src/cpu/sparc/vm/assembler_sparc.hpp

Wed, 17 Jun 2015 17:48:25 -0700

author
ascarpino
date
Wed, 17 Jun 2015 17:48:25 -0700
changeset 9788
44ef77ad417c
parent 7027
b20a35eae442
child 9806
758c07667682
permissions
-rw-r--r--

8073108: Use x86 and SPARC CPU instructions for GHASH acceleration
Reviewed-by: kvn, jrose, phh

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
    26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
    28 #include "asm/register.hpp"
    30 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
    31 // level; i.e., what you write
    32 // is what you get. The Assembler is generating code into a CodeBuffer.
    34 class Assembler : public AbstractAssembler  {
    35   friend class AbstractAssembler;
    36   friend class AddressLiteral;
    38   // code patchers need various routines like inv_wdisp()
    39   friend class NativeInstruction;
    40   friend class NativeGeneralJump;
    41   friend class Relocation;
    42   friend class Label;
    44  public:
    45   // op carries format info; see page 62 & 267
    47   enum ops {
    48     call_op   = 1, // fmt 1
    49     branch_op = 0, // also sethi (fmt2)
    50     arith_op  = 2, // fmt 3, arith & misc
    51     ldst_op   = 3  // fmt 3, load/store
    52   };
    54   enum op2s {
    55     bpr_op2   = 3,
    56     fb_op2    = 6,
    57     fbp_op2   = 5,
    58     br_op2    = 2,
    59     bp_op2    = 1,
    60     sethi_op2 = 4
    61   };
    63   enum op3s {
    64     // selected op3s
    65     add_op3      = 0x00,
    66     and_op3      = 0x01,
    67     or_op3       = 0x02,
    68     xor_op3      = 0x03,
    69     sub_op3      = 0x04,
    70     andn_op3     = 0x05,
    71     orn_op3      = 0x06,
    72     xnor_op3     = 0x07,
    73     addc_op3     = 0x08,
    74     mulx_op3     = 0x09,
    75     umul_op3     = 0x0a,
    76     smul_op3     = 0x0b,
    77     subc_op3     = 0x0c,
    78     udivx_op3    = 0x0d,
    79     udiv_op3     = 0x0e,
    80     sdiv_op3     = 0x0f,
    82     addcc_op3    = 0x10,
    83     andcc_op3    = 0x11,
    84     orcc_op3     = 0x12,
    85     xorcc_op3    = 0x13,
    86     subcc_op3    = 0x14,
    87     andncc_op3   = 0x15,
    88     orncc_op3    = 0x16,
    89     xnorcc_op3   = 0x17,
    90     addccc_op3   = 0x18,
    91     aes4_op3     = 0x19,
    92     umulcc_op3   = 0x1a,
    93     smulcc_op3   = 0x1b,
    94     subccc_op3   = 0x1c,
    95     udivcc_op3   = 0x1e,
    96     sdivcc_op3   = 0x1f,
    98     taddcc_op3   = 0x20,
    99     tsubcc_op3   = 0x21,
   100     taddcctv_op3 = 0x22,
   101     tsubcctv_op3 = 0x23,
   102     mulscc_op3   = 0x24,
   103     sll_op3      = 0x25,
   104     sllx_op3     = 0x25,
   105     srl_op3      = 0x26,
   106     srlx_op3     = 0x26,
   107     sra_op3      = 0x27,
   108     srax_op3     = 0x27,
   109     rdreg_op3    = 0x28,
   110     membar_op3   = 0x28,
   112     flushw_op3   = 0x2b,
   113     movcc_op3    = 0x2c,
   114     sdivx_op3    = 0x2d,
   115     popc_op3     = 0x2e,
   116     movr_op3     = 0x2f,
   118     sir_op3      = 0x30,
   119     wrreg_op3    = 0x30,
   120     saved_op3    = 0x31,
   122     fpop1_op3    = 0x34,
   123     fpop2_op3    = 0x35,
   124     impdep1_op3  = 0x36,
   125     aes3_op3     = 0x36,
   126     sha_op3      = 0x36,
   127     alignaddr_op3  = 0x36,
   128     faligndata_op3 = 0x36,
   129     flog3_op3    = 0x36,
   130     edge_op3     = 0x36,
   131     fsrc_op3     = 0x36,
   132     xmulx_op3    = 0x36,
   133     impdep2_op3  = 0x37,
   134     stpartialf_op3 = 0x37,
   135     jmpl_op3     = 0x38,
   136     rett_op3     = 0x39,
   137     trap_op3     = 0x3a,
   138     flush_op3    = 0x3b,
   139     save_op3     = 0x3c,
   140     restore_op3  = 0x3d,
   141     done_op3     = 0x3e,
   142     retry_op3    = 0x3e,
   144     lduw_op3     = 0x00,
   145     ldub_op3     = 0x01,
   146     lduh_op3     = 0x02,
   147     ldd_op3      = 0x03,
   148     stw_op3      = 0x04,
   149     stb_op3      = 0x05,
   150     sth_op3      = 0x06,
   151     std_op3      = 0x07,
   152     ldsw_op3     = 0x08,
   153     ldsb_op3     = 0x09,
   154     ldsh_op3     = 0x0a,
   155     ldx_op3      = 0x0b,
   157     stx_op3      = 0x0e,
   158     swap_op3     = 0x0f,
   160     stwa_op3     = 0x14,
   161     stxa_op3     = 0x1e,
   163     ldf_op3      = 0x20,
   164     ldfsr_op3    = 0x21,
   165     ldqf_op3     = 0x22,
   166     lddf_op3     = 0x23,
   167     stf_op3      = 0x24,
   168     stfsr_op3    = 0x25,
   169     stqf_op3     = 0x26,
   170     stdf_op3     = 0x27,
   172     prefetch_op3 = 0x2d,
   174     casa_op3     = 0x3c,
   175     casxa_op3    = 0x3e,
   177     mftoi_op3    = 0x36,
   179     alt_bit_op3  = 0x10,
   180      cc_bit_op3  = 0x10
   181   };
   183   enum opfs {
   184     // selected opfs
   185     edge8n_opf         = 0x01,
   187     fmovs_opf          = 0x01,
   188     fmovd_opf          = 0x02,
   190     fnegs_opf          = 0x05,
   191     fnegd_opf          = 0x06,
   193     alignaddr_opf      = 0x18,
   195     fadds_opf          = 0x41,
   196     faddd_opf          = 0x42,
   197     fsubs_opf          = 0x45,
   198     fsubd_opf          = 0x46,
   200     faligndata_opf     = 0x48,
   202     fmuls_opf          = 0x49,
   203     fmuld_opf          = 0x4a,
   204     fdivs_opf          = 0x4d,
   205     fdivd_opf          = 0x4e,
   207     fcmps_opf          = 0x51,
   208     fcmpd_opf          = 0x52,
   210     fstox_opf          = 0x81,
   211     fdtox_opf          = 0x82,
   212     fxtos_opf          = 0x84,
   213     fxtod_opf          = 0x88,
   214     fitos_opf          = 0xc4,
   215     fdtos_opf          = 0xc6,
   216     fitod_opf          = 0xc8,
   217     fstod_opf          = 0xc9,
   218     fstoi_opf          = 0xd1,
   219     fdtoi_opf          = 0xd2,
   221     mdtox_opf          = 0x110,
   222     mstouw_opf         = 0x111,
   223     mstosw_opf         = 0x113,
   224     xmulx_opf          = 0x115,
   225     xmulxhi_opf        = 0x116,
   226     mxtod_opf          = 0x118,
   227     mwtos_opf          = 0x119,
   229     aes_kexpand0_opf   = 0x130,
   230     aes_kexpand2_opf   = 0x131,
   232     sha1_opf           = 0x141,
   233     sha256_opf         = 0x142,
   234     sha512_opf         = 0x143
   235   };
   237   enum op5s {
   238     aes_eround01_op5     = 0x00,
   239     aes_eround23_op5     = 0x01,
   240     aes_dround01_op5     = 0x02,
   241     aes_dround23_op5     = 0x03,
   242     aes_eround01_l_op5   = 0x04,
   243     aes_eround23_l_op5   = 0x05,
   244     aes_dround01_l_op5   = 0x06,
   245     aes_dround23_l_op5   = 0x07,
   246     aes_kexpand1_op5     = 0x08
   247   };
   249   enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez  };
   251   enum Condition {
   252      // for FBfcc & FBPfcc instruction
   253     f_never                     = 0,
   254     f_notEqual                  = 1,
   255     f_notZero                   = 1,
   256     f_lessOrGreater             = 2,
   257     f_unorderedOrLess           = 3,
   258     f_less                      = 4,
   259     f_unorderedOrGreater        = 5,
   260     f_greater                   = 6,
   261     f_unordered                 = 7,
   262     f_always                    = 8,
   263     f_equal                     = 9,
   264     f_zero                      = 9,
   265     f_unorderedOrEqual          = 10,
   266     f_greaterOrEqual            = 11,
   267     f_unorderedOrGreaterOrEqual = 12,
   268     f_lessOrEqual               = 13,
   269     f_unorderedOrLessOrEqual    = 14,
   270     f_ordered                   = 15,
   272     // V8 coproc, pp 123 v8 manual
   274     cp_always  = 8,
   275     cp_never   = 0,
   276     cp_3       = 7,
   277     cp_2       = 6,
   278     cp_2or3    = 5,
   279     cp_1       = 4,
   280     cp_1or3    = 3,
   281     cp_1or2    = 2,
   282     cp_1or2or3 = 1,
   283     cp_0       = 9,
   284     cp_0or3    = 10,
   285     cp_0or2    = 11,
   286     cp_0or2or3 = 12,
   287     cp_0or1    = 13,
   288     cp_0or1or3 = 14,
   289     cp_0or1or2 = 15,
   292     // for integers
   294     never                 =  0,
   295     equal                 =  1,
   296     zero                  =  1,
   297     lessEqual             =  2,
   298     less                  =  3,
   299     lessEqualUnsigned     =  4,
   300     lessUnsigned          =  5,
   301     carrySet              =  5,
   302     negative              =  6,
   303     overflowSet           =  7,
   304     always                =  8,
   305     notEqual              =  9,
   306     notZero               =  9,
   307     greater               =  10,
   308     greaterEqual          =  11,
   309     greaterUnsigned       =  12,
   310     greaterEqualUnsigned  =  13,
   311     carryClear            =  13,
   312     positive              =  14,
   313     overflowClear         =  15
   314   };
   316   enum CC {
   317     icc  = 0,  xcc  = 2,
   318     // ptr_cc is the correct condition code for a pointer or intptr_t:
   319     ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
   320     fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
   321   };
   323   enum PrefetchFcn {
   324     severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
   325   };
   327  public:
   328   // Helper functions for groups of instructions
   330   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
   332   enum Membar_mask_bits { // page 184, v9
   333     StoreStore = 1 << 3,
   334     LoadStore  = 1 << 2,
   335     StoreLoad  = 1 << 1,
   336     LoadLoad   = 1 << 0,
   338     Sync       = 1 << 6,
   339     MemIssue   = 1 << 5,
   340     Lookaside  = 1 << 4
   341   };
   343   static bool is_in_wdisp_range(address a, address b, int nbits) {
   344     intptr_t d = intptr_t(b) - intptr_t(a);
   345     return is_simm(d, nbits + 2);
   346   }
   348   address target_distance(Label& L) {
   349     // Assembler::target(L) should be called only when
   350     // a branch instruction is emitted since non-bound
   351     // labels record current pc() as a branch address.
   352     if (L.is_bound()) return target(L);
   353     // Return current address for non-bound labels.
   354     return pc();
   355   }
   357   // test if label is in simm16 range in words (wdisp16).
   358   bool is_in_wdisp16_range(Label& L) {
   359     return is_in_wdisp_range(target_distance(L), pc(), 16);
   360   }
   361   // test if the distance between two addresses fits in simm30 range in words
   362   static bool is_in_wdisp30_range(address a, address b) {
   363     return is_in_wdisp_range(a, b, 30);
   364   }
   366   enum ASIs { // page 72, v9
   367     ASI_PRIMARY            = 0x80,
   368     ASI_PRIMARY_NOFAULT    = 0x82,
   369     ASI_PRIMARY_LITTLE     = 0x88,
   370     // 8x8-bit partial store
   371     ASI_PST8_PRIMARY       = 0xC0,
   372     // Block initializing store
   373     ASI_ST_BLKINIT_PRIMARY = 0xE2,
   374     // Most-Recently-Used (MRU) BIS variant
   375     ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
   376     // add more from book as needed
   377   };
   379  protected:
   380   // helpers
   382   // x is supposed to fit in a field "nbits" wide
   383   // and be sign-extended. Check the range.
   385   static void assert_signed_range(intptr_t x, int nbits) {
   386     assert(nbits == 32 || (-(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1)),
   387            err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
   388   }
   390   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
   391     assert( (x & 3) == 0, "not word aligned");
   392     assert_signed_range(x, nbits + 2);
   393   }
   395   static void assert_unsigned_const(int x, int nbits) {
   396     assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
   397   }
   399   // fields: note bits numbered from LSB = 0,
   400   //  fields known by inclusive bit range
   402   static int fmask(juint hi_bit, juint lo_bit) {
   403     assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
   404     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
   405   }
   407   // inverse of u_field
   409   static int inv_u_field(int x, int hi_bit, int lo_bit) {
   410     juint r = juint(x) >> lo_bit;
   411     r &= fmask( hi_bit, lo_bit);
   412     return int(r);
   413   }
   416   // signed version: extract from field and sign-extend
   418   static int inv_s_field(int x, int hi_bit, int lo_bit) {
   419     int sign_shift = 31 - hi_bit;
   420     return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
   421   }
   423   // given a field that ranges from hi_bit to lo_bit (inclusive,
   424   // LSB = 0), and an unsigned value for the field,
   425   // shift it into the field
   427 #ifdef ASSERT
   428   static int u_field(int x, int hi_bit, int lo_bit) {
   429     assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
   430             "value out of range");
   431     int r = x << lo_bit;
   432     assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
   433     return r;
   434   }
   435 #else
   436   // make sure this is inlined as it will reduce code size significantly
   437   #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
   438 #endif
   440   static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
   441   static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
   442   static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
   443   static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
   445   static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
   447   static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
   448   static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
   449   static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
   451   static int op(       int         x)  { return  u_field(x,             31, 30); }
   452   static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
   453   static int fcn(      int         x)  { return  u_field(x,             29, 25); }
   454   static int op3(      int         x)  { return  u_field(x,             24, 19); }
   455   static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
   456   static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
   457   static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
   458   static int cond(     int         x)  { return  u_field(x,             28, 25); }
   459   static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
   460   static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
   461   static int op2(      int         x)  { return  u_field(x,             24, 22); }
   462   static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
   463   static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
   464   static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
   465   static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
   466   static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
   467   static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
   468   static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
   469   static int op5(      int         x)  { return  u_field(x,              8,  5); }
   470   static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
   471   static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
   472   static int opf(      int         x)  { return  u_field(x,             13,  5); }
   474   static bool is_cbcond( int x ) {
   475     return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
   476             inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
   477   }
   478   static bool is_cxb( int x ) {
   479     assert(is_cbcond(x), "wrong instruction");
   480     return (x & (1<<21)) != 0;
   481   }
   482   static int cond_cbcond( int         x)  { return  u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
   483   static int inv_cond_cbcond(int      x)  {
   484     assert(is_cbcond(x), "wrong instruction");
   485     return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
   486   }
   488   static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
   489   static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
   491   static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
   492   static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
   493   static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
   494   static int fs3(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 13,  9); };
   496   // some float instructions use this encoding on the op3 field
   497   static int alt_op3(int op, FloatRegisterImpl::Width w) {
   498     int r;
   499     switch(w) {
   500      case FloatRegisterImpl::S: r = op + 0;  break;
   501      case FloatRegisterImpl::D: r = op + 3;  break;
   502      case FloatRegisterImpl::Q: r = op + 2;  break;
   503      default: ShouldNotReachHere(); break;
   504     }
   505     return op3(r);
   506   }
   509   // compute inverse of simm
   510   static int inv_simm(int x, int nbits) {
   511     return (int)(x << (32 - nbits)) >> (32 - nbits);
   512   }
   514   static int inv_simm13( int x ) { return inv_simm(x, 13); }
   516   // signed immediate, in low bits, nbits long
   517   static int simm(int x, int nbits) {
   518     assert_signed_range(x, nbits);
   519     return x  &  (( 1 << nbits ) - 1);
   520   }
   522   // compute inverse of wdisp16
   523   static intptr_t inv_wdisp16(int x, intptr_t pos) {
   524     int lo = x & (( 1 << 14 ) - 1);
   525     int hi = (x >> 20) & 3;
   526     if (hi >= 2) hi |= ~1;
   527     return (((hi << 14) | lo) << 2) + pos;
   528   }
   530   // word offset, 14 bits at LSend, 2 bits at B21, B20
   531   static int wdisp16(intptr_t x, intptr_t off) {
   532     intptr_t xx = x - off;
   533     assert_signed_word_disp_range(xx, 16);
   534     int r =  (xx >> 2) & ((1 << 14) - 1)
   535            |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
   536     assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
   537     return r;
   538   }
   540   // compute inverse of wdisp10
   541   static intptr_t inv_wdisp10(int x, intptr_t pos) {
   542     assert(is_cbcond(x), "wrong instruction");
   543     int lo = inv_u_field(x, 12, 5);
   544     int hi = (x >> 19) & 3;
   545     if (hi >= 2) hi |= ~1;
   546     return (((hi << 8) | lo) << 2) + pos;
   547   }
   549   // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
   550   static int wdisp10(intptr_t x, intptr_t off) {
   551     assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
   552     intptr_t xx = x - off;
   553     assert_signed_word_disp_range(xx, 10);
   554     int r =  ( ( (xx >>  2   ) & ((1 << 8) - 1) ) <<  5 )
   555            | ( ( (xx >> (2+8)) & 3              ) << 19 );
   556     // Have to fake cbcond instruction to pass assert in inv_wdisp10()
   557     assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x,  "inverse is not inverse");
   558     return r;
   559   }
   561   // word displacement in low-order nbits bits
   563   static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
   564     int pre_sign_extend = x & (( 1 << nbits ) - 1);
   565     int r =  pre_sign_extend >= ( 1 << (nbits-1) )
   566        ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
   567        :   pre_sign_extend;
   568     return (r << 2) + pos;
   569   }
   571   static int wdisp( intptr_t x, intptr_t off, int nbits ) {
   572     intptr_t xx = x - off;
   573     assert_signed_word_disp_range(xx, nbits);
   574     int r =  (xx >> 2) & (( 1 << nbits ) - 1);
   575     assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
   576     return r;
   577   }
   580   // Extract the top 32 bits in a 64 bit word
   581   static int32_t hi32( int64_t x ) {
   582     int32_t r = int32_t( (uint64_t)x >> 32 );
   583     return r;
   584   }
   586   // given a sethi instruction, extract the constant, left-justified
   587   static int inv_hi22( int x ) {
   588     return x << 10;
   589   }
   591   // create an imm22 field, given a 32-bit left-justified constant
   592   static int hi22( int x ) {
   593     int r = int( juint(x) >> 10 );
   594     assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
   595     return r;
   596   }
   598   // create a low10 __value__ (not a field) for a given a 32-bit constant
   599   static int low10( int x ) {
   600     return x & ((1 << 10) - 1);
   601   }
   603   // AES crypto instructions supported only on certain processors
   604   static void aes_only() { assert( VM_Version::has_aes(), "This instruction only works on SPARC with AES instructions support"); }
   606   // SHA crypto instructions supported only on certain processors
   607   static void sha1_only()   { assert( VM_Version::has_sha1(),   "This instruction only works on SPARC with SHA1"); }
   608   static void sha256_only() { assert( VM_Version::has_sha256(), "This instruction only works on SPARC with SHA256"); }
   609   static void sha512_only() { assert( VM_Version::has_sha512(), "This instruction only works on SPARC with SHA512"); }
   611   // instruction only in VIS1
   612   static void vis1_only() { assert( VM_Version::has_vis1(), "This instruction only works on SPARC with VIS1"); }
   614   // instruction only in VIS2
   615   static void vis2_only() { assert( VM_Version::has_vis2(), "This instruction only works on SPARC with VIS2"); }
   617   // instruction only in VIS3
   618   static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
   620   // instruction only in v9
   621   static void v9_only() { } // do nothing
   623   // instruction deprecated in v9
   624   static void v9_dep()  { } // do nothing for now
   626   // v8 has no CC field
   627   static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
   629  protected:
   630   // Simple delay-slot scheme:
   631   // In order to check the programmer, the assembler keeps track of deley slots.
   632   // It forbids CTIs in delay slots (conservative, but should be OK).
   633   // Also, when putting an instruction into a delay slot, you must say
   634   // asm->delayed()->add(...), in order to check that you don't omit
   635   // delay-slot instructions.
   636   // To implement this, we use a simple FSA
   638 #ifdef ASSERT
   639   #define CHECK_DELAY
   640 #endif
   641 #ifdef CHECK_DELAY
   642   enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
   643 #endif
   645  public:
   646   // Tells assembler next instruction must NOT be in delay slot.
   647   // Use at start of multinstruction macros.
   648   void assert_not_delayed() {
   649     // This is a separate overloading to avoid creation of string constants
   650     // in non-asserted code--with some compilers this pollutes the object code.
   651 #ifdef CHECK_DELAY
   652     assert_not_delayed("next instruction should not be a delay slot");
   653 #endif
   654   }
   655   void assert_not_delayed(const char* msg) {
   656 #ifdef CHECK_DELAY
   657     assert(delay_state == no_delay, msg);
   658 #endif
   659   }
   661  protected:
   662   // Insert a nop if the previous is cbcond
   663   void insert_nop_after_cbcond() {
   664     if (UseCBCond && cbcond_before()) {
   665       nop();
   666     }
   667   }
   668   // Delay slot helpers
   669   // cti is called when emitting control-transfer instruction,
   670   // BEFORE doing the emitting.
   671   // Only effective when assertion-checking is enabled.
   672   void cti() {
   673     // A cbcond instruction immediately followed by a CTI
   674     // instruction introduces pipeline stalls, we need to avoid that.
   675     no_cbcond_before();
   676 #ifdef CHECK_DELAY
   677     assert_not_delayed("cti should not be in delay slot");
   678 #endif
   679   }
   681   // called when emitting cti with a delay slot, AFTER emitting
   682   void has_delay_slot() {
   683 #ifdef CHECK_DELAY
   684     assert_not_delayed("just checking");
   685     delay_state = at_delay_slot;
   686 #endif
   687   }
   689   // cbcond instruction should not be generated one after an other
   690   bool cbcond_before() {
   691     if (offset() == 0) return false; // it is first instruction
   692     int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
   693     return is_cbcond(x);
   694   }
   696   void no_cbcond_before() {
   697     assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
   698   }
   699 public:
   701   bool use_cbcond(Label& L) {
   702     if (!UseCBCond || cbcond_before()) return false;
   703     intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
   704     assert( (x & 3) == 0, "not word aligned");
   705     return is_simm12(x);
   706   }
   708   // Tells assembler you know that next instruction is delayed
   709   Assembler* delayed() {
   710 #ifdef CHECK_DELAY
   711     assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
   712     delay_state = filling_delay_slot;
   713 #endif
   714     return this;
   715   }
   717   void flush() {
   718 #ifdef CHECK_DELAY
   719     assert ( delay_state == no_delay, "ending code with a delay slot");
   720 #endif
   721     AbstractAssembler::flush();
   722   }
   724   inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
   725   inline void emit_data(int x) { emit_int32(x); }
   726   inline void emit_data(int, RelocationHolder const&);
   727   inline void emit_data(int, relocInfo::relocType rtype);
   728   // helper for above fcns
   729   inline void check_delay();
   732  public:
   733   // instructions, refer to page numbers in the SPARC Architecture Manual, V9
   735   // pp 135 (addc was addx in v8)
   737   inline void add(Register s1, Register s2, Register d );
   738   inline void add(Register s1, int simm13a, Register d );
   740   void addcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   741   void addcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   742   void addc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
   743   void addc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   744   void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   745   void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   748   // 4-operand AES instructions
   750   void aes_eround01(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   751   void aes_eround23(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   752   void aes_dround01(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   753   void aes_dround23(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   754   void aes_eround01_l(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   755   void aes_eround23_l(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   756   void aes_dround01_l(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   757   void aes_dround23_l(  FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   758   void aes_kexpand1(  FloatRegister s1, FloatRegister s2, int imm5a, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | u_field(imm5a, 13, 9) | op5(aes_kexpand1_op5) | fs2(s2, FloatRegisterImpl::D) ); }
   761   // 3-operand AES instructions
   763   void aes_kexpand0(  FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand0_opf) | fs2(s2, FloatRegisterImpl::D) ); }
   764   void aes_kexpand2(  FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand2_opf) | fs2(s2, FloatRegisterImpl::D) ); }
   766   // pp 136
   768   inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
   769   inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
   771   // compare and branch
   772   inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
   773   inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
   775  protected: // use MacroAssembler::br instead
   777   // pp 138
   779   inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
   780   inline void fb( Condition c, bool a, Label& L );
   782   // pp 141
   784   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   785   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
   787   // pp 144
   789   inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
   790   inline void br( Condition c, bool a, Label& L );
   792   // pp 146
   794   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
   795   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
   797   // pp 149
   799   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
   800   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
   802  public:
   804   // pp 150
   806   // These instructions compare the contents of s2 with the contents of
   807   // memory at address in s1. If the values are equal, the contents of memory
   808   // at address s1 is swapped with the data in d. If the values are not equal,
   809   // the the contents of memory at s1 is loaded into d, without the swap.
   811   void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
   812   void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
   814   // pp 152
   816   void udiv(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
   817   void udiv(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   818   void sdiv(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
   819   void sdiv(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   820   void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
   821   void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   822   void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
   823   void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   825   // pp 155
   827   void done()  { v9_only();  cti();  emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); }
   828   void retry() { v9_only();  cti();  emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); }
   830   // pp 156
   832   void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
   833   void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
   835   // pp 157
   837   void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
   838   void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
   840   // pp 159
   842   void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
   843   void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
   845   // pp 160
   847   void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
   849   // pp 161
   851   void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
   852   void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
   854   // pp 162
   856   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
   858   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
   860   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
   862   // pp 163
   864   void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
   865   void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
   866   void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
   868   // FXORs/FXORd instructions
   870   void fxor( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(flog3_op3) | fs1(s1, w) | opf(0x6E - w) | fs2(s2, w)); }
   872   // pp 164
   874   void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
   876   // pp 165
   878   inline void flush( Register s1, Register s2 );
   879   inline void flush( Register s1, int simm13a);
   881   // pp 167
   883   void flushw() { v9_only();  emit_int32( op(arith_op) | op3(flushw_op3) ); }
   885   // pp 168
   887   void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); }
   888   // v8 unimp == illtrap(0)
   890   // pp 169
   892   void impdep1( int id1, int const19a ) { v9_only();  emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
   893   void impdep2( int id1, int const19a ) { v9_only();  emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
   895   // pp 170
   897   void jmpl( Register s1, Register s2, Register d );
   898   void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
   900   // 171
   902   inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
   903   inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
   906   inline void ldfsr(  Register s1, Register s2 );
   907   inline void ldfsr(  Register s1, int simm13a);
   908   inline void ldxfsr( Register s1, Register s2 );
   909   inline void ldxfsr( Register s1, int simm13a);
   911   // 173
   913   void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   914   void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   916   // pp 175, lduw is ld on v8
   918   inline void ldsb(  Register s1, Register s2, Register d );
   919   inline void ldsb(  Register s1, int simm13a, Register d);
   920   inline void ldsh(  Register s1, Register s2, Register d );
   921   inline void ldsh(  Register s1, int simm13a, Register d);
   922   inline void ldsw(  Register s1, Register s2, Register d );
   923   inline void ldsw(  Register s1, int simm13a, Register d);
   924   inline void ldub(  Register s1, Register s2, Register d );
   925   inline void ldub(  Register s1, int simm13a, Register d);
   926   inline void lduh(  Register s1, Register s2, Register d );
   927   inline void lduh(  Register s1, int simm13a, Register d);
   928   inline void lduw(  Register s1, Register s2, Register d );
   929   inline void lduw(  Register s1, int simm13a, Register d);
   930   inline void ldx(   Register s1, Register s2, Register d );
   931   inline void ldx(   Register s1, int simm13a, Register d);
   932   inline void ldd(   Register s1, Register s2, Register d );
   933   inline void ldd(   Register s1, int simm13a, Register d);
   935   // pp 177
   937   void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   938   void ldsba(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   939   void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   940   void ldsha(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   941   void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   942   void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   943   void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   944   void lduba(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   945   void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   946   void lduha(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   947   void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   948   void lduwa(  Register s1, int simm13a,         Register d ) {             emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   949   void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   950   void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   952   // pp 181
   954   void and3(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | rs2(s2) ); }
   955   void and3(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   956   void andcc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   957   void andcc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   958   void andn(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
   959   void andn(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   960   void andncc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   961   void andncc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   962   void or3(     Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
   963   void or3(     Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   964   void orcc(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   965   void orcc(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   966   void orn(     Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
   967   void orn(     Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   968   void orncc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   969   void orncc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   970   void xor3(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
   971   void xor3(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   972   void xorcc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   973   void xorcc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   974   void xnor(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
   975   void xnor(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   976   void xnorcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   977   void xnorcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   979   // pp 183
   981   void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
   983   // pp 185
   985   void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
   987   // pp 189
   989   void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
   991   // pp 191
   993   void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
   994   void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
   996   // pp 195
   998   void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
   999   void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
  1001   // pp 196
  1003   void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
  1004   void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1005   void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
  1006   void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1007   void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
  1008   void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1010   // pp 197
  1012   void umul(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
  1013   void umul(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1014   void smul(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
  1015   void smul(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1016   void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1017   void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1018   void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1019   void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1021   // pp 201
  1023   void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); }
  1026   // pp 202
  1028   void popc( Register s,  Register d) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
  1029   void popc( int simm13a, Register d) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
  1031   // pp 203
  1033   void prefetch(   Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
  1034   void prefetch(   Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
  1036   void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1037   void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1039   // pp 208
  1041   // not implementing read privileged register
  1043   inline void rdy(    Register d) { v9_dep();  emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
  1044   inline void rdccr(  Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
  1045   inline void rdasi(  Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
  1046   inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
  1047   inline void rdpc(   Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
  1048   inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
  1050   // pp 213
  1052   inline void rett( Register s1, Register s2);
  1053   inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
  1055   // pp 214
  1057   void save(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
  1058   void save(    Register s1, int simm13a, Register d ) {
  1059     // make sure frame is at least large enough for the register save area
  1060     assert(-simm13a >= 16 * wordSize, "frame too small");
  1061     emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
  1064   void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
  1065   void restore( Register s1,       int simm13a,      Register d      ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1067   // pp 216
  1069   void saved()    { v9_only();  emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); }
  1070   void restored() { v9_only();  emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); }
  1072   // pp 217
  1074   inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1075   // pp 218
  1077   void sll(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1078   void sll(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1079   void srl(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1080   void srl(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1081   void sra(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1082   void sra(  Register s1, int imm5a,   Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1084   void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1085   void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1086   void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1087   void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1088   void srax( Register s1, Register s2, Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1089   void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1091   // pp 220
  1093   void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
  1095   // pp 221
  1097   void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
  1099   // pp 222
  1101   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
  1102   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
  1104   inline void stfsr(  Register s1, Register s2 );
  1105   inline void stfsr(  Register s1, int simm13a);
  1106   inline void stxfsr( Register s1, Register s2 );
  1107   inline void stxfsr( Register s1, int simm13a);
  1109   //  pp 224
  1111   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1112   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1114   // p 226
  1116   inline void stb(  Register d, Register s1, Register s2 );
  1117   inline void stb(  Register d, Register s1, int simm13a);
  1118   inline void sth(  Register d, Register s1, Register s2 );
  1119   inline void sth(  Register d, Register s1, int simm13a);
  1120   inline void stw(  Register d, Register s1, Register s2 );
  1121   inline void stw(  Register d, Register s1, int simm13a);
  1122   inline void stx(  Register d, Register s1, Register s2 );
  1123   inline void stx(  Register d, Register s1, int simm13a);
  1124   inline void std(  Register d, Register s1, Register s2 );
  1125   inline void std(  Register d, Register s1, int simm13a);
  1127   // pp 177
  1129   void stba(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1130   void stba(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1131   void stha(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1132   void stha(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1133   void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1134   void stwa(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1135   void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1136   void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1137   void stda(  Register d, Register s1, Register s2, int ia ) {             emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1138   void stda(  Register d, Register s1, int simm13a         ) {             emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1140   // pp 230
  1142   void sub(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
  1143   void sub(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1145   void subcc(  Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
  1146   void subcc(  Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1147   void subc(   Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
  1148   void subc(   Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1149   void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1150   void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1152   // pp 231
  1154   inline void swap( Register s1, Register s2, Register d );
  1155   inline void swap( Register s1, int simm13a, Register d);
  1157   // pp 232
  1159   void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1160   void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1162   // pp 234, note op in book is wrong, see pp 268
  1164   void taddcc(    Register s1, Register s2, Register d ) {            emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1165   void taddcc(    Register s1, int simm13a, Register d ) {            emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1167   // pp 235
  1169   void tsubcc(    Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1170   void tsubcc(    Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1172   // pp 237
  1174   void trap( Condition c, CC cc, Register s1, Register s2 ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
  1175   void trap( Condition c, CC cc, Register s1, int trapa   ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
  1176   // simple uncond. trap
  1177   void trap( int trapa ) { trap( always, icc, G0, trapa ); }
  1179   // pp 239 omit write priv register for now
  1181   inline void wry(    Register d) { v9_dep();  emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
  1182   inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
  1183   inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) |
  1184                                                                            rs1(s) |
  1185                                                                            op3(wrreg_op3) |
  1186                                                                            u_field(2, 29, 25) |
  1187                                                                            immed(true) |
  1188                                                                            simm(simm13a, 13)); }
  1189   inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
  1190   // wrasi(d, imm) stores (d xor imm) to asi
  1191   inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) |
  1192                                                u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
  1193   inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
  1195   //  VIS1 instructions
  1197   void alignaddr( Register s1, Register s2, Register d ) { vis1_only(); emit_int32( op(arith_op) | rd(d) | op3(alignaddr_op3) | rs1(s1) | opf(alignaddr_opf) | rs2(s2)); }
  1199   void faligndata( FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(faligndata_op3) | fs1(s1, FloatRegisterImpl::D) | opf(faligndata_opf) | fs2(s2, FloatRegisterImpl::D)); }
  1201   void fsrc2( FloatRegisterImpl::Width w, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fsrc_op3) | opf(0x7A - w) | fs2(s2, w)); }
  1203   void stpartialf( Register s1, Register s2, FloatRegister d, int ia = -1 ) { vis1_only(); emit_int32( op(ldst_op) | fd(d, FloatRegisterImpl::D) | op3(stpartialf_op3) | rs1(s1) | imm_asi(ia) | rs2(s2)); }
  1205   //  VIS2 instructions
  1207   void edge8n( Register s1, Register s2, Register d ) { vis2_only(); emit_int32( op(arith_op) | rd(d) | op3(edge_op3) | rs1(s1) | opf(edge8n_opf) | rs2(s2)); }
  1209   // VIS3 instructions
  1211   void movstosw( FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
  1212   void movstouw( FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
  1213   void movdtox(  FloatRegister s, Register d ) { vis3_only();  emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
  1215   void movwtos( Register s, FloatRegister d ) { vis3_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
  1216   void movxtod( Register s, FloatRegister d ) { vis3_only();  emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
  1218   void xmulx(Register s1, Register s2, Register d) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(xmulx_op3) | rs1(s1) | opf(xmulx_opf) | rs2(s2)); }
  1219   void xmulxhi(Register s1, Register s2, Register d) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(xmulx_op3) | rs1(s1) | opf(xmulxhi_opf) | rs2(s2)); }
  1221   // Crypto SHA instructions
  1223   void sha1()   { sha1_only();    emit_int32( op(arith_op) | op3(sha_op3) | opf(sha1_opf)); }
  1224   void sha256() { sha256_only();  emit_int32( op(arith_op) | op3(sha_op3) | opf(sha256_opf)); }
  1225   void sha512() { sha512_only();  emit_int32( op(arith_op) | op3(sha_op3) | opf(sha512_opf)); }
  1227   // Creation
  1228   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  1229 #ifdef CHECK_DELAY
  1230     delay_state = no_delay;
  1231 #endif
  1233 };
  1235 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial