src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Wed, 25 Apr 2012 12:36:37 +0200

author
brutisso
date
Wed, 25 Apr 2012 12:36:37 +0200
changeset 3734
48fac5d60c3c
parent 3731
8a2e5a6a19a4
child 3762
3a22b77e755a
permissions
-rw-r--r--

7163848: G1: Log GC Cause for a GC
Reviewed-by: johnc, jwilhelm, jmasa

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1Log.hpp"
    33 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    34 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    35 #include "runtime/arguments.hpp"
    36 #include "runtime/java.hpp"
    37 #include "runtime/mutexLocker.hpp"
    38 #include "utilities/debug.hpp"
    40 // Different defaults for different number of GC threads
    41 // They were chosen by running GCOld and SPECjbb on debris with different
    42 //   numbers of GC threads and choosing them based on the results
    44 // all the same
    45 static double rs_length_diff_defaults[] = {
    46   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    47 };
    49 static double cost_per_card_ms_defaults[] = {
    50   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    51 };
    53 // all the same
    54 static double young_cards_per_entry_ratio_defaults[] = {
    55   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    56 };
    58 static double cost_per_entry_ms_defaults[] = {
    59   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    60 };
    62 static double cost_per_byte_ms_defaults[] = {
    63   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    64 };
    66 // these should be pretty consistent
    67 static double constant_other_time_ms_defaults[] = {
    68   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    69 };
    72 static double young_other_cost_per_region_ms_defaults[] = {
    73   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    74 };
    76 static double non_young_other_cost_per_region_ms_defaults[] = {
    77   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    78 };
    80 // Help class for avoiding interleaved logging
    81 class LineBuffer: public StackObj {
    83 private:
    84   static const int BUFFER_LEN = 1024;
    85   static const int INDENT_CHARS = 3;
    86   char _buffer[BUFFER_LEN];
    87   int _indent_level;
    88   int _cur;
    90   void vappend(const char* format, va_list ap) {
    91     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    92     if (res != -1) {
    93       _cur += res;
    94     } else {
    95       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
    96       _buffer[BUFFER_LEN -1] = 0;
    97       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    98     }
    99   }
   101 public:
   102   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
   103     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
   104       _buffer[_cur] = ' ';
   105     }
   106   }
   108 #ifndef PRODUCT
   109   ~LineBuffer() {
   110     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
   111   }
   112 #endif
   114   void append(const char* format, ...) {
   115     va_list ap;
   116     va_start(ap, format);
   117     vappend(format, ap);
   118     va_end(ap);
   119   }
   121   void append_and_print_cr(const char* format, ...) {
   122     va_list ap;
   123     va_start(ap, format);
   124     vappend(format, ap);
   125     va_end(ap);
   126     gclog_or_tty->print_cr("%s", _buffer);
   127     _cur = _indent_level * INDENT_CHARS;
   128   }
   129 };
   131 G1CollectorPolicy::G1CollectorPolicy() :
   132   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
   133                         ? ParallelGCThreads : 1),
   135   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   136   _all_pause_times_ms(new NumberSeq()),
   137   _stop_world_start(0.0),
   138   _all_stop_world_times_ms(new NumberSeq()),
   139   _all_yield_times_ms(new NumberSeq()),
   141   _summary(new Summary()),
   143   _cur_clear_ct_time_ms(0.0),
   144   _root_region_scan_wait_time_ms(0.0),
   146   _cur_ref_proc_time_ms(0.0),
   147   _cur_ref_enq_time_ms(0.0),
   149 #ifndef PRODUCT
   150   _min_clear_cc_time_ms(-1.0),
   151   _max_clear_cc_time_ms(-1.0),
   152   _cur_clear_cc_time_ms(0.0),
   153   _cum_clear_cc_time_ms(0.0),
   154   _num_cc_clears(0L),
   155 #endif
   157   _aux_num(10),
   158   _all_aux_times_ms(new NumberSeq[_aux_num]),
   159   _cur_aux_start_times_ms(new double[_aux_num]),
   160   _cur_aux_times_ms(new double[_aux_num]),
   161   _cur_aux_times_set(new bool[_aux_num]),
   163   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   164   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   166   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   167   _prev_collection_pause_end_ms(0.0),
   168   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   169   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   170   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   171   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   172   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   173   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   174   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   175   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   176   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   177   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   178   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   179   _non_young_other_cost_per_region_ms_seq(
   180                                          new TruncatedSeq(TruncatedSeqLength)),
   182   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   183   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   185   _pause_time_target_ms((double) MaxGCPauseMillis),
   187   _gcs_are_young(true),
   188   _young_pause_num(0),
   189   _mixed_pause_num(0),
   191   _during_marking(false),
   192   _in_marking_window(false),
   193   _in_marking_window_im(false),
   195   _recent_prev_end_times_for_all_gcs_sec(
   196                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   198   _recent_avg_pause_time_ratio(0.0),
   200   _all_full_gc_times_ms(new NumberSeq()),
   202   _initiate_conc_mark_if_possible(false),
   203   _during_initial_mark_pause(false),
   204   _last_young_gc(false),
   205   _last_gc_was_young(false),
   207   _eden_bytes_before_gc(0),
   208   _survivor_bytes_before_gc(0),
   209   _capacity_before_gc(0),
   211   _eden_cset_region_length(0),
   212   _survivor_cset_region_length(0),
   213   _old_cset_region_length(0),
   215   _collection_set(NULL),
   216   _collection_set_bytes_used_before(0),
   218   // Incremental CSet attributes
   219   _inc_cset_build_state(Inactive),
   220   _inc_cset_head(NULL),
   221   _inc_cset_tail(NULL),
   222   _inc_cset_bytes_used_before(0),
   223   _inc_cset_max_finger(NULL),
   224   _inc_cset_recorded_rs_lengths(0),
   225   _inc_cset_recorded_rs_lengths_diffs(0),
   226   _inc_cset_predicted_elapsed_time_ms(0.0),
   227   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   229 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   230 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   231 #endif // _MSC_VER
   233   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   234                                                  G1YoungSurvRateNumRegionsSummary)),
   235   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   236                                               G1YoungSurvRateNumRegionsSummary)),
   237   // add here any more surv rate groups
   238   _recorded_survivor_regions(0),
   239   _recorded_survivor_head(NULL),
   240   _recorded_survivor_tail(NULL),
   241   _survivors_age_table(true),
   243   _gc_overhead_perc(0.0) {
   245   // Set up the region size and associated fields. Given that the
   246   // policy is created before the heap, we have to set this up here,
   247   // so it's done as soon as possible.
   248   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   249   HeapRegionRemSet::setup_remset_size();
   251   G1ErgoVerbose::initialize();
   252   if (PrintAdaptiveSizePolicy) {
   253     // Currently, we only use a single switch for all the heuristics.
   254     G1ErgoVerbose::set_enabled(true);
   255     // Given that we don't currently have a verboseness level
   256     // parameter, we'll hardcode this to high. This can be easily
   257     // changed in the future.
   258     G1ErgoVerbose::set_level(ErgoHigh);
   259   } else {
   260     G1ErgoVerbose::set_enabled(false);
   261   }
   263   // Verify PLAB sizes
   264   const size_t region_size = HeapRegion::GrainWords;
   265   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   266     char buffer[128];
   267     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   268                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   269     vm_exit_during_initialization(buffer);
   270   }
   272   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   273   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   275   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   276   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   277   _par_last_satb_filtering_times_ms = new double[_parallel_gc_threads];
   279   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   280   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   282   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   284   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   286   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   287   _par_last_termination_attempts = new double[_parallel_gc_threads];
   288   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   289   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
   290   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
   292   int index;
   293   if (ParallelGCThreads == 0)
   294     index = 0;
   295   else if (ParallelGCThreads > 8)
   296     index = 7;
   297   else
   298     index = ParallelGCThreads - 1;
   300   _pending_card_diff_seq->add(0.0);
   301   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   302   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   303   _young_cards_per_entry_ratio_seq->add(
   304                                   young_cards_per_entry_ratio_defaults[index]);
   305   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   306   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   307   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   308   _young_other_cost_per_region_ms_seq->add(
   309                                young_other_cost_per_region_ms_defaults[index]);
   310   _non_young_other_cost_per_region_ms_seq->add(
   311                            non_young_other_cost_per_region_ms_defaults[index]);
   313   // Below, we might need to calculate the pause time target based on
   314   // the pause interval. When we do so we are going to give G1 maximum
   315   // flexibility and allow it to do pauses when it needs to. So, we'll
   316   // arrange that the pause interval to be pause time target + 1 to
   317   // ensure that a) the pause time target is maximized with respect to
   318   // the pause interval and b) we maintain the invariant that pause
   319   // time target < pause interval. If the user does not want this
   320   // maximum flexibility, they will have to set the pause interval
   321   // explicitly.
   323   // First make sure that, if either parameter is set, its value is
   324   // reasonable.
   325   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   326     if (MaxGCPauseMillis < 1) {
   327       vm_exit_during_initialization("MaxGCPauseMillis should be "
   328                                     "greater than 0");
   329     }
   330   }
   331   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   332     if (GCPauseIntervalMillis < 1) {
   333       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   334                                     "greater than 0");
   335     }
   336   }
   338   // Then, if the pause time target parameter was not set, set it to
   339   // the default value.
   340   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   341     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   342       // The default pause time target in G1 is 200ms
   343       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   344     } else {
   345       // We do not allow the pause interval to be set without the
   346       // pause time target
   347       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   348                                     "without setting MaxGCPauseMillis");
   349     }
   350   }
   352   // Then, if the interval parameter was not set, set it according to
   353   // the pause time target (this will also deal with the case when the
   354   // pause time target is the default value).
   355   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   356     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   357   }
   359   // Finally, make sure that the two parameters are consistent.
   360   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   361     char buffer[256];
   362     jio_snprintf(buffer, 256,
   363                  "MaxGCPauseMillis (%u) should be less than "
   364                  "GCPauseIntervalMillis (%u)",
   365                  MaxGCPauseMillis, GCPauseIntervalMillis);
   366     vm_exit_during_initialization(buffer);
   367   }
   369   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   370   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   371   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   372   _sigma = (double) G1ConfidencePercent / 100.0;
   374   // start conservatively (around 50ms is about right)
   375   _concurrent_mark_remark_times_ms->add(0.05);
   376   _concurrent_mark_cleanup_times_ms->add(0.20);
   377   _tenuring_threshold = MaxTenuringThreshold;
   378   // _max_survivor_regions will be calculated by
   379   // update_young_list_target_length() during initialization.
   380   _max_survivor_regions = 0;
   382   assert(GCTimeRatio > 0,
   383          "we should have set it to a default value set_g1_gc_flags() "
   384          "if a user set it to 0");
   385   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   387   uintx reserve_perc = G1ReservePercent;
   388   // Put an artificial ceiling on this so that it's not set to a silly value.
   389   if (reserve_perc > 50) {
   390     reserve_perc = 50;
   391     warning("G1ReservePercent is set to a value that is too large, "
   392             "it's been updated to %u", reserve_perc);
   393   }
   394   _reserve_factor = (double) reserve_perc / 100.0;
   395   // This will be set when the heap is expanded
   396   // for the first time during initialization.
   397   _reserve_regions = 0;
   399   initialize_all();
   400   _collectionSetChooser = new CollectionSetChooser();
   401   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   402 }
   404 void G1CollectorPolicy::initialize_flags() {
   405   set_min_alignment(HeapRegion::GrainBytes);
   406   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   407   if (SurvivorRatio < 1) {
   408     vm_exit_during_initialization("Invalid survivor ratio specified");
   409   }
   410   CollectorPolicy::initialize_flags();
   411 }
   413 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
   414   assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
   415   assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
   416   assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
   418   if (FLAG_IS_CMDLINE(NewRatio)) {
   419     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   420       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   421     } else {
   422       _sizer_kind = SizerNewRatio;
   423       _adaptive_size = false;
   424       return;
   425     }
   426   }
   428   if (FLAG_IS_CMDLINE(NewSize)) {
   429     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
   430                                      1U);
   431     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   432       _max_desired_young_length =
   433                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   434                                   1U);
   435       _sizer_kind = SizerMaxAndNewSize;
   436       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   437     } else {
   438       _sizer_kind = SizerNewSizeOnly;
   439     }
   440   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   441     _max_desired_young_length =
   442                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   443                                   1U);
   444     _sizer_kind = SizerMaxNewSizeOnly;
   445   }
   446 }
   448 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
   449   uint default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
   450   return MAX2(1U, default_value);
   451 }
   453 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
   454   uint default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
   455   return MAX2(1U, default_value);
   456 }
   458 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
   459   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
   461   switch (_sizer_kind) {
   462     case SizerDefaults:
   463       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   464       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   465       break;
   466     case SizerNewSizeOnly:
   467       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
   468       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
   469       break;
   470     case SizerMaxNewSizeOnly:
   471       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
   472       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
   473       break;
   474     case SizerMaxAndNewSize:
   475       // Do nothing. Values set on the command line, don't update them at runtime.
   476       break;
   477     case SizerNewRatio:
   478       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
   479       _max_desired_young_length = _min_desired_young_length;
   480       break;
   481     default:
   482       ShouldNotReachHere();
   483   }
   485   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   486 }
   488 void G1CollectorPolicy::init() {
   489   // Set aside an initial future to_space.
   490   _g1 = G1CollectedHeap::heap();
   492   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   494   initialize_gc_policy_counters();
   496   if (adaptive_young_list_length()) {
   497     _young_list_fixed_length = 0;
   498   } else {
   499     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   500   }
   501   _free_regions_at_end_of_collection = _g1->free_regions();
   502   update_young_list_target_length();
   503   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
   505   // We may immediately start allocating regions and placing them on the
   506   // collection set list. Initialize the per-collection set info
   507   start_incremental_cset_building();
   508 }
   510 // Create the jstat counters for the policy.
   511 void G1CollectorPolicy::initialize_gc_policy_counters() {
   512   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   513 }
   515 bool G1CollectorPolicy::predict_will_fit(uint young_length,
   516                                          double base_time_ms,
   517                                          uint base_free_regions,
   518                                          double target_pause_time_ms) {
   519   if (young_length >= base_free_regions) {
   520     // end condition 1: not enough space for the young regions
   521     return false;
   522   }
   524   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
   525   size_t bytes_to_copy =
   526                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   527   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   528   double young_other_time_ms = predict_young_other_time_ms(young_length);
   529   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   530   if (pause_time_ms > target_pause_time_ms) {
   531     // end condition 2: prediction is over the target pause time
   532     return false;
   533   }
   535   size_t free_bytes =
   536                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
   537   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   538     // end condition 3: out-of-space (conservatively!)
   539     return false;
   540   }
   542   // success!
   543   return true;
   544 }
   546 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
   547   // re-calculate the necessary reserve
   548   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   549   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   550   // smaller than 1.0) we'll get 1.
   551   _reserve_regions = (uint) ceil(reserve_regions_d);
   553   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   554 }
   556 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
   557                                                        uint base_min_length) {
   558   uint desired_min_length = 0;
   559   if (adaptive_young_list_length()) {
   560     if (_alloc_rate_ms_seq->num() > 3) {
   561       double now_sec = os::elapsedTime();
   562       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   563       double alloc_rate_ms = predict_alloc_rate_ms();
   564       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
   565     } else {
   566       // otherwise we don't have enough info to make the prediction
   567     }
   568   }
   569   desired_min_length += base_min_length;
   570   // make sure we don't go below any user-defined minimum bound
   571   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   572 }
   574 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
   575   // Here, we might want to also take into account any additional
   576   // constraints (i.e., user-defined minimum bound). Currently, we
   577   // effectively don't set this bound.
   578   return _young_gen_sizer->max_desired_young_length();
   579 }
   581 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   582   if (rs_lengths == (size_t) -1) {
   583     // if it's set to the default value (-1), we should predict it;
   584     // otherwise, use the given value.
   585     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   586   }
   588   // Calculate the absolute and desired min bounds.
   590   // This is how many young regions we already have (currently: the survivors).
   591   uint base_min_length = recorded_survivor_regions();
   592   // This is the absolute minimum young length, which ensures that we
   593   // can allocate one eden region in the worst-case.
   594   uint absolute_min_length = base_min_length + 1;
   595   uint desired_min_length =
   596                      calculate_young_list_desired_min_length(base_min_length);
   597   if (desired_min_length < absolute_min_length) {
   598     desired_min_length = absolute_min_length;
   599   }
   601   // Calculate the absolute and desired max bounds.
   603   // We will try our best not to "eat" into the reserve.
   604   uint absolute_max_length = 0;
   605   if (_free_regions_at_end_of_collection > _reserve_regions) {
   606     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   607   }
   608   uint desired_max_length = calculate_young_list_desired_max_length();
   609   if (desired_max_length > absolute_max_length) {
   610     desired_max_length = absolute_max_length;
   611   }
   613   uint young_list_target_length = 0;
   614   if (adaptive_young_list_length()) {
   615     if (gcs_are_young()) {
   616       young_list_target_length =
   617                         calculate_young_list_target_length(rs_lengths,
   618                                                            base_min_length,
   619                                                            desired_min_length,
   620                                                            desired_max_length);
   621       _rs_lengths_prediction = rs_lengths;
   622     } else {
   623       // Don't calculate anything and let the code below bound it to
   624       // the desired_min_length, i.e., do the next GC as soon as
   625       // possible to maximize how many old regions we can add to it.
   626     }
   627   } else {
   628     // The user asked for a fixed young gen so we'll fix the young gen
   629     // whether the next GC is young or mixed.
   630     young_list_target_length = _young_list_fixed_length;
   631   }
   633   // Make sure we don't go over the desired max length, nor under the
   634   // desired min length. In case they clash, desired_min_length wins
   635   // which is why that test is second.
   636   if (young_list_target_length > desired_max_length) {
   637     young_list_target_length = desired_max_length;
   638   }
   639   if (young_list_target_length < desired_min_length) {
   640     young_list_target_length = desired_min_length;
   641   }
   643   assert(young_list_target_length > recorded_survivor_regions(),
   644          "we should be able to allocate at least one eden region");
   645   assert(young_list_target_length >= absolute_min_length, "post-condition");
   646   _young_list_target_length = young_list_target_length;
   648   update_max_gc_locker_expansion();
   649 }
   651 uint
   652 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   653                                                      uint base_min_length,
   654                                                      uint desired_min_length,
   655                                                      uint desired_max_length) {
   656   assert(adaptive_young_list_length(), "pre-condition");
   657   assert(gcs_are_young(), "only call this for young GCs");
   659   // In case some edge-condition makes the desired max length too small...
   660   if (desired_max_length <= desired_min_length) {
   661     return desired_min_length;
   662   }
   664   // We'll adjust min_young_length and max_young_length not to include
   665   // the already allocated young regions (i.e., so they reflect the
   666   // min and max eden regions we'll allocate). The base_min_length
   667   // will be reflected in the predictions by the
   668   // survivor_regions_evac_time prediction.
   669   assert(desired_min_length > base_min_length, "invariant");
   670   uint min_young_length = desired_min_length - base_min_length;
   671   assert(desired_max_length > base_min_length, "invariant");
   672   uint max_young_length = desired_max_length - base_min_length;
   674   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   675   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   676   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   677   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   678   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   679   double base_time_ms =
   680     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   681     survivor_regions_evac_time;
   682   uint available_free_regions = _free_regions_at_end_of_collection;
   683   uint base_free_regions = 0;
   684   if (available_free_regions > _reserve_regions) {
   685     base_free_regions = available_free_regions - _reserve_regions;
   686   }
   688   // Here, we will make sure that the shortest young length that
   689   // makes sense fits within the target pause time.
   691   if (predict_will_fit(min_young_length, base_time_ms,
   692                        base_free_regions, target_pause_time_ms)) {
   693     // The shortest young length will fit into the target pause time;
   694     // we'll now check whether the absolute maximum number of young
   695     // regions will fit in the target pause time. If not, we'll do
   696     // a binary search between min_young_length and max_young_length.
   697     if (predict_will_fit(max_young_length, base_time_ms,
   698                          base_free_regions, target_pause_time_ms)) {
   699       // The maximum young length will fit into the target pause time.
   700       // We are done so set min young length to the maximum length (as
   701       // the result is assumed to be returned in min_young_length).
   702       min_young_length = max_young_length;
   703     } else {
   704       // The maximum possible number of young regions will not fit within
   705       // the target pause time so we'll search for the optimal
   706       // length. The loop invariants are:
   707       //
   708       // min_young_length < max_young_length
   709       // min_young_length is known to fit into the target pause time
   710       // max_young_length is known not to fit into the target pause time
   711       //
   712       // Going into the loop we know the above hold as we've just
   713       // checked them. Every time around the loop we check whether
   714       // the middle value between min_young_length and
   715       // max_young_length fits into the target pause time. If it
   716       // does, it becomes the new min. If it doesn't, it becomes
   717       // the new max. This way we maintain the loop invariants.
   719       assert(min_young_length < max_young_length, "invariant");
   720       uint diff = (max_young_length - min_young_length) / 2;
   721       while (diff > 0) {
   722         uint young_length = min_young_length + diff;
   723         if (predict_will_fit(young_length, base_time_ms,
   724                              base_free_regions, target_pause_time_ms)) {
   725           min_young_length = young_length;
   726         } else {
   727           max_young_length = young_length;
   728         }
   729         assert(min_young_length <  max_young_length, "invariant");
   730         diff = (max_young_length - min_young_length) / 2;
   731       }
   732       // The results is min_young_length which, according to the
   733       // loop invariants, should fit within the target pause time.
   735       // These are the post-conditions of the binary search above:
   736       assert(min_young_length < max_young_length,
   737              "otherwise we should have discovered that max_young_length "
   738              "fits into the pause target and not done the binary search");
   739       assert(predict_will_fit(min_young_length, base_time_ms,
   740                               base_free_regions, target_pause_time_ms),
   741              "min_young_length, the result of the binary search, should "
   742              "fit into the pause target");
   743       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   744                                base_free_regions, target_pause_time_ms),
   745              "min_young_length, the result of the binary search, should be "
   746              "optimal, so no larger length should fit into the pause target");
   747     }
   748   } else {
   749     // Even the minimum length doesn't fit into the pause time
   750     // target, return it as the result nevertheless.
   751   }
   752   return base_min_length + min_young_length;
   753 }
   755 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   756   double survivor_regions_evac_time = 0.0;
   757   for (HeapRegion * r = _recorded_survivor_head;
   758        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   759        r = r->get_next_young_region()) {
   760     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   761   }
   762   return survivor_regions_evac_time;
   763 }
   765 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   766   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   768   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   769   if (rs_lengths > _rs_lengths_prediction) {
   770     // add 10% to avoid having to recalculate often
   771     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   772     update_young_list_target_length(rs_lengths_prediction);
   773   }
   774 }
   778 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   779                                                bool is_tlab,
   780                                                bool* gc_overhead_limit_was_exceeded) {
   781   guarantee(false, "Not using this policy feature yet.");
   782   return NULL;
   783 }
   785 // This method controls how a collector handles one or more
   786 // of its generations being fully allocated.
   787 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   788                                                        bool is_tlab) {
   789   guarantee(false, "Not using this policy feature yet.");
   790   return NULL;
   791 }
   794 #ifndef PRODUCT
   795 bool G1CollectorPolicy::verify_young_ages() {
   796   HeapRegion* head = _g1->young_list()->first_region();
   797   return
   798     verify_young_ages(head, _short_lived_surv_rate_group);
   799   // also call verify_young_ages on any additional surv rate groups
   800 }
   802 bool
   803 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   804                                      SurvRateGroup *surv_rate_group) {
   805   guarantee( surv_rate_group != NULL, "pre-condition" );
   807   const char* name = surv_rate_group->name();
   808   bool ret = true;
   809   int prev_age = -1;
   811   for (HeapRegion* curr = head;
   812        curr != NULL;
   813        curr = curr->get_next_young_region()) {
   814     SurvRateGroup* group = curr->surv_rate_group();
   815     if (group == NULL && !curr->is_survivor()) {
   816       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   817       ret = false;
   818     }
   820     if (surv_rate_group == group) {
   821       int age = curr->age_in_surv_rate_group();
   823       if (age < 0) {
   824         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   825         ret = false;
   826       }
   828       if (age <= prev_age) {
   829         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   830                                "(%d, %d)", name, age, prev_age);
   831         ret = false;
   832       }
   833       prev_age = age;
   834     }
   835   }
   837   return ret;
   838 }
   839 #endif // PRODUCT
   841 void G1CollectorPolicy::record_full_collection_start() {
   842   _cur_collection_start_sec = os::elapsedTime();
   843   // Release the future to-space so that it is available for compaction into.
   844   _g1->set_full_collection();
   845 }
   847 void G1CollectorPolicy::record_full_collection_end() {
   848   // Consider this like a collection pause for the purposes of allocation
   849   // since last pause.
   850   double end_sec = os::elapsedTime();
   851   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   852   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   854   _all_full_gc_times_ms->add(full_gc_time_ms);
   856   update_recent_gc_times(end_sec, full_gc_time_ms);
   858   _g1->clear_full_collection();
   860   // "Nuke" the heuristics that control the young/mixed GC
   861   // transitions and make sure we start with young GCs after the Full GC.
   862   set_gcs_are_young(true);
   863   _last_young_gc = false;
   864   clear_initiate_conc_mark_if_possible();
   865   clear_during_initial_mark_pause();
   866   _in_marking_window = false;
   867   _in_marking_window_im = false;
   869   _short_lived_surv_rate_group->start_adding_regions();
   870   // also call this on any additional surv rate groups
   872   record_survivor_regions(0, NULL, NULL);
   874   _free_regions_at_end_of_collection = _g1->free_regions();
   875   // Reset survivors SurvRateGroup.
   876   _survivor_surv_rate_group->reset();
   877   update_young_list_target_length();
   878   _collectionSetChooser->clear();
   879 }
   881 void G1CollectorPolicy::record_stop_world_start() {
   882   _stop_world_start = os::elapsedTime();
   883 }
   885 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   886                                                       size_t start_used) {
   887   if (G1Log::finer()) {
   888     gclog_or_tty->stamp(PrintGCTimeStamps);
   889     gclog_or_tty->print("[GC pause (%s) (%s)",
   890       GCCause::to_string(_g1->gc_cause()),
   891       gcs_are_young() ? "young" : "mixed");
   892   }
   894   // We only need to do this here as the policy will only be applied
   895   // to the GC we're about to start. so, no point is calculating this
   896   // every time we calculate / recalculate the target young length.
   897   update_survivors_policy();
   899   assert(_g1->used() == _g1->recalculate_used(),
   900          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   901                  _g1->used(), _g1->recalculate_used()));
   903   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   904   _all_stop_world_times_ms->add(s_w_t_ms);
   905   _stop_world_start = 0.0;
   907   _cur_collection_start_sec = start_time_sec;
   908   _cur_collection_pause_used_at_start_bytes = start_used;
   909   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   910   _pending_cards = _g1->pending_card_num();
   911   _max_pending_cards = _g1->max_pending_card_num();
   913   _bytes_in_collection_set_before_gc = 0;
   914   _bytes_copied_during_gc = 0;
   916   YoungList* young_list = _g1->young_list();
   917   _eden_bytes_before_gc = young_list->eden_used_bytes();
   918   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
   919   _capacity_before_gc = _g1->capacity();
   921 #ifdef DEBUG
   922   // initialise these to something well known so that we can spot
   923   // if they are not set properly
   925   for (int i = 0; i < _parallel_gc_threads; ++i) {
   926     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   927     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   928     _par_last_satb_filtering_times_ms[i] = -1234.0;
   929     _par_last_update_rs_times_ms[i] = -1234.0;
   930     _par_last_update_rs_processed_buffers[i] = -1234.0;
   931     _par_last_scan_rs_times_ms[i] = -1234.0;
   932     _par_last_obj_copy_times_ms[i] = -1234.0;
   933     _par_last_termination_times_ms[i] = -1234.0;
   934     _par_last_termination_attempts[i] = -1234.0;
   935     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   936     _par_last_gc_worker_times_ms[i] = -1234.0;
   937     _par_last_gc_worker_other_times_ms[i] = -1234.0;
   938   }
   939 #endif
   941   for (int i = 0; i < _aux_num; ++i) {
   942     _cur_aux_times_ms[i] = 0.0;
   943     _cur_aux_times_set[i] = false;
   944   }
   946   // This is initialized to zero here and is set during the evacuation
   947   // pause if we actually waited for the root region scanning to finish.
   948   _root_region_scan_wait_time_ms = 0.0;
   950   _last_gc_was_young = false;
   952   // do that for any other surv rate groups
   953   _short_lived_surv_rate_group->stop_adding_regions();
   954   _survivors_age_table.clear();
   956   assert( verify_young_ages(), "region age verification" );
   957 }
   959 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   960                                                    mark_init_elapsed_time_ms) {
   961   _during_marking = true;
   962   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   963   clear_during_initial_mark_pause();
   964   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   965 }
   967 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   968   _mark_remark_start_sec = os::elapsedTime();
   969   _during_marking = false;
   970 }
   972 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   973   double end_time_sec = os::elapsedTime();
   974   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   975   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   976   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   977   _prev_collection_pause_end_ms += elapsed_time_ms;
   979   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   980 }
   982 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   983   _mark_cleanup_start_sec = os::elapsedTime();
   984 }
   986 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   987   _last_young_gc = true;
   988   _in_marking_window = false;
   989 }
   991 void G1CollectorPolicy::record_concurrent_pause() {
   992   if (_stop_world_start > 0.0) {
   993     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   994     _all_yield_times_ms->add(yield_ms);
   995   }
   996 }
   998 void G1CollectorPolicy::record_concurrent_pause_end() {
   999 }
  1001 template<class T>
  1002 T sum_of(T* sum_arr, int start, int n, int N) {
  1003   T sum = (T)0;
  1004   for (int i = 0; i < n; i++) {
  1005     int j = (start + i) % N;
  1006     sum += sum_arr[j];
  1008   return sum;
  1011 void G1CollectorPolicy::print_par_stats(int level,
  1012                                         const char* str,
  1013                                         double* data) {
  1014   double min = data[0], max = data[0];
  1015   double total = 0.0;
  1016   LineBuffer buf(level);
  1017   buf.append("[%s (ms):", str);
  1018   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1019     double val = data[i];
  1020     if (val < min)
  1021       min = val;
  1022     if (val > max)
  1023       max = val;
  1024     total += val;
  1025     if (G1Log::finest()) {
  1026       buf.append("  %.1lf", val);
  1030   if (G1Log::finest()) {
  1031     buf.append_and_print_cr("");
  1033   double avg = total / (double) no_of_gc_threads();
  1034   buf.append_and_print_cr(" Avg: %.1lf Min: %.1lf Max: %.1lf Diff: %.1lf]",
  1035     avg, min, max, max - min);
  1038 void G1CollectorPolicy::print_par_sizes(int level,
  1039                                         const char* str,
  1040                                         double* data) {
  1041   double min = data[0], max = data[0];
  1042   double total = 0.0;
  1043   LineBuffer buf(level);
  1044   buf.append("[%s :", str);
  1045   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1046     double val = data[i];
  1047     if (val < min)
  1048       min = val;
  1049     if (val > max)
  1050       max = val;
  1051     total += val;
  1052     buf.append(" %d", (int) val);
  1054   buf.append_and_print_cr("");
  1055   double avg = total / (double) no_of_gc_threads();
  1056   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
  1057     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
  1060 void G1CollectorPolicy::print_stats(int level,
  1061                                     const char* str,
  1062                                     double value) {
  1063   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
  1066 void G1CollectorPolicy::print_stats(int level,
  1067                                     const char* str,
  1068                                     int value) {
  1069   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
  1072 double G1CollectorPolicy::avg_value(double* data) {
  1073   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1074     double ret = 0.0;
  1075     for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1076       ret += data[i];
  1078     return ret / (double) no_of_gc_threads();
  1079   } else {
  1080     return data[0];
  1084 double G1CollectorPolicy::max_value(double* data) {
  1085   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1086     double ret = data[0];
  1087     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1088       if (data[i] > ret) {
  1089         ret = data[i];
  1092     return ret;
  1093   } else {
  1094     return data[0];
  1098 double G1CollectorPolicy::sum_of_values(double* data) {
  1099   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1100     double sum = 0.0;
  1101     for (uint i = 0; i < no_of_gc_threads(); i++) {
  1102       sum += data[i];
  1104     return sum;
  1105   } else {
  1106     return data[0];
  1110 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
  1111   double ret = data1[0] + data2[0];
  1113   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1114     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1115       double data = data1[i] + data2[i];
  1116       if (data > ret) {
  1117         ret = data;
  1121   return ret;
  1124 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  1125   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
  1126     return false;
  1129   size_t marking_initiating_used_threshold =
  1130     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1131   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
  1132   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
  1134   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
  1135     if (gcs_are_young()) {
  1136       ergo_verbose5(ErgoConcCycles,
  1137         "request concurrent cycle initiation",
  1138         ergo_format_reason("occupancy higher than threshold")
  1139         ergo_format_byte("occupancy")
  1140         ergo_format_byte("allocation request")
  1141         ergo_format_byte_perc("threshold")
  1142         ergo_format_str("source"),
  1143         cur_used_bytes,
  1144         alloc_byte_size,
  1145         marking_initiating_used_threshold,
  1146         (double) InitiatingHeapOccupancyPercent,
  1147         source);
  1148       return true;
  1149     } else {
  1150       ergo_verbose5(ErgoConcCycles,
  1151         "do not request concurrent cycle initiation",
  1152         ergo_format_reason("still doing mixed collections")
  1153         ergo_format_byte("occupancy")
  1154         ergo_format_byte("allocation request")
  1155         ergo_format_byte_perc("threshold")
  1156         ergo_format_str("source"),
  1157         cur_used_bytes,
  1158         alloc_byte_size,
  1159         marking_initiating_used_threshold,
  1160         (double) InitiatingHeapOccupancyPercent,
  1161         source);
  1165   return false;
  1168 // Anything below that is considered to be zero
  1169 #define MIN_TIMER_GRANULARITY 0.0000001
  1171 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
  1172   double end_time_sec = os::elapsedTime();
  1173   double elapsed_ms = _last_pause_time_ms;
  1174   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1175   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
  1176          "otherwise, the subtraction below does not make sense");
  1177   size_t rs_size =
  1178             _cur_collection_pause_used_regions_at_start - cset_region_length();
  1179   size_t cur_used_bytes = _g1->used();
  1180   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1181   bool last_pause_included_initial_mark = false;
  1182   bool update_stats = !_g1->evacuation_failed();
  1183   set_no_of_gc_threads(no_of_gc_threads);
  1185 #ifndef PRODUCT
  1186   if (G1YoungSurvRateVerbose) {
  1187     gclog_or_tty->print_cr("");
  1188     _short_lived_surv_rate_group->print();
  1189     // do that for any other surv rate groups too
  1191 #endif // PRODUCT
  1193   last_pause_included_initial_mark = during_initial_mark_pause();
  1194   if (last_pause_included_initial_mark) {
  1195     record_concurrent_mark_init_end(0.0);
  1196   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
  1197     // Note: this might have already been set, if during the last
  1198     // pause we decided to start a cycle but at the beginning of
  1199     // this pause we decided to postpone it. That's OK.
  1200     set_initiate_conc_mark_if_possible();
  1203   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1204                           end_time_sec, false);
  1206   // This assert is exempted when we're doing parallel collection pauses,
  1207   // because the fragmentation caused by the parallel GC allocation buffers
  1208   // can lead to more memory being used during collection than was used
  1209   // before. Best leave this out until the fragmentation problem is fixed.
  1210   // Pauses in which evacuation failed can also lead to negative
  1211   // collections, since no space is reclaimed from a region containing an
  1212   // object whose evacuation failed.
  1213   // Further, we're now always doing parallel collection.  But I'm still
  1214   // leaving this here as a placeholder for a more precise assertion later.
  1215   // (DLD, 10/05.)
  1216   assert((true || parallel) // Always using GC LABs now.
  1217          || _g1->evacuation_failed()
  1218          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1219          "Negative collection");
  1221   size_t freed_bytes =
  1222     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1223   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1225   double survival_fraction =
  1226     (double)surviving_bytes/
  1227     (double)_collection_set_bytes_used_before;
  1229   // These values are used to update the summary information that is
  1230   // displayed when TraceGen0Time is enabled, and are output as part
  1231   // of the "finer" output, in the non-parallel case.
  1233   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1234   double satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms);
  1235   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1236   double update_rs_processed_buffers =
  1237     sum_of_values(_par_last_update_rs_processed_buffers);
  1238   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1239   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1240   double termination_time = avg_value(_par_last_termination_times_ms);
  1242   double known_time = ext_root_scan_time +
  1243                       satb_filtering_time +
  1244                       update_rs_time +
  1245                       scan_rs_time +
  1246                       obj_copy_time;
  1248   double other_time_ms = elapsed_ms;
  1250   // Subtract the root region scanning wait time. It's initialized to
  1251   // zero at the start of the pause.
  1252   other_time_ms -= _root_region_scan_wait_time_ms;
  1254   if (parallel) {
  1255     other_time_ms -= _cur_collection_par_time_ms;
  1256   } else {
  1257     other_time_ms -= known_time;
  1260   // Now subtract the time taken to fix up roots in generated code
  1261   other_time_ms -= _cur_collection_code_root_fixup_time_ms;
  1263   // Subtract the time taken to clean the card table from the
  1264   // current value of "other time"
  1265   other_time_ms -= _cur_clear_ct_time_ms;
  1267   // TraceGen0Time and TraceGen1Time summary info updating.
  1268   _all_pause_times_ms->add(elapsed_ms);
  1270   if (update_stats) {
  1271     _summary->record_total_time_ms(elapsed_ms);
  1272     _summary->record_other_time_ms(other_time_ms);
  1274     MainBodySummary* body_summary = _summary->main_body_summary();
  1275     assert(body_summary != NULL, "should not be null!");
  1277     body_summary->record_root_region_scan_wait_time_ms(
  1278                                                _root_region_scan_wait_time_ms);
  1279     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1280     body_summary->record_satb_filtering_time_ms(satb_filtering_time);
  1281     body_summary->record_update_rs_time_ms(update_rs_time);
  1282     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1283     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1285     if (parallel) {
  1286       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1287       body_summary->record_termination_time_ms(termination_time);
  1289       double parallel_known_time = known_time + termination_time;
  1290       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
  1291       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1294     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1296     // We exempt parallel collection from this check because Alloc Buffer
  1297     // fragmentation can produce negative collections.  Same with evac
  1298     // failure.
  1299     // Further, we're now always doing parallel collection.  But I'm still
  1300     // leaving this here as a placeholder for a more precise assertion later.
  1301     // (DLD, 10/05.
  1302     assert((true || parallel)
  1303            || _g1->evacuation_failed()
  1304            || surviving_bytes <= _collection_set_bytes_used_before,
  1305            "Or else negative collection!");
  1307     // this is where we update the allocation rate of the application
  1308     double app_time_ms =
  1309       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1310     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1311       // This usually happens due to the timer not having the required
  1312       // granularity. Some Linuxes are the usual culprits.
  1313       // We'll just set it to something (arbitrarily) small.
  1314       app_time_ms = 1.0;
  1316     // We maintain the invariant that all objects allocated by mutator
  1317     // threads will be allocated out of eden regions. So, we can use
  1318     // the eden region number allocated since the previous GC to
  1319     // calculate the application's allocate rate. The only exception
  1320     // to that is humongous objects that are allocated separately. But
  1321     // given that humongous object allocations do not really affect
  1322     // either the pause's duration nor when the next pause will take
  1323     // place we can safely ignore them here.
  1324     uint regions_allocated = eden_cset_region_length();
  1325     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1326     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1328     double interval_ms =
  1329       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1330     update_recent_gc_times(end_time_sec, elapsed_ms);
  1331     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1332     if (recent_avg_pause_time_ratio() < 0.0 ||
  1333         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1334 #ifndef PRODUCT
  1335       // Dump info to allow post-facto debugging
  1336       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1337       gclog_or_tty->print_cr("-------------------------------------------");
  1338       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1339       _recent_gc_times_ms->dump();
  1340       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1341       _recent_prev_end_times_for_all_gcs_sec->dump();
  1342       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1343                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1344       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1345       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1346 #endif  // !PRODUCT
  1347       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1348       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1349       if (_recent_avg_pause_time_ratio < 0.0) {
  1350         _recent_avg_pause_time_ratio = 0.0;
  1351       } else {
  1352         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1353         _recent_avg_pause_time_ratio = 1.0;
  1358   for (int i = 0; i < _aux_num; ++i) {
  1359     if (_cur_aux_times_set[i]) {
  1360       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1364   if (G1Log::finer()) {
  1365     bool print_marking_info =
  1366       _g1->mark_in_progress() && !last_pause_included_initial_mark;
  1368     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1369                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1370                            elapsed_ms / 1000.0);
  1372     if (_root_region_scan_wait_time_ms > 0.0) {
  1373       print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms);
  1375     if (parallel) {
  1376       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1377       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
  1378       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
  1379       if (print_marking_info) {
  1380         print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms);
  1382       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1383       if (G1Log::finest()) {
  1384         print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
  1386       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1387       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1388       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1389       if (G1Log::finest()) {
  1390         print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
  1393       for (int i = 0; i < _parallel_gc_threads; i++) {
  1394         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] -
  1395                                           _par_last_gc_worker_start_times_ms[i];
  1397         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
  1398                                    _par_last_satb_filtering_times_ms[i] +
  1399                                    _par_last_update_rs_times_ms[i] +
  1400                                    _par_last_scan_rs_times_ms[i] +
  1401                                    _par_last_obj_copy_times_ms[i] +
  1402                                    _par_last_termination_times_ms[i];
  1404         _par_last_gc_worker_other_times_ms[i] = _par_last_gc_worker_times_ms[i] -
  1405                                                 worker_known_time;
  1408       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
  1409       print_par_stats(2, "GC Worker Total", _par_last_gc_worker_times_ms);
  1410       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
  1411     } else {
  1412       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1413       if (print_marking_info) {
  1414         print_stats(1, "SATB Filtering", satb_filtering_time);
  1416       print_stats(1, "Update RS", update_rs_time);
  1417       if (G1Log::finest()) {
  1418         print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
  1420       print_stats(1, "Scan RS", scan_rs_time);
  1421       print_stats(1, "Object Copying", obj_copy_time);
  1423     print_stats(1, "Code Root Fixup", _cur_collection_code_root_fixup_time_ms);
  1424     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1425 #ifndef PRODUCT
  1426     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1427     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1428     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1429     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1430     if (_num_cc_clears > 0) {
  1431       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1433 #endif
  1434     print_stats(1, "Other", other_time_ms);
  1435     print_stats(2, "Choose CSet",
  1436                    (_recorded_young_cset_choice_time_ms +
  1437                     _recorded_non_young_cset_choice_time_ms));
  1438     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
  1439     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
  1440     print_stats(2, "Free CSet",
  1441                    (_recorded_young_free_cset_time_ms +
  1442                     _recorded_non_young_free_cset_time_ms));
  1444     for (int i = 0; i < _aux_num; ++i) {
  1445       if (_cur_aux_times_set[i]) {
  1446         char buffer[96];
  1447         sprintf(buffer, "Aux%d", i);
  1448         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1453   bool new_in_marking_window = _in_marking_window;
  1454   bool new_in_marking_window_im = false;
  1455   if (during_initial_mark_pause()) {
  1456     new_in_marking_window = true;
  1457     new_in_marking_window_im = true;
  1460   if (_last_young_gc) {
  1461     // This is supposed to to be the "last young GC" before we start
  1462     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1464     if (!last_pause_included_initial_mark) {
  1465       if (next_gc_should_be_mixed("start mixed GCs",
  1466                                   "do not start mixed GCs")) {
  1467         set_gcs_are_young(false);
  1469     } else {
  1470       ergo_verbose0(ErgoMixedGCs,
  1471                     "do not start mixed GCs",
  1472                     ergo_format_reason("concurrent cycle is about to start"));
  1474     _last_young_gc = false;
  1477   if (!_last_gc_was_young) {
  1478     // This is a mixed GC. Here we decide whether to continue doing
  1479     // mixed GCs or not.
  1481     if (!next_gc_should_be_mixed("continue mixed GCs",
  1482                                  "do not continue mixed GCs")) {
  1483       set_gcs_are_young(true);
  1487   _short_lived_surv_rate_group->start_adding_regions();
  1488   // do that for any other surv rate groupsx
  1490   if (update_stats) {
  1491     double pause_time_ms = elapsed_ms;
  1493     size_t diff = 0;
  1494     if (_max_pending_cards >= _pending_cards) {
  1495       diff = _max_pending_cards - _pending_cards;
  1497     _pending_card_diff_seq->add((double) diff);
  1499     double cost_per_card_ms = 0.0;
  1500     if (_pending_cards > 0) {
  1501       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1502       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1505     size_t cards_scanned = _g1->cards_scanned();
  1507     double cost_per_entry_ms = 0.0;
  1508     if (cards_scanned > 10) {
  1509       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1510       if (_last_gc_was_young) {
  1511         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1512       } else {
  1513         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1517     if (_max_rs_lengths > 0) {
  1518       double cards_per_entry_ratio =
  1519         (double) cards_scanned / (double) _max_rs_lengths;
  1520       if (_last_gc_was_young) {
  1521         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1522       } else {
  1523         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1527     // This is defensive. For a while _max_rs_lengths could get
  1528     // smaller than _recorded_rs_lengths which was causing
  1529     // rs_length_diff to get very large and mess up the RSet length
  1530     // predictions. The reason was unsafe concurrent updates to the
  1531     // _inc_cset_recorded_rs_lengths field which the code below guards
  1532     // against (see CR 7118202). This bug has now been fixed (see CR
  1533     // 7119027). However, I'm still worried that
  1534     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1535     // inaccurate. The concurrent refinement thread calculates an
  1536     // RSet's length concurrently with other CR threads updating it
  1537     // which might cause it to calculate the length incorrectly (if,
  1538     // say, it's in mid-coarsening). So I'll leave in the defensive
  1539     // conditional below just in case.
  1540     size_t rs_length_diff = 0;
  1541     if (_max_rs_lengths > _recorded_rs_lengths) {
  1542       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1544     _rs_length_diff_seq->add((double) rs_length_diff);
  1546     size_t copied_bytes = surviving_bytes;
  1547     double cost_per_byte_ms = 0.0;
  1548     if (copied_bytes > 0) {
  1549       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1550       if (_in_marking_window) {
  1551         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1552       } else {
  1553         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1557     double all_other_time_ms = pause_time_ms -
  1558       (update_rs_time + scan_rs_time + obj_copy_time + termination_time);
  1560     double young_other_time_ms = 0.0;
  1561     if (young_cset_region_length() > 0) {
  1562       young_other_time_ms =
  1563         _recorded_young_cset_choice_time_ms +
  1564         _recorded_young_free_cset_time_ms;
  1565       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1566                                           (double) young_cset_region_length());
  1568     double non_young_other_time_ms = 0.0;
  1569     if (old_cset_region_length() > 0) {
  1570       non_young_other_time_ms =
  1571         _recorded_non_young_cset_choice_time_ms +
  1572         _recorded_non_young_free_cset_time_ms;
  1574       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1575                                             (double) old_cset_region_length());
  1578     double constant_other_time_ms = all_other_time_ms -
  1579       (young_other_time_ms + non_young_other_time_ms);
  1580     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1582     double survival_ratio = 0.0;
  1583     if (_bytes_in_collection_set_before_gc > 0) {
  1584       survival_ratio = (double) _bytes_copied_during_gc /
  1585                                    (double) _bytes_in_collection_set_before_gc;
  1588     _pending_cards_seq->add((double) _pending_cards);
  1589     _rs_lengths_seq->add((double) _max_rs_lengths);
  1592   _in_marking_window = new_in_marking_window;
  1593   _in_marking_window_im = new_in_marking_window_im;
  1594   _free_regions_at_end_of_collection = _g1->free_regions();
  1595   update_young_list_target_length();
  1597   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1598   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1599   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1601   _collectionSetChooser->verify();
  1604 #define EXT_SIZE_FORMAT "%d%s"
  1605 #define EXT_SIZE_PARAMS(bytes)                                  \
  1606   byte_size_in_proper_unit((bytes)),                            \
  1607   proper_unit_for_byte_size((bytes))
  1609 void G1CollectorPolicy::print_heap_transition() {
  1610   if (G1Log::finer()) {
  1611     YoungList* young_list = _g1->young_list();
  1612     size_t eden_bytes = young_list->eden_used_bytes();
  1613     size_t survivor_bytes = young_list->survivor_used_bytes();
  1614     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1615     size_t used = _g1->used();
  1616     size_t capacity = _g1->capacity();
  1617     size_t eden_capacity =
  1618       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1620     gclog_or_tty->print_cr(
  1621       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1622       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1623       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1624       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1625       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1626       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1627       EXT_SIZE_PARAMS(eden_bytes),
  1628       EXT_SIZE_PARAMS(eden_capacity),
  1629       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1630       EXT_SIZE_PARAMS(survivor_bytes),
  1631       EXT_SIZE_PARAMS(used_before_gc),
  1632       EXT_SIZE_PARAMS(_capacity_before_gc),
  1633       EXT_SIZE_PARAMS(used),
  1634       EXT_SIZE_PARAMS(capacity));
  1636     _prev_eden_capacity = eden_capacity;
  1637   } else if (G1Log::fine()) {
  1638     _g1->print_size_transition(gclog_or_tty,
  1639                                _cur_collection_pause_used_at_start_bytes,
  1640                                _g1->used(), _g1->capacity());
  1644 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1645                                                      double update_rs_processed_buffers,
  1646                                                      double goal_ms) {
  1647   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1648   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1650   if (G1UseAdaptiveConcRefinement) {
  1651     const int k_gy = 3, k_gr = 6;
  1652     const double inc_k = 1.1, dec_k = 0.9;
  1654     int g = cg1r->green_zone();
  1655     if (update_rs_time > goal_ms) {
  1656       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1657     } else {
  1658       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1659         g = (int)MAX2(g * inc_k, g + 1.0);
  1662     // Change the refinement threads params
  1663     cg1r->set_green_zone(g);
  1664     cg1r->set_yellow_zone(g * k_gy);
  1665     cg1r->set_red_zone(g * k_gr);
  1666     cg1r->reinitialize_threads();
  1668     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1669     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1670                                     cg1r->yellow_zone());
  1671     // Change the barrier params
  1672     dcqs.set_process_completed_threshold(processing_threshold);
  1673     dcqs.set_max_completed_queue(cg1r->red_zone());
  1676   int curr_queue_size = dcqs.completed_buffers_num();
  1677   if (curr_queue_size >= cg1r->yellow_zone()) {
  1678     dcqs.set_completed_queue_padding(curr_queue_size);
  1679   } else {
  1680     dcqs.set_completed_queue_padding(0);
  1682   dcqs.notify_if_necessary();
  1685 double
  1686 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1687   size_t rs_length = predict_rs_length_diff();
  1688   size_t card_num;
  1689   if (gcs_are_young()) {
  1690     card_num = predict_young_card_num(rs_length);
  1691   } else {
  1692     card_num = predict_non_young_card_num(rs_length);
  1694   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1697 double
  1698 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1699                                                 size_t scanned_cards) {
  1700   return
  1701     predict_rs_update_time_ms(pending_cards) +
  1702     predict_rs_scan_time_ms(scanned_cards) +
  1703     predict_constant_other_time_ms();
  1706 double
  1707 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1708                                                   bool young) {
  1709   size_t rs_length = hr->rem_set()->occupied();
  1710   size_t card_num;
  1711   if (gcs_are_young()) {
  1712     card_num = predict_young_card_num(rs_length);
  1713   } else {
  1714     card_num = predict_non_young_card_num(rs_length);
  1716   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1718   double region_elapsed_time_ms =
  1719     predict_rs_scan_time_ms(card_num) +
  1720     predict_object_copy_time_ms(bytes_to_copy);
  1722   if (young)
  1723     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1724   else
  1725     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1727   return region_elapsed_time_ms;
  1730 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1731   size_t bytes_to_copy;
  1732   if (hr->is_marked())
  1733     bytes_to_copy = hr->max_live_bytes();
  1734   else {
  1735     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1736     int age = hr->age_in_surv_rate_group();
  1737     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1738     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1740   return bytes_to_copy;
  1743 void
  1744 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
  1745                                             uint survivor_cset_region_length) {
  1746   _eden_cset_region_length     = eden_cset_region_length;
  1747   _survivor_cset_region_length = survivor_cset_region_length;
  1748   _old_cset_region_length      = 0;
  1751 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1752   _recorded_rs_lengths = rs_lengths;
  1755 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1756                                                double elapsed_ms) {
  1757   _recent_gc_times_ms->add(elapsed_ms);
  1758   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1759   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1762 size_t G1CollectorPolicy::expansion_amount() {
  1763   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1764   double threshold = _gc_overhead_perc;
  1765   if (recent_gc_overhead > threshold) {
  1766     // We will double the existing space, or take
  1767     // G1ExpandByPercentOfAvailable % of the available expansion
  1768     // space, whichever is smaller, bounded below by a minimum
  1769     // expansion (unless that's all that's left.)
  1770     const size_t min_expand_bytes = 1*M;
  1771     size_t reserved_bytes = _g1->max_capacity();
  1772     size_t committed_bytes = _g1->capacity();
  1773     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1774     size_t expand_bytes;
  1775     size_t expand_bytes_via_pct =
  1776       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1777     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1778     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1779     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1781     ergo_verbose5(ErgoHeapSizing,
  1782                   "attempt heap expansion",
  1783                   ergo_format_reason("recent GC overhead higher than "
  1784                                      "threshold after GC")
  1785                   ergo_format_perc("recent GC overhead")
  1786                   ergo_format_perc("threshold")
  1787                   ergo_format_byte("uncommitted")
  1788                   ergo_format_byte_perc("calculated expansion amount"),
  1789                   recent_gc_overhead, threshold,
  1790                   uncommitted_bytes,
  1791                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1793     return expand_bytes;
  1794   } else {
  1795     return 0;
  1799 class CountCSClosure: public HeapRegionClosure {
  1800   G1CollectorPolicy* _g1_policy;
  1801 public:
  1802   CountCSClosure(G1CollectorPolicy* g1_policy) :
  1803     _g1_policy(g1_policy) {}
  1804   bool doHeapRegion(HeapRegion* r) {
  1805     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  1806     return false;
  1808 };
  1810 void G1CollectorPolicy::count_CS_bytes_used() {
  1811   CountCSClosure cs_closure(this);
  1812   _g1->collection_set_iterate(&cs_closure);
  1815 void G1CollectorPolicy::print_summary(int level,
  1816                                       const char* str,
  1817                                       NumberSeq* seq) const {
  1818   double sum = seq->sum();
  1819   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  1820                 str, sum / 1000.0, seq->avg());
  1823 void G1CollectorPolicy::print_summary_sd(int level,
  1824                                          const char* str,
  1825                                          NumberSeq* seq) const {
  1826   print_summary(level, str, seq);
  1827   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  1828                 seq->num(), seq->sd(), seq->maximum());
  1831 void G1CollectorPolicy::check_other_times(int level,
  1832                                         NumberSeq* other_times_ms,
  1833                                         NumberSeq* calc_other_times_ms) const {
  1834   bool should_print = false;
  1835   LineBuffer buf(level + 2);
  1837   double max_sum = MAX2(fabs(other_times_ms->sum()),
  1838                         fabs(calc_other_times_ms->sum()));
  1839   double min_sum = MIN2(fabs(other_times_ms->sum()),
  1840                         fabs(calc_other_times_ms->sum()));
  1841   double sum_ratio = max_sum / min_sum;
  1842   if (sum_ratio > 1.1) {
  1843     should_print = true;
  1844     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  1847   double max_avg = MAX2(fabs(other_times_ms->avg()),
  1848                         fabs(calc_other_times_ms->avg()));
  1849   double min_avg = MIN2(fabs(other_times_ms->avg()),
  1850                         fabs(calc_other_times_ms->avg()));
  1851   double avg_ratio = max_avg / min_avg;
  1852   if (avg_ratio > 1.1) {
  1853     should_print = true;
  1854     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  1857   if (other_times_ms->sum() < -0.01) {
  1858     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  1861   if (other_times_ms->avg() < -0.01) {
  1862     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  1865   if (calc_other_times_ms->sum() < -0.01) {
  1866     should_print = true;
  1867     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  1870   if (calc_other_times_ms->avg() < -0.01) {
  1871     should_print = true;
  1872     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  1875   if (should_print)
  1876     print_summary(level, "Other(Calc)", calc_other_times_ms);
  1879 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  1880   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1881   MainBodySummary*    body_summary = summary->main_body_summary();
  1882   if (summary->get_total_seq()->num() > 0) {
  1883     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  1884     if (body_summary != NULL) {
  1885       print_summary(1, "Root Region Scan Wait", body_summary->get_root_region_scan_wait_seq());
  1886       if (parallel) {
  1887         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  1888         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  1889         print_summary(2, "SATB Filtering", body_summary->get_satb_filtering_seq());
  1890         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  1891         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  1892         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  1893         print_summary(2, "Termination", body_summary->get_termination_seq());
  1894         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
  1896           NumberSeq* other_parts[] = {
  1897             body_summary->get_ext_root_scan_seq(),
  1898             body_summary->get_satb_filtering_seq(),
  1899             body_summary->get_update_rs_seq(),
  1900             body_summary->get_scan_rs_seq(),
  1901             body_summary->get_obj_copy_seq(),
  1902             body_summary->get_termination_seq()
  1903           };
  1904           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  1905                                         6, other_parts);
  1906           check_other_times(2, body_summary->get_parallel_other_seq(),
  1907                             &calc_other_times_ms);
  1909       } else {
  1910         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  1911         print_summary(1, "SATB Filtering", body_summary->get_satb_filtering_seq());
  1912         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  1913         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  1914         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  1917     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  1918     print_summary(1, "Other", summary->get_other_seq());
  1920       if (body_summary != NULL) {
  1921         NumberSeq calc_other_times_ms;
  1922         if (parallel) {
  1923           // parallel
  1924           NumberSeq* other_parts[] = {
  1925             body_summary->get_root_region_scan_wait_seq(),
  1926             body_summary->get_parallel_seq(),
  1927             body_summary->get_clear_ct_seq()
  1928           };
  1929           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  1930                                           3, other_parts);
  1931         } else {
  1932           // serial
  1933           NumberSeq* other_parts[] = {
  1934             body_summary->get_root_region_scan_wait_seq(),
  1935             body_summary->get_update_rs_seq(),
  1936             body_summary->get_ext_root_scan_seq(),
  1937             body_summary->get_satb_filtering_seq(),
  1938             body_summary->get_scan_rs_seq(),
  1939             body_summary->get_obj_copy_seq()
  1940           };
  1941           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  1942                                           6, other_parts);
  1944         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  1947   } else {
  1948     LineBuffer(1).append_and_print_cr("none");
  1950   LineBuffer(0).append_and_print_cr("");
  1953 void G1CollectorPolicy::print_tracing_info() const {
  1954   if (TraceGen0Time) {
  1955     gclog_or_tty->print_cr("ALL PAUSES");
  1956     print_summary_sd(0, "Total", _all_pause_times_ms);
  1957     gclog_or_tty->print_cr("");
  1958     gclog_or_tty->print_cr("");
  1959     gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  1960     gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  1961     gclog_or_tty->print_cr("");
  1963     gclog_or_tty->print_cr("EVACUATION PAUSES");
  1964     print_summary(_summary);
  1966     gclog_or_tty->print_cr("MISC");
  1967     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  1968     print_summary_sd(0, "Yields", _all_yield_times_ms);
  1969     for (int i = 0; i < _aux_num; ++i) {
  1970       if (_all_aux_times_ms[i].num() > 0) {
  1971         char buffer[96];
  1972         sprintf(buffer, "Aux%d", i);
  1973         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  1977   if (TraceGen1Time) {
  1978     if (_all_full_gc_times_ms->num() > 0) {
  1979       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  1980                  _all_full_gc_times_ms->num(),
  1981                  _all_full_gc_times_ms->sum() / 1000.0);
  1982       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  1983       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  1984                     _all_full_gc_times_ms->sd(),
  1985                     _all_full_gc_times_ms->maximum());
  1990 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  1991 #ifndef PRODUCT
  1992   _short_lived_surv_rate_group->print_surv_rate_summary();
  1993   // add this call for any other surv rate groups
  1994 #endif // PRODUCT
  1997 #ifndef PRODUCT
  1998 // for debugging, bit of a hack...
  1999 static char*
  2000 region_num_to_mbs(int length) {
  2001   static char buffer[64];
  2002   double bytes = (double) (length * HeapRegion::GrainBytes);
  2003   double mbs = bytes / (double) (1024 * 1024);
  2004   sprintf(buffer, "%7.2lfMB", mbs);
  2005   return buffer;
  2007 #endif // PRODUCT
  2009 uint G1CollectorPolicy::max_regions(int purpose) {
  2010   switch (purpose) {
  2011     case GCAllocForSurvived:
  2012       return _max_survivor_regions;
  2013     case GCAllocForTenured:
  2014       return REGIONS_UNLIMITED;
  2015     default:
  2016       ShouldNotReachHere();
  2017       return REGIONS_UNLIMITED;
  2018   };
  2021 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  2022   uint expansion_region_num = 0;
  2023   if (GCLockerEdenExpansionPercent > 0) {
  2024     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  2025     double expansion_region_num_d = perc * (double) _young_list_target_length;
  2026     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  2027     // less than 1.0) we'll get 1.
  2028     expansion_region_num = (uint) ceil(expansion_region_num_d);
  2029   } else {
  2030     assert(expansion_region_num == 0, "sanity");
  2032   _young_list_max_length = _young_list_target_length + expansion_region_num;
  2033   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  2036 // Calculates survivor space parameters.
  2037 void G1CollectorPolicy::update_survivors_policy() {
  2038   double max_survivor_regions_d =
  2039                  (double) _young_list_target_length / (double) SurvivorRatio;
  2040   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  2041   // smaller than 1.0) we'll get 1.
  2042   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
  2044   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2045         HeapRegion::GrainWords * _max_survivor_regions);
  2048 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  2049                                                      GCCause::Cause gc_cause) {
  2050   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2051   if (!during_cycle) {
  2052     ergo_verbose1(ErgoConcCycles,
  2053                   "request concurrent cycle initiation",
  2054                   ergo_format_reason("requested by GC cause")
  2055                   ergo_format_str("GC cause"),
  2056                   GCCause::to_string(gc_cause));
  2057     set_initiate_conc_mark_if_possible();
  2058     return true;
  2059   } else {
  2060     ergo_verbose1(ErgoConcCycles,
  2061                   "do not request concurrent cycle initiation",
  2062                   ergo_format_reason("concurrent cycle already in progress")
  2063                   ergo_format_str("GC cause"),
  2064                   GCCause::to_string(gc_cause));
  2065     return false;
  2069 void
  2070 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2071   // We are about to decide on whether this pause will be an
  2072   // initial-mark pause.
  2074   // First, during_initial_mark_pause() should not be already set. We
  2075   // will set it here if we have to. However, it should be cleared by
  2076   // the end of the pause (it's only set for the duration of an
  2077   // initial-mark pause).
  2078   assert(!during_initial_mark_pause(), "pre-condition");
  2080   if (initiate_conc_mark_if_possible()) {
  2081     // We had noticed on a previous pause that the heap occupancy has
  2082     // gone over the initiating threshold and we should start a
  2083     // concurrent marking cycle. So we might initiate one.
  2085     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2086     if (!during_cycle) {
  2087       // The concurrent marking thread is not "during a cycle", i.e.,
  2088       // it has completed the last one. So we can go ahead and
  2089       // initiate a new cycle.
  2091       set_during_initial_mark_pause();
  2092       // We do not allow mixed GCs during marking.
  2093       if (!gcs_are_young()) {
  2094         set_gcs_are_young(true);
  2095         ergo_verbose0(ErgoMixedGCs,
  2096                       "end mixed GCs",
  2097                       ergo_format_reason("concurrent cycle is about to start"));
  2100       // And we can now clear initiate_conc_mark_if_possible() as
  2101       // we've already acted on it.
  2102       clear_initiate_conc_mark_if_possible();
  2104       ergo_verbose0(ErgoConcCycles,
  2105                   "initiate concurrent cycle",
  2106                   ergo_format_reason("concurrent cycle initiation requested"));
  2107     } else {
  2108       // The concurrent marking thread is still finishing up the
  2109       // previous cycle. If we start one right now the two cycles
  2110       // overlap. In particular, the concurrent marking thread might
  2111       // be in the process of clearing the next marking bitmap (which
  2112       // we will use for the next cycle if we start one). Starting a
  2113       // cycle now will be bad given that parts of the marking
  2114       // information might get cleared by the marking thread. And we
  2115       // cannot wait for the marking thread to finish the cycle as it
  2116       // periodically yields while clearing the next marking bitmap
  2117       // and, if it's in a yield point, it's waiting for us to
  2118       // finish. So, at this point we will not start a cycle and we'll
  2119       // let the concurrent marking thread complete the last one.
  2120       ergo_verbose0(ErgoConcCycles,
  2121                     "do not initiate concurrent cycle",
  2122                     ergo_format_reason("concurrent cycle already in progress"));
  2127 class KnownGarbageClosure: public HeapRegionClosure {
  2128   G1CollectedHeap* _g1h;
  2129   CollectionSetChooser* _hrSorted;
  2131 public:
  2132   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2133     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  2135   bool doHeapRegion(HeapRegion* r) {
  2136     // We only include humongous regions in collection
  2137     // sets when concurrent mark shows that their contained object is
  2138     // unreachable.
  2140     // Do we have any marking information for this region?
  2141     if (r->is_marked()) {
  2142       // We will skip any region that's currently used as an old GC
  2143       // alloc region (we should not consider those for collection
  2144       // before we fill them up).
  2145       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  2146         _hrSorted->add_region(r);
  2149     return false;
  2151 };
  2153 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2154   G1CollectedHeap* _g1h;
  2155   CollectionSetChooser* _hrSorted;
  2156   uint _marked_regions_added;
  2157   size_t _reclaimable_bytes_added;
  2158   uint _chunk_size;
  2159   uint _cur_chunk_idx;
  2160   uint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2162   void get_new_chunk() {
  2163     _cur_chunk_idx = _hrSorted->claim_array_chunk(_chunk_size);
  2164     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2166   void add_region(HeapRegion* r) {
  2167     if (_cur_chunk_idx == _cur_chunk_end) {
  2168       get_new_chunk();
  2170     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2171     _hrSorted->set_region(_cur_chunk_idx, r);
  2172     _marked_regions_added++;
  2173     _reclaimable_bytes_added += r->reclaimable_bytes();
  2174     _cur_chunk_idx++;
  2177 public:
  2178   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2179                            uint chunk_size) :
  2180       _g1h(G1CollectedHeap::heap()),
  2181       _hrSorted(hrSorted), _chunk_size(chunk_size),
  2182       _marked_regions_added(0), _reclaimable_bytes_added(0),
  2183       _cur_chunk_idx(0), _cur_chunk_end(0) { }
  2185   bool doHeapRegion(HeapRegion* r) {
  2186     // Do we have any marking information for this region?
  2187     if (r->is_marked()) {
  2188       // We will skip any region that's currently used as an old GC
  2189       // alloc region (we should not consider those for collection
  2190       // before we fill them up).
  2191       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  2192         add_region(r);
  2195     return false;
  2197   uint marked_regions_added() { return _marked_regions_added; }
  2198   size_t reclaimable_bytes_added() { return _reclaimable_bytes_added; }
  2199 };
  2201 class ParKnownGarbageTask: public AbstractGangTask {
  2202   CollectionSetChooser* _hrSorted;
  2203   uint _chunk_size;
  2204   G1CollectedHeap* _g1;
  2205 public:
  2206   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
  2207     AbstractGangTask("ParKnownGarbageTask"),
  2208     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2209     _g1(G1CollectedHeap::heap()) { }
  2211   void work(uint worker_id) {
  2212     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
  2214     // Back to zero for the claim value.
  2215     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  2216                                          _g1->workers()->active_workers(),
  2217                                          HeapRegion::InitialClaimValue);
  2218     uint regions_added = parKnownGarbageCl.marked_regions_added();
  2219     size_t reclaimable_bytes_added =
  2220                                    parKnownGarbageCl.reclaimable_bytes_added();
  2221     _hrSorted->update_totals(regions_added, reclaimable_bytes_added);
  2223 };
  2225 void
  2226 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  2227   _collectionSetChooser->clear();
  2229   uint region_num = _g1->n_regions();
  2230   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2231     const uint OverpartitionFactor = 4;
  2232     uint WorkUnit;
  2233     // The use of MinChunkSize = 8 in the original code
  2234     // causes some assertion failures when the total number of
  2235     // region is less than 8.  The code here tries to fix that.
  2236     // Should the original code also be fixed?
  2237     if (no_of_gc_threads > 0) {
  2238       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
  2239       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
  2240                       MinWorkUnit);
  2241     } else {
  2242       assert(no_of_gc_threads > 0,
  2243         "The active gc workers should be greater than 0");
  2244       // In a product build do something reasonable to avoid a crash.
  2245       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
  2246       WorkUnit =
  2247         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
  2248              MinWorkUnit);
  2250     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
  2251                                                            WorkUnit);
  2252     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2253                                             (int) WorkUnit);
  2254     _g1->workers()->run_task(&parKnownGarbageTask);
  2256     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2257            "sanity check");
  2258   } else {
  2259     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2260     _g1->heap_region_iterate(&knownGarbagecl);
  2263   _collectionSetChooser->sort_regions();
  2265   double end_sec = os::elapsedTime();
  2266   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  2267   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  2268   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  2269   _prev_collection_pause_end_ms += elapsed_time_ms;
  2270   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  2273 // Add the heap region at the head of the non-incremental collection set
  2274 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  2275   assert(_inc_cset_build_state == Active, "Precondition");
  2276   assert(!hr->is_young(), "non-incremental add of young region");
  2278   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2279   hr->set_in_collection_set(true);
  2280   hr->set_next_in_collection_set(_collection_set);
  2281   _collection_set = hr;
  2282   _collection_set_bytes_used_before += hr->used();
  2283   _g1->register_region_with_in_cset_fast_test(hr);
  2284   size_t rs_length = hr->rem_set()->occupied();
  2285   _recorded_rs_lengths += rs_length;
  2286   _old_cset_region_length += 1;
  2289 // Initialize the per-collection-set information
  2290 void G1CollectorPolicy::start_incremental_cset_building() {
  2291   assert(_inc_cset_build_state == Inactive, "Precondition");
  2293   _inc_cset_head = NULL;
  2294   _inc_cset_tail = NULL;
  2295   _inc_cset_bytes_used_before = 0;
  2297   _inc_cset_max_finger = 0;
  2298   _inc_cset_recorded_rs_lengths = 0;
  2299   _inc_cset_recorded_rs_lengths_diffs = 0;
  2300   _inc_cset_predicted_elapsed_time_ms = 0.0;
  2301   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2302   _inc_cset_build_state = Active;
  2305 void G1CollectorPolicy::finalize_incremental_cset_building() {
  2306   assert(_inc_cset_build_state == Active, "Precondition");
  2307   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  2309   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  2310   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  2311   // that adds a new region to the CSet. Further updates by the
  2312   // concurrent refinement thread that samples the young RSet lengths
  2313   // are accumulated in the *_diffs fields. Here we add the diffs to
  2314   // the "main" fields.
  2316   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  2317     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  2318   } else {
  2319     // This is defensive. The diff should in theory be always positive
  2320     // as RSets can only grow between GCs. However, given that we
  2321     // sample their size concurrently with other threads updating them
  2322     // it's possible that we might get the wrong size back, which
  2323     // could make the calculations somewhat inaccurate.
  2324     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  2325     if (_inc_cset_recorded_rs_lengths >= diffs) {
  2326       _inc_cset_recorded_rs_lengths -= diffs;
  2327     } else {
  2328       _inc_cset_recorded_rs_lengths = 0;
  2331   _inc_cset_predicted_elapsed_time_ms +=
  2332                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  2334   _inc_cset_recorded_rs_lengths_diffs = 0;
  2335   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2338 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2339   // This routine is used when:
  2340   // * adding survivor regions to the incremental cset at the end of an
  2341   //   evacuation pause,
  2342   // * adding the current allocation region to the incremental cset
  2343   //   when it is retired, and
  2344   // * updating existing policy information for a region in the
  2345   //   incremental cset via young list RSet sampling.
  2346   // Therefore this routine may be called at a safepoint by the
  2347   // VM thread, or in-between safepoints by mutator threads (when
  2348   // retiring the current allocation region) or a concurrent
  2349   // refine thread (RSet sampling).
  2351   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2352   size_t used_bytes = hr->used();
  2353   _inc_cset_recorded_rs_lengths += rs_length;
  2354   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2355   _inc_cset_bytes_used_before += used_bytes;
  2357   // Cache the values we have added to the aggregated informtion
  2358   // in the heap region in case we have to remove this region from
  2359   // the incremental collection set, or it is updated by the
  2360   // rset sampling code
  2361   hr->set_recorded_rs_length(rs_length);
  2362   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2365 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  2366                                                      size_t new_rs_length) {
  2367   // Update the CSet information that is dependent on the new RS length
  2368   assert(hr->is_young(), "Precondition");
  2369   assert(!SafepointSynchronize::is_at_safepoint(),
  2370                                                "should not be at a safepoint");
  2372   // We could have updated _inc_cset_recorded_rs_lengths and
  2373   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  2374   // that atomically, as this code is executed by a concurrent
  2375   // refinement thread, potentially concurrently with a mutator thread
  2376   // allocating a new region and also updating the same fields. To
  2377   // avoid the atomic operations we accumulate these updates on two
  2378   // separate fields (*_diffs) and we'll just add them to the "main"
  2379   // fields at the start of a GC.
  2381   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  2382   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  2383   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  2385   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2386   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2387   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  2388   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  2390   hr->set_recorded_rs_length(new_rs_length);
  2391   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  2394 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2395   assert(hr->is_young(), "invariant");
  2396   assert(hr->young_index_in_cset() > -1, "should have already been set");
  2397   assert(_inc_cset_build_state == Active, "Precondition");
  2399   // We need to clear and set the cached recorded/cached collection set
  2400   // information in the heap region here (before the region gets added
  2401   // to the collection set). An individual heap region's cached values
  2402   // are calculated, aggregated with the policy collection set info,
  2403   // and cached in the heap region here (initially) and (subsequently)
  2404   // by the Young List sampling code.
  2406   size_t rs_length = hr->rem_set()->occupied();
  2407   add_to_incremental_cset_info(hr, rs_length);
  2409   HeapWord* hr_end = hr->end();
  2410   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2412   assert(!hr->in_collection_set(), "invariant");
  2413   hr->set_in_collection_set(true);
  2414   assert( hr->next_in_collection_set() == NULL, "invariant");
  2416   _g1->register_region_with_in_cset_fast_test(hr);
  2419 // Add the region at the RHS of the incremental cset
  2420 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2421   // We should only ever be appending survivors at the end of a pause
  2422   assert( hr->is_survivor(), "Logic");
  2424   // Do the 'common' stuff
  2425   add_region_to_incremental_cset_common(hr);
  2427   // Now add the region at the right hand side
  2428   if (_inc_cset_tail == NULL) {
  2429     assert(_inc_cset_head == NULL, "invariant");
  2430     _inc_cset_head = hr;
  2431   } else {
  2432     _inc_cset_tail->set_next_in_collection_set(hr);
  2434   _inc_cset_tail = hr;
  2437 // Add the region to the LHS of the incremental cset
  2438 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2439   // Survivors should be added to the RHS at the end of a pause
  2440   assert(!hr->is_survivor(), "Logic");
  2442   // Do the 'common' stuff
  2443   add_region_to_incremental_cset_common(hr);
  2445   // Add the region at the left hand side
  2446   hr->set_next_in_collection_set(_inc_cset_head);
  2447   if (_inc_cset_head == NULL) {
  2448     assert(_inc_cset_tail == NULL, "Invariant");
  2449     _inc_cset_tail = hr;
  2451   _inc_cset_head = hr;
  2454 #ifndef PRODUCT
  2455 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2456   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2458   st->print_cr("\nCollection_set:");
  2459   HeapRegion* csr = list_head;
  2460   while (csr != NULL) {
  2461     HeapRegion* next = csr->next_in_collection_set();
  2462     assert(csr->in_collection_set(), "bad CS");
  2463     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
  2464                  HR_FORMAT_PARAMS(csr),
  2465                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
  2466                  csr->age_in_surv_rate_group_cond());
  2467     csr = next;
  2470 #endif // !PRODUCT
  2472 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  2473                                                 const char* false_action_str) {
  2474   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  2475   if (cset_chooser->is_empty()) {
  2476     ergo_verbose0(ErgoMixedGCs,
  2477                   false_action_str,
  2478                   ergo_format_reason("candidate old regions not available"));
  2479     return false;
  2481   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  2482   size_t capacity_bytes = _g1->capacity();
  2483   double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  2484   double threshold = (double) G1HeapWastePercent;
  2485   if (perc < threshold) {
  2486     ergo_verbose4(ErgoMixedGCs,
  2487               false_action_str,
  2488               ergo_format_reason("reclaimable percentage lower than threshold")
  2489               ergo_format_region("candidate old regions")
  2490               ergo_format_byte_perc("reclaimable")
  2491               ergo_format_perc("threshold"),
  2492               cset_chooser->remaining_regions(),
  2493               reclaimable_bytes, perc, threshold);
  2494     return false;
  2497   ergo_verbose4(ErgoMixedGCs,
  2498                 true_action_str,
  2499                 ergo_format_reason("candidate old regions available")
  2500                 ergo_format_region("candidate old regions")
  2501                 ergo_format_byte_perc("reclaimable")
  2502                 ergo_format_perc("threshold"),
  2503                 cset_chooser->remaining_regions(),
  2504                 reclaimable_bytes, perc, threshold);
  2505   return true;
  2508 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
  2509   // Set this here - in case we're not doing young collections.
  2510   double non_young_start_time_sec = os::elapsedTime();
  2512   YoungList* young_list = _g1->young_list();
  2513   finalize_incremental_cset_building();
  2515   guarantee(target_pause_time_ms > 0.0,
  2516             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2517                     target_pause_time_ms));
  2518   guarantee(_collection_set == NULL, "Precondition");
  2520   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2521   double predicted_pause_time_ms = base_time_ms;
  2522   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2524   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2525                 "start choosing CSet",
  2526                 ergo_format_ms("predicted base time")
  2527                 ergo_format_ms("remaining time")
  2528                 ergo_format_ms("target pause time"),
  2529                 base_time_ms, time_remaining_ms, target_pause_time_ms);
  2531   HeapRegion* hr;
  2532   double young_start_time_sec = os::elapsedTime();
  2534   _collection_set_bytes_used_before = 0;
  2535   _last_gc_was_young = gcs_are_young() ? true : false;
  2537   if (_last_gc_was_young) {
  2538     ++_young_pause_num;
  2539   } else {
  2540     ++_mixed_pause_num;
  2543   // The young list is laid with the survivor regions from the previous
  2544   // pause are appended to the RHS of the young list, i.e.
  2545   //   [Newly Young Regions ++ Survivors from last pause].
  2547   uint survivor_region_length = young_list->survivor_length();
  2548   uint eden_region_length = young_list->length() - survivor_region_length;
  2549   init_cset_region_lengths(eden_region_length, survivor_region_length);
  2550   hr = young_list->first_survivor_region();
  2551   while (hr != NULL) {
  2552     assert(hr->is_survivor(), "badly formed young list");
  2553     hr->set_young();
  2554     hr = hr->get_next_young_region();
  2557   // Clear the fields that point to the survivor list - they are all young now.
  2558   young_list->clear_survivors();
  2560   _collection_set = _inc_cset_head;
  2561   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2562   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2563   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2565   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2566                 "add young regions to CSet",
  2567                 ergo_format_region("eden")
  2568                 ergo_format_region("survivors")
  2569                 ergo_format_ms("predicted young region time"),
  2570                 eden_region_length, survivor_region_length,
  2571                 _inc_cset_predicted_elapsed_time_ms);
  2573   // The number of recorded young regions is the incremental
  2574   // collection set's current size
  2575   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2577   double young_end_time_sec = os::elapsedTime();
  2578   _recorded_young_cset_choice_time_ms =
  2579     (young_end_time_sec - young_start_time_sec) * 1000.0;
  2581   // We are doing young collections so reset this.
  2582   non_young_start_time_sec = young_end_time_sec;
  2584   if (!gcs_are_young()) {
  2585     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  2586     cset_chooser->verify();
  2587     const uint min_old_cset_length = cset_chooser->calc_min_old_cset_length();
  2588     const uint max_old_cset_length = cset_chooser->calc_max_old_cset_length();
  2590     uint expensive_region_num = 0;
  2591     bool check_time_remaining = adaptive_young_list_length();
  2592     HeapRegion* hr = cset_chooser->peek();
  2593     while (hr != NULL) {
  2594       if (old_cset_region_length() >= max_old_cset_length) {
  2595         // Added maximum number of old regions to the CSet.
  2596         ergo_verbose2(ErgoCSetConstruction,
  2597                       "finish adding old regions to CSet",
  2598                       ergo_format_reason("old CSet region num reached max")
  2599                       ergo_format_region("old")
  2600                       ergo_format_region("max"),
  2601                       old_cset_region_length(), max_old_cset_length);
  2602         break;
  2605       double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2606       if (check_time_remaining) {
  2607         if (predicted_time_ms > time_remaining_ms) {
  2608           // Too expensive for the current CSet.
  2610           if (old_cset_region_length() >= min_old_cset_length) {
  2611             // We have added the minimum number of old regions to the CSet,
  2612             // we are done with this CSet.
  2613             ergo_verbose4(ErgoCSetConstruction,
  2614                           "finish adding old regions to CSet",
  2615                           ergo_format_reason("predicted time is too high")
  2616                           ergo_format_ms("predicted time")
  2617                           ergo_format_ms("remaining time")
  2618                           ergo_format_region("old")
  2619                           ergo_format_region("min"),
  2620                           predicted_time_ms, time_remaining_ms,
  2621                           old_cset_region_length(), min_old_cset_length);
  2622             break;
  2625           // We'll add it anyway given that we haven't reached the
  2626           // minimum number of old regions.
  2627           expensive_region_num += 1;
  2629       } else {
  2630         if (old_cset_region_length() >= min_old_cset_length) {
  2631           // In the non-auto-tuning case, we'll finish adding regions
  2632           // to the CSet if we reach the minimum.
  2633           ergo_verbose2(ErgoCSetConstruction,
  2634                         "finish adding old regions to CSet",
  2635                         ergo_format_reason("old CSet region num reached min")
  2636                         ergo_format_region("old")
  2637                         ergo_format_region("min"),
  2638                         old_cset_region_length(), min_old_cset_length);
  2639           break;
  2643       // We will add this region to the CSet.
  2644       time_remaining_ms -= predicted_time_ms;
  2645       predicted_pause_time_ms += predicted_time_ms;
  2646       cset_chooser->remove_and_move_to_next(hr);
  2647       _g1->old_set_remove(hr);
  2648       add_old_region_to_cset(hr);
  2650       hr = cset_chooser->peek();
  2652     if (hr == NULL) {
  2653       ergo_verbose0(ErgoCSetConstruction,
  2654                     "finish adding old regions to CSet",
  2655                     ergo_format_reason("candidate old regions not available"));
  2658     if (expensive_region_num > 0) {
  2659       // We print the information once here at the end, predicated on
  2660       // whether we added any apparently expensive regions or not, to
  2661       // avoid generating output per region.
  2662       ergo_verbose4(ErgoCSetConstruction,
  2663                     "added expensive regions to CSet",
  2664                     ergo_format_reason("old CSet region num not reached min")
  2665                     ergo_format_region("old")
  2666                     ergo_format_region("expensive")
  2667                     ergo_format_region("min")
  2668                     ergo_format_ms("remaining time"),
  2669                     old_cset_region_length(),
  2670                     expensive_region_num,
  2671                     min_old_cset_length,
  2672                     time_remaining_ms);
  2675     cset_chooser->verify();
  2678   stop_incremental_cset_building();
  2680   count_CS_bytes_used();
  2682   ergo_verbose5(ErgoCSetConstruction,
  2683                 "finish choosing CSet",
  2684                 ergo_format_region("eden")
  2685                 ergo_format_region("survivors")
  2686                 ergo_format_region("old")
  2687                 ergo_format_ms("predicted pause time")
  2688                 ergo_format_ms("target pause time"),
  2689                 eden_region_length, survivor_region_length,
  2690                 old_cset_region_length(),
  2691                 predicted_pause_time_ms, target_pause_time_ms);
  2693   double non_young_end_time_sec = os::elapsedTime();
  2694   _recorded_non_young_cset_choice_time_ms =
  2695     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;

mercurial