src/cpu/x86/vm/templateInterpreter_x86_32.cpp

Wed, 17 Jun 2015 17:48:25 -0700

author
ascarpino
date
Wed, 17 Jun 2015 17:48:25 -0700
changeset 9788
44ef77ad417c
parent 9669
32bc598624bd
child 9703
2fdf635bcf28
permissions
-rw-r--r--

8073108: Use x86 and SPARC CPU instructions for GHASH acceleration
Reviewed-by: kvn, jrose, phh

     1 /*
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #define __ _masm->
    52 #ifndef CC_INTERP
    53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    57 //------------------------------------------------------------------------------------------------------------------------
    59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    60   address entry = __ pc();
    62   // Note: There should be a minimal interpreter frame set up when stack
    63   // overflow occurs since we check explicitly for it now.
    64   //
    65 #ifdef ASSERT
    66   { Label L;
    67     __ lea(rax, Address(rbp,
    68                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
    69     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
    70                         //  (stack grows negative)
    71     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    72     __ stop ("interpreter frame not set up");
    73     __ bind(L);
    74   }
    75 #endif // ASSERT
    76   // Restore bcp under the assumption that the current frame is still
    77   // interpreted
    78   __ restore_bcp();
    80   // expression stack must be empty before entering the VM if an exception
    81   // happened
    82   __ empty_expression_stack();
    83   __ empty_FPU_stack();
    84   // throw exception
    85   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
    86   return entry;
    87 }
    89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    90   address entry = __ pc();
    91   // expression stack must be empty before entering the VM if an exception happened
    92   __ empty_expression_stack();
    93   __ empty_FPU_stack();
    94   // setup parameters
    95   // ??? convention: expect aberrant index in register rbx,
    96   __ lea(rax, ExternalAddress((address)name));
    97   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
    98   return entry;
    99 }
   101 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   102   address entry = __ pc();
   103   // object is at TOS
   104   __ pop(rax);
   105   // expression stack must be empty before entering the VM if an exception
   106   // happened
   107   __ empty_expression_stack();
   108   __ empty_FPU_stack();
   109   __ call_VM(noreg,
   110              CAST_FROM_FN_PTR(address,
   111                               InterpreterRuntime::throw_ClassCastException),
   112              rax);
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   117   assert(!pass_oop || message == NULL, "either oop or message but not both");
   118   address entry = __ pc();
   119   if (pass_oop) {
   120     // object is at TOS
   121     __ pop(rbx);
   122   }
   123   // expression stack must be empty before entering the VM if an exception happened
   124   __ empty_expression_stack();
   125   __ empty_FPU_stack();
   126   // setup parameters
   127   __ lea(rax, ExternalAddress((address)name));
   128   if (pass_oop) {
   129     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
   130   } else {
   131     if (message != NULL) {
   132       __ lea(rbx, ExternalAddress((address)message));
   133     } else {
   134       __ movptr(rbx, NULL_WORD);
   135     }
   136     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
   137   }
   138   // throw exception
   139   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   140   return entry;
   141 }
   144 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   145   address entry = __ pc();
   146   // NULL last_sp until next java call
   147   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   148   __ dispatch_next(state);
   149   return entry;
   150 }
   153 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
   154   address entry = __ pc();
   156 #ifdef COMPILER2
   157   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   158   if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) {
   159     for (int i = 1; i < 8; i++) {
   160         __ ffree(i);
   161     }
   162   } else if (UseSSE < 2) {
   163     __ empty_FPU_stack();
   164   }
   165 #endif
   166   if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) {
   167     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
   168   } else {
   169     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
   170   }
   172   // In SSE mode, interpreter returns FP results in xmm0 but they need
   173   // to end up back on the FPU so it can operate on them.
   174   if (state == ftos && UseSSE >= 1) {
   175     __ subptr(rsp, wordSize);
   176     __ movflt(Address(rsp, 0), xmm0);
   177     __ fld_s(Address(rsp, 0));
   178     __ addptr(rsp, wordSize);
   179   } else if (state == dtos && UseSSE >= 2) {
   180     __ subptr(rsp, 2*wordSize);
   181     __ movdbl(Address(rsp, 0), xmm0);
   182     __ fld_d(Address(rsp, 0));
   183     __ addptr(rsp, 2*wordSize);
   184   }
   186   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
   188   // Restore stack bottom in case i2c adjusted stack
   189   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   190   // and NULL it as marker that rsp is now tos until next java call
   191   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   193   __ restore_bcp();
   194   __ restore_locals();
   196   if (state == atos) {
   197     Register mdp = rbx;
   198     Register tmp = rcx;
   199     __ profile_return_type(mdp, rax, tmp);
   200   }
   202   const Register cache = rbx;
   203   const Register index = rcx;
   204   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
   206   const Register flags = cache;
   207   __ movl(flags, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   208   __ andl(flags, ConstantPoolCacheEntry::parameter_size_mask);
   209   __ lea(rsp, Address(rsp, flags, Interpreter::stackElementScale()));
   210   __ dispatch_next(state, step);
   212   return entry;
   213 }
   216 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   217   address entry = __ pc();
   219   // In SSE mode, FP results are in xmm0
   220   if (state == ftos && UseSSE > 0) {
   221     __ subptr(rsp, wordSize);
   222     __ movflt(Address(rsp, 0), xmm0);
   223     __ fld_s(Address(rsp, 0));
   224     __ addptr(rsp, wordSize);
   225   } else if (state == dtos && UseSSE >= 2) {
   226     __ subptr(rsp, 2*wordSize);
   227     __ movdbl(Address(rsp, 0), xmm0);
   228     __ fld_d(Address(rsp, 0));
   229     __ addptr(rsp, 2*wordSize);
   230   }
   232   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
   234   // The stack is not extended by deopt but we must NULL last_sp as this
   235   // entry is like a "return".
   236   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   237   __ restore_bcp();
   238   __ restore_locals();
   239   // handle exceptions
   240   { Label L;
   241     const Register thread = rcx;
   242     __ get_thread(thread);
   243     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   244     __ jcc(Assembler::zero, L);
   245     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   246     __ should_not_reach_here();
   247     __ bind(L);
   248   }
   249   __ dispatch_next(state, step);
   250   return entry;
   251 }
   254 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   255   int i = 0;
   256   switch (type) {
   257     case T_BOOLEAN: i = 0; break;
   258     case T_CHAR   : i = 1; break;
   259     case T_BYTE   : i = 2; break;
   260     case T_SHORT  : i = 3; break;
   261     case T_INT    : // fall through
   262     case T_LONG   : // fall through
   263     case T_VOID   : i = 4; break;
   264     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
   265     case T_DOUBLE : i = 6; break;
   266     case T_OBJECT : // fall through
   267     case T_ARRAY  : i = 7; break;
   268     default       : ShouldNotReachHere();
   269   }
   270   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   271   return i;
   272 }
   275 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   276   address entry = __ pc();
   277   switch (type) {
   278     case T_BOOLEAN: __ c2bool(rax);            break;
   279     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
   280     case T_BYTE   : __ sign_extend_byte (rax); break;
   281     case T_SHORT  : __ sign_extend_short(rax); break;
   282     case T_INT    : /* nothing to do */        break;
   283     case T_DOUBLE :
   284     case T_FLOAT  :
   285       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   286         __ pop(t);                            // remove return address first
   287         // Must return a result for interpreter or compiler. In SSE
   288         // mode, results are returned in xmm0 and the FPU stack must
   289         // be empty.
   290         if (type == T_FLOAT && UseSSE >= 1) {
   291           // Load ST0
   292           __ fld_d(Address(rsp, 0));
   293           // Store as float and empty fpu stack
   294           __ fstp_s(Address(rsp, 0));
   295           // and reload
   296           __ movflt(xmm0, Address(rsp, 0));
   297         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   298           __ movdbl(xmm0, Address(rsp, 0));
   299         } else {
   300           // restore ST0
   301           __ fld_d(Address(rsp, 0));
   302         }
   303         // and pop the temp
   304         __ addptr(rsp, 2 * wordSize);
   305         __ push(t);                           // restore return address
   306       }
   307       break;
   308     case T_OBJECT :
   309       // retrieve result from frame
   310       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   311       // and verify it
   312       __ verify_oop(rax);
   313       break;
   314     default       : ShouldNotReachHere();
   315   }
   316   __ ret(0);                                   // return from result handler
   317   return entry;
   318 }
   320 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   321   address entry = __ pc();
   322   __ push(state);
   323   __ call_VM(noreg, runtime_entry);
   324   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   325   return entry;
   326 }
   329 // Helpers for commoning out cases in the various type of method entries.
   330 //
   332 // increment invocation count & check for overflow
   333 //
   334 // Note: checking for negative value instead of overflow
   335 //       so we have a 'sticky' overflow test
   336 //
   337 // rbx,: method
   338 // rcx: invocation counter
   339 //
   340 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   341   Label done;
   342   // Note: In tiered we increment either counters in MethodCounters* or in MDO
   343   // depending if we're profiling or not.
   344   if (TieredCompilation) {
   345     int increment = InvocationCounter::count_increment;
   346     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   347     Label no_mdo;
   348     if (ProfileInterpreter) {
   349       // Are we profiling?
   350       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   351       __ testptr(rax, rax);
   352       __ jccb(Assembler::zero, no_mdo);
   353       // Increment counter in the MDO
   354       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   355                                                 in_bytes(InvocationCounter::counter_offset()));
   356       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   357       __ jmp(done);
   358     }
   359     __ bind(no_mdo);
   360     // Increment counter in MethodCounters
   361     const Address invocation_counter(rax,
   362                   MethodCounters::invocation_counter_offset() +
   363                   InvocationCounter::counter_offset());
   365     __ get_method_counters(rbx, rax, done);
   366     __ increment_mask_and_jump(invocation_counter, increment, mask,
   367                                rcx, false, Assembler::zero, overflow);
   368     __ bind(done);
   369   } else {
   370     const Address backedge_counter  (rax,
   371                   MethodCounters::backedge_counter_offset() +
   372                   InvocationCounter::counter_offset());
   373     const Address invocation_counter(rax,
   374                   MethodCounters::invocation_counter_offset() +
   375                   InvocationCounter::counter_offset());
   377     __ get_method_counters(rbx, rax, done);
   379     if (ProfileInterpreter) {
   380       __ incrementl(Address(rax,
   381               MethodCounters::interpreter_invocation_counter_offset()));
   382     }
   384     // Update standard invocation counters
   385     __ movl(rcx, invocation_counter);
   386     __ incrementl(rcx, InvocationCounter::count_increment);
   387     __ movl(invocation_counter, rcx);             // save invocation count
   389     __ movl(rax, backedge_counter);               // load backedge counter
   390     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   392     __ addl(rcx, rax);                            // add both counters
   394     // profile_method is non-null only for interpreted method so
   395     // profile_method != NULL == !native_call
   396     // BytecodeInterpreter only calls for native so code is elided.
   398     if (ProfileInterpreter && profile_method != NULL) {
   399       // Test to see if we should create a method data oop
   400       __ cmp32(rcx,
   401                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   402       __ jcc(Assembler::less, *profile_method_continue);
   404       // if no method data exists, go to profile_method
   405       __ test_method_data_pointer(rax, *profile_method);
   406     }
   408     __ cmp32(rcx,
   409              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   410     __ jcc(Assembler::aboveEqual, *overflow);
   411     __ bind(done);
   412   }
   413 }
   415 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   417   // Asm interpreter on entry
   418   // rdi - locals
   419   // rsi - bcp
   420   // rbx, - method
   421   // rdx - cpool
   422   // rbp, - interpreter frame
   424   // C++ interpreter on entry
   425   // rsi - new interpreter state pointer
   426   // rbp - interpreter frame pointer
   427   // rbx - method
   429   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   430   // rbx, - method
   431   // rcx - rcvr (assuming there is one)
   432   // top of stack return address of interpreter caller
   433   // rsp - sender_sp
   435   // C++ interpreter only
   436   // rsi - previous interpreter state pointer
   438   // InterpreterRuntime::frequency_counter_overflow takes one argument
   439   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   440   // The call returns the address of the verified entry point for the method or NULL
   441   // if the compilation did not complete (either went background or bailed out).
   442   __ movptr(rax, (intptr_t)false);
   443   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   445   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   447   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
   448   // and jump to the interpreted entry.
   449   __ jmp(*do_continue, relocInfo::none);
   451 }
   453 void InterpreterGenerator::generate_stack_overflow_check(void) {
   454   // see if we've got enough room on the stack for locals plus overhead.
   455   // the expression stack grows down incrementally, so the normal guard
   456   // page mechanism will work for that.
   457   //
   458   // Registers live on entry:
   459   //
   460   // Asm interpreter
   461   // rdx: number of additional locals this frame needs (what we must check)
   462   // rbx,: Method*
   464   // destroyed on exit
   465   // rax,
   467   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   468   // generate_method_entry) so the guard should work for them too.
   469   //
   471   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
   472   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   474   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   475   // be sure to change this if you add/subtract anything to/from the overhead area
   476   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
   478   const int page_size = os::vm_page_size();
   480   Label after_frame_check;
   482   // see if the frame is greater than one page in size. If so,
   483   // then we need to verify there is enough stack space remaining
   484   // for the additional locals.
   485   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
   486   __ jcc(Assembler::belowEqual, after_frame_check);
   488   // compute rsp as if this were going to be the last frame on
   489   // the stack before the red zone
   491   Label after_frame_check_pop;
   493   __ push(rsi);
   495   const Register thread = rsi;
   497   __ get_thread(thread);
   499   const Address stack_base(thread, Thread::stack_base_offset());
   500   const Address stack_size(thread, Thread::stack_size_offset());
   502   // locals + overhead, in bytes
   503   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
   505 #ifdef ASSERT
   506   Label stack_base_okay, stack_size_okay;
   507   // verify that thread stack base is non-zero
   508   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   509   __ jcc(Assembler::notEqual, stack_base_okay);
   510   __ stop("stack base is zero");
   511   __ bind(stack_base_okay);
   512   // verify that thread stack size is non-zero
   513   __ cmpptr(stack_size, 0);
   514   __ jcc(Assembler::notEqual, stack_size_okay);
   515   __ stop("stack size is zero");
   516   __ bind(stack_size_okay);
   517 #endif
   519   // Add stack base to locals and subtract stack size
   520   __ addptr(rax, stack_base);
   521   __ subptr(rax, stack_size);
   523   // Use the maximum number of pages we might bang.
   524   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   525                                                                               (StackRedPages+StackYellowPages);
   526   __ addptr(rax, max_pages * page_size);
   528   // check against the current stack bottom
   529   __ cmpptr(rsp, rax);
   530   __ jcc(Assembler::above, after_frame_check_pop);
   532   __ pop(rsi);  // get saved bcp / (c++ prev state ).
   534   // Restore sender's sp as SP. This is necessary if the sender's
   535   // frame is an extended compiled frame (see gen_c2i_adapter())
   536   // and safer anyway in case of JSR292 adaptations.
   538   __ pop(rax); // return address must be moved if SP is changed
   539   __ mov(rsp, rsi);
   540   __ push(rax);
   542   // Note: the restored frame is not necessarily interpreted.
   543   // Use the shared runtime version of the StackOverflowError.
   544   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   545   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   546   // all done with frame size check
   547   __ bind(after_frame_check_pop);
   548   __ pop(rsi);
   550   __ bind(after_frame_check);
   551 }
   553 // Allocate monitor and lock method (asm interpreter)
   554 // rbx, - Method*
   555 //
   556 void InterpreterGenerator::lock_method(void) {
   557   // synchronize method
   558   const Address access_flags      (rbx, Method::access_flags_offset());
   559   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   560   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   562   #ifdef ASSERT
   563     { Label L;
   564       __ movl(rax, access_flags);
   565       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   566       __ jcc(Assembler::notZero, L);
   567       __ stop("method doesn't need synchronization");
   568       __ bind(L);
   569     }
   570   #endif // ASSERT
   571   // get synchronization object
   572   { Label done;
   573     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   574     __ movl(rax, access_flags);
   575     __ testl(rax, JVM_ACC_STATIC);
   576     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
   577     __ jcc(Assembler::zero, done);
   578     __ movptr(rax, Address(rbx, Method::const_offset()));
   579     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   580     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
   581     __ movptr(rax, Address(rax, mirror_offset));
   582     __ bind(done);
   583   }
   584   // add space for monitor & lock
   585   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   586   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
   587   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   588   __ mov(rdx, rsp);                                                    // object address
   589   __ lock_object(rdx);
   590 }
   592 //
   593 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
   594 // and for native methods hence the shared code.
   596 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   597   // initialize fixed part of activation frame
   598   __ push(rax);                                       // save return address
   599   __ enter();                                         // save old & set new rbp,
   602   __ push(rsi);                                       // set sender sp
   603   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
   604   __ movptr(rsi, Address(rbx,Method::const_offset())); // get ConstMethod*
   605   __ lea(rsi, Address(rsi,ConstMethod::codes_offset())); // get codebase
   606   __ push(rbx);                                      // save Method*
   607   if (ProfileInterpreter) {
   608     Label method_data_continue;
   609     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   610     __ testptr(rdx, rdx);
   611     __ jcc(Assembler::zero, method_data_continue);
   612     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   613     __ bind(method_data_continue);
   614     __ push(rdx);                                       // set the mdp (method data pointer)
   615   } else {
   616     __ push(0);
   617   }
   619   __ movptr(rdx, Address(rbx, Method::const_offset()));
   620   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   621   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   622   __ push(rdx);                                       // set constant pool cache
   623   __ push(rdi);                                       // set locals pointer
   624   if (native_call) {
   625     __ push(0);                                       // no bcp
   626   } else {
   627     __ push(rsi);                                     // set bcp
   628     }
   629   __ push(0);                                         // reserve word for pointer to expression stack bottom
   630   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
   631 }
   633 // End of helpers
   635 //
   636 // Various method entries
   637 //------------------------------------------------------------------------------------------------------------------------
   638 //
   639 //
   641 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   643 address InterpreterGenerator::generate_accessor_entry(void) {
   645   // rbx,: Method*
   646   // rcx: receiver (preserve for slow entry into asm interpreter)
   648   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   650   address entry_point = __ pc();
   651   Label xreturn_path;
   653   // do fastpath for resolved accessor methods
   654   if (UseFastAccessorMethods) {
   655     Label slow_path;
   656     // If we need a safepoint check, generate full interpreter entry.
   657     ExternalAddress state(SafepointSynchronize::address_of_state());
   658     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   659              SafepointSynchronize::_not_synchronized);
   661     __ jcc(Assembler::notEqual, slow_path);
   662     // ASM/C++ Interpreter
   663     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   664     // Note: We can only use this code if the getfield has been resolved
   665     //       and if we don't have a null-pointer exception => check for
   666     //       these conditions first and use slow path if necessary.
   667     // rbx,: method
   668     // rcx: receiver
   669     __ movptr(rax, Address(rsp, wordSize));
   671     // check if local 0 != NULL and read field
   672     __ testptr(rax, rax);
   673     __ jcc(Assembler::zero, slow_path);
   675     // read first instruction word and extract bytecode @ 1 and index @ 2
   676     __ movptr(rdx, Address(rbx, Method::const_offset()));
   677     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   678     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   679     // Shift codes right to get the index on the right.
   680     // The bytecode fetched looks like <index><0xb4><0x2a>
   681     __ shrl(rdx, 2*BitsPerByte);
   682     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   683     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   685     // rax,: local 0
   686     // rbx,: method
   687     // rcx: receiver - do not destroy since it is needed for slow path!
   688     // rcx: scratch
   689     // rdx: constant pool cache index
   690     // rdi: constant pool cache
   691     // rsi: sender sp
   693     // check if getfield has been resolved and read constant pool cache entry
   694     // check the validity of the cache entry by testing whether _indices field
   695     // contains Bytecode::_getfield in b1 byte.
   696     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   697     __ movl(rcx,
   698             Address(rdi,
   699                     rdx,
   700                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   701     __ shrl(rcx, 2*BitsPerByte);
   702     __ andl(rcx, 0xFF);
   703     __ cmpl(rcx, Bytecodes::_getfield);
   704     __ jcc(Assembler::notEqual, slow_path);
   706     // Note: constant pool entry is not valid before bytecode is resolved
   707     __ movptr(rcx,
   708               Address(rdi,
   709                       rdx,
   710                       Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   711     __ movl(rdx,
   712             Address(rdi,
   713                     rdx,
   714                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   716     Label notByte, notBool, notShort, notChar;
   717     const Address field_address (rax, rcx, Address::times_1);
   719     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   720     // because they are different sizes.
   721     // Use the type from the constant pool cache
   722     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   723     // Make sure we don't need to mask rdx after the above shift
   724     ConstantPoolCacheEntry::verify_tos_state_shift();
   725     __ cmpl(rdx, btos);
   726     __ jcc(Assembler::notEqual, notByte);
   727     __ load_signed_byte(rax, field_address);
   728     __ jmp(xreturn_path);
   730     __ bind(notByte);
   731     __ cmpl(rdx, ztos);
   732     __ jcc(Assembler::notEqual, notBool);
   733     __ load_signed_byte(rax, field_address);
   734     __ jmp(xreturn_path);
   736     __ bind(notBool);
   737     __ cmpl(rdx, stos);
   738     __ jcc(Assembler::notEqual, notShort);
   739     __ load_signed_short(rax, field_address);
   740     __ jmp(xreturn_path);
   742     __ bind(notShort);
   743     __ cmpl(rdx, ctos);
   744     __ jcc(Assembler::notEqual, notChar);
   745     __ load_unsigned_short(rax, field_address);
   746     __ jmp(xreturn_path);
   748     __ bind(notChar);
   749 #ifdef ASSERT
   750     Label okay;
   751     __ cmpl(rdx, atos);
   752     __ jcc(Assembler::equal, okay);
   753     __ cmpl(rdx, itos);
   754     __ jcc(Assembler::equal, okay);
   755     __ stop("what type is this?");
   756     __ bind(okay);
   757 #endif // ASSERT
   758     // All the rest are a 32 bit wordsize
   759     // This is ok for now. Since fast accessors should be going away
   760     __ movptr(rax, field_address);
   762     __ bind(xreturn_path);
   764     // _ireturn/_areturn
   765     __ pop(rdi);                               // get return address
   766     __ mov(rsp, rsi);                          // set sp to sender sp
   767     __ jmp(rdi);
   769     // generate a vanilla interpreter entry as the slow path
   770     __ bind(slow_path);
   772     (void) generate_normal_entry(false);
   773     return entry_point;
   774   }
   775   return NULL;
   777 }
   779 // Method entry for java.lang.ref.Reference.get.
   780 address InterpreterGenerator::generate_Reference_get_entry(void) {
   781 #if INCLUDE_ALL_GCS
   782   // Code: _aload_0, _getfield, _areturn
   783   // parameter size = 1
   784   //
   785   // The code that gets generated by this routine is split into 2 parts:
   786   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   787   //    2. The slow path - which is an expansion of the regular method entry.
   788   //
   789   // Notes:-
   790   // * In the G1 code we do not check whether we need to block for
   791   //   a safepoint. If G1 is enabled then we must execute the specialized
   792   //   code for Reference.get (except when the Reference object is null)
   793   //   so that we can log the value in the referent field with an SATB
   794   //   update buffer.
   795   //   If the code for the getfield template is modified so that the
   796   //   G1 pre-barrier code is executed when the current method is
   797   //   Reference.get() then going through the normal method entry
   798   //   will be fine.
   799   // * The G1 code below can, however, check the receiver object (the instance
   800   //   of java.lang.Reference) and jump to the slow path if null. If the
   801   //   Reference object is null then we obviously cannot fetch the referent
   802   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   803   //   regular method entry code to generate the NPE.
   804   //
   805   // This code is based on generate_accessor_enty.
   807   // rbx,: Method*
   808   // rcx: receiver (preserve for slow entry into asm interpreter)
   810   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   812   address entry = __ pc();
   814   const int referent_offset = java_lang_ref_Reference::referent_offset;
   815   guarantee(referent_offset > 0, "referent offset not initialized");
   817   if (UseG1GC) {
   818     Label slow_path;
   820     // Check if local 0 != NULL
   821     // If the receiver is null then it is OK to jump to the slow path.
   822     __ movptr(rax, Address(rsp, wordSize));
   823     __ testptr(rax, rax);
   824     __ jcc(Assembler::zero, slow_path);
   826     // rax: local 0 (must be preserved across the G1 barrier call)
   827     //
   828     // rbx: method (at this point it's scratch)
   829     // rcx: receiver (at this point it's scratch)
   830     // rdx: scratch
   831     // rdi: scratch
   832     //
   833     // rsi: sender sp
   835     // Preserve the sender sp in case the pre-barrier
   836     // calls the runtime
   837     __ push(rsi);
   839     // Load the value of the referent field.
   840     const Address field_address(rax, referent_offset);
   841     __ movptr(rax, field_address);
   843     // Generate the G1 pre-barrier code to log the value of
   844     // the referent field in an SATB buffer.
   845     __ get_thread(rcx);
   846     __ g1_write_barrier_pre(noreg /* obj */,
   847                             rax /* pre_val */,
   848                             rcx /* thread */,
   849                             rbx /* tmp */,
   850                             true /* tosca_save */,
   851                             true /* expand_call */);
   853     // _areturn
   854     __ pop(rsi);                // get sender sp
   855     __ pop(rdi);                // get return address
   856     __ mov(rsp, rsi);           // set sp to sender sp
   857     __ jmp(rdi);
   859     __ bind(slow_path);
   860     (void) generate_normal_entry(false);
   862     return entry;
   863   }
   864 #endif // INCLUDE_ALL_GCS
   866   // If G1 is not enabled then attempt to go through the accessor entry point
   867   // Reference.get is an accessor
   868   return generate_accessor_entry();
   869 }
   871 /**
   872  * Method entry for static native methods:
   873  *   int java.util.zip.CRC32.update(int crc, int b)
   874  */
   875 address InterpreterGenerator::generate_CRC32_update_entry() {
   876   if (UseCRC32Intrinsics) {
   877     address entry = __ pc();
   879     // rbx,: Method*
   880     // rsi: senderSP must preserved for slow path, set SP to it on fast path
   881     // rdx: scratch
   882     // rdi: scratch
   884     Label slow_path;
   885     // If we need a safepoint check, generate full interpreter entry.
   886     ExternalAddress state(SafepointSynchronize::address_of_state());
   887     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   888              SafepointSynchronize::_not_synchronized);
   889     __ jcc(Assembler::notEqual, slow_path);
   891     // We don't generate local frame and don't align stack because
   892     // we call stub code and there is no safepoint on this path.
   894     // Load parameters
   895     const Register crc = rax;  // crc
   896     const Register val = rdx;  // source java byte value
   897     const Register tbl = rdi;  // scratch
   899     // Arguments are reversed on java expression stack
   900     __ movl(val, Address(rsp,   wordSize)); // byte value
   901     __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC
   903     __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
   904     __ notl(crc); // ~crc
   905     __ update_byte_crc32(crc, val, tbl);
   906     __ notl(crc); // ~crc
   907     // result in rax
   909     // _areturn
   910     __ pop(rdi);                // get return address
   911     __ mov(rsp, rsi);           // set sp to sender sp
   912     __ jmp(rdi);
   914     // generate a vanilla native entry as the slow path
   915     __ bind(slow_path);
   917     (void) generate_native_entry(false);
   919     return entry;
   920   }
   921   return generate_native_entry(false);
   922 }
   924 /**
   925  * Method entry for static native methods:
   926  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
   927  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
   928  */
   929 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
   930   if (UseCRC32Intrinsics) {
   931     address entry = __ pc();
   933     // rbx,: Method*
   934     // rsi: senderSP must preserved for slow path, set SP to it on fast path
   935     // rdx: scratch
   936     // rdi: scratch
   938     Label slow_path;
   939     // If we need a safepoint check, generate full interpreter entry.
   940     ExternalAddress state(SafepointSynchronize::address_of_state());
   941     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   942              SafepointSynchronize::_not_synchronized);
   943     __ jcc(Assembler::notEqual, slow_path);
   945     // We don't generate local frame and don't align stack because
   946     // we call stub code and there is no safepoint on this path.
   948     // Load parameters
   949     const Register crc = rax;  // crc
   950     const Register buf = rdx;  // source java byte array address
   951     const Register len = rdi;  // length
   953     // Arguments are reversed on java expression stack
   954     __ movl(len,   Address(rsp,   wordSize)); // Length
   955     // Calculate address of start element
   956     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
   957       __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
   958       __ addptr(buf, Address(rsp, 2*wordSize)); // + offset
   959       __ movl(crc,   Address(rsp, 5*wordSize)); // Initial CRC
   960     } else {
   961       __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
   962       __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
   963       __ addptr(buf, Address(rsp, 2*wordSize)); // + offset
   964       __ movl(crc,   Address(rsp, 4*wordSize)); // Initial CRC
   965     }
   967     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
   968     // result in rax
   970     // _areturn
   971     __ pop(rdi);                // get return address
   972     __ mov(rsp, rsi);           // set sp to sender sp
   973     __ jmp(rdi);
   975     // generate a vanilla native entry as the slow path
   976     __ bind(slow_path);
   978     (void) generate_native_entry(false);
   980     return entry;
   981   }
   982   return generate_native_entry(false);
   983 }
   985 //
   986 // Interpreter stub for calling a native method. (asm interpreter)
   987 // This sets up a somewhat different looking stack for calling the native method
   988 // than the typical interpreter frame setup.
   989 //
   991 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   992   // determine code generation flags
   993   bool inc_counter  = UseCompiler || CountCompiledCalls;
   995   // rbx,: Method*
   996   // rsi: sender sp
   997   // rsi: previous interpreter state (C++ interpreter) must preserve
   998   address entry_point = __ pc();
  1000   const Address constMethod       (rbx, Method::const_offset());
  1001   const Address access_flags      (rbx, Method::access_flags_offset());
  1002   const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
  1004   // get parameter size (always needed)
  1005   __ movptr(rcx, constMethod);
  1006   __ load_unsigned_short(rcx, size_of_parameters);
  1008   // native calls don't need the stack size check since they have no expression stack
  1009   // and the arguments are already on the stack and we only add a handful of words
  1010   // to the stack
  1012   // rbx,: Method*
  1013   // rcx: size of parameters
  1014   // rsi: sender sp
  1016   __ pop(rax);                                       // get return address
  1017   // for natives the size of locals is zero
  1019   // compute beginning of parameters (rdi)
  1020   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1023   // add 2 zero-initialized slots for native calls
  1024   // NULL result handler
  1025   __ push((int32_t)NULL_WORD);
  1026   // NULL oop temp (mirror or jni oop result)
  1027   __ push((int32_t)NULL_WORD);
  1029   // initialize fixed part of activation frame
  1030   generate_fixed_frame(true);
  1032   // make sure method is native & not abstract
  1033 #ifdef ASSERT
  1034   __ movl(rax, access_flags);
  1036     Label L;
  1037     __ testl(rax, JVM_ACC_NATIVE);
  1038     __ jcc(Assembler::notZero, L);
  1039     __ stop("tried to execute non-native method as native");
  1040     __ bind(L);
  1042   { Label L;
  1043     __ testl(rax, JVM_ACC_ABSTRACT);
  1044     __ jcc(Assembler::zero, L);
  1045     __ stop("tried to execute abstract method in interpreter");
  1046     __ bind(L);
  1048 #endif
  1050   // Since at this point in the method invocation the exception handler
  1051   // would try to exit the monitor of synchronized methods which hasn't
  1052   // been entered yet, we set the thread local variable
  1053   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1054   // check this flag.
  1056   __ get_thread(rax);
  1057   const Address do_not_unlock_if_synchronized(rax,
  1058         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1059   __ movbool(do_not_unlock_if_synchronized, true);
  1061   // increment invocation count & check for overflow
  1062   Label invocation_counter_overflow;
  1063   if (inc_counter) {
  1064     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  1067   Label continue_after_compile;
  1068   __ bind(continue_after_compile);
  1070   bang_stack_shadow_pages(true);
  1072   // reset the _do_not_unlock_if_synchronized flag
  1073   __ get_thread(rax);
  1074   __ movbool(do_not_unlock_if_synchronized, false);
  1076   // check for synchronized methods
  1077   // Must happen AFTER invocation_counter check and stack overflow check,
  1078   // so method is not locked if overflows.
  1079   //
  1080   if (synchronized) {
  1081     lock_method();
  1082   } else {
  1083     // no synchronization necessary
  1084 #ifdef ASSERT
  1085       { Label L;
  1086         __ movl(rax, access_flags);
  1087         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1088         __ jcc(Assembler::zero, L);
  1089         __ stop("method needs synchronization");
  1090         __ bind(L);
  1092 #endif
  1095   // start execution
  1096 #ifdef ASSERT
  1097   { Label L;
  1098     const Address monitor_block_top (rbp,
  1099                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1100     __ movptr(rax, monitor_block_top);
  1101     __ cmpptr(rax, rsp);
  1102     __ jcc(Assembler::equal, L);
  1103     __ stop("broken stack frame setup in interpreter");
  1104     __ bind(L);
  1106 #endif
  1108   // jvmti/dtrace support
  1109   __ notify_method_entry();
  1111   // work registers
  1112   const Register method = rbx;
  1113   const Register thread = rdi;
  1114   const Register t      = rcx;
  1116   // allocate space for parameters
  1117   __ get_method(method);
  1118   __ movptr(t, Address(method, Method::const_offset()));
  1119   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
  1121   __ shlptr(t, Interpreter::logStackElementSize);
  1122   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
  1123   __ subptr(rsp, t);
  1124   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
  1126   // get signature handler
  1127   { Label L;
  1128     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1129     __ testptr(t, t);
  1130     __ jcc(Assembler::notZero, L);
  1131     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1132     __ get_method(method);
  1133     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1134     __ bind(L);
  1137   // call signature handler
  1138   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
  1139   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1140   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
  1141   // The generated handlers do not touch RBX (the method oop).
  1142   // However, large signatures cannot be cached and are generated
  1143   // each time here.  The slow-path generator will blow RBX
  1144   // sometime, so we must reload it after the call.
  1145   __ call(t);
  1146   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
  1148   // result handler is in rax,
  1149   // set result handler
  1150   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
  1152   // pass mirror handle if static call
  1153   { Label L;
  1154     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1155     __ movl(t, Address(method, Method::access_flags_offset()));
  1156     __ testl(t, JVM_ACC_STATIC);
  1157     __ jcc(Assembler::zero, L);
  1158     // get mirror
  1159     __ movptr(t, Address(method, Method:: const_offset()));
  1160     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1161     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1162     __ movptr(t, Address(t, mirror_offset));
  1163     // copy mirror into activation frame
  1164     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
  1165     // pass handle to mirror
  1166     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1167     __ movptr(Address(rsp, wordSize), t);
  1168     __ bind(L);
  1171   // get native function entry point
  1172   { Label L;
  1173     __ movptr(rax, Address(method, Method::native_function_offset()));
  1174     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1175     __ cmpptr(rax, unsatisfied.addr());
  1176     __ jcc(Assembler::notEqual, L);
  1177     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1178     __ get_method(method);
  1179     __ movptr(rax, Address(method, Method::native_function_offset()));
  1180     __ bind(L);
  1183   // pass JNIEnv
  1184   __ get_thread(thread);
  1185   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
  1186   __ movptr(Address(rsp, 0), t);
  1188   // set_last_Java_frame_before_call
  1189   // It is enough that the pc()
  1190   // points into the right code segment. It does not have to be the correct return pc.
  1191   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1193   // change thread state
  1194 #ifdef ASSERT
  1195   { Label L;
  1196     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1197     __ cmpl(t, _thread_in_Java);
  1198     __ jcc(Assembler::equal, L);
  1199     __ stop("Wrong thread state in native stub");
  1200     __ bind(L);
  1202 #endif
  1204   // Change state to native
  1205   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1206   __ call(rax);
  1208   // result potentially in rdx:rax or ST0
  1210   // Verify or restore cpu control state after JNI call
  1211   __ restore_cpu_control_state_after_jni();
  1213   // save potential result in ST(0) & rdx:rax
  1214   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
  1215   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
  1216   // It is safe to do this push because state is _thread_in_native and return address will be found
  1217   // via _last_native_pc and not via _last_jave_sp
  1219   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
  1220   // If the order changes or anything else is added to the stack the code in
  1221   // interpreter_frame_result will have to be changed.
  1223   { Label L;
  1224     Label push_double;
  1225     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1226     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1227     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1228               float_handler.addr());
  1229     __ jcc(Assembler::equal, push_double);
  1230     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1231               double_handler.addr());
  1232     __ jcc(Assembler::notEqual, L);
  1233     __ bind(push_double);
  1234     __ push(dtos);
  1235     __ bind(L);
  1237   __ push(ltos);
  1239   // change thread state
  1240   __ get_thread(thread);
  1241   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1242   if(os::is_MP()) {
  1243     if (UseMembar) {
  1244       // Force this write out before the read below
  1245       __ membar(Assembler::Membar_mask_bits(
  1246            Assembler::LoadLoad | Assembler::LoadStore |
  1247            Assembler::StoreLoad | Assembler::StoreStore));
  1248     } else {
  1249       // Write serialization page so VM thread can do a pseudo remote membar.
  1250       // We use the current thread pointer to calculate a thread specific
  1251       // offset to write to within the page. This minimizes bus traffic
  1252       // due to cache line collision.
  1253       __ serialize_memory(thread, rcx);
  1257   if (AlwaysRestoreFPU) {
  1258     //  Make sure the control word is correct.
  1259     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1262   // check for safepoint operation in progress and/or pending suspend requests
  1263   { Label Continue;
  1265     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1266              SafepointSynchronize::_not_synchronized);
  1268     Label L;
  1269     __ jcc(Assembler::notEqual, L);
  1270     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1271     __ jcc(Assembler::equal, Continue);
  1272     __ bind(L);
  1274     // Don't use call_VM as it will see a possible pending exception and forward it
  1275     // and never return here preventing us from clearing _last_native_pc down below.
  1276     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1277     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1278     // by hand.
  1279     //
  1280     __ push(thread);
  1281     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1282                                             JavaThread::check_special_condition_for_native_trans)));
  1283     __ increment(rsp, wordSize);
  1284     __ get_thread(thread);
  1286     __ bind(Continue);
  1289   // change thread state
  1290   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1292   __ reset_last_Java_frame(thread, true);
  1294   // reset handle block
  1295   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1296   __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1298   // If result was an oop then unbox and save it in the frame
  1300     Label no_oop;
  1301     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
  1302     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
  1303               handler.addr());
  1304     __ jcc(Assembler::notEqual, no_oop);
  1305     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
  1306     __ pop(ltos);
  1307     // Unbox oop result, e.g. JNIHandles::resolve value.
  1308     __ resolve_jobject(rax /* value */,
  1309                        thread /* thread */,
  1310                        t /* tmp */);
  1311     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
  1312     // keep stack depth as expected by pushing oop which will eventually be discarded
  1313     __ push(ltos);
  1314     __ bind(no_oop);
  1318      Label no_reguard;
  1319      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1320      __ jcc(Assembler::notEqual, no_reguard);
  1322      __ pusha();
  1323      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1324      __ popa();
  1326      __ bind(no_reguard);
  1329   // restore rsi to have legal interpreter frame,
  1330   // i.e., bci == 0 <=> rsi == code_base()
  1331   // Can't call_VM until bcp is within reasonable.
  1332   __ get_method(method);      // method is junk from thread_in_native to now.
  1333   __ movptr(rsi, Address(method,Method::const_offset()));   // get ConstMethod*
  1334   __ lea(rsi, Address(rsi,ConstMethod::codes_offset()));    // get codebase
  1336   // handle exceptions (exception handling will handle unlocking!)
  1337   { Label L;
  1338     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1339     __ jcc(Assembler::zero, L);
  1340     // Note: At some point we may want to unify this with the code used in call_VM_base();
  1341     //       i.e., we should use the StubRoutines::forward_exception code. For now this
  1342     //       doesn't work here because the rsp is not correctly set at this point.
  1343     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1344     __ should_not_reach_here();
  1345     __ bind(L);
  1348   // do unlocking if necessary
  1349   { Label L;
  1350     __ movl(t, Address(method, Method::access_flags_offset()));
  1351     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1352     __ jcc(Assembler::zero, L);
  1353     // the code below should be shared with interpreter macro assembler implementation
  1354     { Label unlock;
  1355       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1356       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1357       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1359       __ lea(rdx, monitor);                   // address of first monitor
  1361       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  1362       __ testptr(t, t);
  1363       __ jcc(Assembler::notZero, unlock);
  1365       // Entry already unlocked, need to throw exception
  1366       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1367       __ should_not_reach_here();
  1369       __ bind(unlock);
  1370       __ unlock_object(rdx);
  1372     __ bind(L);
  1375   // jvmti/dtrace support
  1376   // Note: This must happen _after_ handling/throwing any exceptions since
  1377   //       the exception handler code notifies the runtime of method exits
  1378   //       too. If this happens before, method entry/exit notifications are
  1379   //       not properly paired (was bug - gri 11/22/99).
  1380   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1382   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1383   __ pop(ltos);
  1384   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1385   __ call(t);
  1387   // remove activation
  1388   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1389   __ leave();                                // remove frame anchor
  1390   __ pop(rdi);                               // get return address
  1391   __ mov(rsp, t);                            // set sp to sender sp
  1392   __ jmp(rdi);
  1394   if (inc_counter) {
  1395     // Handle overflow of counter and compile method
  1396     __ bind(invocation_counter_overflow);
  1397     generate_counter_overflow(&continue_after_compile);
  1400   return entry_point;
  1403 //
  1404 // Generic interpreted method entry to (asm) interpreter
  1405 //
  1406 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1407   // determine code generation flags
  1408   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1410   // rbx,: Method*
  1411   // rsi: sender sp
  1412   address entry_point = __ pc();
  1414   const Address constMethod       (rbx, Method::const_offset());
  1415   const Address access_flags      (rbx, Method::access_flags_offset());
  1416   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
  1417   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
  1419   // get parameter size (always needed)
  1420   __ movptr(rdx, constMethod);
  1421   __ load_unsigned_short(rcx, size_of_parameters);
  1423   // rbx,: Method*
  1424   // rcx: size of parameters
  1426   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1428   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
  1429   __ subl(rdx, rcx);                                // rdx = no. of additional locals
  1431   // see if we've got enough room on the stack for locals plus overhead.
  1432   generate_stack_overflow_check();
  1434   // get return address
  1435   __ pop(rax);
  1437   // compute beginning of parameters (rdi)
  1438   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1440   // rdx - # of additional locals
  1441   // allocate space for locals
  1442   // explicitly initialize locals
  1444     Label exit, loop;
  1445     __ testl(rdx, rdx);
  1446     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1447     __ bind(loop);
  1448     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1449     __ decrement(rdx);                                // until everything initialized
  1450     __ jcc(Assembler::greater, loop);
  1451     __ bind(exit);
  1454   // initialize fixed part of activation frame
  1455   generate_fixed_frame(false);
  1457   // make sure method is not native & not abstract
  1458 #ifdef ASSERT
  1459   __ movl(rax, access_flags);
  1461     Label L;
  1462     __ testl(rax, JVM_ACC_NATIVE);
  1463     __ jcc(Assembler::zero, L);
  1464     __ stop("tried to execute native method as non-native");
  1465     __ bind(L);
  1467   { Label L;
  1468     __ testl(rax, JVM_ACC_ABSTRACT);
  1469     __ jcc(Assembler::zero, L);
  1470     __ stop("tried to execute abstract method in interpreter");
  1471     __ bind(L);
  1473 #endif
  1475   // Since at this point in the method invocation the exception handler
  1476   // would try to exit the monitor of synchronized methods which hasn't
  1477   // been entered yet, we set the thread local variable
  1478   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1479   // check this flag.
  1481   __ get_thread(rax);
  1482   const Address do_not_unlock_if_synchronized(rax,
  1483         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1484   __ movbool(do_not_unlock_if_synchronized, true);
  1486   __ profile_parameters_type(rax, rcx, rdx);
  1487   // increment invocation count & check for overflow
  1488   Label invocation_counter_overflow;
  1489   Label profile_method;
  1490   Label profile_method_continue;
  1491   if (inc_counter) {
  1492     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1493     if (ProfileInterpreter) {
  1494       __ bind(profile_method_continue);
  1497   Label continue_after_compile;
  1498   __ bind(continue_after_compile);
  1500   bang_stack_shadow_pages(false);
  1502   // reset the _do_not_unlock_if_synchronized flag
  1503   __ get_thread(rax);
  1504   __ movbool(do_not_unlock_if_synchronized, false);
  1506   // check for synchronized methods
  1507   // Must happen AFTER invocation_counter check and stack overflow check,
  1508   // so method is not locked if overflows.
  1509   //
  1510   if (synchronized) {
  1511     // Allocate monitor and lock method
  1512     lock_method();
  1513   } else {
  1514     // no synchronization necessary
  1515 #ifdef ASSERT
  1516       { Label L;
  1517         __ movl(rax, access_flags);
  1518         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1519         __ jcc(Assembler::zero, L);
  1520         __ stop("method needs synchronization");
  1521         __ bind(L);
  1523 #endif
  1526   // start execution
  1527 #ifdef ASSERT
  1528   { Label L;
  1529      const Address monitor_block_top (rbp,
  1530                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1531     __ movptr(rax, monitor_block_top);
  1532     __ cmpptr(rax, rsp);
  1533     __ jcc(Assembler::equal, L);
  1534     __ stop("broken stack frame setup in interpreter");
  1535     __ bind(L);
  1537 #endif
  1539   // jvmti support
  1540   __ notify_method_entry();
  1542   __ dispatch_next(vtos);
  1544   // invocation counter overflow
  1545   if (inc_counter) {
  1546     if (ProfileInterpreter) {
  1547       // We have decided to profile this method in the interpreter
  1548       __ bind(profile_method);
  1549       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1550       __ set_method_data_pointer_for_bcp();
  1551       __ get_method(rbx);
  1552       __ jmp(profile_method_continue);
  1554     // Handle overflow of counter and compile method
  1555     __ bind(invocation_counter_overflow);
  1556     generate_counter_overflow(&continue_after_compile);
  1559   return entry_point;
  1562 //------------------------------------------------------------------------------------------------------------------------
  1563 // Entry points
  1564 //
  1565 // Here we generate the various kind of entries into the interpreter.
  1566 // The two main entry type are generic bytecode methods and native call method.
  1567 // These both come in synchronized and non-synchronized versions but the
  1568 // frame layout they create is very similar. The other method entry
  1569 // types are really just special purpose entries that are really entry
  1570 // and interpretation all in one. These are for trivial methods like
  1571 // accessor, empty, or special math methods.
  1572 //
  1573 // When control flow reaches any of the entry types for the interpreter
  1574 // the following holds ->
  1575 //
  1576 // Arguments:
  1577 //
  1578 // rbx,: Method*
  1579 // rcx: receiver
  1580 //
  1581 //
  1582 // Stack layout immediately at entry
  1583 //
  1584 // [ return address     ] <--- rsp
  1585 // [ parameter n        ]
  1586 //   ...
  1587 // [ parameter 1        ]
  1588 // [ expression stack   ] (caller's java expression stack)
  1590 // Assuming that we don't go to one of the trivial specialized
  1591 // entries the stack will look like below when we are ready to execute
  1592 // the first bytecode (or call the native routine). The register usage
  1593 // will be as the template based interpreter expects (see interpreter_x86.hpp).
  1594 //
  1595 // local variables follow incoming parameters immediately; i.e.
  1596 // the return address is moved to the end of the locals).
  1597 //
  1598 // [ monitor entry      ] <--- rsp
  1599 //   ...
  1600 // [ monitor entry      ]
  1601 // [ expr. stack bottom ]
  1602 // [ saved rsi          ]
  1603 // [ current rdi        ]
  1604 // [ Method*            ]
  1605 // [ saved rbp,          ] <--- rbp,
  1606 // [ return address     ]
  1607 // [ local variable m   ]
  1608 //   ...
  1609 // [ local variable 1   ]
  1610 // [ parameter n        ]
  1611 //   ...
  1612 // [ parameter 1        ] <--- rdi
  1614 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  1615   // determine code generation flags
  1616   bool synchronized = false;
  1617   address entry_point = NULL;
  1618   InterpreterGenerator* ig_this = (InterpreterGenerator*)this;
  1620   switch (kind) {
  1621     case Interpreter::zerolocals             :                                                       break;
  1622     case Interpreter::zerolocals_synchronized: synchronized = true;                                  break;
  1623     case Interpreter::native                 : entry_point = ig_this->generate_native_entry(false);  break;
  1624     case Interpreter::native_synchronized    : entry_point = ig_this->generate_native_entry(true);   break;
  1625     case Interpreter::empty                  : entry_point = ig_this->generate_empty_entry();        break;
  1626     case Interpreter::accessor               : entry_point = ig_this->generate_accessor_entry();     break;
  1627     case Interpreter::abstract               : entry_point = ig_this->generate_abstract_entry();     break;
  1629     case Interpreter::java_lang_math_sin     : // fall thru
  1630     case Interpreter::java_lang_math_cos     : // fall thru
  1631     case Interpreter::java_lang_math_tan     : // fall thru
  1632     case Interpreter::java_lang_math_abs     : // fall thru
  1633     case Interpreter::java_lang_math_log     : // fall thru
  1634     case Interpreter::java_lang_math_log10   : // fall thru
  1635     case Interpreter::java_lang_math_sqrt    : // fall thru
  1636     case Interpreter::java_lang_math_pow     : // fall thru
  1637     case Interpreter::java_lang_math_exp     : entry_point = ig_this->generate_math_entry(kind);      break;
  1638     case Interpreter::java_lang_ref_reference_get
  1639                                              : entry_point = ig_this->generate_Reference_get_entry(); break;
  1640     case Interpreter::java_util_zip_CRC32_update
  1641                                              : entry_point = ig_this->generate_CRC32_update_entry();  break;
  1642     case Interpreter::java_util_zip_CRC32_updateBytes
  1643                                              : // fall thru
  1644     case Interpreter::java_util_zip_CRC32_updateByteBuffer
  1645                                              : entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break;
  1646     default:
  1647       fatal(err_msg("unexpected method kind: %d", kind));
  1648       break;
  1651   if (entry_point) return entry_point;
  1653   return ig_this->generate_normal_entry(synchronized);
  1657 // These should never be compiled since the interpreter will prefer
  1658 // the compiled version to the intrinsic version.
  1659 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1660   switch (method_kind(m)) {
  1661     case Interpreter::java_lang_math_sin     : // fall thru
  1662     case Interpreter::java_lang_math_cos     : // fall thru
  1663     case Interpreter::java_lang_math_tan     : // fall thru
  1664     case Interpreter::java_lang_math_abs     : // fall thru
  1665     case Interpreter::java_lang_math_log     : // fall thru
  1666     case Interpreter::java_lang_math_log10   : // fall thru
  1667     case Interpreter::java_lang_math_sqrt    : // fall thru
  1668     case Interpreter::java_lang_math_pow     : // fall thru
  1669     case Interpreter::java_lang_math_exp     :
  1670       return false;
  1671     default:
  1672       return true;
  1676 // How much stack a method activation needs in words.
  1677 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1679   const int stub_code = 4;  // see generate_call_stub
  1680   // Save space for one monitor to get into the interpreted method in case
  1681   // the method is synchronized
  1682   int monitor_size    = method->is_synchronized() ?
  1683                                 1*frame::interpreter_frame_monitor_size() : 0;
  1685   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
  1686   // be sure to change this if you add/subtract anything to/from the overhead area
  1687   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
  1689   const int method_stack = (method->max_locals() + method->max_stack()) *
  1690                            Interpreter::stackElementWords;
  1691   return overhead_size + method_stack + stub_code;
  1694 //------------------------------------------------------------------------------------------------------------------------
  1695 // Exceptions
  1697 void TemplateInterpreterGenerator::generate_throw_exception() {
  1698   // Entry point in previous activation (i.e., if the caller was interpreted)
  1699   Interpreter::_rethrow_exception_entry = __ pc();
  1700   const Register thread = rcx;
  1702   // Restore sp to interpreter_frame_last_sp even though we are going
  1703   // to empty the expression stack for the exception processing.
  1704   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1705   // rax,: exception
  1706   // rdx: return address/pc that threw exception
  1707   __ restore_bcp();                              // rsi points to call/send
  1708   __ restore_locals();
  1710   // Entry point for exceptions thrown within interpreter code
  1711   Interpreter::_throw_exception_entry = __ pc();
  1712   // expression stack is undefined here
  1713   // rax,: exception
  1714   // rsi: exception bcp
  1715   __ verify_oop(rax);
  1717   // expression stack must be empty before entering the VM in case of an exception
  1718   __ empty_expression_stack();
  1719   __ empty_FPU_stack();
  1720   // find exception handler address and preserve exception oop
  1721   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
  1722   // rax,: exception handler entry point
  1723   // rdx: preserved exception oop
  1724   // rsi: bcp for exception handler
  1725   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
  1726   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
  1728   // If the exception is not handled in the current frame the frame is removed and
  1729   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
  1730   //
  1731   // Note: At this point the bci is still the bxi for the instruction which caused
  1732   //       the exception and the expression stack is empty. Thus, for any VM calls
  1733   //       at this point, GC will find a legal oop map (with empty expression stack).
  1735   // In current activation
  1736   // tos: exception
  1737   // rsi: exception bcp
  1739   //
  1740   // JVMTI PopFrame support
  1741   //
  1743    Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1744   __ empty_expression_stack();
  1745   __ empty_FPU_stack();
  1746   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
  1747   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1748   // popframe handling cycles.
  1749   __ get_thread(thread);
  1750   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
  1751   __ orl(rdx, JavaThread::popframe_processing_bit);
  1752   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
  1755     // Check to see whether we are returning to a deoptimized frame.
  1756     // (The PopFrame call ensures that the caller of the popped frame is
  1757     // either interpreted or compiled and deoptimizes it if compiled.)
  1758     // In this case, we can't call dispatch_next() after the frame is
  1759     // popped, but instead must save the incoming arguments and restore
  1760     // them after deoptimization has occurred.
  1761     //
  1762     // Note that we don't compare the return PC against the
  1763     // deoptimization blob's unpack entry because of the presence of
  1764     // adapter frames in C2.
  1765     Label caller_not_deoptimized;
  1766     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
  1767     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
  1768     __ testl(rax, rax);
  1769     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1771     // Compute size of arguments for saving when returning to deoptimized caller
  1772     __ get_method(rax);
  1773     __ movptr(rax, Address(rax, Method::const_offset()));
  1774     __ load_unsigned_short(rax, Address(rax, ConstMethod::size_of_parameters_offset()));
  1775     __ shlptr(rax, Interpreter::logStackElementSize);
  1776     __ restore_locals();
  1777     __ subptr(rdi, rax);
  1778     __ addptr(rdi, wordSize);
  1779     // Save these arguments
  1780     __ get_thread(thread);
  1781     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
  1783     __ remove_activation(vtos, rdx,
  1784                          /* throw_monitor_exception */ false,
  1785                          /* install_monitor_exception */ false,
  1786                          /* notify_jvmdi */ false);
  1788     // Inform deoptimization that it is responsible for restoring these arguments
  1789     __ get_thread(thread);
  1790     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
  1792     // Continue in deoptimization handler
  1793     __ jmp(rdx);
  1795     __ bind(caller_not_deoptimized);
  1798   __ remove_activation(vtos, rdx,
  1799                        /* throw_monitor_exception */ false,
  1800                        /* install_monitor_exception */ false,
  1801                        /* notify_jvmdi */ false);
  1803   // Finish with popframe handling
  1804   // A previous I2C followed by a deoptimization might have moved the
  1805   // outgoing arguments further up the stack. PopFrame expects the
  1806   // mutations to those outgoing arguments to be preserved and other
  1807   // constraints basically require this frame to look exactly as
  1808   // though it had previously invoked an interpreted activation with
  1809   // no space between the top of the expression stack (current
  1810   // last_sp) and the top of stack. Rather than force deopt to
  1811   // maintain this kind of invariant all the time we call a small
  1812   // fixup routine to move the mutated arguments onto the top of our
  1813   // expression stack if necessary.
  1814   __ mov(rax, rsp);
  1815   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1816   __ get_thread(thread);
  1817   // PC must point into interpreter here
  1818   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1819   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
  1820   __ get_thread(thread);
  1821   __ reset_last_Java_frame(thread, true);
  1822   // Restore the last_sp and null it out
  1823   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1824   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1826   __ restore_bcp();
  1827   __ restore_locals();
  1828   // The method data pointer was incremented already during
  1829   // call profiling. We have to restore the mdp for the current bcp.
  1830   if (ProfileInterpreter) {
  1831     __ set_method_data_pointer_for_bcp();
  1834   // Clear the popframe condition flag
  1835   __ get_thread(thread);
  1836   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
  1838 #if INCLUDE_JVMTI
  1839   if (EnableInvokeDynamic) {
  1840     Label L_done;
  1841     const Register local0 = rdi;
  1843     __ cmpb(Address(rsi, 0), Bytecodes::_invokestatic);
  1844     __ jcc(Assembler::notEqual, L_done);
  1846     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
  1847     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
  1849     __ get_method(rdx);
  1850     __ movptr(rax, Address(local0, 0));
  1851     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, rsi);
  1853     __ testptr(rax, rax);
  1854     __ jcc(Assembler::zero, L_done);
  1856     __ movptr(Address(rbx, 0), rax);
  1857     __ bind(L_done);
  1859 #endif // INCLUDE_JVMTI
  1861   __ dispatch_next(vtos);
  1862   // end of PopFrame support
  1864   Interpreter::_remove_activation_entry = __ pc();
  1866   // preserve exception over this code sequence
  1867   __ pop_ptr(rax);
  1868   __ get_thread(thread);
  1869   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
  1870   // remove the activation (without doing throws on illegalMonitorExceptions)
  1871   __ remove_activation(vtos, rdx, false, true, false);
  1872   // restore exception
  1873   __ get_thread(thread);
  1874   __ get_vm_result(rax, thread);
  1876   // Inbetween activations - previous activation type unknown yet
  1877   // compute continuation point - the continuation point expects
  1878   // the following registers set up:
  1879   //
  1880   // rax: exception
  1881   // rdx: return address/pc that threw exception
  1882   // rsp: expression stack of caller
  1883   // rbp: rbp, of caller
  1884   __ push(rax);                                  // save exception
  1885   __ push(rdx);                                  // save return address
  1886   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
  1887   __ mov(rbx, rax);                              // save exception handler
  1888   __ pop(rdx);                                   // restore return address
  1889   __ pop(rax);                                   // restore exception
  1890   // Note that an "issuing PC" is actually the next PC after the call
  1891   __ jmp(rbx);                                   // jump to exception handler of caller
  1895 //
  1896 // JVMTI ForceEarlyReturn support
  1897 //
  1898 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1899   address entry = __ pc();
  1900   const Register thread = rcx;
  1902   __ restore_bcp();
  1903   __ restore_locals();
  1904   __ empty_expression_stack();
  1905   __ empty_FPU_stack();
  1906   __ load_earlyret_value(state);
  1908   __ get_thread(thread);
  1909   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
  1910   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
  1912   // Clear the earlyret state
  1913   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1915   __ remove_activation(state, rsi,
  1916                        false, /* throw_monitor_exception */
  1917                        false, /* install_monitor_exception */
  1918                        true); /* notify_jvmdi */
  1919   __ jmp(rsi);
  1920   return entry;
  1921 } // end of ForceEarlyReturn support
  1924 //------------------------------------------------------------------------------------------------------------------------
  1925 // Helper for vtos entry point generation
  1927 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1928   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1929   Label L;
  1930   fep = __ pc(); __ push(ftos); __ jmp(L);
  1931   dep = __ pc(); __ push(dtos); __ jmp(L);
  1932   lep = __ pc(); __ push(ltos); __ jmp(L);
  1933   aep = __ pc(); __ push(atos); __ jmp(L);
  1934   bep = cep = sep =             // fall through
  1935   iep = __ pc(); __ push(itos); // fall through
  1936   vep = __ pc(); __ bind(L);    // fall through
  1937   generate_and_dispatch(t);
  1940 //------------------------------------------------------------------------------------------------------------------------
  1941 // Generation of individual instructions
  1943 // helpers for generate_and_dispatch
  1947 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1948  : TemplateInterpreterGenerator(code) {
  1949    generate_all(); // down here so it can be "virtual"
  1952 //------------------------------------------------------------------------------------------------------------------------
  1954 // Non-product code
  1955 #ifndef PRODUCT
  1956 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1957   address entry = __ pc();
  1959   // prepare expression stack
  1960   __ pop(rcx);          // pop return address so expression stack is 'pure'
  1961   __ push(state);       // save tosca
  1963   // pass tosca registers as arguments & call tracer
  1964   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
  1965   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
  1966   __ pop(state);        // restore tosca
  1968   // return
  1969   __ jmp(rcx);
  1971   return entry;
  1975 void TemplateInterpreterGenerator::count_bytecode() {
  1976   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1980 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1981   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1985 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1986   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1987   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1988   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  1989   ExternalAddress table((address) BytecodePairHistogram::_counters);
  1990   Address index(noreg, rbx, Address::times_4);
  1991   __ incrementl(ArrayAddress(table, index));
  1995 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1996   // Call a little run-time stub to avoid blow-up for each bytecode.
  1997   // The run-time runtime saves the right registers, depending on
  1998   // the tosca in-state for the given template.
  1999   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  2000          "entry must have been generated");
  2001   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  2005 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2006   Label L;
  2007   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  2008            StopInterpreterAt);
  2009   __ jcc(Assembler::notEqual, L);
  2010   __ int3();
  2011   __ bind(L);
  2013 #endif // !PRODUCT
  2014 #endif // CC_INTERP

mercurial