src/share/vm/gc_implementation/parNew/parCardTableModRefBS.cpp

Wed, 14 Dec 2011 13:34:57 -0800

author
jmasa
date
Wed, 14 Dec 2011 13:34:57 -0800
changeset 3357
441e946dc1af
parent 3294
bca17e38de00
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

7121618: Change type of number of GC workers to unsigned int.
Summary: Change variables representing the number of GC workers to uint from int and size_t. Change the parameter in work(int i) to work(uint worker_id).
Reviewed-by: brutisso, tonyp

     1 /*
     2  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "memory/cardTableModRefBS.hpp"
    28 #include "memory/cardTableRS.hpp"
    29 #include "memory/sharedHeap.hpp"
    30 #include "memory/space.inline.hpp"
    31 #include "memory/universe.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/java.hpp"
    34 #include "runtime/mutexLocker.hpp"
    35 #include "runtime/virtualspace.hpp"
    36 #include "runtime/vmThread.hpp"
    38 void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
    39                                                              OopsInGenClosure* cl,
    40                                                              CardTableRS* ct,
    41                                                              int n_threads) {
    42   assert(n_threads > 0, "Error: expected n_threads > 0");
    43   assert((n_threads == 1 && ParallelGCThreads == 0) ||
    44          n_threads <= (int)ParallelGCThreads,
    45          "# worker threads != # requested!");
    46   assert(!Thread::current()->is_VM_thread() || (n_threads == 1), "There is only 1 VM thread");
    47   assert(UseDynamicNumberOfGCThreads ||
    48          !FLAG_IS_DEFAULT(ParallelGCThreads) ||
    49          n_threads == (int)ParallelGCThreads,
    50          "# worker threads != # requested!");
    51   // Make sure the LNC array is valid for the space.
    52   jbyte**   lowest_non_clean;
    53   uintptr_t lowest_non_clean_base_chunk_index;
    54   size_t    lowest_non_clean_chunk_size;
    55   get_LNC_array_for_space(sp, lowest_non_clean,
    56                           lowest_non_clean_base_chunk_index,
    57                           lowest_non_clean_chunk_size);
    59   uint n_strides = n_threads * ParGCStridesPerThread;
    60   SequentialSubTasksDone* pst = sp->par_seq_tasks();
    61   // Sets the condition for completion of the subtask (how many threads
    62   // need to finish in order to be done).
    63   pst->set_n_threads(n_threads);
    64   pst->set_n_tasks(n_strides);
    66   uint stride = 0;
    67   while (!pst->is_task_claimed(/* reference */ stride)) {
    68     process_stride(sp, mr, stride, n_strides, cl, ct,
    69                    lowest_non_clean,
    70                    lowest_non_clean_base_chunk_index,
    71                    lowest_non_clean_chunk_size);
    72   }
    73   if (pst->all_tasks_completed()) {
    74     // Clear lowest_non_clean array for next time.
    75     intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
    76     uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
    77     for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
    78       intptr_t ind = ch - lowest_non_clean_base_chunk_index;
    79       assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
    80              "Bounds error");
    81       lowest_non_clean[ind] = NULL;
    82     }
    83   }
    84 }
    86 void
    87 CardTableModRefBS::
    88 process_stride(Space* sp,
    89                MemRegion used,
    90                jint stride, int n_strides,
    91                OopsInGenClosure* cl,
    92                CardTableRS* ct,
    93                jbyte** lowest_non_clean,
    94                uintptr_t lowest_non_clean_base_chunk_index,
    95                size_t    lowest_non_clean_chunk_size) {
    96   // We go from higher to lower addresses here; it wouldn't help that much
    97   // because of the strided parallelism pattern used here.
    99   // Find the first card address of the first chunk in the stride that is
   100   // at least "bottom" of the used region.
   101   jbyte*    start_card  = byte_for(used.start());
   102   jbyte*    end_card    = byte_after(used.last());
   103   uintptr_t start_chunk = addr_to_chunk_index(used.start());
   104   uintptr_t start_chunk_stride_num = start_chunk % n_strides;
   105   jbyte* chunk_card_start;
   107   if ((uintptr_t)stride >= start_chunk_stride_num) {
   108     chunk_card_start = (jbyte*)(start_card +
   109                                 (stride - start_chunk_stride_num) *
   110                                 ParGCCardsPerStrideChunk);
   111   } else {
   112     // Go ahead to the next chunk group boundary, then to the requested stride.
   113     chunk_card_start = (jbyte*)(start_card +
   114                                 (n_strides - start_chunk_stride_num + stride) *
   115                                 ParGCCardsPerStrideChunk);
   116   }
   118   while (chunk_card_start < end_card) {
   119     // Even though we go from lower to higher addresses below, the
   120     // strided parallelism can interleave the actual processing of the
   121     // dirty pages in various ways. For a specific chunk within this
   122     // stride, we take care to avoid double scanning or missing a card
   123     // by suitably initializing the "min_done" field in process_chunk_boundaries()
   124     // below, together with the dirty region extension accomplished in
   125     // DirtyCardToOopClosure::do_MemRegion().
   126     jbyte*    chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
   127     // Invariant: chunk_mr should be fully contained within the "used" region.
   128     MemRegion chunk_mr       = MemRegion(addr_for(chunk_card_start),
   129                                          chunk_card_end >= end_card ?
   130                                            used.end() : addr_for(chunk_card_end));
   131     assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
   132     assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
   134     DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
   135                                                      cl->gen_boundary());
   136     ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
   139     // Process the chunk.
   140     process_chunk_boundaries(sp,
   141                              dcto_cl,
   142                              chunk_mr,
   143                              used,
   144                              lowest_non_clean,
   145                              lowest_non_clean_base_chunk_index,
   146                              lowest_non_clean_chunk_size);
   148     // We want the LNC array updates above in process_chunk_boundaries
   149     // to be visible before any of the card table value changes as a
   150     // result of the dirty card iteration below.
   151     OrderAccess::storestore();
   153     // We do not call the non_clean_card_iterate_serial() version because
   154     // we want to clear the cards: clear_cl here does the work of finding
   155     // contiguous dirty ranges of cards to process and clear.
   156     clear_cl.do_MemRegion(chunk_mr);
   158     // Find the next chunk of the stride.
   159     chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
   160   }
   161 }
   164 // If you want a talkative process_chunk_boundaries,
   165 // then #define NOISY(x) x
   166 #ifdef NOISY
   167 #error "Encountered a global preprocessor flag, NOISY, which might clash with local definition to follow"
   168 #else
   169 #define NOISY(x)
   170 #endif
   172 void
   173 CardTableModRefBS::
   174 process_chunk_boundaries(Space* sp,
   175                          DirtyCardToOopClosure* dcto_cl,
   176                          MemRegion chunk_mr,
   177                          MemRegion used,
   178                          jbyte** lowest_non_clean,
   179                          uintptr_t lowest_non_clean_base_chunk_index,
   180                          size_t    lowest_non_clean_chunk_size)
   181 {
   182   // We must worry about non-array objects that cross chunk boundaries,
   183   // because such objects are both precisely and imprecisely marked:
   184   // .. if the head of such an object is dirty, the entire object
   185   //    needs to be scanned, under the interpretation that this
   186   //    was an imprecise mark
   187   // .. if the head of such an object is not dirty, we can assume
   188   //    precise marking and it's efficient to scan just the dirty
   189   //    cards.
   190   // In either case, each scanned reference must be scanned precisely
   191   // once so as to avoid cloning of a young referent. For efficiency,
   192   // our closures depend on this property and do not protect against
   193   // double scans.
   195   uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start());
   196   cur_chunk_index           = cur_chunk_index - lowest_non_clean_base_chunk_index;
   198   NOISY(tty->print_cr("===========================================================================");)
   199   NOISY(tty->print_cr(" process_chunk_boundary: Called with [" PTR_FORMAT "," PTR_FORMAT ")",
   200                       chunk_mr.start(), chunk_mr.end());)
   202   // First, set "our" lowest_non_clean entry, which would be
   203   // used by the thread scanning an adjoining left chunk with
   204   // a non-array object straddling the mutual boundary.
   205   // Find the object that spans our boundary, if one exists.
   206   // first_block is the block possibly straddling our left boundary.
   207   HeapWord* first_block = sp->block_start(chunk_mr.start());
   208   assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
   209          "First chunk should always have a co-initial block");
   210   // Does the block straddle the chunk's left boundary, and is it
   211   // a non-array object?
   212   if (first_block < chunk_mr.start()        // first block straddles left bdry
   213       && sp->block_is_obj(first_block)      // first block is an object
   214       && !(oop(first_block)->is_objArray()  // first block is not an array (arrays are precisely dirtied)
   215            || oop(first_block)->is_typeArray())) {
   216     // Find our least non-clean card, so that a left neighbour
   217     // does not scan an object straddling the mutual boundary
   218     // too far to the right, and attempt to scan a portion of
   219     // that object twice.
   220     jbyte* first_dirty_card = NULL;
   221     jbyte* last_card_of_first_obj =
   222         byte_for(first_block + sp->block_size(first_block) - 1);
   223     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
   224     jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
   225     jbyte* last_card_to_check =
   226       (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
   227                     (intptr_t) last_card_of_first_obj);
   228     // Note that this does not need to go beyond our last card
   229     // if our first object completely straddles this chunk.
   230     for (jbyte* cur = first_card_of_cur_chunk;
   231          cur <= last_card_to_check; cur++) {
   232       jbyte val = *cur;
   233       if (card_will_be_scanned(val)) {
   234         first_dirty_card = cur; break;
   235       } else {
   236         assert(!card_may_have_been_dirty(val), "Error");
   237       }
   238     }
   239     if (first_dirty_card != NULL) {
   240       NOISY(tty->print_cr(" LNC: Found a dirty card at " PTR_FORMAT " in current chunk",
   241                     first_dirty_card);)
   242       assert(0 <= cur_chunk_index && cur_chunk_index < lowest_non_clean_chunk_size,
   243              "Bounds error.");
   244       assert(lowest_non_clean[cur_chunk_index] == NULL,
   245              "Write exactly once : value should be stable hereafter for this round");
   246       lowest_non_clean[cur_chunk_index] = first_dirty_card;
   247     } NOISY(else {
   248       tty->print_cr(" LNC: Found no dirty card in current chunk; leaving LNC entry NULL");
   249       // In the future, we could have this thread look for a non-NULL value to copy from its
   250       // right neighbour (up to the end of the first object).
   251       if (last_card_of_cur_chunk < last_card_of_first_obj) {
   252         tty->print_cr(" LNC: BEWARE!!! first obj straddles past right end of chunk:\n"
   253                       "   might be efficient to get value from right neighbour?");
   254       }
   255     })
   256   } else {
   257     // In this case we can help our neighbour by just asking them
   258     // to stop at our first card (even though it may not be dirty).
   259     NOISY(tty->print_cr(" LNC: first block is not a non-array object; setting LNC to first card of current chunk");)
   260     assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
   261     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
   262     lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
   263   }
   264   NOISY(tty->print_cr(" process_chunk_boundary: lowest_non_clean[" INTPTR_FORMAT "] = " PTR_FORMAT
   265                 "   which corresponds to the heap address " PTR_FORMAT,
   266                 cur_chunk_index, lowest_non_clean[cur_chunk_index],
   267                 (lowest_non_clean[cur_chunk_index] != NULL)
   268                 ? addr_for(lowest_non_clean[cur_chunk_index])
   269                 : NULL);)
   270   NOISY(tty->print_cr("---------------------------------------------------------------------------");)
   272   // Next, set our own max_to_do, which will strictly/exclusively bound
   273   // the highest address that we will scan past the right end of our chunk.
   274   HeapWord* max_to_do = NULL;
   275   if (chunk_mr.end() < used.end()) {
   276     // This is not the last chunk in the used region.
   277     // What is our last block? We check the first block of
   278     // the next (right) chunk rather than strictly check our last block
   279     // because it's potentially more efficient to do so.
   280     HeapWord* const last_block = sp->block_start(chunk_mr.end());
   281     assert(last_block <= chunk_mr.end(), "In case this property changes.");
   282     if ((last_block == chunk_mr.end())     // our last block does not straddle boundary
   283         || !sp->block_is_obj(last_block)   // last_block isn't an object
   284         || oop(last_block)->is_objArray()  // last_block is an array (precisely marked)
   285         || oop(last_block)->is_typeArray()) {
   286       max_to_do = chunk_mr.end();
   287       NOISY(tty->print_cr(" process_chunk_boundary: Last block on this card is not a non-array object;\n"
   288                          "   max_to_do left at " PTR_FORMAT, max_to_do);)
   289     } else {
   290       assert(last_block < chunk_mr.end(), "Tautology");
   291       // It is a non-array object that straddles the right boundary of this chunk.
   292       // last_obj_card is the card corresponding to the start of the last object
   293       // in the chunk.  Note that the last object may not start in
   294       // the chunk.
   295       jbyte* const last_obj_card = byte_for(last_block);
   296       const jbyte val = *last_obj_card;
   297       if (!card_will_be_scanned(val)) {
   298         assert(!card_may_have_been_dirty(val), "Error");
   299         // The card containing the head is not dirty.  Any marks on
   300         // subsequent cards still in this chunk must have been made
   301         // precisely; we can cap processing at the end of our chunk.
   302         max_to_do = chunk_mr.end();
   303         NOISY(tty->print_cr(" process_chunk_boundary: Head of last object on this card is not dirty;\n"
   304                             "   max_to_do left at " PTR_FORMAT,
   305                             max_to_do);)
   306       } else {
   307         // The last object must be considered dirty, and extends onto the
   308         // following chunk.  Look for a dirty card in that chunk that will
   309         // bound our processing.
   310         jbyte* limit_card = NULL;
   311         const size_t last_block_size = sp->block_size(last_block);
   312         jbyte* const last_card_of_last_obj =
   313           byte_for(last_block + last_block_size - 1);
   314         jbyte* const first_card_of_next_chunk = byte_for(chunk_mr.end());
   315         // This search potentially goes a long distance looking
   316         // for the next card that will be scanned, terminating
   317         // at the end of the last_block, if no earlier dirty card
   318         // is found.
   319         assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
   320                "last card of next chunk may be wrong");
   321         for (jbyte* cur = first_card_of_next_chunk;
   322              cur <= last_card_of_last_obj; cur++) {
   323           const jbyte val = *cur;
   324           if (card_will_be_scanned(val)) {
   325             NOISY(tty->print_cr(" Found a non-clean card " PTR_FORMAT " with value 0x%x",
   326                                 cur, (int)val);)
   327             limit_card = cur; break;
   328           } else {
   329             assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
   330           }
   331         }
   332         if (limit_card != NULL) {
   333           max_to_do = addr_for(limit_card);
   334           assert(limit_card != NULL && max_to_do != NULL, "Error");
   335           NOISY(tty->print_cr(" process_chunk_boundary: Found a dirty card at " PTR_FORMAT
   336                         "   max_to_do set at " PTR_FORMAT " which is before end of last block in chunk: "
   337                         PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
   338                         limit_card, max_to_do, last_block, last_block_size, (last_block+last_block_size));)
   339         } else {
   340           // The following is a pessimistic value, because it's possible
   341           // that a dirty card on a subsequent chunk has been cleared by
   342           // the time we get to look at it; we'll correct for that further below,
   343           // using the LNC array which records the least non-clean card
   344           // before cards were cleared in a particular chunk.
   345           limit_card = last_card_of_last_obj;
   346           max_to_do = last_block + last_block_size;
   347           assert(limit_card != NULL && max_to_do != NULL, "Error");
   348           NOISY(tty->print_cr(" process_chunk_boundary: Found no dirty card before end of last block in chunk\n"
   349                               "   Setting limit_card to " PTR_FORMAT
   350                               " and max_to_do " PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
   351                               limit_card, last_block, last_block_size, max_to_do);)
   352         }
   353         assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
   354                "Bounds error.");
   355         // It is possible that a dirty card for the last object may have been
   356         // cleared before we had a chance to examine it. In that case, the value
   357         // will have been logged in the LNC for that chunk.
   358         // We need to examine as many chunks to the right as this object
   359         // covers. However, we need to bound this checking to the largest
   360         // entry in the LNC array: this is because the heap may expand
   361         // after the LNC array has been created but before we reach this point,
   362         // and the last block in our chunk may have been expanded to include
   363         // the expansion delta (and possibly subsequently allocated from, so
   364         // it wouldn't be sufficient to check whether that last block was
   365         // or was not an object at this point).
   366         uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
   367                                               - lowest_non_clean_base_chunk_index;
   368         const uintptr_t last_chunk_index    = addr_to_chunk_index(used.last())
   369                                               - lowest_non_clean_base_chunk_index;
   370         if (last_chunk_index_to_check > last_chunk_index) {
   371           assert(last_block + last_block_size > used.end(),
   372                  err_msg("Inconsistency detected: last_block [" PTR_FORMAT "," PTR_FORMAT "]"
   373                          " does not exceed used.end() = " PTR_FORMAT ","
   374                          " yet last_chunk_index_to_check " INTPTR_FORMAT
   375                          " exceeds last_chunk_index " INTPTR_FORMAT,
   376                          last_chunk_index_to_check, last_chunk_index));
   377           assert(sp->used_region().end() > used.end(),
   378                  err_msg("Expansion did not happen: "
   379                          "[" PTR_FORMAT "," PTR_FORMAT ") -> [" PTR_FORMAT "," PTR_FORMAT ")",
   380                          sp->used_region().start(), sp->used_region().end(), used.start(), used.end()));
   381           NOISY(tty->print_cr(" process_chunk_boundary: heap expanded; explicitly bounding last_chunk");)
   382           last_chunk_index_to_check = last_chunk_index;
   383         }
   384         for (uintptr_t lnc_index = cur_chunk_index + 1;
   385              lnc_index <= last_chunk_index_to_check;
   386              lnc_index++) {
   387           jbyte* lnc_card = lowest_non_clean[lnc_index];
   388           if (lnc_card != NULL) {
   389             // we can stop at the first non-NULL entry we find
   390             if (lnc_card <= limit_card) {
   391               NOISY(tty->print_cr(" process_chunk_boundary: LNC card " PTR_FORMAT " is lower than limit_card " PTR_FORMAT,
   392                                   "   max_to_do will be lowered to " PTR_FORMAT " from " PTR_FORMAT,
   393                                   lnc_card, limit_card, addr_for(lnc_card), max_to_do);)
   394               limit_card = lnc_card;
   395               max_to_do = addr_for(limit_card);
   396               assert(limit_card != NULL && max_to_do != NULL, "Error");
   397             }
   398             // In any case, we break now
   399             break;
   400           }  // else continue to look for a non-NULL entry if any
   401         }
   402         assert(limit_card != NULL && max_to_do != NULL, "Error");
   403       }
   404       assert(max_to_do != NULL, "OOPS 1 !");
   405     }
   406     assert(max_to_do != NULL, "OOPS 2!");
   407   } else {
   408     max_to_do = used.end();
   409     NOISY(tty->print_cr(" process_chunk_boundary: Last chunk of this space;\n"
   410                   "   max_to_do left at " PTR_FORMAT,
   411                   max_to_do);)
   412   }
   413   assert(max_to_do != NULL, "OOPS 3!");
   414   // Now we can set the closure we're using so it doesn't to beyond
   415   // max_to_do.
   416   dcto_cl->set_min_done(max_to_do);
   417 #ifndef PRODUCT
   418   dcto_cl->set_last_bottom(max_to_do);
   419 #endif
   420   NOISY(tty->print_cr("===========================================================================\n");)
   421 }
   423 #undef NOISY
   425 void
   426 CardTableModRefBS::
   427 get_LNC_array_for_space(Space* sp,
   428                         jbyte**& lowest_non_clean,
   429                         uintptr_t& lowest_non_clean_base_chunk_index,
   430                         size_t& lowest_non_clean_chunk_size) {
   432   int       i        = find_covering_region_containing(sp->bottom());
   433   MemRegion covered  = _covered[i];
   434   size_t    n_chunks = chunks_to_cover(covered);
   436   // Only the first thread to obtain the lock will resize the
   437   // LNC array for the covered region.  Any later expansion can't affect
   438   // the used_at_save_marks region.
   439   // (I observed a bug in which the first thread to execute this would
   440   // resize, and then it would cause "expand_and_allocate" that would
   441   // increase the number of chunks in the covered region.  Then a second
   442   // thread would come and execute this, see that the size didn't match,
   443   // and free and allocate again.  So the first thread would be using a
   444   // freed "_lowest_non_clean" array.)
   446   // Do a dirty read here. If we pass the conditional then take the rare
   447   // event lock and do the read again in case some other thread had already
   448   // succeeded and done the resize.
   449   int cur_collection = Universe::heap()->total_collections();
   450   if (_last_LNC_resizing_collection[i] != cur_collection) {
   451     MutexLocker x(ParGCRareEvent_lock);
   452     if (_last_LNC_resizing_collection[i] != cur_collection) {
   453       if (_lowest_non_clean[i] == NULL ||
   454           n_chunks != _lowest_non_clean_chunk_size[i]) {
   456         // Should we delete the old?
   457         if (_lowest_non_clean[i] != NULL) {
   458           assert(n_chunks != _lowest_non_clean_chunk_size[i],
   459                  "logical consequence");
   460           FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
   461           _lowest_non_clean[i] = NULL;
   462         }
   463         // Now allocate a new one if necessary.
   464         if (_lowest_non_clean[i] == NULL) {
   465           _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks);
   466           _lowest_non_clean_chunk_size[i]       = n_chunks;
   467           _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
   468           for (int j = 0; j < (int)n_chunks; j++)
   469             _lowest_non_clean[i][j] = NULL;
   470         }
   471       }
   472       _last_LNC_resizing_collection[i] = cur_collection;
   473     }
   474   }
   475   // In any case, now do the initialization.
   476   lowest_non_clean                  = _lowest_non_clean[i];
   477   lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
   478   lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
   479 }

mercurial