src/share/vm/classfile/defaultMethods.cpp

Thu, 26 Sep 2013 12:18:21 +0200

author
tschatzl
date
Thu, 26 Sep 2013 12:18:21 +0200
changeset 5775
461159cd7a91
parent 5681
42863137168c
child 5786
36b97be47bde
child 5797
f2512d89ad0c
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/bytecodeAssembler.hpp"
    27 #include "classfile/defaultMethods.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "memory/metadataFactory.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "runtime/signature.hpp"
    33 #include "runtime/thread.hpp"
    34 #include "oops/instanceKlass.hpp"
    35 #include "oops/klass.hpp"
    36 #include "oops/method.hpp"
    37 #include "utilities/accessFlags.hpp"
    38 #include "utilities/exceptions.hpp"
    39 #include "utilities/ostream.hpp"
    40 #include "utilities/pair.hpp"
    41 #include "utilities/resourceHash.hpp"
    43 typedef enum { QUALIFIED, DISQUALIFIED } QualifiedState;
    45 // Because we use an iterative algorithm when iterating over the type
    46 // hierarchy, we can't use traditional scoped objects which automatically do
    47 // cleanup in the destructor when the scope is exited.  PseudoScope (and
    48 // PseudoScopeMark) provides a similar functionality, but for when you want a
    49 // scoped object in non-stack memory (such as in resource memory, as we do
    50 // here).  You've just got to remember to call 'destroy()' on the scope when
    51 // leaving it (and marks have to be explicitly added).
    52 class PseudoScopeMark : public ResourceObj {
    53  public:
    54   virtual void destroy() = 0;
    55 };
    57 class PseudoScope : public ResourceObj {
    58  private:
    59   GrowableArray<PseudoScopeMark*> _marks;
    60  public:
    62   static PseudoScope* cast(void* data) {
    63     return static_cast<PseudoScope*>(data);
    64   }
    66   void add_mark(PseudoScopeMark* psm) {
    67    _marks.append(psm);
    68   }
    70   void destroy() {
    71     for (int i = 0; i < _marks.length(); ++i) {
    72       _marks.at(i)->destroy();
    73     }
    74   }
    75 };
    77 #ifndef PRODUCT
    78 static void print_slot(outputStream* str, Symbol* name, Symbol* signature) {
    79   ResourceMark rm;
    80   str->print("%s%s", name->as_C_string(), signature->as_C_string());
    81 }
    83 static void print_method(outputStream* str, Method* mo, bool with_class=true) {
    84   ResourceMark rm;
    85   if (with_class) {
    86     str->print("%s.", mo->klass_name()->as_C_string());
    87   }
    88   print_slot(str, mo->name(), mo->signature());
    89 }
    90 #endif // ndef PRODUCT
    92 /**
    93  * Perform a depth-first iteration over the class hierarchy, applying
    94  * algorithmic logic as it goes.
    95  *
    96  * This class is one half of the inheritance hierarchy analysis mechanism.
    97  * It is meant to be used in conjunction with another class, the algorithm,
    98  * which is indicated by the ALGO template parameter.  This class can be
    99  * paired with any algorithm class that provides the required methods.
   100  *
   101  * This class contains all the mechanics for iterating over the class hierarchy
   102  * starting at a particular root, without recursing (thus limiting stack growth
   103  * from this point).  It visits each superclass (if present) and superinterface
   104  * in a depth-first manner, with callbacks to the ALGO class as each class is
   105  * encountered (visit()), The algorithm can cut-off further exploration of a
   106  * particular branch by returning 'false' from a visit() call.
   107  *
   108  * The ALGO class, must provide a visit() method, which each of which will be
   109  * called once for each node in the inheritance tree during the iteration.  In
   110  * addition, it can provide a memory block via new_node_data(InstanceKlass*),
   111  * which it can use for node-specific storage (and access via the
   112  * current_data() and data_at_depth(int) methods).
   113  *
   114  * Bare minimum needed to be an ALGO class:
   115  * class Algo : public HierarchyVisitor<Algo> {
   116  *   void* new_node_data(InstanceKlass* cls) { return NULL; }
   117  *   void free_node_data(void* data) { return; }
   118  *   bool visit() { return true; }
   119  * };
   120  */
   121 template <class ALGO>
   122 class HierarchyVisitor : StackObj {
   123  private:
   125   class Node : public ResourceObj {
   126    public:
   127     InstanceKlass* _class;
   128     bool _super_was_visited;
   129     int _interface_index;
   130     void* _algorithm_data;
   132     Node(InstanceKlass* cls, void* data, bool visit_super)
   133         : _class(cls), _super_was_visited(!visit_super),
   134           _interface_index(0), _algorithm_data(data) {}
   136     int number_of_interfaces() { return _class->local_interfaces()->length(); }
   137     int interface_index() { return _interface_index; }
   138     void set_super_visited() { _super_was_visited = true; }
   139     void increment_visited_interface() { ++_interface_index; }
   140     void set_all_interfaces_visited() {
   141       _interface_index = number_of_interfaces();
   142     }
   143     bool has_visited_super() { return _super_was_visited; }
   144     bool has_visited_all_interfaces() {
   145       return interface_index() >= number_of_interfaces();
   146     }
   147     InstanceKlass* interface_at(int index) {
   148       return InstanceKlass::cast(_class->local_interfaces()->at(index));
   149     }
   150     InstanceKlass* next_super() { return _class->java_super(); }
   151     InstanceKlass* next_interface() {
   152       return interface_at(interface_index());
   153     }
   154   };
   156   bool _cancelled;
   157   GrowableArray<Node*> _path;
   159   Node* current_top() const { return _path.top(); }
   160   bool has_more_nodes() const { return !_path.is_empty(); }
   161   void push(InstanceKlass* cls, void* data) {
   162     assert(cls != NULL, "Requires a valid instance class");
   163     Node* node = new Node(cls, data, has_super(cls));
   164     _path.push(node);
   165   }
   166   void pop() { _path.pop(); }
   168   void reset_iteration() {
   169     _cancelled = false;
   170     _path.clear();
   171   }
   172   bool is_cancelled() const { return _cancelled; }
   174   static bool has_super(InstanceKlass* cls) {
   175     return cls->super() != NULL && !cls->is_interface();
   176   }
   178   Node* node_at_depth(int i) const {
   179     return (i >= _path.length()) ? NULL : _path.at(_path.length() - i - 1);
   180   }
   182  protected:
   184   // Accessors available to the algorithm
   185   int current_depth() const { return _path.length() - 1; }
   187   InstanceKlass* class_at_depth(int i) {
   188     Node* n = node_at_depth(i);
   189     return n == NULL ? NULL : n->_class;
   190   }
   191   InstanceKlass* current_class() { return class_at_depth(0); }
   193   void* data_at_depth(int i) {
   194     Node* n = node_at_depth(i);
   195     return n == NULL ? NULL : n->_algorithm_data;
   196   }
   197   void* current_data() { return data_at_depth(0); }
   199   void cancel_iteration() { _cancelled = true; }
   201  public:
   203   void run(InstanceKlass* root) {
   204     ALGO* algo = static_cast<ALGO*>(this);
   206     reset_iteration();
   208     void* algo_data = algo->new_node_data(root);
   209     push(root, algo_data);
   210     bool top_needs_visit = true;
   212     do {
   213       Node* top = current_top();
   214       if (top_needs_visit) {
   215         if (algo->visit() == false) {
   216           // algorithm does not want to continue along this path.  Arrange
   217           // it so that this state is immediately popped off the stack
   218           top->set_super_visited();
   219           top->set_all_interfaces_visited();
   220         }
   221         top_needs_visit = false;
   222       }
   224       if (top->has_visited_super() && top->has_visited_all_interfaces()) {
   225         algo->free_node_data(top->_algorithm_data);
   226         pop();
   227       } else {
   228         InstanceKlass* next = NULL;
   229         if (top->has_visited_super() == false) {
   230           next = top->next_super();
   231           top->set_super_visited();
   232         } else {
   233           next = top->next_interface();
   234           top->increment_visited_interface();
   235         }
   236         assert(next != NULL, "Otherwise we shouldn't be here");
   237         algo_data = algo->new_node_data(next);
   238         push(next, algo_data);
   239         top_needs_visit = true;
   240       }
   241     } while (!is_cancelled() && has_more_nodes());
   242   }
   243 };
   245 #ifndef PRODUCT
   246 class PrintHierarchy : public HierarchyVisitor<PrintHierarchy> {
   247  public:
   249   bool visit() {
   250     InstanceKlass* cls = current_class();
   251     streamIndentor si(tty, current_depth() * 2);
   252     tty->indent().print_cr("%s", cls->name()->as_C_string());
   253     return true;
   254   }
   256   void* new_node_data(InstanceKlass* cls) { return NULL; }
   257   void free_node_data(void* data) { return; }
   258 };
   259 #endif // ndef PRODUCT
   261 // Used to register InstanceKlass objects and all related metadata structures
   262 // (Methods, ConstantPools) as "in-use" by the current thread so that they can't
   263 // be deallocated by class redefinition while we're using them.  The classes are
   264 // de-registered when this goes out of scope.
   265 //
   266 // Once a class is registered, we need not bother with methodHandles or
   267 // constantPoolHandles for it's associated metadata.
   268 class KeepAliveRegistrar : public StackObj {
   269  private:
   270   Thread* _thread;
   271   GrowableArray<ConstantPool*> _keep_alive;
   273  public:
   274   KeepAliveRegistrar(Thread* thread) : _thread(thread), _keep_alive(20) {
   275     assert(thread == Thread::current(), "Must be current thread");
   276   }
   278   ~KeepAliveRegistrar() {
   279     for (int i = _keep_alive.length() - 1; i >= 0; --i) {
   280       ConstantPool* cp = _keep_alive.at(i);
   281       int idx = _thread->metadata_handles()->find_from_end(cp);
   282       assert(idx > 0, "Must be in the list");
   283       _thread->metadata_handles()->remove_at(idx);
   284     }
   285   }
   287   // Register a class as 'in-use' by the thread.  It's fine to register a class
   288   // multiple times (though perhaps inefficient)
   289   void register_class(InstanceKlass* ik) {
   290     ConstantPool* cp = ik->constants();
   291     _keep_alive.push(cp);
   292     _thread->metadata_handles()->push(cp);
   293   }
   294 };
   296 class KeepAliveVisitor : public HierarchyVisitor<KeepAliveVisitor> {
   297  private:
   298   KeepAliveRegistrar* _registrar;
   300  public:
   301   KeepAliveVisitor(KeepAliveRegistrar* registrar) : _registrar(registrar) {}
   303   void* new_node_data(InstanceKlass* cls) { return NULL; }
   304   void free_node_data(void* data) { return; }
   306   bool visit() {
   307     _registrar->register_class(current_class());
   308     return true;
   309   }
   310 };
   313 // A method family contains a set of all methods that implement a single
   314 // erased method. As members of the set are collected while walking over the
   315 // hierarchy, they are tagged with a qualification state.  The qualification
   316 // state for an erased method is set to disqualified if there exists a path
   317 // from the root of hierarchy to the method that contains an interleaving
   318 // erased method defined in an interface.
   320 class MethodFamily : public ResourceObj {
   321  private:
   323   GrowableArray<Pair<Method*,QualifiedState> > _members;
   324   ResourceHashtable<Method*, int> _member_index;
   326   Method* _selected_target;  // Filled in later, if a unique target exists
   327   Symbol* _exception_message; // If no unique target is found
   329   bool contains_method(Method* method) {
   330     int* lookup = _member_index.get(method);
   331     return lookup != NULL;
   332   }
   334   void add_method(Method* method, QualifiedState state) {
   335     Pair<Method*,QualifiedState> entry(method, state);
   336     _member_index.put(method, _members.length());
   337     _members.append(entry);
   338   }
   340   void disqualify_method(Method* method) {
   341     int* index = _member_index.get(method);
   342     guarantee(index != NULL && *index >= 0 && *index < _members.length(), "bad index");
   343     _members.at(*index).second = DISQUALIFIED;
   344   }
   346   Symbol* generate_no_defaults_message(TRAPS) const;
   347   Symbol* generate_abstract_method_message(Method* method, TRAPS) const;
   348   Symbol* generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const;
   350  public:
   352   MethodFamily()
   353       : _selected_target(NULL), _exception_message(NULL) {}
   355   void set_target_if_empty(Method* m) {
   356     if (_selected_target == NULL && !m->is_overpass()) {
   357       _selected_target = m;
   358     }
   359   }
   361   void record_qualified_method(Method* m) {
   362     // If the method already exists in the set as qualified, this operation is
   363     // redundant.  If it already exists as disqualified, then we leave it as
   364     // disqualfied.  Thus we only add to the set if it's not already in the
   365     // set.
   366     if (!contains_method(m)) {
   367       add_method(m, QUALIFIED);
   368     }
   369   }
   371   void record_disqualified_method(Method* m) {
   372     // If not in the set, add it as disqualified.  If it's already in the set,
   373     // then set the state to disqualified no matter what the previous state was.
   374     if (!contains_method(m)) {
   375       add_method(m, DISQUALIFIED);
   376     } else {
   377       disqualify_method(m);
   378     }
   379   }
   381   bool has_target() const { return _selected_target != NULL; }
   382   bool throws_exception() { return _exception_message != NULL; }
   384   Method* get_selected_target() { return _selected_target; }
   385   Symbol* get_exception_message() { return _exception_message; }
   387   // Either sets the target or the exception error message
   388   void determine_target(InstanceKlass* root, TRAPS) {
   389     if (has_target() || throws_exception()) {
   390       return;
   391     }
   393     GrowableArray<Method*> qualified_methods;
   394     for (int i = 0; i < _members.length(); ++i) {
   395       Pair<Method*,QualifiedState> entry = _members.at(i);
   396       if (entry.second == QUALIFIED) {
   397         qualified_methods.append(entry.first);
   398       }
   399     }
   401     if (qualified_methods.length() == 0) {
   402       _exception_message = generate_no_defaults_message(CHECK);
   403     } else if (qualified_methods.length() == 1) {
   404       Method* method = qualified_methods.at(0);
   405       if (method->is_abstract()) {
   406         _exception_message = generate_abstract_method_message(method, CHECK);
   407       } else {
   408         _selected_target = qualified_methods.at(0);
   409       }
   410     } else {
   411       _exception_message = generate_conflicts_message(&qualified_methods,CHECK);
   412     }
   414     assert((has_target() ^ throws_exception()) == 1,
   415            "One and only one must be true");
   416   }
   418   bool contains_signature(Symbol* query) {
   419     for (int i = 0; i < _members.length(); ++i) {
   420       if (query == _members.at(i).first->signature()) {
   421         return true;
   422       }
   423     }
   424     return false;
   425   }
   427 #ifndef PRODUCT
   428   void print_sig_on(outputStream* str, Symbol* signature, int indent) const {
   429     streamIndentor si(str, indent * 2);
   431     str->indent().print_cr("Logical Method %s:", signature->as_C_string());
   433     streamIndentor si2(str);
   434     for (int i = 0; i < _members.length(); ++i) {
   435       str->indent();
   436       print_method(str, _members.at(i).first);
   437       if (_members.at(i).second == DISQUALIFIED) {
   438         str->print(" (disqualified)");
   439       }
   440       str->print_cr("");
   441     }
   443     if (_selected_target != NULL) {
   444       print_selected(str, 1);
   445     }
   446   }
   448   void print_selected(outputStream* str, int indent) const {
   449     assert(has_target(), "Should be called otherwise");
   450     streamIndentor si(str, indent * 2);
   451     str->indent().print("Selected method: ");
   452     print_method(str, _selected_target);
   453     Klass* method_holder = _selected_target->method_holder();
   454     if (!method_holder->is_interface()) {
   455       tty->print(" : in superclass");
   456     }
   457     str->print_cr("");
   458   }
   460   void print_exception(outputStream* str, int indent) {
   461     assert(throws_exception(), "Should be called otherwise");
   462     streamIndentor si(str, indent * 2);
   463     str->indent().print_cr("%s", _exception_message->as_C_string());
   464   }
   465 #endif // ndef PRODUCT
   466 };
   468 Symbol* MethodFamily::generate_no_defaults_message(TRAPS) const {
   469   return SymbolTable::new_symbol("No qualifying defaults found", CHECK_NULL);
   470 }
   472 Symbol* MethodFamily::generate_abstract_method_message(Method* method, TRAPS) const {
   473   Symbol* klass = method->klass_name();
   474   Symbol* name = method->name();
   475   Symbol* sig = method->signature();
   476   stringStream ss;
   477   ss.print("Method ");
   478   ss.write((const char*)klass->bytes(), klass->utf8_length());
   479   ss.print(".");
   480   ss.write((const char*)name->bytes(), name->utf8_length());
   481   ss.write((const char*)sig->bytes(), sig->utf8_length());
   482   ss.print(" is abstract");
   483   return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
   484 }
   486 Symbol* MethodFamily::generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const {
   487   stringStream ss;
   488   ss.print("Conflicting default methods:");
   489   for (int i = 0; i < methods->length(); ++i) {
   490     Method* method = methods->at(i);
   491     Symbol* klass = method->klass_name();
   492     Symbol* name = method->name();
   493     ss.print(" ");
   494     ss.write((const char*)klass->bytes(), klass->utf8_length());
   495     ss.print(".");
   496     ss.write((const char*)name->bytes(), name->utf8_length());
   497   }
   498   return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
   499 }
   502 class StateRestorer;
   504 // StatefulMethodFamily is a wrapper around a MethodFamily that maintains the
   505 // qualification state during hierarchy visitation, and applies that state
   506 // when adding members to the MethodFamily
   507 class StatefulMethodFamily : public ResourceObj {
   508   friend class StateRestorer;
   509  private:
   510   QualifiedState _qualification_state;
   512   void set_qualification_state(QualifiedState state) {
   513     _qualification_state = state;
   514   }
   516  protected:
   517   MethodFamily* _method_family;
   519  public:
   520   StatefulMethodFamily() {
   521    _method_family = new MethodFamily();
   522    _qualification_state = QUALIFIED;
   523   }
   525   StatefulMethodFamily(MethodFamily* mf) {
   526    _method_family = mf;
   527    _qualification_state = QUALIFIED;
   528   }
   530   void set_target_if_empty(Method* m) { _method_family->set_target_if_empty(m); }
   532   MethodFamily* get_method_family() { return _method_family; }
   534   StateRestorer* record_method_and_dq_further(Method* mo);
   535 };
   537 class StateRestorer : public PseudoScopeMark {
   538  private:
   539   StatefulMethodFamily* _method;
   540   QualifiedState _state_to_restore;
   541  public:
   542   StateRestorer(StatefulMethodFamily* dm, QualifiedState state)
   543       : _method(dm), _state_to_restore(state) {}
   544   ~StateRestorer() { destroy(); }
   545   void restore_state() { _method->set_qualification_state(_state_to_restore); }
   546   virtual void destroy() { restore_state(); }
   547 };
   549 StateRestorer* StatefulMethodFamily::record_method_and_dq_further(Method* mo) {
   550   StateRestorer* mark = new StateRestorer(this, _qualification_state);
   551   if (_qualification_state == QUALIFIED) {
   552     _method_family->record_qualified_method(mo);
   553   } else {
   554     _method_family->record_disqualified_method(mo);
   555   }
   556   // Everything found "above"??? this method in the hierarchy walk is set to
   557   // disqualified
   558   set_qualification_state(DISQUALIFIED);
   559   return mark;
   560 }
   562 // Represents a location corresponding to a vtable slot for methods that
   563 // neither the class nor any of it's ancestors provide an implementaion.
   564 // Default methods may be present to fill this slot.
   565 class EmptyVtableSlot : public ResourceObj {
   566  private:
   567   Symbol* _name;
   568   Symbol* _signature;
   569   int _size_of_parameters;
   570   MethodFamily* _binding;
   572  public:
   573   EmptyVtableSlot(Method* method)
   574       : _name(method->name()), _signature(method->signature()),
   575         _size_of_parameters(method->size_of_parameters()), _binding(NULL) {}
   577   Symbol* name() const { return _name; }
   578   Symbol* signature() const { return _signature; }
   579   int size_of_parameters() const { return _size_of_parameters; }
   581   void bind_family(MethodFamily* lm) { _binding = lm; }
   582   bool is_bound() { return _binding != NULL; }
   583   MethodFamily* get_binding() { return _binding; }
   585 #ifndef PRODUCT
   586   void print_on(outputStream* str) const {
   587     print_slot(str, name(), signature());
   588   }
   589 #endif // ndef PRODUCT
   590 };
   592 static GrowableArray<EmptyVtableSlot*>* find_empty_vtable_slots(
   593     InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {
   595   assert(klass != NULL, "Must be valid class");
   597   GrowableArray<EmptyVtableSlot*>* slots = new GrowableArray<EmptyVtableSlot*>();
   599   // All miranda methods are obvious candidates
   600   for (int i = 0; i < mirandas->length(); ++i) {
   601     EmptyVtableSlot* slot = new EmptyVtableSlot(mirandas->at(i));
   602     slots->append(slot);
   603   }
   605   // Also any overpasses in our superclasses, that we haven't implemented.
   606   // (can't use the vtable because it is not guaranteed to be initialized yet)
   607   InstanceKlass* super = klass->java_super();
   608   while (super != NULL) {
   609     for (int i = 0; i < super->methods()->length(); ++i) {
   610       Method* m = super->methods()->at(i);
   611       if (m->is_overpass()) {
   612         // m is a method that would have been a miranda if not for the
   613         // default method processing that occurred on behalf of our superclass,
   614         // so it's a method we want to re-examine in this new context.  That is,
   615         // unless we have a real implementation of it in the current class.
   616         Method* impl = klass->lookup_method(m->name(), m->signature());
   617         if (impl == NULL || impl->is_overpass()) {
   618           slots->append(new EmptyVtableSlot(m));
   619         }
   620       }
   621     }
   622     super = super->java_super();
   623   }
   625 #ifndef PRODUCT
   626   if (TraceDefaultMethods) {
   627     tty->print_cr("Slots that need filling:");
   628     streamIndentor si(tty);
   629     for (int i = 0; i < slots->length(); ++i) {
   630       tty->indent();
   631       slots->at(i)->print_on(tty);
   632       tty->print_cr("");
   633     }
   634   }
   635 #endif // ndef PRODUCT
   636   return slots;
   637 }
   639 // Iterates over the superinterface type hierarchy looking for all methods
   640 // with a specific erased signature.
   641 class FindMethodsByErasedSig : public HierarchyVisitor<FindMethodsByErasedSig> {
   642  private:
   643   // Context data
   644   Symbol* _method_name;
   645   Symbol* _method_signature;
   646   StatefulMethodFamily*  _family;
   648  public:
   649   FindMethodsByErasedSig(Symbol* name, Symbol* signature) :
   650       _method_name(name), _method_signature(signature),
   651       _family(NULL) {}
   653   void get_discovered_family(MethodFamily** family) {
   654       if (_family != NULL) {
   655         *family = _family->get_method_family();
   656       } else {
   657         *family = NULL;
   658       }
   659   }
   661   void* new_node_data(InstanceKlass* cls) { return new PseudoScope(); }
   662   void free_node_data(void* node_data) {
   663     PseudoScope::cast(node_data)->destroy();
   664   }
   666   // Find all methods on this hierarchy that match this
   667   // method's erased (name, signature)
   668   bool visit() {
   669     PseudoScope* scope = PseudoScope::cast(current_data());
   670     InstanceKlass* iklass = current_class();
   672     Method* m = iklass->find_method(_method_name, _method_signature);
   673     if (m != NULL) {
   674       if (_family == NULL) {
   675         _family = new StatefulMethodFamily();
   676       }
   678       if (iklass->is_interface()) {
   679         StateRestorer* restorer = _family->record_method_and_dq_further(m);
   680         scope->add_mark(restorer);
   681       } else {
   682         // This is the rule that methods in classes "win" (bad word) over
   683         // methods in interfaces. This works because of single inheritance
   684         _family->set_target_if_empty(m);
   685       }
   686     }
   687     return true;
   688   }
   690 };
   694 static void create_overpasses(
   695     GrowableArray<EmptyVtableSlot*>* slots, InstanceKlass* klass, TRAPS);
   697 static void generate_erased_defaults(
   698      InstanceKlass* klass, GrowableArray<EmptyVtableSlot*>* empty_slots,
   699      EmptyVtableSlot* slot, TRAPS) {
   701   // sets up a set of methods with the same exact erased signature
   702   FindMethodsByErasedSig visitor(slot->name(), slot->signature());
   703   visitor.run(klass);
   705   MethodFamily* family;
   706   visitor.get_discovered_family(&family);
   707   if (family != NULL) {
   708     family->determine_target(klass, CHECK);
   709     slot->bind_family(family);
   710   }
   711 }
   713 static void merge_in_new_methods(InstanceKlass* klass,
   714     GrowableArray<Method*>* new_methods, TRAPS);
   716 // This is the guts of the default methods implementation.  This is called just
   717 // after the classfile has been parsed if some ancestor has default methods.
   718 //
   719 // First if finds any name/signature slots that need any implementation (either
   720 // because they are miranda or a superclass's implementation is an overpass
   721 // itself).  For each slot, iterate over the hierarchy, to see if they contain a
   722 // signature that matches the slot we are looking at.
   723 //
   724 // For each slot filled, we generate an overpass method that either calls the
   725 // unique default method candidate using invokespecial, or throws an exception
   726 // (in the case of no default method candidates, or more than one valid
   727 // candidate).  These methods are then added to the class's method list.
   728 // The JVM does not create bridges nor handle generic signatures here.
   729 void DefaultMethods::generate_default_methods(
   730     InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {
   732   // This resource mark is the bound for all memory allocation that takes
   733   // place during default method processing.  After this goes out of scope,
   734   // all (Resource) objects' memory will be reclaimed.  Be careful if adding an
   735   // embedded resource mark under here as that memory can't be used outside
   736   // whatever scope it's in.
   737   ResourceMark rm(THREAD);
   739   // Keep entire hierarchy alive for the duration of the computation
   740   KeepAliveRegistrar keepAlive(THREAD);
   741   KeepAliveVisitor loadKeepAlive(&keepAlive);
   742   loadKeepAlive.run(klass);
   744 #ifndef PRODUCT
   745   if (TraceDefaultMethods) {
   746     ResourceMark rm;  // be careful with these!
   747     tty->print_cr("Class %s requires default method processing",
   748         klass->name()->as_klass_external_name());
   749     PrintHierarchy printer;
   750     printer.run(klass);
   751   }
   752 #endif // ndef PRODUCT
   754   GrowableArray<EmptyVtableSlot*>* empty_slots =
   755       find_empty_vtable_slots(klass, mirandas, CHECK);
   757   for (int i = 0; i < empty_slots->length(); ++i) {
   758     EmptyVtableSlot* slot = empty_slots->at(i);
   759 #ifndef PRODUCT
   760     if (TraceDefaultMethods) {
   761       streamIndentor si(tty, 2);
   762       tty->indent().print("Looking for default methods for slot ");
   763       slot->print_on(tty);
   764       tty->print_cr("");
   765     }
   766 #endif // ndef PRODUCT
   768     generate_erased_defaults(klass, empty_slots, slot, CHECK);
   769  }
   770 #ifndef PRODUCT
   771   if (TraceDefaultMethods) {
   772     tty->print_cr("Creating overpasses...");
   773   }
   774 #endif // ndef PRODUCT
   776   create_overpasses(empty_slots, klass, CHECK);
   778 #ifndef PRODUCT
   779   if (TraceDefaultMethods) {
   780     tty->print_cr("Default method processing complete");
   781   }
   782 #endif // ndef PRODUCT
   783 }
   785 /**
   786  * Interface inheritance rules were used to find a unique default method
   787  * candidate for the resolved class. This
   788  * method is only viable if it would also be in the set of default method
   789  * candidates if we ran a full analysis on the current class.
   790  *
   791  * The only reason that the method would not be in the set of candidates for
   792  * the current class is if that there's another matching method
   793  * which is "more specific" than the found method -- i.e., one could find a
   794  * path in the interface hierarchy in which the matching method appears
   795  * before we get to '_target'.
   796  *
   797  * In order to determine this, we examine all of the implemented
   798  * interfaces.  If we find path that leads to the '_target' interface, then
   799  * we examine that path to see if there are any methods that would shadow
   800  * the selected method along that path.
   801  */
   802 class ShadowChecker : public HierarchyVisitor<ShadowChecker> {
   803  protected:
   804   Thread* THREAD;
   806   InstanceKlass* _target;
   808   Symbol* _method_name;
   809   InstanceKlass* _method_holder;
   810   bool _found_shadow;
   813  public:
   815   ShadowChecker(Thread* thread, Symbol* name, InstanceKlass* holder,
   816                 InstanceKlass* target)
   817                 : THREAD(thread), _method_name(name), _method_holder(holder),
   818                 _target(target), _found_shadow(false) {}
   820   void* new_node_data(InstanceKlass* cls) { return NULL; }
   821   void free_node_data(void* data) { return; }
   823   bool visit() {
   824     InstanceKlass* ik = current_class();
   825     if (ik == _target && current_depth() == 1) {
   826       return false; // This was the specified super -- no need to search it
   827     }
   828     if (ik == _method_holder || ik == _target) {
   829       // We found a path that should be examined to see if it shadows _method
   830       if (path_has_shadow()) {
   831         _found_shadow = true;
   832         cancel_iteration();
   833       }
   834       return false; // no need to continue up hierarchy
   835     }
   836     return true;
   837   }
   839   virtual bool path_has_shadow() = 0;
   840   bool found_shadow() { return _found_shadow; }
   841 };
   843 // Used for Invokespecial.
   844 // Invokespecial is allowed to invoke a concrete interface method
   845 // and can be used to disambuiguate among qualified candidates,
   846 // which are methods in immediate superinterfaces,
   847 // but may not be used to invoke a candidate that would be shadowed
   848 // from the perspective of the caller.
   849 // Invokespecial is also used in the overpass generation today
   850 // We re-run the shadowchecker because we can't distinguish this case,
   851 // but it should return the same answer, since the overpass target
   852 // is now the invokespecial caller.
   853 class ErasedShadowChecker : public ShadowChecker {
   854  private:
   855   bool path_has_shadow() {
   857     for (int i = current_depth() - 1; i > 0; --i) {
   858       InstanceKlass* ik = class_at_depth(i);
   860       if (ik->is_interface()) {
   861         int end;
   862         int start = ik->find_method_by_name(_method_name, &end);
   863         if (start != -1) {
   864           return true;
   865         }
   866       }
   867     }
   868     return false;
   869   }
   870  public:
   872   ErasedShadowChecker(Thread* thread, Symbol* name, InstanceKlass* holder,
   873                 InstanceKlass* target)
   874     : ShadowChecker(thread, name, holder, target) {}
   875 };
   877 // Find the unique qualified candidate from the perspective of the super_class
   878 // which is the resolved_klass, which must be an immediate superinterface
   879 // of klass
   880 Method* find_erased_super_default(InstanceKlass* current_class, InstanceKlass* super_class, Symbol* method_name, Symbol* sig, TRAPS) {
   882   FindMethodsByErasedSig visitor(method_name, sig);
   883   visitor.run(super_class);      // find candidates from resolved_klass
   885   MethodFamily* family;
   886   visitor.get_discovered_family(&family);
   888   if (family != NULL) {
   889     family->determine_target(current_class, CHECK_NULL);  // get target from current_class
   891     if (family->has_target()) {
   892       Method* target = family->get_selected_target();
   893       InstanceKlass* holder = InstanceKlass::cast(target->method_holder());
   895       // Verify that the identified method is valid from the context of
   896       // the current class, which is the caller class for invokespecial
   897       // link resolution, i.e. ensure there it is not shadowed.
   898       // You can use invokespecial to disambiguate interface methods, but
   899       // you can not use it to skip over an interface method that would shadow it.
   900       ErasedShadowChecker checker(THREAD, target->name(), holder, super_class);
   901       checker.run(current_class);
   903       if (checker.found_shadow()) {
   904 #ifndef PRODUCT
   905         if (TraceDefaultMethods) {
   906           tty->print_cr("    Only candidate found was shadowed.");
   907         }
   908 #endif // ndef PRODUCT
   909         THROW_MSG_(vmSymbols::java_lang_AbstractMethodError(),
   910                    "Accessible default method not found", NULL);
   911       } else {
   912 #ifndef PRODUCT
   913         if (TraceDefaultMethods) {
   914           family->print_sig_on(tty, target->signature(), 1);
   915         }
   916 #endif // ndef PRODUCT
   917         return target;
   918       }
   919     } else {
   920       assert(family->throws_exception(), "must have target or throw");
   921       THROW_MSG_(vmSymbols::java_lang_AbstractMethodError(),
   922                  family->get_exception_message()->as_C_string(), NULL);
   923    }
   924   } else {
   925     // no method found
   926     ResourceMark rm(THREAD);
   927     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodError(),
   928               Method::name_and_sig_as_C_string(current_class,
   929                                                method_name, sig), NULL);
   930   }
   931 }
   932 // This is called during linktime when we find an invokespecial call that
   933 // refers to a direct superinterface.  It indicates that we should find the
   934 // default method in the hierarchy of that superinterface, and if that method
   935 // would have been a candidate from the point of view of 'this' class, then we
   936 // return that method.
   937 // This logic assumes that the super is a direct superclass of the caller
   938 Method* DefaultMethods::find_super_default(
   939     Klass* cls, Klass* super, Symbol* method_name, Symbol* sig, TRAPS) {
   941   ResourceMark rm(THREAD);
   943   assert(cls != NULL && super != NULL, "Need real classes");
   945   InstanceKlass* current_class = InstanceKlass::cast(cls);
   946   InstanceKlass* super_class = InstanceKlass::cast(super);
   948   // Keep entire hierarchy alive for the duration of the computation
   949   KeepAliveRegistrar keepAlive(THREAD);
   950   KeepAliveVisitor loadKeepAlive(&keepAlive);
   951   loadKeepAlive.run(current_class);   // get hierarchy from current class
   953 #ifndef PRODUCT
   954   if (TraceDefaultMethods) {
   955     tty->print_cr("Finding super default method %s.%s%s from %s",
   956       super_class->name()->as_C_string(),
   957       method_name->as_C_string(), sig->as_C_string(),
   958       current_class->name()->as_C_string());
   959   }
   960 #endif // ndef PRODUCT
   962   assert(super_class->is_interface(), "only call for default methods");
   964   Method* target = NULL;
   965   target = find_erased_super_default(current_class, super_class,
   966                                      method_name, sig, CHECK_NULL);
   968 #ifndef PRODUCT
   969   if (target != NULL) {
   970     if (TraceDefaultMethods) {
   971       tty->print("    Returning ");
   972       print_method(tty, target, true);
   973       tty->print_cr("");
   974     }
   975   }
   976 #endif // ndef PRODUCT
   977   return target;
   978 }
   980 #ifndef PRODUCT
   981 // Return true is broad type is a covariant return of narrow type
   982 static bool covariant_return_type(BasicType narrow, BasicType broad) {
   983   if (narrow == broad) {
   984     return true;
   985   }
   986   if (broad == T_OBJECT) {
   987     return true;
   988   }
   989   return false;
   990 }
   991 #endif // ndef PRODUCT
   993 static int assemble_redirect(
   994     BytecodeConstantPool* cp, BytecodeBuffer* buffer,
   995     Symbol* incoming, Method* target, TRAPS) {
   997   BytecodeAssembler assem(buffer, cp);
   999   SignatureStream in(incoming, true);
  1000   SignatureStream out(target->signature(), true);
  1001   u2 parameter_count = 0;
  1003   assem.aload(parameter_count++); // load 'this'
  1005   while (!in.at_return_type()) {
  1006     assert(!out.at_return_type(), "Parameter counts do not match");
  1007     BasicType bt = in.type();
  1008     assert(out.type() == bt, "Parameter types are not compatible");
  1009     assem.load(bt, parameter_count);
  1010     if (in.is_object() && in.as_symbol(THREAD) != out.as_symbol(THREAD)) {
  1011       assem.checkcast(out.as_symbol(THREAD));
  1012     } else if (bt == T_LONG || bt == T_DOUBLE) {
  1013       ++parameter_count; // longs and doubles use two slots
  1015     ++parameter_count;
  1016     in.next();
  1017     out.next();
  1019   assert(out.at_return_type(), "Parameter counts do not match");
  1020   assert(covariant_return_type(out.type(), in.type()), "Return types are not compatible");
  1022   if (parameter_count == 1 && (in.type() == T_LONG || in.type() == T_DOUBLE)) {
  1023     ++parameter_count; // need room for return value
  1025   if (target->method_holder()->is_interface()) {
  1026     assem.invokespecial(target);
  1027   } else {
  1028     assem.invokevirtual(target);
  1031   if (in.is_object() && in.as_symbol(THREAD) != out.as_symbol(THREAD)) {
  1032     assem.checkcast(in.as_symbol(THREAD));
  1034   assem._return(in.type());
  1035   return parameter_count;
  1038 static int assemble_abstract_method_error(
  1039     BytecodeConstantPool* cp, BytecodeBuffer* buffer, Symbol* message, TRAPS) {
  1041   Symbol* errorName = vmSymbols::java_lang_AbstractMethodError();
  1042   Symbol* init = vmSymbols::object_initializer_name();
  1043   Symbol* sig = vmSymbols::string_void_signature();
  1045   BytecodeAssembler assem(buffer, cp);
  1047   assem._new(errorName);
  1048   assem.dup();
  1049   assem.load_string(message);
  1050   assem.invokespecial(errorName, init, sig);
  1051   assem.athrow();
  1053   return 3; // max stack size: [ exception, exception, string ]
  1056 static Method* new_method(
  1057     BytecodeConstantPool* cp, BytecodeBuffer* bytecodes, Symbol* name,
  1058     Symbol* sig, AccessFlags flags, int max_stack, int params,
  1059     ConstMethod::MethodType mt, TRAPS) {
  1061   address code_start = 0;
  1062   int code_length = 0;
  1063   InlineTableSizes sizes;
  1065   if (bytecodes != NULL && bytecodes->length() > 0) {
  1066     code_start = static_cast<address>(bytecodes->adr_at(0));
  1067     code_length = bytecodes->length();
  1070   Method* m = Method::allocate(cp->pool_holder()->class_loader_data(),
  1071                                code_length, flags, &sizes,
  1072                                mt, CHECK_NULL);
  1074   m->set_constants(NULL); // This will get filled in later
  1075   m->set_name_index(cp->utf8(name));
  1076   m->set_signature_index(cp->utf8(sig));
  1077 #ifdef CC_INTERP
  1078   ResultTypeFinder rtf(sig);
  1079   m->set_result_index(rtf.type());
  1080 #endif
  1081   m->set_size_of_parameters(params);
  1082   m->set_max_stack(max_stack);
  1083   m->set_max_locals(params);
  1084   m->constMethod()->set_stackmap_data(NULL);
  1085   m->set_code(code_start);
  1086   m->set_force_inline(true);
  1088   return m;
  1091 static void switchover_constant_pool(BytecodeConstantPool* bpool,
  1092     InstanceKlass* klass, GrowableArray<Method*>* new_methods, TRAPS) {
  1094   if (new_methods->length() > 0) {
  1095     ConstantPool* cp = bpool->create_constant_pool(CHECK);
  1096     if (cp != klass->constants()) {
  1097       klass->class_loader_data()->add_to_deallocate_list(klass->constants());
  1098       klass->set_constants(cp);
  1099       cp->set_pool_holder(klass);
  1101       for (int i = 0; i < new_methods->length(); ++i) {
  1102         new_methods->at(i)->set_constants(cp);
  1104       for (int i = 0; i < klass->methods()->length(); ++i) {
  1105         Method* mo = klass->methods()->at(i);
  1106         mo->set_constants(cp);
  1112 // A "bridge" is a method created by javac to bridge the gap between
  1113 // an implementation and a generically-compatible, but different, signature.
  1114 // Bridges have actual bytecode implementation in classfiles.
  1115 // An "overpass", on the other hand, performs the same function as a bridge
  1116 // but does not occur in a classfile; the VM creates overpass itself,
  1117 // when it needs a path to get from a call site to an default method, and
  1118 // a bridge doesn't exist.
  1119 static void create_overpasses(
  1120     GrowableArray<EmptyVtableSlot*>* slots,
  1121     InstanceKlass* klass, TRAPS) {
  1123   GrowableArray<Method*> overpasses;
  1124   BytecodeConstantPool bpool(klass->constants());
  1126   for (int i = 0; i < slots->length(); ++i) {
  1127     EmptyVtableSlot* slot = slots->at(i);
  1129     if (slot->is_bound()) {
  1130       MethodFamily* method = slot->get_binding();
  1131       int max_stack = 0;
  1132       BytecodeBuffer buffer;
  1134 #ifndef PRODUCT
  1135       if (TraceDefaultMethods) {
  1136         tty->print("for slot: ");
  1137         slot->print_on(tty);
  1138         tty->print_cr("");
  1139         if (method->has_target()) {
  1140           method->print_selected(tty, 1);
  1141         } else {
  1142           method->print_exception(tty, 1);
  1145 #endif // ndef PRODUCT
  1146       if (method->has_target()) {
  1147         Method* selected = method->get_selected_target();
  1148         if (selected->method_holder()->is_interface()) {
  1149           max_stack = assemble_redirect(
  1150             &bpool, &buffer, slot->signature(), selected, CHECK);
  1152       } else if (method->throws_exception()) {
  1153         max_stack = assemble_abstract_method_error(
  1154             &bpool, &buffer, method->get_exception_message(), CHECK);
  1156       if (max_stack != 0) {
  1157         AccessFlags flags = accessFlags_from(
  1158           JVM_ACC_PUBLIC | JVM_ACC_SYNTHETIC | JVM_ACC_BRIDGE);
  1159         Method* m = new_method(&bpool, &buffer, slot->name(), slot->signature(),
  1160           flags, max_stack, slot->size_of_parameters(),
  1161           ConstMethod::OVERPASS, CHECK);
  1162         if (m != NULL) {
  1163           overpasses.push(m);
  1169 #ifndef PRODUCT
  1170   if (TraceDefaultMethods) {
  1171     tty->print_cr("Created %d overpass methods", overpasses.length());
  1173 #endif // ndef PRODUCT
  1175   switchover_constant_pool(&bpool, klass, &overpasses, CHECK);
  1176   merge_in_new_methods(klass, &overpasses, CHECK);
  1179 static void sort_methods(GrowableArray<Method*>* methods) {
  1180   // Note that this must sort using the same key as is used for sorting
  1181   // methods in InstanceKlass.
  1182   bool sorted = true;
  1183   for (int i = methods->length() - 1; i > 0; --i) {
  1184     for (int j = 0; j < i; ++j) {
  1185       Method* m1 = methods->at(j);
  1186       Method* m2 = methods->at(j + 1);
  1187       if ((uintptr_t)m1->name() > (uintptr_t)m2->name()) {
  1188         methods->at_put(j, m2);
  1189         methods->at_put(j + 1, m1);
  1190         sorted = false;
  1193     if (sorted) break;
  1194     sorted = true;
  1196 #ifdef ASSERT
  1197   uintptr_t prev = 0;
  1198   for (int i = 0; i < methods->length(); ++i) {
  1199     Method* mh = methods->at(i);
  1200     uintptr_t nv = (uintptr_t)mh->name();
  1201     assert(nv >= prev, "Incorrect overpass method ordering");
  1202     prev = nv;
  1204 #endif
  1207 static void merge_in_new_methods(InstanceKlass* klass,
  1208     GrowableArray<Method*>* new_methods, TRAPS) {
  1210   enum { ANNOTATIONS, PARAMETERS, DEFAULTS, NUM_ARRAYS };
  1212   Array<Method*>* original_methods = klass->methods();
  1213   Array<int>* original_ordering = klass->method_ordering();
  1214   Array<int>* merged_ordering = Universe::the_empty_int_array();
  1216   int new_size = klass->methods()->length() + new_methods->length();
  1218   Array<Method*>* merged_methods = MetadataFactory::new_array<Method*>(
  1219       klass->class_loader_data(), new_size, NULL, CHECK);
  1221   if (original_ordering != NULL && original_ordering->length() > 0) {
  1222     merged_ordering = MetadataFactory::new_array<int>(
  1223         klass->class_loader_data(), new_size, CHECK);
  1225   int method_order_index = klass->methods()->length();
  1227   sort_methods(new_methods);
  1229   // Perform grand merge of existing methods and new methods
  1230   int orig_idx = 0;
  1231   int new_idx = 0;
  1233   for (int i = 0; i < new_size; ++i) {
  1234     Method* orig_method = NULL;
  1235     Method* new_method = NULL;
  1236     if (orig_idx < original_methods->length()) {
  1237       orig_method = original_methods->at(orig_idx);
  1239     if (new_idx < new_methods->length()) {
  1240       new_method = new_methods->at(new_idx);
  1243     if (orig_method != NULL &&
  1244         (new_method == NULL || orig_method->name() < new_method->name())) {
  1245       merged_methods->at_put(i, orig_method);
  1246       original_methods->at_put(orig_idx, NULL);
  1247       if (merged_ordering->length() > 0) {
  1248         merged_ordering->at_put(i, original_ordering->at(orig_idx));
  1250       ++orig_idx;
  1251     } else {
  1252       merged_methods->at_put(i, new_method);
  1253       if (merged_ordering->length() > 0) {
  1254         merged_ordering->at_put(i, method_order_index++);
  1256       ++new_idx;
  1258     // update idnum for new location
  1259     merged_methods->at(i)->set_method_idnum(i);
  1262   // Verify correct order
  1263 #ifdef ASSERT
  1264   uintptr_t prev = 0;
  1265   for (int i = 0; i < merged_methods->length(); ++i) {
  1266     Method* mo = merged_methods->at(i);
  1267     uintptr_t nv = (uintptr_t)mo->name();
  1268     assert(nv >= prev, "Incorrect method ordering");
  1269     prev = nv;
  1271 #endif
  1273   // Replace klass methods with new merged lists
  1274   klass->set_methods(merged_methods);
  1275   klass->set_initial_method_idnum(new_size);
  1277   ClassLoaderData* cld = klass->class_loader_data();
  1278   MetadataFactory::free_array(cld, original_methods);
  1279   if (original_ordering->length() > 0) {
  1280     klass->set_method_ordering(merged_ordering);
  1281     MetadataFactory::free_array(cld, original_ordering);

mercurial