src/cpu/x86/vm/frame_x86.cpp

Thu, 21 Mar 2013 09:27:54 +0100

author
roland
date
Thu, 21 Mar 2013 09:27:54 +0100
changeset 4860
46f6f063b272
parent 4721
47bc9800972c
child 5237
f2110083203d
permissions
-rw-r--r--

7153771: array bound check elimination for c1
Summary: when possible optimize out array bound checks, inserting predicates when needed.
Reviewed-by: never, kvn, twisti
Contributed-by: thomaswue <thomas.wuerthinger@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "oops/markOop.hpp"
    29 #include "oops/method.hpp"
    30 #include "oops/oop.inline.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/frame.inline.hpp"
    33 #include "runtime/handles.inline.hpp"
    34 #include "runtime/javaCalls.hpp"
    35 #include "runtime/monitorChunk.hpp"
    36 #include "runtime/signature.hpp"
    37 #include "runtime/stubCodeGenerator.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #include "vmreg_x86.inline.hpp"
    40 #ifdef COMPILER1
    41 #include "c1/c1_Runtime1.hpp"
    42 #include "runtime/vframeArray.hpp"
    43 #endif
    45 #ifdef ASSERT
    46 void RegisterMap::check_location_valid() {
    47 }
    48 #endif
    51 // Profiling/safepoint support
    53 bool frame::safe_for_sender(JavaThread *thread) {
    54   address   sp = (address)_sp;
    55   address   fp = (address)_fp;
    56   address   unextended_sp = (address)_unextended_sp;
    57   // sp must be within the stack
    58   bool sp_safe = (sp <= thread->stack_base()) &&
    59                  (sp >= thread->stack_base() - thread->stack_size());
    61   if (!sp_safe) {
    62     return false;
    63   }
    65   // unextended sp must be within the stack and above or equal sp
    66   bool unextended_sp_safe = (unextended_sp <= thread->stack_base()) &&
    67                             (unextended_sp >= sp);
    69   if (!unextended_sp_safe) {
    70     return false;
    71   }
    73   // an fp must be within the stack and above (but not equal) sp
    74   bool fp_safe = (fp <= thread->stack_base()) && (fp > sp);
    76   // We know sp/unextended_sp are safe only fp is questionable here
    78   // If the current frame is known to the code cache then we can attempt to
    79   // to construct the sender and do some validation of it. This goes a long way
    80   // toward eliminating issues when we get in frame construction code
    82   if (_cb != NULL ) {
    84     // First check if frame is complete and tester is reliable
    85     // Unfortunately we can only check frame complete for runtime stubs and nmethod
    86     // other generic buffer blobs are more problematic so we just assume they are
    87     // ok. adapter blobs never have a frame complete and are never ok.
    89     if (!_cb->is_frame_complete_at(_pc)) {
    90       if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
    91         return false;
    92       }
    93     }
    95     // Could just be some random pointer within the codeBlob
    96     if (!_cb->code_contains(_pc)) {
    97       return false;
    98     }
   100     // Entry frame checks
   101     if (is_entry_frame()) {
   102       // an entry frame must have a valid fp.
   104       if (!fp_safe) return false;
   106       // Validate the JavaCallWrapper an entry frame must have
   108       address jcw = (address)entry_frame_call_wrapper();
   110       bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > fp);
   112       return jcw_safe;
   114     }
   116     intptr_t* sender_sp = NULL;
   117     address   sender_pc = NULL;
   119     if (is_interpreted_frame()) {
   120       // fp must be safe
   121       if (!fp_safe) {
   122         return false;
   123       }
   125       sender_pc = (address) this->fp()[return_addr_offset];
   126       sender_sp = (intptr_t*) addr_at(sender_sp_offset);
   128     } else {
   129       // must be some sort of compiled/runtime frame
   130       // fp does not have to be safe (although it could be check for c1?)
   132       sender_sp = _unextended_sp + _cb->frame_size();
   133       // On Intel the return_address is always the word on the stack
   134       sender_pc = (address) *(sender_sp-1);
   135     }
   137     // We must always be able to find a recognizable pc
   138     CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
   139     if (sender_pc == NULL ||  sender_blob == NULL) {
   140       return false;
   141     }
   144     // If the potential sender is the interpreter then we can do some more checking
   145     if (Interpreter::contains(sender_pc)) {
   147       // ebp is always saved in a recognizable place in any code we generate. However
   148       // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
   149       // is really a frame pointer.
   151       intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
   152       bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp);
   154       if (!saved_fp_safe) {
   155         return false;
   156       }
   158       // construct the potential sender
   160       frame sender(sender_sp, saved_fp, sender_pc);
   162       return sender.is_interpreted_frame_valid(thread);
   164     }
   166     // Could just be some random pointer within the codeBlob
   167     if (!sender_blob->code_contains(sender_pc)) {
   168       return false;
   169     }
   171     // We should never be able to see an adapter if the current frame is something from code cache
   172     if (sender_blob->is_adapter_blob()) {
   173       return false;
   174     }
   176     // Could be the call_stub
   178     if (StubRoutines::returns_to_call_stub(sender_pc)) {
   179       intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
   180       bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp);
   182       if (!saved_fp_safe) {
   183         return false;
   184       }
   186       // construct the potential sender
   188       frame sender(sender_sp, saved_fp, sender_pc);
   190       // Validate the JavaCallWrapper an entry frame must have
   191       address jcw = (address)sender.entry_frame_call_wrapper();
   193       bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > (address)sender.fp());
   195       return jcw_safe;
   196     }
   198     // If the frame size is 0 something is bad because every nmethod has a non-zero frame size
   199     // because the return address counts against the callee's frame.
   201     if (sender_blob->frame_size() == 0) {
   202       assert(!sender_blob->is_nmethod(), "should count return address at least");
   203       return false;
   204     }
   206     // We should never be able to see anything here except an nmethod. If something in the
   207     // code cache (current frame) is called by an entity within the code cache that entity
   208     // should not be anything but the call stub (already covered), the interpreter (already covered)
   209     // or an nmethod.
   211     assert(sender_blob->is_nmethod(), "Impossible call chain");
   213     // Could put some more validation for the potential non-interpreted sender
   214     // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
   216     // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
   218     // We've validated the potential sender that would be created
   219     return true;
   220   }
   222   // Must be native-compiled frame. Since sender will try and use fp to find
   223   // linkages it must be safe
   225   if (!fp_safe) {
   226     return false;
   227   }
   229   // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
   231   if ( (address) this->fp()[return_addr_offset] == NULL) return false;
   234   // could try and do some more potential verification of native frame if we could think of some...
   236   return true;
   238 }
   241 void frame::patch_pc(Thread* thread, address pc) {
   242   address* pc_addr = &(((address*) sp())[-1]);
   243   if (TracePcPatching) {
   244     tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
   245                   pc_addr, *pc_addr, pc);
   246   }
   247   // Either the return address is the original one or we are going to
   248   // patch in the same address that's already there.
   249   assert(_pc == *pc_addr || pc == *pc_addr, "must be");
   250   *pc_addr = pc;
   251   _cb = CodeCache::find_blob(pc);
   252   address original_pc = nmethod::get_deopt_original_pc(this);
   253   if (original_pc != NULL) {
   254     assert(original_pc == _pc, "expected original PC to be stored before patching");
   255     _deopt_state = is_deoptimized;
   256     // leave _pc as is
   257   } else {
   258     _deopt_state = not_deoptimized;
   259     _pc = pc;
   260   }
   261 }
   263 bool frame::is_interpreted_frame() const  {
   264   return Interpreter::contains(pc());
   265 }
   267 int frame::frame_size(RegisterMap* map) const {
   268   frame sender = this->sender(map);
   269   return sender.sp() - sp();
   270 }
   272 intptr_t* frame::entry_frame_argument_at(int offset) const {
   273   // convert offset to index to deal with tsi
   274   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
   275   // Entry frame's arguments are always in relation to unextended_sp()
   276   return &unextended_sp()[index];
   277 }
   279 // sender_sp
   280 #ifdef CC_INTERP
   281 intptr_t* frame::interpreter_frame_sender_sp() const {
   282   assert(is_interpreted_frame(), "interpreted frame expected");
   283   // QQQ why does this specialize method exist if frame::sender_sp() does same thing?
   284   // seems odd and if we always know interpreted vs. non then sender_sp() is really
   285   // doing too much work.
   286   return get_interpreterState()->sender_sp();
   287 }
   289 // monitor elements
   291 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
   292   return get_interpreterState()->monitor_base();
   293 }
   295 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
   296   return (BasicObjectLock*) get_interpreterState()->stack_base();
   297 }
   299 #else // CC_INTERP
   301 intptr_t* frame::interpreter_frame_sender_sp() const {
   302   assert(is_interpreted_frame(), "interpreted frame expected");
   303   return (intptr_t*) at(interpreter_frame_sender_sp_offset);
   304 }
   306 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
   307   assert(is_interpreted_frame(), "interpreted frame expected");
   308   ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
   309 }
   312 // monitor elements
   314 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
   315   return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
   316 }
   318 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
   319   BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
   320   // make sure the pointer points inside the frame
   321   assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
   322   assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
   323   return result;
   324 }
   326 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
   327   *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
   328 }
   330 // Used by template based interpreter deoptimization
   331 void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
   332     *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
   333 }
   334 #endif // CC_INTERP
   336 frame frame::sender_for_entry_frame(RegisterMap* map) const {
   337   assert(map != NULL, "map must be set");
   338   // Java frame called from C; skip all C frames and return top C
   339   // frame of that chunk as the sender
   340   JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
   341   assert(!entry_frame_is_first(), "next Java fp must be non zero");
   342   assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
   343   map->clear();
   344   assert(map->include_argument_oops(), "should be set by clear");
   345   if (jfa->last_Java_pc() != NULL ) {
   346     frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
   347     return fr;
   348   }
   349   frame fr(jfa->last_Java_sp(), jfa->last_Java_fp());
   350   return fr;
   351 }
   353 //------------------------------------------------------------------------------
   354 // frame::verify_deopt_original_pc
   355 //
   356 // Verifies the calculated original PC of a deoptimization PC for the
   357 // given unextended SP.  The unextended SP might also be the saved SP
   358 // for MethodHandle call sites.
   359 #ifdef ASSERT
   360 void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) {
   361   frame fr;
   363   // This is ugly but it's better than to change {get,set}_original_pc
   364   // to take an SP value as argument.  And it's only a debugging
   365   // method anyway.
   366   fr._unextended_sp = unextended_sp;
   368   address original_pc = nm->get_original_pc(&fr);
   369   assert(nm->insts_contains(original_pc), "original PC must be in nmethod");
   370   assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be");
   371 }
   372 #endif
   374 //------------------------------------------------------------------------------
   375 // frame::adjust_unextended_sp
   376 void frame::adjust_unextended_sp() {
   377   // If we are returning to a compiled MethodHandle call site, the
   378   // saved_fp will in fact be a saved value of the unextended SP.  The
   379   // simplest way to tell whether we are returning to such a call site
   380   // is as follows:
   382   nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null();
   383   if (sender_nm != NULL) {
   384     // If the sender PC is a deoptimization point, get the original
   385     // PC.  For MethodHandle call site the unextended_sp is stored in
   386     // saved_fp.
   387     if (sender_nm->is_deopt_mh_entry(_pc)) {
   388       DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, _fp));
   389       _unextended_sp = _fp;
   390     }
   391     else if (sender_nm->is_deopt_entry(_pc)) {
   392       DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp));
   393     }
   394     else if (sender_nm->is_method_handle_return(_pc)) {
   395       _unextended_sp = _fp;
   396     }
   397   }
   398 }
   400 //------------------------------------------------------------------------------
   401 // frame::update_map_with_saved_link
   402 void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
   403   // The interpreter and compiler(s) always save EBP/RBP in a known
   404   // location on entry. We must record where that location is
   405   // so this if EBP/RBP was live on callout from c2 we can find
   406   // the saved copy no matter what it called.
   408   // Since the interpreter always saves EBP/RBP if we record where it is then
   409   // we don't have to always save EBP/RBP on entry and exit to c2 compiled
   410   // code, on entry will be enough.
   411   map->set_location(rbp->as_VMReg(), (address) link_addr);
   412 #ifdef AMD64
   413   // this is weird "H" ought to be at a higher address however the
   414   // oopMaps seems to have the "H" regs at the same address and the
   415   // vanilla register.
   416   // XXXX make this go away
   417   if (true) {
   418     map->set_location(rbp->as_VMReg()->next(), (address) link_addr);
   419   }
   420 #endif // AMD64
   421 }
   424 //------------------------------------------------------------------------------
   425 // frame::sender_for_interpreter_frame
   426 frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
   427   // SP is the raw SP from the sender after adapter or interpreter
   428   // extension.
   429   intptr_t* sender_sp = this->sender_sp();
   431   // This is the sp before any possible extension (adapter/locals).
   432   intptr_t* unextended_sp = interpreter_frame_sender_sp();
   434 #ifdef COMPILER2
   435   if (map->update_map()) {
   436     update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
   437   }
   438 #endif // COMPILER2
   440   return frame(sender_sp, unextended_sp, link(), sender_pc());
   441 }
   444 //------------------------------------------------------------------------------
   445 // frame::sender_for_compiled_frame
   446 frame frame::sender_for_compiled_frame(RegisterMap* map) const {
   447   assert(map != NULL, "map must be set");
   449   // frame owned by optimizing compiler
   450   assert(_cb->frame_size() >= 0, "must have non-zero frame size");
   451   intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
   452   intptr_t* unextended_sp = sender_sp;
   454   // On Intel the return_address is always the word on the stack
   455   address sender_pc = (address) *(sender_sp-1);
   457   // This is the saved value of EBP which may or may not really be an FP.
   458   // It is only an FP if the sender is an interpreter frame (or C1?).
   459   intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
   461   if (map->update_map()) {
   462     // Tell GC to use argument oopmaps for some runtime stubs that need it.
   463     // For C1, the runtime stub might not have oop maps, so set this flag
   464     // outside of update_register_map.
   465     map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
   466     if (_cb->oop_maps() != NULL) {
   467       OopMapSet::update_register_map(this, map);
   468     }
   470     // Since the prolog does the save and restore of EBP there is no oopmap
   471     // for it so we must fill in its location as if there was an oopmap entry
   472     // since if our caller was compiled code there could be live jvm state in it.
   473     update_map_with_saved_link(map, saved_fp_addr);
   474   }
   476   assert(sender_sp != sp(), "must have changed");
   477   return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
   478 }
   481 //------------------------------------------------------------------------------
   482 // frame::sender
   483 frame frame::sender(RegisterMap* map) const {
   484   // Default is we done have to follow them. The sender_for_xxx will
   485   // update it accordingly
   486   map->set_include_argument_oops(false);
   488   if (is_entry_frame())       return sender_for_entry_frame(map);
   489   if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
   490   assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
   492   if (_cb != NULL) {
   493     return sender_for_compiled_frame(map);
   494   }
   495   // Must be native-compiled frame, i.e. the marshaling code for native
   496   // methods that exists in the core system.
   497   return frame(sender_sp(), link(), sender_pc());
   498 }
   501 bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
   502   assert(is_interpreted_frame(), "must be interpreter frame");
   503   Method* method = interpreter_frame_method();
   504   // When unpacking an optimized frame the frame pointer is
   505   // adjusted with:
   506   int diff = (method->max_locals() - method->size_of_parameters()) *
   507              Interpreter::stackElementWords;
   508   return _fp == (fp - diff);
   509 }
   511 void frame::pd_gc_epilog() {
   512   // nothing done here now
   513 }
   515 bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
   516 // QQQ
   517 #ifdef CC_INTERP
   518 #else
   519   assert(is_interpreted_frame(), "Not an interpreted frame");
   520   // These are reasonable sanity checks
   521   if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
   522     return false;
   523   }
   524   if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
   525     return false;
   526   }
   527   if (fp() + interpreter_frame_initial_sp_offset < sp()) {
   528     return false;
   529   }
   530   // These are hacks to keep us out of trouble.
   531   // The problem with these is that they mask other problems
   532   if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
   533     return false;
   534   }
   536   // do some validation of frame elements
   538   // first the method
   540   Method* m = *interpreter_frame_method_addr();
   542   // validate the method we'd find in this potential sender
   543   if (!m->is_valid_method()) return false;
   545   // stack frames shouldn't be much larger than max_stack elements
   547   if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
   548     return false;
   549   }
   551   // validate bci/bcx
   553   intptr_t  bcx    = interpreter_frame_bcx();
   554   if (m->validate_bci_from_bcx(bcx) < 0) {
   555     return false;
   556   }
   558   // validate ConstantPoolCache*
   559   ConstantPoolCache* cp = *interpreter_frame_cache_addr();
   560   if (cp == NULL || !cp->is_metadata()) return false;
   562   // validate locals
   564   address locals =  (address) *interpreter_frame_locals_addr();
   566   if (locals > thread->stack_base() || locals < (address) fp()) return false;
   568   // We'd have to be pretty unlucky to be mislead at this point
   570 #endif // CC_INTERP
   571   return true;
   572 }
   574 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
   575 #ifdef CC_INTERP
   576   // Needed for JVMTI. The result should always be in the
   577   // interpreterState object
   578   interpreterState istate = get_interpreterState();
   579 #endif // CC_INTERP
   580   assert(is_interpreted_frame(), "interpreted frame expected");
   581   Method* method = interpreter_frame_method();
   582   BasicType type = method->result_type();
   584   intptr_t* tos_addr;
   585   if (method->is_native()) {
   586     // Prior to calling into the runtime to report the method_exit the possible
   587     // return value is pushed to the native stack. If the result is a jfloat/jdouble
   588     // then ST0 is saved before EAX/EDX. See the note in generate_native_result
   589     tos_addr = (intptr_t*)sp();
   590     if (type == T_FLOAT || type == T_DOUBLE) {
   591     // QQQ seems like this code is equivalent on the two platforms
   592 #ifdef AMD64
   593       // This is times two because we do a push(ltos) after pushing XMM0
   594       // and that takes two interpreter stack slots.
   595       tos_addr += 2 * Interpreter::stackElementWords;
   596 #else
   597       tos_addr += 2;
   598 #endif // AMD64
   599     }
   600   } else {
   601     tos_addr = (intptr_t*)interpreter_frame_tos_address();
   602   }
   604   switch (type) {
   605     case T_OBJECT  :
   606     case T_ARRAY   : {
   607       oop obj;
   608       if (method->is_native()) {
   609 #ifdef CC_INTERP
   610         obj = istate->_oop_temp;
   611 #else
   612         obj = (oop) at(interpreter_frame_oop_temp_offset);
   613 #endif // CC_INTERP
   614       } else {
   615         oop* obj_p = (oop*)tos_addr;
   616         obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
   617       }
   618       assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
   619       *oop_result = obj;
   620       break;
   621     }
   622     case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
   623     case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
   624     case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
   625     case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
   626     case T_INT     : value_result->i = *(jint*)tos_addr; break;
   627     case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
   628     case T_FLOAT   : {
   629 #ifdef AMD64
   630         value_result->f = *(jfloat*)tos_addr;
   631 #else
   632       if (method->is_native()) {
   633         jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
   634         value_result->f = (jfloat)d;
   635       } else {
   636         value_result->f = *(jfloat*)tos_addr;
   637       }
   638 #endif // AMD64
   639       break;
   640     }
   641     case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
   642     case T_VOID    : /* Nothing to do */ break;
   643     default        : ShouldNotReachHere();
   644   }
   646   return type;
   647 }
   650 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
   651   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
   652   return &interpreter_frame_tos_address()[index];
   653 }
   655 #ifndef PRODUCT
   657 #define DESCRIBE_FP_OFFSET(name) \
   658   values.describe(frame_no, fp() + frame::name##_offset, #name)
   660 void frame::describe_pd(FrameValues& values, int frame_no) {
   661   if (is_interpreted_frame()) {
   662     DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
   663     DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
   664     DESCRIBE_FP_OFFSET(interpreter_frame_method);
   665     DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
   666     DESCRIBE_FP_OFFSET(interpreter_frame_cache);
   667     DESCRIBE_FP_OFFSET(interpreter_frame_locals);
   668     DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
   669     DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
   670   }
   671 }
   672 #endif
   674 intptr_t *frame::initial_deoptimization_info() {
   675   // used to reset the saved FP
   676   return fp();
   677 }
   679 intptr_t* frame::real_fp() const {
   680   if (_cb != NULL) {
   681     // use the frame size if valid
   682     int size = _cb->frame_size();
   683     if (size > 0) {
   684       return unextended_sp() + size;
   685     }
   686   }
   687   // else rely on fp()
   688   assert(! is_compiled_frame(), "unknown compiled frame size");
   689   return fp();
   690 }

mercurial