src/cpu/x86/vm/c1_LinearScan_x86.cpp

Wed, 17 Jun 2015 17:48:25 -0700

author
ascarpino
date
Wed, 17 Jun 2015 17:48:25 -0700
changeset 9788
44ef77ad417c
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
permissions
-rw-r--r--

8073108: Use x86 and SPARC CPU instructions for GHASH acceleration
Reviewed-by: kvn, jrose, phh

     1 /*
     2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Instruction.hpp"
    27 #include "c1/c1_LinearScan.hpp"
    28 #include "utilities/bitMap.inline.hpp"
    31 //----------------------------------------------------------------------
    32 // Allocation of FPU stack slots (Intel x86 only)
    33 //----------------------------------------------------------------------
    35 void LinearScan::allocate_fpu_stack() {
    36   // First compute which FPU registers are live at the start of each basic block
    37   // (To minimize the amount of work we have to do if we have to merge FPU stacks)
    38   if (ComputeExactFPURegisterUsage) {
    39     Interval* intervals_in_register, *intervals_in_memory;
    40     create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL);
    42     // ignore memory intervals by overwriting intervals_in_memory
    43     // the dummy interval is needed to enforce the walker to walk until the given id:
    44     // without it, the walker stops when the unhandled-list is empty -> live information
    45     // beyond this point would be incorrect.
    46     Interval* dummy_interval = new Interval(any_reg);
    47     dummy_interval->add_range(max_jint - 2, max_jint - 1);
    48     dummy_interval->set_next(Interval::end());
    49     intervals_in_memory = dummy_interval;
    51     IntervalWalker iw(this, intervals_in_register, intervals_in_memory);
    53     const int num_blocks = block_count();
    54     for (int i = 0; i < num_blocks; i++) {
    55       BlockBegin* b = block_at(i);
    57       // register usage is only needed for merging stacks -> compute only
    58       // when more than one predecessor.
    59       // the block must not have any spill moves at the beginning (checked by assertions)
    60       // spill moves would use intervals that are marked as handled and so the usage bit
    61       // would been set incorrectly
    63       // NOTE: the check for number_of_preds > 1 is necessary. A block with only one
    64       //       predecessor may have spill moves at the begin of the block.
    65       //       If an interval ends at the current instruction id, it is not possible
    66       //       to decide if the register is live or not at the block begin -> the
    67       //       register information would be incorrect.
    68       if (b->number_of_preds() > 1) {
    69         int id = b->first_lir_instruction_id();
    70         BitMap regs(FrameMap::nof_fpu_regs);
    71         regs.clear();
    73         iw.walk_to(id);   // walk after the first instruction (always a label) of the block
    74         assert(iw.current_position() == id, "did not walk completely to id");
    76         // Only consider FPU values in registers
    77         Interval* interval = iw.active_first(fixedKind);
    78         while (interval != Interval::end()) {
    79           int reg = interval->assigned_reg();
    80           assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register");
    81           assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)");
    82           assert(interval->from() <= id && id < interval->to(), "interval out of range");
    84 #ifndef PRODUCT
    85           if (TraceFPURegisterUsage) {
    86             tty->print("fpu reg %d is live because of ", reg - pd_first_fpu_reg); interval->print();
    87           }
    88 #endif
    90           regs.set_bit(reg - pd_first_fpu_reg);
    91           interval = interval->next();
    92         }
    94         b->set_fpu_register_usage(regs);
    96 #ifndef PRODUCT
    97         if (TraceFPURegisterUsage) {
    98           tty->print("FPU regs for block %d, LIR instr %d): ", b->block_id(), id); regs.print_on(tty); tty->cr();
    99         }
   100 #endif
   101       }
   102     }
   103   }
   105   FpuStackAllocator alloc(ir()->compilation(), this);
   106   _fpu_stack_allocator = &alloc;
   107   alloc.allocate();
   108   _fpu_stack_allocator = NULL;
   109 }
   112 FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator)
   113   : _compilation(compilation)
   114   , _lir(NULL)
   115   , _pos(-1)
   116   , _allocator(allocator)
   117   , _sim(compilation)
   118   , _temp_sim(compilation)
   119 {}
   121 void FpuStackAllocator::allocate() {
   122   int num_blocks = allocator()->block_count();
   123   for (int i = 0; i < num_blocks; i++) {
   124     // Set up to process block
   125     BlockBegin* block = allocator()->block_at(i);
   126     intArray* fpu_stack_state = block->fpu_stack_state();
   128 #ifndef PRODUCT
   129     if (TraceFPUStack) {
   130       tty->cr();
   131       tty->print_cr("------- Begin of new Block %d -------", block->block_id());
   132     }
   133 #endif
   135     assert(fpu_stack_state != NULL ||
   136            block->end()->as_Base() != NULL ||
   137            block->is_set(BlockBegin::exception_entry_flag),
   138            "FPU stack state must be present due to linear-scan order for FPU stack allocation");
   139     // note: exception handler entries always start with an empty fpu stack
   140     //       because stack merging would be too complicated
   142     if (fpu_stack_state != NULL) {
   143       sim()->read_state(fpu_stack_state);
   144     } else {
   145       sim()->clear();
   146     }
   148 #ifndef PRODUCT
   149     if (TraceFPUStack) {
   150       tty->print("Reading FPU state for block %d:", block->block_id());
   151       sim()->print();
   152       tty->cr();
   153     }
   154 #endif
   156     allocate_block(block);
   157     CHECK_BAILOUT();
   158   }
   159 }
   161 void FpuStackAllocator::allocate_block(BlockBegin* block) {
   162   bool processed_merge = false;
   163   LIR_OpList* insts = block->lir()->instructions_list();
   164   set_lir(block->lir());
   165   set_pos(0);
   168   // Note: insts->length() may change during loop
   169   while (pos() < insts->length()) {
   170     LIR_Op* op = insts->at(pos());
   171     _debug_information_computed = false;
   173 #ifndef PRODUCT
   174     if (TraceFPUStack) {
   175       op->print();
   176     }
   177     check_invalid_lir_op(op);
   178 #endif
   180     LIR_OpBranch* branch = op->as_OpBranch();
   181     LIR_Op1* op1 = op->as_Op1();
   182     LIR_Op2* op2 = op->as_Op2();
   183     LIR_OpCall* opCall = op->as_OpCall();
   185     if (branch != NULL && branch->block() != NULL) {
   186       if (!processed_merge) {
   187         // propagate stack at first branch to a successor
   188         processed_merge = true;
   189         bool required_merge = merge_fpu_stack_with_successors(block);
   191         assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches");
   192       }
   194     } else if (op1 != NULL) {
   195       handle_op1(op1);
   196     } else if (op2 != NULL) {
   197       handle_op2(op2);
   198     } else if (opCall != NULL) {
   199       handle_opCall(opCall);
   200     }
   202     compute_debug_information(op);
   204     set_pos(1 + pos());
   205   }
   207   // Propagate stack when block does not end with branch
   208   if (!processed_merge) {
   209     merge_fpu_stack_with_successors(block);
   210   }
   211 }
   214 void FpuStackAllocator::compute_debug_information(LIR_Op* op) {
   215   if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) {
   216     visitor.visit(op);
   218     // exception handling
   219     if (allocator()->compilation()->has_exception_handlers()) {
   220       XHandlers* xhandlers = visitor.all_xhandler();
   221       int n = xhandlers->length();
   222       for (int k = 0; k < n; k++) {
   223         allocate_exception_handler(xhandlers->handler_at(k));
   224       }
   225     } else {
   226       assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
   227     }
   229     // compute debug information
   230     int n = visitor.info_count();
   231     assert(n > 0, "should not visit operation otherwise");
   233     for (int j = 0; j < n; j++) {
   234       CodeEmitInfo* info = visitor.info_at(j);
   235       // Compute debug information
   236       allocator()->compute_debug_info(info, op->id());
   237     }
   238   }
   239   _debug_information_computed = true;
   240 }
   242 void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) {
   243   if (!sim()->is_empty()) {
   244     LIR_List* old_lir = lir();
   245     int old_pos = pos();
   246     intArray* old_state = sim()->write_state();
   248 #ifndef PRODUCT
   249     if (TraceFPUStack) {
   250       tty->cr();
   251       tty->print_cr("------- begin of exception handler -------");
   252     }
   253 #endif
   255     if (xhandler->entry_code() == NULL) {
   256       // need entry code to clear FPU stack
   257       LIR_List* entry_code = new LIR_List(_compilation);
   258       entry_code->jump(xhandler->entry_block());
   259       xhandler->set_entry_code(entry_code);
   260     }
   262     LIR_OpList* insts = xhandler->entry_code()->instructions_list();
   263     set_lir(xhandler->entry_code());
   264     set_pos(0);
   266     // Note: insts->length() may change during loop
   267     while (pos() < insts->length()) {
   268       LIR_Op* op = insts->at(pos());
   270 #ifndef PRODUCT
   271       if (TraceFPUStack) {
   272         op->print();
   273       }
   274       check_invalid_lir_op(op);
   275 #endif
   277       switch (op->code()) {
   278         case lir_move:
   279           assert(op->as_Op1() != NULL, "must be LIR_Op1");
   280           assert(pos() != insts->length() - 1, "must not be last operation");
   282           handle_op1((LIR_Op1*)op);
   283           break;
   285         case lir_branch:
   286           assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch");
   287           assert(pos() == insts->length() - 1, "must be last operation");
   289           // remove all remaining dead registers from FPU stack
   290           clear_fpu_stack(LIR_OprFact::illegalOpr);
   291           break;
   293         default:
   294           // other operations not allowed in exception entry code
   295           ShouldNotReachHere();
   296       }
   298       set_pos(pos() + 1);
   299     }
   301 #ifndef PRODUCT
   302     if (TraceFPUStack) {
   303       tty->cr();
   304       tty->print_cr("------- end of exception handler -------");
   305     }
   306 #endif
   308     set_lir(old_lir);
   309     set_pos(old_pos);
   310     sim()->read_state(old_state);
   311   }
   312 }
   315 int FpuStackAllocator::fpu_num(LIR_Opr opr) {
   316   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
   317   return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo();
   318 }
   320 int FpuStackAllocator::tos_offset(LIR_Opr opr) {
   321   return sim()->offset_from_tos(fpu_num(opr));
   322 }
   325 LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) {
   326   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
   328   int stack_offset = tos_offset(opr);
   329   if (opr->is_single_fpu()) {
   330     return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
   331   } else {
   332     assert(opr->is_double_fpu(), "shouldn't call this otherwise");
   333     return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
   334   }
   335 }
   337 LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) {
   338   assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
   339   assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top");
   341   int stack_offset = 0;
   342   if (opr->is_single_fpu()) {
   343     return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
   344   } else {
   345     assert(opr->is_double_fpu(), "shouldn't call this otherwise");
   346     return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
   347   }
   348 }
   352 void FpuStackAllocator::insert_op(LIR_Op* op) {
   353   lir()->insert_before(pos(), op);
   354   set_pos(1 + pos());
   355 }
   358 void FpuStackAllocator::insert_exchange(int offset) {
   359   if (offset > 0) {
   360     LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
   361     insert_op(fxch_op);
   362     sim()->swap(offset);
   364 #ifndef PRODUCT
   365     if (TraceFPUStack) {
   366       tty->print("Exchanged register: %d         New state: ", sim()->get_slot(0)); sim()->print(); tty->cr();
   367     }
   368 #endif
   370   }
   371 }
   373 void FpuStackAllocator::insert_exchange(LIR_Opr opr) {
   374   insert_exchange(tos_offset(opr));
   375 }
   378 void FpuStackAllocator::insert_free(int offset) {
   379   // move stack slot to the top of stack and then pop it
   380   insert_exchange(offset);
   382   LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
   383   insert_op(fpop);
   384   sim()->pop();
   386 #ifndef PRODUCT
   387     if (TraceFPUStack) {
   388       tty->print("Inserted pop                   New state: "); sim()->print(); tty->cr();
   389     }
   390 #endif
   391 }
   394 void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) {
   395   if (sim()->contains(fpu_num(opr))) {
   396     int res_slot = tos_offset(opr);
   397     insert_free(res_slot);
   398   }
   399 }
   401 void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) {
   402   if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) {
   403     int res_slot = tos_offset(opr);
   404     insert_free(res_slot);
   405   }
   406 }
   408 void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) {
   409   int offset = tos_offset(from);
   410   LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
   411   insert_op(fld);
   413   sim()->push(fpu_num(to));
   415 #ifndef PRODUCT
   416   if (TraceFPUStack) {
   417     tty->print("Inserted copy (%d -> %d)         New state: ", fpu_num(from), fpu_num(to)); sim()->print(); tty->cr();
   418   }
   419 #endif
   420 }
   422 void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) {
   423   sim()->rename(fpu_num(from), fpu_num(to));
   424 }
   426 void FpuStackAllocator::do_push(LIR_Opr opr) {
   427   sim()->push(fpu_num(opr));
   428 }
   430 void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) {
   431   assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
   432   assert(tos_offset(opr) == 0, "can only pop stack top");
   434   if (opr->is_last_use()) {
   435     op->set_fpu_pop_count(1);
   436     sim()->pop();
   437   }
   438 }
   440 void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) {
   441   assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
   442   assert(tos_offset(opr) == 0, "can only pop stack top");
   444   op->set_fpu_pop_count(1);
   445   sim()->pop();
   446 }
   448 void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) {
   449   int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0);
   450   while (sim()->stack_size() > result_stack_size) {
   451     assert(!sim()->slot_is_empty(0), "not allowed");
   453     if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) {
   454       insert_free(0);
   455     } else {
   456       // move "preserve" to bottom of stack so that all other stack slots can be popped
   457       insert_exchange(sim()->stack_size() - 1);
   458     }
   459   }
   460 }
   463 void FpuStackAllocator::handle_op1(LIR_Op1* op1) {
   464   LIR_Opr in  = op1->in_opr();
   465   LIR_Opr res = op1->result_opr();
   467   LIR_Opr new_in  = in;  // new operands relative to the actual fpu stack top
   468   LIR_Opr new_res = res;
   470   // Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments,
   471   //       so checks for is_float_kind() are necessary inside the cases
   472   switch (op1->code()) {
   474     case lir_return: {
   475       // FPU-Stack must only contain the (optional) fpu return value.
   476       // All remaining dead values are popped from the stack
   477       // If the input operand is a fpu-register, it is exchanged to the bottom of the stack
   479       clear_fpu_stack(in);
   480       if (in->is_fpu_register() && !in->is_xmm_register()) {
   481         new_in = to_fpu_stack_top(in);
   482       }
   484       break;
   485     }
   487     case lir_move: {
   488       if (in->is_fpu_register() && !in->is_xmm_register()) {
   489         if (res->is_xmm_register()) {
   490           // move from fpu register to xmm register (necessary for operations that
   491           // are not available in the SSE instruction set)
   492           insert_exchange(in);
   493           new_in = to_fpu_stack_top(in);
   494           pop_always(op1, in);
   496         } else if (res->is_fpu_register() && !res->is_xmm_register()) {
   497           // move from fpu-register to fpu-register:
   498           // * input and result register equal:
   499           //   nothing to do
   500           // * input register is last use:
   501           //   rename the input register to result register -> input register
   502           //   not present on fpu-stack afterwards
   503           // * input register not last use:
   504           //   duplicate input register to result register to preserve input
   505           //
   506           // Note: The LIR-Assembler does not produce any code for fpu register moves,
   507           //       so input and result stack index must be equal
   509           if (fpu_num(in) == fpu_num(res)) {
   510             // nothing to do
   511           } else if (in->is_last_use()) {
   512             insert_free_if_dead(res);//, in);
   513             do_rename(in, res);
   514           } else {
   515             insert_free_if_dead(res);
   516             insert_copy(in, res);
   517           }
   518           new_in = to_fpu_stack(res);
   519           new_res = new_in;
   521         } else {
   522           // move from fpu-register to memory
   523           // input operand must be on top of stack
   525           insert_exchange(in);
   527           // create debug information here because afterwards the register may have been popped
   528           compute_debug_information(op1);
   530           new_in = to_fpu_stack_top(in);
   531           pop_if_last_use(op1, in);
   532         }
   534       } else if (res->is_fpu_register() && !res->is_xmm_register()) {
   535         // move from memory/constant to fpu register
   536         // result is pushed on the stack
   538         insert_free_if_dead(res);
   540         // create debug information before register is pushed
   541         compute_debug_information(op1);
   543         do_push(res);
   544         new_res = to_fpu_stack_top(res);
   545       }
   546       break;
   547     }
   549     case lir_neg: {
   550       if (in->is_fpu_register() && !in->is_xmm_register()) {
   551         assert(res->is_fpu_register() && !res->is_xmm_register(), "must be");
   552         assert(in->is_last_use(), "old value gets destroyed");
   554         insert_free_if_dead(res, in);
   555         insert_exchange(in);
   556         new_in = to_fpu_stack_top(in);
   558         do_rename(in, res);
   559         new_res = to_fpu_stack_top(res);
   560       }
   561       break;
   562     }
   564     case lir_convert: {
   565       Bytecodes::Code bc = op1->as_OpConvert()->bytecode();
   566       switch (bc) {
   567         case Bytecodes::_d2f:
   568         case Bytecodes::_f2d:
   569           assert(res->is_fpu_register(), "must be");
   570           assert(in->is_fpu_register(), "must be");
   572           if (!in->is_xmm_register() && !res->is_xmm_register()) {
   573             // this is quite the same as a move from fpu-register to fpu-register
   574             // Note: input and result operands must have different types
   575             if (fpu_num(in) == fpu_num(res)) {
   576               // nothing to do
   577               new_in = to_fpu_stack(in);
   578             } else if (in->is_last_use()) {
   579               insert_free_if_dead(res);//, in);
   580               new_in = to_fpu_stack(in);
   581               do_rename(in, res);
   582             } else {
   583               insert_free_if_dead(res);
   584               insert_copy(in, res);
   585               new_in = to_fpu_stack_top(in, true);
   586             }
   587             new_res = to_fpu_stack(res);
   588           }
   590           break;
   592         case Bytecodes::_i2f:
   593         case Bytecodes::_l2f:
   594         case Bytecodes::_i2d:
   595         case Bytecodes::_l2d:
   596           assert(res->is_fpu_register(), "must be");
   597           if (!res->is_xmm_register()) {
   598             insert_free_if_dead(res);
   599             do_push(res);
   600             new_res = to_fpu_stack_top(res);
   601           }
   602           break;
   604         case Bytecodes::_f2i:
   605         case Bytecodes::_d2i:
   606           assert(in->is_fpu_register(), "must be");
   607           if (!in->is_xmm_register()) {
   608             insert_exchange(in);
   609             new_in = to_fpu_stack_top(in);
   611             // TODO: update registes of stub
   612           }
   613           break;
   615         case Bytecodes::_f2l:
   616         case Bytecodes::_d2l:
   617           assert(in->is_fpu_register(), "must be");
   618           if (!in->is_xmm_register()) {
   619             insert_exchange(in);
   620             new_in = to_fpu_stack_top(in);
   621             pop_always(op1, in);
   622           }
   623           break;
   625         case Bytecodes::_i2l:
   626         case Bytecodes::_l2i:
   627         case Bytecodes::_i2b:
   628         case Bytecodes::_i2c:
   629         case Bytecodes::_i2s:
   630           // no fpu operands
   631           break;
   633         default:
   634           ShouldNotReachHere();
   635       }
   636       break;
   637     }
   639     case lir_roundfp: {
   640       assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register");
   641       assert(res->is_stack(), "result must be on stack");
   643       insert_exchange(in);
   644       new_in = to_fpu_stack_top(in);
   645       pop_if_last_use(op1, in);
   646       break;
   647     }
   649     default: {
   650       assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation");
   651     }
   652   }
   654   op1->set_in_opr(new_in);
   655   op1->set_result_opr(new_res);
   656 }
   658 void FpuStackAllocator::handle_op2(LIR_Op2* op2) {
   659   LIR_Opr left  = op2->in_opr1();
   660   if (!left->is_float_kind()) {
   661     return;
   662   }
   663   if (left->is_xmm_register()) {
   664     return;
   665   }
   667   LIR_Opr right = op2->in_opr2();
   668   LIR_Opr res   = op2->result_opr();
   669   LIR_Opr new_left  = left;  // new operands relative to the actual fpu stack top
   670   LIR_Opr new_right = right;
   671   LIR_Opr new_res   = res;
   673   assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers");
   675   switch (op2->code()) {
   676     case lir_cmp:
   677     case lir_cmp_fd2i:
   678     case lir_ucmp_fd2i:
   679     case lir_assert: {
   680       assert(left->is_fpu_register(), "invalid LIR");
   681       assert(right->is_fpu_register(), "invalid LIR");
   683       // the left-hand side must be on top of stack.
   684       // the right-hand side is never popped, even if is_last_use is set
   685       insert_exchange(left);
   686       new_left = to_fpu_stack_top(left);
   687       new_right = to_fpu_stack(right);
   688       pop_if_last_use(op2, left);
   689       break;
   690     }
   692     case lir_mul_strictfp:
   693     case lir_div_strictfp: {
   694       assert(op2->tmp1_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot");
   695       insert_free_if_dead(op2->tmp1_opr());
   696       assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
   697       // fall-through: continue with the normal handling of lir_mul and lir_div
   698     }
   699     case lir_add:
   700     case lir_sub:
   701     case lir_mul:
   702     case lir_div: {
   703       assert(left->is_fpu_register(), "must be");
   704       assert(res->is_fpu_register(), "must be");
   705       assert(left->is_equal(res), "must be");
   707       // either the left-hand or the right-hand side must be on top of stack
   708       // (if right is not a register, left must be on top)
   709       if (!right->is_fpu_register()) {
   710         insert_exchange(left);
   711         new_left = to_fpu_stack_top(left);
   712       } else {
   713         // no exchange necessary if right is alredy on top of stack
   714         if (tos_offset(right) == 0) {
   715           new_left = to_fpu_stack(left);
   716           new_right = to_fpu_stack_top(right);
   717         } else {
   718           insert_exchange(left);
   719           new_left = to_fpu_stack_top(left);
   720           new_right = to_fpu_stack(right);
   721         }
   723         if (right->is_last_use()) {
   724           op2->set_fpu_pop_count(1);
   726           if (tos_offset(right) == 0) {
   727             sim()->pop();
   728           } else {
   729             // if left is on top of stack, the result is placed in the stack
   730             // slot of right, so a renaming from right to res is necessary
   731             assert(tos_offset(left) == 0, "must be");
   732             sim()->pop();
   733             do_rename(right, res);
   734           }
   735         }
   736       }
   737       new_res = to_fpu_stack(res);
   739       break;
   740     }
   742     case lir_rem: {
   743       assert(left->is_fpu_register(), "must be");
   744       assert(right->is_fpu_register(), "must be");
   745       assert(res->is_fpu_register(), "must be");
   746       assert(left->is_equal(res), "must be");
   748       // Must bring both operands to top of stack with following operand ordering:
   749       // * fpu stack before rem: ... right left
   750       // * fpu stack after rem:  ... left
   751       if (tos_offset(right) != 1) {
   752         insert_exchange(right);
   753         insert_exchange(1);
   754       }
   755       insert_exchange(left);
   756       assert(tos_offset(right) == 1, "check");
   757       assert(tos_offset(left) == 0, "check");
   759       new_left = to_fpu_stack_top(left);
   760       new_right = to_fpu_stack(right);
   762       op2->set_fpu_pop_count(1);
   763       sim()->pop();
   764       do_rename(right, res);
   766       new_res = to_fpu_stack_top(res);
   767       break;
   768     }
   770     case lir_abs:
   771     case lir_sqrt: {
   772       // Right argument appears to be unused
   773       assert(right->is_illegal(), "must be");
   774       assert(left->is_fpu_register(), "must be");
   775       assert(res->is_fpu_register(), "must be");
   776       assert(left->is_last_use(), "old value gets destroyed");
   778       insert_free_if_dead(res, left);
   779       insert_exchange(left);
   780       do_rename(left, res);
   782       new_left = to_fpu_stack_top(res);
   783       new_res = new_left;
   785       op2->set_fpu_stack_size(sim()->stack_size());
   786       break;
   787     }
   789     case lir_log:
   790     case lir_log10: {
   791       // log and log10 need one temporary fpu stack slot, so
   792       // there is one temporary registers stored in temp of the
   793       // operation. the stack allocator must guarantee that the stack
   794       // slots are really free, otherwise there might be a stack
   795       // overflow.
   796       assert(right->is_illegal(), "must be");
   797       assert(left->is_fpu_register(), "must be");
   798       assert(res->is_fpu_register(), "must be");
   799       assert(op2->tmp1_opr()->is_fpu_register(), "must be");
   801       insert_free_if_dead(op2->tmp1_opr());
   802       insert_free_if_dead(res, left);
   803       insert_exchange(left);
   804       do_rename(left, res);
   806       new_left = to_fpu_stack_top(res);
   807       new_res = new_left;
   809       op2->set_fpu_stack_size(sim()->stack_size());
   810       assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
   811       break;
   812     }
   815     case lir_tan:
   816     case lir_sin:
   817     case lir_cos:
   818     case lir_exp: {
   819       // sin, cos and exp need two temporary fpu stack slots, so there are two temporary
   820       // registers (stored in right and temp of the operation).
   821       // the stack allocator must guarantee that the stack slots are really free,
   822       // otherwise there might be a stack overflow.
   823       assert(left->is_fpu_register(), "must be");
   824       assert(res->is_fpu_register(), "must be");
   825       // assert(left->is_last_use(), "old value gets destroyed");
   826       assert(right->is_fpu_register(), "right is used as the first temporary register");
   827       assert(op2->tmp1_opr()->is_fpu_register(), "temp is used as the second temporary register");
   828       assert(fpu_num(left) != fpu_num(right) && fpu_num(right) != fpu_num(op2->tmp1_opr()) && fpu_num(op2->tmp1_opr()) != fpu_num(res), "need distinct temp registers");
   830       insert_free_if_dead(right);
   831       insert_free_if_dead(op2->tmp1_opr());
   833       insert_free_if_dead(res, left);
   834       insert_exchange(left);
   835       do_rename(left, res);
   837       new_left = to_fpu_stack_top(res);
   838       new_res = new_left;
   840       op2->set_fpu_stack_size(sim()->stack_size());
   841       assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
   842       break;
   843     }
   845     case lir_pow: {
   846       // pow needs two temporary fpu stack slots, so there are two temporary
   847       // registers (stored in tmp1 and tmp2 of the operation).
   848       // the stack allocator must guarantee that the stack slots are really free,
   849       // otherwise there might be a stack overflow.
   850       assert(left->is_fpu_register(), "must be");
   851       assert(right->is_fpu_register(), "must be");
   852       assert(res->is_fpu_register(), "must be");
   854       assert(op2->tmp1_opr()->is_fpu_register(), "tmp1 is the first temporary register");
   855       assert(op2->tmp2_opr()->is_fpu_register(), "tmp2 is the second temporary register");
   856       assert(fpu_num(left) != fpu_num(right) && fpu_num(left) != fpu_num(op2->tmp1_opr()) && fpu_num(left) != fpu_num(op2->tmp2_opr()) && fpu_num(left) != fpu_num(res), "need distinct temp registers");
   857       assert(fpu_num(right) != fpu_num(op2->tmp1_opr()) && fpu_num(right) != fpu_num(op2->tmp2_opr()) && fpu_num(right) != fpu_num(res), "need distinct temp registers");
   858       assert(fpu_num(op2->tmp1_opr()) != fpu_num(op2->tmp2_opr()) && fpu_num(op2->tmp1_opr()) != fpu_num(res), "need distinct temp registers");
   859       assert(fpu_num(op2->tmp2_opr()) != fpu_num(res), "need distinct temp registers");
   861       insert_free_if_dead(op2->tmp1_opr());
   862       insert_free_if_dead(op2->tmp2_opr());
   864       // Must bring both operands to top of stack with following operand ordering:
   865       // * fpu stack before pow: ... right left
   866       // * fpu stack after pow:  ... left
   868       insert_free_if_dead(res, right);
   870       if (tos_offset(right) != 1) {
   871         insert_exchange(right);
   872         insert_exchange(1);
   873       }
   874       insert_exchange(left);
   875       assert(tos_offset(right) == 1, "check");
   876       assert(tos_offset(left) == 0, "check");
   878       new_left = to_fpu_stack_top(left);
   879       new_right = to_fpu_stack(right);
   881       op2->set_fpu_stack_size(sim()->stack_size());
   882       assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
   884       sim()->pop();
   886       do_rename(right, res);
   888       new_res = to_fpu_stack_top(res);
   889       break;
   890     }
   892     default: {
   893       assert(false, "missed a fpu-operation");
   894     }
   895   }
   897   op2->set_in_opr1(new_left);
   898   op2->set_in_opr2(new_right);
   899   op2->set_result_opr(new_res);
   900 }
   902 void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) {
   903   LIR_Opr res = opCall->result_opr();
   905   // clear fpu-stack before call
   906   // it may contain dead values that could not have been remved by previous operations
   907   clear_fpu_stack(LIR_OprFact::illegalOpr);
   908   assert(sim()->is_empty(), "fpu stack must be empty now");
   910   // compute debug information before (possible) fpu result is pushed
   911   compute_debug_information(opCall);
   913   if (res->is_fpu_register() && !res->is_xmm_register()) {
   914     do_push(res);
   915     opCall->set_result_opr(to_fpu_stack_top(res));
   916   }
   917 }
   919 #ifndef PRODUCT
   920 void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) {
   921   switch (op->code()) {
   922     case lir_24bit_FPU:
   923     case lir_reset_FPU:
   924     case lir_ffree:
   925       assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands");
   926       break;
   928     case lir_fpop_raw:
   929     case lir_fxch:
   930     case lir_fld:
   931       assert(false, "operations only inserted by FpuStackAllocator");
   932       break;
   933   }
   934 }
   935 #endif
   938 void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) {
   939   LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset());
   941   instrs->instructions_list()->push(move);
   943   cur_sim->push(reg);
   944   move->set_result_opr(to_fpu_stack(move->result_opr()));
   946   #ifndef PRODUCT
   947     if (TraceFPUStack) {
   948       tty->print("Added new register: %d         New state: ", reg); cur_sim->print(); tty->cr();
   949     }
   950   #endif
   951 }
   953 void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) {
   954   assert(slot > 0, "no exchange necessary");
   956   LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot));
   957   instrs->instructions_list()->push(fxch);
   958   cur_sim->swap(slot);
   960   #ifndef PRODUCT
   961     if (TraceFPUStack) {
   962       tty->print("Exchanged register: %d         New state: ", cur_sim->get_slot(slot)); cur_sim->print(); tty->cr();
   963     }
   964   #endif
   965 }
   967 void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) {
   968   int reg = cur_sim->get_slot(0);
   970   LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
   971   instrs->instructions_list()->push(fpop);
   972   cur_sim->pop(reg);
   974   #ifndef PRODUCT
   975     if (TraceFPUStack) {
   976       tty->print("Removed register: %d           New state: ", reg); cur_sim->print(); tty->cr();
   977     }
   978   #endif
   979 }
   981 bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) {
   982   int reg = cur_sim->get_slot(change_slot);
   984   for (int slot = start_slot; slot >= 0; slot--) {
   985     int new_reg = sux_sim->get_slot(slot);
   987     if (!cur_sim->contains(new_reg)) {
   988       cur_sim->set_slot(change_slot, new_reg);
   990       #ifndef PRODUCT
   991         if (TraceFPUStack) {
   992           tty->print("Renamed register %d to %d       New state: ", reg, new_reg); cur_sim->print(); tty->cr();
   993         }
   994       #endif
   996       return true;
   997     }
   998   }
   999   return false;
  1003 void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) {
  1004 #ifndef PRODUCT
  1005   if (TraceFPUStack) {
  1006     tty->cr();
  1007     tty->print("before merging: pred: "); cur_sim->print(); tty->cr();
  1008     tty->print("                 sux: "); sux_sim->print(); tty->cr();
  1011   int slot;
  1012   for (slot = 0; slot < cur_sim->stack_size(); slot++) {
  1013     assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm");
  1015   for (slot = 0; slot < sux_sim->stack_size(); slot++) {
  1016     assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm");
  1018 #endif
  1020   // size difference between cur and sux that must be resolved by adding or removing values form the stack
  1021   int size_diff = cur_sim->stack_size() - sux_sim->stack_size();
  1023   if (!ComputeExactFPURegisterUsage) {
  1024     // add slots that are currently free, but used in successor
  1025     // When the exact FPU register usage is computed, the stack does
  1026     // not contain dead values at merging -> no values must be added
  1028     int sux_slot = sux_sim->stack_size() - 1;
  1029     while (size_diff < 0) {
  1030       assert(sux_slot >= 0, "slot out of bounds -> error in algorithm");
  1032       int reg = sux_sim->get_slot(sux_slot);
  1033       if (!cur_sim->contains(reg)) {
  1034         merge_insert_add(instrs, cur_sim, reg);
  1035         size_diff++;
  1037         if (sux_slot + size_diff != 0) {
  1038           merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
  1041      sux_slot--;
  1045   assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now");
  1046   assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be");
  1048   // stack merge algorithm:
  1049   // 1) as long as the current stack top is not in the right location (that meens
  1050   //    it should not be on the stack top), exchange it into the right location
  1051   // 2) if the stack top is right, but the remaining stack is not ordered correctly,
  1052   //    the stack top is exchanged away to get another value on top ->
  1053   //    now step 1) can be continued
  1054   // the stack can also contain unused items -> these items are removed from stack
  1056   int finished_slot = sux_sim->stack_size() - 1;
  1057   while (finished_slot >= 0 || size_diff > 0) {
  1058     while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) {
  1059       int reg = cur_sim->get_slot(0);
  1060       if (sux_sim->contains(reg)) {
  1061         int sux_slot = sux_sim->offset_from_tos(reg);
  1062         merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
  1064       } else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) {
  1065         assert(size_diff > 0, "must be");
  1067         merge_insert_pop(instrs, cur_sim);
  1068         size_diff--;
  1070       assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed");
  1073     while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) {
  1074       finished_slot--;
  1077     if (finished_slot >= 0) {
  1078       int reg = cur_sim->get_slot(finished_slot);
  1080       if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) {
  1081         assert(sux_sim->contains(reg) || size_diff > 0, "must be");
  1082         merge_insert_xchg(instrs, cur_sim, finished_slot);
  1084       assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed");
  1088 #ifndef PRODUCT
  1089   if (TraceFPUStack) {
  1090     tty->print("after merging:  pred: "); cur_sim->print(); tty->cr();
  1091     tty->print("                 sux: "); sux_sim->print(); tty->cr();
  1092     tty->cr();
  1094 #endif
  1095   assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now");
  1099 void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) {
  1100 #ifndef PRODUCT
  1101   if (TraceFPUStack) {
  1102     tty->cr();
  1103     tty->print("before cleanup: state: "); cur_sim->print(); tty->cr();
  1104     tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
  1106 #endif
  1108   int slot = 0;
  1109   while (slot < cur_sim->stack_size()) {
  1110     int reg = cur_sim->get_slot(slot);
  1111     if (!live_fpu_regs.at(reg)) {
  1112       if (slot != 0) {
  1113         merge_insert_xchg(instrs, cur_sim, slot);
  1115       merge_insert_pop(instrs, cur_sim);
  1116     } else {
  1117       slot++;
  1121 #ifndef PRODUCT
  1122   if (TraceFPUStack) {
  1123     tty->print("after cleanup:  state: "); cur_sim->print(); tty->cr();
  1124     tty->print("                live:  "); live_fpu_regs.print_on(tty); tty->cr();
  1125     tty->cr();
  1128   // check if fpu stack only contains live registers
  1129   for (unsigned int i = 0; i < live_fpu_regs.size(); i++) {
  1130     if (live_fpu_regs.at(i) != cur_sim->contains(i)) {
  1131       tty->print_cr("mismatch between required and actual stack content");
  1132       break;
  1135 #endif
  1139 bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) {
  1140 #ifndef PRODUCT
  1141   if (TraceFPUStack) {
  1142     tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:",
  1143                   block->block_id(), pos());
  1144     sim()->print();
  1145     tty->cr();
  1147 #endif
  1149   bool changed = false;
  1150   int number_of_sux = block->number_of_sux();
  1152   if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) {
  1153     // The successor has at least two incoming edges, so a stack merge will be necessary
  1154     // If this block is the first predecessor, cleanup the current stack and propagate it
  1155     // If this block is not the first predecessor, a stack merge will be necessary
  1157     BlockBegin* sux = block->sux_at(0);
  1158     intArray* state = sux->fpu_stack_state();
  1159     LIR_List* instrs = new LIR_List(_compilation);
  1161     if (state != NULL) {
  1162       // Merge with a successors that already has a FPU stack state
  1163       // the block must only have one successor because critical edges must been split
  1164       FpuStackSim* cur_sim = sim();
  1165       FpuStackSim* sux_sim = temp_sim();
  1166       sux_sim->read_state(state);
  1168       merge_fpu_stack(instrs, cur_sim, sux_sim);
  1170     } else {
  1171       // propagate current FPU stack state to successor without state
  1172       // clean up stack first so that there are no dead values on the stack
  1173       if (ComputeExactFPURegisterUsage) {
  1174         FpuStackSim* cur_sim = sim();
  1175         BitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage();
  1176         assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage");
  1178         merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs);
  1181       intArray* state = sim()->write_state();
  1182       if (TraceFPUStack) {
  1183         tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id());
  1184         sim()->print(); tty->cr();
  1186       sux->set_fpu_stack_state(state);
  1189     if (instrs->instructions_list()->length() > 0) {
  1190       lir()->insert_before(pos(), instrs);
  1191       set_pos(instrs->instructions_list()->length() + pos());
  1192       changed = true;
  1195   } else {
  1196     // Propagate unmodified Stack to successors where a stack merge is not necessary
  1197     intArray* state = sim()->write_state();
  1198     for (int i = 0; i < number_of_sux; i++) {
  1199       BlockBegin* sux = block->sux_at(i);
  1201 #ifdef ASSERT
  1202       for (int j = 0; j < sux->number_of_preds(); j++) {
  1203         assert(block == sux->pred_at(j), "all critical edges must be broken");
  1206       // check if new state is same
  1207       if (sux->fpu_stack_state() != NULL) {
  1208         intArray* sux_state = sux->fpu_stack_state();
  1209         assert(state->length() == sux_state->length(), "overwriting existing stack state");
  1210         for (int j = 0; j < state->length(); j++) {
  1211           assert(state->at(j) == sux_state->at(j), "overwriting existing stack state");
  1214 #endif
  1215 #ifndef PRODUCT
  1216       if (TraceFPUStack) {
  1217         tty->print_cr("Setting FPU stack state of B%d", sux->block_id());
  1218         sim()->print(); tty->cr();
  1220 #endif
  1222       sux->set_fpu_stack_state(state);
  1226 #ifndef PRODUCT
  1227   // assertions that FPU stack state conforms to all successors' states
  1228   intArray* cur_state = sim()->write_state();
  1229   for (int i = 0; i < number_of_sux; i++) {
  1230     BlockBegin* sux = block->sux_at(i);
  1231     intArray* sux_state = sux->fpu_stack_state();
  1233     assert(sux_state != NULL, "no fpu state");
  1234     assert(cur_state->length() == sux_state->length(), "incorrect length");
  1235     for (int i = 0; i < cur_state->length(); i++) {
  1236       assert(cur_state->at(i) == sux_state->at(i), "element not equal");
  1239 #endif
  1241   return changed;

mercurial