src/share/vm/memory/generation.cpp

Thu, 26 Sep 2013 12:18:21 +0200

author
tschatzl
date
Thu, 26 Sep 2013 12:18:21 +0200
changeset 5775
461159cd7a91
parent 5369
71180a6e5080
child 6131
86e6d691f2e1
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/gcTimer.hpp"
    27 #include "gc_implementation/shared/gcTrace.hpp"
    28 #include "gc_implementation/shared/spaceDecorator.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "memory/allocation.inline.hpp"
    31 #include "memory/blockOffsetTable.inline.hpp"
    32 #include "memory/cardTableRS.hpp"
    33 #include "memory/gcLocker.inline.hpp"
    34 #include "memory/genCollectedHeap.hpp"
    35 #include "memory/genMarkSweep.hpp"
    36 #include "memory/genOopClosures.hpp"
    37 #include "memory/genOopClosures.inline.hpp"
    38 #include "memory/generation.hpp"
    39 #include "memory/generation.inline.hpp"
    40 #include "memory/space.inline.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "runtime/java.hpp"
    43 #include "utilities/copy.hpp"
    44 #include "utilities/events.hpp"
    46 Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
    47   _level(level),
    48   _ref_processor(NULL) {
    49   if (!_virtual_space.initialize(rs, initial_size)) {
    50     vm_exit_during_initialization("Could not reserve enough space for "
    51                     "object heap");
    52   }
    53   // Mangle all of the the initial generation.
    54   if (ZapUnusedHeapArea) {
    55     MemRegion mangle_region((HeapWord*)_virtual_space.low(),
    56       (HeapWord*)_virtual_space.high());
    57     SpaceMangler::mangle_region(mangle_region);
    58   }
    59   _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
    60           (HeapWord*)_virtual_space.high_boundary());
    61 }
    63 GenerationSpec* Generation::spec() {
    64   GenCollectedHeap* gch = GenCollectedHeap::heap();
    65   assert(0 <= level() && level() < gch->_n_gens, "Bad gen level");
    66   return gch->_gen_specs[level()];
    67 }
    69 size_t Generation::max_capacity() const {
    70   return reserved().byte_size();
    71 }
    73 void Generation::print_heap_change(size_t prev_used) const {
    74   if (PrintGCDetails && Verbose) {
    75     gclog_or_tty->print(" "  SIZE_FORMAT
    76                         "->" SIZE_FORMAT
    77                         "("  SIZE_FORMAT ")",
    78                         prev_used, used(), capacity());
    79   } else {
    80     gclog_or_tty->print(" "  SIZE_FORMAT "K"
    81                         "->" SIZE_FORMAT "K"
    82                         "("  SIZE_FORMAT "K)",
    83                         prev_used / K, used() / K, capacity() / K);
    84   }
    85 }
    87 // By default we get a single threaded default reference processor;
    88 // generations needing multi-threaded refs processing or discovery override this method.
    89 void Generation::ref_processor_init() {
    90   assert(_ref_processor == NULL, "a reference processor already exists");
    91   assert(!_reserved.is_empty(), "empty generation?");
    92   _ref_processor = new ReferenceProcessor(_reserved);    // a vanilla reference processor
    93   if (_ref_processor == NULL) {
    94     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
    95   }
    96 }
    98 void Generation::print() const { print_on(tty); }
   100 void Generation::print_on(outputStream* st)  const {
   101   st->print(" %-20s", name());
   102   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
   103              capacity()/K, used()/K);
   104   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   105               _virtual_space.low_boundary(),
   106               _virtual_space.high(),
   107               _virtual_space.high_boundary());
   108 }
   110 void Generation::print_summary_info() { print_summary_info_on(tty); }
   112 void Generation::print_summary_info_on(outputStream* st) {
   113   StatRecord* sr = stat_record();
   114   double time = sr->accumulated_time.seconds();
   115   st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
   116                "%d GC's, avg GC time %3.7f]",
   117                level(), time, sr->invocations,
   118                sr->invocations > 0 ? time / sr->invocations : 0.0);
   119 }
   121 // Utility iterator classes
   123 class GenerationIsInReservedClosure : public SpaceClosure {
   124  public:
   125   const void* _p;
   126   Space* sp;
   127   virtual void do_space(Space* s) {
   128     if (sp == NULL) {
   129       if (s->is_in_reserved(_p)) sp = s;
   130     }
   131   }
   132   GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
   133 };
   135 class GenerationIsInClosure : public SpaceClosure {
   136  public:
   137   const void* _p;
   138   Space* sp;
   139   virtual void do_space(Space* s) {
   140     if (sp == NULL) {
   141       if (s->is_in(_p)) sp = s;
   142     }
   143   }
   144   GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
   145 };
   147 bool Generation::is_in(const void* p) const {
   148   GenerationIsInClosure blk(p);
   149   ((Generation*)this)->space_iterate(&blk);
   150   return blk.sp != NULL;
   151 }
   153 DefNewGeneration* Generation::as_DefNewGeneration() {
   154   assert((kind() == Generation::DefNew) ||
   155          (kind() == Generation::ParNew) ||
   156          (kind() == Generation::ASParNew),
   157     "Wrong youngest generation type");
   158   return (DefNewGeneration*) this;
   159 }
   161 Generation* Generation::next_gen() const {
   162   GenCollectedHeap* gch = GenCollectedHeap::heap();
   163   int next = level() + 1;
   164   if (next < gch->_n_gens) {
   165     return gch->_gens[next];
   166   } else {
   167     return NULL;
   168   }
   169 }
   171 size_t Generation::max_contiguous_available() const {
   172   // The largest number of contiguous free words in this or any higher generation.
   173   size_t max = 0;
   174   for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
   175     size_t avail = gen->contiguous_available();
   176     if (avail > max) {
   177       max = avail;
   178     }
   179   }
   180   return max;
   181 }
   183 bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
   184   size_t available = max_contiguous_available();
   185   bool   res = (available >= max_promotion_in_bytes);
   186   if (PrintGC && Verbose) {
   187     gclog_or_tty->print_cr(
   188       "Generation: promo attempt is%s safe: available("SIZE_FORMAT") %s max_promo("SIZE_FORMAT")",
   189       res? "":" not", available, res? ">=":"<",
   190       max_promotion_in_bytes);
   191   }
   192   return res;
   193 }
   195 // Ignores "ref" and calls allocate().
   196 oop Generation::promote(oop obj, size_t obj_size) {
   197   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
   199 #ifndef PRODUCT
   200   if (Universe::heap()->promotion_should_fail()) {
   201     return NULL;
   202   }
   203 #endif  // #ifndef PRODUCT
   205   HeapWord* result = allocate(obj_size, false);
   206   if (result != NULL) {
   207     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
   208     return oop(result);
   209   } else {
   210     GenCollectedHeap* gch = GenCollectedHeap::heap();
   211     return gch->handle_failed_promotion(this, obj, obj_size);
   212   }
   213 }
   215 oop Generation::par_promote(int thread_num,
   216                             oop obj, markOop m, size_t word_sz) {
   217   // Could do a bad general impl here that gets a lock.  But no.
   218   ShouldNotCallThis();
   219   return NULL;
   220 }
   222 void Generation::par_promote_alloc_undo(int thread_num,
   223                                         HeapWord* obj, size_t word_sz) {
   224   // Could do a bad general impl here that gets a lock.  But no.
   225   guarantee(false, "No good general implementation.");
   226 }
   228 Space* Generation::space_containing(const void* p) const {
   229   GenerationIsInReservedClosure blk(p);
   230   // Cast away const
   231   ((Generation*)this)->space_iterate(&blk);
   232   return blk.sp;
   233 }
   235 // Some of these are mediocre general implementations.  Should be
   236 // overridden to get better performance.
   238 class GenerationBlockStartClosure : public SpaceClosure {
   239  public:
   240   const void* _p;
   241   HeapWord* _start;
   242   virtual void do_space(Space* s) {
   243     if (_start == NULL && s->is_in_reserved(_p)) {
   244       _start = s->block_start(_p);
   245     }
   246   }
   247   GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
   248 };
   250 HeapWord* Generation::block_start(const void* p) const {
   251   GenerationBlockStartClosure blk(p);
   252   // Cast away const
   253   ((Generation*)this)->space_iterate(&blk);
   254   return blk._start;
   255 }
   257 class GenerationBlockSizeClosure : public SpaceClosure {
   258  public:
   259   const HeapWord* _p;
   260   size_t size;
   261   virtual void do_space(Space* s) {
   262     if (size == 0 && s->is_in_reserved(_p)) {
   263       size = s->block_size(_p);
   264     }
   265   }
   266   GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
   267 };
   269 size_t Generation::block_size(const HeapWord* p) const {
   270   GenerationBlockSizeClosure blk(p);
   271   // Cast away const
   272   ((Generation*)this)->space_iterate(&blk);
   273   assert(blk.size > 0, "seems reasonable");
   274   return blk.size;
   275 }
   277 class GenerationBlockIsObjClosure : public SpaceClosure {
   278  public:
   279   const HeapWord* _p;
   280   bool is_obj;
   281   virtual void do_space(Space* s) {
   282     if (!is_obj && s->is_in_reserved(_p)) {
   283       is_obj |= s->block_is_obj(_p);
   284     }
   285   }
   286   GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
   287 };
   289 bool Generation::block_is_obj(const HeapWord* p) const {
   290   GenerationBlockIsObjClosure blk(p);
   291   // Cast away const
   292   ((Generation*)this)->space_iterate(&blk);
   293   return blk.is_obj;
   294 }
   296 class GenerationOopIterateClosure : public SpaceClosure {
   297  public:
   298   ExtendedOopClosure* cl;
   299   MemRegion mr;
   300   virtual void do_space(Space* s) {
   301     s->oop_iterate(mr, cl);
   302   }
   303   GenerationOopIterateClosure(ExtendedOopClosure* _cl, MemRegion _mr) :
   304     cl(_cl), mr(_mr) {}
   305 };
   307 void Generation::oop_iterate(ExtendedOopClosure* cl) {
   308   GenerationOopIterateClosure blk(cl, _reserved);
   309   space_iterate(&blk);
   310 }
   312 void Generation::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   313   GenerationOopIterateClosure blk(cl, mr);
   314   space_iterate(&blk);
   315 }
   317 void Generation::younger_refs_in_space_iterate(Space* sp,
   318                                                OopsInGenClosure* cl) {
   319   GenRemSet* rs = SharedHeap::heap()->rem_set();
   320   rs->younger_refs_in_space_iterate(sp, cl);
   321 }
   323 class GenerationObjIterateClosure : public SpaceClosure {
   324  private:
   325   ObjectClosure* _cl;
   326  public:
   327   virtual void do_space(Space* s) {
   328     s->object_iterate(_cl);
   329   }
   330   GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
   331 };
   333 void Generation::object_iterate(ObjectClosure* cl) {
   334   GenerationObjIterateClosure blk(cl);
   335   space_iterate(&blk);
   336 }
   338 class GenerationSafeObjIterateClosure : public SpaceClosure {
   339  private:
   340   ObjectClosure* _cl;
   341  public:
   342   virtual void do_space(Space* s) {
   343     s->safe_object_iterate(_cl);
   344   }
   345   GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
   346 };
   348 void Generation::safe_object_iterate(ObjectClosure* cl) {
   349   GenerationSafeObjIterateClosure blk(cl);
   350   space_iterate(&blk);
   351 }
   353 void Generation::prepare_for_compaction(CompactPoint* cp) {
   354   // Generic implementation, can be specialized
   355   CompactibleSpace* space = first_compaction_space();
   356   while (space != NULL) {
   357     space->prepare_for_compaction(cp);
   358     space = space->next_compaction_space();
   359   }
   360 }
   362 class AdjustPointersClosure: public SpaceClosure {
   363  public:
   364   void do_space(Space* sp) {
   365     sp->adjust_pointers();
   366   }
   367 };
   369 void Generation::adjust_pointers() {
   370   // Note that this is done over all spaces, not just the compactible
   371   // ones.
   372   AdjustPointersClosure blk;
   373   space_iterate(&blk, true);
   374 }
   376 void Generation::compact() {
   377   CompactibleSpace* sp = first_compaction_space();
   378   while (sp != NULL) {
   379     sp->compact();
   380     sp = sp->next_compaction_space();
   381   }
   382 }
   384 CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
   385                                int level,
   386                                GenRemSet* remset) :
   387   Generation(rs, initial_byte_size, level), _rs(remset),
   388   _shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(),
   389   _used_at_prologue()
   390 {
   391   HeapWord* start = (HeapWord*)rs.base();
   392   size_t reserved_byte_size = rs.size();
   393   assert((uintptr_t(start) & 3) == 0, "bad alignment");
   394   assert((reserved_byte_size & 3) == 0, "bad alignment");
   395   MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
   396   _bts = new BlockOffsetSharedArray(reserved_mr,
   397                                     heap_word_size(initial_byte_size));
   398   MemRegion committed_mr(start, heap_word_size(initial_byte_size));
   399   _rs->resize_covered_region(committed_mr);
   400   if (_bts == NULL)
   401     vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
   403   // Verify that the start and end of this generation is the start of a card.
   404   // If this wasn't true, a single card could span more than on generation,
   405   // which would cause problems when we commit/uncommit memory, and when we
   406   // clear and dirty cards.
   407   guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
   408   if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
   409     // Don't check at the very end of the heap as we'll assert that we're probing off
   410     // the end if we try.
   411     guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
   412   }
   413   _min_heap_delta_bytes = MinHeapDeltaBytes;
   414   _capacity_at_prologue = initial_byte_size;
   415   _used_at_prologue = 0;
   416 }
   418 bool CardGeneration::expand(size_t bytes, size_t expand_bytes) {
   419   assert_locked_or_safepoint(Heap_lock);
   420   if (bytes == 0) {
   421     return true;  // That's what grow_by(0) would return
   422   }
   423   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
   424   if (aligned_bytes == 0){
   425     // The alignment caused the number of bytes to wrap.  An expand_by(0) will
   426     // return true with the implication that an expansion was done when it
   427     // was not.  A call to expand implies a best effort to expand by "bytes"
   428     // but not a guarantee.  Align down to give a best effort.  This is likely
   429     // the most that the generation can expand since it has some capacity to
   430     // start with.
   431     aligned_bytes = ReservedSpace::page_align_size_down(bytes);
   432   }
   433   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
   434   bool success = false;
   435   if (aligned_expand_bytes > aligned_bytes) {
   436     success = grow_by(aligned_expand_bytes);
   437   }
   438   if (!success) {
   439     success = grow_by(aligned_bytes);
   440   }
   441   if (!success) {
   442     success = grow_to_reserved();
   443   }
   444   if (PrintGC && Verbose) {
   445     if (success && GC_locker::is_active_and_needs_gc()) {
   446       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
   447     }
   448   }
   450   return success;
   451 }
   454 // No young generation references, clear this generation's cards.
   455 void CardGeneration::clear_remembered_set() {
   456   _rs->clear(reserved());
   457 }
   460 // Objects in this generation may have moved, invalidate this
   461 // generation's cards.
   462 void CardGeneration::invalidate_remembered_set() {
   463   _rs->invalidate(used_region());
   464 }
   467 void CardGeneration::compute_new_size() {
   468   assert(_shrink_factor <= 100, "invalid shrink factor");
   469   size_t current_shrink_factor = _shrink_factor;
   470   _shrink_factor = 0;
   472   // We don't have floating point command-line arguments
   473   // Note:  argument processing ensures that MinHeapFreeRatio < 100.
   474   const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
   475   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
   477   // Compute some numbers about the state of the heap.
   478   const size_t used_after_gc = used();
   479   const size_t capacity_after_gc = capacity();
   481   const double min_tmp = used_after_gc / maximum_used_percentage;
   482   size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx));
   483   // Don't shrink less than the initial generation size
   484   minimum_desired_capacity = MAX2(minimum_desired_capacity,
   485                                   spec()->init_size());
   486   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
   488   if (PrintGC && Verbose) {
   489     const size_t free_after_gc = free();
   490     const double free_percentage = ((double)free_after_gc) / capacity_after_gc;
   491     gclog_or_tty->print_cr("TenuredGeneration::compute_new_size: ");
   492     gclog_or_tty->print_cr("  "
   493                   "  minimum_free_percentage: %6.2f"
   494                   "  maximum_used_percentage: %6.2f",
   495                   minimum_free_percentage,
   496                   maximum_used_percentage);
   497     gclog_or_tty->print_cr("  "
   498                   "   free_after_gc   : %6.1fK"
   499                   "   used_after_gc   : %6.1fK"
   500                   "   capacity_after_gc   : %6.1fK",
   501                   free_after_gc / (double) K,
   502                   used_after_gc / (double) K,
   503                   capacity_after_gc / (double) K);
   504     gclog_or_tty->print_cr("  "
   505                   "   free_percentage: %6.2f",
   506                   free_percentage);
   507   }
   509   if (capacity_after_gc < minimum_desired_capacity) {
   510     // If we have less free space than we want then expand
   511     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
   512     // Don't expand unless it's significant
   513     if (expand_bytes >= _min_heap_delta_bytes) {
   514       expand(expand_bytes, 0); // safe if expansion fails
   515     }
   516     if (PrintGC && Verbose) {
   517       gclog_or_tty->print_cr("    expanding:"
   518                     "  minimum_desired_capacity: %6.1fK"
   519                     "  expand_bytes: %6.1fK"
   520                     "  _min_heap_delta_bytes: %6.1fK",
   521                     minimum_desired_capacity / (double) K,
   522                     expand_bytes / (double) K,
   523                     _min_heap_delta_bytes / (double) K);
   524     }
   525     return;
   526   }
   528   // No expansion, now see if we want to shrink
   529   size_t shrink_bytes = 0;
   530   // We would never want to shrink more than this
   531   size_t max_shrink_bytes = capacity_after_gc - minimum_desired_capacity;
   533   if (MaxHeapFreeRatio < 100) {
   534     const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
   535     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
   536     const double max_tmp = used_after_gc / minimum_used_percentage;
   537     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
   538     maximum_desired_capacity = MAX2(maximum_desired_capacity,
   539                                     spec()->init_size());
   540     if (PrintGC && Verbose) {
   541       gclog_or_tty->print_cr("  "
   542                              "  maximum_free_percentage: %6.2f"
   543                              "  minimum_used_percentage: %6.2f",
   544                              maximum_free_percentage,
   545                              minimum_used_percentage);
   546       gclog_or_tty->print_cr("  "
   547                              "  _capacity_at_prologue: %6.1fK"
   548                              "  minimum_desired_capacity: %6.1fK"
   549                              "  maximum_desired_capacity: %6.1fK",
   550                              _capacity_at_prologue / (double) K,
   551                              minimum_desired_capacity / (double) K,
   552                              maximum_desired_capacity / (double) K);
   553     }
   554     assert(minimum_desired_capacity <= maximum_desired_capacity,
   555            "sanity check");
   557     if (capacity_after_gc > maximum_desired_capacity) {
   558       // Capacity too large, compute shrinking size
   559       shrink_bytes = capacity_after_gc - maximum_desired_capacity;
   560       // We don't want shrink all the way back to initSize if people call
   561       // System.gc(), because some programs do that between "phases" and then
   562       // we'd just have to grow the heap up again for the next phase.  So we
   563       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
   564       // on the third call, and 100% by the fourth call.  But if we recompute
   565       // size without shrinking, it goes back to 0%.
   566       shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
   567       assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
   568       if (current_shrink_factor == 0) {
   569         _shrink_factor = 10;
   570       } else {
   571         _shrink_factor = MIN2(current_shrink_factor * 4, (size_t) 100);
   572       }
   573       if (PrintGC && Verbose) {
   574         gclog_or_tty->print_cr("  "
   575                       "  shrinking:"
   576                       "  initSize: %.1fK"
   577                       "  maximum_desired_capacity: %.1fK",
   578                       spec()->init_size() / (double) K,
   579                       maximum_desired_capacity / (double) K);
   580         gclog_or_tty->print_cr("  "
   581                       "  shrink_bytes: %.1fK"
   582                       "  current_shrink_factor: %d"
   583                       "  new shrink factor: %d"
   584                       "  _min_heap_delta_bytes: %.1fK",
   585                       shrink_bytes / (double) K,
   586                       current_shrink_factor,
   587                       _shrink_factor,
   588                       _min_heap_delta_bytes / (double) K);
   589       }
   590     }
   591   }
   593   if (capacity_after_gc > _capacity_at_prologue) {
   594     // We might have expanded for promotions, in which case we might want to
   595     // take back that expansion if there's room after GC.  That keeps us from
   596     // stretching the heap with promotions when there's plenty of room.
   597     size_t expansion_for_promotion = capacity_after_gc - _capacity_at_prologue;
   598     expansion_for_promotion = MIN2(expansion_for_promotion, max_shrink_bytes);
   599     // We have two shrinking computations, take the largest
   600     shrink_bytes = MAX2(shrink_bytes, expansion_for_promotion);
   601     assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
   602     if (PrintGC && Verbose) {
   603       gclog_or_tty->print_cr("  "
   604                              "  aggressive shrinking:"
   605                              "  _capacity_at_prologue: %.1fK"
   606                              "  capacity_after_gc: %.1fK"
   607                              "  expansion_for_promotion: %.1fK"
   608                              "  shrink_bytes: %.1fK",
   609                              capacity_after_gc / (double) K,
   610                              _capacity_at_prologue / (double) K,
   611                              expansion_for_promotion / (double) K,
   612                              shrink_bytes / (double) K);
   613     }
   614   }
   615   // Don't shrink unless it's significant
   616   if (shrink_bytes >= _min_heap_delta_bytes) {
   617     shrink(shrink_bytes);
   618   }
   619 }
   621 // Currently nothing to do.
   622 void CardGeneration::prepare_for_verify() {}
   625 void OneContigSpaceCardGeneration::collect(bool   full,
   626                                            bool   clear_all_soft_refs,
   627                                            size_t size,
   628                                            bool   is_tlab) {
   629   GenCollectedHeap* gch = GenCollectedHeap::heap();
   631   SpecializationStats::clear();
   632   // Temporarily expand the span of our ref processor, so
   633   // refs discovery is over the entire heap, not just this generation
   634   ReferenceProcessorSpanMutator
   635     x(ref_processor(), gch->reserved_region());
   637   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
   638   gc_timer->register_gc_start(os::elapsed_counter());
   640   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
   641   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
   643   GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs);
   645   gc_timer->register_gc_end(os::elapsed_counter());
   647   gc_tracer->report_gc_end(os::elapsed_counter(), gc_timer->time_partitions());
   649   SpecializationStats::print();
   650 }
   652 HeapWord*
   653 OneContigSpaceCardGeneration::expand_and_allocate(size_t word_size,
   654                                                   bool is_tlab,
   655                                                   bool parallel) {
   656   assert(!is_tlab, "OneContigSpaceCardGeneration does not support TLAB allocation");
   657   if (parallel) {
   658     MutexLocker x(ParGCRareEvent_lock);
   659     HeapWord* result = NULL;
   660     size_t byte_size = word_size * HeapWordSize;
   661     while (true) {
   662       expand(byte_size, _min_heap_delta_bytes);
   663       if (GCExpandToAllocateDelayMillis > 0) {
   664         os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
   665       }
   666       result = _the_space->par_allocate(word_size);
   667       if ( result != NULL) {
   668         return result;
   669       } else {
   670         // If there's not enough expansion space available, give up.
   671         if (_virtual_space.uncommitted_size() < byte_size) {
   672           return NULL;
   673         }
   674         // else try again
   675       }
   676     }
   677   } else {
   678     expand(word_size*HeapWordSize, _min_heap_delta_bytes);
   679     return _the_space->allocate(word_size);
   680   }
   681 }
   683 bool OneContigSpaceCardGeneration::expand(size_t bytes, size_t expand_bytes) {
   684   GCMutexLocker x(ExpandHeap_lock);
   685   return CardGeneration::expand(bytes, expand_bytes);
   686 }
   689 void OneContigSpaceCardGeneration::shrink(size_t bytes) {
   690   assert_locked_or_safepoint(ExpandHeap_lock);
   691   size_t size = ReservedSpace::page_align_size_down(bytes);
   692   if (size > 0) {
   693     shrink_by(size);
   694   }
   695 }
   698 size_t OneContigSpaceCardGeneration::capacity() const {
   699   return _the_space->capacity();
   700 }
   703 size_t OneContigSpaceCardGeneration::used() const {
   704   return _the_space->used();
   705 }
   708 size_t OneContigSpaceCardGeneration::free() const {
   709   return _the_space->free();
   710 }
   712 MemRegion OneContigSpaceCardGeneration::used_region() const {
   713   return the_space()->used_region();
   714 }
   716 size_t OneContigSpaceCardGeneration::unsafe_max_alloc_nogc() const {
   717   return _the_space->free();
   718 }
   720 size_t OneContigSpaceCardGeneration::contiguous_available() const {
   721   return _the_space->free() + _virtual_space.uncommitted_size();
   722 }
   724 bool OneContigSpaceCardGeneration::grow_by(size_t bytes) {
   725   assert_locked_or_safepoint(ExpandHeap_lock);
   726   bool result = _virtual_space.expand_by(bytes);
   727   if (result) {
   728     size_t new_word_size =
   729        heap_word_size(_virtual_space.committed_size());
   730     MemRegion mr(_the_space->bottom(), new_word_size);
   731     // Expand card table
   732     Universe::heap()->barrier_set()->resize_covered_region(mr);
   733     // Expand shared block offset array
   734     _bts->resize(new_word_size);
   736     // Fix for bug #4668531
   737     if (ZapUnusedHeapArea) {
   738       MemRegion mangle_region(_the_space->end(),
   739       (HeapWord*)_virtual_space.high());
   740       SpaceMangler::mangle_region(mangle_region);
   741     }
   743     // Expand space -- also expands space's BOT
   744     // (which uses (part of) shared array above)
   745     _the_space->set_end((HeapWord*)_virtual_space.high());
   747     // update the space and generation capacity counters
   748     update_counters();
   750     if (Verbose && PrintGC) {
   751       size_t new_mem_size = _virtual_space.committed_size();
   752       size_t old_mem_size = new_mem_size - bytes;
   753       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
   754                       SIZE_FORMAT "K to " SIZE_FORMAT "K",
   755                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
   756     }
   757   }
   758   return result;
   759 }
   762 bool OneContigSpaceCardGeneration::grow_to_reserved() {
   763   assert_locked_or_safepoint(ExpandHeap_lock);
   764   bool success = true;
   765   const size_t remaining_bytes = _virtual_space.uncommitted_size();
   766   if (remaining_bytes > 0) {
   767     success = grow_by(remaining_bytes);
   768     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
   769   }
   770   return success;
   771 }
   773 void OneContigSpaceCardGeneration::shrink_by(size_t bytes) {
   774   assert_locked_or_safepoint(ExpandHeap_lock);
   775   // Shrink committed space
   776   _virtual_space.shrink_by(bytes);
   777   // Shrink space; this also shrinks the space's BOT
   778   _the_space->set_end((HeapWord*) _virtual_space.high());
   779   size_t new_word_size = heap_word_size(_the_space->capacity());
   780   // Shrink the shared block offset array
   781   _bts->resize(new_word_size);
   782   MemRegion mr(_the_space->bottom(), new_word_size);
   783   // Shrink the card table
   784   Universe::heap()->barrier_set()->resize_covered_region(mr);
   786   if (Verbose && PrintGC) {
   787     size_t new_mem_size = _virtual_space.committed_size();
   788     size_t old_mem_size = new_mem_size + bytes;
   789     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
   790                   name(), old_mem_size/K, new_mem_size/K);
   791   }
   792 }
   794 // Currently nothing to do.
   795 void OneContigSpaceCardGeneration::prepare_for_verify() {}
   798 // Override for a card-table generation with one contiguous
   799 // space. NOTE: For reasons that are lost in the fog of history,
   800 // this code is used when you iterate over perm gen objects,
   801 // even when one uses CDS, where the perm gen has a couple of
   802 // other spaces; this is because CompactingPermGenGen derives
   803 // from OneContigSpaceCardGeneration. This should be cleaned up,
   804 // see CR 6897789..
   805 void OneContigSpaceCardGeneration::object_iterate(ObjectClosure* blk) {
   806   _the_space->object_iterate(blk);
   807 }
   809 void OneContigSpaceCardGeneration::space_iterate(SpaceClosure* blk,
   810                                                  bool usedOnly) {
   811   blk->do_space(_the_space);
   812 }
   814 void OneContigSpaceCardGeneration::younger_refs_iterate(OopsInGenClosure* blk) {
   815   blk->set_generation(this);
   816   younger_refs_in_space_iterate(_the_space, blk);
   817   blk->reset_generation();
   818 }
   820 void OneContigSpaceCardGeneration::save_marks() {
   821   _the_space->set_saved_mark();
   822 }
   825 void OneContigSpaceCardGeneration::reset_saved_marks() {
   826   _the_space->reset_saved_mark();
   827 }
   830 bool OneContigSpaceCardGeneration::no_allocs_since_save_marks() {
   831   return _the_space->saved_mark_at_top();
   832 }
   834 #define OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)      \
   835                                                                                 \
   836 void OneContigSpaceCardGeneration::                                             \
   837 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {                  \
   838   blk->set_generation(this);                                                    \
   839   _the_space->oop_since_save_marks_iterate##nv_suffix(blk);                     \
   840   blk->reset_generation();                                                      \
   841   save_marks();                                                                 \
   842 }
   844 ALL_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN)
   846 #undef OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN
   849 void OneContigSpaceCardGeneration::gc_epilogue(bool full) {
   850   _last_gc = WaterMark(the_space(), the_space()->top());
   852   // update the generation and space performance counters
   853   update_counters();
   854   if (ZapUnusedHeapArea) {
   855     the_space()->check_mangled_unused_area_complete();
   856   }
   857 }
   859 void OneContigSpaceCardGeneration::record_spaces_top() {
   860   assert(ZapUnusedHeapArea, "Not mangling unused space");
   861   the_space()->set_top_for_allocations();
   862 }
   864 void OneContigSpaceCardGeneration::verify() {
   865   the_space()->verify();
   866 }
   868 void OneContigSpaceCardGeneration::print_on(outputStream* st)  const {
   869   Generation::print_on(st);
   870   st->print("   the");
   871   the_space()->print_on(st);
   872 }

mercurial