src/cpu/x86/vm/templateInterpreter_x86_32.cpp

Wed, 24 Apr 2013 18:20:04 -0400

author
jiangli
date
Wed, 24 Apr 2013 18:20:04 -0400
changeset 4973
47766e2d2527
parent 4936
aeaca88565e6
child 5225
603ca7e51354
permissions
-rw-r--r--

8013041: guarantee(this->is8bit(imm8)) failed: Short forward jump exceeds 8-bit offset.
Summary: Change jmpb() to jmp().
Reviewed-by: coleenp, rdurbin, dcubed

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #define __ _masm->
    52 #ifndef CC_INTERP
    53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    57 //------------------------------------------------------------------------------------------------------------------------
    59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    60   address entry = __ pc();
    62   // Note: There should be a minimal interpreter frame set up when stack
    63   // overflow occurs since we check explicitly for it now.
    64   //
    65 #ifdef ASSERT
    66   { Label L;
    67     __ lea(rax, Address(rbp,
    68                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
    69     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
    70                         //  (stack grows negative)
    71     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    72     __ stop ("interpreter frame not set up");
    73     __ bind(L);
    74   }
    75 #endif // ASSERT
    76   // Restore bcp under the assumption that the current frame is still
    77   // interpreted
    78   __ restore_bcp();
    80   // expression stack must be empty before entering the VM if an exception
    81   // happened
    82   __ empty_expression_stack();
    83   __ empty_FPU_stack();
    84   // throw exception
    85   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
    86   return entry;
    87 }
    89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    90   address entry = __ pc();
    91   // expression stack must be empty before entering the VM if an exception happened
    92   __ empty_expression_stack();
    93   __ empty_FPU_stack();
    94   // setup parameters
    95   // ??? convention: expect aberrant index in register rbx,
    96   __ lea(rax, ExternalAddress((address)name));
    97   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
    98   return entry;
    99 }
   101 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   102   address entry = __ pc();
   103   // object is at TOS
   104   __ pop(rax);
   105   // expression stack must be empty before entering the VM if an exception
   106   // happened
   107   __ empty_expression_stack();
   108   __ empty_FPU_stack();
   109   __ call_VM(noreg,
   110              CAST_FROM_FN_PTR(address,
   111                               InterpreterRuntime::throw_ClassCastException),
   112              rax);
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   117   assert(!pass_oop || message == NULL, "either oop or message but not both");
   118   address entry = __ pc();
   119   if (pass_oop) {
   120     // object is at TOS
   121     __ pop(rbx);
   122   }
   123   // expression stack must be empty before entering the VM if an exception happened
   124   __ empty_expression_stack();
   125   __ empty_FPU_stack();
   126   // setup parameters
   127   __ lea(rax, ExternalAddress((address)name));
   128   if (pass_oop) {
   129     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
   130   } else {
   131     if (message != NULL) {
   132       __ lea(rbx, ExternalAddress((address)message));
   133     } else {
   134       __ movptr(rbx, NULL_WORD);
   135     }
   136     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
   137   }
   138   // throw exception
   139   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   140   return entry;
   141 }
   144 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   145   address entry = __ pc();
   146   // NULL last_sp until next java call
   147   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   148   __ dispatch_next(state);
   149   return entry;
   150 }
   153 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   154   TosState incoming_state = state;
   155   address entry = __ pc();
   157 #ifdef COMPILER2
   158   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   159   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   160     for (int i = 1; i < 8; i++) {
   161         __ ffree(i);
   162     }
   163   } else if (UseSSE < 2) {
   164     __ empty_FPU_stack();
   165   }
   166 #endif
   167   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   168     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
   169   } else {
   170     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
   171   }
   173   // In SSE mode, interpreter returns FP results in xmm0 but they need
   174   // to end up back on the FPU so it can operate on them.
   175   if (incoming_state == ftos && UseSSE >= 1) {
   176     __ subptr(rsp, wordSize);
   177     __ movflt(Address(rsp, 0), xmm0);
   178     __ fld_s(Address(rsp, 0));
   179     __ addptr(rsp, wordSize);
   180   } else if (incoming_state == dtos && UseSSE >= 2) {
   181     __ subptr(rsp, 2*wordSize);
   182     __ movdbl(Address(rsp, 0), xmm0);
   183     __ fld_d(Address(rsp, 0));
   184     __ addptr(rsp, 2*wordSize);
   185   }
   187   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
   189   // Restore stack bottom in case i2c adjusted stack
   190   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   191   // and NULL it as marker that rsp is now tos until next java call
   192   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   194   __ restore_bcp();
   195   __ restore_locals();
   197   Label L_got_cache, L_giant_index;
   198   if (EnableInvokeDynamic) {
   199     __ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
   200     __ jcc(Assembler::equal, L_giant_index);
   201   }
   202   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   203   __ bind(L_got_cache);
   204   __ movl(rbx, Address(rbx, rcx,
   205                     Address::times_ptr, ConstantPoolCache::base_offset() +
   206                     ConstantPoolCacheEntry::flags_offset()));
   207   __ andptr(rbx, 0xFF);
   208   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
   209   __ dispatch_next(state, step);
   211   // out of the main line of code...
   212   if (EnableInvokeDynamic) {
   213     __ bind(L_giant_index);
   214     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   215     __ jmp(L_got_cache);
   216   }
   218   return entry;
   219 }
   222 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   223   address entry = __ pc();
   225   // In SSE mode, FP results are in xmm0
   226   if (state == ftos && UseSSE > 0) {
   227     __ subptr(rsp, wordSize);
   228     __ movflt(Address(rsp, 0), xmm0);
   229     __ fld_s(Address(rsp, 0));
   230     __ addptr(rsp, wordSize);
   231   } else if (state == dtos && UseSSE >= 2) {
   232     __ subptr(rsp, 2*wordSize);
   233     __ movdbl(Address(rsp, 0), xmm0);
   234     __ fld_d(Address(rsp, 0));
   235     __ addptr(rsp, 2*wordSize);
   236   }
   238   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
   240   // The stack is not extended by deopt but we must NULL last_sp as this
   241   // entry is like a "return".
   242   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   243   __ restore_bcp();
   244   __ restore_locals();
   245   // handle exceptions
   246   { Label L;
   247     const Register thread = rcx;
   248     __ get_thread(thread);
   249     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   250     __ jcc(Assembler::zero, L);
   251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   252     __ should_not_reach_here();
   253     __ bind(L);
   254   }
   255   __ dispatch_next(state, step);
   256   return entry;
   257 }
   260 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   261   int i = 0;
   262   switch (type) {
   263     case T_BOOLEAN: i = 0; break;
   264     case T_CHAR   : i = 1; break;
   265     case T_BYTE   : i = 2; break;
   266     case T_SHORT  : i = 3; break;
   267     case T_INT    : // fall through
   268     case T_LONG   : // fall through
   269     case T_VOID   : i = 4; break;
   270     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
   271     case T_DOUBLE : i = 6; break;
   272     case T_OBJECT : // fall through
   273     case T_ARRAY  : i = 7; break;
   274     default       : ShouldNotReachHere();
   275   }
   276   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   277   return i;
   278 }
   281 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   282   address entry = __ pc();
   283   switch (type) {
   284     case T_BOOLEAN: __ c2bool(rax);            break;
   285     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
   286     case T_BYTE   : __ sign_extend_byte (rax); break;
   287     case T_SHORT  : __ sign_extend_short(rax); break;
   288     case T_INT    : /* nothing to do */        break;
   289     case T_DOUBLE :
   290     case T_FLOAT  :
   291       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   292         __ pop(t);                            // remove return address first
   293         // Must return a result for interpreter or compiler. In SSE
   294         // mode, results are returned in xmm0 and the FPU stack must
   295         // be empty.
   296         if (type == T_FLOAT && UseSSE >= 1) {
   297           // Load ST0
   298           __ fld_d(Address(rsp, 0));
   299           // Store as float and empty fpu stack
   300           __ fstp_s(Address(rsp, 0));
   301           // and reload
   302           __ movflt(xmm0, Address(rsp, 0));
   303         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   304           __ movdbl(xmm0, Address(rsp, 0));
   305         } else {
   306           // restore ST0
   307           __ fld_d(Address(rsp, 0));
   308         }
   309         // and pop the temp
   310         __ addptr(rsp, 2 * wordSize);
   311         __ push(t);                           // restore return address
   312       }
   313       break;
   314     case T_OBJECT :
   315       // retrieve result from frame
   316       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   317       // and verify it
   318       __ verify_oop(rax);
   319       break;
   320     default       : ShouldNotReachHere();
   321   }
   322   __ ret(0);                                   // return from result handler
   323   return entry;
   324 }
   326 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   327   address entry = __ pc();
   328   __ push(state);
   329   __ call_VM(noreg, runtime_entry);
   330   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   331   return entry;
   332 }
   335 // Helpers for commoning out cases in the various type of method entries.
   336 //
   338 // increment invocation count & check for overflow
   339 //
   340 // Note: checking for negative value instead of overflow
   341 //       so we have a 'sticky' overflow test
   342 //
   343 // rbx,: method
   344 // rcx: invocation counter
   345 //
   346 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   347   Label done;
   348   // Note: In tiered we increment either counters in MethodCounters* or in MDO
   349   // depending if we're profiling or not.
   350   if (TieredCompilation) {
   351     int increment = InvocationCounter::count_increment;
   352     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   353     Label no_mdo;
   354     if (ProfileInterpreter) {
   355       // Are we profiling?
   356       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   357       __ testptr(rax, rax);
   358       __ jccb(Assembler::zero, no_mdo);
   359       // Increment counter in the MDO
   360       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   361                                                 in_bytes(InvocationCounter::counter_offset()));
   362       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   363       __ jmp(done);
   364     }
   365     __ bind(no_mdo);
   366     // Increment counter in MethodCounters
   367     const Address invocation_counter(rax,
   368                   MethodCounters::invocation_counter_offset() +
   369                   InvocationCounter::counter_offset());
   371     __ get_method_counters(rbx, rax, done);
   372     __ increment_mask_and_jump(invocation_counter, increment, mask,
   373                                rcx, false, Assembler::zero, overflow);
   374     __ bind(done);
   375   } else {
   376     const Address backedge_counter  (rax,
   377                   MethodCounters::backedge_counter_offset() +
   378                   InvocationCounter::counter_offset());
   379     const Address invocation_counter(rax,
   380                   MethodCounters::invocation_counter_offset() +
   381                   InvocationCounter::counter_offset());
   383     __ get_method_counters(rbx, rax, done);
   385     if (ProfileInterpreter) {
   386       __ incrementl(Address(rax,
   387               MethodCounters::interpreter_invocation_counter_offset()));
   388     }
   390     // Update standard invocation counters
   391     __ movl(rcx, invocation_counter);
   392     __ incrementl(rcx, InvocationCounter::count_increment);
   393     __ movl(invocation_counter, rcx);             // save invocation count
   395     __ movl(rax, backedge_counter);               // load backedge counter
   396     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   398     __ addl(rcx, rax);                            // add both counters
   400     // profile_method is non-null only for interpreted method so
   401     // profile_method != NULL == !native_call
   402     // BytecodeInterpreter only calls for native so code is elided.
   404     if (ProfileInterpreter && profile_method != NULL) {
   405       // Test to see if we should create a method data oop
   406       __ cmp32(rcx,
   407                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   408       __ jcc(Assembler::less, *profile_method_continue);
   410       // if no method data exists, go to profile_method
   411       __ test_method_data_pointer(rax, *profile_method);
   412     }
   414     __ cmp32(rcx,
   415              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   416     __ jcc(Assembler::aboveEqual, *overflow);
   417     __ bind(done);
   418   }
   419 }
   421 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   423   // Asm interpreter on entry
   424   // rdi - locals
   425   // rsi - bcp
   426   // rbx, - method
   427   // rdx - cpool
   428   // rbp, - interpreter frame
   430   // C++ interpreter on entry
   431   // rsi - new interpreter state pointer
   432   // rbp - interpreter frame pointer
   433   // rbx - method
   435   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   436   // rbx, - method
   437   // rcx - rcvr (assuming there is one)
   438   // top of stack return address of interpreter caller
   439   // rsp - sender_sp
   441   // C++ interpreter only
   442   // rsi - previous interpreter state pointer
   444   // InterpreterRuntime::frequency_counter_overflow takes one argument
   445   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   446   // The call returns the address of the verified entry point for the method or NULL
   447   // if the compilation did not complete (either went background or bailed out).
   448   __ movptr(rax, (intptr_t)false);
   449   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   451   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   453   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
   454   // and jump to the interpreted entry.
   455   __ jmp(*do_continue, relocInfo::none);
   457 }
   459 void InterpreterGenerator::generate_stack_overflow_check(void) {
   460   // see if we've got enough room on the stack for locals plus overhead.
   461   // the expression stack grows down incrementally, so the normal guard
   462   // page mechanism will work for that.
   463   //
   464   // Registers live on entry:
   465   //
   466   // Asm interpreter
   467   // rdx: number of additional locals this frame needs (what we must check)
   468   // rbx,: Method*
   470   // destroyed on exit
   471   // rax,
   473   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   474   // generate_method_entry) so the guard should work for them too.
   475   //
   477   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
   478   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   480   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   481   // be sure to change this if you add/subtract anything to/from the overhead area
   482   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
   484   const int page_size = os::vm_page_size();
   486   Label after_frame_check;
   488   // see if the frame is greater than one page in size. If so,
   489   // then we need to verify there is enough stack space remaining
   490   // for the additional locals.
   491   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
   492   __ jcc(Assembler::belowEqual, after_frame_check);
   494   // compute rsp as if this were going to be the last frame on
   495   // the stack before the red zone
   497   Label after_frame_check_pop;
   499   __ push(rsi);
   501   const Register thread = rsi;
   503   __ get_thread(thread);
   505   const Address stack_base(thread, Thread::stack_base_offset());
   506   const Address stack_size(thread, Thread::stack_size_offset());
   508   // locals + overhead, in bytes
   509   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
   511 #ifdef ASSERT
   512   Label stack_base_okay, stack_size_okay;
   513   // verify that thread stack base is non-zero
   514   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   515   __ jcc(Assembler::notEqual, stack_base_okay);
   516   __ stop("stack base is zero");
   517   __ bind(stack_base_okay);
   518   // verify that thread stack size is non-zero
   519   __ cmpptr(stack_size, 0);
   520   __ jcc(Assembler::notEqual, stack_size_okay);
   521   __ stop("stack size is zero");
   522   __ bind(stack_size_okay);
   523 #endif
   525   // Add stack base to locals and subtract stack size
   526   __ addptr(rax, stack_base);
   527   __ subptr(rax, stack_size);
   529   // Use the maximum number of pages we might bang.
   530   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   531                                                                               (StackRedPages+StackYellowPages);
   532   __ addptr(rax, max_pages * page_size);
   534   // check against the current stack bottom
   535   __ cmpptr(rsp, rax);
   536   __ jcc(Assembler::above, after_frame_check_pop);
   538   __ pop(rsi);  // get saved bcp / (c++ prev state ).
   540   // Restore sender's sp as SP. This is necessary if the sender's
   541   // frame is an extended compiled frame (see gen_c2i_adapter())
   542   // and safer anyway in case of JSR292 adaptations.
   544   __ pop(rax); // return address must be moved if SP is changed
   545   __ mov(rsp, rsi);
   546   __ push(rax);
   548   // Note: the restored frame is not necessarily interpreted.
   549   // Use the shared runtime version of the StackOverflowError.
   550   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   551   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   552   // all done with frame size check
   553   __ bind(after_frame_check_pop);
   554   __ pop(rsi);
   556   __ bind(after_frame_check);
   557 }
   559 // Allocate monitor and lock method (asm interpreter)
   560 // rbx, - Method*
   561 //
   562 void InterpreterGenerator::lock_method(void) {
   563   // synchronize method
   564   const Address access_flags      (rbx, Method::access_flags_offset());
   565   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   566   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   568   #ifdef ASSERT
   569     { Label L;
   570       __ movl(rax, access_flags);
   571       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   572       __ jcc(Assembler::notZero, L);
   573       __ stop("method doesn't need synchronization");
   574       __ bind(L);
   575     }
   576   #endif // ASSERT
   577   // get synchronization object
   578   { Label done;
   579     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   580     __ movl(rax, access_flags);
   581     __ testl(rax, JVM_ACC_STATIC);
   582     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
   583     __ jcc(Assembler::zero, done);
   584     __ movptr(rax, Address(rbx, Method::const_offset()));
   585     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   586     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
   587     __ movptr(rax, Address(rax, mirror_offset));
   588     __ bind(done);
   589   }
   590   // add space for monitor & lock
   591   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   592   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
   593   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   594   __ mov(rdx, rsp);                                                    // object address
   595   __ lock_object(rdx);
   596 }
   598 //
   599 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
   600 // and for native methods hence the shared code.
   602 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   603   // initialize fixed part of activation frame
   604   __ push(rax);                                       // save return address
   605   __ enter();                                         // save old & set new rbp,
   608   __ push(rsi);                                       // set sender sp
   609   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
   610   __ movptr(rsi, Address(rbx,Method::const_offset())); // get ConstMethod*
   611   __ lea(rsi, Address(rsi,ConstMethod::codes_offset())); // get codebase
   612   __ push(rbx);                                      // save Method*
   613   if (ProfileInterpreter) {
   614     Label method_data_continue;
   615     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   616     __ testptr(rdx, rdx);
   617     __ jcc(Assembler::zero, method_data_continue);
   618     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   619     __ bind(method_data_continue);
   620     __ push(rdx);                                       // set the mdp (method data pointer)
   621   } else {
   622     __ push(0);
   623   }
   625   __ movptr(rdx, Address(rbx, Method::const_offset()));
   626   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   627   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   628   __ push(rdx);                                       // set constant pool cache
   629   __ push(rdi);                                       // set locals pointer
   630   if (native_call) {
   631     __ push(0);                                       // no bcp
   632   } else {
   633     __ push(rsi);                                     // set bcp
   634     }
   635   __ push(0);                                         // reserve word for pointer to expression stack bottom
   636   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
   637 }
   639 // End of helpers
   641 //
   642 // Various method entries
   643 //------------------------------------------------------------------------------------------------------------------------
   644 //
   645 //
   647 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   649 address InterpreterGenerator::generate_accessor_entry(void) {
   651   // rbx,: Method*
   652   // rcx: receiver (preserve for slow entry into asm interpreter)
   654   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   656   address entry_point = __ pc();
   657   Label xreturn_path;
   659   // do fastpath for resolved accessor methods
   660   if (UseFastAccessorMethods) {
   661     Label slow_path;
   662     // If we need a safepoint check, generate full interpreter entry.
   663     ExternalAddress state(SafepointSynchronize::address_of_state());
   664     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   665              SafepointSynchronize::_not_synchronized);
   667     __ jcc(Assembler::notEqual, slow_path);
   668     // ASM/C++ Interpreter
   669     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   670     // Note: We can only use this code if the getfield has been resolved
   671     //       and if we don't have a null-pointer exception => check for
   672     //       these conditions first and use slow path if necessary.
   673     // rbx,: method
   674     // rcx: receiver
   675     __ movptr(rax, Address(rsp, wordSize));
   677     // check if local 0 != NULL and read field
   678     __ testptr(rax, rax);
   679     __ jcc(Assembler::zero, slow_path);
   681     // read first instruction word and extract bytecode @ 1 and index @ 2
   682     __ movptr(rdx, Address(rbx, Method::const_offset()));
   683     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   684     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   685     // Shift codes right to get the index on the right.
   686     // The bytecode fetched looks like <index><0xb4><0x2a>
   687     __ shrl(rdx, 2*BitsPerByte);
   688     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   689     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   691     // rax,: local 0
   692     // rbx,: method
   693     // rcx: receiver - do not destroy since it is needed for slow path!
   694     // rcx: scratch
   695     // rdx: constant pool cache index
   696     // rdi: constant pool cache
   697     // rsi: sender sp
   699     // check if getfield has been resolved and read constant pool cache entry
   700     // check the validity of the cache entry by testing whether _indices field
   701     // contains Bytecode::_getfield in b1 byte.
   702     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   703     __ movl(rcx,
   704             Address(rdi,
   705                     rdx,
   706                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   707     __ shrl(rcx, 2*BitsPerByte);
   708     __ andl(rcx, 0xFF);
   709     __ cmpl(rcx, Bytecodes::_getfield);
   710     __ jcc(Assembler::notEqual, slow_path);
   712     // Note: constant pool entry is not valid before bytecode is resolved
   713     __ movptr(rcx,
   714               Address(rdi,
   715                       rdx,
   716                       Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   717     __ movl(rdx,
   718             Address(rdi,
   719                     rdx,
   720                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   722     Label notByte, notShort, notChar;
   723     const Address field_address (rax, rcx, Address::times_1);
   725     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   726     // because they are different sizes.
   727     // Use the type from the constant pool cache
   728     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   729     // Make sure we don't need to mask rdx after the above shift
   730     ConstantPoolCacheEntry::verify_tos_state_shift();
   731     __ cmpl(rdx, btos);
   732     __ jcc(Assembler::notEqual, notByte);
   733     __ load_signed_byte(rax, field_address);
   734     __ jmp(xreturn_path);
   736     __ bind(notByte);
   737     __ cmpl(rdx, stos);
   738     __ jcc(Assembler::notEqual, notShort);
   739     __ load_signed_short(rax, field_address);
   740     __ jmp(xreturn_path);
   742     __ bind(notShort);
   743     __ cmpl(rdx, ctos);
   744     __ jcc(Assembler::notEqual, notChar);
   745     __ load_unsigned_short(rax, field_address);
   746     __ jmp(xreturn_path);
   748     __ bind(notChar);
   749 #ifdef ASSERT
   750     Label okay;
   751     __ cmpl(rdx, atos);
   752     __ jcc(Assembler::equal, okay);
   753     __ cmpl(rdx, itos);
   754     __ jcc(Assembler::equal, okay);
   755     __ stop("what type is this?");
   756     __ bind(okay);
   757 #endif // ASSERT
   758     // All the rest are a 32 bit wordsize
   759     // This is ok for now. Since fast accessors should be going away
   760     __ movptr(rax, field_address);
   762     __ bind(xreturn_path);
   764     // _ireturn/_areturn
   765     __ pop(rdi);                               // get return address
   766     __ mov(rsp, rsi);                          // set sp to sender sp
   767     __ jmp(rdi);
   769     // generate a vanilla interpreter entry as the slow path
   770     __ bind(slow_path);
   772     (void) generate_normal_entry(false);
   773     return entry_point;
   774   }
   775   return NULL;
   777 }
   779 // Method entry for java.lang.ref.Reference.get.
   780 address InterpreterGenerator::generate_Reference_get_entry(void) {
   781 #if INCLUDE_ALL_GCS
   782   // Code: _aload_0, _getfield, _areturn
   783   // parameter size = 1
   784   //
   785   // The code that gets generated by this routine is split into 2 parts:
   786   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   787   //    2. The slow path - which is an expansion of the regular method entry.
   788   //
   789   // Notes:-
   790   // * In the G1 code we do not check whether we need to block for
   791   //   a safepoint. If G1 is enabled then we must execute the specialized
   792   //   code for Reference.get (except when the Reference object is null)
   793   //   so that we can log the value in the referent field with an SATB
   794   //   update buffer.
   795   //   If the code for the getfield template is modified so that the
   796   //   G1 pre-barrier code is executed when the current method is
   797   //   Reference.get() then going through the normal method entry
   798   //   will be fine.
   799   // * The G1 code below can, however, check the receiver object (the instance
   800   //   of java.lang.Reference) and jump to the slow path if null. If the
   801   //   Reference object is null then we obviously cannot fetch the referent
   802   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   803   //   regular method entry code to generate the NPE.
   804   //
   805   // This code is based on generate_accessor_enty.
   807   // rbx,: Method*
   808   // rcx: receiver (preserve for slow entry into asm interpreter)
   810   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   812   address entry = __ pc();
   814   const int referent_offset = java_lang_ref_Reference::referent_offset;
   815   guarantee(referent_offset > 0, "referent offset not initialized");
   817   if (UseG1GC) {
   818     Label slow_path;
   820     // Check if local 0 != NULL
   821     // If the receiver is null then it is OK to jump to the slow path.
   822     __ movptr(rax, Address(rsp, wordSize));
   823     __ testptr(rax, rax);
   824     __ jcc(Assembler::zero, slow_path);
   826     // rax: local 0 (must be preserved across the G1 barrier call)
   827     //
   828     // rbx: method (at this point it's scratch)
   829     // rcx: receiver (at this point it's scratch)
   830     // rdx: scratch
   831     // rdi: scratch
   832     //
   833     // rsi: sender sp
   835     // Preserve the sender sp in case the pre-barrier
   836     // calls the runtime
   837     __ push(rsi);
   839     // Load the value of the referent field.
   840     const Address field_address(rax, referent_offset);
   841     __ movptr(rax, field_address);
   843     // Generate the G1 pre-barrier code to log the value of
   844     // the referent field in an SATB buffer.
   845     __ get_thread(rcx);
   846     __ g1_write_barrier_pre(noreg /* obj */,
   847                             rax /* pre_val */,
   848                             rcx /* thread */,
   849                             rbx /* tmp */,
   850                             true /* tosca_save */,
   851                             true /* expand_call */);
   853     // _areturn
   854     __ pop(rsi);                // get sender sp
   855     __ pop(rdi);                // get return address
   856     __ mov(rsp, rsi);           // set sp to sender sp
   857     __ jmp(rdi);
   859     __ bind(slow_path);
   860     (void) generate_normal_entry(false);
   862     return entry;
   863   }
   864 #endif // INCLUDE_ALL_GCS
   866   // If G1 is not enabled then attempt to go through the accessor entry point
   867   // Reference.get is an accessor
   868   return generate_accessor_entry();
   869 }
   871 //
   872 // Interpreter stub for calling a native method. (asm interpreter)
   873 // This sets up a somewhat different looking stack for calling the native method
   874 // than the typical interpreter frame setup.
   875 //
   877 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   878   // determine code generation flags
   879   bool inc_counter  = UseCompiler || CountCompiledCalls;
   881   // rbx,: Method*
   882   // rsi: sender sp
   883   // rsi: previous interpreter state (C++ interpreter) must preserve
   884   address entry_point = __ pc();
   886   const Address constMethod       (rbx, Method::const_offset());
   887   const Address access_flags      (rbx, Method::access_flags_offset());
   888   const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
   890   // get parameter size (always needed)
   891   __ movptr(rcx, constMethod);
   892   __ load_unsigned_short(rcx, size_of_parameters);
   894   // native calls don't need the stack size check since they have no expression stack
   895   // and the arguments are already on the stack and we only add a handful of words
   896   // to the stack
   898   // rbx,: Method*
   899   // rcx: size of parameters
   900   // rsi: sender sp
   902   __ pop(rax);                                       // get return address
   903   // for natives the size of locals is zero
   905   // compute beginning of parameters (rdi)
   906   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
   909   // add 2 zero-initialized slots for native calls
   910   // NULL result handler
   911   __ push((int32_t)NULL_WORD);
   912   // NULL oop temp (mirror or jni oop result)
   913   __ push((int32_t)NULL_WORD);
   915   // initialize fixed part of activation frame
   916   generate_fixed_frame(true);
   918   // make sure method is native & not abstract
   919 #ifdef ASSERT
   920   __ movl(rax, access_flags);
   921   {
   922     Label L;
   923     __ testl(rax, JVM_ACC_NATIVE);
   924     __ jcc(Assembler::notZero, L);
   925     __ stop("tried to execute non-native method as native");
   926     __ bind(L);
   927   }
   928   { Label L;
   929     __ testl(rax, JVM_ACC_ABSTRACT);
   930     __ jcc(Assembler::zero, L);
   931     __ stop("tried to execute abstract method in interpreter");
   932     __ bind(L);
   933   }
   934 #endif
   936   // Since at this point in the method invocation the exception handler
   937   // would try to exit the monitor of synchronized methods which hasn't
   938   // been entered yet, we set the thread local variable
   939   // _do_not_unlock_if_synchronized to true. The remove_activation will
   940   // check this flag.
   942   __ get_thread(rax);
   943   const Address do_not_unlock_if_synchronized(rax,
   944         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   945   __ movbool(do_not_unlock_if_synchronized, true);
   947   // increment invocation count & check for overflow
   948   Label invocation_counter_overflow;
   949   if (inc_counter) {
   950     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   951   }
   953   Label continue_after_compile;
   954   __ bind(continue_after_compile);
   956   bang_stack_shadow_pages(true);
   958   // reset the _do_not_unlock_if_synchronized flag
   959   __ get_thread(rax);
   960   __ movbool(do_not_unlock_if_synchronized, false);
   962   // check for synchronized methods
   963   // Must happen AFTER invocation_counter check and stack overflow check,
   964   // so method is not locked if overflows.
   965   //
   966   if (synchronized) {
   967     lock_method();
   968   } else {
   969     // no synchronization necessary
   970 #ifdef ASSERT
   971       { Label L;
   972         __ movl(rax, access_flags);
   973         __ testl(rax, JVM_ACC_SYNCHRONIZED);
   974         __ jcc(Assembler::zero, L);
   975         __ stop("method needs synchronization");
   976         __ bind(L);
   977       }
   978 #endif
   979   }
   981   // start execution
   982 #ifdef ASSERT
   983   { Label L;
   984     const Address monitor_block_top (rbp,
   985                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   986     __ movptr(rax, monitor_block_top);
   987     __ cmpptr(rax, rsp);
   988     __ jcc(Assembler::equal, L);
   989     __ stop("broken stack frame setup in interpreter");
   990     __ bind(L);
   991   }
   992 #endif
   994   // jvmti/dtrace support
   995   __ notify_method_entry();
   997   // work registers
   998   const Register method = rbx;
   999   const Register thread = rdi;
  1000   const Register t      = rcx;
  1002   // allocate space for parameters
  1003   __ get_method(method);
  1004   __ movptr(t, Address(method, Method::const_offset()));
  1005   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
  1007   __ shlptr(t, Interpreter::logStackElementSize);
  1008   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
  1009   __ subptr(rsp, t);
  1010   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
  1012   // get signature handler
  1013   { Label L;
  1014     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1015     __ testptr(t, t);
  1016     __ jcc(Assembler::notZero, L);
  1017     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1018     __ get_method(method);
  1019     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1020     __ bind(L);
  1023   // call signature handler
  1024   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
  1025   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1026   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
  1027   // The generated handlers do not touch RBX (the method oop).
  1028   // However, large signatures cannot be cached and are generated
  1029   // each time here.  The slow-path generator will blow RBX
  1030   // sometime, so we must reload it after the call.
  1031   __ call(t);
  1032   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
  1034   // result handler is in rax,
  1035   // set result handler
  1036   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
  1038   // pass mirror handle if static call
  1039   { Label L;
  1040     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1041     __ movl(t, Address(method, Method::access_flags_offset()));
  1042     __ testl(t, JVM_ACC_STATIC);
  1043     __ jcc(Assembler::zero, L);
  1044     // get mirror
  1045     __ movptr(t, Address(method, Method:: const_offset()));
  1046     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1047     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1048     __ movptr(t, Address(t, mirror_offset));
  1049     // copy mirror into activation frame
  1050     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
  1051     // pass handle to mirror
  1052     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1053     __ movptr(Address(rsp, wordSize), t);
  1054     __ bind(L);
  1057   // get native function entry point
  1058   { Label L;
  1059     __ movptr(rax, Address(method, Method::native_function_offset()));
  1060     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1061     __ cmpptr(rax, unsatisfied.addr());
  1062     __ jcc(Assembler::notEqual, L);
  1063     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1064     __ get_method(method);
  1065     __ movptr(rax, Address(method, Method::native_function_offset()));
  1066     __ bind(L);
  1069   // pass JNIEnv
  1070   __ get_thread(thread);
  1071   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
  1072   __ movptr(Address(rsp, 0), t);
  1074   // set_last_Java_frame_before_call
  1075   // It is enough that the pc()
  1076   // points into the right code segment. It does not have to be the correct return pc.
  1077   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1079   // change thread state
  1080 #ifdef ASSERT
  1081   { Label L;
  1082     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1083     __ cmpl(t, _thread_in_Java);
  1084     __ jcc(Assembler::equal, L);
  1085     __ stop("Wrong thread state in native stub");
  1086     __ bind(L);
  1088 #endif
  1090   // Change state to native
  1091   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1092   __ call(rax);
  1094   // result potentially in rdx:rax or ST0
  1096   // Verify or restore cpu control state after JNI call
  1097   __ restore_cpu_control_state_after_jni();
  1099   // save potential result in ST(0) & rdx:rax
  1100   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
  1101   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
  1102   // It is safe to do this push because state is _thread_in_native and return address will be found
  1103   // via _last_native_pc and not via _last_jave_sp
  1105   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
  1106   // If the order changes or anything else is added to the stack the code in
  1107   // interpreter_frame_result will have to be changed.
  1109   { Label L;
  1110     Label push_double;
  1111     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1112     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1113     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1114               float_handler.addr());
  1115     __ jcc(Assembler::equal, push_double);
  1116     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1117               double_handler.addr());
  1118     __ jcc(Assembler::notEqual, L);
  1119     __ bind(push_double);
  1120     __ push(dtos);
  1121     __ bind(L);
  1123   __ push(ltos);
  1125   // change thread state
  1126   __ get_thread(thread);
  1127   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1128   if(os::is_MP()) {
  1129     if (UseMembar) {
  1130       // Force this write out before the read below
  1131       __ membar(Assembler::Membar_mask_bits(
  1132            Assembler::LoadLoad | Assembler::LoadStore |
  1133            Assembler::StoreLoad | Assembler::StoreStore));
  1134     } else {
  1135       // Write serialization page so VM thread can do a pseudo remote membar.
  1136       // We use the current thread pointer to calculate a thread specific
  1137       // offset to write to within the page. This minimizes bus traffic
  1138       // due to cache line collision.
  1139       __ serialize_memory(thread, rcx);
  1143   if (AlwaysRestoreFPU) {
  1144     //  Make sure the control word is correct.
  1145     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1148   // check for safepoint operation in progress and/or pending suspend requests
  1149   { Label Continue;
  1151     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1152              SafepointSynchronize::_not_synchronized);
  1154     Label L;
  1155     __ jcc(Assembler::notEqual, L);
  1156     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1157     __ jcc(Assembler::equal, Continue);
  1158     __ bind(L);
  1160     // Don't use call_VM as it will see a possible pending exception and forward it
  1161     // and never return here preventing us from clearing _last_native_pc down below.
  1162     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1163     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1164     // by hand.
  1165     //
  1166     __ push(thread);
  1167     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1168                                             JavaThread::check_special_condition_for_native_trans)));
  1169     __ increment(rsp, wordSize);
  1170     __ get_thread(thread);
  1172     __ bind(Continue);
  1175   // change thread state
  1176   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1178   __ reset_last_Java_frame(thread, true, true);
  1180   // reset handle block
  1181   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1182   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1184   // If result was an oop then unbox and save it in the frame
  1185   { Label L;
  1186     Label no_oop, store_result;
  1187     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
  1188     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
  1189               handler.addr());
  1190     __ jcc(Assembler::notEqual, no_oop);
  1191     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
  1192     __ pop(ltos);
  1193     __ testptr(rax, rax);
  1194     __ jcc(Assembler::zero, store_result);
  1195     // unbox
  1196     __ movptr(rax, Address(rax, 0));
  1197     __ bind(store_result);
  1198     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
  1199     // keep stack depth as expected by pushing oop which will eventually be discarded
  1200     __ push(ltos);
  1201     __ bind(no_oop);
  1205      Label no_reguard;
  1206      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1207      __ jcc(Assembler::notEqual, no_reguard);
  1209      __ pusha();
  1210      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1211      __ popa();
  1213      __ bind(no_reguard);
  1216   // restore rsi to have legal interpreter frame,
  1217   // i.e., bci == 0 <=> rsi == code_base()
  1218   // Can't call_VM until bcp is within reasonable.
  1219   __ get_method(method);      // method is junk from thread_in_native to now.
  1220   __ movptr(rsi, Address(method,Method::const_offset()));   // get ConstMethod*
  1221   __ lea(rsi, Address(rsi,ConstMethod::codes_offset()));    // get codebase
  1223   // handle exceptions (exception handling will handle unlocking!)
  1224   { Label L;
  1225     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1226     __ jcc(Assembler::zero, L);
  1227     // Note: At some point we may want to unify this with the code used in call_VM_base();
  1228     //       i.e., we should use the StubRoutines::forward_exception code. For now this
  1229     //       doesn't work here because the rsp is not correctly set at this point.
  1230     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1231     __ should_not_reach_here();
  1232     __ bind(L);
  1235   // do unlocking if necessary
  1236   { Label L;
  1237     __ movl(t, Address(method, Method::access_flags_offset()));
  1238     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1239     __ jcc(Assembler::zero, L);
  1240     // the code below should be shared with interpreter macro assembler implementation
  1241     { Label unlock;
  1242       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1243       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1244       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1246       __ lea(rdx, monitor);                   // address of first monitor
  1248       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  1249       __ testptr(t, t);
  1250       __ jcc(Assembler::notZero, unlock);
  1252       // Entry already unlocked, need to throw exception
  1253       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1254       __ should_not_reach_here();
  1256       __ bind(unlock);
  1257       __ unlock_object(rdx);
  1259     __ bind(L);
  1262   // jvmti/dtrace support
  1263   // Note: This must happen _after_ handling/throwing any exceptions since
  1264   //       the exception handler code notifies the runtime of method exits
  1265   //       too. If this happens before, method entry/exit notifications are
  1266   //       not properly paired (was bug - gri 11/22/99).
  1267   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1269   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1270   __ pop(ltos);
  1271   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1272   __ call(t);
  1274   // remove activation
  1275   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1276   __ leave();                                // remove frame anchor
  1277   __ pop(rdi);                               // get return address
  1278   __ mov(rsp, t);                            // set sp to sender sp
  1279   __ jmp(rdi);
  1281   if (inc_counter) {
  1282     // Handle overflow of counter and compile method
  1283     __ bind(invocation_counter_overflow);
  1284     generate_counter_overflow(&continue_after_compile);
  1287   return entry_point;
  1290 //
  1291 // Generic interpreted method entry to (asm) interpreter
  1292 //
  1293 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1294   // determine code generation flags
  1295   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1297   // rbx,: Method*
  1298   // rsi: sender sp
  1299   address entry_point = __ pc();
  1301   const Address constMethod       (rbx, Method::const_offset());
  1302   const Address access_flags      (rbx, Method::access_flags_offset());
  1303   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
  1304   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
  1306   // get parameter size (always needed)
  1307   __ movptr(rdx, constMethod);
  1308   __ load_unsigned_short(rcx, size_of_parameters);
  1310   // rbx,: Method*
  1311   // rcx: size of parameters
  1313   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1315   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
  1316   __ subl(rdx, rcx);                                // rdx = no. of additional locals
  1318   // see if we've got enough room on the stack for locals plus overhead.
  1319   generate_stack_overflow_check();
  1321   // get return address
  1322   __ pop(rax);
  1324   // compute beginning of parameters (rdi)
  1325   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1327   // rdx - # of additional locals
  1328   // allocate space for locals
  1329   // explicitly initialize locals
  1331     Label exit, loop;
  1332     __ testl(rdx, rdx);
  1333     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1334     __ bind(loop);
  1335     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1336     __ decrement(rdx);                                // until everything initialized
  1337     __ jcc(Assembler::greater, loop);
  1338     __ bind(exit);
  1341   // initialize fixed part of activation frame
  1342   generate_fixed_frame(false);
  1344   // make sure method is not native & not abstract
  1345 #ifdef ASSERT
  1346   __ movl(rax, access_flags);
  1348     Label L;
  1349     __ testl(rax, JVM_ACC_NATIVE);
  1350     __ jcc(Assembler::zero, L);
  1351     __ stop("tried to execute native method as non-native");
  1352     __ bind(L);
  1354   { Label L;
  1355     __ testl(rax, JVM_ACC_ABSTRACT);
  1356     __ jcc(Assembler::zero, L);
  1357     __ stop("tried to execute abstract method in interpreter");
  1358     __ bind(L);
  1360 #endif
  1362   // Since at this point in the method invocation the exception handler
  1363   // would try to exit the monitor of synchronized methods which hasn't
  1364   // been entered yet, we set the thread local variable
  1365   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1366   // check this flag.
  1368   __ get_thread(rax);
  1369   const Address do_not_unlock_if_synchronized(rax,
  1370         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1371   __ movbool(do_not_unlock_if_synchronized, true);
  1373   // increment invocation count & check for overflow
  1374   Label invocation_counter_overflow;
  1375   Label profile_method;
  1376   Label profile_method_continue;
  1377   if (inc_counter) {
  1378     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1379     if (ProfileInterpreter) {
  1380       __ bind(profile_method_continue);
  1383   Label continue_after_compile;
  1384   __ bind(continue_after_compile);
  1386   bang_stack_shadow_pages(false);
  1388   // reset the _do_not_unlock_if_synchronized flag
  1389   __ get_thread(rax);
  1390   __ movbool(do_not_unlock_if_synchronized, false);
  1392   // check for synchronized methods
  1393   // Must happen AFTER invocation_counter check and stack overflow check,
  1394   // so method is not locked if overflows.
  1395   //
  1396   if (synchronized) {
  1397     // Allocate monitor and lock method
  1398     lock_method();
  1399   } else {
  1400     // no synchronization necessary
  1401 #ifdef ASSERT
  1402       { Label L;
  1403         __ movl(rax, access_flags);
  1404         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1405         __ jcc(Assembler::zero, L);
  1406         __ stop("method needs synchronization");
  1407         __ bind(L);
  1409 #endif
  1412   // start execution
  1413 #ifdef ASSERT
  1414   { Label L;
  1415      const Address monitor_block_top (rbp,
  1416                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1417     __ movptr(rax, monitor_block_top);
  1418     __ cmpptr(rax, rsp);
  1419     __ jcc(Assembler::equal, L);
  1420     __ stop("broken stack frame setup in interpreter");
  1421     __ bind(L);
  1423 #endif
  1425   // jvmti support
  1426   __ notify_method_entry();
  1428   __ dispatch_next(vtos);
  1430   // invocation counter overflow
  1431   if (inc_counter) {
  1432     if (ProfileInterpreter) {
  1433       // We have decided to profile this method in the interpreter
  1434       __ bind(profile_method);
  1435       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1436       __ set_method_data_pointer_for_bcp();
  1437       __ get_method(rbx);
  1438       __ jmp(profile_method_continue);
  1440     // Handle overflow of counter and compile method
  1441     __ bind(invocation_counter_overflow);
  1442     generate_counter_overflow(&continue_after_compile);
  1445   return entry_point;
  1448 //------------------------------------------------------------------------------------------------------------------------
  1449 // Entry points
  1450 //
  1451 // Here we generate the various kind of entries into the interpreter.
  1452 // The two main entry type are generic bytecode methods and native call method.
  1453 // These both come in synchronized and non-synchronized versions but the
  1454 // frame layout they create is very similar. The other method entry
  1455 // types are really just special purpose entries that are really entry
  1456 // and interpretation all in one. These are for trivial methods like
  1457 // accessor, empty, or special math methods.
  1458 //
  1459 // When control flow reaches any of the entry types for the interpreter
  1460 // the following holds ->
  1461 //
  1462 // Arguments:
  1463 //
  1464 // rbx,: Method*
  1465 // rcx: receiver
  1466 //
  1467 //
  1468 // Stack layout immediately at entry
  1469 //
  1470 // [ return address     ] <--- rsp
  1471 // [ parameter n        ]
  1472 //   ...
  1473 // [ parameter 1        ]
  1474 // [ expression stack   ] (caller's java expression stack)
  1476 // Assuming that we don't go to one of the trivial specialized
  1477 // entries the stack will look like below when we are ready to execute
  1478 // the first bytecode (or call the native routine). The register usage
  1479 // will be as the template based interpreter expects (see interpreter_x86.hpp).
  1480 //
  1481 // local variables follow incoming parameters immediately; i.e.
  1482 // the return address is moved to the end of the locals).
  1483 //
  1484 // [ monitor entry      ] <--- rsp
  1485 //   ...
  1486 // [ monitor entry      ]
  1487 // [ expr. stack bottom ]
  1488 // [ saved rsi          ]
  1489 // [ current rdi        ]
  1490 // [ Method*            ]
  1491 // [ saved rbp,          ] <--- rbp,
  1492 // [ return address     ]
  1493 // [ local variable m   ]
  1494 //   ...
  1495 // [ local variable 1   ]
  1496 // [ parameter n        ]
  1497 //   ...
  1498 // [ parameter 1        ] <--- rdi
  1500 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  1501   // determine code generation flags
  1502   bool synchronized = false;
  1503   address entry_point = NULL;
  1505   switch (kind) {
  1506     case Interpreter::zerolocals             :                                                                             break;
  1507     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1508     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  1509     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  1510     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  1511     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  1512     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  1514     case Interpreter::java_lang_math_sin     : // fall thru
  1515     case Interpreter::java_lang_math_cos     : // fall thru
  1516     case Interpreter::java_lang_math_tan     : // fall thru
  1517     case Interpreter::java_lang_math_abs     : // fall thru
  1518     case Interpreter::java_lang_math_log     : // fall thru
  1519     case Interpreter::java_lang_math_log10   : // fall thru
  1520     case Interpreter::java_lang_math_sqrt    : // fall thru
  1521     case Interpreter::java_lang_math_pow     : // fall thru
  1522     case Interpreter::java_lang_math_exp     : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  1523     case Interpreter::java_lang_ref_reference_get
  1524                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  1525     default:
  1526       fatal(err_msg("unexpected method kind: %d", kind));
  1527       break;
  1530   if (entry_point) return entry_point;
  1532   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  1536 // These should never be compiled since the interpreter will prefer
  1537 // the compiled version to the intrinsic version.
  1538 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1539   switch (method_kind(m)) {
  1540     case Interpreter::java_lang_math_sin     : // fall thru
  1541     case Interpreter::java_lang_math_cos     : // fall thru
  1542     case Interpreter::java_lang_math_tan     : // fall thru
  1543     case Interpreter::java_lang_math_abs     : // fall thru
  1544     case Interpreter::java_lang_math_log     : // fall thru
  1545     case Interpreter::java_lang_math_log10   : // fall thru
  1546     case Interpreter::java_lang_math_sqrt    : // fall thru
  1547     case Interpreter::java_lang_math_pow     : // fall thru
  1548     case Interpreter::java_lang_math_exp     :
  1549       return false;
  1550     default:
  1551       return true;
  1555 // How much stack a method activation needs in words.
  1556 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1558   const int stub_code = 4;  // see generate_call_stub
  1559   // Save space for one monitor to get into the interpreted method in case
  1560   // the method is synchronized
  1561   int monitor_size    = method->is_synchronized() ?
  1562                                 1*frame::interpreter_frame_monitor_size() : 0;
  1564   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
  1565   // be sure to change this if you add/subtract anything to/from the overhead area
  1566   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
  1568   const int extra_stack = Method::extra_stack_entries();
  1569   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1570                            Interpreter::stackElementWords;
  1571   return overhead_size + method_stack + stub_code;
  1574 // asm based interpreter deoptimization helpers
  1576 int AbstractInterpreter::layout_activation(Method* method,
  1577                                            int tempcount,
  1578                                            int popframe_extra_args,
  1579                                            int moncount,
  1580                                            int caller_actual_parameters,
  1581                                            int callee_param_count,
  1582                                            int callee_locals,
  1583                                            frame* caller,
  1584                                            frame* interpreter_frame,
  1585                                            bool is_top_frame,
  1586                                            bool is_bottom_frame) {
  1587   // Note: This calculation must exactly parallel the frame setup
  1588   // in AbstractInterpreterGenerator::generate_method_entry.
  1589   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1590   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  1591   // as determined by a previous call to this method.
  1592   // It is also guaranteed to be walkable even though it is in a skeletal state
  1593   // NOTE: return size is in words not bytes
  1595   // fixed size of an interpreter frame:
  1596   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1597   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1598                      Interpreter::stackElementWords;
  1600   int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
  1602   // Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
  1603   // Since the callee parameters already account for the callee's params we only need to account for
  1604   // the extra locals.
  1607   int size = overhead +
  1608          ((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
  1609          (moncount*frame::interpreter_frame_monitor_size()) +
  1610          tempcount*Interpreter::stackElementWords + popframe_extra_args;
  1612   if (interpreter_frame != NULL) {
  1613 #ifdef ASSERT
  1614     if (!EnableInvokeDynamic)
  1615       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1616       // Probably, since deoptimization doesn't work yet.
  1617       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1618     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1619 #endif
  1621     interpreter_frame->interpreter_frame_set_method(method);
  1622     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
  1623     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
  1624     // and sender_sp is fp+8
  1625     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1627 #ifdef ASSERT
  1628     if (caller->is_interpreted_frame()) {
  1629       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
  1631 #endif
  1633     interpreter_frame->interpreter_frame_set_locals(locals);
  1634     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1635     BasicObjectLock* monbot = montop - moncount;
  1636     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1638     // Set last_sp
  1639     intptr_t*  rsp = (intptr_t*) monbot  -
  1640                      tempcount*Interpreter::stackElementWords -
  1641                      popframe_extra_args;
  1642     interpreter_frame->interpreter_frame_set_last_sp(rsp);
  1644     // All frames but the initial (oldest) interpreter frame we fill in have a
  1645     // value for sender_sp that allows walking the stack but isn't
  1646     // truly correct. Correct the value here.
  1648     if (extra_locals != 0 &&
  1649         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
  1650       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
  1652     *interpreter_frame->interpreter_frame_cache_addr() =
  1653       method->constants()->cache();
  1655   return size;
  1659 //------------------------------------------------------------------------------------------------------------------------
  1660 // Exceptions
  1662 void TemplateInterpreterGenerator::generate_throw_exception() {
  1663   // Entry point in previous activation (i.e., if the caller was interpreted)
  1664   Interpreter::_rethrow_exception_entry = __ pc();
  1665   const Register thread = rcx;
  1667   // Restore sp to interpreter_frame_last_sp even though we are going
  1668   // to empty the expression stack for the exception processing.
  1669   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1670   // rax,: exception
  1671   // rdx: return address/pc that threw exception
  1672   __ restore_bcp();                              // rsi points to call/send
  1673   __ restore_locals();
  1675   // Entry point for exceptions thrown within interpreter code
  1676   Interpreter::_throw_exception_entry = __ pc();
  1677   // expression stack is undefined here
  1678   // rax,: exception
  1679   // rsi: exception bcp
  1680   __ verify_oop(rax);
  1682   // expression stack must be empty before entering the VM in case of an exception
  1683   __ empty_expression_stack();
  1684   __ empty_FPU_stack();
  1685   // find exception handler address and preserve exception oop
  1686   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
  1687   // rax,: exception handler entry point
  1688   // rdx: preserved exception oop
  1689   // rsi: bcp for exception handler
  1690   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
  1691   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
  1693   // If the exception is not handled in the current frame the frame is removed and
  1694   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
  1695   //
  1696   // Note: At this point the bci is still the bxi for the instruction which caused
  1697   //       the exception and the expression stack is empty. Thus, for any VM calls
  1698   //       at this point, GC will find a legal oop map (with empty expression stack).
  1700   // In current activation
  1701   // tos: exception
  1702   // rsi: exception bcp
  1704   //
  1705   // JVMTI PopFrame support
  1706   //
  1708    Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1709   __ empty_expression_stack();
  1710   __ empty_FPU_stack();
  1711   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
  1712   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1713   // popframe handling cycles.
  1714   __ get_thread(thread);
  1715   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
  1716   __ orl(rdx, JavaThread::popframe_processing_bit);
  1717   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
  1720     // Check to see whether we are returning to a deoptimized frame.
  1721     // (The PopFrame call ensures that the caller of the popped frame is
  1722     // either interpreted or compiled and deoptimizes it if compiled.)
  1723     // In this case, we can't call dispatch_next() after the frame is
  1724     // popped, but instead must save the incoming arguments and restore
  1725     // them after deoptimization has occurred.
  1726     //
  1727     // Note that we don't compare the return PC against the
  1728     // deoptimization blob's unpack entry because of the presence of
  1729     // adapter frames in C2.
  1730     Label caller_not_deoptimized;
  1731     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
  1732     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
  1733     __ testl(rax, rax);
  1734     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1736     // Compute size of arguments for saving when returning to deoptimized caller
  1737     __ get_method(rax);
  1738     __ movptr(rax, Address(rax, Method::const_offset()));
  1739     __ load_unsigned_short(rax, Address(rax, ConstMethod::size_of_parameters_offset()));
  1740     __ shlptr(rax, Interpreter::logStackElementSize);
  1741     __ restore_locals();
  1742     __ subptr(rdi, rax);
  1743     __ addptr(rdi, wordSize);
  1744     // Save these arguments
  1745     __ get_thread(thread);
  1746     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
  1748     __ remove_activation(vtos, rdx,
  1749                          /* throw_monitor_exception */ false,
  1750                          /* install_monitor_exception */ false,
  1751                          /* notify_jvmdi */ false);
  1753     // Inform deoptimization that it is responsible for restoring these arguments
  1754     __ get_thread(thread);
  1755     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
  1757     // Continue in deoptimization handler
  1758     __ jmp(rdx);
  1760     __ bind(caller_not_deoptimized);
  1763   __ remove_activation(vtos, rdx,
  1764                        /* throw_monitor_exception */ false,
  1765                        /* install_monitor_exception */ false,
  1766                        /* notify_jvmdi */ false);
  1768   // Finish with popframe handling
  1769   // A previous I2C followed by a deoptimization might have moved the
  1770   // outgoing arguments further up the stack. PopFrame expects the
  1771   // mutations to those outgoing arguments to be preserved and other
  1772   // constraints basically require this frame to look exactly as
  1773   // though it had previously invoked an interpreted activation with
  1774   // no space between the top of the expression stack (current
  1775   // last_sp) and the top of stack. Rather than force deopt to
  1776   // maintain this kind of invariant all the time we call a small
  1777   // fixup routine to move the mutated arguments onto the top of our
  1778   // expression stack if necessary.
  1779   __ mov(rax, rsp);
  1780   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1781   __ get_thread(thread);
  1782   // PC must point into interpreter here
  1783   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1784   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
  1785   __ get_thread(thread);
  1786   __ reset_last_Java_frame(thread, true, true);
  1787   // Restore the last_sp and null it out
  1788   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1789   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1791   __ restore_bcp();
  1792   __ restore_locals();
  1793   // The method data pointer was incremented already during
  1794   // call profiling. We have to restore the mdp for the current bcp.
  1795   if (ProfileInterpreter) {
  1796     __ set_method_data_pointer_for_bcp();
  1799   // Clear the popframe condition flag
  1800   __ get_thread(thread);
  1801   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
  1803   __ dispatch_next(vtos);
  1804   // end of PopFrame support
  1806   Interpreter::_remove_activation_entry = __ pc();
  1808   // preserve exception over this code sequence
  1809   __ pop_ptr(rax);
  1810   __ get_thread(thread);
  1811   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
  1812   // remove the activation (without doing throws on illegalMonitorExceptions)
  1813   __ remove_activation(vtos, rdx, false, true, false);
  1814   // restore exception
  1815   __ get_thread(thread);
  1816   __ get_vm_result(rax, thread);
  1818   // Inbetween activations - previous activation type unknown yet
  1819   // compute continuation point - the continuation point expects
  1820   // the following registers set up:
  1821   //
  1822   // rax: exception
  1823   // rdx: return address/pc that threw exception
  1824   // rsp: expression stack of caller
  1825   // rbp: rbp, of caller
  1826   __ push(rax);                                  // save exception
  1827   __ push(rdx);                                  // save return address
  1828   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
  1829   __ mov(rbx, rax);                              // save exception handler
  1830   __ pop(rdx);                                   // restore return address
  1831   __ pop(rax);                                   // restore exception
  1832   // Note that an "issuing PC" is actually the next PC after the call
  1833   __ jmp(rbx);                                   // jump to exception handler of caller
  1837 //
  1838 // JVMTI ForceEarlyReturn support
  1839 //
  1840 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1841   address entry = __ pc();
  1842   const Register thread = rcx;
  1844   __ restore_bcp();
  1845   __ restore_locals();
  1846   __ empty_expression_stack();
  1847   __ empty_FPU_stack();
  1848   __ load_earlyret_value(state);
  1850   __ get_thread(thread);
  1851   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
  1852   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
  1854   // Clear the earlyret state
  1855   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1857   __ remove_activation(state, rsi,
  1858                        false, /* throw_monitor_exception */
  1859                        false, /* install_monitor_exception */
  1860                        true); /* notify_jvmdi */
  1861   __ jmp(rsi);
  1862   return entry;
  1863 } // end of ForceEarlyReturn support
  1866 //------------------------------------------------------------------------------------------------------------------------
  1867 // Helper for vtos entry point generation
  1869 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1870   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1871   Label L;
  1872   fep = __ pc(); __ push(ftos); __ jmp(L);
  1873   dep = __ pc(); __ push(dtos); __ jmp(L);
  1874   lep = __ pc(); __ push(ltos); __ jmp(L);
  1875   aep = __ pc(); __ push(atos); __ jmp(L);
  1876   bep = cep = sep =             // fall through
  1877   iep = __ pc(); __ push(itos); // fall through
  1878   vep = __ pc(); __ bind(L);    // fall through
  1879   generate_and_dispatch(t);
  1882 //------------------------------------------------------------------------------------------------------------------------
  1883 // Generation of individual instructions
  1885 // helpers for generate_and_dispatch
  1889 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1890  : TemplateInterpreterGenerator(code) {
  1891    generate_all(); // down here so it can be "virtual"
  1894 //------------------------------------------------------------------------------------------------------------------------
  1896 // Non-product code
  1897 #ifndef PRODUCT
  1898 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1899   address entry = __ pc();
  1901   // prepare expression stack
  1902   __ pop(rcx);          // pop return address so expression stack is 'pure'
  1903   __ push(state);       // save tosca
  1905   // pass tosca registers as arguments & call tracer
  1906   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
  1907   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
  1908   __ pop(state);        // restore tosca
  1910   // return
  1911   __ jmp(rcx);
  1913   return entry;
  1917 void TemplateInterpreterGenerator::count_bytecode() {
  1918   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1922 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1923   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1927 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1928   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1929   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1930   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  1931   ExternalAddress table((address) BytecodePairHistogram::_counters);
  1932   Address index(noreg, rbx, Address::times_4);
  1933   __ incrementl(ArrayAddress(table, index));
  1937 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1938   // Call a little run-time stub to avoid blow-up for each bytecode.
  1939   // The run-time runtime saves the right registers, depending on
  1940   // the tosca in-state for the given template.
  1941   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1942          "entry must have been generated");
  1943   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1947 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1948   Label L;
  1949   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1950            StopInterpreterAt);
  1951   __ jcc(Assembler::notEqual, L);
  1952   __ int3();
  1953   __ bind(L);
  1955 #endif // !PRODUCT
  1956 #endif // CC_INTERP

mercurial