1019 // on VM exit.
  1020 void os::free_thread_local_storage(int index) {
  1021   int rslt = pthread_key_delete((pthread_key_t)index);
  1022   assert(rslt == 0, "invalid index");
  1025 void os::thread_local_storage_at_put(int index, void* value) {
  1026   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1027   assert(rslt == 0, "pthread_setspecific failed");
  1030 extern "C" Thread* get_thread() {
  1031   return ThreadLocalStorage::thread();
  1034 //////////////////////////////////////////////////////////////////////////////
  1035 // initial thread
  1037 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1038 bool os::Linux::is_initial_thread(void) {
  1039   char dummy;
  1040   // If called before init complete, thread stack bottom will be null.
  1041   // Can be called if fatal error occurs before initialization.
  1042   if (initial_thread_stack_bottom() == NULL) return false;
  1043   assert(initial_thread_stack_bottom() != NULL &&
  1044          initial_thread_stack_size()   != 0,
  1045          "os::init did not locate initial thread's stack region");
  1046   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1047       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1048        return true;
  1049   else return false;
  1052 // Find the virtual memory area that contains addr
  1053 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1054   FILE *fp = fopen("/proc/self/maps", "r");
  1055   if (fp) {
  1056     address low, high;
  1057     while (!feof(fp)) {
  1058       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1059         if (low <= addr && addr < high) {
  1060            if (vma_low)  *vma_low  = low;
  1061            if (vma_high) *vma_high = high;
  1062            fclose (fp);
  1063            return true;
  1066       for (;;) {
  1067         int ch = fgetc(fp);
  1068         if (ch == EOF || ch == (int)'\n') break;
  1071     fclose(fp);
  1073   return false;
  1076 // Locate initial thread stack. This special handling of initial thread stack
  1077 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1078 // bogus value for the primordial process thread. While the launcher has created
  1079 // the VM in a new thread since JDK 6, we still have to allow for the use of the
  1080 // JNI invocation API from a primordial thread.
  1081 void os::Linux::capture_initial_stack(size_t max_size) {
  1083   // max_size is either 0 (which means accept OS default for thread stacks) or
  1084   // a user-specified value known to be at least the minimum needed. If we
  1085   // are actually on the primordial thread we can make it appear that we have a
  1086   // smaller max_size stack by inserting the guard pages at that location. But we
  1087   // cannot do anything to emulate a larger stack than what has been provided by
  1088   // the OS or threading library. In fact if we try to use a stack greater than
  1089   // what is set by rlimit then we will crash the hosting process.
  1091   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
  1092   // If this is "unlimited" then it will be a huge value.
  1093   struct rlimit rlim;
  1094   getrlimit(RLIMIT_STACK, &rlim);
  1095   size_t stack_size = rlim.rlim_cur;
  1097   // 6308388: a bug in ld.so will relocate its own .data section to the
  1098   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1099   //   so we won't install guard page on ld.so's data section.
  1100   stack_size -= 2 * page_size();
  1102   // Try to figure out where the stack base (top) is. This is harder.
  1103   //
  1104   // When an application is started, glibc saves the initial stack pointer in
  1105   // a global variable "__libc_stack_end", which is then used by system
  1106   // libraries. __libc_stack_end should be pretty close to stack top. The
  1107   // variable is available since the very early days. However, because it is
  1108   // a private interface, it could disappear in the future.
  1109   //
  1110   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1111   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1112   // stack top. Note that /proc may not exist if VM is running as a chroot
  1113   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1114   // /proc/<pid>/stat could change in the future (though unlikely).
  1115   //
  1116   // We try __libc_stack_end first. If that doesn't work, look for
  1117   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1118   // as a hint, which should work well in most cases.
  1120   uintptr_t stack_start;
  1122   // try __libc_stack_end first
  1123   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1124   if (p && *p) {
  1125     stack_start = *p;
  1126   } else {
  1127     // see if we can get the start_stack field from /proc/self/stat
  1128     FILE *fp;
  1129     int pid;
  1130     char state;
  1131     int ppid;
  1132     int pgrp;
  1133     int session;
  1134     int nr;
  1135     int tpgrp;
  1136     unsigned long flags;
  1137     unsigned long minflt;
  1138     unsigned long cminflt;
  1139     unsigned long majflt;
  1140     unsigned long cmajflt;
  1141     unsigned long utime;
  1142     unsigned long stime;
  1143     long cutime;
  1144     long cstime;
  1145     long prio;
  1146     long nice;
  1147     long junk;
  1148     long it_real;
  1149     uintptr_t start;
  1150     uintptr_t vsize;
  1151     intptr_t rss;
  1152     uintptr_t rsslim;
  1153     uintptr_t scodes;
  1154     uintptr_t ecode;
  1155     int i;
  1157     // Figure what the primordial thread stack base is. Code is inspired
  1158     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1159     // followed by command name surrounded by parentheses, state, etc.
  1160     char stat[2048];
  1161     int statlen;
  1163     fp = fopen("/proc/self/stat", "r");
  1164     if (fp) {
  1165       statlen = fread(stat, 1, 2047, fp);
  1166       stat[statlen] = '\0';
  1167       fclose(fp);
  1169       // Skip pid and the command string. Note that we could be dealing with
  1170       // weird command names, e.g. user could decide to rename java launcher
  1171       // to "java 1.4.2 :)", then the stat file would look like
  1172       //                1234 (java 1.4.2 :)) R ... ...
  1173       // We don't really need to know the command string, just find the last
  1174       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1175       char * s = strrchr(stat, ')');
  1177       i = 0;
  1178       if (s) {
  1179         // Skip blank chars
  1180         do s++; while (isspace(*s));
  1182 #define _UFM UINTX_FORMAT
  1183 #define _DFM INTX_FORMAT
  1185         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1186         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1187         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1188              &state,          /* 3  %c  */
  1189              &ppid,           /* 4  %d  */
  1190              &pgrp,           /* 5  %d  */
  1191              &session,        /* 6  %d  */
  1192              &nr,             /* 7  %d  */
  1193              &tpgrp,          /* 8  %d  */
  1194              &flags,          /* 9  %lu  */
  1195              &minflt,         /* 10 %lu  */
  1196              &cminflt,        /* 11 %lu  */
  1197              &majflt,         /* 12 %lu  */
  1198              &cmajflt,        /* 13 %lu  */
  1199              &utime,          /* 14 %lu  */
  1200              &stime,          /* 15 %lu  */
  1201              &cutime,         /* 16 %ld  */
  1202              &cstime,         /* 17 %ld  */
  1203              &prio,           /* 18 %ld  */
  1204              &nice,           /* 19 %ld  */
  1205              &junk,           /* 20 %ld  */
  1206              &it_real,        /* 21 %ld  */
  1207              &start,          /* 22 UINTX_FORMAT */
  1208              &vsize,          /* 23 UINTX_FORMAT */
  1209              &rss,            /* 24 INTX_FORMAT  */
  1210              &rsslim,         /* 25 UINTX_FORMAT */
  1211              &scodes,         /* 26 UINTX_FORMAT */
  1212              &ecode,          /* 27 UINTX_FORMAT */
  1213              &stack_start);   /* 28 UINTX_FORMAT */
  1216 #undef _UFM
  1217 #undef _DFM
  1219       if (i != 28 - 2) {
  1220          assert(false, "Bad conversion from /proc/self/stat");
  1221          // product mode - assume we are the initial thread, good luck in the
  1222          // embedded case.
  1223          warning("Can't detect initial thread stack location - bad conversion");
  1224          stack_start = (uintptr_t) &rlim;
  1226     } else {
  1227       // For some reason we can't open /proc/self/stat (for example, running on
  1228       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1229       // most cases, so don't abort:
  1230       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1231       stack_start = (uintptr_t) &rlim;
  1235   // Now we have a pointer (stack_start) very close to the stack top, the
  1236   // next thing to do is to figure out the exact location of stack top. We
  1237   // can find out the virtual memory area that contains stack_start by
  1238   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1239   // and its upper limit is the real stack top. (again, this would fail if
  1240   // running inside chroot, because /proc may not exist.)
  1242   uintptr_t stack_top;
  1243   address low, high;
  1244   if (find_vma((address)stack_start, &low, &high)) {
  1245     // success, "high" is the true stack top. (ignore "low", because initial
  1246     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1247     stack_top = (uintptr_t)high;
  1248   } else {
  1249     // failed, likely because /proc/self/maps does not exist
  1250     warning("Can't detect initial thread stack location - find_vma failed");
  1251     // best effort: stack_start is normally within a few pages below the real
  1252     // stack top, use it as stack top, and reduce stack size so we won't put
  1253     // guard page outside stack.
  1254     stack_top = stack_start;
  1255     stack_size -= 16 * page_size();
  1258   // stack_top could be partially down the page so align it
  1259   stack_top = align_size_up(stack_top, page_size());
  1261   // Allowed stack value is minimum of max_size and what we derived from rlimit
  1262   if (max_size > 0) {
  1263     _initial_thread_stack_size = MIN2(max_size, stack_size);
  1264   } else {
  1265     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
  1266     // clamp it at 8MB as we do on Solaris
  1267     _initial_thread_stack_size = MIN2(stack_size, 8*M);
  1270   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1271   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1272   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
  1275 ////////////////////////////////////////////////////////////////////////////////
  1276 // time support
  1278 // Time since start-up in seconds to a fine granularity.
  1279 // Used by VMSelfDestructTimer and the MemProfiler.
  1280 double os::elapsedTime() {
  1282   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1285 jlong os::elapsed_counter() {
  1286   return javaTimeNanos() - initial_time_count;
  1289 jlong os::elapsed_frequency() {
  1290   return NANOSECS_PER_SEC; // nanosecond resolution
  1293 bool os::supports_vtime() { return true; }
  1294 bool os::enable_vtime()   { return false; }
  1295 bool os::vtime_enabled()  { return false; }
  1297 double os::elapsedVTime() {
  1298   struct rusage usage;
  1299   int retval = getrusage(RUSAGE_THREAD, &usage);
  1300   if (retval == 0) {
  1301     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1302   } else {
  1303     // better than nothing, but not much
  1304     return elapsedTime();
  1308 jlong os::javaTimeMillis() {
  1309   timeval time;
  1310   int status = gettimeofday(&time, NULL);
  1311   assert(status != -1, "linux error");
  1312   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1315 #ifndef CLOCK_MONOTONIC
  1316 #define CLOCK_MONOTONIC (1)
  1317 #endif
  1319 void os::Linux::clock_init() {
  1320   // we do dlopen's in this particular order due to bug in linux
  1321   // dynamical loader (see 6348968) leading to crash on exit
  1322   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1323   if (handle == NULL) {
  1324     handle = dlopen("librt.so", RTLD_LAZY);
  1327   if (handle) {
  1328     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1329            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1330     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1331            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1332     if (clock_getres_func && clock_gettime_func) {
  1333       // See if monotonic clock is supported by the kernel. Note that some
  1334       // early implementations simply return kernel jiffies (updated every
  1335       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1336       // for nano time (though the monotonic property is still nice to have).
  1337       // It's fixed in newer kernels, however clock_getres() still returns
  1338       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1339       // resolution for now. Hopefully as people move to new kernels, this
  1340       // won't be a problem.
  1341       struct timespec res;
  1342       struct timespec tp;
  1343       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1344           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1345         // yes, monotonic clock is supported
  1346         _clock_gettime = clock_gettime_func;
  1347         return;
  1348       } else {
  1349         // close librt if there is no monotonic clock
  1350         dlclose(handle);
  1354   warning("No monotonic clock was available - timed services may " \
  1355           "be adversely affected if the time-of-day clock changes");
  1358 #ifndef SYS_clock_getres
  1360 #if defined(IA32) || defined(AMD64)
  1361 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1362 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1363 #else
  1364 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1365 #define sys_clock_getres(x,y)  -1
  1366 #endif
  1368 #else
  1369 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1370 #endif
  1372 void os::Linux::fast_thread_clock_init() {
  1373   if (!UseLinuxPosixThreadCPUClocks) {
  1374     return;
  1376   clockid_t clockid;
  1377   struct timespec tp;
  1378   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1379       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1381   // Switch to using fast clocks for thread cpu time if
  1382   // the sys_clock_getres() returns 0 error code.
  1383   // Note, that some kernels may support the current thread
  1384   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1385   // returned by the pthread_getcpuclockid().
  1386   // If the fast Posix clocks are supported then the sys_clock_getres()
  1387   // must return at least tp.tv_sec == 0 which means a resolution
  1388   // better than 1 sec. This is extra check for reliability.
  1390   if(pthread_getcpuclockid_func &&
  1391      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1392      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1394     _supports_fast_thread_cpu_time = true;
  1395     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1399 jlong os::javaTimeNanos() {
  1400   if (Linux::supports_monotonic_clock()) {
  1401     struct timespec tp;
  1402     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1403     assert(status == 0, "gettime error");
  1404     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1405     return result;
  1406   } else {
  1407     timeval time;
  1408     int status = gettimeofday(&time, NULL);
  1409     assert(status != -1, "linux error");
  1410     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1411     return 1000 * usecs;
  1415 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1416   if (Linux::supports_monotonic_clock()) {
  1417     info_ptr->max_value = ALL_64_BITS;
  1419     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1420     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1421     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1422   } else {
  1423     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1424     info_ptr->max_value = ALL_64_BITS;
  1426     // gettimeofday is a real time clock so it skips
  1427     info_ptr->may_skip_backward = true;
  1428     info_ptr->may_skip_forward = true;
  1431   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1434 // Return the real, user, and system times in seconds from an
  1435 // arbitrary fixed point in the past.
  1436 bool os::getTimesSecs(double* process_real_time,
  1437                       double* process_user_time,
  1438                       double* process_system_time) {
  1439   struct tms ticks;
  1440   clock_t real_ticks = times(&ticks);
  1442   if (real_ticks == (clock_t) (-1)) {
  1443     return false;
  1444   } else {
  1445     double ticks_per_second = (double) clock_tics_per_sec;
  1446     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1447     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1448     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1450     return true;
  1455 char * os::local_time_string(char *buf, size_t buflen) {
  1456   struct tm t;
  1457   time_t long_time;
  1458   time(&long_time);
  1459   localtime_r(&long_time, &t);
  1460   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1461                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1462                t.tm_hour, t.tm_min, t.tm_sec);
  1463   return buf;
  1466 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1467   return localtime_r(clock, res);
  1470 ////////////////////////////////////////////////////////////////////////////////
  1471 // runtime exit support
  1473 // Note: os::shutdown() might be called very early during initialization, or
  1474 // called from signal handler. Before adding something to os::shutdown(), make
  1475 // sure it is async-safe and can handle partially initialized VM.
  1476 void os::shutdown() {
  1478   // allow PerfMemory to attempt cleanup of any persistent resources
  1479   perfMemory_exit();
  1481   // needs to remove object in file system
  1482   AttachListener::abort();
  1484   // flush buffered output, finish log files
  1485   ostream_abort();
  1487   // Check for abort hook
  1488   abort_hook_t abort_hook = Arguments::abort_hook();
  1489   if (abort_hook != NULL) {
  1490     abort_hook();
  1495 // Note: os::abort() might be called very early during initialization, or
  1496 // called from signal handler. Before adding something to os::abort(), make
  1497 // sure it is async-safe and can handle partially initialized VM.
  1498 void os::abort(bool dump_core) {
  1499   os::shutdown();
  1500   if (dump_core) {
  1501 #ifndef PRODUCT
  1502     fdStream out(defaultStream::output_fd());
  1503     out.print_raw("Current thread is ");
  1504     char buf[16];
  1505     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1506     out.print_raw_cr(buf);
  1507     out.print_raw_cr("Dumping core ...");
  1508 #endif
  1509     ::abort(); // dump core
  1512   ::exit(1);
  1515 // Die immediately, no exit hook, no abort hook, no cleanup.
  1516 void os::die() {
  1517   // _exit() on LinuxThreads only kills current thread
  1518   ::abort();
  1522 // This method is a copy of JDK's sysGetLastErrorString
  1523 // from src/solaris/hpi/src/system_md.c
  1525 size_t os::lasterror(char *buf, size_t len) {
  1527   if (errno == 0)  return 0;
  1529   const char *s = ::strerror(errno);
  1530   size_t n = ::strlen(s);
  1531   if (n >= len) {
  1532     n = len - 1;
  1534   ::strncpy(buf, s, n);
  1535   buf[n] = '\0';
  1536   return n;
  1539 intx os::current_thread_id() { return (intx)pthread_self(); }
  1540 int os::current_process_id() {
  1542   // Under the old linux thread library, linux gives each thread
  1543   // its own process id. Because of this each thread will return
  1544   // a different pid if this method were to return the result
  1545   // of getpid(2). Linux provides no api that returns the pid
  1546   // of the launcher thread for the vm. This implementation
  1547   // returns a unique pid, the pid of the launcher thread
  1548   // that starts the vm 'process'.
  1550   // Under the NPTL, getpid() returns the same pid as the
  1551   // launcher thread rather than a unique pid per thread.
  1552   // Use gettid() if you want the old pre NPTL behaviour.
  1554   // if you are looking for the result of a call to getpid() that
  1555   // returns a unique pid for the calling thread, then look at the
  1556   // OSThread::thread_id() method in osThread_linux.hpp file
  1558   return (int)(_initial_pid ? _initial_pid : getpid());
  1561 // DLL functions
  1563 const char* os::dll_file_extension() { return ".so"; }
  1565 // This must be hard coded because it's the system's temporary
  1566 // directory not the java application's temp directory, ala java.io.tmpdir.
  1567 const char* os::get_temp_directory() { return "/tmp"; }
  1569 static bool file_exists(const char* filename) {
  1570   struct stat statbuf;
  1571   if (filename == NULL || strlen(filename) == 0) {
  1572     return false;
  1574   return os::stat(filename, &statbuf) == 0;
  1577 bool os::dll_build_name(char* buffer, size_t buflen,
  1578                         const char* pname, const char* fname) {
  1579   bool retval = false;
  1580   // Copied from libhpi
  1581   const size_t pnamelen = pname ? strlen(pname) : 0;
  1583   // Return error on buffer overflow.
  1584   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1585     return retval;
  1588   if (pnamelen == 0) {
  1589     snprintf(buffer, buflen, "lib%s.so", fname);
  1590     retval = true;
  1591   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1592     int n;
  1593     char** pelements = split_path(pname, &n);
  1594     if (pelements == NULL) {
  1595       return false;
  1597     for (int i = 0 ; i < n ; i++) {
  1598       // Really shouldn't be NULL, but check can't hurt
  1599       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1600         continue; // skip the empty path values
  1602       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1603       if (file_exists(buffer)) {
  1604         retval = true;
  1605         break;
  1608     // release the storage
  1609     for (int i = 0 ; i < n ; i++) {
  1610       if (pelements[i] != NULL) {
  1611         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1614     if (pelements != NULL) {
  1615       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1617   } else {
  1618     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1619     retval = true;
  1621   return retval;
  1624 // check if addr is inside libjvm.so
  1625 bool os::address_is_in_vm(address addr) {
  1626   static address libjvm_base_addr;
  1627   Dl_info dlinfo;
  1629   if (libjvm_base_addr == NULL) {
  1630     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1631       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1633     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1636   if (dladdr((void *)addr, &dlinfo) != 0) {
  1637     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1640   return false;
  1643 bool os::dll_address_to_function_name(address addr, char *buf,
  1644                                       int buflen, int *offset) {
  1645   // buf is not optional, but offset is optional
  1646   assert(buf != NULL, "sanity check");
  1648   Dl_info dlinfo;
  1650   if (dladdr((void*)addr, &dlinfo) != 0) {
  1651     // see if we have a matching symbol
  1652     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1653       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1654         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1656       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1657       return true;
  1659     // no matching symbol so try for just file info
  1660     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1661       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1662                           buf, buflen, offset, dlinfo.dli_fname)) {
  1663         return true;
  1668   buf[0] = '\0';
  1669   if (offset != NULL) *offset = -1;
  1670   return false;
  1673 struct _address_to_library_name {
  1674   address addr;          // input : memory address
  1675   size_t  buflen;        //         size of fname
  1676   char*   fname;         // output: library name
  1677   address base;          //         library base addr
  1678 };
  1680 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1681                                             size_t size, void *data) {
  1682   int i;
  1683   bool found = false;
  1684   address libbase = NULL;
  1685   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1687   // iterate through all loadable segments
  1688   for (i = 0; i < info->dlpi_phnum; i++) {
  1689     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1690     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1691       // base address of a library is the lowest address of its loaded
  1692       // segments.
  1693       if (libbase == NULL || libbase > segbase) {
  1694         libbase = segbase;
  1696       // see if 'addr' is within current segment
  1697       if (segbase <= d->addr &&
  1698           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1699         found = true;
  1704   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1705   // so dll_address_to_library_name() can fall through to use dladdr() which
  1706   // can figure out executable name from argv[0].
  1707   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1708     d->base = libbase;
  1709     if (d->fname) {
  1710       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1712     return 1;
  1714   return 0;
  1717 bool os::dll_address_to_library_name(address addr, char* buf,
  1718                                      int buflen, int* offset) {
  1719   // buf is not optional, but offset is optional
  1720   assert(buf != NULL, "sanity check");
  1722   Dl_info dlinfo;
  1723   struct _address_to_library_name data;
  1725   // There is a bug in old glibc dladdr() implementation that it could resolve
  1726   // to wrong library name if the .so file has a base address != NULL. Here
  1727   // we iterate through the program headers of all loaded libraries to find
  1728   // out which library 'addr' really belongs to. This workaround can be
  1729   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1730   data.addr = addr;
  1731   data.fname = buf;
  1732   data.buflen = buflen;
  1733   data.base = NULL;
  1734   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1736   if (rslt) {
  1737      // buf already contains library name
  1738      if (offset) *offset = addr - data.base;
  1739      return true;
  1741   if (dladdr((void*)addr, &dlinfo) != 0) {
  1742     if (dlinfo.dli_fname != NULL) {
  1743       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1745     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1746       *offset = addr - (address)dlinfo.dli_fbase;
  1748     return true;
  1751   buf[0] = '\0';
  1752   if (offset) *offset = -1;
  1753   return false;
  1756   // Loads .dll/.so and
  1757   // in case of error it checks if .dll/.so was built for the
  1758   // same architecture as Hotspot is running on
  1761 // Remember the stack's state. The Linux dynamic linker will change
  1762 // the stack to 'executable' at most once, so we must safepoint only once.
  1763 bool os::Linux::_stack_is_executable = false;
  1765 // VM operation that loads a library.  This is necessary if stack protection
  1766 // of the Java stacks can be lost during loading the library.  If we
  1767 // do not stop the Java threads, they can stack overflow before the stacks
  1768 // are protected again.
  1769 class VM_LinuxDllLoad: public VM_Operation {
  1770  private:
  1771   const char *_filename;
  1772   char *_ebuf;
  1773   int _ebuflen;
  1774   void *_lib;
  1775  public:
  1776   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1777     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1778   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1779   void doit() {
  1780     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1781     os::Linux::_stack_is_executable = true;
  1783   void* loaded_library() { return _lib; }
  1784 };
  1786 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1788   void * result = NULL;
  1789   bool load_attempted = false;
  1791   // Check whether the library to load might change execution rights
  1792   // of the stack. If they are changed, the protection of the stack
  1793   // guard pages will be lost. We need a safepoint to fix this.
  1794   //
  1795   // See Linux man page execstack(8) for more info.
  1796   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1797     ElfFile ef(filename);
  1798     if (!ef.specifies_noexecstack()) {
  1799       if (!is_init_completed()) {
  1800         os::Linux::_stack_is_executable = true;
  1801         // This is OK - No Java threads have been created yet, and hence no
  1802         // stack guard pages to fix.
  1803         //
  1804         // This should happen only when you are building JDK7 using a very
  1805         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1806         //
  1807         // Dynamic loader will make all stacks executable after
  1808         // this function returns, and will not do that again.
  1809         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1810       } else {
  1811         warning("You have loaded library %s which might have disabled stack guard. "
  1812                 "The VM will try to fix the stack guard now.\n"
  1813                 "It's highly recommended that you fix the library with "
  1814                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1815                 filename);
  1817         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1818         JavaThread *jt = JavaThread::current();
  1819         if (jt->thread_state() != _thread_in_native) {
  1820           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1821           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1822           warning("Unable to fix stack guard. Giving up.");
  1823         } else {
  1824           if (!LoadExecStackDllInVMThread) {
  1825             // This is for the case where the DLL has an static
  1826             // constructor function that executes JNI code. We cannot
  1827             // load such DLLs in the VMThread.
  1828             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1831           ThreadInVMfromNative tiv(jt);
  1832           debug_only(VMNativeEntryWrapper vew;)
  1834           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1835           VMThread::execute(&op);
  1836           if (LoadExecStackDllInVMThread) {
  1837             result = op.loaded_library();
  1839           load_attempted = true;
  1845   if (!load_attempted) {
  1846     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1849   if (result != NULL) {
  1850     // Successful loading
  1851     return result;
  1854   Elf32_Ehdr elf_head;
  1855   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1856   char* diag_msg_buf=ebuf+strlen(ebuf);
  1858   if (diag_msg_max_length==0) {
  1859     // No more space in ebuf for additional diagnostics message
  1860     return NULL;
  1864   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1866   if (file_descriptor < 0) {
  1867     // Can't open library, report dlerror() message
  1868     return NULL;
  1871   bool failed_to_read_elf_head=
  1872     (sizeof(elf_head)!=
  1873         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1875   ::close(file_descriptor);
  1876   if (failed_to_read_elf_head) {
  1877     // file i/o error - report dlerror() msg
  1878     return NULL;
  1881   typedef struct {
  1882     Elf32_Half  code;         // Actual value as defined in elf.h
  1883     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1884     char        elf_class;    // 32 or 64 bit
  1885     char        endianess;    // MSB or LSB
  1886     char*       name;         // String representation
  1887   } arch_t;
  1889   #ifndef EM_486
  1890   #define EM_486          6               /* Intel 80486 */
  1891   #endif
  1893   static const arch_t arch_array[]={
  1894     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1895     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1896     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1897     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1898     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1899     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1900     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1901     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1902 #if defined(VM_LITTLE_ENDIAN)
  1903     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
  1904 #else
  1905     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1906 #endif
  1907     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1908     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1909     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1910     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1911     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1912     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1913     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1914   };
  1916   #if  (defined IA32)
  1917     static  Elf32_Half running_arch_code=EM_386;
  1918   #elif   (defined AMD64)
  1919     static  Elf32_Half running_arch_code=EM_X86_64;
  1920   #elif  (defined IA64)
  1921     static  Elf32_Half running_arch_code=EM_IA_64;
  1922   #elif  (defined __sparc) && (defined _LP64)
  1923     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1924   #elif  (defined __sparc) && (!defined _LP64)
  1925     static  Elf32_Half running_arch_code=EM_SPARC;
  1926   #elif  (defined __powerpc64__)
  1927     static  Elf32_Half running_arch_code=EM_PPC64;
  1928   #elif  (defined __powerpc__)
  1929     static  Elf32_Half running_arch_code=EM_PPC;
  1930   #elif  (defined ARM)
  1931     static  Elf32_Half running_arch_code=EM_ARM;
  1932   #elif  (defined S390)
  1933     static  Elf32_Half running_arch_code=EM_S390;
  1934   #elif  (defined ALPHA)
  1935     static  Elf32_Half running_arch_code=EM_ALPHA;
  1936   #elif  (defined MIPSEL)
  1937     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1938   #elif  (defined PARISC)
  1939     static  Elf32_Half running_arch_code=EM_PARISC;
  1940   #elif  (defined MIPS)
  1941     static  Elf32_Half running_arch_code=EM_MIPS;
  1942   #elif  (defined M68K)
  1943     static  Elf32_Half running_arch_code=EM_68K;
  1944   #else
  1945     #error Method os::dll_load requires that one of following is defined:\
  1946          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1947   #endif
  1949   // Identify compatability class for VM's architecture and library's architecture
  1950   // Obtain string descriptions for architectures
  1952   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1953   int running_arch_index=-1;
  1955   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1956     if (running_arch_code == arch_array[i].code) {
  1957       running_arch_index    = i;
  1959     if (lib_arch.code == arch_array[i].code) {
  1960       lib_arch.compat_class = arch_array[i].compat_class;
  1961       lib_arch.name         = arch_array[i].name;
  1965   assert(running_arch_index != -1,
  1966     "Didn't find running architecture code (running_arch_code) in arch_array");
  1967   if (running_arch_index == -1) {
  1968     // Even though running architecture detection failed
  1969     // we may still continue with reporting dlerror() message
  1970     return NULL;
  1973   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1974     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1975     return NULL;
  1978 #ifndef S390
  1979   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1980     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1981     return NULL;
  1983 #endif // !S390
  1985   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1986     if ( lib_arch.name!=NULL ) {
  1987       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1988         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1989         lib_arch.name, arch_array[running_arch_index].name);
  1990     } else {
  1991       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1992       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1993         lib_arch.code,
  1994         arch_array[running_arch_index].name);
  1998   return NULL;
  2001 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2002   void * result = ::dlopen(filename, RTLD_LAZY);
  2003   if (result == NULL) {
  2004     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2005     ebuf[ebuflen-1] = '\0';
  2007   return result;
  2010 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2011   void * result = NULL;
  2012   if (LoadExecStackDllInVMThread) {
  2013     result = dlopen_helper(filename, ebuf, ebuflen);
  2016   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2017   // library that requires an executable stack, or which does not have this
  2018   // stack attribute set, dlopen changes the stack attribute to executable. The
  2019   // read protection of the guard pages gets lost.
  2020   //
  2021   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2022   // may have been queued at the same time.
  2024   if (!_stack_is_executable) {
  2025     JavaThread *jt = Threads::first();
  2027     while (jt) {
  2028       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2029           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2030         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2031                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2032           warning("Attempt to reguard stack yellow zone failed.");
  2035       jt = jt->next();
  2039   return result;
  2042 /*
  2043  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2044  * chances are you might want to run the generated bits against glibc-2.0
  2045  * libdl.so, so always use locking for any version of glibc.
  2046  */
  2047 void* os::dll_lookup(void* handle, const char* name) {
  2048   pthread_mutex_lock(&dl_mutex);
  2049   void* res = dlsym(handle, name);
  2050   pthread_mutex_unlock(&dl_mutex);
  2051   return res;
  2054 void* os::get_default_process_handle() {
  2055   return (void*)::dlopen(NULL, RTLD_LAZY);
  2058 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2059   int fd = ::open(filename, O_RDONLY);
  2060   if (fd == -1) {
  2061      return false;
  2064   char buf[32];
  2065   int bytes;
  2066   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2067     st->print_raw(buf, bytes);
  2070   ::close(fd);
  2072   return true;
  2075 void os::print_dll_info(outputStream *st) {
  2076    st->print_cr("Dynamic libraries:");
  2078    char fname[32];
  2079    pid_t pid = os::Linux::gettid();
  2081    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2083    if (!_print_ascii_file(fname, st)) {
  2084      st->print("Can not get library information for pid = %d\n", pid);
  2088 void os::print_os_info_brief(outputStream* st) {
  2089   os::Linux::print_distro_info(st);
  2091   os::Posix::print_uname_info(st);
  2093   os::Linux::print_libversion_info(st);
  2097 void os::print_os_info(outputStream* st) {
  2098   st->print("OS:");
  2100   os::Linux::print_distro_info(st);
  2102   os::Posix::print_uname_info(st);
  2104   // Print warning if unsafe chroot environment detected
  2105   if (unsafe_chroot_detected) {
  2106     st->print("WARNING!! ");
  2107     st->print_cr("%s", unstable_chroot_error);
  2110   os::Linux::print_libversion_info(st);
  2112   os::Posix::print_rlimit_info(st);
  2114   os::Posix::print_load_average(st);
  2116   os::Linux::print_full_memory_info(st);
  2119 // Try to identify popular distros.
  2120 // Most Linux distributions have a /etc/XXX-release file, which contains
  2121 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2122 // file that also contains the OS version string. Some have more than one
  2123 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2124 // /etc/redhat-release.), so the order is important.
  2125 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2126 // their own specific XXX-release file as well as a redhat-release file.
  2127 // Because of this the XXX-release file needs to be searched for before the
  2128 // redhat-release file.
  2129 // Since Red Hat has a lsb-release file that is not very descriptive the
  2130 // search for redhat-release needs to be before lsb-release.
  2131 // Since the lsb-release file is the new standard it needs to be searched
  2132 // before the older style release files.
  2133 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2134 // next to last resort.  The os-release file is a new standard that contains
  2135 // distribution information and the system-release file seems to be an old
  2136 // standard that has been replaced by the lsb-release and os-release files.
  2137 // Searching for the debian_version file is the last resort.  It contains
  2138 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2139 // "Debian " is printed before the contents of the debian_version file.
  2140 void os::Linux::print_distro_info(outputStream* st) {
  2141    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2142        !_print_ascii_file("/etc/mandriva-release", st) &&
  2143        !_print_ascii_file("/etc/mandrake-release", st) &&
  2144        !_print_ascii_file("/etc/sun-release", st) &&
  2145        !_print_ascii_file("/etc/redhat-release", st) &&
  2146        !_print_ascii_file("/etc/lsb-release", st) &&
  2147        !_print_ascii_file("/etc/SuSE-release", st) &&
  2148        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2149        !_print_ascii_file("/etc/gentoo-release", st) &&
  2150        !_print_ascii_file("/etc/ltib-release", st) &&
  2151        !_print_ascii_file("/etc/angstrom-version", st) &&
  2152        !_print_ascii_file("/etc/system-release", st) &&
  2153        !_print_ascii_file("/etc/os-release", st)) {
  2155        if (file_exists("/etc/debian_version")) {
  2156          st->print("Debian ");
  2157          _print_ascii_file("/etc/debian_version", st);
  2158        } else {
  2159          st->print("Linux");
  2162    st->cr();
  2165 void os::Linux::print_libversion_info(outputStream* st) {
  2166   // libc, pthread
  2167   st->print("libc:");
  2168   st->print("%s ", os::Linux::glibc_version());
  2169   st->print("%s ", os::Linux::libpthread_version());
  2170   if (os::Linux::is_LinuxThreads()) {
  2171      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2173   st->cr();
  2176 void os::Linux::print_full_memory_info(outputStream* st) {
  2177    st->print("\n/proc/meminfo:\n");
  2178    _print_ascii_file("/proc/meminfo", st);
  2179    st->cr();
  2182 void os::print_memory_info(outputStream* st) {
  2184   st->print("Memory:");
  2185   st->print(" %dk page", os::vm_page_size()>>10);
  2187   // values in struct sysinfo are "unsigned long"
  2188   struct sysinfo si;
  2189   sysinfo(&si);
  2191   st->print(", physical " UINT64_FORMAT "k",
  2192             os::physical_memory() >> 10);
  2193   st->print("(" UINT64_FORMAT "k free)",
  2194             os::available_memory() >> 10);
  2195   st->print(", swap " UINT64_FORMAT "k",
  2196             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2197   st->print("(" UINT64_FORMAT "k free)",
  2198             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2199   st->cr();
  2202 void os::pd_print_cpu_info(outputStream* st) {
  2203   st->print("\n/proc/cpuinfo:\n");
  2204   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2205     st->print("  <Not Available>");
  2207   st->cr();
  2210 void os::print_siginfo(outputStream* st, void* siginfo) {
  2211   const siginfo_t* si = (const siginfo_t*)siginfo;
  2213   os::Posix::print_siginfo_brief(st, si);
  2214 #if INCLUDE_CDS
  2215   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2216       UseSharedSpaces) {
  2217     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2218     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2219       st->print("\n\nError accessing class data sharing archive."   \
  2220                 " Mapped file inaccessible during execution, "      \
  2221                 " possible disk/network problem.");
  2224 #endif
  2225   st->cr();
  2229 static void print_signal_handler(outputStream* st, int sig,
  2230                                  char* buf, size_t buflen);
  2232 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2233   st->print_cr("Signal Handlers:");
  2234   print_signal_handler(st, SIGSEGV, buf, buflen);
  2235   print_signal_handler(st, SIGBUS , buf, buflen);
  2236   print_signal_handler(st, SIGFPE , buf, buflen);
  2237   print_signal_handler(st, SIGPIPE, buf, buflen);
  2238   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2239   print_signal_handler(st, SIGILL , buf, buflen);
  2240   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2241   print_signal_handler(st, SR_signum, buf, buflen);
  2242   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2243   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2244   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2245   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2246 #if defined(PPC64)
  2247   print_signal_handler(st, SIGTRAP, buf, buflen);
  2248 #endif
  2251 static char saved_jvm_path[MAXPATHLEN] = {0};
  2253 // Find the full path to the current module, libjvm.so
  2254 void os::jvm_path(char *buf, jint buflen) {
  2255   // Error checking.
  2256   if (buflen < MAXPATHLEN) {
  2257     assert(false, "must use a large-enough buffer");
  2258     buf[0] = '\0';
  2259     return;
  2261   // Lazy resolve the path to current module.
  2262   if (saved_jvm_path[0] != 0) {
  2263     strcpy(buf, saved_jvm_path);
  2264     return;
  2267   char dli_fname[MAXPATHLEN];
  2268   bool ret = dll_address_to_library_name(
  2269                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2270                 dli_fname, sizeof(dli_fname), NULL);
  2271   assert(ret, "cannot locate libjvm");
  2272   char *rp = NULL;
  2273   if (ret && dli_fname[0] != '\0') {
  2274     rp = realpath(dli_fname, buf);
  2276   if (rp == NULL)
  2277     return;
  2279   if (Arguments::created_by_gamma_launcher()) {
  2280     // Support for the gamma launcher.  Typical value for buf is
  2281     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2282     // the right place in the string, then assume we are installed in a JDK and
  2283     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2284     // up the path so it looks like libjvm.so is installed there (append a
  2285     // fake suffix hotspot/libjvm.so).
  2286     const char *p = buf + strlen(buf) - 1;
  2287     for (int count = 0; p > buf && count < 5; ++count) {
  2288       for (--p; p > buf && *p != '/'; --p)
  2289         /* empty */ ;
  2292     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2293       // Look for JAVA_HOME in the environment.
  2294       char* java_home_var = ::getenv("JAVA_HOME");
  2295       if (java_home_var != NULL && java_home_var[0] != 0) {
  2296         char* jrelib_p;
  2297         int len;
  2299         // Check the current module name "libjvm.so".
  2300         p = strrchr(buf, '/');
  2301         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2303         rp = realpath(java_home_var, buf);
  2304         if (rp == NULL)
  2305           return;
  2307         // determine if this is a legacy image or modules image
  2308         // modules image doesn't have "jre" subdirectory
  2309         len = strlen(buf);
  2310         assert(len < buflen, "Ran out of buffer room");
  2311         jrelib_p = buf + len;
  2312         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2313         if (0 != access(buf, F_OK)) {
  2314           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2317         if (0 == access(buf, F_OK)) {
  2318           // Use current module name "libjvm.so"
  2319           len = strlen(buf);
  2320           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2321         } else {
  2322           // Go back to path of .so
  2323           rp = realpath(dli_fname, buf);
  2324           if (rp == NULL)
  2325             return;
  2331   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2334 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2335   // no prefix required, not even "_"
  2338 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2339   // no suffix required
  2342 ////////////////////////////////////////////////////////////////////////////////
  2343 // sun.misc.Signal support
  2345 static volatile jint sigint_count = 0;
  2347 static void
  2348 UserHandler(int sig, void *siginfo, void *context) {
  2349   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2350   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2351   // don't want to flood the manager thread with sem_post requests.
  2352   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2353       return;
  2355   // Ctrl-C is pressed during error reporting, likely because the error
  2356   // handler fails to abort. Let VM die immediately.
  2357   if (sig == SIGINT && is_error_reported()) {
  2358      os::die();
  2361   os::signal_notify(sig);
  2364 void* os::user_handler() {
  2365   return CAST_FROM_FN_PTR(void*, UserHandler);
  2368 class Semaphore : public StackObj {
  2369   public:
  2370     Semaphore();
  2371     ~Semaphore();
  2372     void signal();
  2373     void wait();
  2374     bool trywait();
  2375     bool timedwait(unsigned int sec, int nsec);
  2376   private:
  2377     sem_t _semaphore;
  2378 };
  2380 Semaphore::Semaphore() {
  2381   sem_init(&_semaphore, 0, 0);
  2384 Semaphore::~Semaphore() {
  2385   sem_destroy(&_semaphore);
  2388 void Semaphore::signal() {
  2389   sem_post(&_semaphore);
  2392 void Semaphore::wait() {
  2393   sem_wait(&_semaphore);
  2396 bool Semaphore::trywait() {
  2397   return sem_trywait(&_semaphore) == 0;
  2400 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2402   struct timespec ts;
  2403   // Semaphore's are always associated with CLOCK_REALTIME
  2404   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2405   // see unpackTime for discussion on overflow checking
  2406   if (sec >= MAX_SECS) {
  2407     ts.tv_sec += MAX_SECS;
  2408     ts.tv_nsec = 0;
  2409   } else {
  2410     ts.tv_sec += sec;
  2411     ts.tv_nsec += nsec;
  2412     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2413       ts.tv_nsec -= NANOSECS_PER_SEC;
  2414       ++ts.tv_sec; // note: this must be <= max_secs
  2418   while (1) {
  2419     int result = sem_timedwait(&_semaphore, &ts);
  2420     if (result == 0) {
  2421       return true;
  2422     } else if (errno == EINTR) {
  2423       continue;
  2424     } else if (errno == ETIMEDOUT) {
  2425       return false;
  2426     } else {
  2427       return false;
  2432 extern "C" {
  2433   typedef void (*sa_handler_t)(int);
  2434   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2437 void* os::signal(int signal_number, void* handler) {
  2438   struct sigaction sigAct, oldSigAct;
  2440   sigfillset(&(sigAct.sa_mask));
  2441   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2442   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2444   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2445     // -1 means registration failed
  2446     return (void *)-1;
  2449   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2452 void os::signal_raise(int signal_number) {
  2453   ::raise(signal_number);
  2456 /*
  2457  * The following code is moved from os.cpp for making this
  2458  * code platform specific, which it is by its very nature.
  2459  */
  2461 // Will be modified when max signal is changed to be dynamic
  2462 int os::sigexitnum_pd() {
  2463   return NSIG;
  2466 // a counter for each possible signal value
  2467 static volatile jint pending_signals[NSIG+1] = { 0 };
  2469 // Linux(POSIX) specific hand shaking semaphore.
  2470 static sem_t sig_sem;
  2471 static Semaphore sr_semaphore;
  2473 void os::signal_init_pd() {
  2474   // Initialize signal structures
  2475   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2477   // Initialize signal semaphore
  2478   ::sem_init(&sig_sem, 0, 0);
  2481 void os::signal_notify(int sig) {
  2482   Atomic::inc(&pending_signals[sig]);
  2483   ::sem_post(&sig_sem);
  2486 static int check_pending_signals(bool wait) {
  2487   Atomic::store(0, &sigint_count);
  2488   for (;;) {
  2489     for (int i = 0; i < NSIG + 1; i++) {
  2490       jint n = pending_signals[i];
  2491       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2492         return i;
  2495     if (!wait) {
  2496       return -1;
  2498     JavaThread *thread = JavaThread::current();
  2499     ThreadBlockInVM tbivm(thread);
  2501     bool threadIsSuspended;
  2502     do {
  2503       thread->set_suspend_equivalent();
  2504       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2505       ::sem_wait(&sig_sem);
  2507       // were we externally suspended while we were waiting?
  2508       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2509       if (threadIsSuspended) {
  2510         //
  2511         // The semaphore has been incremented, but while we were waiting
  2512         // another thread suspended us. We don't want to continue running
  2513         // while suspended because that would surprise the thread that
  2514         // suspended us.
  2515         //
  2516         ::sem_post(&sig_sem);
  2518         thread->java_suspend_self();
  2520     } while (threadIsSuspended);
  2524 int os::signal_lookup() {
  2525   return check_pending_signals(false);
  2528 int os::signal_wait() {
  2529   return check_pending_signals(true);
  2532 ////////////////////////////////////////////////////////////////////////////////
  2533 // Virtual Memory
  2535 int os::vm_page_size() {
  2536   // Seems redundant as all get out
  2537   assert(os::Linux::page_size() != -1, "must call os::init");
  2538   return os::Linux::page_size();
  2541 // Solaris allocates memory by pages.
  2542 int os::vm_allocation_granularity() {
  2543   assert(os::Linux::page_size() != -1, "must call os::init");
  2544   return os::Linux::page_size();
  2547 // Rationale behind this function:
  2548 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2549 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2550 //  samples for JITted code. Here we create private executable mapping over the code cache
  2551 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2552 //  info for the reporting script by storing timestamp and location of symbol
  2553 void linux_wrap_code(char* base, size_t size) {
  2554   static volatile jint cnt = 0;
  2556   if (!UseOprofile) {
  2557     return;
  2560   char buf[PATH_MAX+1];
  2561   int num = Atomic::add(1, &cnt);
  2563   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2564            os::get_temp_directory(), os::current_process_id(), num);
  2565   unlink(buf);
  2567   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2569   if (fd != -1) {
  2570     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2571     if (rv != (off_t)-1) {
  2572       if (::write(fd, "", 1) == 1) {
  2573         mmap(base, size,
  2574              PROT_READ|PROT_WRITE|PROT_EXEC,
  2575              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2578     ::close(fd);
  2579     unlink(buf);
  2583 static bool recoverable_mmap_error(int err) {
  2584   // See if the error is one we can let the caller handle. This
  2585   // list of errno values comes from JBS-6843484. I can't find a
  2586   // Linux man page that documents this specific set of errno
  2587   // values so while this list currently matches Solaris, it may
  2588   // change as we gain experience with this failure mode.
  2589   switch (err) {
  2590   case EBADF:
  2591   case EINVAL:
  2592   case ENOTSUP:
  2593     // let the caller deal with these errors
  2594     return true;
  2596   default:
  2597     // Any remaining errors on this OS can cause our reserved mapping
  2598     // to be lost. That can cause confusion where different data
  2599     // structures think they have the same memory mapped. The worst
  2600     // scenario is if both the VM and a library think they have the
  2601     // same memory mapped.
  2602     return false;
  2606 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2607                                     int err) {
  2608   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2609           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2610           strerror(err), err);
  2613 static void warn_fail_commit_memory(char* addr, size_t size,
  2614                                     size_t alignment_hint, bool exec,
  2615                                     int err) {
  2616   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2617           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2618           alignment_hint, exec, strerror(err), err);
  2621 // NOTE: Linux kernel does not really reserve the pages for us.
  2622 //       All it does is to check if there are enough free pages
  2623 //       left at the time of mmap(). This could be a potential
  2624 //       problem.
  2625 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2626   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2627   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2628                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2629   if (res != (uintptr_t) MAP_FAILED) {
  2630     if (UseNUMAInterleaving) {
  2631       numa_make_global(addr, size);
  2633     return 0;
  2636   int err = errno;  // save errno from mmap() call above
  2638   if (!recoverable_mmap_error(err)) {
  2639     warn_fail_commit_memory(addr, size, exec, err);
  2640     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2643   return err;
  2646 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2647   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2650 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2651                                   const char* mesg) {
  2652   assert(mesg != NULL, "mesg must be specified");
  2653   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2654   if (err != 0) {
  2655     // the caller wants all commit errors to exit with the specified mesg:
  2656     warn_fail_commit_memory(addr, size, exec, err);
  2657     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2661 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2662 #ifndef MAP_HUGETLB
  2663 #define MAP_HUGETLB 0x40000
  2664 #endif
  2666 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2667 #ifndef MADV_HUGEPAGE
  2668 #define MADV_HUGEPAGE 14
  2669 #endif
  2671 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2672                                   size_t alignment_hint, bool exec) {
  2673   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2674   if (err == 0) {
  2675     realign_memory(addr, size, alignment_hint);
  2677   return err;
  2680 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2681                           bool exec) {
  2682   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2685 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2686                                   size_t alignment_hint, bool exec,
  2687                                   const char* mesg) {
  2688   assert(mesg != NULL, "mesg must be specified");
  2689   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2690   if (err != 0) {
  2691     // the caller wants all commit errors to exit with the specified mesg:
  2692     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2693     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2697 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2698   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2699     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2700     // be supported or the memory may already be backed by huge pages.
  2701     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2705 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2706   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2707   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2708   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2709   // small pages on top of the SHM segment. This method always works for small pages, so we
  2710   // allow that in any case.
  2711   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2712     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2716 void os::numa_make_global(char *addr, size_t bytes) {
  2717   Linux::numa_interleave_memory(addr, bytes);
  2720 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2721 // bind policy to MPOL_PREFERRED for the current thread.
  2722 #define USE_MPOL_PREFERRED 0
  2724 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2725   // To make NUMA and large pages more robust when both enabled, we need to ease
  2726   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2727   // default policy and it will force memory to be allocated on the specified
  2728   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2729   // the specified node, but will not force it. Using this policy will prevent
  2730   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2731   // free large pages.
  2732   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2733   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2736 bool os::numa_topology_changed()   { return false; }
  2738 size_t os::numa_get_groups_num() {
  2739   // Return just the number of nodes in which it's possible to allocate memory
  2740   // (in numa terminology, configured nodes).
  2741   return Linux::numa_num_configured_nodes();
  2744 int os::numa_get_group_id() {
  2745   int cpu_id = Linux::sched_getcpu();
  2746   if (cpu_id != -1) {
  2747     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2748     if (lgrp_id != -1) {
  2749       return lgrp_id;
  2752   return 0;
  2755 int os::Linux::get_existing_num_nodes() {
  2756   size_t node;
  2757   size_t highest_node_number = Linux::numa_max_node();
  2758   int num_nodes = 0;
  2760   // Get the total number of nodes in the system including nodes without memory.
  2761   for (node = 0; node <= highest_node_number; node++) {
  2762     if (isnode_in_existing_nodes(node)) {
  2763       num_nodes++;
  2766   return num_nodes;
  2769 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2770   size_t highest_node_number = Linux::numa_max_node();
  2771   size_t i = 0;
  2773   // Map all node ids in which is possible to allocate memory. Also nodes are
  2774   // not always consecutively available, i.e. available from 0 to the highest
  2775   // node number.
  2776   for (size_t node = 0; node <= highest_node_number; node++) {
  2777     if (Linux::isnode_in_configured_nodes(node)) {
  2778       ids[i++] = node;
  2781   return i;
  2784 bool os::get_page_info(char *start, page_info* info) {
  2785   return false;
  2788 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2789   return end;
  2793 int os::Linux::sched_getcpu_syscall(void) {
  2794   unsigned int cpu = 0;
  2795   int retval = -1;
  2797 #if defined(IA32)
  2798 # ifndef SYS_getcpu
  2799 # define SYS_getcpu 318
  2800 # endif
  2801   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2802 #elif defined(AMD64)
  2803 // Unfortunately we have to bring all these macros here from vsyscall.h
  2804 // to be able to compile on old linuxes.
  2805 # define __NR_vgetcpu 2
  2806 # define VSYSCALL_START (-10UL << 20)
  2807 # define VSYSCALL_SIZE 1024
  2808 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2809   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2810   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2811   retval = vgetcpu(&cpu, NULL, NULL);
  2812 #endif
  2814   return (retval == -1) ? retval : cpu;
  2817 // Something to do with the numa-aware allocator needs these symbols
  2818 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2819 extern "C" JNIEXPORT void numa_error(char *where) { }
  2820 extern "C" JNIEXPORT int fork1() { return fork(); }
  2823 // If we are running with libnuma version > 2, then we should
  2824 // be trying to use symbols with versions 1.1
  2825 // If we are running with earlier version, which did not have symbol versions,
  2826 // we should use the base version.
  2827 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2828   void *f = dlvsym(handle, name, "libnuma_1.1");
  2829   if (f == NULL) {
  2830     f = dlsym(handle, name);
  2832   return f;
  2835 bool os::Linux::libnuma_init() {
  2836   // sched_getcpu() should be in libc.
  2837   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2838                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2840   // If it's not, try a direct syscall.
  2841   if (sched_getcpu() == -1)
  2842     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2844   if (sched_getcpu() != -1) { // Does it work?
  2845     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2846     if (handle != NULL) {
  2847       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2848                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2849       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2850                                        libnuma_dlsym(handle, "numa_max_node")));
  2851       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
  2852                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
  2853       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2854                                         libnuma_dlsym(handle, "numa_available")));
  2855       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2856                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2857       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2858                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
  2859       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2860                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
  2861       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
  2862                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
  2863       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
  2864                                        libnuma_dlsym(handle, "numa_distance")));
  2866       if (numa_available() != -1) {
  2867         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2868         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
  2869         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
  2870         // Create an index -> node mapping, since nodes are not always consecutive
  2871         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2872         rebuild_nindex_to_node_map();
  2873         // Create a cpu -> node mapping
  2874         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2875         rebuild_cpu_to_node_map();
  2876         return true;
  2880   return false;
  2883 void os::Linux::rebuild_nindex_to_node_map() {
  2884   int highest_node_number = Linux::numa_max_node();
  2886   nindex_to_node()->clear();
  2887   for (int node = 0; node <= highest_node_number; node++) {
  2888     if (Linux::isnode_in_existing_nodes(node)) {
  2889       nindex_to_node()->append(node);
  2894 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2895 // The table is later used in get_node_by_cpu().
  2896 void os::Linux::rebuild_cpu_to_node_map() {
  2897   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2898                               // in libnuma (possible values are starting from 16,
  2899                               // and continuing up with every other power of 2, but less
  2900                               // than the maximum number of CPUs supported by kernel), and
  2901                               // is a subject to change (in libnuma version 2 the requirements
  2902                               // are more reasonable) we'll just hardcode the number they use
  2903                               // in the library.
  2904   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2906   size_t cpu_num = processor_count();
  2907   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2908   size_t cpu_map_valid_size =
  2909     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2911   cpu_to_node()->clear();
  2912   cpu_to_node()->at_grow(cpu_num - 1);
  2914   size_t node_num = get_existing_num_nodes();
  2916   int distance = 0;
  2917   int closest_distance = INT_MAX;
  2918   int closest_node = 0;
  2919   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2920   for (size_t i = 0; i < node_num; i++) {
  2921     // Check if node is configured (not a memory-less node). If it is not, find
  2922     // the closest configured node.
  2923     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
  2924       closest_distance = INT_MAX;
  2925       // Check distance from all remaining nodes in the system. Ignore distance
  2926       // from itself and from another non-configured node.
  2927       for (size_t m = 0; m < node_num; m++) {
  2928         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
  2929           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
  2930           // If a closest node is found, update. There is always at least one
  2931           // configured node in the system so there is always at least one node
  2932           // close.
  2933           if (distance != 0 && distance < closest_distance) {
  2934             closest_distance = distance;
  2935             closest_node = nindex_to_node()->at(m);
  2939      } else {
  2940        // Current node is already a configured node.
  2941        closest_node = nindex_to_node()->at(i);
  2944     // Get cpus from the original node and map them to the closest node. If node
  2945     // is a configured node (not a memory-less node), then original node and
  2946     // closest node are the same.
  2947     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2948       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2949         if (cpu_map[j] != 0) {
  2950           for (size_t k = 0; k < BitsPerCLong; k++) {
  2951             if (cpu_map[j] & (1UL << k)) {
  2952               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
  2959   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2962 int os::Linux::get_node_by_cpu(int cpu_id) {
  2963   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2964     return cpu_to_node()->at(cpu_id);
  2966   return -1;
  2969 GrowableArray<int>* os::Linux::_cpu_to_node;
  2970 GrowableArray<int>* os::Linux::_nindex_to_node;
  2971 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2972 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2973 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2974 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
  2975 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2976 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2977 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2978 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2979 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
  2980 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
  2981 unsigned long* os::Linux::_numa_all_nodes;
  2982 struct bitmask* os::Linux::_numa_all_nodes_ptr;
  2983 struct bitmask* os::Linux::_numa_nodes_ptr;
  2985 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2986   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2987                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2988   return res  != (uintptr_t) MAP_FAILED;
  2991 static
  2992 address get_stack_commited_bottom(address bottom, size_t size) {
  2993   address nbot = bottom;
  2994   address ntop = bottom + size;
  2996   size_t page_sz = os::vm_page_size();
  2997   unsigned pages = size / page_sz;
  2999   unsigned char vec[1];
  3000   unsigned imin = 1, imax = pages + 1, imid;
  3001   int mincore_return_value = 0;
  3003   assert(imin <= imax, "Unexpected page size");
  3005   while (imin < imax) {
  3006     imid = (imax + imin) / 2;
  3007     nbot = ntop - (imid * page_sz);
  3009     // Use a trick with mincore to check whether the page is mapped or not.
  3010     // mincore sets vec to 1 if page resides in memory and to 0 if page
  3011     // is swapped output but if page we are asking for is unmapped
  3012     // it returns -1,ENOMEM
  3013     mincore_return_value = mincore(nbot, page_sz, vec);
  3015     if (mincore_return_value == -1) {
  3016       // Page is not mapped go up
  3017       // to find first mapped page
  3018       if (errno != EAGAIN) {
  3019         assert(errno == ENOMEM, "Unexpected mincore errno");
  3020         imax = imid;
  3022     } else {
  3023       // Page is mapped go down
  3024       // to find first not mapped page
  3025       imin = imid + 1;
  3029   nbot = nbot + page_sz;
  3031   // Adjust stack bottom one page up if last checked page is not mapped
  3032   if (mincore_return_value == -1) {
  3033     nbot = nbot + page_sz;
  3036   return nbot;
  3040 // Linux uses a growable mapping for the stack, and if the mapping for
  3041 // the stack guard pages is not removed when we detach a thread the
  3042 // stack cannot grow beyond the pages where the stack guard was
  3043 // mapped.  If at some point later in the process the stack expands to
  3044 // that point, the Linux kernel cannot expand the stack any further
  3045 // because the guard pages are in the way, and a segfault occurs.
  3046 //
  3047 // However, it's essential not to split the stack region by unmapping
  3048 // a region (leaving a hole) that's already part of the stack mapping,
  3049 // so if the stack mapping has already grown beyond the guard pages at
  3050 // the time we create them, we have to truncate the stack mapping.
  3051 // So, we need to know the extent of the stack mapping when
  3052 // create_stack_guard_pages() is called.
  3054 // We only need this for stacks that are growable: at the time of
  3055 // writing thread stacks don't use growable mappings (i.e. those
  3056 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3057 // only applies to the main thread.
  3059 // If the (growable) stack mapping already extends beyond the point
  3060 // where we're going to put our guard pages, truncate the mapping at
  3061 // that point by munmap()ping it.  This ensures that when we later
  3062 // munmap() the guard pages we don't leave a hole in the stack
  3063 // mapping. This only affects the main/initial thread
  3065 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3067   if (os::Linux::is_initial_thread()) {
  3068     // As we manually grow stack up to bottom inside create_attached_thread(),
  3069     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3070     // we don't need to do anything special.
  3071     // Check it first, before calling heavy function.
  3072     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3073     unsigned char vec[1];
  3075     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3076       // Fallback to slow path on all errors, including EAGAIN
  3077       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3078                                     os::Linux::initial_thread_stack_bottom(),
  3079                                     (size_t)addr - stack_extent);
  3082     if (stack_extent < (uintptr_t)addr) {
  3083       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3087   return os::commit_memory(addr, size, !ExecMem);
  3090 // If this is a growable mapping, remove the guard pages entirely by
  3091 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3092 // affects the main/initial thread, but guard against future OS changes
  3093 // It's safe to always unmap guard pages for initial thread because we
  3094 // always place it right after end of the mapped region
  3096 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3097   uintptr_t stack_extent, stack_base;
  3099   if (os::Linux::is_initial_thread()) {
  3100     return ::munmap(addr, size) == 0;
  3103   return os::uncommit_memory(addr, size);
  3106 static address _highest_vm_reserved_address = NULL;
  3108 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3109 // at 'requested_addr'. If there are existing memory mappings at the same
  3110 // location, however, they will be overwritten. If 'fixed' is false,
  3111 // 'requested_addr' is only treated as a hint, the return value may or
  3112 // may not start from the requested address. Unlike Linux mmap(), this
  3113 // function returns NULL to indicate failure.
  3114 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3115   char * addr;
  3116   int flags;
  3118   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3119   if (fixed) {
  3120     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3121     flags |= MAP_FIXED;
  3124   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3125   // touch an uncommitted page. Otherwise, the read/write might
  3126   // succeed if we have enough swap space to back the physical page.
  3127   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3128                        flags, -1, 0);
  3130   if (addr != MAP_FAILED) {
  3131     // anon_mmap() should only get called during VM initialization,
  3132     // don't need lock (actually we can skip locking even it can be called
  3133     // from multiple threads, because _highest_vm_reserved_address is just a
  3134     // hint about the upper limit of non-stack memory regions.)
  3135     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3136       _highest_vm_reserved_address = (address)addr + bytes;
  3140   return addr == MAP_FAILED ? NULL : addr;
  3143 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
  3144 //   (req_addr != NULL) or with a given alignment.
  3145 //  - bytes shall be a multiple of alignment.
  3146 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3147 //  - alignment sets the alignment at which memory shall be allocated.
  3148 //     It must be a multiple of allocation granularity.
  3149 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3150 //  req_addr or NULL.
  3151 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
  3153   size_t extra_size = bytes;
  3154   if (req_addr == NULL && alignment > 0) {
  3155     extra_size += alignment;
  3158   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
  3159     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  3160     -1, 0);
  3161   if (start == MAP_FAILED) {
  3162     start = NULL;
  3163   } else {
  3164     if (req_addr != NULL) {
  3165       if (start != req_addr) {
  3166         ::munmap(start, extra_size);
  3167         start = NULL;
  3169     } else {
  3170       char* const start_aligned = (char*) align_ptr_up(start, alignment);
  3171       char* const end_aligned = start_aligned + bytes;
  3172       char* const end = start + extra_size;
  3173       if (start_aligned > start) {
  3174         ::munmap(start, start_aligned - start);
  3176       if (end_aligned < end) {
  3177         ::munmap(end_aligned, end - end_aligned);
  3179       start = start_aligned;
  3182   return start;
  3185 // Don't update _highest_vm_reserved_address, because there might be memory
  3186 // regions above addr + size. If so, releasing a memory region only creates
  3187 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3188 //
  3189 static int anon_munmap(char * addr, size_t size) {
  3190   return ::munmap(addr, size) == 0;
  3193 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3194                          size_t alignment_hint) {
  3195   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3198 bool os::pd_release_memory(char* addr, size_t size) {
  3199   return anon_munmap(addr, size);
  3202 static address highest_vm_reserved_address() {
  3203   return _highest_vm_reserved_address;
  3206 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3207   // Linux wants the mprotect address argument to be page aligned.
  3208   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3210   // According to SUSv3, mprotect() should only be used with mappings
  3211   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3212   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3213   // protection of malloc'ed or statically allocated memory). Check the
  3214   // caller if you hit this assert.
  3215   assert(addr == bottom, "sanity check");
  3217   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3218   return ::mprotect(bottom, size, prot) == 0;
  3221 // Set protections specified
  3222 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3223                         bool is_committed) {
  3224   unsigned int p = 0;
  3225   switch (prot) {
  3226   case MEM_PROT_NONE: p = PROT_NONE; break;
  3227   case MEM_PROT_READ: p = PROT_READ; break;
  3228   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3229   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3230   default:
  3231     ShouldNotReachHere();
  3233   // is_committed is unused.
  3234   return linux_mprotect(addr, bytes, p);
  3237 bool os::guard_memory(char* addr, size_t size) {
  3238   return linux_mprotect(addr, size, PROT_NONE);
  3241 bool os::unguard_memory(char* addr, size_t size) {
  3242   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3245 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3246   bool result = false;
  3247   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3248                  MAP_ANONYMOUS|MAP_PRIVATE,
  3249                  -1, 0);
  3250   if (p != MAP_FAILED) {
  3251     void *aligned_p = align_ptr_up(p, page_size);
  3253     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3255     munmap(p, page_size * 2);
  3258   if (warn && !result) {
  3259     warning("TransparentHugePages is not supported by the operating system.");
  3262   return result;
  3265 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3266   bool result = false;
  3267   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3268                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3269                  -1, 0);
  3271   if (p != MAP_FAILED) {
  3272     // We don't know if this really is a huge page or not.
  3273     FILE *fp = fopen("/proc/self/maps", "r");
  3274     if (fp) {
  3275       while (!feof(fp)) {
  3276         char chars[257];
  3277         long x = 0;
  3278         if (fgets(chars, sizeof(chars), fp)) {
  3279           if (sscanf(chars, "%lx-%*x", &x) == 1
  3280               && x == (long)p) {
  3281             if (strstr (chars, "hugepage")) {
  3282               result = true;
  3283               break;
  3288       fclose(fp);
  3290     munmap(p, page_size);
  3293   if (warn && !result) {
  3294     warning("HugeTLBFS is not supported by the operating system.");
  3297   return result;
  3300 /*
  3301 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3303 * From the coredump_filter documentation:
  3305 * - (bit 0) anonymous private memory
  3306 * - (bit 1) anonymous shared memory
  3307 * - (bit 2) file-backed private memory
  3308 * - (bit 3) file-backed shared memory
  3309 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3310 *           effective only if the bit 2 is cleared)
  3311 * - (bit 5) hugetlb private memory
  3312 * - (bit 6) hugetlb shared memory
  3313 */
  3314 static void set_coredump_filter(void) {
  3315   FILE *f;
  3316   long cdm;
  3318   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3319     return;
  3322   if (fscanf(f, "%lx", &cdm) != 1) {
  3323     fclose(f);
  3324     return;
  3327   rewind(f);
  3329   if ((cdm & LARGEPAGES_BIT) == 0) {
  3330     cdm |= LARGEPAGES_BIT;
  3331     fprintf(f, "%#lx", cdm);
  3334   fclose(f);
  3337 // Large page support
  3339 static size_t _large_page_size = 0;
  3341 size_t os::Linux::find_large_page_size() {
  3342   size_t large_page_size = 0;
  3344   // large_page_size on Linux is used to round up heap size. x86 uses either
  3345   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3346   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3347   // page as large as 256M.
  3348   //
  3349   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3350   // for a line with the following format:
  3351   //    Hugepagesize:     2048 kB
  3352   //
  3353   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3354   // format has been changed), we'll use the largest page size supported by
  3355   // the processor.
  3357 #ifndef ZERO
  3358   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3359                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3360 #endif // ZERO
  3362   FILE *fp = fopen("/proc/meminfo", "r");
  3363   if (fp) {
  3364     while (!feof(fp)) {
  3365       int x = 0;
  3366       char buf[16];
  3367       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3368         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3369           large_page_size = x * K;
  3370           break;
  3372       } else {
  3373         // skip to next line
  3374         for (;;) {
  3375           int ch = fgetc(fp);
  3376           if (ch == EOF || ch == (int)'\n') break;
  3380     fclose(fp);
  3383   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3384     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3385         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3386         proper_unit_for_byte_size(large_page_size));
  3389   return large_page_size;
  3392 size_t os::Linux::setup_large_page_size() {
  3393   _large_page_size = Linux::find_large_page_size();
  3394   const size_t default_page_size = (size_t)Linux::page_size();
  3395   if (_large_page_size > default_page_size) {
  3396     _page_sizes[0] = _large_page_size;
  3397     _page_sizes[1] = default_page_size;
  3398     _page_sizes[2] = 0;
  3401   return _large_page_size;
  3404 bool os::Linux::setup_large_page_type(size_t page_size) {
  3405   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3406       FLAG_IS_DEFAULT(UseSHM) &&
  3407       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3409     // The type of large pages has not been specified by the user.
  3411     // Try UseHugeTLBFS and then UseSHM.
  3412     UseHugeTLBFS = UseSHM = true;
  3414     // Don't try UseTransparentHugePages since there are known
  3415     // performance issues with it turned on. This might change in the future.
  3416     UseTransparentHugePages = false;
  3419   if (UseTransparentHugePages) {
  3420     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3421     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3422       UseHugeTLBFS = false;
  3423       UseSHM = false;
  3424       return true;
  3426     UseTransparentHugePages = false;
  3429   if (UseHugeTLBFS) {
  3430     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3431     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3432       UseSHM = false;
  3433       return true;
  3435     UseHugeTLBFS = false;
  3438   return UseSHM;
  3441 void os::large_page_init() {
  3442   if (!UseLargePages &&
  3443       !UseTransparentHugePages &&
  3444       !UseHugeTLBFS &&
  3445       !UseSHM) {
  3446     // Not using large pages.
  3447     return;
  3450   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3451     // The user explicitly turned off large pages.
  3452     // Ignore the rest of the large pages flags.
  3453     UseTransparentHugePages = false;
  3454     UseHugeTLBFS = false;
  3455     UseSHM = false;
  3456     return;
  3459   size_t large_page_size = Linux::setup_large_page_size();
  3460   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3462   set_coredump_filter();
  3465 #ifndef SHM_HUGETLB
  3466 #define SHM_HUGETLB 04000
  3467 #endif
  3469 #define shm_warning_format(format, ...)              \
  3470   do {                                               \
  3471     if (UseLargePages &&                             \
  3472         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
  3473          !FLAG_IS_DEFAULT(UseSHM) ||                 \
  3474          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
  3475       warning(format, __VA_ARGS__);                  \
  3476     }                                                \
  3477   } while (0)
  3479 #define shm_warning(str) shm_warning_format("%s", str)
  3481 #define shm_warning_with_errno(str)                \
  3482   do {                                             \
  3483     int err = errno;                               \
  3484     shm_warning_format(str " (error = %d)", err);  \
  3485   } while (0)
  3487 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
  3488   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
  3490   if (!is_size_aligned(alignment, SHMLBA)) {
  3491     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
  3492     return NULL;
  3495   // To ensure that we get 'alignment' aligned memory from shmat,
  3496   // we pre-reserve aligned virtual memory and then attach to that.
  3498   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
  3499   if (pre_reserved_addr == NULL) {
  3500     // Couldn't pre-reserve aligned memory.
  3501     shm_warning("Failed to pre-reserve aligned memory for shmat.");
  3502     return NULL;
  3505   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
  3506   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
  3508   if ((intptr_t)addr == -1) {
  3509     int err = errno;
  3510     shm_warning_with_errno("Failed to attach shared memory.");
  3512     assert(err != EACCES, "Unexpected error");
  3513     assert(err != EIDRM,  "Unexpected error");
  3514     assert(err != EINVAL, "Unexpected error");
  3516     // Since we don't know if the kernel unmapped the pre-reserved memory area
  3517     // we can't unmap it, since that would potentially unmap memory that was
  3518     // mapped from other threads.
  3519     return NULL;
  3522   return addr;
  3525 static char* shmat_at_address(int shmid, char* req_addr) {
  3526   if (!is_ptr_aligned(req_addr, SHMLBA)) {
  3527     assert(false, "Requested address needs to be SHMLBA aligned");
  3528     return NULL;
  3531   char* addr = (char*)shmat(shmid, req_addr, 0);
  3533   if ((intptr_t)addr == -1) {
  3534     shm_warning_with_errno("Failed to attach shared memory.");
  3535     return NULL;
  3538   return addr;
  3541 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
  3542   // If a req_addr has been provided, we assume that the caller has already aligned the address.
  3543   if (req_addr != NULL) {
  3544     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
  3545     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
  3546     return shmat_at_address(shmid, req_addr);
  3549   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
  3550   // return large page size aligned memory addresses when req_addr == NULL.
  3551   // However, if the alignment is larger than the large page size, we have
  3552   // to manually ensure that the memory returned is 'alignment' aligned.
  3553   if (alignment > os::large_page_size()) {
  3554     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
  3555     return shmat_with_alignment(shmid, bytes, alignment);
  3556   } else {
  3557     return shmat_at_address(shmid, NULL);
  3561 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3562   // "exec" is passed in but not used.  Creating the shared image for
  3563   // the code cache doesn't have an SHM_X executable permission to check.
  3564   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3565   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3566   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
  3568   if (!is_size_aligned(bytes, os::large_page_size())) {
  3569     return NULL; // Fallback to small pages.
  3572   // Create a large shared memory region to attach to based on size.
  3573   // Currently, size is the total size of the heap.
  3574   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3575   if (shmid == -1) {
  3576     // Possible reasons for shmget failure:
  3577     // 1. shmmax is too small for Java heap.
  3578     //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3579     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3580     // 2. not enough large page memory.
  3581     //    > check available large pages: cat /proc/meminfo
  3582     //    > increase amount of large pages:
  3583     //          echo new_value > /proc/sys/vm/nr_hugepages
  3584     //      Note 1: different Linux may use different name for this property,
  3585     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3586     //      Note 2: it's possible there's enough physical memory available but
  3587     //            they are so fragmented after a long run that they can't
  3588     //            coalesce into large pages. Try to reserve large pages when
  3589     //            the system is still "fresh".
  3590     shm_warning_with_errno("Failed to reserve shared memory.");
  3591     return NULL;
  3594   // Attach to the region.
  3595   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
  3597   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3598   // will be deleted when it's detached by shmdt() or when the process
  3599   // terminates. If shmat() is not successful this will remove the shared
  3600   // segment immediately.
  3601   shmctl(shmid, IPC_RMID, NULL);
  3603   return addr;
  3606 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3607   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3609   bool warn_on_failure = UseLargePages &&
  3610       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3611        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3612        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3614   if (warn_on_failure) {
  3615     char msg[128];
  3616     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3617         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3618     warning("%s", msg);
  3622 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3623   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3624   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3625   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3627   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3628   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3629                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3630                              -1, 0);
  3632   if (addr == MAP_FAILED) {
  3633     warn_on_large_pages_failure(req_addr, bytes, errno);
  3634     return NULL;
  3637   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3639   return addr;
  3642 // Reserve memory using mmap(MAP_HUGETLB).
  3643 //  - bytes shall be a multiple of alignment.
  3644 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3645 //  - alignment sets the alignment at which memory shall be allocated.
  3646 //     It must be a multiple of allocation granularity.
  3647 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3648 //  req_addr or NULL.
  3649 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3650   size_t large_page_size = os::large_page_size();
  3651   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3653   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3654   assert(is_size_aligned(bytes, alignment), "Must be");
  3656   // First reserve - but not commit - the address range in small pages.
  3657   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
  3659   if (start == NULL) {
  3660     return NULL;
  3663   assert(is_ptr_aligned(start, alignment), "Must be");
  3665   char* end = start + bytes;
  3667   // Find the regions of the allocated chunk that can be promoted to large pages.
  3668   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3669   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3671   size_t lp_bytes = lp_end - lp_start;
  3673   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3675   if (lp_bytes == 0) {
  3676     // The mapped region doesn't even span the start and the end of a large page.
  3677     // Fall back to allocate a non-special area.
  3678     ::munmap(start, end - start);
  3679     return NULL;
  3682   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3684   void* result;
  3686   // Commit small-paged leading area.
  3687   if (start != lp_start) {
  3688     result = ::mmap(start, lp_start - start, prot,
  3689                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3690                     -1, 0);
  3691     if (result == MAP_FAILED) {
  3692       ::munmap(lp_start, end - lp_start);
  3693       return NULL;
  3697   // Commit large-paged area.
  3698   result = ::mmap(lp_start, lp_bytes, prot,
  3699                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3700                   -1, 0);
  3701   if (result == MAP_FAILED) {
  3702     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
  3703     // If the mmap above fails, the large pages region will be unmapped and we
  3704     // have regions before and after with small pages. Release these regions.
  3705     //
  3706     // |  mapped  |  unmapped  |  mapped  |
  3707     // ^          ^            ^          ^
  3708     // start      lp_start     lp_end     end
  3709     //
  3710     ::munmap(start, lp_start - start);
  3711     ::munmap(lp_end, end - lp_end);
  3712     return NULL;
  3715   // Commit small-paged trailing area.
  3716   if (lp_end != end) {
  3717       result = ::mmap(lp_end, end - lp_end, prot,
  3718                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3719                       -1, 0);
  3720     if (result == MAP_FAILED) {
  3721       ::munmap(start, lp_end - start);
  3722       return NULL;
  3726   return start;
  3729 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3730   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3731   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3732   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
  3733   assert(is_power_of_2(os::large_page_size()), "Must be");
  3734   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3736   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3737     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3738   } else {
  3739     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3743 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3744   assert(UseLargePages, "only for large pages");
  3746   char* addr;
  3747   if (UseSHM) {
  3748     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3749   } else {
  3750     assert(UseHugeTLBFS, "must be");
  3751     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3754   if (addr != NULL) {
  3755     if (UseNUMAInterleaving) {
  3756       numa_make_global(addr, bytes);
  3759     // The memory is committed
  3760     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3763   return addr;
  3766 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3767   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3768   return shmdt(base) == 0;
  3771 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3772   return pd_release_memory(base, bytes);
  3775 bool os::release_memory_special(char* base, size_t bytes) {
  3776   bool res;
  3777   if (MemTracker::tracking_level() > NMT_minimal) {
  3778     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3779     res = os::Linux::release_memory_special_impl(base, bytes);
  3780     if (res) {
  3781       tkr.record((address)base, bytes);
  3784   } else {
  3785     res = os::Linux::release_memory_special_impl(base, bytes);
  3787   return res;
  3790 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3791   assert(UseLargePages, "only for large pages");
  3792   bool res;
  3794   if (UseSHM) {
  3795     res = os::Linux::release_memory_special_shm(base, bytes);
  3796   } else {
  3797     assert(UseHugeTLBFS, "must be");
  3798     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3800   return res;
  3803 size_t os::large_page_size() {
  3804   return _large_page_size;
  3807 // With SysV SHM the entire memory region must be allocated as shared
  3808 // memory.
  3809 // HugeTLBFS allows application to commit large page memory on demand.
  3810 // However, when committing memory with HugeTLBFS fails, the region
  3811 // that was supposed to be committed will lose the old reservation
  3812 // and allow other threads to steal that memory region. Because of this
  3813 // behavior we can't commit HugeTLBFS memory.
  3814 bool os::can_commit_large_page_memory() {
  3815   return UseTransparentHugePages;
  3818 bool os::can_execute_large_page_memory() {
  3819   return UseTransparentHugePages || UseHugeTLBFS;
  3822 // Reserve memory at an arbitrary address, only if that area is
  3823 // available (and not reserved for something else).
  3825 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3826   const int max_tries = 10;
  3827   char* base[max_tries];
  3828   size_t size[max_tries];
  3829   const size_t gap = 0x000000;
  3831   // Assert only that the size is a multiple of the page size, since
  3832   // that's all that mmap requires, and since that's all we really know
  3833   // about at this low abstraction level.  If we need higher alignment,
  3834   // we can either pass an alignment to this method or verify alignment
  3835   // in one of the methods further up the call chain.  See bug 5044738.
  3836   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3838   // Repeatedly allocate blocks until the block is allocated at the
  3839   // right spot. Give up after max_tries. Note that reserve_memory() will
  3840   // automatically update _highest_vm_reserved_address if the call is
  3841   // successful. The variable tracks the highest memory address every reserved
  3842   // by JVM. It is used to detect heap-stack collision if running with
  3843   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3844   // space than needed, it could confuse the collision detecting code. To
  3845   // solve the problem, save current _highest_vm_reserved_address and
  3846   // calculate the correct value before return.
  3847   address old_highest = _highest_vm_reserved_address;
  3849   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3850   // if kernel honors the hint then we can return immediately.
  3851   char * addr = anon_mmap(requested_addr, bytes, false);
  3852   if (addr == requested_addr) {
  3853      return requested_addr;
  3856   if (addr != NULL) {
  3857      // mmap() is successful but it fails to reserve at the requested address
  3858      anon_munmap(addr, bytes);
  3861   int i;
  3862   for (i = 0; i < max_tries; ++i) {
  3863     base[i] = reserve_memory(bytes);
  3865     if (base[i] != NULL) {
  3866       // Is this the block we wanted?
  3867       if (base[i] == requested_addr) {
  3868         size[i] = bytes;
  3869         break;
  3872       // Does this overlap the block we wanted? Give back the overlapped
  3873       // parts and try again.
  3875       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3876       if (top_overlap >= 0 && top_overlap < bytes) {
  3877         unmap_memory(base[i], top_overlap);
  3878         base[i] += top_overlap;
  3879         size[i] = bytes - top_overlap;
  3880       } else {
  3881         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3882         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3883           unmap_memory(requested_addr, bottom_overlap);
  3884           size[i] = bytes - bottom_overlap;
  3885         } else {
  3886           size[i] = bytes;
  3892   // Give back the unused reserved pieces.
  3894   for (int j = 0; j < i; ++j) {
  3895     if (base[j] != NULL) {
  3896       unmap_memory(base[j], size[j]);
  3900   if (i < max_tries) {
  3901     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3902     return requested_addr;
  3903   } else {
  3904     _highest_vm_reserved_address = old_highest;
  3905     return NULL;
  3909 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3910   return ::read(fd, buf, nBytes);
  3913 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3914 // Solaris uses poll(), linux uses park().
  3915 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3916 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3917 // SIGSEGV, see 4355769.
  3919 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3920   assert(thread == Thread::current(),  "thread consistency check");
  3922   ParkEvent * const slp = thread->_SleepEvent ;
  3923   slp->reset() ;
  3924   OrderAccess::fence() ;
  3926   if (interruptible) {
  3927     jlong prevtime = javaTimeNanos();
  3929     for (;;) {
  3930       if (os::is_interrupted(thread, true)) {
  3931         return OS_INTRPT;
  3934       jlong newtime = javaTimeNanos();
  3936       if (newtime - prevtime < 0) {
  3937         // time moving backwards, should only happen if no monotonic clock
  3938         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3939         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3940       } else {
  3941         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3944       if(millis <= 0) {
  3945         return OS_OK;
  3948       prevtime = newtime;
  3951         assert(thread->is_Java_thread(), "sanity check");
  3952         JavaThread *jt = (JavaThread *) thread;
  3953         ThreadBlockInVM tbivm(jt);
  3954         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3956         jt->set_suspend_equivalent();
  3957         // cleared by handle_special_suspend_equivalent_condition() or
  3958         // java_suspend_self() via check_and_wait_while_suspended()
  3960         slp->park(millis);
  3962         // were we externally suspended while we were waiting?
  3963         jt->check_and_wait_while_suspended();
  3966   } else {
  3967     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3968     jlong prevtime = javaTimeNanos();
  3970     for (;;) {
  3971       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3972       // the 1st iteration ...
  3973       jlong newtime = javaTimeNanos();
  3975       if (newtime - prevtime < 0) {
  3976         // time moving backwards, should only happen if no monotonic clock
  3977         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3978         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3979       } else {
  3980         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3983       if(millis <= 0) break ;
  3985       prevtime = newtime;
  3986       slp->park(millis);
  3988     return OS_OK ;
  3992 //
  3993 // Short sleep, direct OS call.
  3994 //
  3995 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  3996 // sched_yield(2) will actually give up the CPU:
  3997 //
  3998 //   * Alone on this pariticular CPU, keeps running.
  3999 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  4000 //     (pre 2.6.39).
  4001 //
  4002 // So calling this with 0 is an alternative.
  4003 //
  4004 void os::naked_short_sleep(jlong ms) {
  4005   struct timespec req;
  4007   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  4008   req.tv_sec = 0;
  4009   if (ms > 0) {
  4010     req.tv_nsec = (ms % 1000) * 1000000;
  4012   else {
  4013     req.tv_nsec = 1;
  4016   nanosleep(&req, NULL);
  4018   return;
  4021 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  4022 void os::infinite_sleep() {
  4023   while (true) {    // sleep forever ...
  4024     ::sleep(100);   // ... 100 seconds at a time
  4028 // Used to convert frequent JVM_Yield() to nops
  4029 bool os::dont_yield() {
  4030   return DontYieldALot;
  4033 void os::yield() {
  4034   sched_yield();
  4037 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  4039 void os::yield_all(int attempts) {
  4040   // Yields to all threads, including threads with lower priorities
  4041   // Threads on Linux are all with same priority. The Solaris style
  4042   // os::yield_all() with nanosleep(1ms) is not necessary.
  4043   sched_yield();
  4046 // Called from the tight loops to possibly influence time-sharing heuristics
  4047 void os::loop_breaker(int attempts) {
  4048   os::yield_all(attempts);
  4051 ////////////////////////////////////////////////////////////////////////////////
  4052 // thread priority support
  4054 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  4055 // only supports dynamic priority, static priority must be zero. For real-time
  4056 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  4057 // However, for large multi-threaded applications, SCHED_RR is not only slower
  4058 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  4059 // of 5 runs - Sep 2005).
  4060 //
  4061 // The following code actually changes the niceness of kernel-thread/LWP. It
  4062 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  4063 // not the entire user process, and user level threads are 1:1 mapped to kernel
  4064 // threads. It has always been the case, but could change in the future. For
  4065 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  4066 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  4068 int os::java_to_os_priority[CriticalPriority + 1] = {
  4069   19,              // 0 Entry should never be used
  4071    4,              // 1 MinPriority
  4072    3,              // 2
  4073    2,              // 3
  4075    1,              // 4
  4076    0,              // 5 NormPriority
  4077   -1,              // 6
  4079   -2,              // 7
  4080   -3,              // 8
  4081   -4,              // 9 NearMaxPriority
  4083   -5,              // 10 MaxPriority
  4085   -5               // 11 CriticalPriority
  4086 };
  4088 static int prio_init() {
  4089   if (ThreadPriorityPolicy == 1) {
  4090     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  4091     // if effective uid is not root. Perhaps, a more elegant way of doing
  4092     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  4093     if (geteuid() != 0) {
  4094       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  4095         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  4097       ThreadPriorityPolicy = 0;
  4100   if (UseCriticalJavaThreadPriority) {
  4101     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  4103   return 0;
  4106 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4107   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  4109   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  4110   return (ret == 0) ? OS_OK : OS_ERR;
  4113 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4114   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  4115     *priority_ptr = java_to_os_priority[NormPriority];
  4116     return OS_OK;
  4119   errno = 0;
  4120   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  4121   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  4124 // Hint to the underlying OS that a task switch would not be good.
  4125 // Void return because it's a hint and can fail.
  4126 void os::hint_no_preempt() {}
  4128 ////////////////////////////////////////////////////////////////////////////////
  4129 // suspend/resume support
  4131 //  the low-level signal-based suspend/resume support is a remnant from the
  4132 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  4133 //  within hotspot. Now there is a single use-case for this:
  4134 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  4135 //      that runs in the watcher thread.
  4136 //  The remaining code is greatly simplified from the more general suspension
  4137 //  code that used to be used.
  4138 //
  4139 //  The protocol is quite simple:
  4140 //  - suspend:
  4141 //      - sends a signal to the target thread
  4142 //      - polls the suspend state of the osthread using a yield loop
  4143 //      - target thread signal handler (SR_handler) sets suspend state
  4144 //        and blocks in sigsuspend until continued
  4145 //  - resume:
  4146 //      - sets target osthread state to continue
  4147 //      - sends signal to end the sigsuspend loop in the SR_handler
  4148 //
  4149 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4150 //
  4152 static void resume_clear_context(OSThread *osthread) {
  4153   osthread->set_ucontext(NULL);
  4154   osthread->set_siginfo(NULL);
  4157 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4158   osthread->set_ucontext(context);
  4159   osthread->set_siginfo(siginfo);
  4162 //
  4163 // Handler function invoked when a thread's execution is suspended or
  4164 // resumed. We have to be careful that only async-safe functions are
  4165 // called here (Note: most pthread functions are not async safe and
  4166 // should be avoided.)
  4167 //
  4168 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4169 // interface point of view, but sigwait() prevents the signal hander
  4170 // from being run. libpthread would get very confused by not having
  4171 // its signal handlers run and prevents sigwait()'s use with the
  4172 // mutex granting granting signal.
  4173 //
  4174 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4175 //
  4176 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4177   // Save and restore errno to avoid confusing native code with EINTR
  4178   // after sigsuspend.
  4179   int old_errno = errno;
  4181   Thread* thread = Thread::current();
  4182   OSThread* osthread = thread->osthread();
  4183   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4185   os::SuspendResume::State current = osthread->sr.state();
  4186   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4187     suspend_save_context(osthread, siginfo, context);
  4189     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4190     os::SuspendResume::State state = osthread->sr.suspended();
  4191     if (state == os::SuspendResume::SR_SUSPENDED) {
  4192       sigset_t suspend_set;  // signals for sigsuspend()
  4194       // get current set of blocked signals and unblock resume signal
  4195       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4196       sigdelset(&suspend_set, SR_signum);
  4198       sr_semaphore.signal();
  4199       // wait here until we are resumed
  4200       while (1) {
  4201         sigsuspend(&suspend_set);
  4203         os::SuspendResume::State result = osthread->sr.running();
  4204         if (result == os::SuspendResume::SR_RUNNING) {
  4205           sr_semaphore.signal();
  4206           break;
  4210     } else if (state == os::SuspendResume::SR_RUNNING) {
  4211       // request was cancelled, continue
  4212     } else {
  4213       ShouldNotReachHere();
  4216     resume_clear_context(osthread);
  4217   } else if (current == os::SuspendResume::SR_RUNNING) {
  4218     // request was cancelled, continue
  4219   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4220     // ignore
  4221   } else {
  4222     // ignore
  4225   errno = old_errno;
  4229 static int SR_initialize() {
  4230   struct sigaction act;
  4231   char *s;
  4232   /* Get signal number to use for suspend/resume */
  4233   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4234     int sig = ::strtol(s, 0, 10);
  4235     if (sig > 0 || sig < _NSIG) {
  4236         SR_signum = sig;
  4240   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4241         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4243   sigemptyset(&SR_sigset);
  4244   sigaddset(&SR_sigset, SR_signum);
  4246   /* Set up signal handler for suspend/resume */
  4247   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4248   act.sa_handler = (void (*)(int)) SR_handler;
  4250   // SR_signum is blocked by default.
  4251   // 4528190 - We also need to block pthread restart signal (32 on all
  4252   // supported Linux platforms). Note that LinuxThreads need to block
  4253   // this signal for all threads to work properly. So we don't have
  4254   // to use hard-coded signal number when setting up the mask.
  4255   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4257   if (sigaction(SR_signum, &act, 0) == -1) {
  4258     return -1;
  4261   // Save signal flag
  4262   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4263   return 0;
  4266 static int sr_notify(OSThread* osthread) {
  4267   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4268   assert_status(status == 0, status, "pthread_kill");
  4269   return status;
  4272 // "Randomly" selected value for how long we want to spin
  4273 // before bailing out on suspending a thread, also how often
  4274 // we send a signal to a thread we want to resume
  4275 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4276 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4278 // returns true on success and false on error - really an error is fatal
  4279 // but this seems the normal response to library errors
  4280 static bool do_suspend(OSThread* osthread) {
  4281   assert(osthread->sr.is_running(), "thread should be running");
  4282   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4284   // mark as suspended and send signal
  4285   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4286     // failed to switch, state wasn't running?
  4287     ShouldNotReachHere();
  4288     return false;
  4291   if (sr_notify(osthread) != 0) {
  4292     ShouldNotReachHere();
  4295   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4296   while (true) {
  4297     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4298       break;
  4299     } else {
  4300       // timeout
  4301       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4302       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4303         return false;
  4304       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4305         // make sure that we consume the signal on the semaphore as well
  4306         sr_semaphore.wait();
  4307         break;
  4308       } else {
  4309         ShouldNotReachHere();
  4310         return false;
  4315   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4316   return true;
  4319 static void do_resume(OSThread* osthread) {
  4320   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4321   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4323   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4324     // failed to switch to WAKEUP_REQUEST
  4325     ShouldNotReachHere();
  4326     return;
  4329   while (true) {
  4330     if (sr_notify(osthread) == 0) {
  4331       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4332         if (osthread->sr.is_running()) {
  4333           return;
  4336     } else {
  4337       ShouldNotReachHere();
  4341   guarantee(osthread->sr.is_running(), "Must be running!");
  4344 ////////////////////////////////////////////////////////////////////////////////
  4345 // interrupt support
  4347 void os::interrupt(Thread* thread) {
  4348   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4349     "possibility of dangling Thread pointer");
  4351   OSThread* osthread = thread->osthread();
  4353   if (!osthread->interrupted()) {
  4354     osthread->set_interrupted(true);
  4355     // More than one thread can get here with the same value of osthread,
  4356     // resulting in multiple notifications.  We do, however, want the store
  4357     // to interrupted() to be visible to other threads before we execute unpark().
  4358     OrderAccess::fence();
  4359     ParkEvent * const slp = thread->_SleepEvent ;
  4360     if (slp != NULL) slp->unpark() ;
  4363   // For JSR166. Unpark even if interrupt status already was set
  4364   if (thread->is_Java_thread())
  4365     ((JavaThread*)thread)->parker()->unpark();
  4367   ParkEvent * ev = thread->_ParkEvent ;
  4368   if (ev != NULL) ev->unpark() ;
  4372 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4373   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4374     "possibility of dangling Thread pointer");
  4376   OSThread* osthread = thread->osthread();
  4378   bool interrupted = osthread->interrupted();
  4380   if (interrupted && clear_interrupted) {
  4381     osthread->set_interrupted(false);
  4382     // consider thread->_SleepEvent->reset() ... optional optimization
  4385   return interrupted;
  4388 ///////////////////////////////////////////////////////////////////////////////////
  4389 // signal handling (except suspend/resume)
  4391 // This routine may be used by user applications as a "hook" to catch signals.
  4392 // The user-defined signal handler must pass unrecognized signals to this
  4393 // routine, and if it returns true (non-zero), then the signal handler must
  4394 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4395 // routine will never retun false (zero), but instead will execute a VM panic
  4396 // routine kill the process.
  4397 //
  4398 // If this routine returns false, it is OK to call it again.  This allows
  4399 // the user-defined signal handler to perform checks either before or after
  4400 // the VM performs its own checks.  Naturally, the user code would be making
  4401 // a serious error if it tried to handle an exception (such as a null check
  4402 // or breakpoint) that the VM was generating for its own correct operation.
  4403 //
  4404 // This routine may recognize any of the following kinds of signals:
  4405 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4406 // It should be consulted by handlers for any of those signals.
  4407 //
  4408 // The caller of this routine must pass in the three arguments supplied
  4409 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4410 // field of the structure passed to sigaction().  This routine assumes that
  4411 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4412 //
  4413 // Note that the VM will print warnings if it detects conflicting signal
  4414 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4415 //
  4416 extern "C" JNIEXPORT int
  4417 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4418                         void* ucontext, int abort_if_unrecognized);
  4420 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4421   assert(info != NULL && uc != NULL, "it must be old kernel");
  4422   int orig_errno = errno;  // Preserve errno value over signal handler.
  4423   JVM_handle_linux_signal(sig, info, uc, true);
  4424   errno = orig_errno;
  4428 // This boolean allows users to forward their own non-matching signals
  4429 // to JVM_handle_linux_signal, harmlessly.
  4430 bool os::Linux::signal_handlers_are_installed = false;
  4432 // For signal-chaining
  4433 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4434 unsigned int os::Linux::sigs = 0;
  4435 bool os::Linux::libjsig_is_loaded = false;
  4436 typedef struct sigaction *(*get_signal_t)(int);
  4437 get_signal_t os::Linux::get_signal_action = NULL;
  4439 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4440   struct sigaction *actp = NULL;
  4442   if (libjsig_is_loaded) {
  4443     // Retrieve the old signal handler from libjsig
  4444     actp = (*get_signal_action)(sig);
  4446   if (actp == NULL) {
  4447     // Retrieve the preinstalled signal handler from jvm
  4448     actp = get_preinstalled_handler(sig);
  4451   return actp;
  4454 static bool call_chained_handler(struct sigaction *actp, int sig,
  4455                                  siginfo_t *siginfo, void *context) {
  4456   // Call the old signal handler
  4457   if (actp->sa_handler == SIG_DFL) {
  4458     // It's more reasonable to let jvm treat it as an unexpected exception
  4459     // instead of taking the default action.
  4460     return false;
  4461   } else if (actp->sa_handler != SIG_IGN) {
  4462     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4463       // automaticlly block the signal
  4464       sigaddset(&(actp->sa_mask), sig);
  4467     sa_handler_t hand = NULL;
  4468     sa_sigaction_t sa = NULL;
  4469     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4470     // retrieve the chained handler
  4471     if (siginfo_flag_set) {
  4472       sa = actp->sa_sigaction;
  4473     } else {
  4474       hand = actp->sa_handler;
  4477     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4478       actp->sa_handler = SIG_DFL;
  4481     // try to honor the signal mask
  4482     sigset_t oset;
  4483     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4485     // call into the chained handler
  4486     if (siginfo_flag_set) {
  4487       (*sa)(sig, siginfo, context);
  4488     } else {
  4489       (*hand)(sig);
  4492     // restore the signal mask
  4493     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4495   // Tell jvm's signal handler the signal is taken care of.
  4496   return true;
  4499 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4500   bool chained = false;
  4501   // signal-chaining
  4502   if (UseSignalChaining) {
  4503     struct sigaction *actp = get_chained_signal_action(sig);
  4504     if (actp != NULL) {
  4505       chained = call_chained_handler(actp, sig, siginfo, context);
  4508   return chained;
  4511 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4512   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4513     return &sigact[sig];
  4515   return NULL;
  4518 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4519   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4520   sigact[sig] = oldAct;
  4521   sigs |= (unsigned int)1 << sig;
  4524 // for diagnostic
  4525 int os::Linux::sigflags[MAXSIGNUM];
  4527 int os::Linux::get_our_sigflags(int sig) {
  4528   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4529   return sigflags[sig];
  4532 void os::Linux::set_our_sigflags(int sig, int flags) {
  4533   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4534   sigflags[sig] = flags;
  4537 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4538   // Check for overwrite.
  4539   struct sigaction oldAct;
  4540   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4542   void* oldhand = oldAct.sa_sigaction
  4543                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4544                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4545   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4546       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4547       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4548     if (AllowUserSignalHandlers || !set_installed) {
  4549       // Do not overwrite; user takes responsibility to forward to us.
  4550       return;
  4551     } else if (UseSignalChaining) {
  4552       // save the old handler in jvm
  4553       save_preinstalled_handler(sig, oldAct);
  4554       // libjsig also interposes the sigaction() call below and saves the
  4555       // old sigaction on it own.
  4556     } else {
  4557       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4558                     "%#lx for signal %d.", (long)oldhand, sig));
  4562   struct sigaction sigAct;
  4563   sigfillset(&(sigAct.sa_mask));
  4564   sigAct.sa_handler = SIG_DFL;
  4565   if (!set_installed) {
  4566     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4567   } else {
  4568     sigAct.sa_sigaction = signalHandler;
  4569     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4571   // Save flags, which are set by ours
  4572   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4573   sigflags[sig] = sigAct.sa_flags;
  4575   int ret = sigaction(sig, &sigAct, &oldAct);
  4576   assert(ret == 0, "check");
  4578   void* oldhand2  = oldAct.sa_sigaction
  4579                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4580                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4581   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4584 // install signal handlers for signals that HotSpot needs to
  4585 // handle in order to support Java-level exception handling.
  4587 void os::Linux::install_signal_handlers() {
  4588   if (!signal_handlers_are_installed) {
  4589     signal_handlers_are_installed = true;
  4591     // signal-chaining
  4592     typedef void (*signal_setting_t)();
  4593     signal_setting_t begin_signal_setting = NULL;
  4594     signal_setting_t end_signal_setting = NULL;
  4595     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4596                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4597     if (begin_signal_setting != NULL) {
  4598       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4599                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4600       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4601                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4602       libjsig_is_loaded = true;
  4603       assert(UseSignalChaining, "should enable signal-chaining");
  4605     if (libjsig_is_loaded) {
  4606       // Tell libjsig jvm is setting signal handlers
  4607       (*begin_signal_setting)();
  4610     set_signal_handler(SIGSEGV, true);
  4611     set_signal_handler(SIGPIPE, true);
  4612     set_signal_handler(SIGBUS, true);
  4613     set_signal_handler(SIGILL, true);
  4614     set_signal_handler(SIGFPE, true);
  4615 #if defined(PPC64)
  4616     set_signal_handler(SIGTRAP, true);
  4617 #endif
  4618     set_signal_handler(SIGXFSZ, true);
  4620     if (libjsig_is_loaded) {
  4621       // Tell libjsig jvm finishes setting signal handlers
  4622       (*end_signal_setting)();
  4625     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4626     // and if UserSignalHandler is installed all bets are off.
  4627     // Log that signal checking is off only if -verbose:jni is specified.
  4628     if (CheckJNICalls) {
  4629       if (libjsig_is_loaded) {
  4630         if (PrintJNIResolving) {
  4631           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4633         check_signals = false;
  4635       if (AllowUserSignalHandlers) {
  4636         if (PrintJNIResolving) {
  4637           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4639         check_signals = false;
  4645 // This is the fastest way to get thread cpu time on Linux.
  4646 // Returns cpu time (user+sys) for any thread, not only for current.
  4647 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4648 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4649 // For reference, please, see IEEE Std 1003.1-2004:
  4650 //   http://www.unix.org/single_unix_specification
  4652 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4653   struct timespec tp;
  4654   int rc = os::Linux::clock_gettime(clockid, &tp);
  4655   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4657   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4660 /////
  4661 // glibc on Linux platform uses non-documented flag
  4662 // to indicate, that some special sort of signal
  4663 // trampoline is used.
  4664 // We will never set this flag, and we should
  4665 // ignore this flag in our diagnostic
  4666 #ifdef SIGNIFICANT_SIGNAL_MASK
  4667 #undef SIGNIFICANT_SIGNAL_MASK
  4668 #endif
  4669 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4671 static const char* get_signal_handler_name(address handler,
  4672                                            char* buf, int buflen) {
  4673   int offset = 0;
  4674   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4675   if (found) {
  4676     // skip directory names
  4677     const char *p1, *p2;
  4678     p1 = buf;
  4679     size_t len = strlen(os::file_separator());
  4680     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4681     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4682   } else {
  4683     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4685   return buf;
  4688 static void print_signal_handler(outputStream* st, int sig,
  4689                                  char* buf, size_t buflen) {
  4690   struct sigaction sa;
  4692   sigaction(sig, NULL, &sa);
  4694   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4695   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4697   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4699   address handler = (sa.sa_flags & SA_SIGINFO)
  4700     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4701     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4703   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4704     st->print("SIG_DFL");
  4705   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4706     st->print("SIG_IGN");
  4707   } else {
  4708     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4711   st->print(", sa_mask[0]=");
  4712   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4714   address rh = VMError::get_resetted_sighandler(sig);
  4715   // May be, handler was resetted by VMError?
  4716   if(rh != NULL) {
  4717     handler = rh;
  4718     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4721   st->print(", sa_flags=");
  4722   os::Posix::print_sa_flags(st, sa.sa_flags);
  4724   // Check: is it our handler?
  4725   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4726      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4727     // It is our signal handler
  4728     // check for flags, reset system-used one!
  4729     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4730       st->print(
  4731                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4732                 os::Linux::get_our_sigflags(sig));
  4735   st->cr();
  4739 #define DO_SIGNAL_CHECK(sig) \
  4740   if (!sigismember(&check_signal_done, sig)) \
  4741     os::Linux::check_signal_handler(sig)
  4743 // This method is a periodic task to check for misbehaving JNI applications
  4744 // under CheckJNI, we can add any periodic checks here
  4746 void os::run_periodic_checks() {
  4748   if (check_signals == false) return;
  4750   // SEGV and BUS if overridden could potentially prevent
  4751   // generation of hs*.log in the event of a crash, debugging
  4752   // such a case can be very challenging, so we absolutely
  4753   // check the following for a good measure:
  4754   DO_SIGNAL_CHECK(SIGSEGV);
  4755   DO_SIGNAL_CHECK(SIGILL);
  4756   DO_SIGNAL_CHECK(SIGFPE);
  4757   DO_SIGNAL_CHECK(SIGBUS);
  4758   DO_SIGNAL_CHECK(SIGPIPE);
  4759   DO_SIGNAL_CHECK(SIGXFSZ);
  4760 #if defined(PPC64)
  4761   DO_SIGNAL_CHECK(SIGTRAP);
  4762 #endif
  4764   // ReduceSignalUsage allows the user to override these handlers
  4765   // see comments at the very top and jvm_solaris.h
  4766   if (!ReduceSignalUsage) {
  4767     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4768     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4769     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4770     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4773   DO_SIGNAL_CHECK(SR_signum);
  4774   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4777 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4779 static os_sigaction_t os_sigaction = NULL;
  4781 void os::Linux::check_signal_handler(int sig) {
  4782   char buf[O_BUFLEN];
  4783   address jvmHandler = NULL;
  4786   struct sigaction act;
  4787   if (os_sigaction == NULL) {
  4788     // only trust the default sigaction, in case it has been interposed
  4789     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4790     if (os_sigaction == NULL) return;
  4793   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4796   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4798   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4799     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4800     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4803   switch(sig) {
  4804   case SIGSEGV:
  4805   case SIGBUS:
  4806   case SIGFPE:
  4807   case SIGPIPE:
  4808   case SIGILL:
  4809   case SIGXFSZ:
  4810     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4811     break;
  4813   case SHUTDOWN1_SIGNAL:
  4814   case SHUTDOWN2_SIGNAL:
  4815   case SHUTDOWN3_SIGNAL:
  4816   case BREAK_SIGNAL:
  4817     jvmHandler = (address)user_handler();
  4818     break;
  4820   case INTERRUPT_SIGNAL:
  4821     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4822     break;
  4824   default:
  4825     if (sig == SR_signum) {
  4826       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4827     } else {
  4828       return;
  4830     break;
  4833   if (thisHandler != jvmHandler) {
  4834     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4835     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4836     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4837     // No need to check this sig any longer
  4838     sigaddset(&check_signal_done, sig);
  4839     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
  4840     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
  4841       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
  4842                     exception_name(sig, buf, O_BUFLEN));
  4844   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4845     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4846     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4847     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4848     // No need to check this sig any longer
  4849     sigaddset(&check_signal_done, sig);
  4852   // Dump all the signal
  4853   if (sigismember(&check_signal_done, sig)) {
  4854     print_signal_handlers(tty, buf, O_BUFLEN);
  4858 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4860 extern bool signal_name(int signo, char* buf, size_t len);
  4862 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4863   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4864     // signal
  4865     if (!signal_name(exception_code, buf, size)) {
  4866       jio_snprintf(buf, size, "SIG%d", exception_code);
  4868     return buf;
  4869   } else {
  4870     return NULL;
  4874 // this is called _before_ the most of global arguments have been parsed
  4875 void os::init(void) {
  4876   char dummy;   /* used to get a guess on initial stack address */
  4877 //  first_hrtime = gethrtime();
  4879   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4880   // is different than the pid of the java launcher thread.
  4881   // So, on Linux, the launcher thread pid is passed to the VM
  4882   // via the sun.java.launcher.pid property.
  4883   // Use this property instead of getpid() if it was correctly passed.
  4884   // See bug 6351349.
  4885   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4887   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4889   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4891   init_random(1234567);
  4893   ThreadCritical::initialize();
  4895   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4896   if (Linux::page_size() == -1) {
  4897     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4898                   strerror(errno)));
  4900   init_page_sizes((size_t) Linux::page_size());
  4902   Linux::initialize_system_info();
  4904   // main_thread points to the aboriginal thread
  4905   Linux::_main_thread = pthread_self();
  4907   Linux::clock_init();
  4908   initial_time_count = javaTimeNanos();
  4910   // pthread_condattr initialization for monotonic clock
  4911   int status;
  4912   pthread_condattr_t* _condattr = os::Linux::condAttr();
  4913   if ((status = pthread_condattr_init(_condattr)) != 0) {
  4914     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  4916   // Only set the clock if CLOCK_MONOTONIC is available
  4917   if (Linux::supports_monotonic_clock()) {
  4918     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  4919       if (status == EINVAL) {
  4920         warning("Unable to use monotonic clock with relative timed-waits" \
  4921                 " - changes to the time-of-day clock may have adverse affects");
  4922       } else {
  4923         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  4927   // else it defaults to CLOCK_REALTIME
  4929   pthread_mutex_init(&dl_mutex, NULL);
  4931   // If the pagesize of the VM is greater than 8K determine the appropriate
  4932   // number of initial guard pages.  The user can change this with the
  4933   // command line arguments, if needed.
  4934   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4935     StackYellowPages = 1;
  4936     StackRedPages = 1;
  4937     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4941 // To install functions for atexit system call
  4942 extern "C" {
  4943   static void perfMemory_exit_helper() {
  4944     perfMemory_exit();
  4948 // this is called _after_ the global arguments have been parsed
  4949 jint os::init_2(void)
  4951   Linux::fast_thread_clock_init();
  4953   // Allocate a single page and mark it as readable for safepoint polling
  4954   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4955   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4957   os::set_polling_page( polling_page );
  4959 #ifndef PRODUCT
  4960   if(Verbose && PrintMiscellaneous)
  4961     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4962 #endif
  4964   if (!UseMembar) {
  4965     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4966     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4967     os::set_memory_serialize_page( mem_serialize_page );
  4969 #ifndef PRODUCT
  4970     if(Verbose && PrintMiscellaneous)
  4971       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4972 #endif
  4975   // initialize suspend/resume support - must do this before signal_sets_init()
  4976   if (SR_initialize() != 0) {
  4977     perror("SR_initialize failed");
  4978     return JNI_ERR;
  4981   Linux::signal_sets_init();
  4982   Linux::install_signal_handlers();
  4984   // Check minimum allowable stack size for thread creation and to initialize
  4985   // the java system classes, including StackOverflowError - depends on page
  4986   // size.  Add a page for compiler2 recursion in main thread.
  4987   // Add in 2*BytesPerWord times page size to account for VM stack during
  4988   // class initialization depending on 32 or 64 bit VM.
  4989   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4990             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4991                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4993   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4994   if (threadStackSizeInBytes != 0 &&
  4995       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4996         tty->print_cr("\nThe stack size specified is too small, "
  4997                       "Specify at least %dk",
  4998                       os::Linux::min_stack_allowed/ K);
  4999         return JNI_ERR;
  5002   // Make the stack size a multiple of the page size so that
  5003   // the yellow/red zones can be guarded.
  5004   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5005         vm_page_size()));
  5007   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  5009 #if defined(IA32)
  5010   workaround_expand_exec_shield_cs_limit();
  5011 #endif
  5013   Linux::libpthread_init();
  5014   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  5015      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  5016           Linux::glibc_version(), Linux::libpthread_version(),
  5017           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  5020   if (UseNUMA) {
  5021     if (!Linux::libnuma_init()) {
  5022       UseNUMA = false;
  5023     } else {
  5024       if ((Linux::numa_max_node() < 1)) {
  5025         // There's only one node(they start from 0), disable NUMA.
  5026         UseNUMA = false;
  5029     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  5030     // we can make the adaptive lgrp chunk resizing work. If the user specified
  5031     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  5032     // disable adaptive resizing.
  5033     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  5034       if (FLAG_IS_DEFAULT(UseNUMA)) {
  5035         UseNUMA = false;
  5036       } else {
  5037         if (FLAG_IS_DEFAULT(UseLargePages) &&
  5038             FLAG_IS_DEFAULT(UseSHM) &&
  5039             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  5040           UseLargePages = false;
  5041         } else {
  5042           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  5043           UseAdaptiveSizePolicy = false;
  5044           UseAdaptiveNUMAChunkSizing = false;
  5048     if (!UseNUMA && ForceNUMA) {
  5049       UseNUMA = true;
  5053   if (MaxFDLimit) {
  5054     // set the number of file descriptors to max. print out error
  5055     // if getrlimit/setrlimit fails but continue regardless.
  5056     struct rlimit nbr_files;
  5057     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5058     if (status != 0) {
  5059       if (PrintMiscellaneous && (Verbose || WizardMode))
  5060         perror("os::init_2 getrlimit failed");
  5061     } else {
  5062       nbr_files.rlim_cur = nbr_files.rlim_max;
  5063       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5064       if (status != 0) {
  5065         if (PrintMiscellaneous && (Verbose || WizardMode))
  5066           perror("os::init_2 setrlimit failed");
  5071   // Initialize lock used to serialize thread creation (see os::create_thread)
  5072   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  5074   // at-exit methods are called in the reverse order of their registration.
  5075   // atexit functions are called on return from main or as a result of a
  5076   // call to exit(3C). There can be only 32 of these functions registered
  5077   // and atexit() does not set errno.
  5079   if (PerfAllowAtExitRegistration) {
  5080     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5081     // atexit functions can be delayed until process exit time, which
  5082     // can be problematic for embedded VM situations. Embedded VMs should
  5083     // call DestroyJavaVM() to assure that VM resources are released.
  5085     // note: perfMemory_exit_helper atexit function may be removed in
  5086     // the future if the appropriate cleanup code can be added to the
  5087     // VM_Exit VMOperation's doit method.
  5088     if (atexit(perfMemory_exit_helper) != 0) {
  5089       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  5093   // initialize thread priority policy
  5094   prio_init();
  5096   return JNI_OK;
  5099 // Mark the polling page as unreadable
  5100 void os::make_polling_page_unreadable(void) {
  5101   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  5102     fatal("Could not disable polling page");
  5103 };
  5105 // Mark the polling page as readable
  5106 void os::make_polling_page_readable(void) {
  5107   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  5108     fatal("Could not enable polling page");
  5110 };
  5112 static int os_cpu_count(const cpu_set_t* cpus) {
  5113   int count = 0;
  5114   // only look up to the number of configured processors
  5115   for (int i = 0; i < os::processor_count(); i++) {
  5116     if (CPU_ISSET(i, cpus)) {
  5117       count++;
  5120   return count;
  5123 // Get the current number of available processors for this process.
  5124 // This value can change at any time during a process's lifetime.
  5125 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
  5126 // If anything goes wrong we fallback to returning the number of online
  5127 // processors - which can be greater than the number available to the process.
  5128 int os::active_processor_count() {
  5129   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
  5130   int cpus_size = sizeof(cpu_set_t);
  5131   int cpu_count = 0;
  5133   // pid 0 means the current thread - which we have to assume represents the process
  5134   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
  5135     cpu_count = os_cpu_count(&cpus);
  5136     if (PrintActiveCpus) {
  5137       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
  5140   else {
  5141     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
  5142     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
  5143             "which may exceed available processors", strerror(errno), cpu_count);
  5146   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
  5147   return cpu_count;
  5150 void os::set_native_thread_name(const char *name) {
  5151   // Not yet implemented.
  5152   return;
  5155 bool os::distribute_processes(uint length, uint* distribution) {
  5156   // Not yet implemented.
  5157   return false;
  5160 bool os::bind_to_processor(uint processor_id) {
  5161   // Not yet implemented.
  5162   return false;
  5165 ///
  5167 void os::SuspendedThreadTask::internal_do_task() {
  5168   if (do_suspend(_thread->osthread())) {
  5169     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  5170     do_task(context);
  5171     do_resume(_thread->osthread());
  5175 class PcFetcher : public os::SuspendedThreadTask {
  5176 public:
  5177   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5178   ExtendedPC result();
  5179 protected:
  5180   void do_task(const os::SuspendedThreadTaskContext& context);
  5181 private:
  5182   ExtendedPC _epc;
  5183 };
  5185 ExtendedPC PcFetcher::result() {
  5186   guarantee(is_done(), "task is not done yet.");
  5187   return _epc;
  5190 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5191   Thread* thread = context.thread();
  5192   OSThread* osthread = thread->osthread();
  5193   if (osthread->ucontext() != NULL) {
  5194     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5195   } else {
  5196     // NULL context is unexpected, double-check this is the VMThread
  5197     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5201 // Suspends the target using the signal mechanism and then grabs the PC before
  5202 // resuming the target. Used by the flat-profiler only
  5203 ExtendedPC os::get_thread_pc(Thread* thread) {
  5204   // Make sure that it is called by the watcher for the VMThread
  5205   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5206   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5208   PcFetcher fetcher(thread);
  5209   fetcher.run();
  5210   return fetcher.result();
  5213 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5215    if (is_NPTL()) {
  5216       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5217    } else {
  5218       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5219       // word back to default 64bit precision if condvar is signaled. Java
  5220       // wants 53bit precision.  Save and restore current value.
  5221       int fpu = get_fpu_control_word();
  5222       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5223       set_fpu_control_word(fpu);
  5224       return status;
  5228 ////////////////////////////////////////////////////////////////////////////////
  5229 // debug support
  5231 bool os::find(address addr, outputStream* st) {
  5232   Dl_info dlinfo;
  5233   memset(&dlinfo, 0, sizeof(dlinfo));
  5234   if (dladdr(addr, &dlinfo) != 0) {
  5235     st->print(PTR_FORMAT ": ", addr);
  5236     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5237       st->print("%s+%#x", dlinfo.dli_sname,
  5238                  addr - (intptr_t)dlinfo.dli_saddr);
  5239     } else if (dlinfo.dli_fbase != NULL) {
  5240       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5241     } else {
  5242       st->print("<absolute address>");
  5244     if (dlinfo.dli_fname != NULL) {
  5245       st->print(" in %s", dlinfo.dli_fname);
  5247     if (dlinfo.dli_fbase != NULL) {
  5248       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5250     st->cr();
  5252     if (Verbose) {
  5253       // decode some bytes around the PC
  5254       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5255       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5256       address       lowest = (address) dlinfo.dli_sname;
  5257       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5258       if (begin < lowest)  begin = lowest;
  5259       Dl_info dlinfo2;
  5260       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5261           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5262         end = (address) dlinfo2.dli_saddr;
  5263       Disassembler::decode(begin, end, st);
  5265     return true;
  5267   return false;
  5270 ////////////////////////////////////////////////////////////////////////////////
  5271 // misc
  5273 // This does not do anything on Linux. This is basically a hook for being
  5274 // able to use structured exception handling (thread-local exception filters)
  5275 // on, e.g., Win32.
  5276 void
  5277 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5278                          JavaCallArguments* args, Thread* thread) {
  5279   f(value, method, args, thread);
  5282 void os::print_statistics() {
  5285 int os::message_box(const char* title, const char* message) {
  5286   int i;
  5287   fdStream err(defaultStream::error_fd());
  5288   for (i = 0; i < 78; i++) err.print_raw("=");
  5289   err.cr();
  5290   err.print_raw_cr(title);
  5291   for (i = 0; i < 78; i++) err.print_raw("-");
  5292   err.cr();
  5293   err.print_raw_cr(message);
  5294   for (i = 0; i < 78; i++) err.print_raw("=");
  5295   err.cr();
  5297   char buf[16];
  5298   // Prevent process from exiting upon "read error" without consuming all CPU
  5299   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5301   return buf[0] == 'y' || buf[0] == 'Y';
  5304 int os::stat(const char *path, struct stat *sbuf) {
  5305   char pathbuf[MAX_PATH];
  5306   if (strlen(path) > MAX_PATH - 1) {
  5307     errno = ENAMETOOLONG;
  5308     return -1;
  5310   os::native_path(strcpy(pathbuf, path));
  5311   return ::stat(pathbuf, sbuf);
  5314 bool os::check_heap(bool force) {
  5315   return true;
  5318 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5319   return ::vsnprintf(buf, count, format, args);
  5322 // Is a (classpath) directory empty?
  5323 bool os::dir_is_empty(const char* path) {
  5324   DIR *dir = NULL;
  5325   struct dirent *ptr;
  5327   dir = opendir(path);
  5328   if (dir == NULL) return true;
  5330   /* Scan the directory */
  5331   bool result = true;
  5332   char buf[sizeof(struct dirent) + MAX_PATH];
  5333   while (result && (ptr = ::readdir(dir)) != NULL) {
  5334     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5335       result = false;
  5338   closedir(dir);
  5339   return result;
  5342 // This code originates from JDK's sysOpen and open64_w
  5343 // from src/solaris/hpi/src/system_md.c
  5345 #ifndef O_DELETE
  5346 #define O_DELETE 0x10000
  5347 #endif
  5349 // Open a file. Unlink the file immediately after open returns
  5350 // if the specified oflag has the O_DELETE flag set.
  5351 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5353 int os::open(const char *path, int oflag, int mode) {
  5355   if (strlen(path) > MAX_PATH - 1) {
  5356     errno = ENAMETOOLONG;
  5357     return -1;
  5359   int fd;
  5360   int o_delete = (oflag & O_DELETE);
  5361   oflag = oflag & ~O_DELETE;
  5363   fd = ::open64(path, oflag, mode);
  5364   if (fd == -1) return -1;
  5366   //If the open succeeded, the file might still be a directory
  5368     struct stat64 buf64;
  5369     int ret = ::fstat64(fd, &buf64);
  5370     int st_mode = buf64.st_mode;
  5372     if (ret != -1) {
  5373       if ((st_mode & S_IFMT) == S_IFDIR) {
  5374         errno = EISDIR;
  5375         ::close(fd);
  5376         return -1;
  5378     } else {
  5379       ::close(fd);
  5380       return -1;
  5384     /*
  5385      * All file descriptors that are opened in the JVM and not
  5386      * specifically destined for a subprocess should have the
  5387      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5388      * party native code might fork and exec without closing all
  5389      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5390      * UNIXProcess.c), and this in turn might:
  5392      * - cause end-of-file to fail to be detected on some file
  5393      *   descriptors, resulting in mysterious hangs, or
  5395      * - might cause an fopen in the subprocess to fail on a system
  5396      *   suffering from bug 1085341.
  5398      * (Yes, the default setting of the close-on-exec flag is a Unix
  5399      * design flaw)
  5401      * See:
  5402      * 1085341: 32-bit stdio routines should support file descriptors >255
  5403      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5404      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5405      */
  5406 #ifdef FD_CLOEXEC
  5408         int flags = ::fcntl(fd, F_GETFD);
  5409         if (flags != -1)
  5410             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5412 #endif
  5414   if (o_delete != 0) {
  5415     ::unlink(path);
  5417   return fd;
  5421 // create binary file, rewriting existing file if required
  5422 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5423   int oflags = O_WRONLY | O_CREAT;
  5424   if (!rewrite_existing) {
  5425     oflags |= O_EXCL;
  5427   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5430 // return current position of file pointer
  5431 jlong os::current_file_offset(int fd) {
  5432   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5435 // move file pointer to the specified offset
  5436 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5437   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5440 // This code originates from JDK's sysAvailable
  5441 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5443 int os::available(int fd, jlong *bytes) {
  5444   jlong cur, end;
  5445   int mode;
  5446   struct stat64 buf64;
  5448   if (::fstat64(fd, &buf64) >= 0) {
  5449     mode = buf64.st_mode;
  5450     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5451       /*
  5452       * XXX: is the following call interruptible? If so, this might
  5453       * need to go through the INTERRUPT_IO() wrapper as for other
  5454       * blocking, interruptible calls in this file.
  5455       */
  5456       int n;
  5457       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5458         *bytes = n;
  5459         return 1;
  5463   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5464     return 0;
  5465   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5466     return 0;
  5467   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5468     return 0;
  5470   *bytes = end - cur;
  5471   return 1;
  5474 int os::socket_available(int fd, jint *pbytes) {
  5475   // Linux doc says EINTR not returned, unlike Solaris
  5476   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5478   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5479   // is expected to return 0 on failure and 1 on success to the jdk.
  5480   return (ret < 0) ? 0 : 1;
  5483 // Map a block of memory.
  5484 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5485                      char *addr, size_t bytes, bool read_only,
  5486                      bool allow_exec) {
  5487   int prot;
  5488   int flags = MAP_PRIVATE;
  5490   if (read_only) {
  5491     prot = PROT_READ;
  5492   } else {
  5493     prot = PROT_READ | PROT_WRITE;
  5496   if (allow_exec) {
  5497     prot |= PROT_EXEC;
  5500   if (addr != NULL) {
  5501     flags |= MAP_FIXED;
  5504   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5505                                      fd, file_offset);
  5506   if (mapped_address == MAP_FAILED) {
  5507     return NULL;
  5509   return mapped_address;
  5513 // Remap a block of memory.
  5514 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5515                        char *addr, size_t bytes, bool read_only,
  5516                        bool allow_exec) {
  5517   // same as map_memory() on this OS
  5518   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5519                         allow_exec);
  5523 // Unmap a block of memory.
  5524 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5525   return munmap(addr, bytes) == 0;
  5528 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5530 static clockid_t thread_cpu_clockid(Thread* thread) {
  5531   pthread_t tid = thread->osthread()->pthread_id();
  5532   clockid_t clockid;
  5534   // Get thread clockid
  5535   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5536   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5537   return clockid;
  5540 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5541 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5542 // of a thread.
  5543 //
  5544 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5545 // the fast estimate available on the platform.
  5547 jlong os::current_thread_cpu_time() {
  5548   if (os::Linux::supports_fast_thread_cpu_time()) {
  5549     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5550   } else {
  5551     // return user + sys since the cost is the same
  5552     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5556 jlong os::thread_cpu_time(Thread* thread) {
  5557   // consistent with what current_thread_cpu_time() returns
  5558   if (os::Linux::supports_fast_thread_cpu_time()) {
  5559     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5560   } else {
  5561     return slow_thread_cpu_time(thread, true /* user + sys */);
  5565 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5566   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5567     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5568   } else {
  5569     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5573 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5574   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5575     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5576   } else {
  5577     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5581 //
  5582 //  -1 on error.
  5583 //
  5585 PRAGMA_DIAG_PUSH
  5586 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5587 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5588   static bool proc_task_unchecked = true;
  5589   static const char *proc_stat_path = "/proc/%d/stat";
  5590   pid_t  tid = thread->osthread()->thread_id();
  5591   char *s;
  5592   char stat[2048];
  5593   int statlen;
  5594   char proc_name[64];
  5595   int count;
  5596   long sys_time, user_time;
  5597   char cdummy;
  5598   int idummy;
  5599   long ldummy;
  5600   FILE *fp;
  5602   // The /proc/<tid>/stat aggregates per-process usage on
  5603   // new Linux kernels 2.6+ where NPTL is supported.
  5604   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5605   // See bug 6328462.
  5606   // There possibly can be cases where there is no directory
  5607   // /proc/self/task, so we check its availability.
  5608   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5609     // This is executed only once
  5610     proc_task_unchecked = false;
  5611     fp = fopen("/proc/self/task", "r");
  5612     if (fp != NULL) {
  5613       proc_stat_path = "/proc/self/task/%d/stat";
  5614       fclose(fp);
  5618   sprintf(proc_name, proc_stat_path, tid);
  5619   fp = fopen(proc_name, "r");
  5620   if ( fp == NULL ) return -1;
  5621   statlen = fread(stat, 1, 2047, fp);
  5622   stat[statlen] = '\0';
  5623   fclose(fp);
  5625   // Skip pid and the command string. Note that we could be dealing with
  5626   // weird command names, e.g. user could decide to rename java launcher
  5627   // to "java 1.4.2 :)", then the stat file would look like
  5628   //                1234 (java 1.4.2 :)) R ... ...
  5629   // We don't really need to know the command string, just find the last
  5630   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5631   s = strrchr(stat, ')');
  5632   if (s == NULL ) return -1;
  5634   // Skip blank chars
  5635   do s++; while (isspace(*s));
  5637   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5638                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5639                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5640                  &user_time, &sys_time);
  5641   if ( count != 13 ) return -1;
  5642   if (user_sys_cpu_time) {
  5643     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5644   } else {
  5645     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5648 PRAGMA_DIAG_POP
  5650 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5651   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5652   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5653   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5654   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5657 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5658   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5659   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5660   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5661   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5664 bool os::is_thread_cpu_time_supported() {
  5665   return true;
  5668 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5669 // Linux doesn't yet have a (official) notion of processor sets,
  5670 // so just return the system wide load average.
  5671 int os::loadavg(double loadavg[], int nelem) {
  5672   return ::getloadavg(loadavg, nelem);
  5675 void os::pause() {
  5676   char filename[MAX_PATH];
  5677   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5678     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5679   } else {
  5680     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5683   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5684   if (fd != -1) {
  5685     struct stat buf;
  5686     ::close(fd);
  5687     while (::stat(filename, &buf) == 0) {
  5688       (void)::poll(NULL, 0, 100);
  5690   } else {
  5691     jio_fprintf(stderr,
  5692       "Could not open pause file '%s', continuing immediately.\n", filename);
  5697 // Refer to the comments in os_solaris.cpp park-unpark.
  5698 //
  5699 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5700 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5701 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5702 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5703 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5704 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5705 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5706 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5707 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5708 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5709 // of libpthread avoids the problem, but isn't practical.
  5710 //
  5711 // Possible remedies:
  5712 //
  5713 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5714 //      This is palliative and probabilistic, however.  If the thread is preempted
  5715 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5716 //      than the minimum period may have passed, and the abstime may be stale (in the
  5717 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5718 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5719 //
  5720 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5721 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5722 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5723 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5724 //      thread.
  5725 //
  5726 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5727 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5728 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5729 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5730 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5731 //      timers in a graceful fashion.
  5732 //
  5733 // 4.   When the abstime value is in the past it appears that control returns
  5734 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5735 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5736 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5737 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5738 //      It may be possible to avoid reinitialization by checking the return
  5739 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5740 //      condvar we must establish the invariant that cond_signal() is only called
  5741 //      within critical sections protected by the adjunct mutex.  This prevents
  5742 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5743 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5744 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5745 //
  5746 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5747 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5748 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5749 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5750 //
  5751 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5752 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5753 // and only enabling the work-around for vulnerable environments.
  5755 // utility to compute the abstime argument to timedwait:
  5756 // millis is the relative timeout time
  5757 // abstime will be the absolute timeout time
  5758 // TODO: replace compute_abstime() with unpackTime()
  5760 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5761   if (millis < 0)  millis = 0;
  5763   jlong seconds = millis / 1000;
  5764   millis %= 1000;
  5765   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5766     seconds = 50000000;
  5769   if (os::Linux::supports_monotonic_clock()) {
  5770     struct timespec now;
  5771     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5772     assert_status(status == 0, status, "clock_gettime");
  5773     abstime->tv_sec = now.tv_sec  + seconds;
  5774     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5775     if (nanos >= NANOSECS_PER_SEC) {
  5776       abstime->tv_sec += 1;
  5777       nanos -= NANOSECS_PER_SEC;
  5779     abstime->tv_nsec = nanos;
  5780   } else {
  5781     struct timeval now;
  5782     int status = gettimeofday(&now, NULL);
  5783     assert(status == 0, "gettimeofday");
  5784     abstime->tv_sec = now.tv_sec  + seconds;
  5785     long usec = now.tv_usec + millis * 1000;
  5786     if (usec >= 1000000) {
  5787       abstime->tv_sec += 1;
  5788       usec -= 1000000;
  5790     abstime->tv_nsec = usec * 1000;
  5792   return abstime;
  5796 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5797 // Conceptually TryPark() should be equivalent to park(0).
  5799 int os::PlatformEvent::TryPark() {
  5800   for (;;) {
  5801     const int v = _Event ;
  5802     guarantee ((v == 0) || (v == 1), "invariant") ;
  5803     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5807 void os::PlatformEvent::park() {       // AKA "down()"
  5808   // Invariant: Only the thread associated with the Event/PlatformEvent
  5809   // may call park().
  5810   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5811   int v ;
  5812   for (;;) {
  5813       v = _Event ;
  5814       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5816   guarantee (v >= 0, "invariant") ;
  5817   if (v == 0) {
  5818      // Do this the hard way by blocking ...
  5819      int status = pthread_mutex_lock(_mutex);
  5820      assert_status(status == 0, status, "mutex_lock");
  5821      guarantee (_nParked == 0, "invariant") ;
  5822      ++ _nParked ;
  5823      while (_Event < 0) {
  5824         status = pthread_cond_wait(_cond, _mutex);
  5825         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5826         // Treat this the same as if the wait was interrupted
  5827         if (status == ETIME) { status = EINTR; }
  5828         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5830      -- _nParked ;
  5832     _Event = 0 ;
  5833      status = pthread_mutex_unlock(_mutex);
  5834      assert_status(status == 0, status, "mutex_unlock");
  5835     // Paranoia to ensure our locked and lock-free paths interact
  5836     // correctly with each other.
  5837     OrderAccess::fence();
  5839   guarantee (_Event >= 0, "invariant") ;
  5842 int os::PlatformEvent::park(jlong millis) {
  5843   guarantee (_nParked == 0, "invariant") ;
  5845   int v ;
  5846   for (;;) {
  5847       v = _Event ;
  5848       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5850   guarantee (v >= 0, "invariant") ;
  5851   if (v != 0) return OS_OK ;
  5853   // We do this the hard way, by blocking the thread.
  5854   // Consider enforcing a minimum timeout value.
  5855   struct timespec abst;
  5856   compute_abstime(&abst, millis);
  5858   int ret = OS_TIMEOUT;
  5859   int status = pthread_mutex_lock(_mutex);
  5860   assert_status(status == 0, status, "mutex_lock");
  5861   guarantee (_nParked == 0, "invariant") ;
  5862   ++_nParked ;
  5864   // Object.wait(timo) will return because of
  5865   // (a) notification
  5866   // (b) timeout
  5867   // (c) thread.interrupt
  5868   //
  5869   // Thread.interrupt and object.notify{All} both call Event::set.
  5870   // That is, we treat thread.interrupt as a special case of notification.
  5871   // The underlying Solaris implementation, cond_timedwait, admits
  5872   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5873   // JVM from making those visible to Java code.  As such, we must
  5874   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5875   //
  5876   // TODO: properly differentiate simultaneous notify+interrupt.
  5877   // In that case, we should propagate the notify to another waiter.
  5879   while (_Event < 0) {
  5880     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5881     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5882       pthread_cond_destroy (_cond);
  5883       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  5885     assert_status(status == 0 || status == EINTR ||
  5886                   status == ETIME || status == ETIMEDOUT,
  5887                   status, "cond_timedwait");
  5888     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5889     if (status == ETIME || status == ETIMEDOUT) break ;
  5890     // We consume and ignore EINTR and spurious wakeups.
  5892   --_nParked ;
  5893   if (_Event >= 0) {
  5894      ret = OS_OK;
  5896   _Event = 0 ;
  5897   status = pthread_mutex_unlock(_mutex);
  5898   assert_status(status == 0, status, "mutex_unlock");
  5899   assert (_nParked == 0, "invariant") ;
  5900   // Paranoia to ensure our locked and lock-free paths interact
  5901   // correctly with each other.
  5902   OrderAccess::fence();
  5903   return ret;
  5906 void os::PlatformEvent::unpark() {
  5907   // Transitions for _Event:
  5908   //    0 :=> 1
  5909   //    1 :=> 1
  5910   //   -1 :=> either 0 or 1; must signal target thread
  5911   //          That is, we can safely transition _Event from -1 to either
  5912   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5913   //          unpark() calls.
  5914   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5915   //
  5916   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5917   // that it will take two back-to-back park() calls for the owning
  5918   // thread to block. This has the benefit of forcing a spurious return
  5919   // from the first park() call after an unpark() call which will help
  5920   // shake out uses of park() and unpark() without condition variables.
  5922   if (Atomic::xchg(1, &_Event) >= 0) return;
  5924   // Wait for the thread associated with the event to vacate
  5925   int status = pthread_mutex_lock(_mutex);
  5926   assert_status(status == 0, status, "mutex_lock");
  5927   int AnyWaiters = _nParked;
  5928   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5929   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5930     AnyWaiters = 0;
  5931     pthread_cond_signal(_cond);
  5933   status = pthread_mutex_unlock(_mutex);
  5934   assert_status(status == 0, status, "mutex_unlock");
  5935   if (AnyWaiters != 0) {
  5936     status = pthread_cond_signal(_cond);
  5937     assert_status(status == 0, status, "cond_signal");
  5940   // Note that we signal() _after dropping the lock for "immortal" Events.
  5941   // This is safe and avoids a common class of  futile wakeups.  In rare
  5942   // circumstances this can cause a thread to return prematurely from
  5943   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5944   // simply re-test the condition and re-park itself.
  5948 // JSR166
  5949 // -------------------------------------------------------
  5951 /*
  5952  * The solaris and linux implementations of park/unpark are fairly
  5953  * conservative for now, but can be improved. They currently use a
  5954  * mutex/condvar pair, plus a a count.
  5955  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5956  * sets count to 1 and signals condvar.  Only one thread ever waits
  5957  * on the condvar. Contention seen when trying to park implies that someone
  5958  * is unparking you, so don't wait. And spurious returns are fine, so there
  5959  * is no need to track notifications.
  5960  */
  5962 /*
  5963  * This code is common to linux and solaris and will be moved to a
  5964  * common place in dolphin.
  5966  * The passed in time value is either a relative time in nanoseconds
  5967  * or an absolute time in milliseconds. Either way it has to be unpacked
  5968  * into suitable seconds and nanoseconds components and stored in the
  5969  * given timespec structure.
  5970  * Given time is a 64-bit value and the time_t used in the timespec is only
  5971  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5972  * overflow if times way in the future are given. Further on Solaris versions
  5973  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5974  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5975  * As it will be 28 years before "now + 100000000" will overflow we can
  5976  * ignore overflow and just impose a hard-limit on seconds using the value
  5977  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5978  * years from "now".
  5979  */
  5981 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5982   assert (time > 0, "convertTime");
  5983   time_t max_secs = 0;
  5985   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  5986     struct timeval now;
  5987     int status = gettimeofday(&now, NULL);
  5988     assert(status == 0, "gettimeofday");
  5990     max_secs = now.tv_sec + MAX_SECS;
  5992     if (isAbsolute) {
  5993       jlong secs = time / 1000;
  5994       if (secs > max_secs) {
  5995         absTime->tv_sec = max_secs;
  5996       } else {
  5997         absTime->tv_sec = secs;
  5999       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6000     } else {
  6001       jlong secs = time / NANOSECS_PER_SEC;
  6002       if (secs >= MAX_SECS) {
  6003         absTime->tv_sec = max_secs;
  6004         absTime->tv_nsec = 0;
  6005       } else {
  6006         absTime->tv_sec = now.tv_sec + secs;
  6007         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6008         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6009           absTime->tv_nsec -= NANOSECS_PER_SEC;
  6010           ++absTime->tv_sec; // note: this must be <= max_secs
  6014   } else {
  6015     // must be relative using monotonic clock
  6016     struct timespec now;
  6017     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  6018     assert_status(status == 0, status, "clock_gettime");
  6019     max_secs = now.tv_sec + MAX_SECS;
  6020     jlong secs = time / NANOSECS_PER_SEC;
  6021     if (secs >= MAX_SECS) {
  6022       absTime->tv_sec = max_secs;
  6023       absTime->tv_nsec = 0;
  6024     } else {
  6025       absTime->tv_sec = now.tv_sec + secs;
  6026       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  6027       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6028         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6029         ++absTime->tv_sec; // note: this must be <= max_secs
  6033   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6034   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6035   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6036   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6039 void Parker::park(bool isAbsolute, jlong time) {
  6040   // Ideally we'd do something useful while spinning, such
  6041   // as calling unpackTime().
  6043   // Optional fast-path check:
  6044   // Return immediately if a permit is available.
  6045   // We depend on Atomic::xchg() having full barrier semantics
  6046   // since we are doing a lock-free update to _counter.
  6047   if (Atomic::xchg(0, &_counter) > 0) return;
  6049   Thread* thread = Thread::current();
  6050   assert(thread->is_Java_thread(), "Must be JavaThread");
  6051   JavaThread *jt = (JavaThread *)thread;
  6053   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  6054   // Check interrupt before trying to wait
  6055   if (Thread::is_interrupted(thread, false)) {
  6056     return;
  6059   // Next, demultiplex/decode time arguments
  6060   timespec absTime;
  6061   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6062     return;
  6064   if (time > 0) {
  6065     unpackTime(&absTime, isAbsolute, time);
  6069   // Enter safepoint region
  6070   // Beware of deadlocks such as 6317397.
  6071   // The per-thread Parker:: mutex is a classic leaf-lock.
  6072   // In particular a thread must never block on the Threads_lock while
  6073   // holding the Parker:: mutex.  If safepoints are pending both the
  6074   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6075   ThreadBlockInVM tbivm(jt);
  6077   // Don't wait if cannot get lock since interference arises from
  6078   // unblocking.  Also. check interrupt before trying wait
  6079   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  6080     return;
  6083   int status ;
  6084   if (_counter > 0)  { // no wait needed
  6085     _counter = 0;
  6086     status = pthread_mutex_unlock(_mutex);
  6087     assert (status == 0, "invariant") ;
  6088     // Paranoia to ensure our locked and lock-free paths interact
  6089     // correctly with each other and Java-level accesses.
  6090     OrderAccess::fence();
  6091     return;
  6094 #ifdef ASSERT
  6095   // Don't catch signals while blocked; let the running threads have the signals.
  6096   // (This allows a debugger to break into the running thread.)
  6097   sigset_t oldsigs;
  6098   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  6099   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6100 #endif
  6102   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6103   jt->set_suspend_equivalent();
  6104   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6106   assert(_cur_index == -1, "invariant");
  6107   if (time == 0) {
  6108     _cur_index = REL_INDEX; // arbitrary choice when not timed
  6109     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  6110   } else {
  6111     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  6112     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  6113     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6114       pthread_cond_destroy (&_cond[_cur_index]) ;
  6115       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  6118   _cur_index = -1;
  6119   assert_status(status == 0 || status == EINTR ||
  6120                 status == ETIME || status == ETIMEDOUT,
  6121                 status, "cond_timedwait");
  6123 #ifdef ASSERT
  6124   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  6125 #endif
  6127   _counter = 0 ;
  6128   status = pthread_mutex_unlock(_mutex) ;
  6129   assert_status(status == 0, status, "invariant") ;
  6130   // Paranoia to ensure our locked and lock-free paths interact
  6131   // correctly with each other and Java-level accesses.
  6132   OrderAccess::fence();
  6134   // If externally suspended while waiting, re-suspend
  6135   if (jt->handle_special_suspend_equivalent_condition()) {
  6136     jt->java_suspend_self();
  6140 void Parker::unpark() {
  6141   int s, status ;
  6142   status = pthread_mutex_lock(_mutex);
  6143   assert (status == 0, "invariant") ;
  6144   s = _counter;
  6145   _counter = 1;
  6146   if (s < 1) {
  6147     // thread might be parked
  6148     if (_cur_index != -1) {
  6149       // thread is definitely parked
  6150       if (WorkAroundNPTLTimedWaitHang) {
  6151         status = pthread_cond_signal (&_cond[_cur_index]);
  6152         assert (status == 0, "invariant");
  6153         status = pthread_mutex_unlock(_mutex);
  6154         assert (status == 0, "invariant");
  6155       } else {
  6156         // must capture correct index before unlocking
  6157         int index = _cur_index;
  6158         status = pthread_mutex_unlock(_mutex);
  6159         assert (status == 0, "invariant");
  6160         status = pthread_cond_signal (&_cond[index]);
  6161         assert (status == 0, "invariant");
  6163     } else {
  6164       pthread_mutex_unlock(_mutex);
  6165       assert (status == 0, "invariant") ;
  6167   } else {
  6168     pthread_mutex_unlock(_mutex);
  6169     assert (status == 0, "invariant") ;
  6174 extern char** environ;
  6176 // Run the specified command in a separate process. Return its exit value,
  6177 // or -1 on failure (e.g. can't fork a new process).
  6178 // Unlike system(), this function can be called from signal handler. It
  6179 // doesn't block SIGINT et al.
  6180 int os::fork_and_exec(char* cmd) {
  6181   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6183   pid_t pid = fork();
  6185   if (pid < 0) {
  6186     // fork failed
  6187     return -1;
  6189   } else if (pid == 0) {
  6190     // child process
  6192     execve("/bin/sh", (char* const*)argv, environ);
  6194     // execve failed
  6195     _exit(-1);
  6197   } else  {
  6198     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6199     // care about the actual exit code, for now.
  6201     int status;
  6203     // Wait for the child process to exit.  This returns immediately if
  6204     // the child has already exited. */
  6205     while (waitpid(pid, &status, 0) < 0) {
  6206         switch (errno) {
  6207         case ECHILD: return 0;
  6208         case EINTR: break;
  6209         default: return -1;
  6213     if (WIFEXITED(status)) {
  6214        // The child exited normally; get its exit code.
  6215        return WEXITSTATUS(status);
  6216     } else if (WIFSIGNALED(status)) {
  6217        // The child exited because of a signal
  6218        // The best value to return is 0x80 + signal number,
  6219        // because that is what all Unix shells do, and because
  6220        // it allows callers to distinguish between process exit and
  6221        // process death by signal.
  6222        return 0x80 + WTERMSIG(status);
  6223     } else {
  6224        // Unknown exit code; pass it through
  6225        return status;
  6230 // is_headless_jre()
  6231 //
  6232 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6233 // in order to report if we are running in a headless jre
  6234 //
  6235 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6236 // as libawt.so, and renamed libawt_xawt.so
  6237 //
  6238 bool os::is_headless_jre() {
  6239     struct stat statbuf;
  6240     char buf[MAXPATHLEN];
  6241     char libmawtpath[MAXPATHLEN];
  6242     const char *xawtstr  = "/xawt/libmawt.so";
  6243     const char *new_xawtstr = "/libawt_xawt.so";
  6244     char *p;
  6246     // Get path to libjvm.so
  6247     os::jvm_path(buf, sizeof(buf));
  6249     // Get rid of libjvm.so
  6250     p = strrchr(buf, '/');
  6251     if (p == NULL) return false;
  6252     else *p = '\0';
  6254     // Get rid of client or server
  6255     p = strrchr(buf, '/');
  6256     if (p == NULL) return false;
  6257     else *p = '\0';
  6259     // check xawt/libmawt.so
  6260     strcpy(libmawtpath, buf);
  6261     strcat(libmawtpath, xawtstr);
  6262     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6264     // check libawt_xawt.so
  6265     strcpy(libmawtpath, buf);
  6266     strcat(libmawtpath, new_xawtstr);
  6267     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6269     return true;
  6272 // Get the default path to the core file
  6273 // Returns the length of the string
  6274 int os::get_core_path(char* buffer, size_t bufferSize) {
  6275   const char* p = get_current_directory(buffer, bufferSize);
  6277   if (p == NULL) {
  6278     assert(p != NULL, "failed to get current directory");
  6279     return 0;
  6282   return strlen(buffer);
  6285 /////////////// Unit tests ///////////////
  6287 #ifndef PRODUCT
  6289 #define test_log(...) \
  6290   do {\
  6291     if (VerboseInternalVMTests) { \
  6292       tty->print_cr(__VA_ARGS__); \
  6293       tty->flush(); \
  6294     }\
  6295   } while (false)
  6297 class TestReserveMemorySpecial : AllStatic {
  6298  public:
  6299   static void small_page_write(void* addr, size_t size) {
  6300     size_t page_size = os::vm_page_size();
  6302     char* end = (char*)addr + size;
  6303     for (char* p = (char*)addr; p < end; p += page_size) {
  6304       *p = 1;
  6308   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6309     if (!UseHugeTLBFS) {
  6310       return;
  6313     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6315     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6317     if (addr != NULL) {
  6318       small_page_write(addr, size);
  6320       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6324   static void test_reserve_memory_special_huge_tlbfs_only() {
  6325     if (!UseHugeTLBFS) {
  6326       return;
  6329     size_t lp = os::large_page_size();
  6331     for (size_t size = lp; size <= lp * 10; size += lp) {
  6332       test_reserve_memory_special_huge_tlbfs_only(size);
  6336   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6337     size_t lp = os::large_page_size();
  6338     size_t ag = os::vm_allocation_granularity();
  6340     // sizes to test
  6341     const size_t sizes[] = {
  6342       lp, lp + ag, lp + lp / 2, lp * 2,
  6343       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
  6344       lp * 10, lp * 10 + lp / 2
  6345     };
  6346     const int num_sizes = sizeof(sizes) / sizeof(size_t);
  6348     // For each size/alignment combination, we test three scenarios:
  6349     // 1) with req_addr == NULL
  6350     // 2) with a non-null req_addr at which we expect to successfully allocate
  6351     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
  6352     //    expect the allocation to either fail or to ignore req_addr
  6354     // Pre-allocate two areas; they shall be as large as the largest allocation
  6355     //  and aligned to the largest alignment we will be testing.
  6356     const size_t mapping_size = sizes[num_sizes - 1] * 2;
  6357     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
  6358       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6359       -1, 0);
  6360     assert(mapping1 != MAP_FAILED, "should work");
  6362     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
  6363       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6364       -1, 0);
  6365     assert(mapping2 != MAP_FAILED, "should work");
  6367     // Unmap the first mapping, but leave the second mapping intact: the first
  6368     // mapping will serve as a value for a "good" req_addr (case 2). The second
  6369     // mapping, still intact, as "bad" req_addr (case 3).
  6370     ::munmap(mapping1, mapping_size);
  6372     // Case 1
  6373     test_log("%s, req_addr NULL:", __FUNCTION__);
  6374     test_log("size            align           result");
  6376     for (int i = 0; i < num_sizes; i++) {
  6377       const size_t size = sizes[i];
  6378       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6379         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6380         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
  6381             size, alignment, p, (p != NULL ? "" : "(failed)"));
  6382         if (p != NULL) {
  6383           assert(is_ptr_aligned(p, alignment), "must be");
  6384           small_page_write(p, size);
  6385           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6390     // Case 2
  6391     test_log("%s, req_addr non-NULL:", __FUNCTION__);
  6392     test_log("size            align           req_addr         result");
  6394     for (int i = 0; i < num_sizes; i++) {
  6395       const size_t size = sizes[i];
  6396       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6397         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
  6398         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6399         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6400             size, alignment, req_addr, p,
  6401             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
  6402         if (p != NULL) {
  6403           assert(p == req_addr, "must be");
  6404           small_page_write(p, size);
  6405           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6410     // Case 3
  6411     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
  6412     test_log("size            align           req_addr         result");
  6414     for (int i = 0; i < num_sizes; i++) {
  6415       const size_t size = sizes[i];
  6416       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6417         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
  6418         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6419         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6420             size, alignment, req_addr, p,
  6421             ((p != NULL ? "" : "(failed)")));
  6422         // as the area around req_addr contains already existing mappings, the API should always
  6423         // return NULL (as per contract, it cannot return another address)
  6424         assert(p == NULL, "must be");
  6428     ::munmap(mapping2, mapping_size);
  6432   static void test_reserve_memory_special_huge_tlbfs() {
  6433     if (!UseHugeTLBFS) {
  6434       return;
  6437     test_reserve_memory_special_huge_tlbfs_only();
  6438     test_reserve_memory_special_huge_tlbfs_mixed();
  6441   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6442     if (!UseSHM) {
  6443       return;
  6446     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6448     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6450     if (addr != NULL) {
  6451       assert(is_ptr_aligned(addr, alignment), "Check");
  6452       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6454       small_page_write(addr, size);
  6456       os::Linux::release_memory_special_shm(addr, size);
  6460   static void test_reserve_memory_special_shm() {
  6461     size_t lp = os::large_page_size();
  6462     size_t ag = os::vm_allocation_granularity();
  6464     for (size_t size = ag; size < lp * 3; size += ag) {
  6465       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6466         test_reserve_memory_special_shm(size, alignment);
  6471   static void test() {
  6472     test_reserve_memory_special_huge_tlbfs();
  6473     test_reserve_memory_special_shm();
  6475 };
  6477 void TestReserveMemorySpecial_test() {
  6478   TestReserveMemorySpecial::test();
  6481 #endif

mercurial