src/cpu/x86/vm/vm_version_x86.hpp

Mon, 13 Feb 2012 02:29:22 -0800

author
twisti
date
Mon, 13 Feb 2012 02:29:22 -0800
changeset 3566
45a1bf98f1bb
parent 3400
22cee0ee8927
child 3560
4a24c4f648bd
permissions
-rw-r--r--

7141329: Strange values of stack_size in -XX:+TraceMethodHandles output
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
    26 #define CPU_X86_VM_VM_VERSION_X86_HPP
    28 #include "runtime/globals_extension.hpp"
    29 #include "runtime/vm_version.hpp"
    31 class VM_Version : public Abstract_VM_Version {
    32 public:
    33   // cpuid result register layouts.  These are all unions of a uint32_t
    34   // (in case anyone wants access to the register as a whole) and a bitfield.
    36   union StdCpuid1Eax {
    37     uint32_t value;
    38     struct {
    39       uint32_t stepping   : 4,
    40                model      : 4,
    41                family     : 4,
    42                proc_type  : 2,
    43                           : 2,
    44                ext_model  : 4,
    45                ext_family : 8,
    46                           : 4;
    47     } bits;
    48   };
    50   union StdCpuid1Ebx { // example, unused
    51     uint32_t value;
    52     struct {
    53       uint32_t brand_id         : 8,
    54                clflush_size     : 8,
    55                threads_per_cpu  : 8,
    56                apic_id          : 8;
    57     } bits;
    58   };
    60   union StdCpuid1Ecx {
    61     uint32_t value;
    62     struct {
    63       uint32_t sse3     : 1,
    64                         : 2,
    65                monitor  : 1,
    66                         : 1,
    67                vmx      : 1,
    68                         : 1,
    69                est      : 1,
    70                         : 1,
    71                ssse3    : 1,
    72                cid      : 1,
    73                         : 2,
    74                cmpxchg16: 1,
    75                         : 4,
    76                dca      : 1,
    77                sse4_1   : 1,
    78                sse4_2   : 1,
    79                         : 2,
    80                popcnt   : 1,
    81                         : 3,
    82                osxsave  : 1,
    83                avx      : 1,
    84                         : 3;
    85     } bits;
    86   };
    88   union StdCpuid1Edx {
    89     uint32_t value;
    90     struct {
    91       uint32_t          : 4,
    92                tsc      : 1,
    93                         : 3,
    94                cmpxchg8 : 1,
    95                         : 6,
    96                cmov     : 1,
    97                         : 3,
    98                clflush  : 1,
    99                         : 3,
   100                mmx      : 1,
   101                fxsr     : 1,
   102                sse      : 1,
   103                sse2     : 1,
   104                         : 1,
   105                ht       : 1,
   106                         : 3;
   107     } bits;
   108   };
   110   union DcpCpuid4Eax {
   111     uint32_t value;
   112     struct {
   113       uint32_t cache_type    : 5,
   114                              : 21,
   115                cores_per_cpu : 6;
   116     } bits;
   117   };
   119   union DcpCpuid4Ebx {
   120     uint32_t value;
   121     struct {
   122       uint32_t L1_line_size  : 12,
   123                partitions    : 10,
   124                associativity : 10;
   125     } bits;
   126   };
   128   union TplCpuidBEbx {
   129     uint32_t value;
   130     struct {
   131       uint32_t logical_cpus : 16,
   132                             : 16;
   133     } bits;
   134   };
   136   union ExtCpuid1Ecx {
   137     uint32_t value;
   138     struct {
   139       uint32_t LahfSahf     : 1,
   140                CmpLegacy    : 1,
   141                             : 4,
   142                lzcnt        : 1,
   143                sse4a        : 1,
   144                misalignsse  : 1,
   145                prefetchw    : 1,
   146                             : 22;
   147     } bits;
   148   };
   150   union ExtCpuid1Edx {
   151     uint32_t value;
   152     struct {
   153       uint32_t           : 22,
   154                mmx_amd   : 1,
   155                mmx       : 1,
   156                fxsr      : 1,
   157                          : 4,
   158                long_mode : 1,
   159                tdnow2    : 1,
   160                tdnow     : 1;
   161     } bits;
   162   };
   164   union ExtCpuid5Ex {
   165     uint32_t value;
   166     struct {
   167       uint32_t L1_line_size : 8,
   168                L1_tag_lines : 8,
   169                L1_assoc     : 8,
   170                L1_size      : 8;
   171     } bits;
   172   };
   174   union ExtCpuid7Edx {
   175     uint32_t value;
   176     struct {
   177       uint32_t               : 8,
   178               tsc_invariance : 1,
   179                              : 23;
   180     } bits;
   181   };
   183   union ExtCpuid8Ecx {
   184     uint32_t value;
   185     struct {
   186       uint32_t cores_per_cpu : 8,
   187                              : 24;
   188     } bits;
   189   };
   191   union SefCpuid7Eax {
   192     uint32_t value;
   193   };
   195   union SefCpuid7Ebx {
   196     uint32_t value;
   197     struct {
   198       uint32_t fsgsbase : 1,
   199                         : 2,
   200                    bmi1 : 1,
   201                         : 1,
   202                    avx2 : 1,
   203                         : 2,
   204                    bmi2 : 1,
   205                         : 23;
   206     } bits;
   207   };
   209   union XemXcr0Eax {
   210     uint32_t value;
   211     struct {
   212       uint32_t x87 : 1,
   213                sse : 1,
   214                ymm : 1,
   215                    : 29;
   216     } bits;
   217   };
   219 protected:
   220   static int _cpu;
   221   static int _model;
   222   static int _stepping;
   223   static int _cpuFeatures;     // features returned by the "cpuid" instruction
   224                                // 0 if this instruction is not available
   225   static const char* _features_str;
   227   enum {
   228     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   229     CPU_CMOV   = (1 << 1),
   230     CPU_FXSR   = (1 << 2),
   231     CPU_HT     = (1 << 3),
   232     CPU_MMX    = (1 << 4),
   233     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
   234                                     // may not necessarily support other 3dnow instructions
   235     CPU_SSE    = (1 << 6),
   236     CPU_SSE2   = (1 << 7),
   237     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   238     CPU_SSSE3  = (1 << 9),
   239     CPU_SSE4A  = (1 << 10),
   240     CPU_SSE4_1 = (1 << 11),
   241     CPU_SSE4_2 = (1 << 12),
   242     CPU_POPCNT = (1 << 13),
   243     CPU_LZCNT  = (1 << 14),
   244     CPU_TSC    = (1 << 15),
   245     CPU_TSCINV = (1 << 16),
   246     CPU_AVX    = (1 << 17),
   247     CPU_AVX2   = (1 << 18)
   248   } cpuFeatureFlags;
   250   enum {
   251     // AMD
   252     CPU_FAMILY_AMD_11H       = 17,
   253     // Intel
   254     CPU_FAMILY_INTEL_CORE    = 6,
   255     CPU_MODEL_NEHALEM_EP     = 26,
   256     CPU_MODEL_WESTMERE_EP    = 44,
   257 //  CPU_MODEL_IVYBRIDGE_EP   = ??, TODO - get real value
   258     CPU_MODEL_SANDYBRIDGE_EP = 45
   259   } cpuExtendedFamily;
   261   // cpuid information block.  All info derived from executing cpuid with
   262   // various function numbers is stored here.  Intel and AMD info is
   263   // merged in this block: accessor methods disentangle it.
   264   //
   265   // The info block is laid out in subblocks of 4 dwords corresponding to
   266   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   267   struct CpuidInfo {
   268     // cpuid function 0
   269     uint32_t std_max_function;
   270     uint32_t std_vendor_name_0;
   271     uint32_t std_vendor_name_1;
   272     uint32_t std_vendor_name_2;
   274     // cpuid function 1
   275     StdCpuid1Eax std_cpuid1_eax;
   276     StdCpuid1Ebx std_cpuid1_ebx;
   277     StdCpuid1Ecx std_cpuid1_ecx;
   278     StdCpuid1Edx std_cpuid1_edx;
   280     // cpuid function 4 (deterministic cache parameters)
   281     DcpCpuid4Eax dcp_cpuid4_eax;
   282     DcpCpuid4Ebx dcp_cpuid4_ebx;
   283     uint32_t     dcp_cpuid4_ecx; // unused currently
   284     uint32_t     dcp_cpuid4_edx; // unused currently
   286     // cpuid function 7 (structured extended features)
   287     SefCpuid7Eax sef_cpuid7_eax;
   288     SefCpuid7Ebx sef_cpuid7_ebx;
   289     uint32_t     sef_cpuid7_ecx; // unused currently
   290     uint32_t     sef_cpuid7_edx; // unused currently
   292     // cpuid function 0xB (processor topology)
   293     // ecx = 0
   294     uint32_t     tpl_cpuidB0_eax;
   295     TplCpuidBEbx tpl_cpuidB0_ebx;
   296     uint32_t     tpl_cpuidB0_ecx; // unused currently
   297     uint32_t     tpl_cpuidB0_edx; // unused currently
   299     // ecx = 1
   300     uint32_t     tpl_cpuidB1_eax;
   301     TplCpuidBEbx tpl_cpuidB1_ebx;
   302     uint32_t     tpl_cpuidB1_ecx; // unused currently
   303     uint32_t     tpl_cpuidB1_edx; // unused currently
   305     // ecx = 2
   306     uint32_t     tpl_cpuidB2_eax;
   307     TplCpuidBEbx tpl_cpuidB2_ebx;
   308     uint32_t     tpl_cpuidB2_ecx; // unused currently
   309     uint32_t     tpl_cpuidB2_edx; // unused currently
   311     // cpuid function 0x80000000 // example, unused
   312     uint32_t ext_max_function;
   313     uint32_t ext_vendor_name_0;
   314     uint32_t ext_vendor_name_1;
   315     uint32_t ext_vendor_name_2;
   317     // cpuid function 0x80000001
   318     uint32_t     ext_cpuid1_eax; // reserved
   319     uint32_t     ext_cpuid1_ebx; // reserved
   320     ExtCpuid1Ecx ext_cpuid1_ecx;
   321     ExtCpuid1Edx ext_cpuid1_edx;
   323     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   324     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   325     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   326     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   328     // cpuid function 0x80000005 //AMD L1, Intel reserved
   329     uint32_t     ext_cpuid5_eax; // unused currently
   330     uint32_t     ext_cpuid5_ebx; // reserved
   331     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   332     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   334     // cpuid function 0x80000007
   335     uint32_t     ext_cpuid7_eax; // reserved
   336     uint32_t     ext_cpuid7_ebx; // reserved
   337     uint32_t     ext_cpuid7_ecx; // reserved
   338     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
   340     // cpuid function 0x80000008
   341     uint32_t     ext_cpuid8_eax; // unused currently
   342     uint32_t     ext_cpuid8_ebx; // reserved
   343     ExtCpuid8Ecx ext_cpuid8_ecx;
   344     uint32_t     ext_cpuid8_edx; // reserved
   346     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
   347     XemXcr0Eax   xem_xcr0_eax;
   348     uint32_t     xem_xcr0_edx; // reserved
   349   };
   351   // The actual cpuid info block
   352   static CpuidInfo _cpuid_info;
   354   // Extractors and predicates
   355   static uint32_t extended_cpu_family() {
   356     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   357     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   358     return result;
   359   }
   361   static uint32_t extended_cpu_model() {
   362     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   363     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   364     return result;
   365   }
   367   static uint32_t cpu_stepping() {
   368     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   369     return result;
   370   }
   372   static uint logical_processor_count() {
   373     uint result = threads_per_core();
   374     return result;
   375   }
   377   static uint32_t feature_flags() {
   378     uint32_t result = 0;
   379     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   380       result |= CPU_CX8;
   381     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   382       result |= CPU_CMOV;
   383     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
   384         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
   385       result |= CPU_FXSR;
   386     // HT flag is set for multi-core processors also.
   387     if (threads_per_core() > 1)
   388       result |= CPU_HT;
   389     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
   390         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
   391       result |= CPU_MMX;
   392     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   393       result |= CPU_SSE;
   394     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   395       result |= CPU_SSE2;
   396     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   397       result |= CPU_SSE3;
   398     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   399       result |= CPU_SSSE3;
   400     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   401       result |= CPU_SSE4_1;
   402     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   403       result |= CPU_SSE4_2;
   404     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   405       result |= CPU_POPCNT;
   406     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
   407         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
   408         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
   409         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
   410       result |= CPU_AVX;
   411       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
   412         result |= CPU_AVX2;
   413     }
   414     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
   415       result |= CPU_TSC;
   416     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
   417       result |= CPU_TSCINV;
   419     // AMD features.
   420     if (is_amd()) {
   421       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
   422           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
   423         result |= CPU_3DNOW_PREFETCH;
   424       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   425         result |= CPU_LZCNT;
   426       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   427         result |= CPU_SSE4A;
   428     }
   430     return result;
   431   }
   433   static void get_processor_features();
   435 public:
   436   // Offsets for cpuid asm stub
   437   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   438   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   439   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   440   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
   441   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   442   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   443   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
   444   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   445   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
   446   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
   447   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
   448   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
   450   // Initialization
   451   static void initialize();
   453   // Asserts
   454   static void assert_is_initialized() {
   455     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   456   }
   458   //
   459   // Processor family:
   460   //       3   -  386
   461   //       4   -  486
   462   //       5   -  Pentium
   463   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   464   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   465   //    family 6 model:   9,        13,       14,        15
   466   //    0x0f   -  Pentium 4, Opteron
   467   //
   468   // Note: The cpu family should be used to select between
   469   //       instruction sequences which are valid on all Intel
   470   //       processors.  Use the feature test functions below to
   471   //       determine whether a particular instruction is supported.
   472   //
   473   static int  cpu_family()        { return _cpu;}
   474   static bool is_P6()             { return cpu_family() >= 6; }
   475   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   476   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   478   static bool supports_processor_topology() {
   479     return (_cpuid_info.std_max_function >= 0xB) &&
   480            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
   481            // Some cpus have max cpuid >= 0xB but do not support processor topology.
   482            ((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
   483   }
   485   static uint cores_per_cpu()  {
   486     uint result = 1;
   487     if (is_intel()) {
   488       if (supports_processor_topology()) {
   489         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
   490                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   491       } else {
   492         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   493       }
   494     } else if (is_amd()) {
   495       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   496     }
   497     return result;
   498   }
   500   static uint threads_per_core()  {
   501     uint result = 1;
   502     if (is_intel() && supports_processor_topology()) {
   503       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   504     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   505       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   506                cores_per_cpu();
   507     }
   508     return result;
   509   }
   511   static intx prefetch_data_size()  {
   512     intx result = 0;
   513     if (is_intel()) {
   514       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   515     } else if (is_amd()) {
   516       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   517     }
   518     if (result < 32) // not defined ?
   519       result = 32;   // 32 bytes by default on x86 and other x64
   520     return result;
   521   }
   523   //
   524   // Feature identification
   525   //
   526   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   527   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   528   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   529   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   530   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   531   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   532   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   533   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   534   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   535   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   536   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   537   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   538   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   539   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
   540   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
   541   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
   543   // Intel features
   544   static bool is_intel_family_core() { return is_intel() &&
   545                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
   547   static bool is_intel_tsc_synched_at_init()  {
   548     if (is_intel_family_core()) {
   549       uint32_t ext_model = extended_cpu_model();
   550       if (ext_model == CPU_MODEL_NEHALEM_EP   ||
   551           ext_model == CPU_MODEL_WESTMERE_EP  ||
   552 // TODO   ext_model == CPU_MODEL_IVYBRIDGE_EP ||
   553           ext_model == CPU_MODEL_SANDYBRIDGE_EP) {
   554         // 2-socket invtsc support. EX versions with 4 sockets are not
   555         // guaranteed to synchronize tscs at initialization via a double
   556         // handshake. The tscs can be explicitly set in software.  Code
   557         // that uses tsc values must be prepared for them to arbitrarily
   558         // jump backward or forward.
   559         return true;
   560       }
   561     }
   562     return false;
   563   }
   565   // AMD features
   566   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
   567   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   568   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   569   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   571   static bool is_amd_Barcelona()  { return is_amd() &&
   572                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
   574   // Intel and AMD newer cores support fast timestamps well
   575   static bool supports_tscinv_bit() {
   576     return (_cpuFeatures & CPU_TSCINV) != 0;
   577   }
   578   static bool supports_tscinv() {
   579     return supports_tscinv_bit() &&
   580            ( (is_amd() && !is_amd_Barcelona()) ||
   581              is_intel_tsc_synched_at_init() );
   582   }
   584   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
   585   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
   586                                            supports_sse3() && _model != 0x1C; }
   588   static bool supports_compare_and_exchange() { return true; }
   590   static const char* cpu_features()           { return _features_str; }
   592   static intx allocate_prefetch_distance() {
   593     // This method should be called before allocate_prefetch_style().
   594     //
   595     // Hardware prefetching (distance/size in bytes):
   596     // Pentium 3 -  64 /  32
   597     // Pentium 4 - 256 / 128
   598     // Athlon    -  64 /  32 ????
   599     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   600     // Core      - 128 /  64
   601     //
   602     // Software prefetching (distance in bytes / instruction with best score):
   603     // Pentium 3 - 128 / prefetchnta
   604     // Pentium 4 - 512 / prefetchnta
   605     // Athlon    - 128 / prefetchnta
   606     // Opteron   - 256 / prefetchnta
   607     // Core      - 256 / prefetchnta
   608     // It will be used only when AllocatePrefetchStyle > 0
   610     intx count = AllocatePrefetchDistance;
   611     if (count < 0) {   // default ?
   612       if (is_amd()) {  // AMD
   613         if (supports_sse2())
   614           count = 256; // Opteron
   615         else
   616           count = 128; // Athlon
   617       } else {         // Intel
   618         if (supports_sse2())
   619           if (cpu_family() == 6) {
   620             count = 256; // Pentium M, Core, Core2
   621           } else {
   622             count = 512; // Pentium 4
   623           }
   624         else
   625           count = 128; // Pentium 3 (and all other old CPUs)
   626       }
   627     }
   628     return count;
   629   }
   630   static intx allocate_prefetch_style() {
   631     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   632     // Return 0 if AllocatePrefetchDistance was not defined.
   633     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   634   }
   636   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   637   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   638   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   639   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   641   // gc copy/scan is disabled if prefetchw isn't supported, because
   642   // Prefetch::write emits an inlined prefetchw on Linux.
   643   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   644   // The used prefetcht0 instruction works for both amd64 and em64t.
   645   static intx prefetch_copy_interval_in_bytes() {
   646     intx interval = PrefetchCopyIntervalInBytes;
   647     return interval >= 0 ? interval : 576;
   648   }
   649   static intx prefetch_scan_interval_in_bytes() {
   650     intx interval = PrefetchScanIntervalInBytes;
   651     return interval >= 0 ? interval : 576;
   652   }
   653   static intx prefetch_fields_ahead() {
   654     intx count = PrefetchFieldsAhead;
   655     return count >= 0 ? count : 1;
   656   }
   657 };
   659 #endif // CPU_X86_VM_VM_VERSION_X86_HPP

mercurial