src/cpu/x86/vm/templateInterpreter_x86_64.cpp

Wed, 24 Apr 2013 18:20:04 -0400

author
jiangli
date
Wed, 24 Apr 2013 18:20:04 -0400
changeset 4973
47766e2d2527
parent 4936
aeaca88565e6
child 5225
603ca7e51354
permissions
-rw-r--r--

8013041: guarantee(this->is8bit(imm8)) failed: Short forward jump exceeds 8-bit offset.
Summary: Change jmpb() to jmp().
Reviewed-by: coleenp, rdurbin, dcubed

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #define __ _masm->
    51 #ifndef CC_INTERP
    53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    57 //-----------------------------------------------------------------------------
    59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    60   address entry = __ pc();
    62 #ifdef ASSERT
    63   {
    64     Label L;
    65     __ lea(rax, Address(rbp,
    66                         frame::interpreter_frame_monitor_block_top_offset *
    67                         wordSize));
    68     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
    69                          // grows negative)
    70     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    71     __ stop ("interpreter frame not set up");
    72     __ bind(L);
    73   }
    74 #endif // ASSERT
    75   // Restore bcp under the assumption that the current frame is still
    76   // interpreted
    77   __ restore_bcp();
    79   // expression stack must be empty before entering the VM if an
    80   // exception happened
    81   __ empty_expression_stack();
    82   // throw exception
    83   __ call_VM(noreg,
    84              CAST_FROM_FN_PTR(address,
    85                               InterpreterRuntime::throw_StackOverflowError));
    86   return entry;
    87 }
    89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
    90         const char* name) {
    91   address entry = __ pc();
    92   // expression stack must be empty before entering the VM if an
    93   // exception happened
    94   __ empty_expression_stack();
    95   // setup parameters
    96   // ??? convention: expect aberrant index in register ebx
    97   __ lea(c_rarg1, ExternalAddress((address)name));
    98   __ call_VM(noreg,
    99              CAST_FROM_FN_PTR(address,
   100                               InterpreterRuntime::
   101                               throw_ArrayIndexOutOfBoundsException),
   102              c_rarg1, rbx);
   103   return entry;
   104 }
   106 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   107   address entry = __ pc();
   109   // object is at TOS
   110   __ pop(c_rarg1);
   112   // expression stack must be empty before entering the VM if an
   113   // exception happened
   114   __ empty_expression_stack();
   116   __ call_VM(noreg,
   117              CAST_FROM_FN_PTR(address,
   118                               InterpreterRuntime::
   119                               throw_ClassCastException),
   120              c_rarg1);
   121   return entry;
   122 }
   124 address TemplateInterpreterGenerator::generate_exception_handler_common(
   125         const char* name, const char* message, bool pass_oop) {
   126   assert(!pass_oop || message == NULL, "either oop or message but not both");
   127   address entry = __ pc();
   128   if (pass_oop) {
   129     // object is at TOS
   130     __ pop(c_rarg2);
   131   }
   132   // expression stack must be empty before entering the VM if an
   133   // exception happened
   134   __ empty_expression_stack();
   135   // setup parameters
   136   __ lea(c_rarg1, ExternalAddress((address)name));
   137   if (pass_oop) {
   138     __ call_VM(rax, CAST_FROM_FN_PTR(address,
   139                                      InterpreterRuntime::
   140                                      create_klass_exception),
   141                c_rarg1, c_rarg2);
   142   } else {
   143     // kind of lame ExternalAddress can't take NULL because
   144     // external_word_Relocation will assert.
   145     if (message != NULL) {
   146       __ lea(c_rarg2, ExternalAddress((address)message));
   147     } else {
   148       __ movptr(c_rarg2, NULL_WORD);
   149     }
   150     __ call_VM(rax,
   151                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
   152                c_rarg1, c_rarg2);
   153   }
   154   // throw exception
   155   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   156   return entry;
   157 }
   160 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   161   address entry = __ pc();
   162   // NULL last_sp until next java call
   163   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   164   __ dispatch_next(state);
   165   return entry;
   166 }
   169 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   170   address entry = __ pc();
   172   // Restore stack bottom in case i2c adjusted stack
   173   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   174   // and NULL it as marker that esp is now tos until next java call
   175   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   177   __ restore_bcp();
   178   __ restore_locals();
   180   Label L_got_cache, L_giant_index;
   181   if (EnableInvokeDynamic) {
   182     __ cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
   183     __ jcc(Assembler::equal, L_giant_index);
   184   }
   185   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   186   __ bind(L_got_cache);
   187   __ movl(rbx, Address(rbx, rcx,
   188                        Address::times_ptr,
   189                        in_bytes(ConstantPoolCache::base_offset()) +
   190                        3 * wordSize));
   191   __ andl(rbx, 0xFF);
   192   __ lea(rsp, Address(rsp, rbx, Address::times_8));
   193   __ dispatch_next(state, step);
   195   // out of the main line of code...
   196   if (EnableInvokeDynamic) {
   197     __ bind(L_giant_index);
   198     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   199     __ jmp(L_got_cache);
   200   }
   202   return entry;
   203 }
   206 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
   207                                                                int step) {
   208   address entry = __ pc();
   209   // NULL last_sp until next java call
   210   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   211   __ restore_bcp();
   212   __ restore_locals();
   213   // handle exceptions
   214   {
   215     Label L;
   216     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
   217     __ jcc(Assembler::zero, L);
   218     __ call_VM(noreg,
   219                CAST_FROM_FN_PTR(address,
   220                                 InterpreterRuntime::throw_pending_exception));
   221     __ should_not_reach_here();
   222     __ bind(L);
   223   }
   224   __ dispatch_next(state, step);
   225   return entry;
   226 }
   228 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   229   int i = 0;
   230   switch (type) {
   231     case T_BOOLEAN: i = 0; break;
   232     case T_CHAR   : i = 1; break;
   233     case T_BYTE   : i = 2; break;
   234     case T_SHORT  : i = 3; break;
   235     case T_INT    : i = 4; break;
   236     case T_LONG   : i = 5; break;
   237     case T_VOID   : i = 6; break;
   238     case T_FLOAT  : i = 7; break;
   239     case T_DOUBLE : i = 8; break;
   240     case T_OBJECT : i = 9; break;
   241     case T_ARRAY  : i = 9; break;
   242     default       : ShouldNotReachHere();
   243   }
   244   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
   245          "index out of bounds");
   246   return i;
   247 }
   250 address TemplateInterpreterGenerator::generate_result_handler_for(
   251         BasicType type) {
   252   address entry = __ pc();
   253   switch (type) {
   254   case T_BOOLEAN: __ c2bool(rax);            break;
   255   case T_CHAR   : __ movzwl(rax, rax);       break;
   256   case T_BYTE   : __ sign_extend_byte(rax);  break;
   257   case T_SHORT  : __ sign_extend_short(rax); break;
   258   case T_INT    : /* nothing to do */        break;
   259   case T_LONG   : /* nothing to do */        break;
   260   case T_VOID   : /* nothing to do */        break;
   261   case T_FLOAT  : /* nothing to do */        break;
   262   case T_DOUBLE : /* nothing to do */        break;
   263   case T_OBJECT :
   264     // retrieve result from frame
   265     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   266     // and verify it
   267     __ verify_oop(rax);
   268     break;
   269   default       : ShouldNotReachHere();
   270   }
   271   __ ret(0);                                   // return from result handler
   272   return entry;
   273 }
   275 address TemplateInterpreterGenerator::generate_safept_entry_for(
   276         TosState state,
   277         address runtime_entry) {
   278   address entry = __ pc();
   279   __ push(state);
   280   __ call_VM(noreg, runtime_entry);
   281   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   282   return entry;
   283 }
   287 // Helpers for commoning out cases in the various type of method entries.
   288 //
   291 // increment invocation count & check for overflow
   292 //
   293 // Note: checking for negative value instead of overflow
   294 //       so we have a 'sticky' overflow test
   295 //
   296 // rbx: method
   297 // ecx: invocation counter
   298 //
   299 void InterpreterGenerator::generate_counter_incr(
   300         Label* overflow,
   301         Label* profile_method,
   302         Label* profile_method_continue) {
   303   Label done;
   304   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
   305   if (TieredCompilation) {
   306     int increment = InvocationCounter::count_increment;
   307     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   308     Label no_mdo;
   309     if (ProfileInterpreter) {
   310       // Are we profiling?
   311       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   312       __ testptr(rax, rax);
   313       __ jccb(Assembler::zero, no_mdo);
   314       // Increment counter in the MDO
   315       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   316                                                 in_bytes(InvocationCounter::counter_offset()));
   317       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   318       __ jmp(done);
   319     }
   320     __ bind(no_mdo);
   321     // Increment counter in MethodCounters
   322     const Address invocation_counter(rax,
   323                   MethodCounters::invocation_counter_offset() +
   324                   InvocationCounter::counter_offset());
   325     __ get_method_counters(rbx, rax, done);
   326     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx,
   327                                false, Assembler::zero, overflow);
   328     __ bind(done);
   329   } else {
   330     const Address backedge_counter(rax,
   331                   MethodCounters::backedge_counter_offset() +
   332                   InvocationCounter::counter_offset());
   333     const Address invocation_counter(rax,
   334                   MethodCounters::invocation_counter_offset() +
   335                   InvocationCounter::counter_offset());
   337     __ get_method_counters(rbx, rax, done);
   339     if (ProfileInterpreter) {
   340       __ incrementl(Address(rax,
   341               MethodCounters::interpreter_invocation_counter_offset()));
   342     }
   343     // Update standard invocation counters
   344     __ movl(rcx, invocation_counter);
   345     __ incrementl(rcx, InvocationCounter::count_increment);
   346     __ movl(invocation_counter, rcx); // save invocation count
   348     __ movl(rax, backedge_counter);   // load backedge counter
   349     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
   351     __ addl(rcx, rax);                // add both counters
   353     // profile_method is non-null only for interpreted method so
   354     // profile_method != NULL == !native_call
   356     if (ProfileInterpreter && profile_method != NULL) {
   357       // Test to see if we should create a method data oop
   358       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   359       __ jcc(Assembler::less, *profile_method_continue);
   361       // if no method data exists, go to profile_method
   362       __ test_method_data_pointer(rax, *profile_method);
   363     }
   365     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   366     __ jcc(Assembler::aboveEqual, *overflow);
   367     __ bind(done);
   368   }
   369 }
   371 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   373   // Asm interpreter on entry
   374   // r14 - locals
   375   // r13 - bcp
   376   // rbx - method
   377   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
   378   // rbp - interpreter frame
   380   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   381   // Everything as it was on entry
   382   // rdx is not restored. Doesn't appear to really be set.
   384   // InterpreterRuntime::frequency_counter_overflow takes two
   385   // arguments, the first (thread) is passed by call_VM, the second
   386   // indicates if the counter overflow occurs at a backwards branch
   387   // (NULL bcp).  We pass zero for it.  The call returns the address
   388   // of the verified entry point for the method or NULL if the
   389   // compilation did not complete (either went background or bailed
   390   // out).
   391   __ movl(c_rarg1, 0);
   392   __ call_VM(noreg,
   393              CAST_FROM_FN_PTR(address,
   394                               InterpreterRuntime::frequency_counter_overflow),
   395              c_rarg1);
   397   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   398   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
   399   // and jump to the interpreted entry.
   400   __ jmp(*do_continue, relocInfo::none);
   401 }
   403 // See if we've got enough room on the stack for locals plus overhead.
   404 // The expression stack grows down incrementally, so the normal guard
   405 // page mechanism will work for that.
   406 //
   407 // NOTE: Since the additional locals are also always pushed (wasn't
   408 // obvious in generate_method_entry) so the guard should work for them
   409 // too.
   410 //
   411 // Args:
   412 //      rdx: number of additional locals this frame needs (what we must check)
   413 //      rbx: Method*
   414 //
   415 // Kills:
   416 //      rax
   417 void InterpreterGenerator::generate_stack_overflow_check(void) {
   419   // monitor entry size: see picture of stack set
   420   // (generate_method_entry) and frame_amd64.hpp
   421   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   423   // total overhead size: entry_size + (saved rbp through expr stack
   424   // bottom).  be sure to change this if you add/subtract anything
   425   // to/from the overhead area
   426   const int overhead_size =
   427     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
   429   const int page_size = os::vm_page_size();
   431   Label after_frame_check;
   433   // see if the frame is greater than one page in size. If so,
   434   // then we need to verify there is enough stack space remaining
   435   // for the additional locals.
   436   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
   437   __ jcc(Assembler::belowEqual, after_frame_check);
   439   // compute rsp as if this were going to be the last frame on
   440   // the stack before the red zone
   442   const Address stack_base(r15_thread, Thread::stack_base_offset());
   443   const Address stack_size(r15_thread, Thread::stack_size_offset());
   445   // locals + overhead, in bytes
   446   __ mov(rax, rdx);
   447   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
   448   __ addptr(rax, overhead_size);
   450 #ifdef ASSERT
   451   Label stack_base_okay, stack_size_okay;
   452   // verify that thread stack base is non-zero
   453   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   454   __ jcc(Assembler::notEqual, stack_base_okay);
   455   __ stop("stack base is zero");
   456   __ bind(stack_base_okay);
   457   // verify that thread stack size is non-zero
   458   __ cmpptr(stack_size, 0);
   459   __ jcc(Assembler::notEqual, stack_size_okay);
   460   __ stop("stack size is zero");
   461   __ bind(stack_size_okay);
   462 #endif
   464   // Add stack base to locals and subtract stack size
   465   __ addptr(rax, stack_base);
   466   __ subptr(rax, stack_size);
   468   // Use the maximum number of pages we might bang.
   469   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   470                                                                               (StackRedPages+StackYellowPages);
   472   // add in the red and yellow zone sizes
   473   __ addptr(rax, max_pages * page_size);
   475   // check against the current stack bottom
   476   __ cmpptr(rsp, rax);
   477   __ jcc(Assembler::above, after_frame_check);
   479   // Restore sender's sp as SP. This is necessary if the sender's
   480   // frame is an extended compiled frame (see gen_c2i_adapter())
   481   // and safer anyway in case of JSR292 adaptations.
   483   __ pop(rax); // return address must be moved if SP is changed
   484   __ mov(rsp, r13);
   485   __ push(rax);
   487   // Note: the restored frame is not necessarily interpreted.
   488   // Use the shared runtime version of the StackOverflowError.
   489   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   490   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   492   // all done with frame size check
   493   __ bind(after_frame_check);
   494 }
   496 // Allocate monitor and lock method (asm interpreter)
   497 //
   498 // Args:
   499 //      rbx: Method*
   500 //      r14: locals
   501 //
   502 // Kills:
   503 //      rax
   504 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
   505 //      rscratch1, rscratch2 (scratch regs)
   506 void InterpreterGenerator::lock_method(void) {
   507   // synchronize method
   508   const Address access_flags(rbx, Method::access_flags_offset());
   509   const Address monitor_block_top(
   510         rbp,
   511         frame::interpreter_frame_monitor_block_top_offset * wordSize);
   512   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   514 #ifdef ASSERT
   515   {
   516     Label L;
   517     __ movl(rax, access_flags);
   518     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   519     __ jcc(Assembler::notZero, L);
   520     __ stop("method doesn't need synchronization");
   521     __ bind(L);
   522   }
   523 #endif // ASSERT
   525   // get synchronization object
   526   {
   527     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   528     Label done;
   529     __ movl(rax, access_flags);
   530     __ testl(rax, JVM_ACC_STATIC);
   531     // get receiver (assume this is frequent case)
   532     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
   533     __ jcc(Assembler::zero, done);
   534     __ movptr(rax, Address(rbx, Method::const_offset()));
   535     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   536     __ movptr(rax, Address(rax,
   537                            ConstantPool::pool_holder_offset_in_bytes()));
   538     __ movptr(rax, Address(rax, mirror_offset));
   540 #ifdef ASSERT
   541     {
   542       Label L;
   543       __ testptr(rax, rax);
   544       __ jcc(Assembler::notZero, L);
   545       __ stop("synchronization object is NULL");
   546       __ bind(L);
   547     }
   548 #endif // ASSERT
   550     __ bind(done);
   551   }
   553   // add space for monitor & lock
   554   __ subptr(rsp, entry_size); // add space for a monitor entry
   555   __ movptr(monitor_block_top, rsp);  // set new monitor block top
   556   // store object
   557   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
   558   __ movptr(c_rarg1, rsp); // object address
   559   __ lock_object(c_rarg1);
   560 }
   562 // Generate a fixed interpreter frame. This is identical setup for
   563 // interpreted methods and for native methods hence the shared code.
   564 //
   565 // Args:
   566 //      rax: return address
   567 //      rbx: Method*
   568 //      r14: pointer to locals
   569 //      r13: sender sp
   570 //      rdx: cp cache
   571 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   572   // initialize fixed part of activation frame
   573   __ push(rax);        // save return address
   574   __ enter();          // save old & set new rbp
   575   __ push(r13);        // set sender sp
   576   __ push((int)NULL_WORD); // leave last_sp as null
   577   __ movptr(r13, Address(rbx, Method::const_offset()));      // get ConstMethod*
   578   __ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
   579   __ push(rbx);        // save Method*
   580   if (ProfileInterpreter) {
   581     Label method_data_continue;
   582     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   583     __ testptr(rdx, rdx);
   584     __ jcc(Assembler::zero, method_data_continue);
   585     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   586     __ bind(method_data_continue);
   587     __ push(rdx);      // set the mdp (method data pointer)
   588   } else {
   589     __ push(0);
   590   }
   592   __ movptr(rdx, Address(rbx, Method::const_offset()));
   593   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   594   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   595   __ push(rdx); // set constant pool cache
   596   __ push(r14); // set locals pointer
   597   if (native_call) {
   598     __ push(0); // no bcp
   599   } else {
   600     __ push(r13); // set bcp
   601   }
   602   __ push(0); // reserve word for pointer to expression stack bottom
   603   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
   604 }
   606 // End of helpers
   608 // Various method entries
   609 //------------------------------------------------------------------------------------------------------------------------
   610 //
   611 //
   613 // Call an accessor method (assuming it is resolved, otherwise drop
   614 // into vanilla (slow path) entry
   615 address InterpreterGenerator::generate_accessor_entry(void) {
   616   // rbx: Method*
   618   // r13: senderSP must preserver for slow path, set SP to it on fast path
   620   address entry_point = __ pc();
   621   Label xreturn_path;
   623   // do fastpath for resolved accessor methods
   624   if (UseFastAccessorMethods) {
   625     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
   626     //       thereof; parameter size = 1
   627     // Note: We can only use this code if the getfield has been resolved
   628     //       and if we don't have a null-pointer exception => check for
   629     //       these conditions first and use slow path if necessary.
   630     Label slow_path;
   631     // If we need a safepoint check, generate full interpreter entry.
   632     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   633              SafepointSynchronize::_not_synchronized);
   635     __ jcc(Assembler::notEqual, slow_path);
   636     // rbx: method
   637     __ movptr(rax, Address(rsp, wordSize));
   639     // check if local 0 != NULL and read field
   640     __ testptr(rax, rax);
   641     __ jcc(Assembler::zero, slow_path);
   643     // read first instruction word and extract bytecode @ 1 and index @ 2
   644     __ movptr(rdx, Address(rbx, Method::const_offset()));
   645     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   646     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   647     // Shift codes right to get the index on the right.
   648     // The bytecode fetched looks like <index><0xb4><0x2a>
   649     __ shrl(rdx, 2 * BitsPerByte);
   650     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   651     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   653     // rax: local 0
   654     // rbx: method
   655     // rdx: constant pool cache index
   656     // rdi: constant pool cache
   658     // check if getfield has been resolved and read constant pool cache entry
   659     // check the validity of the cache entry by testing whether _indices field
   660     // contains Bytecode::_getfield in b1 byte.
   661     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
   662            "adjust shift below");
   663     __ movl(rcx,
   664             Address(rdi,
   665                     rdx,
   666                     Address::times_8,
   667                     ConstantPoolCache::base_offset() +
   668                     ConstantPoolCacheEntry::indices_offset()));
   669     __ shrl(rcx, 2 * BitsPerByte);
   670     __ andl(rcx, 0xFF);
   671     __ cmpl(rcx, Bytecodes::_getfield);
   672     __ jcc(Assembler::notEqual, slow_path);
   674     // Note: constant pool entry is not valid before bytecode is resolved
   675     __ movptr(rcx,
   676               Address(rdi,
   677                       rdx,
   678                       Address::times_8,
   679                       ConstantPoolCache::base_offset() +
   680                       ConstantPoolCacheEntry::f2_offset()));
   681     // edx: flags
   682     __ movl(rdx,
   683             Address(rdi,
   684                     rdx,
   685                     Address::times_8,
   686                     ConstantPoolCache::base_offset() +
   687                     ConstantPoolCacheEntry::flags_offset()));
   689     Label notObj, notInt, notByte, notShort;
   690     const Address field_address(rax, rcx, Address::times_1);
   692     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   693     // because they are different sizes.
   694     // Use the type from the constant pool cache
   695     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   696     // Make sure we don't need to mask edx after the above shift
   697     ConstantPoolCacheEntry::verify_tos_state_shift();
   699     __ cmpl(rdx, atos);
   700     __ jcc(Assembler::notEqual, notObj);
   701     // atos
   702     __ load_heap_oop(rax, field_address);
   703     __ jmp(xreturn_path);
   705     __ bind(notObj);
   706     __ cmpl(rdx, itos);
   707     __ jcc(Assembler::notEqual, notInt);
   708     // itos
   709     __ movl(rax, field_address);
   710     __ jmp(xreturn_path);
   712     __ bind(notInt);
   713     __ cmpl(rdx, btos);
   714     __ jcc(Assembler::notEqual, notByte);
   715     // btos
   716     __ load_signed_byte(rax, field_address);
   717     __ jmp(xreturn_path);
   719     __ bind(notByte);
   720     __ cmpl(rdx, stos);
   721     __ jcc(Assembler::notEqual, notShort);
   722     // stos
   723     __ load_signed_short(rax, field_address);
   724     __ jmp(xreturn_path);
   726     __ bind(notShort);
   727 #ifdef ASSERT
   728     Label okay;
   729     __ cmpl(rdx, ctos);
   730     __ jcc(Assembler::equal, okay);
   731     __ stop("what type is this?");
   732     __ bind(okay);
   733 #endif
   734     // ctos
   735     __ load_unsigned_short(rax, field_address);
   737     __ bind(xreturn_path);
   739     // _ireturn/_areturn
   740     __ pop(rdi);
   741     __ mov(rsp, r13);
   742     __ jmp(rdi);
   743     __ ret(0);
   745     // generate a vanilla interpreter entry as the slow path
   746     __ bind(slow_path);
   747     (void) generate_normal_entry(false);
   748   } else {
   749     (void) generate_normal_entry(false);
   750   }
   752   return entry_point;
   753 }
   755 // Method entry for java.lang.ref.Reference.get.
   756 address InterpreterGenerator::generate_Reference_get_entry(void) {
   757 #if INCLUDE_ALL_GCS
   758   // Code: _aload_0, _getfield, _areturn
   759   // parameter size = 1
   760   //
   761   // The code that gets generated by this routine is split into 2 parts:
   762   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   763   //    2. The slow path - which is an expansion of the regular method entry.
   764   //
   765   // Notes:-
   766   // * In the G1 code we do not check whether we need to block for
   767   //   a safepoint. If G1 is enabled then we must execute the specialized
   768   //   code for Reference.get (except when the Reference object is null)
   769   //   so that we can log the value in the referent field with an SATB
   770   //   update buffer.
   771   //   If the code for the getfield template is modified so that the
   772   //   G1 pre-barrier code is executed when the current method is
   773   //   Reference.get() then going through the normal method entry
   774   //   will be fine.
   775   // * The G1 code can, however, check the receiver object (the instance
   776   //   of java.lang.Reference) and jump to the slow path if null. If the
   777   //   Reference object is null then we obviously cannot fetch the referent
   778   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   779   //   regular method entry code to generate the NPE.
   780   //
   781   // This code is based on generate_accessor_enty.
   782   //
   783   // rbx: Method*
   785   // r13: senderSP must preserve for slow path, set SP to it on fast path
   787   address entry = __ pc();
   789   const int referent_offset = java_lang_ref_Reference::referent_offset;
   790   guarantee(referent_offset > 0, "referent offset not initialized");
   792   if (UseG1GC) {
   793     Label slow_path;
   794     // rbx: method
   796     // Check if local 0 != NULL
   797     // If the receiver is null then it is OK to jump to the slow path.
   798     __ movptr(rax, Address(rsp, wordSize));
   800     __ testptr(rax, rax);
   801     __ jcc(Assembler::zero, slow_path);
   803     // rax: local 0
   804     // rbx: method (but can be used as scratch now)
   805     // rdx: scratch
   806     // rdi: scratch
   808     // Generate the G1 pre-barrier code to log the value of
   809     // the referent field in an SATB buffer.
   811     // Load the value of the referent field.
   812     const Address field_address(rax, referent_offset);
   813     __ load_heap_oop(rax, field_address);
   815     // Generate the G1 pre-barrier code to log the value of
   816     // the referent field in an SATB buffer.
   817     __ g1_write_barrier_pre(noreg /* obj */,
   818                             rax /* pre_val */,
   819                             r15_thread /* thread */,
   820                             rbx /* tmp */,
   821                             true /* tosca_live */,
   822                             true /* expand_call */);
   824     // _areturn
   825     __ pop(rdi);                // get return address
   826     __ mov(rsp, r13);           // set sp to sender sp
   827     __ jmp(rdi);
   828     __ ret(0);
   830     // generate a vanilla interpreter entry as the slow path
   831     __ bind(slow_path);
   832     (void) generate_normal_entry(false);
   834     return entry;
   835   }
   836 #endif // INCLUDE_ALL_GCS
   838   // If G1 is not enabled then attempt to go through the accessor entry point
   839   // Reference.get is an accessor
   840   return generate_accessor_entry();
   841 }
   844 // Interpreter stub for calling a native method. (asm interpreter)
   845 // This sets up a somewhat different looking stack for calling the
   846 // native method than the typical interpreter frame setup.
   847 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   848   // determine code generation flags
   849   bool inc_counter  = UseCompiler || CountCompiledCalls;
   851   // rbx: Method*
   852   // r13: sender sp
   854   address entry_point = __ pc();
   856   const Address constMethod       (rbx, Method::const_offset());
   857   const Address access_flags      (rbx, Method::access_flags_offset());
   858   const Address size_of_parameters(rcx, ConstMethod::
   859                                         size_of_parameters_offset());
   862   // get parameter size (always needed)
   863   __ movptr(rcx, constMethod);
   864   __ load_unsigned_short(rcx, size_of_parameters);
   866   // native calls don't need the stack size check since they have no
   867   // expression stack and the arguments are already on the stack and
   868   // we only add a handful of words to the stack
   870   // rbx: Method*
   871   // rcx: size of parameters
   872   // r13: sender sp
   873   __ pop(rax);                                       // get return address
   875   // for natives the size of locals is zero
   877   // compute beginning of parameters (r14)
   878   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
   880   // add 2 zero-initialized slots for native calls
   881   // initialize result_handler slot
   882   __ push((int) NULL_WORD);
   883   // slot for oop temp
   884   // (static native method holder mirror/jni oop result)
   885   __ push((int) NULL_WORD);
   887   // initialize fixed part of activation frame
   888   generate_fixed_frame(true);
   890   // make sure method is native & not abstract
   891 #ifdef ASSERT
   892   __ movl(rax, access_flags);
   893   {
   894     Label L;
   895     __ testl(rax, JVM_ACC_NATIVE);
   896     __ jcc(Assembler::notZero, L);
   897     __ stop("tried to execute non-native method as native");
   898     __ bind(L);
   899   }
   900   {
   901     Label L;
   902     __ testl(rax, JVM_ACC_ABSTRACT);
   903     __ jcc(Assembler::zero, L);
   904     __ stop("tried to execute abstract method in interpreter");
   905     __ bind(L);
   906   }
   907 #endif
   909   // Since at this point in the method invocation the exception handler
   910   // would try to exit the monitor of synchronized methods which hasn't
   911   // been entered yet, we set the thread local variable
   912   // _do_not_unlock_if_synchronized to true. The remove_activation will
   913   // check this flag.
   915   const Address do_not_unlock_if_synchronized(r15_thread,
   916         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   917   __ movbool(do_not_unlock_if_synchronized, true);
   919   // increment invocation count & check for overflow
   920   Label invocation_counter_overflow;
   921   if (inc_counter) {
   922     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   923   }
   925   Label continue_after_compile;
   926   __ bind(continue_after_compile);
   928   bang_stack_shadow_pages(true);
   930   // reset the _do_not_unlock_if_synchronized flag
   931   __ movbool(do_not_unlock_if_synchronized, false);
   933   // check for synchronized methods
   934   // Must happen AFTER invocation_counter check and stack overflow check,
   935   // so method is not locked if overflows.
   936   if (synchronized) {
   937     lock_method();
   938   } else {
   939     // no synchronization necessary
   940 #ifdef ASSERT
   941     {
   942       Label L;
   943       __ movl(rax, access_flags);
   944       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   945       __ jcc(Assembler::zero, L);
   946       __ stop("method needs synchronization");
   947       __ bind(L);
   948     }
   949 #endif
   950   }
   952   // start execution
   953 #ifdef ASSERT
   954   {
   955     Label L;
   956     const Address monitor_block_top(rbp,
   957                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   958     __ movptr(rax, monitor_block_top);
   959     __ cmpptr(rax, rsp);
   960     __ jcc(Assembler::equal, L);
   961     __ stop("broken stack frame setup in interpreter");
   962     __ bind(L);
   963   }
   964 #endif
   966   // jvmti support
   967   __ notify_method_entry();
   969   // work registers
   970   const Register method = rbx;
   971   const Register t      = r11;
   973   // allocate space for parameters
   974   __ get_method(method);
   975   __ movptr(t, Address(method, Method::const_offset()));
   976   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
   977   __ shll(t, Interpreter::logStackElementSize);
   979   __ subptr(rsp, t);
   980   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
   981   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
   983   // get signature handler
   984   {
   985     Label L;
   986     __ movptr(t, Address(method, Method::signature_handler_offset()));
   987     __ testptr(t, t);
   988     __ jcc(Assembler::notZero, L);
   989     __ call_VM(noreg,
   990                CAST_FROM_FN_PTR(address,
   991                                 InterpreterRuntime::prepare_native_call),
   992                method);
   993     __ get_method(method);
   994     __ movptr(t, Address(method, Method::signature_handler_offset()));
   995     __ bind(L);
   996   }
   998   // call signature handler
   999   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
  1000          "adjust this code");
  1001   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
  1002          "adjust this code");
  1003   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
  1004           "adjust this code");
  1006   // The generated handlers do not touch RBX (the method oop).
  1007   // However, large signatures cannot be cached and are generated
  1008   // each time here.  The slow-path generator can do a GC on return,
  1009   // so we must reload it after the call.
  1010   __ call(t);
  1011   __ get_method(method);        // slow path can do a GC, reload RBX
  1014   // result handler is in rax
  1015   // set result handler
  1016   __ movptr(Address(rbp,
  1017                     (frame::interpreter_frame_result_handler_offset) * wordSize),
  1018             rax);
  1020   // pass mirror handle if static call
  1022     Label L;
  1023     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1024     __ movl(t, Address(method, Method::access_flags_offset()));
  1025     __ testl(t, JVM_ACC_STATIC);
  1026     __ jcc(Assembler::zero, L);
  1027     // get mirror
  1028     __ movptr(t, Address(method, Method::const_offset()));
  1029     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1030     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1031     __ movptr(t, Address(t, mirror_offset));
  1032     // copy mirror into activation frame
  1033     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
  1034             t);
  1035     // pass handle to mirror
  1036     __ lea(c_rarg1,
  1037            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1038     __ bind(L);
  1041   // get native function entry point
  1043     Label L;
  1044     __ movptr(rax, Address(method, Method::native_function_offset()));
  1045     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1046     __ movptr(rscratch2, unsatisfied.addr());
  1047     __ cmpptr(rax, rscratch2);
  1048     __ jcc(Assembler::notEqual, L);
  1049     __ call_VM(noreg,
  1050                CAST_FROM_FN_PTR(address,
  1051                                 InterpreterRuntime::prepare_native_call),
  1052                method);
  1053     __ get_method(method);
  1054     __ movptr(rax, Address(method, Method::native_function_offset()));
  1055     __ bind(L);
  1058   // pass JNIEnv
  1059   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
  1061   // It is enough that the pc() points into the right code
  1062   // segment. It does not have to be the correct return pc.
  1063   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
  1065   // change thread state
  1066 #ifdef ASSERT
  1068     Label L;
  1069     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
  1070     __ cmpl(t, _thread_in_Java);
  1071     __ jcc(Assembler::equal, L);
  1072     __ stop("Wrong thread state in native stub");
  1073     __ bind(L);
  1075 #endif
  1077   // Change state to native
  1079   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1080           _thread_in_native);
  1082   // Call the native method.
  1083   __ call(rax);
  1084   // result potentially in rax or xmm0
  1086   // Verify or restore cpu control state after JNI call
  1087   __ restore_cpu_control_state_after_jni();
  1089   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
  1090   // in order to extract the result of a method call. If the order of these
  1091   // pushes change or anything else is added to the stack then the code in
  1092   // interpreter_frame_result must also change.
  1094   __ push(dtos);
  1095   __ push(ltos);
  1097   // change thread state
  1098   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1099           _thread_in_native_trans);
  1101   if (os::is_MP()) {
  1102     if (UseMembar) {
  1103       // Force this write out before the read below
  1104       __ membar(Assembler::Membar_mask_bits(
  1105            Assembler::LoadLoad | Assembler::LoadStore |
  1106            Assembler::StoreLoad | Assembler::StoreStore));
  1107     } else {
  1108       // Write serialization page so VM thread can do a pseudo remote membar.
  1109       // We use the current thread pointer to calculate a thread specific
  1110       // offset to write to within the page. This minimizes bus traffic
  1111       // due to cache line collision.
  1112       __ serialize_memory(r15_thread, rscratch2);
  1116   // check for safepoint operation in progress and/or pending suspend requests
  1118     Label Continue;
  1119     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1120              SafepointSynchronize::_not_synchronized);
  1122     Label L;
  1123     __ jcc(Assembler::notEqual, L);
  1124     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1125     __ jcc(Assembler::equal, Continue);
  1126     __ bind(L);
  1128     // Don't use call_VM as it will see a possible pending exception
  1129     // and forward it and never return here preventing us from
  1130     // clearing _last_native_pc down below.  Also can't use
  1131     // call_VM_leaf either as it will check to see if r13 & r14 are
  1132     // preserved and correspond to the bcp/locals pointers. So we do a
  1133     // runtime call by hand.
  1134     //
  1135     __ mov(c_rarg0, r15_thread);
  1136     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1137     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1138     __ andptr(rsp, -16); // align stack as required by ABI
  1139     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1140     __ mov(rsp, r12); // restore sp
  1141     __ reinit_heapbase();
  1142     __ bind(Continue);
  1145   // change thread state
  1146   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1148   // reset_last_Java_frame
  1149   __ reset_last_Java_frame(true, true);
  1151   // reset handle block
  1152   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
  1153   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1155   // If result is an oop unbox and store it in frame where gc will see it
  1156   // and result handler will pick it up
  1159     Label no_oop, store_result;
  1160     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
  1161     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1162     __ jcc(Assembler::notEqual, no_oop);
  1163     // retrieve result
  1164     __ pop(ltos);
  1165     __ testptr(rax, rax);
  1166     __ jcc(Assembler::zero, store_result);
  1167     __ movptr(rax, Address(rax, 0));
  1168     __ bind(store_result);
  1169     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
  1170     // keep stack depth as expected by pushing oop which will eventually be discarde
  1171     __ push(ltos);
  1172     __ bind(no_oop);
  1177     Label no_reguard;
  1178     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
  1179             JavaThread::stack_guard_yellow_disabled);
  1180     __ jcc(Assembler::notEqual, no_reguard);
  1182     __ pusha(); // XXX only save smashed registers
  1183     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1184     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1185     __ andptr(rsp, -16); // align stack as required by ABI
  1186     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1187     __ mov(rsp, r12); // restore sp
  1188     __ popa(); // XXX only restore smashed registers
  1189     __ reinit_heapbase();
  1191     __ bind(no_reguard);
  1195   // The method register is junk from after the thread_in_native transition
  1196   // until here.  Also can't call_VM until the bcp has been
  1197   // restored.  Need bcp for throwing exception below so get it now.
  1198   __ get_method(method);
  1200   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
  1201   // r13 == code_base()
  1202   __ movptr(r13, Address(method, Method::const_offset()));   // get ConstMethod*
  1203   __ lea(r13, Address(r13, ConstMethod::codes_offset()));    // get codebase
  1204   // handle exceptions (exception handling will handle unlocking!)
  1206     Label L;
  1207     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1208     __ jcc(Assembler::zero, L);
  1209     // Note: At some point we may want to unify this with the code
  1210     // used in call_VM_base(); i.e., we should use the
  1211     // StubRoutines::forward_exception code. For now this doesn't work
  1212     // here because the rsp is not correctly set at this point.
  1213     __ MacroAssembler::call_VM(noreg,
  1214                                CAST_FROM_FN_PTR(address,
  1215                                InterpreterRuntime::throw_pending_exception));
  1216     __ should_not_reach_here();
  1217     __ bind(L);
  1220   // do unlocking if necessary
  1222     Label L;
  1223     __ movl(t, Address(method, Method::access_flags_offset()));
  1224     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1225     __ jcc(Assembler::zero, L);
  1226     // the code below should be shared with interpreter macro
  1227     // assembler implementation
  1229       Label unlock;
  1230       // BasicObjectLock will be first in list, since this is a
  1231       // synchronized method. However, need to check that the object
  1232       // has not been unlocked by an explicit monitorexit bytecode.
  1233       const Address monitor(rbp,
  1234                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
  1235                                        wordSize - sizeof(BasicObjectLock)));
  1237       // monitor expect in c_rarg1 for slow unlock path
  1238       __ lea(c_rarg1, monitor); // address of first monitor
  1240       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  1241       __ testptr(t, t);
  1242       __ jcc(Assembler::notZero, unlock);
  1244       // Entry already unlocked, need to throw exception
  1245       __ MacroAssembler::call_VM(noreg,
  1246                                  CAST_FROM_FN_PTR(address,
  1247                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  1248       __ should_not_reach_here();
  1250       __ bind(unlock);
  1251       __ unlock_object(c_rarg1);
  1253     __ bind(L);
  1256   // jvmti support
  1257   // Note: This must happen _after_ handling/throwing any exceptions since
  1258   //       the exception handler code notifies the runtime of method exits
  1259   //       too. If this happens before, method entry/exit notifications are
  1260   //       not properly paired (was bug - gri 11/22/99).
  1261   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1263   // restore potential result in edx:eax, call result handler to
  1264   // restore potential result in ST0 & handle result
  1266   __ pop(ltos);
  1267   __ pop(dtos);
  1269   __ movptr(t, Address(rbp,
  1270                        (frame::interpreter_frame_result_handler_offset) * wordSize));
  1271   __ call(t);
  1273   // remove activation
  1274   __ movptr(t, Address(rbp,
  1275                        frame::interpreter_frame_sender_sp_offset *
  1276                        wordSize)); // get sender sp
  1277   __ leave();                                // remove frame anchor
  1278   __ pop(rdi);                               // get return address
  1279   __ mov(rsp, t);                            // set sp to sender sp
  1280   __ jmp(rdi);
  1282   if (inc_counter) {
  1283     // Handle overflow of counter and compile method
  1284     __ bind(invocation_counter_overflow);
  1285     generate_counter_overflow(&continue_after_compile);
  1288   return entry_point;
  1291 //
  1292 // Generic interpreted method entry to (asm) interpreter
  1293 //
  1294 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1295   // determine code generation flags
  1296   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1298   // ebx: Method*
  1299   // r13: sender sp
  1300   address entry_point = __ pc();
  1302   const Address constMethod(rbx, Method::const_offset());
  1303   const Address access_flags(rbx, Method::access_flags_offset());
  1304   const Address size_of_parameters(rdx,
  1305                                    ConstMethod::size_of_parameters_offset());
  1306   const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset());
  1309   // get parameter size (always needed)
  1310   __ movptr(rdx, constMethod);
  1311   __ load_unsigned_short(rcx, size_of_parameters);
  1313   // rbx: Method*
  1314   // rcx: size of parameters
  1315   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1317   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
  1318   __ subl(rdx, rcx); // rdx = no. of additional locals
  1320   // YYY
  1321 //   __ incrementl(rdx);
  1322 //   __ andl(rdx, -2);
  1324   // see if we've got enough room on the stack for locals plus overhead.
  1325   generate_stack_overflow_check();
  1327   // get return address
  1328   __ pop(rax);
  1330   // compute beginning of parameters (r14)
  1331   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
  1333   // rdx - # of additional locals
  1334   // allocate space for locals
  1335   // explicitly initialize locals
  1337     Label exit, loop;
  1338     __ testl(rdx, rdx);
  1339     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
  1340     __ bind(loop);
  1341     __ push((int) NULL_WORD); // initialize local variables
  1342     __ decrementl(rdx); // until everything initialized
  1343     __ jcc(Assembler::greater, loop);
  1344     __ bind(exit);
  1347   // initialize fixed part of activation frame
  1348   generate_fixed_frame(false);
  1350   // make sure method is not native & not abstract
  1351 #ifdef ASSERT
  1352   __ movl(rax, access_flags);
  1354     Label L;
  1355     __ testl(rax, JVM_ACC_NATIVE);
  1356     __ jcc(Assembler::zero, L);
  1357     __ stop("tried to execute native method as non-native");
  1358     __ bind(L);
  1361     Label L;
  1362     __ testl(rax, JVM_ACC_ABSTRACT);
  1363     __ jcc(Assembler::zero, L);
  1364     __ stop("tried to execute abstract method in interpreter");
  1365     __ bind(L);
  1367 #endif
  1369   // Since at this point in the method invocation the exception
  1370   // handler would try to exit the monitor of synchronized methods
  1371   // which hasn't been entered yet, we set the thread local variable
  1372   // _do_not_unlock_if_synchronized to true. The remove_activation
  1373   // will check this flag.
  1375   const Address do_not_unlock_if_synchronized(r15_thread,
  1376         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1377   __ movbool(do_not_unlock_if_synchronized, true);
  1379   // increment invocation count & check for overflow
  1380   Label invocation_counter_overflow;
  1381   Label profile_method;
  1382   Label profile_method_continue;
  1383   if (inc_counter) {
  1384     generate_counter_incr(&invocation_counter_overflow,
  1385                           &profile_method,
  1386                           &profile_method_continue);
  1387     if (ProfileInterpreter) {
  1388       __ bind(profile_method_continue);
  1392   Label continue_after_compile;
  1393   __ bind(continue_after_compile);
  1395   // check for synchronized interpreted methods
  1396   bang_stack_shadow_pages(false);
  1398   // reset the _do_not_unlock_if_synchronized flag
  1399   __ movbool(do_not_unlock_if_synchronized, false);
  1401   // check for synchronized methods
  1402   // Must happen AFTER invocation_counter check and stack overflow check,
  1403   // so method is not locked if overflows.
  1404   if (synchronized) {
  1405     // Allocate monitor and lock method
  1406     lock_method();
  1407   } else {
  1408     // no synchronization necessary
  1409 #ifdef ASSERT
  1411       Label L;
  1412       __ movl(rax, access_flags);
  1413       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1414       __ jcc(Assembler::zero, L);
  1415       __ stop("method needs synchronization");
  1416       __ bind(L);
  1418 #endif
  1421   // start execution
  1422 #ifdef ASSERT
  1424     Label L;
  1425      const Address monitor_block_top (rbp,
  1426                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1427     __ movptr(rax, monitor_block_top);
  1428     __ cmpptr(rax, rsp);
  1429     __ jcc(Assembler::equal, L);
  1430     __ stop("broken stack frame setup in interpreter");
  1431     __ bind(L);
  1433 #endif
  1435   // jvmti support
  1436   __ notify_method_entry();
  1438   __ dispatch_next(vtos);
  1440   // invocation counter overflow
  1441   if (inc_counter) {
  1442     if (ProfileInterpreter) {
  1443       // We have decided to profile this method in the interpreter
  1444       __ bind(profile_method);
  1445       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1446       __ set_method_data_pointer_for_bcp();
  1447       __ get_method(rbx);
  1448       __ jmp(profile_method_continue);
  1450     // Handle overflow of counter and compile method
  1451     __ bind(invocation_counter_overflow);
  1452     generate_counter_overflow(&continue_after_compile);
  1455   return entry_point;
  1458 // Entry points
  1459 //
  1460 // Here we generate the various kind of entries into the interpreter.
  1461 // The two main entry type are generic bytecode methods and native
  1462 // call method.  These both come in synchronized and non-synchronized
  1463 // versions but the frame layout they create is very similar. The
  1464 // other method entry types are really just special purpose entries
  1465 // that are really entry and interpretation all in one. These are for
  1466 // trivial methods like accessor, empty, or special math methods.
  1467 //
  1468 // When control flow reaches any of the entry types for the interpreter
  1469 // the following holds ->
  1470 //
  1471 // Arguments:
  1472 //
  1473 // rbx: Method*
  1474 //
  1475 // Stack layout immediately at entry
  1476 //
  1477 // [ return address     ] <--- rsp
  1478 // [ parameter n        ]
  1479 //   ...
  1480 // [ parameter 1        ]
  1481 // [ expression stack   ] (caller's java expression stack)
  1483 // Assuming that we don't go to one of the trivial specialized entries
  1484 // the stack will look like below when we are ready to execute the
  1485 // first bytecode (or call the native routine). The register usage
  1486 // will be as the template based interpreter expects (see
  1487 // interpreter_amd64.hpp).
  1488 //
  1489 // local variables follow incoming parameters immediately; i.e.
  1490 // the return address is moved to the end of the locals).
  1491 //
  1492 // [ monitor entry      ] <--- rsp
  1493 //   ...
  1494 // [ monitor entry      ]
  1495 // [ expr. stack bottom ]
  1496 // [ saved r13          ]
  1497 // [ current r14        ]
  1498 // [ Method*            ]
  1499 // [ saved ebp          ] <--- rbp
  1500 // [ return address     ]
  1501 // [ local variable m   ]
  1502 //   ...
  1503 // [ local variable 1   ]
  1504 // [ parameter n        ]
  1505 //   ...
  1506 // [ parameter 1        ] <--- r14
  1508 address AbstractInterpreterGenerator::generate_method_entry(
  1509                                         AbstractInterpreter::MethodKind kind) {
  1510   // determine code generation flags
  1511   bool synchronized = false;
  1512   address entry_point = NULL;
  1514   switch (kind) {
  1515   case Interpreter::zerolocals             :                                                                             break;
  1516   case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1517   case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
  1518   case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);  break;
  1519   case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();       break;
  1520   case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();    break;
  1521   case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();    break;
  1523   case Interpreter::java_lang_math_sin     : // fall thru
  1524   case Interpreter::java_lang_math_cos     : // fall thru
  1525   case Interpreter::java_lang_math_tan     : // fall thru
  1526   case Interpreter::java_lang_math_abs     : // fall thru
  1527   case Interpreter::java_lang_math_log     : // fall thru
  1528   case Interpreter::java_lang_math_log10   : // fall thru
  1529   case Interpreter::java_lang_math_sqrt    : // fall thru
  1530   case Interpreter::java_lang_math_pow     : // fall thru
  1531   case Interpreter::java_lang_math_exp     : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);    break;
  1532   case Interpreter::java_lang_ref_reference_get
  1533                                            : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  1534   default:
  1535     fatal(err_msg("unexpected method kind: %d", kind));
  1536     break;
  1539   if (entry_point) {
  1540     return entry_point;
  1543   return ((InterpreterGenerator*) this)->
  1544                                 generate_normal_entry(synchronized);
  1547 // These should never be compiled since the interpreter will prefer
  1548 // the compiled version to the intrinsic version.
  1549 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1550   switch (method_kind(m)) {
  1551     case Interpreter::java_lang_math_sin     : // fall thru
  1552     case Interpreter::java_lang_math_cos     : // fall thru
  1553     case Interpreter::java_lang_math_tan     : // fall thru
  1554     case Interpreter::java_lang_math_abs     : // fall thru
  1555     case Interpreter::java_lang_math_log     : // fall thru
  1556     case Interpreter::java_lang_math_log10   : // fall thru
  1557     case Interpreter::java_lang_math_sqrt    : // fall thru
  1558     case Interpreter::java_lang_math_pow     : // fall thru
  1559     case Interpreter::java_lang_math_exp     :
  1560       return false;
  1561     default:
  1562       return true;
  1566 // How much stack a method activation needs in words.
  1567 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1568   const int entry_size = frame::interpreter_frame_monitor_size();
  1570   // total overhead size: entry_size + (saved rbp thru expr stack
  1571   // bottom).  be sure to change this if you add/subtract anything
  1572   // to/from the overhead area
  1573   const int overhead_size =
  1574     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
  1576   const int stub_code = frame::entry_frame_after_call_words;
  1577   const int extra_stack = Method::extra_stack_entries();
  1578   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1579                            Interpreter::stackElementWords;
  1580   return (overhead_size + method_stack + stub_code);
  1583 int AbstractInterpreter::layout_activation(Method* method,
  1584                                            int tempcount,
  1585                                            int popframe_extra_args,
  1586                                            int moncount,
  1587                                            int caller_actual_parameters,
  1588                                            int callee_param_count,
  1589                                            int callee_locals,
  1590                                            frame* caller,
  1591                                            frame* interpreter_frame,
  1592                                            bool is_top_frame,
  1593                                            bool is_bottom_frame) {
  1594   // Note: This calculation must exactly parallel the frame setup
  1595   // in AbstractInterpreterGenerator::generate_method_entry.
  1596   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1597   // The frame interpreter_frame, if not NULL, is guaranteed to be the
  1598   // right size, as determined by a previous call to this method.
  1599   // It is also guaranteed to be walkable even though it is in a skeletal state
  1601   // fixed size of an interpreter frame:
  1602   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1603   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1604                      Interpreter::stackElementWords;
  1606   int overhead = frame::sender_sp_offset -
  1607                  frame::interpreter_frame_initial_sp_offset;
  1608   // Our locals were accounted for by the caller (or last_frame_adjust
  1609   // on the transistion) Since the callee parameters already account
  1610   // for the callee's params we only need to account for the extra
  1611   // locals.
  1612   int size = overhead +
  1613          (callee_locals - callee_param_count)*Interpreter::stackElementWords +
  1614          moncount * frame::interpreter_frame_monitor_size() +
  1615          tempcount* Interpreter::stackElementWords + popframe_extra_args;
  1616   if (interpreter_frame != NULL) {
  1617 #ifdef ASSERT
  1618     if (!EnableInvokeDynamic)
  1619       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1620       // Probably, since deoptimization doesn't work yet.
  1621       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1622     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1623 #endif
  1625     interpreter_frame->interpreter_frame_set_method(method);
  1626     // NOTE the difference in using sender_sp and
  1627     // interpreter_frame_sender_sp interpreter_frame_sender_sp is
  1628     // the original sp of the caller (the unextended_sp) and
  1629     // sender_sp is fp+16 XXX
  1630     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1632 #ifdef ASSERT
  1633     if (caller->is_interpreted_frame()) {
  1634       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
  1636 #endif
  1638     interpreter_frame->interpreter_frame_set_locals(locals);
  1639     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1640     BasicObjectLock* monbot = montop - moncount;
  1641     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1643     // Set last_sp
  1644     intptr_t*  esp = (intptr_t*) monbot -
  1645                      tempcount*Interpreter::stackElementWords -
  1646                      popframe_extra_args;
  1647     interpreter_frame->interpreter_frame_set_last_sp(esp);
  1649     // All frames but the initial (oldest) interpreter frame we fill in have
  1650     // a value for sender_sp that allows walking the stack but isn't
  1651     // truly correct. Correct the value here.
  1652     if (extra_locals != 0 &&
  1653         interpreter_frame->sender_sp() ==
  1654         interpreter_frame->interpreter_frame_sender_sp()) {
  1655       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
  1656                                                          extra_locals);
  1658     *interpreter_frame->interpreter_frame_cache_addr() =
  1659       method->constants()->cache();
  1661   return size;
  1664 //-----------------------------------------------------------------------------
  1665 // Exceptions
  1667 void TemplateInterpreterGenerator::generate_throw_exception() {
  1668   // Entry point in previous activation (i.e., if the caller was
  1669   // interpreted)
  1670   Interpreter::_rethrow_exception_entry = __ pc();
  1671   // Restore sp to interpreter_frame_last_sp even though we are going
  1672   // to empty the expression stack for the exception processing.
  1673   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1674   // rax: exception
  1675   // rdx: return address/pc that threw exception
  1676   __ restore_bcp();    // r13 points to call/send
  1677   __ restore_locals();
  1678   __ reinit_heapbase();  // restore r12 as heapbase.
  1679   // Entry point for exceptions thrown within interpreter code
  1680   Interpreter::_throw_exception_entry = __ pc();
  1681   // expression stack is undefined here
  1682   // rax: exception
  1683   // r13: exception bcp
  1684   __ verify_oop(rax);
  1685   __ mov(c_rarg1, rax);
  1687   // expression stack must be empty before entering the VM in case of
  1688   // an exception
  1689   __ empty_expression_stack();
  1690   // find exception handler address and preserve exception oop
  1691   __ call_VM(rdx,
  1692              CAST_FROM_FN_PTR(address,
  1693                           InterpreterRuntime::exception_handler_for_exception),
  1694              c_rarg1);
  1695   // rax: exception handler entry point
  1696   // rdx: preserved exception oop
  1697   // r13: bcp for exception handler
  1698   __ push_ptr(rdx); // push exception which is now the only value on the stack
  1699   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
  1701   // If the exception is not handled in the current frame the frame is
  1702   // removed and the exception is rethrown (i.e. exception
  1703   // continuation is _rethrow_exception).
  1704   //
  1705   // Note: At this point the bci is still the bxi for the instruction
  1706   // which caused the exception and the expression stack is
  1707   // empty. Thus, for any VM calls at this point, GC will find a legal
  1708   // oop map (with empty expression stack).
  1710   // In current activation
  1711   // tos: exception
  1712   // esi: exception bcp
  1714   //
  1715   // JVMTI PopFrame support
  1716   //
  1718   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1719   __ empty_expression_stack();
  1720   // Set the popframe_processing bit in pending_popframe_condition
  1721   // indicating that we are currently handling popframe, so that
  1722   // call_VMs that may happen later do not trigger new popframe
  1723   // handling cycles.
  1724   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
  1725   __ orl(rdx, JavaThread::popframe_processing_bit);
  1726   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
  1729     // Check to see whether we are returning to a deoptimized frame.
  1730     // (The PopFrame call ensures that the caller of the popped frame is
  1731     // either interpreted or compiled and deoptimizes it if compiled.)
  1732     // In this case, we can't call dispatch_next() after the frame is
  1733     // popped, but instead must save the incoming arguments and restore
  1734     // them after deoptimization has occurred.
  1735     //
  1736     // Note that we don't compare the return PC against the
  1737     // deoptimization blob's unpack entry because of the presence of
  1738     // adapter frames in C2.
  1739     Label caller_not_deoptimized;
  1740     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
  1741     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1742                                InterpreterRuntime::interpreter_contains), c_rarg1);
  1743     __ testl(rax, rax);
  1744     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1746     // Compute size of arguments for saving when returning to
  1747     // deoptimized caller
  1748     __ get_method(rax);
  1749     __ movptr(rax, Address(rax, Method::const_offset()));
  1750     __ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod::
  1751                                                 size_of_parameters_offset())));
  1752     __ shll(rax, Interpreter::logStackElementSize);
  1753     __ restore_locals(); // XXX do we need this?
  1754     __ subptr(r14, rax);
  1755     __ addptr(r14, wordSize);
  1756     // Save these arguments
  1757     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1758                                            Deoptimization::
  1759                                            popframe_preserve_args),
  1760                           r15_thread, rax, r14);
  1762     __ remove_activation(vtos, rdx,
  1763                          /* throw_monitor_exception */ false,
  1764                          /* install_monitor_exception */ false,
  1765                          /* notify_jvmdi */ false);
  1767     // Inform deoptimization that it is responsible for restoring
  1768     // these arguments
  1769     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1770             JavaThread::popframe_force_deopt_reexecution_bit);
  1772     // Continue in deoptimization handler
  1773     __ jmp(rdx);
  1775     __ bind(caller_not_deoptimized);
  1778   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
  1779                        /* throw_monitor_exception */ false,
  1780                        /* install_monitor_exception */ false,
  1781                        /* notify_jvmdi */ false);
  1783   // Finish with popframe handling
  1784   // A previous I2C followed by a deoptimization might have moved the
  1785   // outgoing arguments further up the stack. PopFrame expects the
  1786   // mutations to those outgoing arguments to be preserved and other
  1787   // constraints basically require this frame to look exactly as
  1788   // though it had previously invoked an interpreted activation with
  1789   // no space between the top of the expression stack (current
  1790   // last_sp) and the top of stack. Rather than force deopt to
  1791   // maintain this kind of invariant all the time we call a small
  1792   // fixup routine to move the mutated arguments onto the top of our
  1793   // expression stack if necessary.
  1794   __ mov(c_rarg1, rsp);
  1795   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1796   // PC must point into interpreter here
  1797   __ set_last_Java_frame(noreg, rbp, __ pc());
  1798   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
  1799   __ reset_last_Java_frame(true, true);
  1800   // Restore the last_sp and null it out
  1801   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1802   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1804   __ restore_bcp();  // XXX do we need this?
  1805   __ restore_locals(); // XXX do we need this?
  1806   // The method data pointer was incremented already during
  1807   // call profiling. We have to restore the mdp for the current bcp.
  1808   if (ProfileInterpreter) {
  1809     __ set_method_data_pointer_for_bcp();
  1812   // Clear the popframe condition flag
  1813   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1814           JavaThread::popframe_inactive);
  1816   __ dispatch_next(vtos);
  1817   // end of PopFrame support
  1819   Interpreter::_remove_activation_entry = __ pc();
  1821   // preserve exception over this code sequence
  1822   __ pop_ptr(rax);
  1823   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
  1824   // remove the activation (without doing throws on illegalMonitorExceptions)
  1825   __ remove_activation(vtos, rdx, false, true, false);
  1826   // restore exception
  1827   __ get_vm_result(rax, r15_thread);
  1829   // In between activations - previous activation type unknown yet
  1830   // compute continuation point - the continuation point expects the
  1831   // following registers set up:
  1832   //
  1833   // rax: exception
  1834   // rdx: return address/pc that threw exception
  1835   // rsp: expression stack of caller
  1836   // rbp: ebp of caller
  1837   __ push(rax);                                  // save exception
  1838   __ push(rdx);                                  // save return address
  1839   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1840                           SharedRuntime::exception_handler_for_return_address),
  1841                         r15_thread, rdx);
  1842   __ mov(rbx, rax);                              // save exception handler
  1843   __ pop(rdx);                                   // restore return address
  1844   __ pop(rax);                                   // restore exception
  1845   // Note that an "issuing PC" is actually the next PC after the call
  1846   __ jmp(rbx);                                   // jump to exception
  1847                                                  // handler of caller
  1851 //
  1852 // JVMTI ForceEarlyReturn support
  1853 //
  1854 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1855   address entry = __ pc();
  1857   __ restore_bcp();
  1858   __ restore_locals();
  1859   __ empty_expression_stack();
  1860   __ load_earlyret_value(state);
  1862   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
  1863   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
  1865   // Clear the earlyret state
  1866   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1868   __ remove_activation(state, rsi,
  1869                        false, /* throw_monitor_exception */
  1870                        false, /* install_monitor_exception */
  1871                        true); /* notify_jvmdi */
  1872   __ jmp(rsi);
  1874   return entry;
  1875 } // end of ForceEarlyReturn support
  1878 //-----------------------------------------------------------------------------
  1879 // Helper for vtos entry point generation
  1881 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  1882                                                          address& bep,
  1883                                                          address& cep,
  1884                                                          address& sep,
  1885                                                          address& aep,
  1886                                                          address& iep,
  1887                                                          address& lep,
  1888                                                          address& fep,
  1889                                                          address& dep,
  1890                                                          address& vep) {
  1891   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1892   Label L;
  1893   aep = __ pc();  __ push_ptr();  __ jmp(L);
  1894   fep = __ pc();  __ push_f();    __ jmp(L);
  1895   dep = __ pc();  __ push_d();    __ jmp(L);
  1896   lep = __ pc();  __ push_l();    __ jmp(L);
  1897   bep = cep = sep =
  1898   iep = __ pc();  __ push_i();
  1899   vep = __ pc();
  1900   __ bind(L);
  1901   generate_and_dispatch(t);
  1905 //-----------------------------------------------------------------------------
  1906 // Generation of individual instructions
  1908 // helpers for generate_and_dispatch
  1911 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1912   : TemplateInterpreterGenerator(code) {
  1913    generate_all(); // down here so it can be "virtual"
  1916 //-----------------------------------------------------------------------------
  1918 // Non-product code
  1919 #ifndef PRODUCT
  1920 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1921   address entry = __ pc();
  1923   __ push(state);
  1924   __ push(c_rarg0);
  1925   __ push(c_rarg1);
  1926   __ push(c_rarg2);
  1927   __ push(c_rarg3);
  1928   __ mov(c_rarg2, rax);  // Pass itos
  1929 #ifdef _WIN64
  1930   __ movflt(xmm3, xmm0); // Pass ftos
  1931 #endif
  1932   __ call_VM(noreg,
  1933              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
  1934              c_rarg1, c_rarg2, c_rarg3);
  1935   __ pop(c_rarg3);
  1936   __ pop(c_rarg2);
  1937   __ pop(c_rarg1);
  1938   __ pop(c_rarg0);
  1939   __ pop(state);
  1940   __ ret(0);                                   // return from result handler
  1942   return entry;
  1945 void TemplateInterpreterGenerator::count_bytecode() {
  1946   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1949 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1950   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1953 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1954   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
  1955   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1956   __ orl(rbx,
  1957          ((int) t->bytecode()) <<
  1958          BytecodePairHistogram::log2_number_of_codes);
  1959   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1960   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
  1961   __ incrementl(Address(rscratch1, rbx, Address::times_4));
  1965 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1966   // Call a little run-time stub to avoid blow-up for each bytecode.
  1967   // The run-time runtime saves the right registers, depending on
  1968   // the tosca in-state for the given template.
  1970   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1971          "entry must have been generated");
  1972   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1973   __ andptr(rsp, -16); // align stack as required by ABI
  1974   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1975   __ mov(rsp, r12); // restore sp
  1976   __ reinit_heapbase();
  1980 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1981   Label L;
  1982   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1983            StopInterpreterAt);
  1984   __ jcc(Assembler::notEqual, L);
  1985   __ int3();
  1986   __ bind(L);
  1988 #endif // !PRODUCT
  1989 #endif // ! CC_INTERP

mercurial