src/share/vm/opto/runtime.cpp

Wed, 17 Jun 2015 17:48:25 -0700

author
ascarpino
date
Wed, 17 Jun 2015 17:48:25 -0700
changeset 9788
44ef77ad417c
parent 9713
c4567d28f31f
child 9806
758c07667682
permissions
-rw-r--r--

8073108: Use x86 and SPARC CPU instructions for GHASH acceleration
Reviewed-by: kvn, jrose, phh

     1 /*
     2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #if defined AD_MD_HPP
    72 # include AD_MD_HPP
    73 #elif defined TARGET_ARCH_MODEL_x86_32
    74 # include "adfiles/ad_x86_32.hpp"
    75 #elif defined TARGET_ARCH_MODEL_x86_64
    76 # include "adfiles/ad_x86_64.hpp"
    77 #elif defined TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #elif defined TARGET_ARCH_MODEL_zero
    80 # include "adfiles/ad_zero.hpp"
    81 #elif defined TARGET_ARCH_MODEL_ppc_64
    82 # include "adfiles/ad_ppc_64.hpp"
    83 #endif
    86 // For debugging purposes:
    87 //  To force FullGCALot inside a runtime function, add the following two lines
    88 //
    89 //  Universe::release_fullgc_alot_dummy();
    90 //  MarkSweep::invoke(0, "Debugging");
    91 //
    92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
    95 // GHASH block processing
    96 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
    97     int argcnt = 4;
    99     const Type** fields = TypeTuple::fields(argcnt);
   100     int argp = TypeFunc::Parms;
   101     fields[argp++] = TypePtr::NOTNULL;    // state
   102     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
   103     fields[argp++] = TypePtr::NOTNULL;    // data
   104     fields[argp++] = TypeInt::INT;        // blocks
   105     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   106     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   108     // result type needed
   109     fields = TypeTuple::fields(1);
   110     fields[TypeFunc::Parms+0] = NULL; // void
   111     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   112     return TypeFunc::make(domain, range);
   113 }
   115 // Compiled code entry points
   116 address OptoRuntime::_new_instance_Java                           = NULL;
   117 address OptoRuntime::_new_array_Java                              = NULL;
   118 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   119 address OptoRuntime::_multianewarray2_Java                        = NULL;
   120 address OptoRuntime::_multianewarray3_Java                        = NULL;
   121 address OptoRuntime::_multianewarray4_Java                        = NULL;
   122 address OptoRuntime::_multianewarray5_Java                        = NULL;
   123 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   124 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   125 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   126 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   127 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   128 address OptoRuntime::_rethrow_Java                                = NULL;
   130 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   131 address OptoRuntime::_register_finalizer_Java                     = NULL;
   133 # ifdef ENABLE_ZAP_DEAD_LOCALS
   134 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   135 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   136 # endif
   138 ExceptionBlob* OptoRuntime::_exception_blob;
   140 // This should be called in an assertion at the start of OptoRuntime routines
   141 // which are entered from compiled code (all of them)
   142 #ifdef ASSERT
   143 static bool check_compiled_frame(JavaThread* thread) {
   144   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   145   RegisterMap map(thread, false);
   146   frame caller = thread->last_frame().sender(&map);
   147   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   148   return true;
   149 }
   150 #endif // ASSERT
   153 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   154   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
   155   if (var == NULL) { return false; }
   157 bool OptoRuntime::generate(ciEnv* env) {
   159   generate_exception_blob();
   161   // Note: tls: Means fetching the return oop out of the thread-local storage
   162   //
   163   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   164   // -------------------------------------------------------------------------------------------------------------------------------
   165   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   166   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   167   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   168   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   169   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   170   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   171   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   172   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   173   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   174   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   175   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
   176   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   178   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   179   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   181 # ifdef ENABLE_ZAP_DEAD_LOCALS
   182   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   183   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   184 # endif
   185   return true;
   186 }
   188 #undef gen
   191 // Helper method to do generation of RunTimeStub's
   192 address OptoRuntime::generate_stub( ciEnv* env,
   193                                     TypeFunc_generator gen, address C_function,
   194                                     const char *name, int is_fancy_jump,
   195                                     bool pass_tls,
   196                                     bool save_argument_registers,
   197                                     bool return_pc ) {
   198   ResourceMark rm;
   199   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   200   return  C.stub_entry_point();
   201 }
   203 const char* OptoRuntime::stub_name(address entry) {
   204 #ifndef PRODUCT
   205   CodeBlob* cb = CodeCache::find_blob(entry);
   206   RuntimeStub* rs =(RuntimeStub *)cb;
   207   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   208   return rs->name();
   209 #else
   210   // Fast implementation for product mode (maybe it should be inlined too)
   211   return "runtime stub";
   212 #endif
   213 }
   216 //=============================================================================
   217 // Opto compiler runtime routines
   218 //=============================================================================
   221 //=============================allocation======================================
   222 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   223 // and try allocation again.
   225 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   226   // After any safepoint, just before going back to compiled code,
   227   // we inform the GC that we will be doing initializing writes to
   228   // this object in the future without emitting card-marks, so
   229   // GC may take any compensating steps.
   230   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   232   oop new_obj = thread->vm_result();
   233   if (new_obj == NULL)  return;
   235   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   236          "compiler must check this first");
   237   // GC may decide to give back a safer copy of new_obj.
   238   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   239   thread->set_vm_result(new_obj);
   240 }
   242 // object allocation
   243 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
   244   JRT_BLOCK;
   245 #ifndef PRODUCT
   246   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   247 #endif
   248   assert(check_compiled_frame(thread), "incorrect caller");
   250   // These checks are cheap to make and support reflective allocation.
   251   int lh = klass->layout_helper();
   252   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
   253     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
   254     klass->check_valid_for_instantiation(false, THREAD);
   255     if (!HAS_PENDING_EXCEPTION) {
   256       InstanceKlass::cast(klass)->initialize(THREAD);
   257     }
   258   }
   260   if (!HAS_PENDING_EXCEPTION) {
   261     // Scavenge and allocate an instance.
   262     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
   263     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
   264     thread->set_vm_result(result);
   266     // Pass oops back through thread local storage.  Our apparent type to Java
   267     // is that we return an oop, but we can block on exit from this routine and
   268     // a GC can trash the oop in C's return register.  The generated stub will
   269     // fetch the oop from TLS after any possible GC.
   270   }
   272   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   273   JRT_BLOCK_END;
   275   if (GraphKit::use_ReduceInitialCardMarks()) {
   276     // inform GC that we won't do card marks for initializing writes.
   277     new_store_pre_barrier(thread);
   278   }
   279 JRT_END
   282 // array allocation
   283 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
   284   JRT_BLOCK;
   285 #ifndef PRODUCT
   286   SharedRuntime::_new_array_ctr++;            // new array requires GC
   287 #endif
   288   assert(check_compiled_frame(thread), "incorrect caller");
   290   // Scavenge and allocate an instance.
   291   oop result;
   293   if (array_type->oop_is_typeArray()) {
   294     // The oopFactory likes to work with the element type.
   295     // (We could bypass the oopFactory, since it doesn't add much value.)
   296     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   297     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   298   } else {
   299     // Although the oopFactory likes to work with the elem_type,
   300     // the compiler prefers the array_type, since it must already have
   301     // that latter value in hand for the fast path.
   302     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
   303     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
   304     result = oopFactory::new_objArray(elem_type, len, THREAD);
   305   }
   307   // Pass oops back through thread local storage.  Our apparent type to Java
   308   // is that we return an oop, but we can block on exit from this routine and
   309   // a GC can trash the oop in C's return register.  The generated stub will
   310   // fetch the oop from TLS after any possible GC.
   311   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   312   thread->set_vm_result(result);
   313   JRT_BLOCK_END;
   315   if (GraphKit::use_ReduceInitialCardMarks()) {
   316     // inform GC that we won't do card marks for initializing writes.
   317     new_store_pre_barrier(thread);
   318   }
   319 JRT_END
   321 // array allocation without zeroing
   322 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
   323   JRT_BLOCK;
   324 #ifndef PRODUCT
   325   SharedRuntime::_new_array_ctr++;            // new array requires GC
   326 #endif
   327   assert(check_compiled_frame(thread), "incorrect caller");
   329   // Scavenge and allocate an instance.
   330   oop result;
   332   assert(array_type->oop_is_typeArray(), "should be called only for type array");
   333   // The oopFactory likes to work with the element type.
   334   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   335   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   337   // Pass oops back through thread local storage.  Our apparent type to Java
   338   // is that we return an oop, but we can block on exit from this routine and
   339   // a GC can trash the oop in C's return register.  The generated stub will
   340   // fetch the oop from TLS after any possible GC.
   341   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   342   thread->set_vm_result(result);
   343   JRT_BLOCK_END;
   345   if (GraphKit::use_ReduceInitialCardMarks()) {
   346     // inform GC that we won't do card marks for initializing writes.
   347     new_store_pre_barrier(thread);
   348   }
   350   oop result = thread->vm_result();
   351   if ((len > 0) && (result != NULL) &&
   352       is_deoptimized_caller_frame(thread)) {
   353     // Zero array here if the caller is deoptimized.
   354     int size = ((typeArrayOop)result)->object_size();
   355     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   356     const size_t hs = arrayOopDesc::header_size(elem_type);
   357     // Align to next 8 bytes to avoid trashing arrays's length.
   358     const size_t aligned_hs = align_object_offset(hs);
   359     HeapWord* obj = (HeapWord*)result;
   360     if (aligned_hs > hs) {
   361       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   362     }
   363     // Optimized zeroing.
   364     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   365   }
   367 JRT_END
   369 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   371 // multianewarray for 2 dimensions
   372 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
   373 #ifndef PRODUCT
   374   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   375 #endif
   376   assert(check_compiled_frame(thread), "incorrect caller");
   377   assert(elem_type->is_klass(), "not a class");
   378   jint dims[2];
   379   dims[0] = len1;
   380   dims[1] = len2;
   381   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   382   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   383   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   384   thread->set_vm_result(obj);
   385 JRT_END
   387 // multianewarray for 3 dimensions
   388 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
   389 #ifndef PRODUCT
   390   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   391 #endif
   392   assert(check_compiled_frame(thread), "incorrect caller");
   393   assert(elem_type->is_klass(), "not a class");
   394   jint dims[3];
   395   dims[0] = len1;
   396   dims[1] = len2;
   397   dims[2] = len3;
   398   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   399   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   400   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   401   thread->set_vm_result(obj);
   402 JRT_END
   404 // multianewarray for 4 dimensions
   405 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   406 #ifndef PRODUCT
   407   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   408 #endif
   409   assert(check_compiled_frame(thread), "incorrect caller");
   410   assert(elem_type->is_klass(), "not a class");
   411   jint dims[4];
   412   dims[0] = len1;
   413   dims[1] = len2;
   414   dims[2] = len3;
   415   dims[3] = len4;
   416   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   417   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   418   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   419   thread->set_vm_result(obj);
   420 JRT_END
   422 // multianewarray for 5 dimensions
   423 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   424 #ifndef PRODUCT
   425   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   426 #endif
   427   assert(check_compiled_frame(thread), "incorrect caller");
   428   assert(elem_type->is_klass(), "not a class");
   429   jint dims[5];
   430   dims[0] = len1;
   431   dims[1] = len2;
   432   dims[2] = len3;
   433   dims[3] = len4;
   434   dims[4] = len5;
   435   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   436   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   437   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   438   thread->set_vm_result(obj);
   439 JRT_END
   441 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
   442   assert(check_compiled_frame(thread), "incorrect caller");
   443   assert(elem_type->is_klass(), "not a class");
   444   assert(oop(dims)->is_typeArray(), "not an array");
   446   ResourceMark rm;
   447   jint len = dims->length();
   448   assert(len > 0, "Dimensions array should contain data");
   449   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   450   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   451   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   453   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   454   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   455   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   456   thread->set_vm_result(obj);
   457 JRT_END
   460 const TypeFunc *OptoRuntime::new_instance_Type() {
   461   // create input type (domain)
   462   const Type **fields = TypeTuple::fields(1);
   463   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   464   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   466   // create result type (range)
   467   fields = TypeTuple::fields(1);
   468   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   470   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   472   return TypeFunc::make(domain, range);
   473 }
   476 const TypeFunc *OptoRuntime::athrow_Type() {
   477   // create input type (domain)
   478   const Type **fields = TypeTuple::fields(1);
   479   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   480   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   482   // create result type (range)
   483   fields = TypeTuple::fields(0);
   485   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   487   return TypeFunc::make(domain, range);
   488 }
   491 const TypeFunc *OptoRuntime::new_array_Type() {
   492   // create input type (domain)
   493   const Type **fields = TypeTuple::fields(2);
   494   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   495   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   496   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   498   // create result type (range)
   499   fields = TypeTuple::fields(1);
   500   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   502   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   504   return TypeFunc::make(domain, range);
   505 }
   507 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   508   // create input type (domain)
   509   const int nargs = ndim + 1;
   510   const Type **fields = TypeTuple::fields(nargs);
   511   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   512   for( int i = 1; i < nargs; i++ )
   513     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   514   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   516   // create result type (range)
   517   fields = TypeTuple::fields(1);
   518   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   519   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   521   return TypeFunc::make(domain, range);
   522 }
   524 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   525   return multianewarray_Type(2);
   526 }
   528 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   529   return multianewarray_Type(3);
   530 }
   532 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   533   return multianewarray_Type(4);
   534 }
   536 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   537   return multianewarray_Type(5);
   538 }
   540 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   541   // create input type (domain)
   542   const Type **fields = TypeTuple::fields(2);
   543   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   544   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   545   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   547   // create result type (range)
   548   fields = TypeTuple::fields(1);
   549   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   550   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   552   return TypeFunc::make(domain, range);
   553 }
   555 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   556   const Type **fields = TypeTuple::fields(2);
   557   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   558   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   559   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   561   // create result type (range)
   562   fields = TypeTuple::fields(0);
   563   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   565   return TypeFunc::make(domain, range);
   566 }
   568 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   570   const Type **fields = TypeTuple::fields(2);
   571   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   572   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   573   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   575   // create result type (range)
   576   fields = TypeTuple::fields(0);
   577   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   579   return TypeFunc::make(domain, range);
   580 }
   582 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   583   // create input type (domain)
   584   const Type **fields = TypeTuple::fields(1);
   585   // Symbol* name of class to be loaded
   586   fields[TypeFunc::Parms+0] = TypeInt::INT;
   587   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   589   // create result type (range)
   590   fields = TypeTuple::fields(0);
   591   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   593   return TypeFunc::make(domain, range);
   594 }
   596 # ifdef ENABLE_ZAP_DEAD_LOCALS
   597 // Type used for stub generation for zap_dead_locals.
   598 // No inputs or outputs
   599 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   600   // create input type (domain)
   601   const Type **fields = TypeTuple::fields(0);
   602   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   604   // create result type (range)
   605   fields = TypeTuple::fields(0);
   606   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   608   return TypeFunc::make(domain,range);
   609 }
   610 # endif
   613 //-----------------------------------------------------------------------------
   614 // Monitor Handling
   615 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   616   // create input type (domain)
   617   const Type **fields = TypeTuple::fields(2);
   618   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   619   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   620   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   622   // create result type (range)
   623   fields = TypeTuple::fields(0);
   625   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   627   return TypeFunc::make(domain,range);
   628 }
   631 //-----------------------------------------------------------------------------
   632 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   633   // create input type (domain)
   634   const Type **fields = TypeTuple::fields(2);
   635   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   636   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   637   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   639   // create result type (range)
   640   fields = TypeTuple::fields(0);
   642   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   644   return TypeFunc::make(domain,range);
   645 }
   647 const TypeFunc* OptoRuntime::flush_windows_Type() {
   648   // create input type (domain)
   649   const Type** fields = TypeTuple::fields(1);
   650   fields[TypeFunc::Parms+0] = NULL; // void
   651   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   653   // create result type
   654   fields = TypeTuple::fields(1);
   655   fields[TypeFunc::Parms+0] = NULL; // void
   656   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   658   return TypeFunc::make(domain, range);
   659 }
   661 const TypeFunc* OptoRuntime::l2f_Type() {
   662   // create input type (domain)
   663   const Type **fields = TypeTuple::fields(2);
   664   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   665   fields[TypeFunc::Parms+1] = Type::HALF;
   666   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   668   // create result type (range)
   669   fields = TypeTuple::fields(1);
   670   fields[TypeFunc::Parms+0] = Type::FLOAT;
   671   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   673   return TypeFunc::make(domain, range);
   674 }
   676 const TypeFunc* OptoRuntime::modf_Type() {
   677   const Type **fields = TypeTuple::fields(2);
   678   fields[TypeFunc::Parms+0] = Type::FLOAT;
   679   fields[TypeFunc::Parms+1] = Type::FLOAT;
   680   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   682   // create result type (range)
   683   fields = TypeTuple::fields(1);
   684   fields[TypeFunc::Parms+0] = Type::FLOAT;
   686   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   688   return TypeFunc::make(domain, range);
   689 }
   691 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   692   // create input type (domain)
   693   const Type **fields = TypeTuple::fields(2);
   694   // Symbol* name of class to be loaded
   695   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   696   fields[TypeFunc::Parms+1] = Type::HALF;
   697   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   699   // create result type (range)
   700   fields = TypeTuple::fields(2);
   701   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   702   fields[TypeFunc::Parms+1] = Type::HALF;
   703   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   705   return TypeFunc::make(domain, range);
   706 }
   708 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   709   const Type **fields = TypeTuple::fields(4);
   710   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   711   fields[TypeFunc::Parms+1] = Type::HALF;
   712   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   713   fields[TypeFunc::Parms+3] = Type::HALF;
   714   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   716   // create result type (range)
   717   fields = TypeTuple::fields(2);
   718   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   719   fields[TypeFunc::Parms+1] = Type::HALF;
   720   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   722   return TypeFunc::make(domain, range);
   723 }
   725 //-------------- currentTimeMillis, currentTimeNanos, etc
   727 const TypeFunc* OptoRuntime::void_long_Type() {
   728   // create input type (domain)
   729   const Type **fields = TypeTuple::fields(0);
   730   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   732   // create result type (range)
   733   fields = TypeTuple::fields(2);
   734   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   735   fields[TypeFunc::Parms+1] = Type::HALF;
   736   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   738   return TypeFunc::make(domain, range);
   739 }
   741 // arraycopy stub variations:
   742 enum ArrayCopyType {
   743   ac_fast,                      // void(ptr, ptr, size_t)
   744   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   745   ac_slow,                      // void(ptr, int, ptr, int, int)
   746   ac_generic                    //  int(ptr, int, ptr, int, int)
   747 };
   749 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   750   // create input type (domain)
   751   int num_args      = (act == ac_fast ? 3 : 5);
   752   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   753   int argcnt = num_args;
   754   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   755   const Type** fields = TypeTuple::fields(argcnt);
   756   int argp = TypeFunc::Parms;
   757   fields[argp++] = TypePtr::NOTNULL;    // src
   758   if (num_size_args == 0) {
   759     fields[argp++] = TypeInt::INT;      // src_pos
   760   }
   761   fields[argp++] = TypePtr::NOTNULL;    // dest
   762   if (num_size_args == 0) {
   763     fields[argp++] = TypeInt::INT;      // dest_pos
   764     fields[argp++] = TypeInt::INT;      // length
   765   }
   766   while (num_size_args-- > 0) {
   767     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   768     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   769   }
   770   if (act == ac_checkcast) {
   771     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   772   }
   773   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   774   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   776   // create result type if needed
   777   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   778   fields = TypeTuple::fields(1);
   779   if (retcnt == 0)
   780     fields[TypeFunc::Parms+0] = NULL; // void
   781   else
   782     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   783   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   784   return TypeFunc::make(domain, range);
   785 }
   787 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   788   // This signature is simple:  Two base pointers and a size_t.
   789   return make_arraycopy_Type(ac_fast);
   790 }
   792 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   793   // An extension of fast_arraycopy_Type which adds type checking.
   794   return make_arraycopy_Type(ac_checkcast);
   795 }
   797 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   798   // This signature is exactly the same as System.arraycopy.
   799   // There are no intptr_t (int/long) arguments.
   800   return make_arraycopy_Type(ac_slow);
   801 }
   803 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   804   // This signature is like System.arraycopy, except that it returns status.
   805   return make_arraycopy_Type(ac_generic);
   806 }
   809 const TypeFunc* OptoRuntime::array_fill_Type() {
   810   const Type** fields;
   811   int argp = TypeFunc::Parms;
   812   if (CCallingConventionRequiresIntsAsLongs) {
   813   // create input type (domain): pointer, int, size_t
   814     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
   815     fields[argp++] = TypePtr::NOTNULL;
   816     fields[argp++] = TypeLong::LONG;
   817     fields[argp++] = Type::HALF;
   818   } else {
   819     // create input type (domain): pointer, int, size_t
   820     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   821     fields[argp++] = TypePtr::NOTNULL;
   822     fields[argp++] = TypeInt::INT;
   823   }
   824   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   825   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   826   const TypeTuple *domain = TypeTuple::make(argp, fields);
   828   // create result type
   829   fields = TypeTuple::fields(1);
   830   fields[TypeFunc::Parms+0] = NULL; // void
   831   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   833   return TypeFunc::make(domain, range);
   834 }
   836 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
   837 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
   838   // create input type (domain)
   839   int num_args      = 3;
   840   if (Matcher::pass_original_key_for_aes()) {
   841     num_args = 4;
   842   }
   843   int argcnt = num_args;
   844   const Type** fields = TypeTuple::fields(argcnt);
   845   int argp = TypeFunc::Parms;
   846   fields[argp++] = TypePtr::NOTNULL;    // src
   847   fields[argp++] = TypePtr::NOTNULL;    // dest
   848   fields[argp++] = TypePtr::NOTNULL;    // k array
   849   if (Matcher::pass_original_key_for_aes()) {
   850     fields[argp++] = TypePtr::NOTNULL;    // original k array
   851   }
   852   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   853   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   855   // no result type needed
   856   fields = TypeTuple::fields(1);
   857   fields[TypeFunc::Parms+0] = NULL; // void
   858   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   859   return TypeFunc::make(domain, range);
   860 }
   862 /**
   863  * int updateBytesCRC32(int crc, byte* b, int len)
   864  */
   865 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
   866   // create input type (domain)
   867   int num_args = 3;
   868   int argcnt = num_args;
   869   if (CCallingConventionRequiresIntsAsLongs) {
   870     argcnt += 2;
   871   }
   872   const Type** fields = TypeTuple::fields(argcnt);
   873   int argp = TypeFunc::Parms;
   874   if (CCallingConventionRequiresIntsAsLongs) {
   875     fields[argp++] = TypeLong::LONG;   // crc
   876     fields[argp++] = Type::HALF;
   877     fields[argp++] = TypePtr::NOTNULL; // src
   878     fields[argp++] = TypeLong::LONG;   // len
   879     fields[argp++] = Type::HALF;
   880   } else {
   881     fields[argp++] = TypeInt::INT;     // crc
   882     fields[argp++] = TypePtr::NOTNULL; // src
   883     fields[argp++] = TypeInt::INT;     // len
   884   }
   885   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   886   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   888   // result type needed
   889   fields = TypeTuple::fields(1);
   890   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
   891   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   892   return TypeFunc::make(domain, range);
   893 }
   895 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
   896 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
   897   // create input type (domain)
   898   int num_args      = 5;
   899   if (Matcher::pass_original_key_for_aes()) {
   900     num_args = 6;
   901   }
   902   int argcnt = num_args;
   903   const Type** fields = TypeTuple::fields(argcnt);
   904   int argp = TypeFunc::Parms;
   905   fields[argp++] = TypePtr::NOTNULL;    // src
   906   fields[argp++] = TypePtr::NOTNULL;    // dest
   907   fields[argp++] = TypePtr::NOTNULL;    // k array
   908   fields[argp++] = TypePtr::NOTNULL;    // r array
   909   fields[argp++] = TypeInt::INT;        // src len
   910   if (Matcher::pass_original_key_for_aes()) {
   911     fields[argp++] = TypePtr::NOTNULL;    // original k array
   912   }
   913   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   914   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   916   // returning cipher len (int)
   917   fields = TypeTuple::fields(1);
   918   fields[TypeFunc::Parms+0] = TypeInt::INT;
   919   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   920   return TypeFunc::make(domain, range);
   921 }
   923 /*
   924  * void implCompress(byte[] buf, int ofs)
   925  */
   926 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
   927   // create input type (domain)
   928   int num_args = 2;
   929   int argcnt = num_args;
   930   const Type** fields = TypeTuple::fields(argcnt);
   931   int argp = TypeFunc::Parms;
   932   fields[argp++] = TypePtr::NOTNULL; // buf
   933   fields[argp++] = TypePtr::NOTNULL; // state
   934   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   935   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   937   // no result type needed
   938   fields = TypeTuple::fields(1);
   939   fields[TypeFunc::Parms+0] = NULL; // void
   940   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   941   return TypeFunc::make(domain, range);
   942 }
   944 /*
   945  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
   946  */
   947 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
   948   // create input type (domain)
   949   int num_args = 4;
   950   int argcnt = num_args;
   951   if(CCallingConventionRequiresIntsAsLongs) {
   952     argcnt += 2;
   953   }
   954   const Type** fields = TypeTuple::fields(argcnt);
   955   int argp = TypeFunc::Parms;
   956   if(CCallingConventionRequiresIntsAsLongs) {
   957     fields[argp++] = TypePtr::NOTNULL; // buf
   958     fields[argp++] = TypePtr::NOTNULL; // state
   959     fields[argp++] = TypeLong::LONG;   // ofs
   960     fields[argp++] = Type::HALF;
   961     fields[argp++] = TypeLong::LONG;   // limit
   962     fields[argp++] = Type::HALF;
   963   } else {
   964     fields[argp++] = TypePtr::NOTNULL; // buf
   965     fields[argp++] = TypePtr::NOTNULL; // state
   966     fields[argp++] = TypeInt::INT;     // ofs
   967     fields[argp++] = TypeInt::INT;     // limit
   968   }
   969   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   970   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   972   // returning ofs (int)
   973   fields = TypeTuple::fields(1);
   974   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
   975   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   976   return TypeFunc::make(domain, range);
   977 }
   979 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
   980   // create input type (domain)
   981   int num_args      = 6;
   982   int argcnt = num_args;
   983   const Type** fields = TypeTuple::fields(argcnt);
   984   int argp = TypeFunc::Parms;
   985   fields[argp++] = TypePtr::NOTNULL;    // x
   986   fields[argp++] = TypeInt::INT;        // xlen
   987   fields[argp++] = TypePtr::NOTNULL;    // y
   988   fields[argp++] = TypeInt::INT;        // ylen
   989   fields[argp++] = TypePtr::NOTNULL;    // z
   990   fields[argp++] = TypeInt::INT;        // zlen
   991   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   992   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   994   // no result type needed
   995   fields = TypeTuple::fields(1);
   996   fields[TypeFunc::Parms+0] = NULL;
   997   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   998   return TypeFunc::make(domain, range);
   999 }
  1001 const TypeFunc* OptoRuntime::squareToLen_Type() {
  1002   // create input type (domain)
  1003   int num_args      = 4;
  1004   int argcnt = num_args;
  1005   const Type** fields = TypeTuple::fields(argcnt);
  1006   int argp = TypeFunc::Parms;
  1007   fields[argp++] = TypePtr::NOTNULL;    // x
  1008   fields[argp++] = TypeInt::INT;        // len
  1009   fields[argp++] = TypePtr::NOTNULL;    // z
  1010   fields[argp++] = TypeInt::INT;        // zlen
  1011   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1012   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1014   // no result type needed
  1015   fields = TypeTuple::fields(1);
  1016   fields[TypeFunc::Parms+0] = NULL;
  1017   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1018   return TypeFunc::make(domain, range);
  1021 // for mulAdd calls, 2 pointers and 3 ints, returning int
  1022 const TypeFunc* OptoRuntime::mulAdd_Type() {
  1023   // create input type (domain)
  1024   int num_args      = 5;
  1025   int argcnt = num_args;
  1026   const Type** fields = TypeTuple::fields(argcnt);
  1027   int argp = TypeFunc::Parms;
  1028   fields[argp++] = TypePtr::NOTNULL;    // out
  1029   fields[argp++] = TypePtr::NOTNULL;    // in
  1030   fields[argp++] = TypeInt::INT;        // offset
  1031   fields[argp++] = TypeInt::INT;        // len
  1032   fields[argp++] = TypeInt::INT;        // k
  1033   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1034   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1036   // returning carry (int)
  1037   fields = TypeTuple::fields(1);
  1038   fields[TypeFunc::Parms+0] = TypeInt::INT;
  1039   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1040   return TypeFunc::make(domain, range);
  1043 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
  1044   // create input type (domain)
  1045   int num_args      = 7;
  1046   int argcnt = num_args;
  1047   if (CCallingConventionRequiresIntsAsLongs) {
  1048     argcnt++;                           // additional placeholder
  1050   const Type** fields = TypeTuple::fields(argcnt);
  1051   int argp = TypeFunc::Parms;
  1052   fields[argp++] = TypePtr::NOTNULL;    // a
  1053   fields[argp++] = TypePtr::NOTNULL;    // b
  1054   fields[argp++] = TypePtr::NOTNULL;    // n
  1055   if (CCallingConventionRequiresIntsAsLongs) {
  1056     fields[argp++] = TypeLong::LONG;    // len
  1057     fields[argp++] = TypeLong::HALF;    // placeholder
  1058   } else {
  1059     fields[argp++] = TypeInt::INT;      // len
  1061   fields[argp++] = TypeLong::LONG;      // inv
  1062   fields[argp++] = Type::HALF;
  1063   fields[argp++] = TypePtr::NOTNULL;    // result
  1064   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1065   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1067   // result type needed
  1068   fields = TypeTuple::fields(1);
  1069   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
  1071   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1072   return TypeFunc::make(domain, range);
  1075 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
  1076   // create input type (domain)
  1077   int num_args      = 6;
  1078   int argcnt = num_args;
  1079   if (CCallingConventionRequiresIntsAsLongs) {
  1080     argcnt++;                           // additional placeholder
  1082   const Type** fields = TypeTuple::fields(argcnt);
  1083   int argp = TypeFunc::Parms;
  1084   fields[argp++] = TypePtr::NOTNULL;    // a
  1085   fields[argp++] = TypePtr::NOTNULL;    // n
  1086   if (CCallingConventionRequiresIntsAsLongs) {
  1087     fields[argp++] = TypeLong::LONG;    // len
  1088     fields[argp++] = TypeLong::HALF;    // placeholder
  1089   } else {
  1090     fields[argp++] = TypeInt::INT;      // len
  1092   fields[argp++] = TypeLong::LONG;      // inv
  1093   fields[argp++] = Type::HALF;
  1094   fields[argp++] = TypePtr::NOTNULL;    // result
  1095   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1096   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1098   // result type needed
  1099   fields = TypeTuple::fields(1);
  1100   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
  1102   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1103   return TypeFunc::make(domain, range);
  1107 //------------- Interpreter state access for on stack replacement
  1108 const TypeFunc* OptoRuntime::osr_end_Type() {
  1109   // create input type (domain)
  1110   const Type **fields = TypeTuple::fields(1);
  1111   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
  1112   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
  1114   // create result type
  1115   fields = TypeTuple::fields(1);
  1116   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
  1117   fields[TypeFunc::Parms+0] = NULL; // void
  1118   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  1119   return TypeFunc::make(domain, range);
  1122 //-------------- methodData update helpers
  1124 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
  1125   // create input type (domain)
  1126   const Type **fields = TypeTuple::fields(2);
  1127   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
  1128   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
  1129   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
  1131   // create result type
  1132   fields = TypeTuple::fields(1);
  1133   fields[TypeFunc::Parms+0] = NULL; // void
  1134   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  1135   return TypeFunc::make(domain,range);
  1138 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
  1139   if (receiver == NULL) return;
  1140   Klass* receiver_klass = receiver->klass();
  1142   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
  1143   int empty_row = -1;           // free row, if any is encountered
  1145   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
  1146   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
  1147     // if (vc->receiver(row) == receiver_klass)
  1148     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
  1149     intptr_t row_recv = *(mdp + receiver_off);
  1150     if (row_recv == (intptr_t) receiver_klass) {
  1151       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
  1152       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
  1153       *(mdp + count_off) += DataLayout::counter_increment;
  1154       return;
  1155     } else if (row_recv == 0) {
  1156       // else if (vc->receiver(row) == NULL)
  1157       empty_row = (int) row;
  1161   if (empty_row != -1) {
  1162     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
  1163     // vc->set_receiver(empty_row, receiver_klass);
  1164     *(mdp + receiver_off) = (intptr_t) receiver_klass;
  1165     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
  1166     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
  1167     *(mdp + count_off) = DataLayout::counter_increment;
  1168   } else {
  1169     // Receiver did not match any saved receiver and there is no empty row for it.
  1170     // Increment total counter to indicate polymorphic case.
  1171     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
  1172     *count_p += DataLayout::counter_increment;
  1174 JRT_END
  1176 //-------------------------------------------------------------------------------------
  1177 // register policy
  1179 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
  1180   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
  1181   switch (register_save_policy[reg]) {
  1182     case 'C': return false; //SOC
  1183     case 'E': return true ; //SOE
  1184     case 'N': return false; //NS
  1185     case 'A': return false; //AS
  1187   ShouldNotReachHere();
  1188   return false;
  1191 //-----------------------------------------------------------------------
  1192 // Exceptions
  1193 //
  1195 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
  1197 // The method is an entry that is always called by a C++ method not
  1198 // directly from compiled code. Compiled code will call the C++ method following.
  1199 // We can't allow async exception to be installed during  exception processing.
  1200 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
  1202   // Do not confuse exception_oop with pending_exception. The exception_oop
  1203   // is only used to pass arguments into the method. Not for general
  1204   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
  1205   // the runtime stubs checks this on exit.
  1206   assert(thread->exception_oop() != NULL, "exception oop is found");
  1207   address handler_address = NULL;
  1209   Handle exception(thread, thread->exception_oop());
  1210   address pc = thread->exception_pc();
  1212   // Clear out the exception oop and pc since looking up an
  1213   // exception handler can cause class loading, which might throw an
  1214   // exception and those fields are expected to be clear during
  1215   // normal bytecode execution.
  1216   thread->clear_exception_oop_and_pc();
  1218   if (TraceExceptions) {
  1219     trace_exception(exception(), pc, "");
  1222   // for AbortVMOnException flag
  1223   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
  1225 #ifdef ASSERT
  1226   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1227     // should throw an exception here
  1228     ShouldNotReachHere();
  1230 #endif
  1232   // new exception handling: this method is entered only from adapters
  1233   // exceptions from compiled java methods are handled in compiled code
  1234   // using rethrow node
  1236   nm = CodeCache::find_nmethod(pc);
  1237   assert(nm != NULL, "No NMethod found");
  1238   if (nm->is_native_method()) {
  1239     fatal("Native method should not have path to exception handling");
  1240   } else {
  1241     // we are switching to old paradigm: search for exception handler in caller_frame
  1242     // instead in exception handler of caller_frame.sender()
  1244     if (JvmtiExport::can_post_on_exceptions()) {
  1245       // "Full-speed catching" is not necessary here,
  1246       // since we're notifying the VM on every catch.
  1247       // Force deoptimization and the rest of the lookup
  1248       // will be fine.
  1249       deoptimize_caller_frame(thread);
  1252     // Check the stack guard pages.  If enabled, look for handler in this frame;
  1253     // otherwise, forcibly unwind the frame.
  1254     //
  1255     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
  1256     bool force_unwind = !thread->reguard_stack();
  1257     bool deopting = false;
  1258     if (nm->is_deopt_pc(pc)) {
  1259       deopting = true;
  1260       RegisterMap map(thread, false);
  1261       frame deoptee = thread->last_frame().sender(&map);
  1262       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1263       // Adjust the pc back to the original throwing pc
  1264       pc = deoptee.pc();
  1267     // If we are forcing an unwind because of stack overflow then deopt is
  1268     // irrelevant since we are throwing the frame away anyway.
  1270     if (deopting && !force_unwind) {
  1271       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1272     } else {
  1274       handler_address =
  1275         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1277       if (handler_address == NULL) {
  1278         bool recursive_exception = false;
  1279         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
  1280         assert (handler_address != NULL, "must have compiled handler");
  1281         // Update the exception cache only when the unwind was not forced
  1282         // and there didn't happen another exception during the computation of the
  1283         // compiled exception handler. Checking for exception oop equality is not
  1284         // sufficient because some exceptions are pre-allocated and reused.
  1285         if (!force_unwind && !recursive_exception) {
  1286           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1288       } else {
  1289 #ifdef ASSERT
  1290         bool recursive_exception = false;
  1291         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
  1292         assert(recursive_exception || (handler_address == computed_address), err_msg("Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
  1293                  p2i(handler_address), p2i(computed_address)));
  1294 #endif
  1298     thread->set_exception_pc(pc);
  1299     thread->set_exception_handler_pc(handler_address);
  1301     // Check if the exception PC is a MethodHandle call site.
  1302     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1305   // Restore correct return pc.  Was saved above.
  1306   thread->set_exception_oop(exception());
  1307   return handler_address;
  1309 JRT_END
  1311 // We are entering here from exception_blob
  1312 // If there is a compiled exception handler in this method, we will continue there;
  1313 // otherwise we will unwind the stack and continue at the caller of top frame method
  1314 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1315 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1316 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1317 // we must not use the handler and instead return the deopt blob.
  1318 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1319 //
  1320 // We are in Java not VM and in debug mode we have a NoHandleMark
  1321 //
  1322 #ifndef PRODUCT
  1323   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1324 #endif
  1325   debug_only(NoHandleMark __hm;)
  1326   nmethod* nm = NULL;
  1327   address handler_address = NULL;
  1329     // Enter the VM
  1331     ResetNoHandleMark rnhm;
  1332     handler_address = handle_exception_C_helper(thread, nm);
  1335   // Back in java: Use no oops, DON'T safepoint
  1337   // Now check to see if the handler we are returning is in a now
  1338   // deoptimized frame
  1340   if (nm != NULL) {
  1341     RegisterMap map(thread, false);
  1342     frame caller = thread->last_frame().sender(&map);
  1343 #ifdef ASSERT
  1344     assert(caller.is_compiled_frame(), "must be");
  1345 #endif // ASSERT
  1346     if (caller.is_deoptimized_frame()) {
  1347       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1350   return handler_address;
  1353 //------------------------------rethrow----------------------------------------
  1354 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1355 // is either throwing or rethrowing an exception.  The callee-save registers
  1356 // have been restored, synchronized objects have been unlocked and the callee
  1357 // stack frame has been removed.  The return address was passed in.
  1358 // Exception oop is passed as the 1st argument.  This routine is then called
  1359 // from the stub.  On exit, we know where to jump in the caller's code.
  1360 // After this C code exits, the stub will pop his frame and end in a jump
  1361 // (instead of a return).  We enter the caller's default handler.
  1362 //
  1363 // This must be JRT_LEAF:
  1364 //     - caller will not change its state as we cannot block on exit,
  1365 //       therefore raw_exception_handler_for_return_address is all it takes
  1366 //       to handle deoptimized blobs
  1367 //
  1368 // However, there needs to be a safepoint check in the middle!  So compiled
  1369 // safepoints are completely watertight.
  1370 //
  1371 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1372 //
  1373 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1374 //
  1375 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1376 #ifndef PRODUCT
  1377   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1378 #endif
  1379   assert (exception != NULL, "should have thrown a NULLPointerException");
  1380 #ifdef ASSERT
  1381   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1382     // should throw an exception here
  1383     ShouldNotReachHere();
  1385 #endif
  1387   thread->set_vm_result(exception);
  1388   // Frame not compiled (handles deoptimization blob)
  1389   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1393 const TypeFunc *OptoRuntime::rethrow_Type() {
  1394   // create input type (domain)
  1395   const Type **fields = TypeTuple::fields(1);
  1396   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1397   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1399   // create result type (range)
  1400   fields = TypeTuple::fields(1);
  1401   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1402   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1404   return TypeFunc::make(domain, range);
  1408 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1409   // Deoptimize the caller before continuing, as the compiled
  1410   // exception handler table may not be valid.
  1411   if (!StressCompiledExceptionHandlers && doit) {
  1412     deoptimize_caller_frame(thread);
  1416 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
  1417   // Called from within the owner thread, so no need for safepoint
  1418   RegisterMap reg_map(thread);
  1419   frame stub_frame = thread->last_frame();
  1420   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1421   frame caller_frame = stub_frame.sender(&reg_map);
  1423   // Deoptimize the caller frame.
  1424   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1428 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1429   // Called from within the owner thread, so no need for safepoint
  1430   RegisterMap reg_map(thread);
  1431   frame stub_frame = thread->last_frame();
  1432   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1433   frame caller_frame = stub_frame.sender(&reg_map);
  1434   return caller_frame.is_deoptimized_frame();
  1438 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1439   // create input type (domain)
  1440   const Type **fields = TypeTuple::fields(1);
  1441   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1442   // // The JavaThread* is passed to each routine as the last argument
  1443   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1444   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1446   // create result type (range)
  1447   fields = TypeTuple::fields(0);
  1449   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1451   return TypeFunc::make(domain,range);
  1455 //-----------------------------------------------------------------------------
  1456 // Dtrace support.  entry and exit probes have the same signature
  1457 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1458   // create input type (domain)
  1459   const Type **fields = TypeTuple::fields(2);
  1460   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1461   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
  1462   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1464   // create result type (range)
  1465   fields = TypeTuple::fields(0);
  1467   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1469   return TypeFunc::make(domain,range);
  1472 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1473   // create input type (domain)
  1474   const Type **fields = TypeTuple::fields(2);
  1475   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1476   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1478   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1480   // create result type (range)
  1481   fields = TypeTuple::fields(0);
  1483   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1485   return TypeFunc::make(domain,range);
  1489 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1490   assert(obj->is_oop(), "must be a valid oop");
  1491   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
  1492   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1493 JRT_END
  1495 //-----------------------------------------------------------------------------
  1497 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1499 //
  1500 // dump the collected NamedCounters.
  1501 //
  1502 void OptoRuntime::print_named_counters() {
  1503   int total_lock_count = 0;
  1504   int eliminated_lock_count = 0;
  1506   NamedCounter* c = _named_counters;
  1507   while (c) {
  1508     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1509       int count = c->count();
  1510       if (count > 0) {
  1511         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1512         if (Verbose) {
  1513           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1515         total_lock_count += count;
  1516         if (eliminated) {
  1517           eliminated_lock_count += count;
  1520     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1521       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1522       if (blc->nonzero()) {
  1523         tty->print_cr("%s", c->name());
  1524         blc->print_on(tty);
  1526 #if INCLUDE_RTM_OPT
  1527     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
  1528       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
  1529       if (rlc->nonzero()) {
  1530         tty->print_cr("%s", c->name());
  1531         rlc->print_on(tty);
  1533 #endif
  1535     c = c->next();
  1537   if (total_lock_count > 0) {
  1538     tty->print_cr("dynamic locks: %d", total_lock_count);
  1539     if (eliminated_lock_count) {
  1540       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1541                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1546 //
  1547 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1548 //  name which consists of method@line for the inlining tree.
  1549 //
  1551 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1552   int max_depth = youngest_jvms->depth();
  1554   // Visit scopes from youngest to oldest.
  1555   bool first = true;
  1556   stringStream st;
  1557   for (int depth = max_depth; depth >= 1; depth--) {
  1558     JVMState* jvms = youngest_jvms->of_depth(depth);
  1559     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1560     if (!first) {
  1561       st.print(" ");
  1562     } else {
  1563       first = false;
  1565     int bci = jvms->bci();
  1566     if (bci < 0) bci = 0;
  1567     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1568     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1570   NamedCounter* c;
  1571   if (tag == NamedCounter::BiasedLockingCounter) {
  1572     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1573   } else if (tag == NamedCounter::RTMLockingCounter) {
  1574     c = new RTMLockingNamedCounter(strdup(st.as_string()));
  1575   } else {
  1576     c = new NamedCounter(strdup(st.as_string()), tag);
  1579   // atomically add the new counter to the head of the list.  We only
  1580   // add counters so this is safe.
  1581   NamedCounter* head;
  1582   do {
  1583     c->set_next(NULL);
  1584     head = _named_counters;
  1585     c->set_next(head);
  1586   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1587   return c;
  1590 //-----------------------------------------------------------------------------
  1591 // Non-product code
  1592 #ifndef PRODUCT
  1594 int trace_exception_counter = 0;
  1595 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1596   ttyLocker ttyl;
  1597   trace_exception_counter++;
  1598   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1599   exception_oop->print_value();
  1600   tty->print(" in ");
  1601   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1602   if (blob->is_nmethod()) {
  1603     nmethod* nm = blob->as_nmethod_or_null();
  1604     nm->method()->print_value();
  1605   } else if (blob->is_runtime_stub()) {
  1606     tty->print("<runtime-stub>");
  1607   } else {
  1608     tty->print("<unknown>");
  1610   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
  1611   tty->print_cr("]");
  1614 #endif  // PRODUCT
  1617 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1618 // Called from call sites in compiled code with oop maps (actually safepoints)
  1619 // Zaps dead locals in first java frame.
  1620 // Is entry because may need to lock to generate oop maps
  1621 // Currently, only used for compiler frames, but someday may be used
  1622 // for interpreter frames, too.
  1624 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1626 // avoid pointers to member funcs with these helpers
  1627 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1628 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1631 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1632                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1633   assert(JavaThread::current() == thread, "is this needed?");
  1635   if ( !ZapDeadCompiledLocals )  return;
  1637   bool skip = false;
  1639        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1640   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1641   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1642     warning("starting zapping after skipping");
  1644        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1645   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1646   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1647     warning("about to zap last zap");
  1649   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1651   if ( skip )  return;
  1653   // find java frame and zap it
  1655   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1656     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1657       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1658       return;
  1661   warning("no frame found to zap in zap_dead_Java_locals_C");
  1664 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1665   zap_dead_java_or_native_locals(thread, is_java_frame);
  1666 JRT_END
  1668 // The following does not work because for one thing, the
  1669 // thread state is wrong; it expects java, but it is native.
  1670 // Also, the invariants in a native stub are different and
  1671 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1672 // in there.
  1673 // So for now, we do not zap in native stubs.
  1675 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1676   zap_dead_java_or_native_locals(thread, is_native_frame);
  1677 JRT_END
  1679 # endif

mercurial