src/cpu/x86/vm/templateTable_x86_64.cpp

Thu, 03 Nov 2011 04:12:49 -0700

author
twisti
date
Thu, 03 Nov 2011 04:12:49 -0700
changeset 3252
448691f285a5
parent 3050
fdb992d83a87
child 3368
52b5d32fbfaf
child 3391
069ab3f976d3
permissions
-rw-r--r--

7106944: assert(_pc == *pc_addr) failed may be too strong
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodDataOop.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    40 #define __ _masm->
    42 // Platform-dependent initialization
    44 void TemplateTable::pd_initialize() {
    45   // No amd64 specific initialization
    46 }
    48 // Address computation: local variables
    50 static inline Address iaddress(int n) {
    51   return Address(r14, Interpreter::local_offset_in_bytes(n));
    52 }
    54 static inline Address laddress(int n) {
    55   return iaddress(n + 1);
    56 }
    58 static inline Address faddress(int n) {
    59   return iaddress(n);
    60 }
    62 static inline Address daddress(int n) {
    63   return laddress(n);
    64 }
    66 static inline Address aaddress(int n) {
    67   return iaddress(n);
    68 }
    70 static inline Address iaddress(Register r) {
    71   return Address(r14, r, Address::times_8);
    72 }
    74 static inline Address laddress(Register r) {
    75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    76 }
    78 static inline Address faddress(Register r) {
    79   return iaddress(r);
    80 }
    82 static inline Address daddress(Register r) {
    83   return laddress(r);
    84 }
    86 static inline Address aaddress(Register r) {
    87   return iaddress(r);
    88 }
    90 static inline Address at_rsp() {
    91   return Address(rsp, 0);
    92 }
    94 // At top of Java expression stack which may be different than esp().  It
    95 // isn't for category 1 objects.
    96 static inline Address at_tos   () {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    98 }
   100 static inline Address at_tos_p1() {
   101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
   102 }
   104 static inline Address at_tos_p2() {
   105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
   106 }
   108 static inline Address at_tos_p3() {
   109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   110 }
   112 // Condition conversion
   113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   114   switch (cc) {
   115   case TemplateTable::equal        : return Assembler::notEqual;
   116   case TemplateTable::not_equal    : return Assembler::equal;
   117   case TemplateTable::less         : return Assembler::greaterEqual;
   118   case TemplateTable::less_equal   : return Assembler::greater;
   119   case TemplateTable::greater      : return Assembler::lessEqual;
   120   case TemplateTable::greater_equal: return Assembler::less;
   121   }
   122   ShouldNotReachHere();
   123   return Assembler::zero;
   124 }
   127 // Miscelaneous helper routines
   128 // Store an oop (or NULL) at the address described by obj.
   129 // If val == noreg this means store a NULL
   131 static void do_oop_store(InterpreterMacroAssembler* _masm,
   132                          Address obj,
   133                          Register val,
   134                          BarrierSet::Name barrier,
   135                          bool precise) {
   136   assert(val == noreg || val == rax, "parameter is just for looks");
   137   switch (barrier) {
   138 #ifndef SERIALGC
   139     case BarrierSet::G1SATBCT:
   140     case BarrierSet::G1SATBCTLogging:
   141       {
   142         // flatten object address if needed
   143         if (obj.index() == noreg && obj.disp() == 0) {
   144           if (obj.base() != rdx) {
   145             __ movq(rdx, obj.base());
   146           }
   147         } else {
   148           __ leaq(rdx, obj);
   149         }
   150         __ g1_write_barrier_pre(rdx /* obj */,
   151                                 rbx /* pre_val */,
   152                                 r15_thread /* thread */,
   153                                 r8  /* tmp */,
   154                                 val != noreg /* tosca_live */,
   155                                 false /* expand_call */);
   156         if (val == noreg) {
   157           __ store_heap_oop_null(Address(rdx, 0));
   158         } else {
   159           __ store_heap_oop(Address(rdx, 0), val);
   160           __ g1_write_barrier_post(rdx /* store_adr */,
   161                                    val /* new_val */,
   162                                    r15_thread /* thread */,
   163                                    r8 /* tmp */,
   164                                    rbx /* tmp2 */);
   165         }
   167       }
   168       break;
   169 #endif // SERIALGC
   170     case BarrierSet::CardTableModRef:
   171     case BarrierSet::CardTableExtension:
   172       {
   173         if (val == noreg) {
   174           __ store_heap_oop_null(obj);
   175         } else {
   176           __ store_heap_oop(obj, val);
   177           // flatten object address if needed
   178           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   179             __ store_check(obj.base());
   180           } else {
   181             __ leaq(rdx, obj);
   182             __ store_check(rdx);
   183           }
   184         }
   185       }
   186       break;
   187     case BarrierSet::ModRef:
   188     case BarrierSet::Other:
   189       if (val == noreg) {
   190         __ store_heap_oop_null(obj);
   191       } else {
   192         __ store_heap_oop(obj, val);
   193       }
   194       break;
   195     default      :
   196       ShouldNotReachHere();
   198   }
   199 }
   201 Address TemplateTable::at_bcp(int offset) {
   202   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   203   return Address(r13, offset);
   204 }
   206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   207                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   208                                    int byte_no) {
   209   if (!RewriteBytecodes)  return;
   210   Label L_patch_done;
   212   switch (bc) {
   213   case Bytecodes::_fast_aputfield:
   214   case Bytecodes::_fast_bputfield:
   215   case Bytecodes::_fast_cputfield:
   216   case Bytecodes::_fast_dputfield:
   217   case Bytecodes::_fast_fputfield:
   218   case Bytecodes::_fast_iputfield:
   219   case Bytecodes::_fast_lputfield:
   220   case Bytecodes::_fast_sputfield:
   221     {
   222       // We skip bytecode quickening for putfield instructions when
   223       // the put_code written to the constant pool cache is zero.
   224       // This is required so that every execution of this instruction
   225       // calls out to InterpreterRuntime::resolve_get_put to do
   226       // additional, required work.
   227       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   228       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   229       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
   230       __ movl(bc_reg, bc);
   231       __ cmpl(temp_reg, (int) 0);
   232       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   233     }
   234     break;
   235   default:
   236     assert(byte_no == -1, "sanity");
   237     // the pair bytecodes have already done the load.
   238     if (load_bc_into_bc_reg) {
   239       __ movl(bc_reg, bc);
   240     }
   241   }
   243   if (JvmtiExport::can_post_breakpoint()) {
   244     Label L_fast_patch;
   245     // if a breakpoint is present we can't rewrite the stream directly
   246     __ movzbl(temp_reg, at_bcp(0));
   247     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   248     __ jcc(Assembler::notEqual, L_fast_patch);
   249     __ get_method(temp_reg);
   250     // Let breakpoint table handling rewrite to quicker bytecode
   251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
   252 #ifndef ASSERT
   253     __ jmpb(L_patch_done);
   254 #else
   255     __ jmp(L_patch_done);
   256 #endif
   257     __ bind(L_fast_patch);
   258   }
   260 #ifdef ASSERT
   261   Label L_okay;
   262   __ load_unsigned_byte(temp_reg, at_bcp(0));
   263   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
   264   __ jcc(Assembler::equal, L_okay);
   265   __ cmpl(temp_reg, bc_reg);
   266   __ jcc(Assembler::equal, L_okay);
   267   __ stop("patching the wrong bytecode");
   268   __ bind(L_okay);
   269 #endif
   271   // patch bytecode
   272   __ movb(at_bcp(0), bc_reg);
   273   __ bind(L_patch_done);
   274 }
   277 // Individual instructions
   279 void TemplateTable::nop() {
   280   transition(vtos, vtos);
   281   // nothing to do
   282 }
   284 void TemplateTable::shouldnotreachhere() {
   285   transition(vtos, vtos);
   286   __ stop("shouldnotreachhere bytecode");
   287 }
   289 void TemplateTable::aconst_null() {
   290   transition(vtos, atos);
   291   __ xorl(rax, rax);
   292 }
   294 void TemplateTable::iconst(int value) {
   295   transition(vtos, itos);
   296   if (value == 0) {
   297     __ xorl(rax, rax);
   298   } else {
   299     __ movl(rax, value);
   300   }
   301 }
   303 void TemplateTable::lconst(int value) {
   304   transition(vtos, ltos);
   305   if (value == 0) {
   306     __ xorl(rax, rax);
   307   } else {
   308     __ movl(rax, value);
   309   }
   310 }
   312 void TemplateTable::fconst(int value) {
   313   transition(vtos, ftos);
   314   static float one = 1.0f, two = 2.0f;
   315   switch (value) {
   316   case 0:
   317     __ xorps(xmm0, xmm0);
   318     break;
   319   case 1:
   320     __ movflt(xmm0, ExternalAddress((address) &one));
   321     break;
   322   case 2:
   323     __ movflt(xmm0, ExternalAddress((address) &two));
   324     break;
   325   default:
   326     ShouldNotReachHere();
   327     break;
   328   }
   329 }
   331 void TemplateTable::dconst(int value) {
   332   transition(vtos, dtos);
   333   static double one = 1.0;
   334   switch (value) {
   335   case 0:
   336     __ xorpd(xmm0, xmm0);
   337     break;
   338   case 1:
   339     __ movdbl(xmm0, ExternalAddress((address) &one));
   340     break;
   341   default:
   342     ShouldNotReachHere();
   343     break;
   344   }
   345 }
   347 void TemplateTable::bipush() {
   348   transition(vtos, itos);
   349   __ load_signed_byte(rax, at_bcp(1));
   350 }
   352 void TemplateTable::sipush() {
   353   transition(vtos, itos);
   354   __ load_unsigned_short(rax, at_bcp(1));
   355   __ bswapl(rax);
   356   __ sarl(rax, 16);
   357 }
   359 void TemplateTable::ldc(bool wide) {
   360   transition(vtos, vtos);
   361   Label call_ldc, notFloat, notClass, Done;
   363   if (wide) {
   364     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   365   } else {
   366     __ load_unsigned_byte(rbx, at_bcp(1));
   367   }
   369   __ get_cpool_and_tags(rcx, rax);
   370   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   371   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   373   // get type
   374   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   376   // unresolved string - get the resolved string
   377   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   378   __ jccb(Assembler::equal, call_ldc);
   380   // unresolved class - get the resolved class
   381   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   382   __ jccb(Assembler::equal, call_ldc);
   384   // unresolved class in error state - call into runtime to throw the error
   385   // from the first resolution attempt
   386   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   387   __ jccb(Assembler::equal, call_ldc);
   389   // resolved class - need to call vm to get java mirror of the class
   390   __ cmpl(rdx, JVM_CONSTANT_Class);
   391   __ jcc(Assembler::notEqual, notClass);
   393   __ bind(call_ldc);
   394   __ movl(c_rarg1, wide);
   395   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   396   __ push_ptr(rax);
   397   __ verify_oop(rax);
   398   __ jmp(Done);
   400   __ bind(notClass);
   401   __ cmpl(rdx, JVM_CONSTANT_Float);
   402   __ jccb(Assembler::notEqual, notFloat);
   403   // ftos
   404   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   405   __ push_f();
   406   __ jmp(Done);
   408   __ bind(notFloat);
   409 #ifdef ASSERT
   410   {
   411     Label L;
   412     __ cmpl(rdx, JVM_CONSTANT_Integer);
   413     __ jcc(Assembler::equal, L);
   414     __ cmpl(rdx, JVM_CONSTANT_String);
   415     __ jcc(Assembler::equal, L);
   416     __ cmpl(rdx, JVM_CONSTANT_Object);
   417     __ jcc(Assembler::equal, L);
   418     __ stop("unexpected tag type in ldc");
   419     __ bind(L);
   420   }
   421 #endif
   422   // atos and itos
   423   Label isOop;
   424   __ cmpl(rdx, JVM_CONSTANT_Integer);
   425   __ jcc(Assembler::notEqual, isOop);
   426   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   427   __ push_i(rax);
   428   __ jmp(Done);
   430   __ bind(isOop);
   431   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
   432   __ push_ptr(rax);
   434   if (VerifyOops) {
   435     __ verify_oop(rax);
   436   }
   438   __ bind(Done);
   439 }
   441 // Fast path for caching oop constants.
   442 // %%% We should use this to handle Class and String constants also.
   443 // %%% It will simplify the ldc/primitive path considerably.
   444 void TemplateTable::fast_aldc(bool wide) {
   445   transition(vtos, atos);
   447   if (!EnableInvokeDynamic) {
   448     // We should not encounter this bytecode if !EnableInvokeDynamic.
   449     // The verifier will stop it.  However, if we get past the verifier,
   450     // this will stop the thread in a reasonable way, without crashing the JVM.
   451     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   452                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   453     // the call_VM checks for exception, so we should never return here.
   454     __ should_not_reach_here();
   455     return;
   456   }
   458   const Register cache = rcx;
   459   const Register index = rdx;
   461   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   462   if (VerifyOops) {
   463     __ verify_oop(rax);
   464   }
   466   Label L_done, L_throw_exception;
   467   const Register con_klass_temp = rcx;  // same as cache
   468   const Register array_klass_temp = rdx;  // same as index
   469   __ load_klass(con_klass_temp, rax);
   470   __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
   471   __ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
   472   __ jcc(Assembler::notEqual, L_done);
   473   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
   474   __ jcc(Assembler::notEqual, L_throw_exception);
   475   __ xorptr(rax, rax);
   476   __ jmp(L_done);
   478   // Load the exception from the system-array which wraps it:
   479   __ bind(L_throw_exception);
   480   __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   481   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   483   __ bind(L_done);
   484 }
   486 void TemplateTable::ldc2_w() {
   487   transition(vtos, vtos);
   488   Label Long, Done;
   489   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   491   __ get_cpool_and_tags(rcx, rax);
   492   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   493   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   495   // get type
   496   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   497           JVM_CONSTANT_Double);
   498   __ jccb(Assembler::notEqual, Long);
   499   // dtos
   500   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   501   __ push_d();
   502   __ jmpb(Done);
   504   __ bind(Long);
   505   // ltos
   506   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   507   __ push_l();
   509   __ bind(Done);
   510 }
   512 void TemplateTable::locals_index(Register reg, int offset) {
   513   __ load_unsigned_byte(reg, at_bcp(offset));
   514   __ negptr(reg);
   515 }
   517 void TemplateTable::iload() {
   518   transition(vtos, itos);
   519   if (RewriteFrequentPairs) {
   520     Label rewrite, done;
   521     const Register bc = c_rarg3;
   522     assert(rbx != bc, "register damaged");
   524     // get next byte
   525     __ load_unsigned_byte(rbx,
   526                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   527     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   528     // last two iloads in a pair.  Comparing against fast_iload means that
   529     // the next bytecode is neither an iload or a caload, and therefore
   530     // an iload pair.
   531     __ cmpl(rbx, Bytecodes::_iload);
   532     __ jcc(Assembler::equal, done);
   534     __ cmpl(rbx, Bytecodes::_fast_iload);
   535     __ movl(bc, Bytecodes::_fast_iload2);
   536     __ jccb(Assembler::equal, rewrite);
   538     // if _caload, rewrite to fast_icaload
   539     __ cmpl(rbx, Bytecodes::_caload);
   540     __ movl(bc, Bytecodes::_fast_icaload);
   541     __ jccb(Assembler::equal, rewrite);
   543     // rewrite so iload doesn't check again.
   544     __ movl(bc, Bytecodes::_fast_iload);
   546     // rewrite
   547     // bc: fast bytecode
   548     __ bind(rewrite);
   549     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   550     __ bind(done);
   551   }
   553   // Get the local value into tos
   554   locals_index(rbx);
   555   __ movl(rax, iaddress(rbx));
   556 }
   558 void TemplateTable::fast_iload2() {
   559   transition(vtos, itos);
   560   locals_index(rbx);
   561   __ movl(rax, iaddress(rbx));
   562   __ push(itos);
   563   locals_index(rbx, 3);
   564   __ movl(rax, iaddress(rbx));
   565 }
   567 void TemplateTable::fast_iload() {
   568   transition(vtos, itos);
   569   locals_index(rbx);
   570   __ movl(rax, iaddress(rbx));
   571 }
   573 void TemplateTable::lload() {
   574   transition(vtos, ltos);
   575   locals_index(rbx);
   576   __ movq(rax, laddress(rbx));
   577 }
   579 void TemplateTable::fload() {
   580   transition(vtos, ftos);
   581   locals_index(rbx);
   582   __ movflt(xmm0, faddress(rbx));
   583 }
   585 void TemplateTable::dload() {
   586   transition(vtos, dtos);
   587   locals_index(rbx);
   588   __ movdbl(xmm0, daddress(rbx));
   589 }
   591 void TemplateTable::aload() {
   592   transition(vtos, atos);
   593   locals_index(rbx);
   594   __ movptr(rax, aaddress(rbx));
   595 }
   597 void TemplateTable::locals_index_wide(Register reg) {
   598   __ movl(reg, at_bcp(2));
   599   __ bswapl(reg);
   600   __ shrl(reg, 16);
   601   __ negptr(reg);
   602 }
   604 void TemplateTable::wide_iload() {
   605   transition(vtos, itos);
   606   locals_index_wide(rbx);
   607   __ movl(rax, iaddress(rbx));
   608 }
   610 void TemplateTable::wide_lload() {
   611   transition(vtos, ltos);
   612   locals_index_wide(rbx);
   613   __ movq(rax, laddress(rbx));
   614 }
   616 void TemplateTable::wide_fload() {
   617   transition(vtos, ftos);
   618   locals_index_wide(rbx);
   619   __ movflt(xmm0, faddress(rbx));
   620 }
   622 void TemplateTable::wide_dload() {
   623   transition(vtos, dtos);
   624   locals_index_wide(rbx);
   625   __ movdbl(xmm0, daddress(rbx));
   626 }
   628 void TemplateTable::wide_aload() {
   629   transition(vtos, atos);
   630   locals_index_wide(rbx);
   631   __ movptr(rax, aaddress(rbx));
   632 }
   634 void TemplateTable::index_check(Register array, Register index) {
   635   // destroys rbx
   636   // check array
   637   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   638   // sign extend index for use by indexed load
   639   __ movl2ptr(index, index);
   640   // check index
   641   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   642   if (index != rbx) {
   643     // ??? convention: move aberrant index into ebx for exception message
   644     assert(rbx != array, "different registers");
   645     __ movl(rbx, index);
   646   }
   647   __ jump_cc(Assembler::aboveEqual,
   648              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   649 }
   651 void TemplateTable::iaload() {
   652   transition(itos, itos);
   653   __ pop_ptr(rdx);
   654   // eax: index
   655   // rdx: array
   656   index_check(rdx, rax); // kills rbx
   657   __ movl(rax, Address(rdx, rax,
   658                        Address::times_4,
   659                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   660 }
   662 void TemplateTable::laload() {
   663   transition(itos, ltos);
   664   __ pop_ptr(rdx);
   665   // eax: index
   666   // rdx: array
   667   index_check(rdx, rax); // kills rbx
   668   __ movq(rax, Address(rdx, rbx,
   669                        Address::times_8,
   670                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   671 }
   673 void TemplateTable::faload() {
   674   transition(itos, ftos);
   675   __ pop_ptr(rdx);
   676   // eax: index
   677   // rdx: array
   678   index_check(rdx, rax); // kills rbx
   679   __ movflt(xmm0, Address(rdx, rax,
   680                          Address::times_4,
   681                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   682 }
   684 void TemplateTable::daload() {
   685   transition(itos, dtos);
   686   __ pop_ptr(rdx);
   687   // eax: index
   688   // rdx: array
   689   index_check(rdx, rax); // kills rbx
   690   __ movdbl(xmm0, Address(rdx, rax,
   691                           Address::times_8,
   692                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   693 }
   695 void TemplateTable::aaload() {
   696   transition(itos, atos);
   697   __ pop_ptr(rdx);
   698   // eax: index
   699   // rdx: array
   700   index_check(rdx, rax); // kills rbx
   701   __ load_heap_oop(rax, Address(rdx, rax,
   702                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   703                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   704 }
   706 void TemplateTable::baload() {
   707   transition(itos, itos);
   708   __ pop_ptr(rdx);
   709   // eax: index
   710   // rdx: array
   711   index_check(rdx, rax); // kills rbx
   712   __ load_signed_byte(rax,
   713                       Address(rdx, rax,
   714                               Address::times_1,
   715                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   716 }
   718 void TemplateTable::caload() {
   719   transition(itos, itos);
   720   __ pop_ptr(rdx);
   721   // eax: index
   722   // rdx: array
   723   index_check(rdx, rax); // kills rbx
   724   __ load_unsigned_short(rax,
   725                          Address(rdx, rax,
   726                                  Address::times_2,
   727                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   728 }
   730 // iload followed by caload frequent pair
   731 void TemplateTable::fast_icaload() {
   732   transition(vtos, itos);
   733   // load index out of locals
   734   locals_index(rbx);
   735   __ movl(rax, iaddress(rbx));
   737   // eax: index
   738   // rdx: array
   739   __ pop_ptr(rdx);
   740   index_check(rdx, rax); // kills rbx
   741   __ load_unsigned_short(rax,
   742                          Address(rdx, rax,
   743                                  Address::times_2,
   744                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   745 }
   747 void TemplateTable::saload() {
   748   transition(itos, itos);
   749   __ pop_ptr(rdx);
   750   // eax: index
   751   // rdx: array
   752   index_check(rdx, rax); // kills rbx
   753   __ load_signed_short(rax,
   754                        Address(rdx, rax,
   755                                Address::times_2,
   756                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   757 }
   759 void TemplateTable::iload(int n) {
   760   transition(vtos, itos);
   761   __ movl(rax, iaddress(n));
   762 }
   764 void TemplateTable::lload(int n) {
   765   transition(vtos, ltos);
   766   __ movq(rax, laddress(n));
   767 }
   769 void TemplateTable::fload(int n) {
   770   transition(vtos, ftos);
   771   __ movflt(xmm0, faddress(n));
   772 }
   774 void TemplateTable::dload(int n) {
   775   transition(vtos, dtos);
   776   __ movdbl(xmm0, daddress(n));
   777 }
   779 void TemplateTable::aload(int n) {
   780   transition(vtos, atos);
   781   __ movptr(rax, aaddress(n));
   782 }
   784 void TemplateTable::aload_0() {
   785   transition(vtos, atos);
   786   // According to bytecode histograms, the pairs:
   787   //
   788   // _aload_0, _fast_igetfield
   789   // _aload_0, _fast_agetfield
   790   // _aload_0, _fast_fgetfield
   791   //
   792   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   793   // _aload_0 bytecode checks if the next bytecode is either
   794   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   795   // rewrites the current bytecode into a pair bytecode; otherwise it
   796   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   797   // the pair check anymore.
   798   //
   799   // Note: If the next bytecode is _getfield, the rewrite must be
   800   //       delayed, otherwise we may miss an opportunity for a pair.
   801   //
   802   // Also rewrite frequent pairs
   803   //   aload_0, aload_1
   804   //   aload_0, iload_1
   805   // These bytecodes with a small amount of code are most profitable
   806   // to rewrite
   807   if (RewriteFrequentPairs) {
   808     Label rewrite, done;
   809     const Register bc = c_rarg3;
   810     assert(rbx != bc, "register damaged");
   811     // get next byte
   812     __ load_unsigned_byte(rbx,
   813                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   815     // do actual aload_0
   816     aload(0);
   818     // if _getfield then wait with rewrite
   819     __ cmpl(rbx, Bytecodes::_getfield);
   820     __ jcc(Assembler::equal, done);
   822     // if _igetfield then reqrite to _fast_iaccess_0
   823     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   824            Bytecodes::_aload_0,
   825            "fix bytecode definition");
   826     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   827     __ movl(bc, Bytecodes::_fast_iaccess_0);
   828     __ jccb(Assembler::equal, rewrite);
   830     // if _agetfield then reqrite to _fast_aaccess_0
   831     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   832            Bytecodes::_aload_0,
   833            "fix bytecode definition");
   834     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   835     __ movl(bc, Bytecodes::_fast_aaccess_0);
   836     __ jccb(Assembler::equal, rewrite);
   838     // if _fgetfield then reqrite to _fast_faccess_0
   839     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   840            Bytecodes::_aload_0,
   841            "fix bytecode definition");
   842     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   843     __ movl(bc, Bytecodes::_fast_faccess_0);
   844     __ jccb(Assembler::equal, rewrite);
   846     // else rewrite to _fast_aload0
   847     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   848            Bytecodes::_aload_0,
   849            "fix bytecode definition");
   850     __ movl(bc, Bytecodes::_fast_aload_0);
   852     // rewrite
   853     // bc: fast bytecode
   854     __ bind(rewrite);
   855     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   857     __ bind(done);
   858   } else {
   859     aload(0);
   860   }
   861 }
   863 void TemplateTable::istore() {
   864   transition(itos, vtos);
   865   locals_index(rbx);
   866   __ movl(iaddress(rbx), rax);
   867 }
   869 void TemplateTable::lstore() {
   870   transition(ltos, vtos);
   871   locals_index(rbx);
   872   __ movq(laddress(rbx), rax);
   873 }
   875 void TemplateTable::fstore() {
   876   transition(ftos, vtos);
   877   locals_index(rbx);
   878   __ movflt(faddress(rbx), xmm0);
   879 }
   881 void TemplateTable::dstore() {
   882   transition(dtos, vtos);
   883   locals_index(rbx);
   884   __ movdbl(daddress(rbx), xmm0);
   885 }
   887 void TemplateTable::astore() {
   888   transition(vtos, vtos);
   889   __ pop_ptr(rax);
   890   locals_index(rbx);
   891   __ movptr(aaddress(rbx), rax);
   892 }
   894 void TemplateTable::wide_istore() {
   895   transition(vtos, vtos);
   896   __ pop_i();
   897   locals_index_wide(rbx);
   898   __ movl(iaddress(rbx), rax);
   899 }
   901 void TemplateTable::wide_lstore() {
   902   transition(vtos, vtos);
   903   __ pop_l();
   904   locals_index_wide(rbx);
   905   __ movq(laddress(rbx), rax);
   906 }
   908 void TemplateTable::wide_fstore() {
   909   transition(vtos, vtos);
   910   __ pop_f();
   911   locals_index_wide(rbx);
   912   __ movflt(faddress(rbx), xmm0);
   913 }
   915 void TemplateTable::wide_dstore() {
   916   transition(vtos, vtos);
   917   __ pop_d();
   918   locals_index_wide(rbx);
   919   __ movdbl(daddress(rbx), xmm0);
   920 }
   922 void TemplateTable::wide_astore() {
   923   transition(vtos, vtos);
   924   __ pop_ptr(rax);
   925   locals_index_wide(rbx);
   926   __ movptr(aaddress(rbx), rax);
   927 }
   929 void TemplateTable::iastore() {
   930   transition(itos, vtos);
   931   __ pop_i(rbx);
   932   __ pop_ptr(rdx);
   933   // eax: value
   934   // ebx: index
   935   // rdx: array
   936   index_check(rdx, rbx); // prefer index in ebx
   937   __ movl(Address(rdx, rbx,
   938                   Address::times_4,
   939                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   940           rax);
   941 }
   943 void TemplateTable::lastore() {
   944   transition(ltos, vtos);
   945   __ pop_i(rbx);
   946   __ pop_ptr(rdx);
   947   // rax: value
   948   // ebx: index
   949   // rdx: array
   950   index_check(rdx, rbx); // prefer index in ebx
   951   __ movq(Address(rdx, rbx,
   952                   Address::times_8,
   953                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   954           rax);
   955 }
   957 void TemplateTable::fastore() {
   958   transition(ftos, vtos);
   959   __ pop_i(rbx);
   960   __ pop_ptr(rdx);
   961   // xmm0: value
   962   // ebx:  index
   963   // rdx:  array
   964   index_check(rdx, rbx); // prefer index in ebx
   965   __ movflt(Address(rdx, rbx,
   966                    Address::times_4,
   967                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   968            xmm0);
   969 }
   971 void TemplateTable::dastore() {
   972   transition(dtos, vtos);
   973   __ pop_i(rbx);
   974   __ pop_ptr(rdx);
   975   // xmm0: value
   976   // ebx:  index
   977   // rdx:  array
   978   index_check(rdx, rbx); // prefer index in ebx
   979   __ movdbl(Address(rdx, rbx,
   980                    Address::times_8,
   981                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   982            xmm0);
   983 }
   985 void TemplateTable::aastore() {
   986   Label is_null, ok_is_subtype, done;
   987   transition(vtos, vtos);
   988   // stack: ..., array, index, value
   989   __ movptr(rax, at_tos());    // value
   990   __ movl(rcx, at_tos_p1()); // index
   991   __ movptr(rdx, at_tos_p2()); // array
   993   Address element_address(rdx, rcx,
   994                           UseCompressedOops? Address::times_4 : Address::times_8,
   995                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   997   index_check(rdx, rcx);     // kills rbx
   998   // do array store check - check for NULL value first
   999   __ testptr(rax, rax);
  1000   __ jcc(Assembler::zero, is_null);
  1002   // Move subklass into rbx
  1003   __ load_klass(rbx, rax);
  1004   // Move superklass into rax
  1005   __ load_klass(rax, rdx);
  1006   __ movptr(rax, Address(rax,
  1007                          sizeof(oopDesc) +
  1008                          objArrayKlass::element_klass_offset_in_bytes()));
  1009   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
  1010   __ lea(rdx, element_address);
  1012   // Generate subtype check.  Blows rcx, rdi
  1013   // Superklass in rax.  Subklass in rbx.
  1014   __ gen_subtype_check(rbx, ok_is_subtype);
  1016   // Come here on failure
  1017   // object is at TOS
  1018   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
  1020   // Come here on success
  1021   __ bind(ok_is_subtype);
  1023   // Get the value we will store
  1024   __ movptr(rax, at_tos());
  1025   // Now store using the appropriate barrier
  1026   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
  1027   __ jmp(done);
  1029   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
  1030   __ bind(is_null);
  1031   __ profile_null_seen(rbx);
  1033   // Store a NULL
  1034   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
  1036   // Pop stack arguments
  1037   __ bind(done);
  1038   __ addptr(rsp, 3 * Interpreter::stackElementSize);
  1041 void TemplateTable::bastore() {
  1042   transition(itos, vtos);
  1043   __ pop_i(rbx);
  1044   __ pop_ptr(rdx);
  1045   // eax: value
  1046   // ebx: index
  1047   // rdx: array
  1048   index_check(rdx, rbx); // prefer index in ebx
  1049   __ movb(Address(rdx, rbx,
  1050                   Address::times_1,
  1051                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
  1052           rax);
  1055 void TemplateTable::castore() {
  1056   transition(itos, vtos);
  1057   __ pop_i(rbx);
  1058   __ pop_ptr(rdx);
  1059   // eax: value
  1060   // ebx: index
  1061   // rdx: array
  1062   index_check(rdx, rbx);  // prefer index in ebx
  1063   __ movw(Address(rdx, rbx,
  1064                   Address::times_2,
  1065                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1066           rax);
  1069 void TemplateTable::sastore() {
  1070   castore();
  1073 void TemplateTable::istore(int n) {
  1074   transition(itos, vtos);
  1075   __ movl(iaddress(n), rax);
  1078 void TemplateTable::lstore(int n) {
  1079   transition(ltos, vtos);
  1080   __ movq(laddress(n), rax);
  1083 void TemplateTable::fstore(int n) {
  1084   transition(ftos, vtos);
  1085   __ movflt(faddress(n), xmm0);
  1088 void TemplateTable::dstore(int n) {
  1089   transition(dtos, vtos);
  1090   __ movdbl(daddress(n), xmm0);
  1093 void TemplateTable::astore(int n) {
  1094   transition(vtos, vtos);
  1095   __ pop_ptr(rax);
  1096   __ movptr(aaddress(n), rax);
  1099 void TemplateTable::pop() {
  1100   transition(vtos, vtos);
  1101   __ addptr(rsp, Interpreter::stackElementSize);
  1104 void TemplateTable::pop2() {
  1105   transition(vtos, vtos);
  1106   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1109 void TemplateTable::dup() {
  1110   transition(vtos, vtos);
  1111   __ load_ptr(0, rax);
  1112   __ push_ptr(rax);
  1113   // stack: ..., a, a
  1116 void TemplateTable::dup_x1() {
  1117   transition(vtos, vtos);
  1118   // stack: ..., a, b
  1119   __ load_ptr( 0, rax);  // load b
  1120   __ load_ptr( 1, rcx);  // load a
  1121   __ store_ptr(1, rax);  // store b
  1122   __ store_ptr(0, rcx);  // store a
  1123   __ push_ptr(rax);      // push b
  1124   // stack: ..., b, a, b
  1127 void TemplateTable::dup_x2() {
  1128   transition(vtos, vtos);
  1129   // stack: ..., a, b, c
  1130   __ load_ptr( 0, rax);  // load c
  1131   __ load_ptr( 2, rcx);  // load a
  1132   __ store_ptr(2, rax);  // store c in a
  1133   __ push_ptr(rax);      // push c
  1134   // stack: ..., c, b, c, c
  1135   __ load_ptr( 2, rax);  // load b
  1136   __ store_ptr(2, rcx);  // store a in b
  1137   // stack: ..., c, a, c, c
  1138   __ store_ptr(1, rax);  // store b in c
  1139   // stack: ..., c, a, b, c
  1142 void TemplateTable::dup2() {
  1143   transition(vtos, vtos);
  1144   // stack: ..., a, b
  1145   __ load_ptr(1, rax);  // load a
  1146   __ push_ptr(rax);     // push a
  1147   __ load_ptr(1, rax);  // load b
  1148   __ push_ptr(rax);     // push b
  1149   // stack: ..., a, b, a, b
  1152 void TemplateTable::dup2_x1() {
  1153   transition(vtos, vtos);
  1154   // stack: ..., a, b, c
  1155   __ load_ptr( 0, rcx);  // load c
  1156   __ load_ptr( 1, rax);  // load b
  1157   __ push_ptr(rax);      // push b
  1158   __ push_ptr(rcx);      // push c
  1159   // stack: ..., a, b, c, b, c
  1160   __ store_ptr(3, rcx);  // store c in b
  1161   // stack: ..., a, c, c, b, c
  1162   __ load_ptr( 4, rcx);  // load a
  1163   __ store_ptr(2, rcx);  // store a in 2nd c
  1164   // stack: ..., a, c, a, b, c
  1165   __ store_ptr(4, rax);  // store b in a
  1166   // stack: ..., b, c, a, b, c
  1169 void TemplateTable::dup2_x2() {
  1170   transition(vtos, vtos);
  1171   // stack: ..., a, b, c, d
  1172   __ load_ptr( 0, rcx);  // load d
  1173   __ load_ptr( 1, rax);  // load c
  1174   __ push_ptr(rax);      // push c
  1175   __ push_ptr(rcx);      // push d
  1176   // stack: ..., a, b, c, d, c, d
  1177   __ load_ptr( 4, rax);  // load b
  1178   __ store_ptr(2, rax);  // store b in d
  1179   __ store_ptr(4, rcx);  // store d in b
  1180   // stack: ..., a, d, c, b, c, d
  1181   __ load_ptr( 5, rcx);  // load a
  1182   __ load_ptr( 3, rax);  // load c
  1183   __ store_ptr(3, rcx);  // store a in c
  1184   __ store_ptr(5, rax);  // store c in a
  1185   // stack: ..., c, d, a, b, c, d
  1188 void TemplateTable::swap() {
  1189   transition(vtos, vtos);
  1190   // stack: ..., a, b
  1191   __ load_ptr( 1, rcx);  // load a
  1192   __ load_ptr( 0, rax);  // load b
  1193   __ store_ptr(0, rcx);  // store a in b
  1194   __ store_ptr(1, rax);  // store b in a
  1195   // stack: ..., b, a
  1198 void TemplateTable::iop2(Operation op) {
  1199   transition(itos, itos);
  1200   switch (op) {
  1201   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1202   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1203   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1204   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1205   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1206   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1207   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1208   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1209   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1210   default   : ShouldNotReachHere();
  1214 void TemplateTable::lop2(Operation op) {
  1215   transition(ltos, ltos);
  1216   switch (op) {
  1217   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1218   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1219   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1220   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1221   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1222   default   : ShouldNotReachHere();
  1226 void TemplateTable::idiv() {
  1227   transition(itos, itos);
  1228   __ movl(rcx, rax);
  1229   __ pop_i(rax);
  1230   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1231   //       they are not equal, one could do a normal division (no correction
  1232   //       needed), which may speed up this implementation for the common case.
  1233   //       (see also JVM spec., p.243 & p.271)
  1234   __ corrected_idivl(rcx);
  1237 void TemplateTable::irem() {
  1238   transition(itos, itos);
  1239   __ movl(rcx, rax);
  1240   __ pop_i(rax);
  1241   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1242   //       they are not equal, one could do a normal division (no correction
  1243   //       needed), which may speed up this implementation for the common case.
  1244   //       (see also JVM spec., p.243 & p.271)
  1245   __ corrected_idivl(rcx);
  1246   __ movl(rax, rdx);
  1249 void TemplateTable::lmul() {
  1250   transition(ltos, ltos);
  1251   __ pop_l(rdx);
  1252   __ imulq(rax, rdx);
  1255 void TemplateTable::ldiv() {
  1256   transition(ltos, ltos);
  1257   __ mov(rcx, rax);
  1258   __ pop_l(rax);
  1259   // generate explicit div0 check
  1260   __ testq(rcx, rcx);
  1261   __ jump_cc(Assembler::zero,
  1262              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1263   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1264   //       they are not equal, one could do a normal division (no correction
  1265   //       needed), which may speed up this implementation for the common case.
  1266   //       (see also JVM spec., p.243 & p.271)
  1267   __ corrected_idivq(rcx); // kills rbx
  1270 void TemplateTable::lrem() {
  1271   transition(ltos, ltos);
  1272   __ mov(rcx, rax);
  1273   __ pop_l(rax);
  1274   __ testq(rcx, rcx);
  1275   __ jump_cc(Assembler::zero,
  1276              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1277   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1278   //       they are not equal, one could do a normal division (no correction
  1279   //       needed), which may speed up this implementation for the common case.
  1280   //       (see also JVM spec., p.243 & p.271)
  1281   __ corrected_idivq(rcx); // kills rbx
  1282   __ mov(rax, rdx);
  1285 void TemplateTable::lshl() {
  1286   transition(itos, ltos);
  1287   __ movl(rcx, rax);                             // get shift count
  1288   __ pop_l(rax);                                 // get shift value
  1289   __ shlq(rax);
  1292 void TemplateTable::lshr() {
  1293   transition(itos, ltos);
  1294   __ movl(rcx, rax);                             // get shift count
  1295   __ pop_l(rax);                                 // get shift value
  1296   __ sarq(rax);
  1299 void TemplateTable::lushr() {
  1300   transition(itos, ltos);
  1301   __ movl(rcx, rax);                             // get shift count
  1302   __ pop_l(rax);                                 // get shift value
  1303   __ shrq(rax);
  1306 void TemplateTable::fop2(Operation op) {
  1307   transition(ftos, ftos);
  1308   switch (op) {
  1309   case add:
  1310     __ addss(xmm0, at_rsp());
  1311     __ addptr(rsp, Interpreter::stackElementSize);
  1312     break;
  1313   case sub:
  1314     __ movflt(xmm1, xmm0);
  1315     __ pop_f(xmm0);
  1316     __ subss(xmm0, xmm1);
  1317     break;
  1318   case mul:
  1319     __ mulss(xmm0, at_rsp());
  1320     __ addptr(rsp, Interpreter::stackElementSize);
  1321     break;
  1322   case div:
  1323     __ movflt(xmm1, xmm0);
  1324     __ pop_f(xmm0);
  1325     __ divss(xmm0, xmm1);
  1326     break;
  1327   case rem:
  1328     __ movflt(xmm1, xmm0);
  1329     __ pop_f(xmm0);
  1330     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1331     break;
  1332   default:
  1333     ShouldNotReachHere();
  1334     break;
  1338 void TemplateTable::dop2(Operation op) {
  1339   transition(dtos, dtos);
  1340   switch (op) {
  1341   case add:
  1342     __ addsd(xmm0, at_rsp());
  1343     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1344     break;
  1345   case sub:
  1346     __ movdbl(xmm1, xmm0);
  1347     __ pop_d(xmm0);
  1348     __ subsd(xmm0, xmm1);
  1349     break;
  1350   case mul:
  1351     __ mulsd(xmm0, at_rsp());
  1352     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1353     break;
  1354   case div:
  1355     __ movdbl(xmm1, xmm0);
  1356     __ pop_d(xmm0);
  1357     __ divsd(xmm0, xmm1);
  1358     break;
  1359   case rem:
  1360     __ movdbl(xmm1, xmm0);
  1361     __ pop_d(xmm0);
  1362     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1363     break;
  1364   default:
  1365     ShouldNotReachHere();
  1366     break;
  1370 void TemplateTable::ineg() {
  1371   transition(itos, itos);
  1372   __ negl(rax);
  1375 void TemplateTable::lneg() {
  1376   transition(ltos, ltos);
  1377   __ negq(rax);
  1380 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1381 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1382   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1383   // of 128-bits operands for SSE instructions.
  1384   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1385   // Store the value to a 128-bits operand.
  1386   operand[0] = lo;
  1387   operand[1] = hi;
  1388   return operand;
  1391 // Buffer for 128-bits masks used by SSE instructions.
  1392 static jlong float_signflip_pool[2*2];
  1393 static jlong double_signflip_pool[2*2];
  1395 void TemplateTable::fneg() {
  1396   transition(ftos, ftos);
  1397   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1398   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1401 void TemplateTable::dneg() {
  1402   transition(dtos, dtos);
  1403   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1404   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1407 void TemplateTable::iinc() {
  1408   transition(vtos, vtos);
  1409   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1410   locals_index(rbx);
  1411   __ addl(iaddress(rbx), rdx);
  1414 void TemplateTable::wide_iinc() {
  1415   transition(vtos, vtos);
  1416   __ movl(rdx, at_bcp(4)); // get constant
  1417   locals_index_wide(rbx);
  1418   __ bswapl(rdx); // swap bytes & sign-extend constant
  1419   __ sarl(rdx, 16);
  1420   __ addl(iaddress(rbx), rdx);
  1421   // Note: should probably use only one movl to get both
  1422   //       the index and the constant -> fix this
  1425 void TemplateTable::convert() {
  1426   // Checking
  1427 #ifdef ASSERT
  1429     TosState tos_in  = ilgl;
  1430     TosState tos_out = ilgl;
  1431     switch (bytecode()) {
  1432     case Bytecodes::_i2l: // fall through
  1433     case Bytecodes::_i2f: // fall through
  1434     case Bytecodes::_i2d: // fall through
  1435     case Bytecodes::_i2b: // fall through
  1436     case Bytecodes::_i2c: // fall through
  1437     case Bytecodes::_i2s: tos_in = itos; break;
  1438     case Bytecodes::_l2i: // fall through
  1439     case Bytecodes::_l2f: // fall through
  1440     case Bytecodes::_l2d: tos_in = ltos; break;
  1441     case Bytecodes::_f2i: // fall through
  1442     case Bytecodes::_f2l: // fall through
  1443     case Bytecodes::_f2d: tos_in = ftos; break;
  1444     case Bytecodes::_d2i: // fall through
  1445     case Bytecodes::_d2l: // fall through
  1446     case Bytecodes::_d2f: tos_in = dtos; break;
  1447     default             : ShouldNotReachHere();
  1449     switch (bytecode()) {
  1450     case Bytecodes::_l2i: // fall through
  1451     case Bytecodes::_f2i: // fall through
  1452     case Bytecodes::_d2i: // fall through
  1453     case Bytecodes::_i2b: // fall through
  1454     case Bytecodes::_i2c: // fall through
  1455     case Bytecodes::_i2s: tos_out = itos; break;
  1456     case Bytecodes::_i2l: // fall through
  1457     case Bytecodes::_f2l: // fall through
  1458     case Bytecodes::_d2l: tos_out = ltos; break;
  1459     case Bytecodes::_i2f: // fall through
  1460     case Bytecodes::_l2f: // fall through
  1461     case Bytecodes::_d2f: tos_out = ftos; break;
  1462     case Bytecodes::_i2d: // fall through
  1463     case Bytecodes::_l2d: // fall through
  1464     case Bytecodes::_f2d: tos_out = dtos; break;
  1465     default             : ShouldNotReachHere();
  1467     transition(tos_in, tos_out);
  1469 #endif // ASSERT
  1471   static const int64_t is_nan = 0x8000000000000000L;
  1473   // Conversion
  1474   switch (bytecode()) {
  1475   case Bytecodes::_i2l:
  1476     __ movslq(rax, rax);
  1477     break;
  1478   case Bytecodes::_i2f:
  1479     __ cvtsi2ssl(xmm0, rax);
  1480     break;
  1481   case Bytecodes::_i2d:
  1482     __ cvtsi2sdl(xmm0, rax);
  1483     break;
  1484   case Bytecodes::_i2b:
  1485     __ movsbl(rax, rax);
  1486     break;
  1487   case Bytecodes::_i2c:
  1488     __ movzwl(rax, rax);
  1489     break;
  1490   case Bytecodes::_i2s:
  1491     __ movswl(rax, rax);
  1492     break;
  1493   case Bytecodes::_l2i:
  1494     __ movl(rax, rax);
  1495     break;
  1496   case Bytecodes::_l2f:
  1497     __ cvtsi2ssq(xmm0, rax);
  1498     break;
  1499   case Bytecodes::_l2d:
  1500     __ cvtsi2sdq(xmm0, rax);
  1501     break;
  1502   case Bytecodes::_f2i:
  1504     Label L;
  1505     __ cvttss2sil(rax, xmm0);
  1506     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1507     __ jcc(Assembler::notEqual, L);
  1508     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1509     __ bind(L);
  1511     break;
  1512   case Bytecodes::_f2l:
  1514     Label L;
  1515     __ cvttss2siq(rax, xmm0);
  1516     // NaN or overflow/underflow?
  1517     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1518     __ jcc(Assembler::notEqual, L);
  1519     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1520     __ bind(L);
  1522     break;
  1523   case Bytecodes::_f2d:
  1524     __ cvtss2sd(xmm0, xmm0);
  1525     break;
  1526   case Bytecodes::_d2i:
  1528     Label L;
  1529     __ cvttsd2sil(rax, xmm0);
  1530     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1531     __ jcc(Assembler::notEqual, L);
  1532     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1533     __ bind(L);
  1535     break;
  1536   case Bytecodes::_d2l:
  1538     Label L;
  1539     __ cvttsd2siq(rax, xmm0);
  1540     // NaN or overflow/underflow?
  1541     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1542     __ jcc(Assembler::notEqual, L);
  1543     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1544     __ bind(L);
  1546     break;
  1547   case Bytecodes::_d2f:
  1548     __ cvtsd2ss(xmm0, xmm0);
  1549     break;
  1550   default:
  1551     ShouldNotReachHere();
  1555 void TemplateTable::lcmp() {
  1556   transition(ltos, itos);
  1557   Label done;
  1558   __ pop_l(rdx);
  1559   __ cmpq(rdx, rax);
  1560   __ movl(rax, -1);
  1561   __ jccb(Assembler::less, done);
  1562   __ setb(Assembler::notEqual, rax);
  1563   __ movzbl(rax, rax);
  1564   __ bind(done);
  1567 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1568   Label done;
  1569   if (is_float) {
  1570     // XXX get rid of pop here, use ... reg, mem32
  1571     __ pop_f(xmm1);
  1572     __ ucomiss(xmm1, xmm0);
  1573   } else {
  1574     // XXX get rid of pop here, use ... reg, mem64
  1575     __ pop_d(xmm1);
  1576     __ ucomisd(xmm1, xmm0);
  1578   if (unordered_result < 0) {
  1579     __ movl(rax, -1);
  1580     __ jccb(Assembler::parity, done);
  1581     __ jccb(Assembler::below, done);
  1582     __ setb(Assembler::notEqual, rdx);
  1583     __ movzbl(rax, rdx);
  1584   } else {
  1585     __ movl(rax, 1);
  1586     __ jccb(Assembler::parity, done);
  1587     __ jccb(Assembler::above, done);
  1588     __ movl(rax, 0);
  1589     __ jccb(Assembler::equal, done);
  1590     __ decrementl(rax);
  1592   __ bind(done);
  1595 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1596   __ get_method(rcx); // rcx holds method
  1597   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1598                                      // holds bumped taken count
  1600   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1601                              InvocationCounter::counter_offset();
  1602   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1603                               InvocationCounter::counter_offset();
  1604   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1606   // Load up edx with the branch displacement
  1607   __ movl(rdx, at_bcp(1));
  1608   __ bswapl(rdx);
  1610   if (!is_wide) {
  1611     __ sarl(rdx, 16);
  1613   __ movl2ptr(rdx, rdx);
  1615   // Handle all the JSR stuff here, then exit.
  1616   // It's much shorter and cleaner than intermingling with the non-JSR
  1617   // normal-branch stuff occurring below.
  1618   if (is_jsr) {
  1619     // Pre-load the next target bytecode into rbx
  1620     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1622     // compute return address as bci in rax
  1623     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1624                         in_bytes(constMethodOopDesc::codes_offset())));
  1625     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1626     // Adjust the bcp in r13 by the displacement in rdx
  1627     __ addptr(r13, rdx);
  1628     // jsr returns atos that is not an oop
  1629     __ push_i(rax);
  1630     __ dispatch_only(vtos);
  1631     return;
  1634   // Normal (non-jsr) branch handling
  1636   // Adjust the bcp in r13 by the displacement in rdx
  1637   __ addptr(r13, rdx);
  1639   assert(UseLoopCounter || !UseOnStackReplacement,
  1640          "on-stack-replacement requires loop counters");
  1641   Label backedge_counter_overflow;
  1642   Label profile_method;
  1643   Label dispatch;
  1644   if (UseLoopCounter) {
  1645     // increment backedge counter for backward branches
  1646     // rax: MDO
  1647     // ebx: MDO bumped taken-count
  1648     // rcx: method
  1649     // rdx: target offset
  1650     // r13: target bcp
  1651     // r14: locals pointer
  1652     __ testl(rdx, rdx);             // check if forward or backward branch
  1653     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1654     if (TieredCompilation) {
  1655       Label no_mdo;
  1656       int increment = InvocationCounter::count_increment;
  1657       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1658       if (ProfileInterpreter) {
  1659         // Are we profiling?
  1660         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1661         __ testptr(rbx, rbx);
  1662         __ jccb(Assembler::zero, no_mdo);
  1663         // Increment the MDO backedge counter
  1664         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1665                                            in_bytes(InvocationCounter::counter_offset()));
  1666         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1667                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1668         __ jmp(dispatch);
  1670       __ bind(no_mdo);
  1671       // Increment backedge counter in methodOop
  1672       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1673                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1674     } else {
  1675       // increment counter
  1676       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1677       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1678       __ movl(Address(rcx, be_offset), rax);        // store counter
  1680       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1681       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1682       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1684       if (ProfileInterpreter) {
  1685         // Test to see if we should create a method data oop
  1686         __ cmp32(rax,
  1687                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1688         __ jcc(Assembler::less, dispatch);
  1690         // if no method data exists, go to profile method
  1691         __ test_method_data_pointer(rax, profile_method);
  1693         if (UseOnStackReplacement) {
  1694           // check for overflow against ebx which is the MDO taken count
  1695           __ cmp32(rbx,
  1696                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1697           __ jcc(Assembler::below, dispatch);
  1699           // When ProfileInterpreter is on, the backedge_count comes
  1700           // from the methodDataOop, which value does not get reset on
  1701           // the call to frequency_counter_overflow().  To avoid
  1702           // excessive calls to the overflow routine while the method is
  1703           // being compiled, add a second test to make sure the overflow
  1704           // function is called only once every overflow_frequency.
  1705           const int overflow_frequency = 1024;
  1706           __ andl(rbx, overflow_frequency - 1);
  1707           __ jcc(Assembler::zero, backedge_counter_overflow);
  1710       } else {
  1711         if (UseOnStackReplacement) {
  1712           // check for overflow against eax, which is the sum of the
  1713           // counters
  1714           __ cmp32(rax,
  1715                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1716           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1721     __ bind(dispatch);
  1724   // Pre-load the next target bytecode into rbx
  1725   __ load_unsigned_byte(rbx, Address(r13, 0));
  1727   // continue with the bytecode @ target
  1728   // eax: return bci for jsr's, unused otherwise
  1729   // ebx: target bytecode
  1730   // r13: target bcp
  1731   __ dispatch_only(vtos);
  1733   if (UseLoopCounter) {
  1734     if (ProfileInterpreter) {
  1735       // Out-of-line code to allocate method data oop.
  1736       __ bind(profile_method);
  1737       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1738       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1739       __ set_method_data_pointer_for_bcp();
  1740       __ jmp(dispatch);
  1743     if (UseOnStackReplacement) {
  1744       // invocation counter overflow
  1745       __ bind(backedge_counter_overflow);
  1746       __ negptr(rdx);
  1747       __ addptr(rdx, r13); // branch bcp
  1748       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1749       __ call_VM(noreg,
  1750                  CAST_FROM_FN_PTR(address,
  1751                                   InterpreterRuntime::frequency_counter_overflow),
  1752                  rdx);
  1753       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1755       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1756       // ebx: target bytecode
  1757       // rdx: scratch
  1758       // r14: locals pointer
  1759       // r13: bcp
  1760       __ testptr(rax, rax);                        // test result
  1761       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1762       // nmethod may have been invalidated (VM may block upon call_VM return)
  1763       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1764       __ cmpl(rcx, InvalidOSREntryBci);
  1765       __ jcc(Assembler::equal, dispatch);
  1767       // We have the address of an on stack replacement routine in eax
  1768       // We need to prepare to execute the OSR method. First we must
  1769       // migrate the locals and monitors off of the stack.
  1771       __ mov(r13, rax);                             // save the nmethod
  1773       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1775       // eax is OSR buffer, move it to expected parameter location
  1776       __ mov(j_rarg0, rax);
  1778       // We use j_rarg definitions here so that registers don't conflict as parameter
  1779       // registers change across platforms as we are in the midst of a calling
  1780       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1782       const Register retaddr = j_rarg2;
  1783       const Register sender_sp = j_rarg1;
  1785       // pop the interpreter frame
  1786       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1787       __ leave();                                // remove frame anchor
  1788       __ pop(retaddr);                           // get return address
  1789       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1790       // Ensure compiled code always sees stack at proper alignment
  1791       __ andptr(rsp, -(StackAlignmentInBytes));
  1793       // unlike x86 we need no specialized return from compiled code
  1794       // to the interpreter or the call stub.
  1796       // push the return address
  1797       __ push(retaddr);
  1799       // and begin the OSR nmethod
  1800       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1806 void TemplateTable::if_0cmp(Condition cc) {
  1807   transition(itos, vtos);
  1808   // assume branch is more often taken than not (loops use backward branches)
  1809   Label not_taken;
  1810   __ testl(rax, rax);
  1811   __ jcc(j_not(cc), not_taken);
  1812   branch(false, false);
  1813   __ bind(not_taken);
  1814   __ profile_not_taken_branch(rax);
  1817 void TemplateTable::if_icmp(Condition cc) {
  1818   transition(itos, vtos);
  1819   // assume branch is more often taken than not (loops use backward branches)
  1820   Label not_taken;
  1821   __ pop_i(rdx);
  1822   __ cmpl(rdx, rax);
  1823   __ jcc(j_not(cc), not_taken);
  1824   branch(false, false);
  1825   __ bind(not_taken);
  1826   __ profile_not_taken_branch(rax);
  1829 void TemplateTable::if_nullcmp(Condition cc) {
  1830   transition(atos, vtos);
  1831   // assume branch is more often taken than not (loops use backward branches)
  1832   Label not_taken;
  1833   __ testptr(rax, rax);
  1834   __ jcc(j_not(cc), not_taken);
  1835   branch(false, false);
  1836   __ bind(not_taken);
  1837   __ profile_not_taken_branch(rax);
  1840 void TemplateTable::if_acmp(Condition cc) {
  1841   transition(atos, vtos);
  1842   // assume branch is more often taken than not (loops use backward branches)
  1843   Label not_taken;
  1844   __ pop_ptr(rdx);
  1845   __ cmpptr(rdx, rax);
  1846   __ jcc(j_not(cc), not_taken);
  1847   branch(false, false);
  1848   __ bind(not_taken);
  1849   __ profile_not_taken_branch(rax);
  1852 void TemplateTable::ret() {
  1853   transition(vtos, vtos);
  1854   locals_index(rbx);
  1855   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1856   __ profile_ret(rbx, rcx);
  1857   __ get_method(rax);
  1858   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1859   __ lea(r13, Address(r13, rbx, Address::times_1,
  1860                       constMethodOopDesc::codes_offset()));
  1861   __ dispatch_next(vtos);
  1864 void TemplateTable::wide_ret() {
  1865   transition(vtos, vtos);
  1866   locals_index_wide(rbx);
  1867   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1868   __ profile_ret(rbx, rcx);
  1869   __ get_method(rax);
  1870   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1871   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1872   __ dispatch_next(vtos);
  1875 void TemplateTable::tableswitch() {
  1876   Label default_case, continue_execution;
  1877   transition(itos, vtos);
  1878   // align r13
  1879   __ lea(rbx, at_bcp(BytesPerInt));
  1880   __ andptr(rbx, -BytesPerInt);
  1881   // load lo & hi
  1882   __ movl(rcx, Address(rbx, BytesPerInt));
  1883   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1884   __ bswapl(rcx);
  1885   __ bswapl(rdx);
  1886   // check against lo & hi
  1887   __ cmpl(rax, rcx);
  1888   __ jcc(Assembler::less, default_case);
  1889   __ cmpl(rax, rdx);
  1890   __ jcc(Assembler::greater, default_case);
  1891   // lookup dispatch offset
  1892   __ subl(rax, rcx);
  1893   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1894   __ profile_switch_case(rax, rbx, rcx);
  1895   // continue execution
  1896   __ bind(continue_execution);
  1897   __ bswapl(rdx);
  1898   __ movl2ptr(rdx, rdx);
  1899   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1900   __ addptr(r13, rdx);
  1901   __ dispatch_only(vtos);
  1902   // handle default
  1903   __ bind(default_case);
  1904   __ profile_switch_default(rax);
  1905   __ movl(rdx, Address(rbx, 0));
  1906   __ jmp(continue_execution);
  1909 void TemplateTable::lookupswitch() {
  1910   transition(itos, itos);
  1911   __ stop("lookupswitch bytecode should have been rewritten");
  1914 void TemplateTable::fast_linearswitch() {
  1915   transition(itos, vtos);
  1916   Label loop_entry, loop, found, continue_execution;
  1917   // bswap rax so we can avoid bswapping the table entries
  1918   __ bswapl(rax);
  1919   // align r13
  1920   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1921                                     // this instruction (change offsets
  1922                                     // below)
  1923   __ andptr(rbx, -BytesPerInt);
  1924   // set counter
  1925   __ movl(rcx, Address(rbx, BytesPerInt));
  1926   __ bswapl(rcx);
  1927   __ jmpb(loop_entry);
  1928   // table search
  1929   __ bind(loop);
  1930   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1931   __ jcc(Assembler::equal, found);
  1932   __ bind(loop_entry);
  1933   __ decrementl(rcx);
  1934   __ jcc(Assembler::greaterEqual, loop);
  1935   // default case
  1936   __ profile_switch_default(rax);
  1937   __ movl(rdx, Address(rbx, 0));
  1938   __ jmp(continue_execution);
  1939   // entry found -> get offset
  1940   __ bind(found);
  1941   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1942   __ profile_switch_case(rcx, rax, rbx);
  1943   // continue execution
  1944   __ bind(continue_execution);
  1945   __ bswapl(rdx);
  1946   __ movl2ptr(rdx, rdx);
  1947   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1948   __ addptr(r13, rdx);
  1949   __ dispatch_only(vtos);
  1952 void TemplateTable::fast_binaryswitch() {
  1953   transition(itos, vtos);
  1954   // Implementation using the following core algorithm:
  1955   //
  1956   // int binary_search(int key, LookupswitchPair* array, int n) {
  1957   //   // Binary search according to "Methodik des Programmierens" by
  1958   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1959   //   int i = 0;
  1960   //   int j = n;
  1961   //   while (i+1 < j) {
  1962   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1963   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1964   //     // where a stands for the array and assuming that the (inexisting)
  1965   //     // element a[n] is infinitely big.
  1966   //     int h = (i + j) >> 1;
  1967   //     // i < h < j
  1968   //     if (key < array[h].fast_match()) {
  1969   //       j = h;
  1970   //     } else {
  1971   //       i = h;
  1972   //     }
  1973   //   }
  1974   //   // R: a[i] <= key < a[i+1] or Q
  1975   //   // (i.e., if key is within array, i is the correct index)
  1976   //   return i;
  1977   // }
  1979   // Register allocation
  1980   const Register key   = rax; // already set (tosca)
  1981   const Register array = rbx;
  1982   const Register i     = rcx;
  1983   const Register j     = rdx;
  1984   const Register h     = rdi;
  1985   const Register temp  = rsi;
  1987   // Find array start
  1988   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1989                                           // get rid of this
  1990                                           // instruction (change
  1991                                           // offsets below)
  1992   __ andptr(array, -BytesPerInt);
  1994   // Initialize i & j
  1995   __ xorl(i, i);                            // i = 0;
  1996   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1998   // Convert j into native byteordering
  1999   __ bswapl(j);
  2001   // And start
  2002   Label entry;
  2003   __ jmp(entry);
  2005   // binary search loop
  2007     Label loop;
  2008     __ bind(loop);
  2009     // int h = (i + j) >> 1;
  2010     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  2011     __ sarl(h, 1);                               // h = (i + j) >> 1;
  2012     // if (key < array[h].fast_match()) {
  2013     //   j = h;
  2014     // } else {
  2015     //   i = h;
  2016     // }
  2017     // Convert array[h].match to native byte-ordering before compare
  2018     __ movl(temp, Address(array, h, Address::times_8));
  2019     __ bswapl(temp);
  2020     __ cmpl(key, temp);
  2021     // j = h if (key <  array[h].fast_match())
  2022     __ cmovl(Assembler::less, j, h);
  2023     // i = h if (key >= array[h].fast_match())
  2024     __ cmovl(Assembler::greaterEqual, i, h);
  2025     // while (i+1 < j)
  2026     __ bind(entry);
  2027     __ leal(h, Address(i, 1)); // i+1
  2028     __ cmpl(h, j);             // i+1 < j
  2029     __ jcc(Assembler::less, loop);
  2032   // end of binary search, result index is i (must check again!)
  2033   Label default_case;
  2034   // Convert array[i].match to native byte-ordering before compare
  2035   __ movl(temp, Address(array, i, Address::times_8));
  2036   __ bswapl(temp);
  2037   __ cmpl(key, temp);
  2038   __ jcc(Assembler::notEqual, default_case);
  2040   // entry found -> j = offset
  2041   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  2042   __ profile_switch_case(i, key, array);
  2043   __ bswapl(j);
  2044   __ movl2ptr(j, j);
  2045   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2046   __ addptr(r13, j);
  2047   __ dispatch_only(vtos);
  2049   // default case -> j = default offset
  2050   __ bind(default_case);
  2051   __ profile_switch_default(i);
  2052   __ movl(j, Address(array, -2 * BytesPerInt));
  2053   __ bswapl(j);
  2054   __ movl2ptr(j, j);
  2055   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2056   __ addptr(r13, j);
  2057   __ dispatch_only(vtos);
  2061 void TemplateTable::_return(TosState state) {
  2062   transition(state, state);
  2063   assert(_desc->calls_vm(),
  2064          "inconsistent calls_vm information"); // call in remove_activation
  2066   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2067     assert(state == vtos, "only valid state");
  2068     __ movptr(c_rarg1, aaddress(0));
  2069     __ load_klass(rdi, c_rarg1);
  2070     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2071     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2072     Label skip_register_finalizer;
  2073     __ jcc(Assembler::zero, skip_register_finalizer);
  2075     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2077     __ bind(skip_register_finalizer);
  2080   __ remove_activation(state, r13);
  2081   __ jmp(r13);
  2084 // ----------------------------------------------------------------------------
  2085 // Volatile variables demand their effects be made known to all CPU's
  2086 // in order.  Store buffers on most chips allow reads & writes to
  2087 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2088 // without some kind of memory barrier (i.e., it's not sufficient that
  2089 // the interpreter does not reorder volatile references, the hardware
  2090 // also must not reorder them).
  2091 //
  2092 // According to the new Java Memory Model (JMM):
  2093 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2094 //     writes act as aquire & release, so:
  2095 // (2) A read cannot let unrelated NON-volatile memory refs that
  2096 //     happen after the read float up to before the read.  It's OK for
  2097 //     non-volatile memory refs that happen before the volatile read to
  2098 //     float down below it.
  2099 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2100 //     memory refs that happen BEFORE the write float down to after the
  2101 //     write.  It's OK for non-volatile memory refs that happen after the
  2102 //     volatile write to float up before it.
  2103 //
  2104 // We only put in barriers around volatile refs (they are expensive),
  2105 // not _between_ memory refs (that would require us to track the
  2106 // flavor of the previous memory refs).  Requirements (2) and (3)
  2107 // require some barriers before volatile stores and after volatile
  2108 // loads.  These nearly cover requirement (1) but miss the
  2109 // volatile-store-volatile-load case.  This final case is placed after
  2110 // volatile-stores although it could just as well go before
  2111 // volatile-loads.
  2112 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2113                                      order_constraint) {
  2114   // Helper function to insert a is-volatile test and memory barrier
  2115   if (os::is_MP()) { // Not needed on single CPU
  2116     __ membar(order_constraint);
  2120 void TemplateTable::resolve_cache_and_index(int byte_no,
  2121                                             Register result,
  2122                                             Register Rcache,
  2123                                             Register index,
  2124                                             size_t index_size) {
  2125   const Register temp = rbx;
  2126   assert_different_registers(result, Rcache, index, temp);
  2128   Label resolved;
  2129   if (byte_no == f1_oop) {
  2130     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2131     // This kind of CP cache entry does not need to match the flags byte, because
  2132     // there is a 1-1 relation between bytecode type and CP entry type.
  2133     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2134     __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2135     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2136     __ testptr(result, result);
  2137     __ jcc(Assembler::notEqual, resolved);
  2138   } else {
  2139     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2140     assert(result == noreg, "");  //else change code for setting result
  2141     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2142     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2143     __ jcc(Assembler::equal, resolved);
  2146   // resolve first time through
  2147   address entry;
  2148   switch (bytecode()) {
  2149   case Bytecodes::_getstatic:
  2150   case Bytecodes::_putstatic:
  2151   case Bytecodes::_getfield:
  2152   case Bytecodes::_putfield:
  2153     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2154     break;
  2155   case Bytecodes::_invokevirtual:
  2156   case Bytecodes::_invokespecial:
  2157   case Bytecodes::_invokestatic:
  2158   case Bytecodes::_invokeinterface:
  2159     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2160     break;
  2161   case Bytecodes::_invokedynamic:
  2162     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2163     break;
  2164   case Bytecodes::_fast_aldc:
  2165     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2166     break;
  2167   case Bytecodes::_fast_aldc_w:
  2168     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2169     break;
  2170   default:
  2171     ShouldNotReachHere();
  2172     break;
  2174   __ movl(temp, (int) bytecode());
  2175   __ call_VM(noreg, entry, temp);
  2177   // Update registers with resolved info
  2178   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2179   if (result != noreg)
  2180     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2181   __ bind(resolved);
  2184 // The Rcache and index registers must be set before call
  2185 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2186                                               Register cache,
  2187                                               Register index,
  2188                                               Register off,
  2189                                               Register flags,
  2190                                               bool is_static = false) {
  2191   assert_different_registers(cache, index, flags, off);
  2193   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2194   // Field offset
  2195   __ movptr(off, Address(cache, index, Address::times_8,
  2196                          in_bytes(cp_base_offset +
  2197                                   ConstantPoolCacheEntry::f2_offset())));
  2198   // Flags
  2199   __ movl(flags, Address(cache, index, Address::times_8,
  2200                          in_bytes(cp_base_offset +
  2201                                   ConstantPoolCacheEntry::flags_offset())));
  2203   // klass overwrite register
  2204   if (is_static) {
  2205     __ movptr(obj, Address(cache, index, Address::times_8,
  2206                            in_bytes(cp_base_offset +
  2207                                     ConstantPoolCacheEntry::f1_offset())));
  2211 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2212                                                Register method,
  2213                                                Register itable_index,
  2214                                                Register flags,
  2215                                                bool is_invokevirtual,
  2216                                                bool is_invokevfinal, /*unused*/
  2217                                                bool is_invokedynamic) {
  2218   // setup registers
  2219   const Register cache = rcx;
  2220   const Register index = rdx;
  2221   assert_different_registers(method, flags);
  2222   assert_different_registers(method, cache, index);
  2223   assert_different_registers(itable_index, flags);
  2224   assert_different_registers(itable_index, cache, index);
  2225   // determine constant pool cache field offsets
  2226   const int method_offset = in_bytes(
  2227     constantPoolCacheOopDesc::base_offset() +
  2228       (is_invokevirtual
  2229        ? ConstantPoolCacheEntry::f2_offset()
  2230        : ConstantPoolCacheEntry::f1_offset()));
  2231   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2232                                     ConstantPoolCacheEntry::flags_offset());
  2233   // access constant pool cache fields
  2234   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2235                                     ConstantPoolCacheEntry::f2_offset());
  2237   if (byte_no == f1_oop) {
  2238     // Resolved f1_oop goes directly into 'method' register.
  2239     assert(is_invokedynamic, "");
  2240     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2241   } else {
  2242     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2243     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2245   if (itable_index != noreg) {
  2246     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2248   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2252 // The registers cache and index expected to be set before call.
  2253 // Correct values of the cache and index registers are preserved.
  2254 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2255                                             bool is_static, bool has_tos) {
  2256   // do the JVMTI work here to avoid disturbing the register state below
  2257   // We use c_rarg registers here because we want to use the register used in
  2258   // the call to the VM
  2259   if (JvmtiExport::can_post_field_access()) {
  2260     // Check to see if a field access watch has been set before we
  2261     // take the time to call into the VM.
  2262     Label L1;
  2263     assert_different_registers(cache, index, rax);
  2264     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2265     __ testl(rax, rax);
  2266     __ jcc(Assembler::zero, L1);
  2268     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2270     // cache entry pointer
  2271     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2272     __ shll(c_rarg3, LogBytesPerWord);
  2273     __ addptr(c_rarg2, c_rarg3);
  2274     if (is_static) {
  2275       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2276     } else {
  2277       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2278       __ verify_oop(c_rarg1);
  2280     // c_rarg1: object pointer or NULL
  2281     // c_rarg2: cache entry pointer
  2282     // c_rarg3: jvalue object on the stack
  2283     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2284                                        InterpreterRuntime::post_field_access),
  2285                c_rarg1, c_rarg2, c_rarg3);
  2286     __ get_cache_and_index_at_bcp(cache, index, 1);
  2287     __ bind(L1);
  2291 void TemplateTable::pop_and_check_object(Register r) {
  2292   __ pop_ptr(r);
  2293   __ null_check(r);  // for field access must check obj.
  2294   __ verify_oop(r);
  2297 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2298   transition(vtos, vtos);
  2300   const Register cache = rcx;
  2301   const Register index = rdx;
  2302   const Register obj   = c_rarg3;
  2303   const Register off   = rbx;
  2304   const Register flags = rax;
  2305   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2307   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2308   jvmti_post_field_access(cache, index, is_static, false);
  2309   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2311   if (!is_static) {
  2312     // obj is on the stack
  2313     pop_and_check_object(obj);
  2316   const Address field(obj, off, Address::times_1);
  2318   Label Done, notByte, notInt, notShort, notChar,
  2319               notLong, notFloat, notObj, notDouble;
  2321   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2322   assert(btos == 0, "change code, btos != 0");
  2324   __ andl(flags, 0x0F);
  2325   __ jcc(Assembler::notZero, notByte);
  2326   // btos
  2327   __ load_signed_byte(rax, field);
  2328   __ push(btos);
  2329   // Rewrite bytecode to be faster
  2330   if (!is_static) {
  2331     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2333   __ jmp(Done);
  2335   __ bind(notByte);
  2336   __ cmpl(flags, atos);
  2337   __ jcc(Assembler::notEqual, notObj);
  2338   // atos
  2339   __ load_heap_oop(rax, field);
  2340   __ push(atos);
  2341   if (!is_static) {
  2342     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2344   __ jmp(Done);
  2346   __ bind(notObj);
  2347   __ cmpl(flags, itos);
  2348   __ jcc(Assembler::notEqual, notInt);
  2349   // itos
  2350   __ movl(rax, field);
  2351   __ push(itos);
  2352   // Rewrite bytecode to be faster
  2353   if (!is_static) {
  2354     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2356   __ jmp(Done);
  2358   __ bind(notInt);
  2359   __ cmpl(flags, ctos);
  2360   __ jcc(Assembler::notEqual, notChar);
  2361   // ctos
  2362   __ load_unsigned_short(rax, field);
  2363   __ push(ctos);
  2364   // Rewrite bytecode to be faster
  2365   if (!is_static) {
  2366     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2368   __ jmp(Done);
  2370   __ bind(notChar);
  2371   __ cmpl(flags, stos);
  2372   __ jcc(Assembler::notEqual, notShort);
  2373   // stos
  2374   __ load_signed_short(rax, field);
  2375   __ push(stos);
  2376   // Rewrite bytecode to be faster
  2377   if (!is_static) {
  2378     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2380   __ jmp(Done);
  2382   __ bind(notShort);
  2383   __ cmpl(flags, ltos);
  2384   __ jcc(Assembler::notEqual, notLong);
  2385   // ltos
  2386   __ movq(rax, field);
  2387   __ push(ltos);
  2388   // Rewrite bytecode to be faster
  2389   if (!is_static) {
  2390     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2392   __ jmp(Done);
  2394   __ bind(notLong);
  2395   __ cmpl(flags, ftos);
  2396   __ jcc(Assembler::notEqual, notFloat);
  2397   // ftos
  2398   __ movflt(xmm0, field);
  2399   __ push(ftos);
  2400   // Rewrite bytecode to be faster
  2401   if (!is_static) {
  2402     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2404   __ jmp(Done);
  2406   __ bind(notFloat);
  2407 #ifdef ASSERT
  2408   __ cmpl(flags, dtos);
  2409   __ jcc(Assembler::notEqual, notDouble);
  2410 #endif
  2411   // dtos
  2412   __ movdbl(xmm0, field);
  2413   __ push(dtos);
  2414   // Rewrite bytecode to be faster
  2415   if (!is_static) {
  2416     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2418 #ifdef ASSERT
  2419   __ jmp(Done);
  2421   __ bind(notDouble);
  2422   __ stop("Bad state");
  2423 #endif
  2425   __ bind(Done);
  2426   // [jk] not needed currently
  2427   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2428   //                                              Assembler::LoadStore));
  2432 void TemplateTable::getfield(int byte_no) {
  2433   getfield_or_static(byte_no, false);
  2436 void TemplateTable::getstatic(int byte_no) {
  2437   getfield_or_static(byte_no, true);
  2440 // The registers cache and index expected to be set before call.
  2441 // The function may destroy various registers, just not the cache and index registers.
  2442 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2443   transition(vtos, vtos);
  2445   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2447   if (JvmtiExport::can_post_field_modification()) {
  2448     // Check to see if a field modification watch has been set before
  2449     // we take the time to call into the VM.
  2450     Label L1;
  2451     assert_different_registers(cache, index, rax);
  2452     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2453     __ testl(rax, rax);
  2454     __ jcc(Assembler::zero, L1);
  2456     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2458     if (is_static) {
  2459       // Life is simple.  Null out the object pointer.
  2460       __ xorl(c_rarg1, c_rarg1);
  2461     } else {
  2462       // Life is harder. The stack holds the value on top, followed by
  2463       // the object.  We don't know the size of the value, though; it
  2464       // could be one or two words depending on its type. As a result,
  2465       // we must find the type to determine where the object is.
  2466       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2467                            Address::times_8,
  2468                            in_bytes(cp_base_offset +
  2469                                      ConstantPoolCacheEntry::flags_offset())));
  2470       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2471       // Make sure we don't need to mask rcx for tosBits after the
  2472       // above shift
  2473       ConstantPoolCacheEntry::verify_tosBits();
  2474       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2475       __ cmpl(c_rarg3, ltos);
  2476       __ cmovptr(Assembler::equal,
  2477                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2478       __ cmpl(c_rarg3, dtos);
  2479       __ cmovptr(Assembler::equal,
  2480                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2482     // cache entry pointer
  2483     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2484     __ shll(rscratch1, LogBytesPerWord);
  2485     __ addptr(c_rarg2, rscratch1);
  2486     // object (tos)
  2487     __ mov(c_rarg3, rsp);
  2488     // c_rarg1: object pointer set up above (NULL if static)
  2489     // c_rarg2: cache entry pointer
  2490     // c_rarg3: jvalue object on the stack
  2491     __ call_VM(noreg,
  2492                CAST_FROM_FN_PTR(address,
  2493                                 InterpreterRuntime::post_field_modification),
  2494                c_rarg1, c_rarg2, c_rarg3);
  2495     __ get_cache_and_index_at_bcp(cache, index, 1);
  2496     __ bind(L1);
  2500 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2501   transition(vtos, vtos);
  2503   const Register cache = rcx;
  2504   const Register index = rdx;
  2505   const Register obj   = rcx;
  2506   const Register off   = rbx;
  2507   const Register flags = rax;
  2508   const Register bc    = c_rarg3;
  2510   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2511   jvmti_post_field_mod(cache, index, is_static);
  2512   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2514   // [jk] not needed currently
  2515   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2516   //                                              Assembler::StoreStore));
  2518   Label notVolatile, Done;
  2519   __ movl(rdx, flags);
  2520   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2521   __ andl(rdx, 0x1);
  2523   // field address
  2524   const Address field(obj, off, Address::times_1);
  2526   Label notByte, notInt, notShort, notChar,
  2527         notLong, notFloat, notObj, notDouble;
  2529   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2531   assert(btos == 0, "change code, btos != 0");
  2532   __ andl(flags, 0x0f);
  2533   __ jcc(Assembler::notZero, notByte);
  2535   // btos
  2537     __ pop(btos);
  2538     if (!is_static) pop_and_check_object(obj);
  2539     __ movb(field, rax);
  2540     if (!is_static) {
  2541       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
  2543     __ jmp(Done);
  2546   __ bind(notByte);
  2547   __ cmpl(flags, atos);
  2548   __ jcc(Assembler::notEqual, notObj);
  2550   // atos
  2552     __ pop(atos);
  2553     if (!is_static) pop_and_check_object(obj);
  2554     // Store into the field
  2555     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2556     if (!is_static) {
  2557       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
  2559     __ jmp(Done);
  2562   __ bind(notObj);
  2563   __ cmpl(flags, itos);
  2564   __ jcc(Assembler::notEqual, notInt);
  2566   // itos
  2568     __ pop(itos);
  2569     if (!is_static) pop_and_check_object(obj);
  2570     __ movl(field, rax);
  2571     if (!is_static) {
  2572       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
  2574     __ jmp(Done);
  2577   __ bind(notInt);
  2578   __ cmpl(flags, ctos);
  2579   __ jcc(Assembler::notEqual, notChar);
  2581   // ctos
  2583     __ pop(ctos);
  2584     if (!is_static) pop_and_check_object(obj);
  2585     __ movw(field, rax);
  2586     if (!is_static) {
  2587       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
  2589     __ jmp(Done);
  2592   __ bind(notChar);
  2593   __ cmpl(flags, stos);
  2594   __ jcc(Assembler::notEqual, notShort);
  2596   // stos
  2598     __ pop(stos);
  2599     if (!is_static) pop_and_check_object(obj);
  2600     __ movw(field, rax);
  2601     if (!is_static) {
  2602       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
  2604     __ jmp(Done);
  2607   __ bind(notShort);
  2608   __ cmpl(flags, ltos);
  2609   __ jcc(Assembler::notEqual, notLong);
  2611   // ltos
  2613     __ pop(ltos);
  2614     if (!is_static) pop_and_check_object(obj);
  2615     __ movq(field, rax);
  2616     if (!is_static) {
  2617       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
  2619     __ jmp(Done);
  2622   __ bind(notLong);
  2623   __ cmpl(flags, ftos);
  2624   __ jcc(Assembler::notEqual, notFloat);
  2626   // ftos
  2628     __ pop(ftos);
  2629     if (!is_static) pop_and_check_object(obj);
  2630     __ movflt(field, xmm0);
  2631     if (!is_static) {
  2632       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
  2634     __ jmp(Done);
  2637   __ bind(notFloat);
  2638 #ifdef ASSERT
  2639   __ cmpl(flags, dtos);
  2640   __ jcc(Assembler::notEqual, notDouble);
  2641 #endif
  2643   // dtos
  2645     __ pop(dtos);
  2646     if (!is_static) pop_and_check_object(obj);
  2647     __ movdbl(field, xmm0);
  2648     if (!is_static) {
  2649       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
  2653 #ifdef ASSERT
  2654   __ jmp(Done);
  2656   __ bind(notDouble);
  2657   __ stop("Bad state");
  2658 #endif
  2660   __ bind(Done);
  2662   // Check for volatile store
  2663   __ testl(rdx, rdx);
  2664   __ jcc(Assembler::zero, notVolatile);
  2665   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2666                                                Assembler::StoreStore));
  2667   __ bind(notVolatile);
  2670 void TemplateTable::putfield(int byte_no) {
  2671   putfield_or_static(byte_no, false);
  2674 void TemplateTable::putstatic(int byte_no) {
  2675   putfield_or_static(byte_no, true);
  2678 void TemplateTable::jvmti_post_fast_field_mod() {
  2679   if (JvmtiExport::can_post_field_modification()) {
  2680     // Check to see if a field modification watch has been set before
  2681     // we take the time to call into the VM.
  2682     Label L2;
  2683     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2684     __ testl(c_rarg3, c_rarg3);
  2685     __ jcc(Assembler::zero, L2);
  2686     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2687     __ verify_oop(rbx);
  2688     __ push_ptr(rbx);                 // put the object pointer back on tos
  2689     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2690     __ mov(c_rarg3, rsp);
  2691     const Address field(c_rarg3, 0);
  2693     switch (bytecode()) {          // load values into the jvalue object
  2694     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
  2695     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2696     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2697     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2698     case Bytecodes::_fast_sputfield: // fall through
  2699     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2700     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2701     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2702     default:
  2703       ShouldNotReachHere();
  2706     // Save rax because call_VM() will clobber it, then use it for
  2707     // JVMTI purposes
  2708     __ push(rax);
  2709     // access constant pool cache entry
  2710     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2711     __ verify_oop(rbx);
  2712     // rbx: object pointer copied above
  2713     // c_rarg2: cache entry pointer
  2714     // c_rarg3: jvalue object on the stack
  2715     __ call_VM(noreg,
  2716                CAST_FROM_FN_PTR(address,
  2717                                 InterpreterRuntime::post_field_modification),
  2718                rbx, c_rarg2, c_rarg3);
  2719     __ pop(rax);     // restore lower value
  2720     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2721     __ bind(L2);
  2725 void TemplateTable::fast_storefield(TosState state) {
  2726   transition(state, vtos);
  2728   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2730   jvmti_post_fast_field_mod();
  2732   // access constant pool cache
  2733   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2735   // test for volatile with rdx
  2736   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2737                        in_bytes(base +
  2738                                 ConstantPoolCacheEntry::flags_offset())));
  2740   // replace index with field offset from cache entry
  2741   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2742                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2744   // [jk] not needed currently
  2745   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2746   //                                              Assembler::StoreStore));
  2748   Label notVolatile;
  2749   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2750   __ andl(rdx, 0x1);
  2752   // Get object from stack
  2753   pop_and_check_object(rcx);
  2755   // field address
  2756   const Address field(rcx, rbx, Address::times_1);
  2758   // access field
  2759   switch (bytecode()) {
  2760   case Bytecodes::_fast_aputfield:
  2761     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2762     break;
  2763   case Bytecodes::_fast_lputfield:
  2764     __ movq(field, rax);
  2765     break;
  2766   case Bytecodes::_fast_iputfield:
  2767     __ movl(field, rax);
  2768     break;
  2769   case Bytecodes::_fast_bputfield:
  2770     __ movb(field, rax);
  2771     break;
  2772   case Bytecodes::_fast_sputfield:
  2773     // fall through
  2774   case Bytecodes::_fast_cputfield:
  2775     __ movw(field, rax);
  2776     break;
  2777   case Bytecodes::_fast_fputfield:
  2778     __ movflt(field, xmm0);
  2779     break;
  2780   case Bytecodes::_fast_dputfield:
  2781     __ movdbl(field, xmm0);
  2782     break;
  2783   default:
  2784     ShouldNotReachHere();
  2787   // Check for volatile store
  2788   __ testl(rdx, rdx);
  2789   __ jcc(Assembler::zero, notVolatile);
  2790   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2791                                                Assembler::StoreStore));
  2792   __ bind(notVolatile);
  2796 void TemplateTable::fast_accessfield(TosState state) {
  2797   transition(atos, state);
  2799   // Do the JVMTI work here to avoid disturbing the register state below
  2800   if (JvmtiExport::can_post_field_access()) {
  2801     // Check to see if a field access watch has been set before we
  2802     // take the time to call into the VM.
  2803     Label L1;
  2804     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2805     __ testl(rcx, rcx);
  2806     __ jcc(Assembler::zero, L1);
  2807     // access constant pool cache entry
  2808     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2809     __ verify_oop(rax);
  2810     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2811     __ mov(c_rarg1, rax);
  2812     // c_rarg1: object pointer copied above
  2813     // c_rarg2: cache entry pointer
  2814     __ call_VM(noreg,
  2815                CAST_FROM_FN_PTR(address,
  2816                                 InterpreterRuntime::post_field_access),
  2817                c_rarg1, c_rarg2);
  2818     __ pop_ptr(rax); // restore object pointer
  2819     __ bind(L1);
  2822   // access constant pool cache
  2823   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2824   // replace index with field offset from cache entry
  2825   // [jk] not needed currently
  2826   // if (os::is_MP()) {
  2827   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2828   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2829   //                                 ConstantPoolCacheEntry::flags_offset())));
  2830   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2831   //   __ andl(rdx, 0x1);
  2832   // }
  2833   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2834                          in_bytes(constantPoolCacheOopDesc::base_offset() +
  2835                                   ConstantPoolCacheEntry::f2_offset())));
  2837   // rax: object
  2838   __ verify_oop(rax);
  2839   __ null_check(rax);
  2840   Address field(rax, rbx, Address::times_1);
  2842   // access field
  2843   switch (bytecode()) {
  2844   case Bytecodes::_fast_agetfield:
  2845     __ load_heap_oop(rax, field);
  2846     __ verify_oop(rax);
  2847     break;
  2848   case Bytecodes::_fast_lgetfield:
  2849     __ movq(rax, field);
  2850     break;
  2851   case Bytecodes::_fast_igetfield:
  2852     __ movl(rax, field);
  2853     break;
  2854   case Bytecodes::_fast_bgetfield:
  2855     __ movsbl(rax, field);
  2856     break;
  2857   case Bytecodes::_fast_sgetfield:
  2858     __ load_signed_short(rax, field);
  2859     break;
  2860   case Bytecodes::_fast_cgetfield:
  2861     __ load_unsigned_short(rax, field);
  2862     break;
  2863   case Bytecodes::_fast_fgetfield:
  2864     __ movflt(xmm0, field);
  2865     break;
  2866   case Bytecodes::_fast_dgetfield:
  2867     __ movdbl(xmm0, field);
  2868     break;
  2869   default:
  2870     ShouldNotReachHere();
  2872   // [jk] not needed currently
  2873   // if (os::is_MP()) {
  2874   //   Label notVolatile;
  2875   //   __ testl(rdx, rdx);
  2876   //   __ jcc(Assembler::zero, notVolatile);
  2877   //   __ membar(Assembler::LoadLoad);
  2878   //   __ bind(notVolatile);
  2879   //};
  2882 void TemplateTable::fast_xaccess(TosState state) {
  2883   transition(vtos, state);
  2885   // get receiver
  2886   __ movptr(rax, aaddress(0));
  2887   // access constant pool cache
  2888   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2889   __ movptr(rbx,
  2890             Address(rcx, rdx, Address::times_8,
  2891                     in_bytes(constantPoolCacheOopDesc::base_offset() +
  2892                              ConstantPoolCacheEntry::f2_offset())));
  2893   // make sure exception is reported in correct bcp range (getfield is
  2894   // next instruction)
  2895   __ increment(r13);
  2896   __ null_check(rax);
  2897   switch (state) {
  2898   case itos:
  2899     __ movl(rax, Address(rax, rbx, Address::times_1));
  2900     break;
  2901   case atos:
  2902     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2903     __ verify_oop(rax);
  2904     break;
  2905   case ftos:
  2906     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2907     break;
  2908   default:
  2909     ShouldNotReachHere();
  2912   // [jk] not needed currently
  2913   // if (os::is_MP()) {
  2914   //   Label notVolatile;
  2915   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2916   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2917   //                                 ConstantPoolCacheEntry::flags_offset())));
  2918   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2919   //   __ testl(rdx, 0x1);
  2920   //   __ jcc(Assembler::zero, notVolatile);
  2921   //   __ membar(Assembler::LoadLoad);
  2922   //   __ bind(notVolatile);
  2923   // }
  2925   __ decrement(r13);
  2930 //-----------------------------------------------------------------------------
  2931 // Calls
  2933 void TemplateTable::count_calls(Register method, Register temp) {
  2934   // implemented elsewhere
  2935   ShouldNotReachHere();
  2938 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2939   // determine flags
  2940   Bytecodes::Code code = bytecode();
  2941   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2942   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2943   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2944   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2945   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2946   const bool receiver_null_check = is_invokespecial;
  2947   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2948   // setup registers & access constant pool cache
  2949   const Register recv   = rcx;
  2950   const Register flags  = rdx;
  2951   assert_different_registers(method, index, recv, flags);
  2953   // save 'interpreter return address'
  2954   __ save_bcp();
  2956   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2958   // load receiver if needed (note: no return address pushed yet)
  2959   if (load_receiver) {
  2960     assert(!is_invokedynamic, "");
  2961     __ movl(recv, flags);
  2962     __ andl(recv, 0xFF);
  2963     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
  2964     __ movptr(recv, recv_addr);
  2965     __ verify_oop(recv);
  2968   // do null check if needed
  2969   if (receiver_null_check) {
  2970     __ null_check(recv);
  2973   if (save_flags) {
  2974     __ movl(r13, flags);
  2977   // compute return type
  2978   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2979   // Make sure we don't need to mask flags for tosBits after the above shift
  2980   ConstantPoolCacheEntry::verify_tosBits();
  2981   // load return address
  2983     address table_addr;
  2984     if (is_invokeinterface || is_invokedynamic)
  2985       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2986     else
  2987       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2988     ExternalAddress table(table_addr);
  2989     __ lea(rscratch1, table);
  2990     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2993   // push return address
  2994   __ push(flags);
  2996   // Restore flag field from the constant pool cache, and restore esi
  2997   // for later null checks.  r13 is the bytecode pointer
  2998   if (save_flags) {
  2999     __ movl(flags, r13);
  3000     __ restore_bcp();
  3005 void TemplateTable::invokevirtual_helper(Register index,
  3006                                          Register recv,
  3007                                          Register flags) {
  3008   // Uses temporary registers rax, rdx
  3009   assert_different_registers(index, recv, rax, rdx);
  3011   // Test for an invoke of a final method
  3012   Label notFinal;
  3013   __ movl(rax, flags);
  3014   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  3015   __ jcc(Assembler::zero, notFinal);
  3017   const Register method = index;  // method must be rbx
  3018   assert(method == rbx,
  3019          "methodOop must be rbx for interpreter calling convention");
  3021   // do the call - the index is actually the method to call
  3022   __ verify_oop(method);
  3024   // It's final, need a null check here!
  3025   __ null_check(recv);
  3027   // profile this call
  3028   __ profile_final_call(rax);
  3030   __ jump_from_interpreted(method, rax);
  3032   __ bind(notFinal);
  3034   // get receiver klass
  3035   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  3036   __ load_klass(rax, recv);
  3038   __ verify_oop(rax);
  3040   // profile this call
  3041   __ profile_virtual_call(rax, r14, rdx);
  3043   // get target methodOop & entry point
  3044   const int base = instanceKlass::vtable_start_offset() * wordSize;
  3045   assert(vtableEntry::size() * wordSize == 8,
  3046          "adjust the scaling in the code below");
  3047   __ movptr(method, Address(rax, index,
  3048                                  Address::times_8,
  3049                                  base + vtableEntry::method_offset_in_bytes()));
  3050   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  3051   __ jump_from_interpreted(method, rdx);
  3055 void TemplateTable::invokevirtual(int byte_no) {
  3056   transition(vtos, vtos);
  3057   assert(byte_no == f2_byte, "use this argument");
  3058   prepare_invoke(rbx, noreg, byte_no);
  3060   // rbx: index
  3061   // rcx: receiver
  3062   // rdx: flags
  3064   invokevirtual_helper(rbx, rcx, rdx);
  3068 void TemplateTable::invokespecial(int byte_no) {
  3069   transition(vtos, vtos);
  3070   assert(byte_no == f1_byte, "use this argument");
  3071   prepare_invoke(rbx, noreg, byte_no);
  3072   // do the call
  3073   __ verify_oop(rbx);
  3074   __ profile_call(rax);
  3075   __ jump_from_interpreted(rbx, rax);
  3079 void TemplateTable::invokestatic(int byte_no) {
  3080   transition(vtos, vtos);
  3081   assert(byte_no == f1_byte, "use this argument");
  3082   prepare_invoke(rbx, noreg, byte_no);
  3083   // do the call
  3084   __ verify_oop(rbx);
  3085   __ profile_call(rax);
  3086   __ jump_from_interpreted(rbx, rax);
  3089 void TemplateTable::fast_invokevfinal(int byte_no) {
  3090   transition(vtos, vtos);
  3091   assert(byte_no == f2_byte, "use this argument");
  3092   __ stop("fast_invokevfinal not used on amd64");
  3095 void TemplateTable::invokeinterface(int byte_no) {
  3096   transition(vtos, vtos);
  3097   assert(byte_no == f1_byte, "use this argument");
  3098   prepare_invoke(rax, rbx, byte_no);
  3100   // rax: Interface
  3101   // rbx: index
  3102   // rcx: receiver
  3103   // rdx: flags
  3105   // Special case of invokeinterface called for virtual method of
  3106   // java.lang.Object.  See cpCacheOop.cpp for details.
  3107   // This code isn't produced by javac, but could be produced by
  3108   // another compliant java compiler.
  3109   Label notMethod;
  3110   __ movl(r14, rdx);
  3111   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  3112   __ jcc(Assembler::zero, notMethod);
  3114   invokevirtual_helper(rbx, rcx, rdx);
  3115   __ bind(notMethod);
  3117   // Get receiver klass into rdx - also a null check
  3118   __ restore_locals(); // restore r14
  3119   __ load_klass(rdx, rcx);
  3120   __ verify_oop(rdx);
  3122   // profile this call
  3123   __ profile_virtual_call(rdx, r13, r14);
  3125   Label no_such_interface, no_such_method;
  3127   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3128                              rdx, rax, rbx,
  3129                              // outputs: method, scan temp. reg
  3130                              rbx, r13,
  3131                              no_such_interface);
  3133   // rbx,: methodOop to call
  3134   // rcx: receiver
  3135   // Check for abstract method error
  3136   // Note: This should be done more efficiently via a throw_abstract_method_error
  3137   //       interpreter entry point and a conditional jump to it in case of a null
  3138   //       method.
  3139   __ testptr(rbx, rbx);
  3140   __ jcc(Assembler::zero, no_such_method);
  3142   // do the call
  3143   // rcx: receiver
  3144   // rbx,: methodOop
  3145   __ jump_from_interpreted(rbx, rdx);
  3146   __ should_not_reach_here();
  3148   // exception handling code follows...
  3149   // note: must restore interpreter registers to canonical
  3150   //       state for exception handling to work correctly!
  3152   __ bind(no_such_method);
  3153   // throw exception
  3154   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3155   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3156   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3157   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3158   // the call_VM checks for exception, so we should never return here.
  3159   __ should_not_reach_here();
  3161   __ bind(no_such_interface);
  3162   // throw exception
  3163   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3164   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3165   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3166   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3167                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3168   // the call_VM checks for exception, so we should never return here.
  3169   __ should_not_reach_here();
  3170   return;
  3173 void TemplateTable::invokedynamic(int byte_no) {
  3174   transition(vtos, vtos);
  3175   assert(byte_no == f1_oop, "use this argument");
  3177   if (!EnableInvokeDynamic) {
  3178     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3179     // The verifier will stop it.  However, if we get past the verifier,
  3180     // this will stop the thread in a reasonable way, without crashing the JVM.
  3181     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3182                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3183     // the call_VM checks for exception, so we should never return here.
  3184     __ should_not_reach_here();
  3185     return;
  3188   prepare_invoke(rax, rbx, byte_no);
  3190   // rax: CallSite object (f1)
  3191   // rbx: unused (f2)
  3192   // rcx: receiver address
  3193   // rdx: flags (unused)
  3195   Register rax_callsite      = rax;
  3196   Register rcx_method_handle = rcx;
  3198   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3199   // profile this call
  3200   __ profile_call(r13);
  3202   __ verify_oop(rax_callsite);
  3203   __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
  3204   __ null_check(rcx_method_handle);
  3205   __ verify_oop(rcx_method_handle);
  3206   __ prepare_to_jump_from_interpreted();
  3207   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
  3211 //-----------------------------------------------------------------------------
  3212 // Allocation
  3214 void TemplateTable::_new() {
  3215   transition(vtos, atos);
  3216   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3217   Label slow_case;
  3218   Label done;
  3219   Label initialize_header;
  3220   Label initialize_object; // including clearing the fields
  3221   Label allocate_shared;
  3223   __ get_cpool_and_tags(rsi, rax);
  3224   // Make sure the class we're about to instantiate has been resolved.
  3225   // This is done before loading instanceKlass to be consistent with the order
  3226   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3227   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3228   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3229           JVM_CONSTANT_Class);
  3230   __ jcc(Assembler::notEqual, slow_case);
  3232   // get instanceKlass
  3233   __ movptr(rsi, Address(rsi, rdx,
  3234             Address::times_8, sizeof(constantPoolOopDesc)));
  3236   // make sure klass is initialized & doesn't have finalizer
  3237   // make sure klass is fully initialized
  3238   __ cmpl(Address(rsi,
  3239                   instanceKlass::init_state_offset_in_bytes() +
  3240                   sizeof(oopDesc)),
  3241           instanceKlass::fully_initialized);
  3242   __ jcc(Assembler::notEqual, slow_case);
  3244   // get instance_size in instanceKlass (scaled to a count of bytes)
  3245   __ movl(rdx,
  3246           Address(rsi,
  3247                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3248   // test to see if it has a finalizer or is malformed in some way
  3249   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3250   __ jcc(Assembler::notZero, slow_case);
  3252   // Allocate the instance
  3253   // 1) Try to allocate in the TLAB
  3254   // 2) if fail and the object is large allocate in the shared Eden
  3255   // 3) if the above fails (or is not applicable), go to a slow case
  3256   // (creates a new TLAB, etc.)
  3258   const bool allow_shared_alloc =
  3259     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3261   if (UseTLAB) {
  3262     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3263     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3264     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3265     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3266     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3267     if (ZeroTLAB) {
  3268       // the fields have been already cleared
  3269       __ jmp(initialize_header);
  3270     } else {
  3271       // initialize both the header and fields
  3272       __ jmp(initialize_object);
  3276   // Allocation in the shared Eden, if allowed.
  3277   //
  3278   // rdx: instance size in bytes
  3279   if (allow_shared_alloc) {
  3280     __ bind(allocate_shared);
  3282     ExternalAddress top((address)Universe::heap()->top_addr());
  3283     ExternalAddress end((address)Universe::heap()->end_addr());
  3285     const Register RtopAddr = rscratch1;
  3286     const Register RendAddr = rscratch2;
  3288     __ lea(RtopAddr, top);
  3289     __ lea(RendAddr, end);
  3290     __ movptr(rax, Address(RtopAddr, 0));
  3292     // For retries rax gets set by cmpxchgq
  3293     Label retry;
  3294     __ bind(retry);
  3295     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3296     __ cmpptr(rbx, Address(RendAddr, 0));
  3297     __ jcc(Assembler::above, slow_case);
  3299     // Compare rax with the top addr, and if still equal, store the new
  3300     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3301     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3302     //
  3303     // rax: object begin
  3304     // rbx: object end
  3305     // rdx: instance size in bytes
  3306     if (os::is_MP()) {
  3307       __ lock();
  3309     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3311     // if someone beat us on the allocation, try again, otherwise continue
  3312     __ jcc(Assembler::notEqual, retry);
  3314     __ incr_allocated_bytes(r15_thread, rdx, 0);
  3317   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3318     // The object is initialized before the header.  If the object size is
  3319     // zero, go directly to the header initialization.
  3320     __ bind(initialize_object);
  3321     __ decrementl(rdx, sizeof(oopDesc));
  3322     __ jcc(Assembler::zero, initialize_header);
  3324     // Initialize object fields
  3325     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3326     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3328       Label loop;
  3329       __ bind(loop);
  3330       __ movq(Address(rax, rdx, Address::times_8,
  3331                       sizeof(oopDesc) - oopSize),
  3332               rcx);
  3333       __ decrementl(rdx);
  3334       __ jcc(Assembler::notZero, loop);
  3337     // initialize object header only.
  3338     __ bind(initialize_header);
  3339     if (UseBiasedLocking) {
  3340       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3341       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3342     } else {
  3343       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3344                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3346     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3347     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3348     __ store_klass(rax, rsi);      // store klass last
  3351       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3352       // Trigger dtrace event for fastpath
  3353       __ push(atos); // save the return value
  3354       __ call_VM_leaf(
  3355            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3356       __ pop(atos); // restore the return value
  3359     __ jmp(done);
  3363   // slow case
  3364   __ bind(slow_case);
  3365   __ get_constant_pool(c_rarg1);
  3366   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3367   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3368   __ verify_oop(rax);
  3370   // continue
  3371   __ bind(done);
  3374 void TemplateTable::newarray() {
  3375   transition(itos, atos);
  3376   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3377   __ movl(c_rarg2, rax);
  3378   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3379           c_rarg1, c_rarg2);
  3382 void TemplateTable::anewarray() {
  3383   transition(itos, atos);
  3384   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3385   __ get_constant_pool(c_rarg1);
  3386   __ movl(c_rarg3, rax);
  3387   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3388           c_rarg1, c_rarg2, c_rarg3);
  3391 void TemplateTable::arraylength() {
  3392   transition(atos, itos);
  3393   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3394   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3397 void TemplateTable::checkcast() {
  3398   transition(atos, atos);
  3399   Label done, is_null, ok_is_subtype, quicked, resolved;
  3400   __ testptr(rax, rax); // object is in rax
  3401   __ jcc(Assembler::zero, is_null);
  3403   // Get cpool & tags index
  3404   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3405   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3406   // See if bytecode has already been quicked
  3407   __ cmpb(Address(rdx, rbx,
  3408                   Address::times_1,
  3409                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3410           JVM_CONSTANT_Class);
  3411   __ jcc(Assembler::equal, quicked);
  3412   __ push(atos); // save receiver for result, and for GC
  3413   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3414   __ pop_ptr(rdx); // restore receiver
  3415   __ jmpb(resolved);
  3417   // Get superklass in rax and subklass in rbx
  3418   __ bind(quicked);
  3419   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3420   __ movptr(rax, Address(rcx, rbx,
  3421                        Address::times_8, sizeof(constantPoolOopDesc)));
  3423   __ bind(resolved);
  3424   __ load_klass(rbx, rdx);
  3426   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3427   // Superklass in rax.  Subklass in rbx.
  3428   __ gen_subtype_check(rbx, ok_is_subtype);
  3430   // Come here on failure
  3431   __ push_ptr(rdx);
  3432   // object is at TOS
  3433   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3435   // Come here on success
  3436   __ bind(ok_is_subtype);
  3437   __ mov(rax, rdx); // Restore object in rdx
  3439   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3440   if (ProfileInterpreter) {
  3441     __ jmp(done);
  3442     __ bind(is_null);
  3443     __ profile_null_seen(rcx);
  3444   } else {
  3445     __ bind(is_null);   // same as 'done'
  3447   __ bind(done);
  3450 void TemplateTable::instanceof() {
  3451   transition(atos, itos);
  3452   Label done, is_null, ok_is_subtype, quicked, resolved;
  3453   __ testptr(rax, rax);
  3454   __ jcc(Assembler::zero, is_null);
  3456   // Get cpool & tags index
  3457   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3458   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3459   // See if bytecode has already been quicked
  3460   __ cmpb(Address(rdx, rbx,
  3461                   Address::times_1,
  3462                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3463           JVM_CONSTANT_Class);
  3464   __ jcc(Assembler::equal, quicked);
  3466   __ push(atos); // save receiver for result, and for GC
  3467   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3468   __ pop_ptr(rdx); // restore receiver
  3469   __ verify_oop(rdx);
  3470   __ load_klass(rdx, rdx);
  3471   __ jmpb(resolved);
  3473   // Get superklass in rax and subklass in rdx
  3474   __ bind(quicked);
  3475   __ load_klass(rdx, rax);
  3476   __ movptr(rax, Address(rcx, rbx,
  3477                          Address::times_8, sizeof(constantPoolOopDesc)));
  3479   __ bind(resolved);
  3481   // Generate subtype check.  Blows rcx, rdi
  3482   // Superklass in rax.  Subklass in rdx.
  3483   __ gen_subtype_check(rdx, ok_is_subtype);
  3485   // Come here on failure
  3486   __ xorl(rax, rax);
  3487   __ jmpb(done);
  3488   // Come here on success
  3489   __ bind(ok_is_subtype);
  3490   __ movl(rax, 1);
  3492   // Collect counts on whether this test sees NULLs a lot or not.
  3493   if (ProfileInterpreter) {
  3494     __ jmp(done);
  3495     __ bind(is_null);
  3496     __ profile_null_seen(rcx);
  3497   } else {
  3498     __ bind(is_null);   // same as 'done'
  3500   __ bind(done);
  3501   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3502   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3505 //-----------------------------------------------------------------------------
  3506 // Breakpoints
  3507 void TemplateTable::_breakpoint() {
  3508   // Note: We get here even if we are single stepping..
  3509   // jbug inists on setting breakpoints at every bytecode
  3510   // even if we are in single step mode.
  3512   transition(vtos, vtos);
  3514   // get the unpatched byte code
  3515   __ get_method(c_rarg1);
  3516   __ call_VM(noreg,
  3517              CAST_FROM_FN_PTR(address,
  3518                               InterpreterRuntime::get_original_bytecode_at),
  3519              c_rarg1, r13);
  3520   __ mov(rbx, rax);
  3522   // post the breakpoint event
  3523   __ get_method(c_rarg1);
  3524   __ call_VM(noreg,
  3525              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3526              c_rarg1, r13);
  3528   // complete the execution of original bytecode
  3529   __ dispatch_only_normal(vtos);
  3532 //-----------------------------------------------------------------------------
  3533 // Exceptions
  3535 void TemplateTable::athrow() {
  3536   transition(atos, vtos);
  3537   __ null_check(rax);
  3538   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3541 //-----------------------------------------------------------------------------
  3542 // Synchronization
  3543 //
  3544 // Note: monitorenter & exit are symmetric routines; which is reflected
  3545 //       in the assembly code structure as well
  3546 //
  3547 // Stack layout:
  3548 //
  3549 // [expressions  ] <--- rsp               = expression stack top
  3550 // ..
  3551 // [expressions  ]
  3552 // [monitor entry] <--- monitor block top = expression stack bot
  3553 // ..
  3554 // [monitor entry]
  3555 // [frame data   ] <--- monitor block bot
  3556 // ...
  3557 // [saved rbp    ] <--- rbp
  3558 void TemplateTable::monitorenter() {
  3559   transition(atos, vtos);
  3561   // check for NULL object
  3562   __ null_check(rax);
  3564   const Address monitor_block_top(
  3565         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3566   const Address monitor_block_bot(
  3567         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3568   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3570   Label allocated;
  3572   // initialize entry pointer
  3573   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3575   // find a free slot in the monitor block (result in c_rarg1)
  3577     Label entry, loop, exit;
  3578     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3579                                      // starting with top-most entry
  3580     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3581                                      // of monitor block
  3582     __ jmpb(entry);
  3584     __ bind(loop);
  3585     // check if current entry is used
  3586     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3587     // if not used then remember entry in c_rarg1
  3588     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3589     // check if current entry is for same object
  3590     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3591     // if same object then stop searching
  3592     __ jccb(Assembler::equal, exit);
  3593     // otherwise advance to next entry
  3594     __ addptr(c_rarg3, entry_size);
  3595     __ bind(entry);
  3596     // check if bottom reached
  3597     __ cmpptr(c_rarg3, c_rarg2);
  3598     // if not at bottom then check this entry
  3599     __ jcc(Assembler::notEqual, loop);
  3600     __ bind(exit);
  3603   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3604   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3606   // allocate one if there's no free slot
  3608     Label entry, loop;
  3609     // 1. compute new pointers             // rsp: old expression stack top
  3610     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3611     __ subptr(rsp, entry_size);            // move expression stack top
  3612     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3613     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3614     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3615     __ jmp(entry);
  3616     // 2. move expression stack contents
  3617     __ bind(loop);
  3618     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3619                                                       // word from old location
  3620     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3621     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3622     __ bind(entry);
  3623     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3624     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3625                                             // copy next word
  3628   // call run-time routine
  3629   // c_rarg1: points to monitor entry
  3630   __ bind(allocated);
  3632   // Increment bcp to point to the next bytecode, so exception
  3633   // handling for async. exceptions work correctly.
  3634   // The object has already been poped from the stack, so the
  3635   // expression stack looks correct.
  3636   __ increment(r13);
  3638   // store object
  3639   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3640   __ lock_object(c_rarg1);
  3642   // check to make sure this monitor doesn't cause stack overflow after locking
  3643   __ save_bcp();  // in case of exception
  3644   __ generate_stack_overflow_check(0);
  3646   // The bcp has already been incremented. Just need to dispatch to
  3647   // next instruction.
  3648   __ dispatch_next(vtos);
  3652 void TemplateTable::monitorexit() {
  3653   transition(atos, vtos);
  3655   // check for NULL object
  3656   __ null_check(rax);
  3658   const Address monitor_block_top(
  3659         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3660   const Address monitor_block_bot(
  3661         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3662   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3664   Label found;
  3666   // find matching slot
  3668     Label entry, loop;
  3669     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3670                                      // starting with top-most entry
  3671     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3672                                      // of monitor block
  3673     __ jmpb(entry);
  3675     __ bind(loop);
  3676     // check if current entry is for same object
  3677     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3678     // if same object then stop searching
  3679     __ jcc(Assembler::equal, found);
  3680     // otherwise advance to next entry
  3681     __ addptr(c_rarg1, entry_size);
  3682     __ bind(entry);
  3683     // check if bottom reached
  3684     __ cmpptr(c_rarg1, c_rarg2);
  3685     // if not at bottom then check this entry
  3686     __ jcc(Assembler::notEqual, loop);
  3689   // error handling. Unlocking was not block-structured
  3690   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3691                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3692   __ should_not_reach_here();
  3694   // call run-time routine
  3695   // rsi: points to monitor entry
  3696   __ bind(found);
  3697   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3698   __ unlock_object(c_rarg1);
  3699   __ pop_ptr(rax); // discard object
  3703 // Wide instructions
  3704 void TemplateTable::wide() {
  3705   transition(vtos, vtos);
  3706   __ load_unsigned_byte(rbx, at_bcp(1));
  3707   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3708   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3709   // Note: the r13 increment step is part of the individual wide
  3710   // bytecode implementations
  3714 // Multi arrays
  3715 void TemplateTable::multianewarray() {
  3716   transition(vtos, atos);
  3717   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3718   // last dim is on top of stack; we want address of first one:
  3719   // first_addr = last_addr + (ndims - 1) * wordSize
  3720   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3721   call_VM(rax,
  3722           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3723           c_rarg1);
  3724   __ load_unsigned_byte(rbx, at_bcp(3));
  3725   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3727 #endif // !CC_INTERP

mercurial