src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Wed, 14 Dec 2011 13:34:57 -0800

author
jmasa
date
Wed, 14 Dec 2011 13:34:57 -0800
changeset 3357
441e946dc1af
parent 3356
67fdcb391461
child 3358
1cbe7978b021
permissions
-rw-r--r--

7121618: Change type of number of GC workers to unsigned int.
Summary: Change variables representing the number of GC workers to uint from int and size_t. Change the parameter in work(int i) to work(uint worker_id).
Reviewed-by: brutisso, tonyp

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    34 #include "runtime/arguments.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/mutexLocker.hpp"
    37 #include "utilities/debug.hpp"
    39 // Different defaults for different number of GC threads
    40 // They were chosen by running GCOld and SPECjbb on debris with different
    41 //   numbers of GC threads and choosing them based on the results
    43 // all the same
    44 static double rs_length_diff_defaults[] = {
    45   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    46 };
    48 static double cost_per_card_ms_defaults[] = {
    49   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    50 };
    52 // all the same
    53 static double young_cards_per_entry_ratio_defaults[] = {
    54   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    55 };
    57 static double cost_per_entry_ms_defaults[] = {
    58   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    59 };
    61 static double cost_per_byte_ms_defaults[] = {
    62   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    63 };
    65 // these should be pretty consistent
    66 static double constant_other_time_ms_defaults[] = {
    67   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    68 };
    71 static double young_other_cost_per_region_ms_defaults[] = {
    72   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    73 };
    75 static double non_young_other_cost_per_region_ms_defaults[] = {
    76   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    77 };
    79 // Help class for avoiding interleaved logging
    80 class LineBuffer: public StackObj {
    82 private:
    83   static const int BUFFER_LEN = 1024;
    84   static const int INDENT_CHARS = 3;
    85   char _buffer[BUFFER_LEN];
    86   int _indent_level;
    87   int _cur;
    89   void vappend(const char* format, va_list ap) {
    90     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    91     if (res != -1) {
    92       _cur += res;
    93     } else {
    94       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
    95       _buffer[BUFFER_LEN -1] = 0;
    96       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    97     }
    98   }
   100 public:
   101   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
   102     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
   103       _buffer[_cur] = ' ';
   104     }
   105   }
   107 #ifndef PRODUCT
   108   ~LineBuffer() {
   109     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
   110   }
   111 #endif
   113   void append(const char* format, ...) {
   114     va_list ap;
   115     va_start(ap, format);
   116     vappend(format, ap);
   117     va_end(ap);
   118   }
   120   void append_and_print_cr(const char* format, ...) {
   121     va_list ap;
   122     va_start(ap, format);
   123     vappend(format, ap);
   124     va_end(ap);
   125     gclog_or_tty->print_cr("%s", _buffer);
   126     _cur = _indent_level * INDENT_CHARS;
   127   }
   128 };
   130 G1CollectorPolicy::G1CollectorPolicy() :
   131   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
   132                         ? ParallelGCThreads : 1),
   134   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   135   _all_pause_times_ms(new NumberSeq()),
   136   _stop_world_start(0.0),
   137   _all_stop_world_times_ms(new NumberSeq()),
   138   _all_yield_times_ms(new NumberSeq()),
   139   _using_new_ratio_calculations(false),
   141   _summary(new Summary()),
   143   _cur_clear_ct_time_ms(0.0),
   144   _mark_closure_time_ms(0.0),
   146   _cur_ref_proc_time_ms(0.0),
   147   _cur_ref_enq_time_ms(0.0),
   149 #ifndef PRODUCT
   150   _min_clear_cc_time_ms(-1.0),
   151   _max_clear_cc_time_ms(-1.0),
   152   _cur_clear_cc_time_ms(0.0),
   153   _cum_clear_cc_time_ms(0.0),
   154   _num_cc_clears(0L),
   155 #endif
   157   _aux_num(10),
   158   _all_aux_times_ms(new NumberSeq[_aux_num]),
   159   _cur_aux_start_times_ms(new double[_aux_num]),
   160   _cur_aux_times_ms(new double[_aux_num]),
   161   _cur_aux_times_set(new bool[_aux_num]),
   163   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   164   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   166   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   167   _prev_collection_pause_end_ms(0.0),
   168   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   169   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   170   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   171   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   172   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   173   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   174   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   175   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   176   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   177   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   178   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   179   _non_young_other_cost_per_region_ms_seq(
   180                                          new TruncatedSeq(TruncatedSeqLength)),
   182   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   183   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   185   _pause_time_target_ms((double) MaxGCPauseMillis),
   187   _gcs_are_young(true),
   188   _young_pause_num(0),
   189   _mixed_pause_num(0),
   191   _during_marking(false),
   192   _in_marking_window(false),
   193   _in_marking_window_im(false),
   195   _known_garbage_ratio(0.0),
   196   _known_garbage_bytes(0),
   198   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   200   _recent_prev_end_times_for_all_gcs_sec(
   201                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   203   _recent_avg_pause_time_ratio(0.0),
   205   _all_full_gc_times_ms(new NumberSeq()),
   207   _initiate_conc_mark_if_possible(false),
   208   _during_initial_mark_pause(false),
   209   _should_revert_to_young_gcs(false),
   210   _last_young_gc(false),
   211   _last_gc_was_young(false),
   213   _eden_bytes_before_gc(0),
   214   _survivor_bytes_before_gc(0),
   215   _capacity_before_gc(0),
   217   _prev_collection_pause_used_at_end_bytes(0),
   219   _eden_cset_region_length(0),
   220   _survivor_cset_region_length(0),
   221   _old_cset_region_length(0),
   223   _collection_set(NULL),
   224   _collection_set_bytes_used_before(0),
   226   // Incremental CSet attributes
   227   _inc_cset_build_state(Inactive),
   228   _inc_cset_head(NULL),
   229   _inc_cset_tail(NULL),
   230   _inc_cset_bytes_used_before(0),
   231   _inc_cset_max_finger(NULL),
   232   _inc_cset_recorded_rs_lengths(0),
   233   _inc_cset_recorded_rs_lengths_diffs(0),
   234   _inc_cset_predicted_elapsed_time_ms(0.0),
   235   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   237 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   238 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   239 #endif // _MSC_VER
   241   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   242                                                  G1YoungSurvRateNumRegionsSummary)),
   243   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   244                                               G1YoungSurvRateNumRegionsSummary)),
   245   // add here any more surv rate groups
   246   _recorded_survivor_regions(0),
   247   _recorded_survivor_head(NULL),
   248   _recorded_survivor_tail(NULL),
   249   _survivors_age_table(true),
   251   _gc_overhead_perc(0.0) {
   253   // Set up the region size and associated fields. Given that the
   254   // policy is created before the heap, we have to set this up here,
   255   // so it's done as soon as possible.
   256   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   257   HeapRegionRemSet::setup_remset_size();
   259   G1ErgoVerbose::initialize();
   260   if (PrintAdaptiveSizePolicy) {
   261     // Currently, we only use a single switch for all the heuristics.
   262     G1ErgoVerbose::set_enabled(true);
   263     // Given that we don't currently have a verboseness level
   264     // parameter, we'll hardcode this to high. This can be easily
   265     // changed in the future.
   266     G1ErgoVerbose::set_level(ErgoHigh);
   267   } else {
   268     G1ErgoVerbose::set_enabled(false);
   269   }
   271   // Verify PLAB sizes
   272   const size_t region_size = HeapRegion::GrainWords;
   273   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   274     char buffer[128];
   275     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
   276                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   277     vm_exit_during_initialization(buffer);
   278   }
   280   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   281   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   283   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   284   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   285   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
   287   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   288   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   290   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   292   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   294   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   295   _par_last_termination_attempts = new double[_parallel_gc_threads];
   296   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   297   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
   298   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
   300   // start conservatively
   301   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
   303   int index;
   304   if (ParallelGCThreads == 0)
   305     index = 0;
   306   else if (ParallelGCThreads > 8)
   307     index = 7;
   308   else
   309     index = ParallelGCThreads - 1;
   311   _pending_card_diff_seq->add(0.0);
   312   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   313   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   314   _young_cards_per_entry_ratio_seq->add(
   315                                   young_cards_per_entry_ratio_defaults[index]);
   316   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   317   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   318   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   319   _young_other_cost_per_region_ms_seq->add(
   320                                young_other_cost_per_region_ms_defaults[index]);
   321   _non_young_other_cost_per_region_ms_seq->add(
   322                            non_young_other_cost_per_region_ms_defaults[index]);
   324   // Below, we might need to calculate the pause time target based on
   325   // the pause interval. When we do so we are going to give G1 maximum
   326   // flexibility and allow it to do pauses when it needs to. So, we'll
   327   // arrange that the pause interval to be pause time target + 1 to
   328   // ensure that a) the pause time target is maximized with respect to
   329   // the pause interval and b) we maintain the invariant that pause
   330   // time target < pause interval. If the user does not want this
   331   // maximum flexibility, they will have to set the pause interval
   332   // explicitly.
   334   // First make sure that, if either parameter is set, its value is
   335   // reasonable.
   336   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   337     if (MaxGCPauseMillis < 1) {
   338       vm_exit_during_initialization("MaxGCPauseMillis should be "
   339                                     "greater than 0");
   340     }
   341   }
   342   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   343     if (GCPauseIntervalMillis < 1) {
   344       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   345                                     "greater than 0");
   346     }
   347   }
   349   // Then, if the pause time target parameter was not set, set it to
   350   // the default value.
   351   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   352     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   353       // The default pause time target in G1 is 200ms
   354       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   355     } else {
   356       // We do not allow the pause interval to be set without the
   357       // pause time target
   358       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   359                                     "without setting MaxGCPauseMillis");
   360     }
   361   }
   363   // Then, if the interval parameter was not set, set it according to
   364   // the pause time target (this will also deal with the case when the
   365   // pause time target is the default value).
   366   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   367     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   368   }
   370   // Finally, make sure that the two parameters are consistent.
   371   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   372     char buffer[256];
   373     jio_snprintf(buffer, 256,
   374                  "MaxGCPauseMillis (%u) should be less than "
   375                  "GCPauseIntervalMillis (%u)",
   376                  MaxGCPauseMillis, GCPauseIntervalMillis);
   377     vm_exit_during_initialization(buffer);
   378   }
   380   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   381   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   382   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   383   _sigma = (double) G1ConfidencePercent / 100.0;
   385   // start conservatively (around 50ms is about right)
   386   _concurrent_mark_remark_times_ms->add(0.05);
   387   _concurrent_mark_cleanup_times_ms->add(0.20);
   388   _tenuring_threshold = MaxTenuringThreshold;
   389   // _max_survivor_regions will be calculated by
   390   // update_young_list_target_length() during initialization.
   391   _max_survivor_regions = 0;
   393   assert(GCTimeRatio > 0,
   394          "we should have set it to a default value set_g1_gc_flags() "
   395          "if a user set it to 0");
   396   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   398   uintx reserve_perc = G1ReservePercent;
   399   // Put an artificial ceiling on this so that it's not set to a silly value.
   400   if (reserve_perc > 50) {
   401     reserve_perc = 50;
   402     warning("G1ReservePercent is set to a value that is too large, "
   403             "it's been updated to %u", reserve_perc);
   404   }
   405   _reserve_factor = (double) reserve_perc / 100.0;
   406   // This will be set when the heap is expanded
   407   // for the first time during initialization.
   408   _reserve_regions = 0;
   410   initialize_all();
   411   _collectionSetChooser = new CollectionSetChooser();
   412 }
   414 // Increment "i", mod "len"
   415 static void inc_mod(int& i, int len) {
   416   i++; if (i == len) i = 0;
   417 }
   419 void G1CollectorPolicy::initialize_flags() {
   420   set_min_alignment(HeapRegion::GrainBytes);
   421   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   422   if (SurvivorRatio < 1) {
   423     vm_exit_during_initialization("Invalid survivor ratio specified");
   424   }
   425   CollectorPolicy::initialize_flags();
   426 }
   428 // The easiest way to deal with the parsing of the NewSize /
   429 // MaxNewSize / etc. parameteres is to re-use the code in the
   430 // TwoGenerationCollectorPolicy class. This is similar to what
   431 // ParallelScavenge does with its GenerationSizer class (see
   432 // ParallelScavengeHeap::initialize()). We might change this in the
   433 // future, but it's a good start.
   434 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
   435 private:
   436   size_t size_to_region_num(size_t byte_size) {
   437     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
   438   }
   440 public:
   441   G1YoungGenSizer() {
   442     initialize_flags();
   443     initialize_size_info();
   444   }
   445   size_t min_young_region_num() {
   446     return size_to_region_num(_min_gen0_size);
   447   }
   448   size_t initial_young_region_num() {
   449     return size_to_region_num(_initial_gen0_size);
   450   }
   451   size_t max_young_region_num() {
   452     return size_to_region_num(_max_gen0_size);
   453   }
   454 };
   456 void G1CollectorPolicy::update_young_list_size_using_newratio(size_t number_of_heap_regions) {
   457   assert(number_of_heap_regions > 0, "Heap must be initialized");
   458   size_t young_size = number_of_heap_regions / (NewRatio + 1);
   459   _min_desired_young_length = young_size;
   460   _max_desired_young_length = young_size;
   461 }
   463 void G1CollectorPolicy::init() {
   464   // Set aside an initial future to_space.
   465   _g1 = G1CollectedHeap::heap();
   467   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   469   initialize_gc_policy_counters();
   471   G1YoungGenSizer sizer;
   472   _min_desired_young_length = sizer.min_young_region_num();
   473   _max_desired_young_length = sizer.max_young_region_num();
   475   if (FLAG_IS_CMDLINE(NewRatio)) {
   476     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   477       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   478     } else {
   479       // Treat NewRatio as a fixed size that is only recalculated when the heap size changes
   480       update_young_list_size_using_newratio(_g1->n_regions());
   481       _using_new_ratio_calculations = true;
   482     }
   483   }
   485   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
   487   set_adaptive_young_list_length(_min_desired_young_length < _max_desired_young_length);
   488   if (adaptive_young_list_length()) {
   489     _young_list_fixed_length = 0;
   490   } else {
   491     assert(_min_desired_young_length == _max_desired_young_length, "Min and max young size differ");
   492     _young_list_fixed_length = _min_desired_young_length;
   493   }
   494   _free_regions_at_end_of_collection = _g1->free_regions();
   495   update_young_list_target_length();
   496   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
   498   // We may immediately start allocating regions and placing them on the
   499   // collection set list. Initialize the per-collection set info
   500   start_incremental_cset_building();
   501 }
   503 // Create the jstat counters for the policy.
   504 void G1CollectorPolicy::initialize_gc_policy_counters() {
   505   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   506 }
   508 bool G1CollectorPolicy::predict_will_fit(size_t young_length,
   509                                          double base_time_ms,
   510                                          size_t base_free_regions,
   511                                          double target_pause_time_ms) {
   512   if (young_length >= base_free_regions) {
   513     // end condition 1: not enough space for the young regions
   514     return false;
   515   }
   517   double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
   518   size_t bytes_to_copy =
   519                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   520   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   521   double young_other_time_ms = predict_young_other_time_ms(young_length);
   522   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   523   if (pause_time_ms > target_pause_time_ms) {
   524     // end condition 2: prediction is over the target pause time
   525     return false;
   526   }
   528   size_t free_bytes =
   529                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
   530   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   531     // end condition 3: out-of-space (conservatively!)
   532     return false;
   533   }
   535   // success!
   536   return true;
   537 }
   539 void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
   540   // re-calculate the necessary reserve
   541   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   542   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   543   // smaller than 1.0) we'll get 1.
   544   _reserve_regions = (size_t) ceil(reserve_regions_d);
   546   if (_using_new_ratio_calculations) {
   547     // -XX:NewRatio was specified so we need to update the
   548     // young gen length when the heap size has changed.
   549     update_young_list_size_using_newratio(new_number_of_regions);
   550   }
   551 }
   553 size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
   554                                                      size_t base_min_length) {
   555   size_t desired_min_length = 0;
   556   if (adaptive_young_list_length()) {
   557     if (_alloc_rate_ms_seq->num() > 3) {
   558       double now_sec = os::elapsedTime();
   559       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   560       double alloc_rate_ms = predict_alloc_rate_ms();
   561       desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
   562     } else {
   563       // otherwise we don't have enough info to make the prediction
   564     }
   565   }
   566   desired_min_length += base_min_length;
   567   // make sure we don't go below any user-defined minimum bound
   568   return MAX2(_min_desired_young_length, desired_min_length);
   569 }
   571 size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
   572   // Here, we might want to also take into account any additional
   573   // constraints (i.e., user-defined minimum bound). Currently, we
   574   // effectively don't set this bound.
   575   return _max_desired_young_length;
   576 }
   578 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   579   if (rs_lengths == (size_t) -1) {
   580     // if it's set to the default value (-1), we should predict it;
   581     // otherwise, use the given value.
   582     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   583   }
   585   // Calculate the absolute and desired min bounds.
   587   // This is how many young regions we already have (currently: the survivors).
   588   size_t base_min_length = recorded_survivor_regions();
   589   // This is the absolute minimum young length, which ensures that we
   590   // can allocate one eden region in the worst-case.
   591   size_t absolute_min_length = base_min_length + 1;
   592   size_t desired_min_length =
   593                      calculate_young_list_desired_min_length(base_min_length);
   594   if (desired_min_length < absolute_min_length) {
   595     desired_min_length = absolute_min_length;
   596   }
   598   // Calculate the absolute and desired max bounds.
   600   // We will try our best not to "eat" into the reserve.
   601   size_t absolute_max_length = 0;
   602   if (_free_regions_at_end_of_collection > _reserve_regions) {
   603     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   604   }
   605   size_t desired_max_length = calculate_young_list_desired_max_length();
   606   if (desired_max_length > absolute_max_length) {
   607     desired_max_length = absolute_max_length;
   608   }
   610   size_t young_list_target_length = 0;
   611   if (adaptive_young_list_length()) {
   612     if (gcs_are_young()) {
   613       young_list_target_length =
   614                         calculate_young_list_target_length(rs_lengths,
   615                                                            base_min_length,
   616                                                            desired_min_length,
   617                                                            desired_max_length);
   618       _rs_lengths_prediction = rs_lengths;
   619     } else {
   620       // Don't calculate anything and let the code below bound it to
   621       // the desired_min_length, i.e., do the next GC as soon as
   622       // possible to maximize how many old regions we can add to it.
   623     }
   624   } else {
   625     if (gcs_are_young()) {
   626       young_list_target_length = _young_list_fixed_length;
   627     } else {
   628       // A bit arbitrary: during mixed GCs we allocate half
   629       // the young regions to try to add old regions to the CSet.
   630       young_list_target_length = _young_list_fixed_length / 2;
   631       // We choose to accept that we might go under the desired min
   632       // length given that we intentionally ask for a smaller young gen.
   633       desired_min_length = absolute_min_length;
   634     }
   635   }
   637   // Make sure we don't go over the desired max length, nor under the
   638   // desired min length. In case they clash, desired_min_length wins
   639   // which is why that test is second.
   640   if (young_list_target_length > desired_max_length) {
   641     young_list_target_length = desired_max_length;
   642   }
   643   if (young_list_target_length < desired_min_length) {
   644     young_list_target_length = desired_min_length;
   645   }
   647   assert(young_list_target_length > recorded_survivor_regions(),
   648          "we should be able to allocate at least one eden region");
   649   assert(young_list_target_length >= absolute_min_length, "post-condition");
   650   _young_list_target_length = young_list_target_length;
   652   update_max_gc_locker_expansion();
   653 }
   655 size_t
   656 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   657                                                    size_t base_min_length,
   658                                                    size_t desired_min_length,
   659                                                    size_t desired_max_length) {
   660   assert(adaptive_young_list_length(), "pre-condition");
   661   assert(gcs_are_young(), "only call this for young GCs");
   663   // In case some edge-condition makes the desired max length too small...
   664   if (desired_max_length <= desired_min_length) {
   665     return desired_min_length;
   666   }
   668   // We'll adjust min_young_length and max_young_length not to include
   669   // the already allocated young regions (i.e., so they reflect the
   670   // min and max eden regions we'll allocate). The base_min_length
   671   // will be reflected in the predictions by the
   672   // survivor_regions_evac_time prediction.
   673   assert(desired_min_length > base_min_length, "invariant");
   674   size_t min_young_length = desired_min_length - base_min_length;
   675   assert(desired_max_length > base_min_length, "invariant");
   676   size_t max_young_length = desired_max_length - base_min_length;
   678   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   679   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   680   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   681   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   682   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   683   double base_time_ms =
   684     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   685     survivor_regions_evac_time;
   686   size_t available_free_regions = _free_regions_at_end_of_collection;
   687   size_t base_free_regions = 0;
   688   if (available_free_regions > _reserve_regions) {
   689     base_free_regions = available_free_regions - _reserve_regions;
   690   }
   692   // Here, we will make sure that the shortest young length that
   693   // makes sense fits within the target pause time.
   695   if (predict_will_fit(min_young_length, base_time_ms,
   696                        base_free_regions, target_pause_time_ms)) {
   697     // The shortest young length will fit into the target pause time;
   698     // we'll now check whether the absolute maximum number of young
   699     // regions will fit in the target pause time. If not, we'll do
   700     // a binary search between min_young_length and max_young_length.
   701     if (predict_will_fit(max_young_length, base_time_ms,
   702                          base_free_regions, target_pause_time_ms)) {
   703       // The maximum young length will fit into the target pause time.
   704       // We are done so set min young length to the maximum length (as
   705       // the result is assumed to be returned in min_young_length).
   706       min_young_length = max_young_length;
   707     } else {
   708       // The maximum possible number of young regions will not fit within
   709       // the target pause time so we'll search for the optimal
   710       // length. The loop invariants are:
   711       //
   712       // min_young_length < max_young_length
   713       // min_young_length is known to fit into the target pause time
   714       // max_young_length is known not to fit into the target pause time
   715       //
   716       // Going into the loop we know the above hold as we've just
   717       // checked them. Every time around the loop we check whether
   718       // the middle value between min_young_length and
   719       // max_young_length fits into the target pause time. If it
   720       // does, it becomes the new min. If it doesn't, it becomes
   721       // the new max. This way we maintain the loop invariants.
   723       assert(min_young_length < max_young_length, "invariant");
   724       size_t diff = (max_young_length - min_young_length) / 2;
   725       while (diff > 0) {
   726         size_t young_length = min_young_length + diff;
   727         if (predict_will_fit(young_length, base_time_ms,
   728                              base_free_regions, target_pause_time_ms)) {
   729           min_young_length = young_length;
   730         } else {
   731           max_young_length = young_length;
   732         }
   733         assert(min_young_length <  max_young_length, "invariant");
   734         diff = (max_young_length - min_young_length) / 2;
   735       }
   736       // The results is min_young_length which, according to the
   737       // loop invariants, should fit within the target pause time.
   739       // These are the post-conditions of the binary search above:
   740       assert(min_young_length < max_young_length,
   741              "otherwise we should have discovered that max_young_length "
   742              "fits into the pause target and not done the binary search");
   743       assert(predict_will_fit(min_young_length, base_time_ms,
   744                               base_free_regions, target_pause_time_ms),
   745              "min_young_length, the result of the binary search, should "
   746              "fit into the pause target");
   747       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   748                                base_free_regions, target_pause_time_ms),
   749              "min_young_length, the result of the binary search, should be "
   750              "optimal, so no larger length should fit into the pause target");
   751     }
   752   } else {
   753     // Even the minimum length doesn't fit into the pause time
   754     // target, return it as the result nevertheless.
   755   }
   756   return base_min_length + min_young_length;
   757 }
   759 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   760   double survivor_regions_evac_time = 0.0;
   761   for (HeapRegion * r = _recorded_survivor_head;
   762        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   763        r = r->get_next_young_region()) {
   764     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   765   }
   766   return survivor_regions_evac_time;
   767 }
   769 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   770   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   772   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   773   if (rs_lengths > _rs_lengths_prediction) {
   774     // add 10% to avoid having to recalculate often
   775     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   776     update_young_list_target_length(rs_lengths_prediction);
   777   }
   778 }
   782 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   783                                                bool is_tlab,
   784                                                bool* gc_overhead_limit_was_exceeded) {
   785   guarantee(false, "Not using this policy feature yet.");
   786   return NULL;
   787 }
   789 // This method controls how a collector handles one or more
   790 // of its generations being fully allocated.
   791 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   792                                                        bool is_tlab) {
   793   guarantee(false, "Not using this policy feature yet.");
   794   return NULL;
   795 }
   798 #ifndef PRODUCT
   799 bool G1CollectorPolicy::verify_young_ages() {
   800   HeapRegion* head = _g1->young_list()->first_region();
   801   return
   802     verify_young_ages(head, _short_lived_surv_rate_group);
   803   // also call verify_young_ages on any additional surv rate groups
   804 }
   806 bool
   807 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   808                                      SurvRateGroup *surv_rate_group) {
   809   guarantee( surv_rate_group != NULL, "pre-condition" );
   811   const char* name = surv_rate_group->name();
   812   bool ret = true;
   813   int prev_age = -1;
   815   for (HeapRegion* curr = head;
   816        curr != NULL;
   817        curr = curr->get_next_young_region()) {
   818     SurvRateGroup* group = curr->surv_rate_group();
   819     if (group == NULL && !curr->is_survivor()) {
   820       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   821       ret = false;
   822     }
   824     if (surv_rate_group == group) {
   825       int age = curr->age_in_surv_rate_group();
   827       if (age < 0) {
   828         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   829         ret = false;
   830       }
   832       if (age <= prev_age) {
   833         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   834                                "(%d, %d)", name, age, prev_age);
   835         ret = false;
   836       }
   837       prev_age = age;
   838     }
   839   }
   841   return ret;
   842 }
   843 #endif // PRODUCT
   845 void G1CollectorPolicy::record_full_collection_start() {
   846   _cur_collection_start_sec = os::elapsedTime();
   847   // Release the future to-space so that it is available for compaction into.
   848   _g1->set_full_collection();
   849 }
   851 void G1CollectorPolicy::record_full_collection_end() {
   852   // Consider this like a collection pause for the purposes of allocation
   853   // since last pause.
   854   double end_sec = os::elapsedTime();
   855   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   856   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   858   _all_full_gc_times_ms->add(full_gc_time_ms);
   860   update_recent_gc_times(end_sec, full_gc_time_ms);
   862   _g1->clear_full_collection();
   864   // "Nuke" the heuristics that control the young/mixed GC
   865   // transitions and make sure we start with young GCs after the Full GC.
   866   set_gcs_are_young(true);
   867   _last_young_gc = false;
   868   _should_revert_to_young_gcs = false;
   869   clear_initiate_conc_mark_if_possible();
   870   clear_during_initial_mark_pause();
   871   _known_garbage_bytes = 0;
   872   _known_garbage_ratio = 0.0;
   873   _in_marking_window = false;
   874   _in_marking_window_im = false;
   876   _short_lived_surv_rate_group->start_adding_regions();
   877   // also call this on any additional surv rate groups
   879   record_survivor_regions(0, NULL, NULL);
   881   _free_regions_at_end_of_collection = _g1->free_regions();
   882   // Reset survivors SurvRateGroup.
   883   _survivor_surv_rate_group->reset();
   884   update_young_list_target_length();
   885   _collectionSetChooser->updateAfterFullCollection();
   886 }
   888 void G1CollectorPolicy::record_stop_world_start() {
   889   _stop_world_start = os::elapsedTime();
   890 }
   892 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   893                                                       size_t start_used) {
   894   if (PrintGCDetails) {
   895     gclog_or_tty->stamp(PrintGCTimeStamps);
   896     gclog_or_tty->print("[GC pause");
   897     gclog_or_tty->print(" (%s)", gcs_are_young() ? "young" : "mixed");
   898   }
   900   // We only need to do this here as the policy will only be applied
   901   // to the GC we're about to start. so, no point is calculating this
   902   // every time we calculate / recalculate the target young length.
   903   update_survivors_policy();
   905   assert(_g1->used() == _g1->recalculate_used(),
   906          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   907                  _g1->used(), _g1->recalculate_used()));
   909   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   910   _all_stop_world_times_ms->add(s_w_t_ms);
   911   _stop_world_start = 0.0;
   913   _cur_collection_start_sec = start_time_sec;
   914   _cur_collection_pause_used_at_start_bytes = start_used;
   915   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   916   _pending_cards = _g1->pending_card_num();
   917   _max_pending_cards = _g1->max_pending_card_num();
   919   _bytes_in_collection_set_before_gc = 0;
   920   _bytes_copied_during_gc = 0;
   922   YoungList* young_list = _g1->young_list();
   923   _eden_bytes_before_gc = young_list->eden_used_bytes();
   924   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
   925   _capacity_before_gc = _g1->capacity();
   927 #ifdef DEBUG
   928   // initialise these to something well known so that we can spot
   929   // if they are not set properly
   931   for (int i = 0; i < _parallel_gc_threads; ++i) {
   932     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   933     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   934     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
   935     _par_last_update_rs_times_ms[i] = -1234.0;
   936     _par_last_update_rs_processed_buffers[i] = -1234.0;
   937     _par_last_scan_rs_times_ms[i] = -1234.0;
   938     _par_last_obj_copy_times_ms[i] = -1234.0;
   939     _par_last_termination_times_ms[i] = -1234.0;
   940     _par_last_termination_attempts[i] = -1234.0;
   941     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   942     _par_last_gc_worker_times_ms[i] = -1234.0;
   943     _par_last_gc_worker_other_times_ms[i] = -1234.0;
   944   }
   945 #endif
   947   for (int i = 0; i < _aux_num; ++i) {
   948     _cur_aux_times_ms[i] = 0.0;
   949     _cur_aux_times_set[i] = false;
   950   }
   952   // This is initialized to zero here and is set during
   953   // the evacuation pause if marking is in progress.
   954   _cur_satb_drain_time_ms = 0.0;
   956   _last_gc_was_young = false;
   958   // do that for any other surv rate groups
   959   _short_lived_surv_rate_group->stop_adding_regions();
   960   _survivors_age_table.clear();
   962   assert( verify_young_ages(), "region age verification" );
   963 }
   965 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   966                                                    mark_init_elapsed_time_ms) {
   967   _during_marking = true;
   968   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   969   clear_during_initial_mark_pause();
   970   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   971 }
   973 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   974   _mark_remark_start_sec = os::elapsedTime();
   975   _during_marking = false;
   976 }
   978 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   979   double end_time_sec = os::elapsedTime();
   980   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   981   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   982   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   983   _prev_collection_pause_end_ms += elapsed_time_ms;
   985   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   986 }
   988 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   989   _mark_cleanup_start_sec = os::elapsedTime();
   990 }
   992 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   993   _should_revert_to_young_gcs = false;
   994   _last_young_gc = true;
   995   _in_marking_window = false;
   996 }
   998 void G1CollectorPolicy::record_concurrent_pause() {
   999   if (_stop_world_start > 0.0) {
  1000     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
  1001     _all_yield_times_ms->add(yield_ms);
  1005 void G1CollectorPolicy::record_concurrent_pause_end() {
  1008 template<class T>
  1009 T sum_of(T* sum_arr, int start, int n, int N) {
  1010   T sum = (T)0;
  1011   for (int i = 0; i < n; i++) {
  1012     int j = (start + i) % N;
  1013     sum += sum_arr[j];
  1015   return sum;
  1018 void G1CollectorPolicy::print_par_stats(int level,
  1019                                         const char* str,
  1020                                         double* data) {
  1021   double min = data[0], max = data[0];
  1022   double total = 0.0;
  1023   LineBuffer buf(level);
  1024   buf.append("[%s (ms):", str);
  1025   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1026     double val = data[i];
  1027     if (val < min)
  1028       min = val;
  1029     if (val > max)
  1030       max = val;
  1031     total += val;
  1032     buf.append("  %3.1lf", val);
  1034   buf.append_and_print_cr("");
  1035   double avg = total / (double) no_of_gc_threads();
  1036   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
  1037     avg, min, max, max - min);
  1040 void G1CollectorPolicy::print_par_sizes(int level,
  1041                                         const char* str,
  1042                                         double* data) {
  1043   double min = data[0], max = data[0];
  1044   double total = 0.0;
  1045   LineBuffer buf(level);
  1046   buf.append("[%s :", str);
  1047   for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1048     double val = data[i];
  1049     if (val < min)
  1050       min = val;
  1051     if (val > max)
  1052       max = val;
  1053     total += val;
  1054     buf.append(" %d", (int) val);
  1056   buf.append_and_print_cr("");
  1057   double avg = total / (double) no_of_gc_threads();
  1058   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
  1059     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
  1062 void G1CollectorPolicy::print_stats(int level,
  1063                                     const char* str,
  1064                                     double value) {
  1065   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
  1068 void G1CollectorPolicy::print_stats(int level,
  1069                                     const char* str,
  1070                                     int value) {
  1071   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
  1074 double G1CollectorPolicy::avg_value(double* data) {
  1075   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1076     double ret = 0.0;
  1077     for (uint i = 0; i < no_of_gc_threads(); ++i) {
  1078       ret += data[i];
  1080     return ret / (double) no_of_gc_threads();
  1081   } else {
  1082     return data[0];
  1086 double G1CollectorPolicy::max_value(double* data) {
  1087   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1088     double ret = data[0];
  1089     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1090       if (data[i] > ret) {
  1091         ret = data[i];
  1094     return ret;
  1095   } else {
  1096     return data[0];
  1100 double G1CollectorPolicy::sum_of_values(double* data) {
  1101   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1102     double sum = 0.0;
  1103     for (uint i = 0; i < no_of_gc_threads(); i++) {
  1104       sum += data[i];
  1106     return sum;
  1107   } else {
  1108     return data[0];
  1112 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
  1113   double ret = data1[0] + data2[0];
  1115   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1116     for (uint i = 1; i < no_of_gc_threads(); ++i) {
  1117       double data = data1[i] + data2[i];
  1118       if (data > ret) {
  1119         ret = data;
  1123   return ret;
  1126 // Anything below that is considered to be zero
  1127 #define MIN_TIMER_GRANULARITY 0.0000001
  1129 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
  1130   double end_time_sec = os::elapsedTime();
  1131   double elapsed_ms = _last_pause_time_ms;
  1132   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1133   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
  1134          "otherwise, the subtraction below does not make sense");
  1135   size_t rs_size =
  1136             _cur_collection_pause_used_regions_at_start - cset_region_length();
  1137   size_t cur_used_bytes = _g1->used();
  1138   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1139   bool last_pause_included_initial_mark = false;
  1140   bool update_stats = !_g1->evacuation_failed();
  1141   set_no_of_gc_threads(no_of_gc_threads);
  1143 #ifndef PRODUCT
  1144   if (G1YoungSurvRateVerbose) {
  1145     gclog_or_tty->print_cr("");
  1146     _short_lived_surv_rate_group->print();
  1147     // do that for any other surv rate groups too
  1149 #endif // PRODUCT
  1151   last_pause_included_initial_mark = during_initial_mark_pause();
  1152   if (last_pause_included_initial_mark)
  1153     record_concurrent_mark_init_end(0.0);
  1155   size_t marking_initiating_used_threshold =
  1156     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1158   if (!_g1->mark_in_progress() && !_last_young_gc) {
  1159     assert(!last_pause_included_initial_mark, "invariant");
  1160     if (cur_used_bytes > marking_initiating_used_threshold) {
  1161       if (cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
  1162         assert(!during_initial_mark_pause(), "we should not see this here");
  1164         ergo_verbose3(ErgoConcCycles,
  1165                       "request concurrent cycle initiation",
  1166                       ergo_format_reason("occupancy higher than threshold")
  1167                       ergo_format_byte("occupancy")
  1168                       ergo_format_byte_perc("threshold"),
  1169                       cur_used_bytes,
  1170                       marking_initiating_used_threshold,
  1171                       (double) InitiatingHeapOccupancyPercent);
  1173         // Note: this might have already been set, if during the last
  1174         // pause we decided to start a cycle but at the beginning of
  1175         // this pause we decided to postpone it. That's OK.
  1176         set_initiate_conc_mark_if_possible();
  1177       } else {
  1178         ergo_verbose2(ErgoConcCycles,
  1179                   "do not request concurrent cycle initiation",
  1180                   ergo_format_reason("occupancy lower than previous occupancy")
  1181                   ergo_format_byte("occupancy")
  1182                   ergo_format_byte("previous occupancy"),
  1183                   cur_used_bytes,
  1184                   _prev_collection_pause_used_at_end_bytes);
  1189   _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
  1191   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1192                           end_time_sec, false);
  1194   // This assert is exempted when we're doing parallel collection pauses,
  1195   // because the fragmentation caused by the parallel GC allocation buffers
  1196   // can lead to more memory being used during collection than was used
  1197   // before. Best leave this out until the fragmentation problem is fixed.
  1198   // Pauses in which evacuation failed can also lead to negative
  1199   // collections, since no space is reclaimed from a region containing an
  1200   // object whose evacuation failed.
  1201   // Further, we're now always doing parallel collection.  But I'm still
  1202   // leaving this here as a placeholder for a more precise assertion later.
  1203   // (DLD, 10/05.)
  1204   assert((true || parallel) // Always using GC LABs now.
  1205          || _g1->evacuation_failed()
  1206          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1207          "Negative collection");
  1209   size_t freed_bytes =
  1210     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1211   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1213   double survival_fraction =
  1214     (double)surviving_bytes/
  1215     (double)_collection_set_bytes_used_before;
  1217   // These values are used to update the summary information that is
  1218   // displayed when TraceGen0Time is enabled, and are output as part
  1219   // of the PrintGCDetails output, in the non-parallel case.
  1221   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1222   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  1223   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1224   double update_rs_processed_buffers =
  1225     sum_of_values(_par_last_update_rs_processed_buffers);
  1226   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1227   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1228   double termination_time = avg_value(_par_last_termination_times_ms);
  1230   double known_time = ext_root_scan_time +
  1231                       mark_stack_scan_time +
  1232                       update_rs_time +
  1233                       scan_rs_time +
  1234                       obj_copy_time;
  1236   double other_time_ms = elapsed_ms;
  1238   // Subtract the SATB drain time. It's initialized to zero at the
  1239   // start of the pause and is updated during the pause if marking
  1240   // is in progress.
  1241   other_time_ms -= _cur_satb_drain_time_ms;
  1243   if (parallel) {
  1244     other_time_ms -= _cur_collection_par_time_ms;
  1245   } else {
  1246     other_time_ms -= known_time;
  1249   // Subtract the time taken to clean the card table from the
  1250   // current value of "other time"
  1251   other_time_ms -= _cur_clear_ct_time_ms;
  1253   // Subtract the time spent completing marking in the collection
  1254   // set. Note if marking is not in progress during the pause
  1255   // the value of _mark_closure_time_ms will be zero.
  1256   other_time_ms -= _mark_closure_time_ms;
  1258   // TraceGen0Time and TraceGen1Time summary info updating.
  1259   _all_pause_times_ms->add(elapsed_ms);
  1261   if (update_stats) {
  1262     _summary->record_total_time_ms(elapsed_ms);
  1263     _summary->record_other_time_ms(other_time_ms);
  1265     MainBodySummary* body_summary = _summary->main_body_summary();
  1266     assert(body_summary != NULL, "should not be null!");
  1268     // This will be non-zero iff marking is currently in progress (i.e.
  1269     // _g1->mark_in_progress() == true) and the currrent pause was not
  1270     // an initial mark pause. Since the body_summary items are NumberSeqs,
  1271     // however, they have to be consistent and updated in lock-step with
  1272     // each other. Therefore we unconditionally record the SATB drain
  1273     // time - even if it's zero.
  1274     body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
  1276     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1277     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
  1278     body_summary->record_update_rs_time_ms(update_rs_time);
  1279     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1280     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1282     if (parallel) {
  1283       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1284       body_summary->record_termination_time_ms(termination_time);
  1286       double parallel_known_time = known_time + termination_time;
  1287       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
  1288       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1291     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  1292     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1294     // We exempt parallel collection from this check because Alloc Buffer
  1295     // fragmentation can produce negative collections.  Same with evac
  1296     // failure.
  1297     // Further, we're now always doing parallel collection.  But I'm still
  1298     // leaving this here as a placeholder for a more precise assertion later.
  1299     // (DLD, 10/05.
  1300     assert((true || parallel)
  1301            || _g1->evacuation_failed()
  1302            || surviving_bytes <= _collection_set_bytes_used_before,
  1303            "Or else negative collection!");
  1305     // this is where we update the allocation rate of the application
  1306     double app_time_ms =
  1307       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1308     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1309       // This usually happens due to the timer not having the required
  1310       // granularity. Some Linuxes are the usual culprits.
  1311       // We'll just set it to something (arbitrarily) small.
  1312       app_time_ms = 1.0;
  1314     // We maintain the invariant that all objects allocated by mutator
  1315     // threads will be allocated out of eden regions. So, we can use
  1316     // the eden region number allocated since the previous GC to
  1317     // calculate the application's allocate rate. The only exception
  1318     // to that is humongous objects that are allocated separately. But
  1319     // given that humongous object allocations do not really affect
  1320     // either the pause's duration nor when the next pause will take
  1321     // place we can safely ignore them here.
  1322     size_t regions_allocated = eden_cset_region_length();
  1323     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1324     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1326     double interval_ms =
  1327       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1328     update_recent_gc_times(end_time_sec, elapsed_ms);
  1329     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1330     if (recent_avg_pause_time_ratio() < 0.0 ||
  1331         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1332 #ifndef PRODUCT
  1333       // Dump info to allow post-facto debugging
  1334       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1335       gclog_or_tty->print_cr("-------------------------------------------");
  1336       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1337       _recent_gc_times_ms->dump();
  1338       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1339       _recent_prev_end_times_for_all_gcs_sec->dump();
  1340       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1341                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1342       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1343       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1344 #endif  // !PRODUCT
  1345       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1346       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1347       if (_recent_avg_pause_time_ratio < 0.0) {
  1348         _recent_avg_pause_time_ratio = 0.0;
  1349       } else {
  1350         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1351         _recent_avg_pause_time_ratio = 1.0;
  1356   for (int i = 0; i < _aux_num; ++i) {
  1357     if (_cur_aux_times_set[i]) {
  1358       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1362   // PrintGCDetails output
  1363   if (PrintGCDetails) {
  1364     bool print_marking_info =
  1365       _g1->mark_in_progress() && !last_pause_included_initial_mark;
  1367     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1368                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1369                            elapsed_ms / 1000.0);
  1371     if (print_marking_info) {
  1372       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
  1375     if (parallel) {
  1376       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1377       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
  1378       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
  1379       if (print_marking_info) {
  1380         print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
  1382       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1383       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
  1384       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1385       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1386       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1387       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
  1388       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
  1390       for (int i = 0; i < _parallel_gc_threads; i++) {
  1391         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
  1393         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
  1394                                    _par_last_mark_stack_scan_times_ms[i] +
  1395                                    _par_last_update_rs_times_ms[i] +
  1396                                    _par_last_scan_rs_times_ms[i] +
  1397                                    _par_last_obj_copy_times_ms[i] +
  1398                                    _par_last_termination_times_ms[i];
  1400         _par_last_gc_worker_other_times_ms[i] = _cur_collection_par_time_ms - worker_known_time;
  1402       print_par_stats(2, "GC Worker", _par_last_gc_worker_times_ms);
  1403       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
  1404     } else {
  1405       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1406       if (print_marking_info) {
  1407         print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
  1409       print_stats(1, "Update RS", update_rs_time);
  1410       print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
  1411       print_stats(1, "Scan RS", scan_rs_time);
  1412       print_stats(1, "Object Copying", obj_copy_time);
  1414     if (print_marking_info) {
  1415       print_stats(1, "Complete CSet Marking", _mark_closure_time_ms);
  1417     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1418 #ifndef PRODUCT
  1419     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1420     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1421     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1422     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1423     if (_num_cc_clears > 0) {
  1424       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1426 #endif
  1427     print_stats(1, "Other", other_time_ms);
  1428     print_stats(2, "Choose CSet",
  1429                    (_recorded_young_cset_choice_time_ms +
  1430                     _recorded_non_young_cset_choice_time_ms));
  1431     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
  1432     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
  1433     print_stats(2, "Free CSet",
  1434                    (_recorded_young_free_cset_time_ms +
  1435                     _recorded_non_young_free_cset_time_ms));
  1437     for (int i = 0; i < _aux_num; ++i) {
  1438       if (_cur_aux_times_set[i]) {
  1439         char buffer[96];
  1440         sprintf(buffer, "Aux%d", i);
  1441         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1446   // Update the efficiency-since-mark vars.
  1447   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1448   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1449     // This usually happens due to the timer not having the required
  1450     // granularity. Some Linuxes are the usual culprits.
  1451     // We'll just set it to something (arbitrarily) small.
  1452     proc_ms = 1.0;
  1454   double cur_efficiency = (double) freed_bytes / proc_ms;
  1456   bool new_in_marking_window = _in_marking_window;
  1457   bool new_in_marking_window_im = false;
  1458   if (during_initial_mark_pause()) {
  1459     new_in_marking_window = true;
  1460     new_in_marking_window_im = true;
  1463   if (_last_young_gc) {
  1464     if (!last_pause_included_initial_mark) {
  1465       ergo_verbose2(ErgoMixedGCs,
  1466                     "start mixed GCs",
  1467                     ergo_format_byte_perc("known garbage"),
  1468                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1469       set_gcs_are_young(false);
  1470     } else {
  1471       ergo_verbose0(ErgoMixedGCs,
  1472                     "do not start mixed GCs",
  1473                     ergo_format_reason("concurrent cycle is about to start"));
  1475     _last_young_gc = false;
  1478   if (!_last_gc_was_young) {
  1479     if (_should_revert_to_young_gcs) {
  1480       ergo_verbose2(ErgoMixedGCs,
  1481                     "end mixed GCs",
  1482                     ergo_format_reason("mixed GCs end requested")
  1483                     ergo_format_byte_perc("known garbage"),
  1484                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1485       set_gcs_are_young(true);
  1486     } else if (_known_garbage_ratio < 0.05) {
  1487       ergo_verbose3(ErgoMixedGCs,
  1488                "end mixed GCs",
  1489                ergo_format_reason("known garbage percent lower than threshold")
  1490                ergo_format_byte_perc("known garbage")
  1491                ergo_format_perc("threshold"),
  1492                _known_garbage_bytes, _known_garbage_ratio * 100.0,
  1493                0.05 * 100.0);
  1494       set_gcs_are_young(true);
  1495     } else if (adaptive_young_list_length() &&
  1496               (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) {
  1497       ergo_verbose5(ErgoMixedGCs,
  1498                     "end mixed GCs",
  1499                     ergo_format_reason("current GC efficiency lower than "
  1500                                        "predicted young GC efficiency")
  1501                     ergo_format_double("GC efficiency factor")
  1502                     ergo_format_double("current GC efficiency")
  1503                     ergo_format_double("predicted young GC efficiency")
  1504                     ergo_format_byte_perc("known garbage"),
  1505                     get_gc_eff_factor(), cur_efficiency,
  1506                     predict_young_gc_eff(),
  1507                     _known_garbage_bytes, _known_garbage_ratio * 100.0);
  1508       set_gcs_are_young(true);
  1511   _should_revert_to_young_gcs = false;
  1513   if (_last_gc_was_young && !_during_marking) {
  1514     _young_gc_eff_seq->add(cur_efficiency);
  1517   _short_lived_surv_rate_group->start_adding_regions();
  1518   // do that for any other surv rate groupsx
  1520   if (update_stats) {
  1521     double pause_time_ms = elapsed_ms;
  1523     size_t diff = 0;
  1524     if (_max_pending_cards >= _pending_cards)
  1525       diff = _max_pending_cards - _pending_cards;
  1526     _pending_card_diff_seq->add((double) diff);
  1528     double cost_per_card_ms = 0.0;
  1529     if (_pending_cards > 0) {
  1530       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1531       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1534     size_t cards_scanned = _g1->cards_scanned();
  1536     double cost_per_entry_ms = 0.0;
  1537     if (cards_scanned > 10) {
  1538       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1539       if (_last_gc_was_young) {
  1540         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1541       } else {
  1542         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1546     if (_max_rs_lengths > 0) {
  1547       double cards_per_entry_ratio =
  1548         (double) cards_scanned / (double) _max_rs_lengths;
  1549       if (_last_gc_was_young) {
  1550         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1551       } else {
  1552         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1556     // This is defensive. For a while _max_rs_lengths could get
  1557     // smaller than _recorded_rs_lengths which was causing
  1558     // rs_length_diff to get very large and mess up the RSet length
  1559     // predictions. The reason was unsafe concurrent updates to the
  1560     // _inc_cset_recorded_rs_lengths field which the code below guards
  1561     // against (see CR 7118202). This bug has now been fixed (see CR
  1562     // 7119027). However, I'm still worried that
  1563     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1564     // inaccurate. The concurrent refinement thread calculates an
  1565     // RSet's length concurrently with other CR threads updating it
  1566     // which might cause it to calculate the length incorrectly (if,
  1567     // say, it's in mid-coarsening). So I'll leave in the defensive
  1568     // conditional below just in case.
  1569     size_t rs_length_diff = 0;
  1570     if (_max_rs_lengths > _recorded_rs_lengths) {
  1571       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1573     _rs_length_diff_seq->add((double) rs_length_diff);
  1575     size_t copied_bytes = surviving_bytes;
  1576     double cost_per_byte_ms = 0.0;
  1577     if (copied_bytes > 0) {
  1578       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1579       if (_in_marking_window) {
  1580         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1581       } else {
  1582         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1586     double all_other_time_ms = pause_time_ms -
  1587       (update_rs_time + scan_rs_time + obj_copy_time +
  1588        _mark_closure_time_ms + termination_time);
  1590     double young_other_time_ms = 0.0;
  1591     if (young_cset_region_length() > 0) {
  1592       young_other_time_ms =
  1593         _recorded_young_cset_choice_time_ms +
  1594         _recorded_young_free_cset_time_ms;
  1595       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1596                                           (double) young_cset_region_length());
  1598     double non_young_other_time_ms = 0.0;
  1599     if (old_cset_region_length() > 0) {
  1600       non_young_other_time_ms =
  1601         _recorded_non_young_cset_choice_time_ms +
  1602         _recorded_non_young_free_cset_time_ms;
  1604       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1605                                             (double) old_cset_region_length());
  1608     double constant_other_time_ms = all_other_time_ms -
  1609       (young_other_time_ms + non_young_other_time_ms);
  1610     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1612     double survival_ratio = 0.0;
  1613     if (_bytes_in_collection_set_before_gc > 0) {
  1614       survival_ratio = (double) _bytes_copied_during_gc /
  1615                                    (double) _bytes_in_collection_set_before_gc;
  1618     _pending_cards_seq->add((double) _pending_cards);
  1619     _rs_lengths_seq->add((double) _max_rs_lengths);
  1621     double expensive_region_limit_ms =
  1622       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
  1623     if (expensive_region_limit_ms < 0.0) {
  1624       // this means that the other time was predicted to be longer than
  1625       // than the max pause time
  1626       expensive_region_limit_ms = (double) MaxGCPauseMillis;
  1628     _expensive_region_limit_ms = expensive_region_limit_ms;
  1631   _in_marking_window = new_in_marking_window;
  1632   _in_marking_window_im = new_in_marking_window_im;
  1633   _free_regions_at_end_of_collection = _g1->free_regions();
  1634   update_young_list_target_length();
  1636   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1637   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1638   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1640   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
  1643 #define EXT_SIZE_FORMAT "%d%s"
  1644 #define EXT_SIZE_PARAMS(bytes)                                  \
  1645   byte_size_in_proper_unit((bytes)),                            \
  1646   proper_unit_for_byte_size((bytes))
  1648 void G1CollectorPolicy::print_heap_transition() {
  1649   if (PrintGCDetails) {
  1650     YoungList* young_list = _g1->young_list();
  1651     size_t eden_bytes = young_list->eden_used_bytes();
  1652     size_t survivor_bytes = young_list->survivor_used_bytes();
  1653     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1654     size_t used = _g1->used();
  1655     size_t capacity = _g1->capacity();
  1656     size_t eden_capacity =
  1657       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
  1659     gclog_or_tty->print_cr(
  1660       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
  1661       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1662       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1663       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1664       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1665       EXT_SIZE_PARAMS(_prev_eden_capacity),
  1666       EXT_SIZE_PARAMS(eden_bytes),
  1667       EXT_SIZE_PARAMS(eden_capacity),
  1668       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1669       EXT_SIZE_PARAMS(survivor_bytes),
  1670       EXT_SIZE_PARAMS(used_before_gc),
  1671       EXT_SIZE_PARAMS(_capacity_before_gc),
  1672       EXT_SIZE_PARAMS(used),
  1673       EXT_SIZE_PARAMS(capacity));
  1675     _prev_eden_capacity = eden_capacity;
  1676   } else if (PrintGC) {
  1677     _g1->print_size_transition(gclog_or_tty,
  1678                                _cur_collection_pause_used_at_start_bytes,
  1679                                _g1->used(), _g1->capacity());
  1683 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1684                                                      double update_rs_processed_buffers,
  1685                                                      double goal_ms) {
  1686   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1687   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1689   if (G1UseAdaptiveConcRefinement) {
  1690     const int k_gy = 3, k_gr = 6;
  1691     const double inc_k = 1.1, dec_k = 0.9;
  1693     int g = cg1r->green_zone();
  1694     if (update_rs_time > goal_ms) {
  1695       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1696     } else {
  1697       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1698         g = (int)MAX2(g * inc_k, g + 1.0);
  1701     // Change the refinement threads params
  1702     cg1r->set_green_zone(g);
  1703     cg1r->set_yellow_zone(g * k_gy);
  1704     cg1r->set_red_zone(g * k_gr);
  1705     cg1r->reinitialize_threads();
  1707     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1708     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1709                                     cg1r->yellow_zone());
  1710     // Change the barrier params
  1711     dcqs.set_process_completed_threshold(processing_threshold);
  1712     dcqs.set_max_completed_queue(cg1r->red_zone());
  1715   int curr_queue_size = dcqs.completed_buffers_num();
  1716   if (curr_queue_size >= cg1r->yellow_zone()) {
  1717     dcqs.set_completed_queue_padding(curr_queue_size);
  1718   } else {
  1719     dcqs.set_completed_queue_padding(0);
  1721   dcqs.notify_if_necessary();
  1724 double
  1725 G1CollectorPolicy::
  1726 predict_young_collection_elapsed_time_ms(size_t adjustment) {
  1727   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
  1729   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1730   size_t young_num = g1h->young_list()->length();
  1731   if (young_num == 0)
  1732     return 0.0;
  1734   young_num += adjustment;
  1735   size_t pending_cards = predict_pending_cards();
  1736   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
  1737                       predict_rs_length_diff();
  1738   size_t card_num;
  1739   if (gcs_are_young()) {
  1740     card_num = predict_young_card_num(rs_lengths);
  1741   } else {
  1742     card_num = predict_non_young_card_num(rs_lengths);
  1744   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  1745   double accum_yg_surv_rate =
  1746     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
  1748   size_t bytes_to_copy =
  1749     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
  1751   return
  1752     predict_rs_update_time_ms(pending_cards) +
  1753     predict_rs_scan_time_ms(card_num) +
  1754     predict_object_copy_time_ms(bytes_to_copy) +
  1755     predict_young_other_time_ms(young_num) +
  1756     predict_constant_other_time_ms();
  1759 double
  1760 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1761   size_t rs_length = predict_rs_length_diff();
  1762   size_t card_num;
  1763   if (gcs_are_young()) {
  1764     card_num = predict_young_card_num(rs_length);
  1765   } else {
  1766     card_num = predict_non_young_card_num(rs_length);
  1768   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1771 double
  1772 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1773                                                 size_t scanned_cards) {
  1774   return
  1775     predict_rs_update_time_ms(pending_cards) +
  1776     predict_rs_scan_time_ms(scanned_cards) +
  1777     predict_constant_other_time_ms();
  1780 double
  1781 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1782                                                   bool young) {
  1783   size_t rs_length = hr->rem_set()->occupied();
  1784   size_t card_num;
  1785   if (gcs_are_young()) {
  1786     card_num = predict_young_card_num(rs_length);
  1787   } else {
  1788     card_num = predict_non_young_card_num(rs_length);
  1790   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1792   double region_elapsed_time_ms =
  1793     predict_rs_scan_time_ms(card_num) +
  1794     predict_object_copy_time_ms(bytes_to_copy);
  1796   if (young)
  1797     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1798   else
  1799     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1801   return region_elapsed_time_ms;
  1804 size_t
  1805 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1806   size_t bytes_to_copy;
  1807   if (hr->is_marked())
  1808     bytes_to_copy = hr->max_live_bytes();
  1809   else {
  1810     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
  1811                "invariant" );
  1812     int age = hr->age_in_surv_rate_group();
  1813     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1814     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1817   return bytes_to_copy;
  1820 void
  1821 G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length,
  1822                                           size_t survivor_cset_region_length) {
  1823   _eden_cset_region_length     = eden_cset_region_length;
  1824   _survivor_cset_region_length = survivor_cset_region_length;
  1825   _old_cset_region_length      = 0;
  1828 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1829   _recorded_rs_lengths = rs_lengths;
  1832 void G1CollectorPolicy::check_if_region_is_too_expensive(double
  1833                                                            predicted_time_ms) {
  1834   // I don't think we need to do this when in young GC mode since
  1835   // marking will be initiated next time we hit the soft limit anyway...
  1836   if (predicted_time_ms > _expensive_region_limit_ms) {
  1837     ergo_verbose2(ErgoMixedGCs,
  1838               "request mixed GCs end",
  1839               ergo_format_reason("predicted region time higher than threshold")
  1840               ergo_format_ms("predicted region time")
  1841               ergo_format_ms("threshold"),
  1842               predicted_time_ms, _expensive_region_limit_ms);
  1843     // no point in doing another mixed GC
  1844     _should_revert_to_young_gcs = true;
  1848 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1849                                                double elapsed_ms) {
  1850   _recent_gc_times_ms->add(elapsed_ms);
  1851   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1852   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1855 size_t G1CollectorPolicy::expansion_amount() {
  1856   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1857   double threshold = _gc_overhead_perc;
  1858   if (recent_gc_overhead > threshold) {
  1859     // We will double the existing space, or take
  1860     // G1ExpandByPercentOfAvailable % of the available expansion
  1861     // space, whichever is smaller, bounded below by a minimum
  1862     // expansion (unless that's all that's left.)
  1863     const size_t min_expand_bytes = 1*M;
  1864     size_t reserved_bytes = _g1->max_capacity();
  1865     size_t committed_bytes = _g1->capacity();
  1866     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1867     size_t expand_bytes;
  1868     size_t expand_bytes_via_pct =
  1869       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1870     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1871     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1872     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1874     ergo_verbose5(ErgoHeapSizing,
  1875                   "attempt heap expansion",
  1876                   ergo_format_reason("recent GC overhead higher than "
  1877                                      "threshold after GC")
  1878                   ergo_format_perc("recent GC overhead")
  1879                   ergo_format_perc("threshold")
  1880                   ergo_format_byte("uncommitted")
  1881                   ergo_format_byte_perc("calculated expansion amount"),
  1882                   recent_gc_overhead, threshold,
  1883                   uncommitted_bytes,
  1884                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1886     return expand_bytes;
  1887   } else {
  1888     return 0;
  1892 class CountCSClosure: public HeapRegionClosure {
  1893   G1CollectorPolicy* _g1_policy;
  1894 public:
  1895   CountCSClosure(G1CollectorPolicy* g1_policy) :
  1896     _g1_policy(g1_policy) {}
  1897   bool doHeapRegion(HeapRegion* r) {
  1898     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  1899     return false;
  1901 };
  1903 void G1CollectorPolicy::count_CS_bytes_used() {
  1904   CountCSClosure cs_closure(this);
  1905   _g1->collection_set_iterate(&cs_closure);
  1908 void G1CollectorPolicy::print_summary(int level,
  1909                                       const char* str,
  1910                                       NumberSeq* seq) const {
  1911   double sum = seq->sum();
  1912   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  1913                 str, sum / 1000.0, seq->avg());
  1916 void G1CollectorPolicy::print_summary_sd(int level,
  1917                                          const char* str,
  1918                                          NumberSeq* seq) const {
  1919   print_summary(level, str, seq);
  1920   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  1921                 seq->num(), seq->sd(), seq->maximum());
  1924 void G1CollectorPolicy::check_other_times(int level,
  1925                                         NumberSeq* other_times_ms,
  1926                                         NumberSeq* calc_other_times_ms) const {
  1927   bool should_print = false;
  1928   LineBuffer buf(level + 2);
  1930   double max_sum = MAX2(fabs(other_times_ms->sum()),
  1931                         fabs(calc_other_times_ms->sum()));
  1932   double min_sum = MIN2(fabs(other_times_ms->sum()),
  1933                         fabs(calc_other_times_ms->sum()));
  1934   double sum_ratio = max_sum / min_sum;
  1935   if (sum_ratio > 1.1) {
  1936     should_print = true;
  1937     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  1940   double max_avg = MAX2(fabs(other_times_ms->avg()),
  1941                         fabs(calc_other_times_ms->avg()));
  1942   double min_avg = MIN2(fabs(other_times_ms->avg()),
  1943                         fabs(calc_other_times_ms->avg()));
  1944   double avg_ratio = max_avg / min_avg;
  1945   if (avg_ratio > 1.1) {
  1946     should_print = true;
  1947     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  1950   if (other_times_ms->sum() < -0.01) {
  1951     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  1954   if (other_times_ms->avg() < -0.01) {
  1955     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  1958   if (calc_other_times_ms->sum() < -0.01) {
  1959     should_print = true;
  1960     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  1963   if (calc_other_times_ms->avg() < -0.01) {
  1964     should_print = true;
  1965     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  1968   if (should_print)
  1969     print_summary(level, "Other(Calc)", calc_other_times_ms);
  1972 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  1973   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1974   MainBodySummary*    body_summary = summary->main_body_summary();
  1975   if (summary->get_total_seq()->num() > 0) {
  1976     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  1977     if (body_summary != NULL) {
  1978       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
  1979       if (parallel) {
  1980         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  1981         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  1982         print_summary(2, "Mark Stack Scanning", body_summary->get_mark_stack_scan_seq());
  1983         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  1984         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  1985         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  1986         print_summary(2, "Termination", body_summary->get_termination_seq());
  1987         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
  1989           NumberSeq* other_parts[] = {
  1990             body_summary->get_ext_root_scan_seq(),
  1991             body_summary->get_mark_stack_scan_seq(),
  1992             body_summary->get_update_rs_seq(),
  1993             body_summary->get_scan_rs_seq(),
  1994             body_summary->get_obj_copy_seq(),
  1995             body_summary->get_termination_seq()
  1996           };
  1997           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  1998                                         6, other_parts);
  1999           check_other_times(2, body_summary->get_parallel_other_seq(),
  2000                             &calc_other_times_ms);
  2002       } else {
  2003         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
  2004         print_summary(1, "Mark Stack Scanning", body_summary->get_mark_stack_scan_seq());
  2005         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  2006         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  2007         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  2010     print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
  2011     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  2012     print_summary(1, "Other", summary->get_other_seq());
  2014       if (body_summary != NULL) {
  2015         NumberSeq calc_other_times_ms;
  2016         if (parallel) {
  2017           // parallel
  2018           NumberSeq* other_parts[] = {
  2019             body_summary->get_satb_drain_seq(),
  2020             body_summary->get_parallel_seq(),
  2021             body_summary->get_clear_ct_seq()
  2022           };
  2023           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2024                                                 3, other_parts);
  2025         } else {
  2026           // serial
  2027           NumberSeq* other_parts[] = {
  2028             body_summary->get_satb_drain_seq(),
  2029             body_summary->get_update_rs_seq(),
  2030             body_summary->get_ext_root_scan_seq(),
  2031             body_summary->get_mark_stack_scan_seq(),
  2032             body_summary->get_scan_rs_seq(),
  2033             body_summary->get_obj_copy_seq()
  2034           };
  2035           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2036                                                 6, other_parts);
  2038         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  2041   } else {
  2042     LineBuffer(1).append_and_print_cr("none");
  2044   LineBuffer(0).append_and_print_cr("");
  2047 void G1CollectorPolicy::print_tracing_info() const {
  2048   if (TraceGen0Time) {
  2049     gclog_or_tty->print_cr("ALL PAUSES");
  2050     print_summary_sd(0, "Total", _all_pause_times_ms);
  2051     gclog_or_tty->print_cr("");
  2052     gclog_or_tty->print_cr("");
  2053     gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2054     gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2055     gclog_or_tty->print_cr("");
  2057     gclog_or_tty->print_cr("EVACUATION PAUSES");
  2058     print_summary(_summary);
  2060     gclog_or_tty->print_cr("MISC");
  2061     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  2062     print_summary_sd(0, "Yields", _all_yield_times_ms);
  2063     for (int i = 0; i < _aux_num; ++i) {
  2064       if (_all_aux_times_ms[i].num() > 0) {
  2065         char buffer[96];
  2066         sprintf(buffer, "Aux%d", i);
  2067         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  2071   if (TraceGen1Time) {
  2072     if (_all_full_gc_times_ms->num() > 0) {
  2073       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2074                  _all_full_gc_times_ms->num(),
  2075                  _all_full_gc_times_ms->sum() / 1000.0);
  2076       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  2077       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2078                     _all_full_gc_times_ms->sd(),
  2079                     _all_full_gc_times_ms->maximum());
  2084 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  2085 #ifndef PRODUCT
  2086   _short_lived_surv_rate_group->print_surv_rate_summary();
  2087   // add this call for any other surv rate groups
  2088 #endif // PRODUCT
  2091 #ifndef PRODUCT
  2092 // for debugging, bit of a hack...
  2093 static char*
  2094 region_num_to_mbs(int length) {
  2095   static char buffer[64];
  2096   double bytes = (double) (length * HeapRegion::GrainBytes);
  2097   double mbs = bytes / (double) (1024 * 1024);
  2098   sprintf(buffer, "%7.2lfMB", mbs);
  2099   return buffer;
  2101 #endif // PRODUCT
  2103 size_t G1CollectorPolicy::max_regions(int purpose) {
  2104   switch (purpose) {
  2105     case GCAllocForSurvived:
  2106       return _max_survivor_regions;
  2107     case GCAllocForTenured:
  2108       return REGIONS_UNLIMITED;
  2109     default:
  2110       ShouldNotReachHere();
  2111       return REGIONS_UNLIMITED;
  2112   };
  2115 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  2116   size_t expansion_region_num = 0;
  2117   if (GCLockerEdenExpansionPercent > 0) {
  2118     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  2119     double expansion_region_num_d = perc * (double) _young_list_target_length;
  2120     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  2121     // less than 1.0) we'll get 1.
  2122     expansion_region_num = (size_t) ceil(expansion_region_num_d);
  2123   } else {
  2124     assert(expansion_region_num == 0, "sanity");
  2126   _young_list_max_length = _young_list_target_length + expansion_region_num;
  2127   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  2130 // Calculates survivor space parameters.
  2131 void G1CollectorPolicy::update_survivors_policy() {
  2132   double max_survivor_regions_d =
  2133                  (double) _young_list_target_length / (double) SurvivorRatio;
  2134   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  2135   // smaller than 1.0) we'll get 1.
  2136   _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);
  2138   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2139         HeapRegion::GrainWords * _max_survivor_regions);
  2142 #ifndef PRODUCT
  2143 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2144   CollectionSetChooser* _chooser;
  2145 public:
  2146   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2147     _chooser(chooser) {}
  2149   bool doHeapRegion(HeapRegion* r) {
  2150     if (!r->continuesHumongous()) {
  2151       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2153     return false;
  2155 };
  2157 bool G1CollectorPolicy::assertMarkedBytesDataOK() {
  2158   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2159   _g1->heap_region_iterate(&cl);
  2160   return true;
  2162 #endif
  2164 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  2165                                                      GCCause::Cause gc_cause) {
  2166   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2167   if (!during_cycle) {
  2168     ergo_verbose1(ErgoConcCycles,
  2169                   "request concurrent cycle initiation",
  2170                   ergo_format_reason("requested by GC cause")
  2171                   ergo_format_str("GC cause"),
  2172                   GCCause::to_string(gc_cause));
  2173     set_initiate_conc_mark_if_possible();
  2174     return true;
  2175   } else {
  2176     ergo_verbose1(ErgoConcCycles,
  2177                   "do not request concurrent cycle initiation",
  2178                   ergo_format_reason("concurrent cycle already in progress")
  2179                   ergo_format_str("GC cause"),
  2180                   GCCause::to_string(gc_cause));
  2181     return false;
  2185 void
  2186 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2187   // We are about to decide on whether this pause will be an
  2188   // initial-mark pause.
  2190   // First, during_initial_mark_pause() should not be already set. We
  2191   // will set it here if we have to. However, it should be cleared by
  2192   // the end of the pause (it's only set for the duration of an
  2193   // initial-mark pause).
  2194   assert(!during_initial_mark_pause(), "pre-condition");
  2196   if (initiate_conc_mark_if_possible()) {
  2197     // We had noticed on a previous pause that the heap occupancy has
  2198     // gone over the initiating threshold and we should start a
  2199     // concurrent marking cycle. So we might initiate one.
  2201     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2202     if (!during_cycle) {
  2203       // The concurrent marking thread is not "during a cycle", i.e.,
  2204       // it has completed the last one. So we can go ahead and
  2205       // initiate a new cycle.
  2207       set_during_initial_mark_pause();
  2208       // We do not allow mixed GCs during marking.
  2209       if (!gcs_are_young()) {
  2210         set_gcs_are_young(true);
  2211         ergo_verbose0(ErgoMixedGCs,
  2212                       "end mixed GCs",
  2213                       ergo_format_reason("concurrent cycle is about to start"));
  2216       // And we can now clear initiate_conc_mark_if_possible() as
  2217       // we've already acted on it.
  2218       clear_initiate_conc_mark_if_possible();
  2220       ergo_verbose0(ErgoConcCycles,
  2221                   "initiate concurrent cycle",
  2222                   ergo_format_reason("concurrent cycle initiation requested"));
  2223     } else {
  2224       // The concurrent marking thread is still finishing up the
  2225       // previous cycle. If we start one right now the two cycles
  2226       // overlap. In particular, the concurrent marking thread might
  2227       // be in the process of clearing the next marking bitmap (which
  2228       // we will use for the next cycle if we start one). Starting a
  2229       // cycle now will be bad given that parts of the marking
  2230       // information might get cleared by the marking thread. And we
  2231       // cannot wait for the marking thread to finish the cycle as it
  2232       // periodically yields while clearing the next marking bitmap
  2233       // and, if it's in a yield point, it's waiting for us to
  2234       // finish. So, at this point we will not start a cycle and we'll
  2235       // let the concurrent marking thread complete the last one.
  2236       ergo_verbose0(ErgoConcCycles,
  2237                     "do not initiate concurrent cycle",
  2238                     ergo_format_reason("concurrent cycle already in progress"));
  2243 class KnownGarbageClosure: public HeapRegionClosure {
  2244   CollectionSetChooser* _hrSorted;
  2246 public:
  2247   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2248     _hrSorted(hrSorted)
  2249   {}
  2251   bool doHeapRegion(HeapRegion* r) {
  2252     // We only include humongous regions in collection
  2253     // sets when concurrent mark shows that their contained object is
  2254     // unreachable.
  2256     // Do we have any marking information for this region?
  2257     if (r->is_marked()) {
  2258       // We don't include humongous regions in collection
  2259       // sets because we collect them immediately at the end of a marking
  2260       // cycle.  We also don't include young regions because we *must*
  2261       // include them in the next collection pause.
  2262       if (!r->isHumongous() && !r->is_young()) {
  2263         _hrSorted->addMarkedHeapRegion(r);
  2266     return false;
  2268 };
  2270 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2271   CollectionSetChooser* _hrSorted;
  2272   jint _marked_regions_added;
  2273   jint _chunk_size;
  2274   jint _cur_chunk_idx;
  2275   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2276   int _worker;
  2277   int _invokes;
  2279   void get_new_chunk() {
  2280     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2281     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2283   void add_region(HeapRegion* r) {
  2284     if (_cur_chunk_idx == _cur_chunk_end) {
  2285       get_new_chunk();
  2287     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2288     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2289     _marked_regions_added++;
  2290     _cur_chunk_idx++;
  2293 public:
  2294   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2295                            jint chunk_size,
  2296                            int worker) :
  2297     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2298     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
  2299     _invokes(0)
  2300   {}
  2302   bool doHeapRegion(HeapRegion* r) {
  2303     // We only include humongous regions in collection
  2304     // sets when concurrent mark shows that their contained object is
  2305     // unreachable.
  2306     _invokes++;
  2308     // Do we have any marking information for this region?
  2309     if (r->is_marked()) {
  2310       // We don't include humongous regions in collection
  2311       // sets because we collect them immediately at the end of a marking
  2312       // cycle.
  2313       // We also do not include young regions in collection sets
  2314       if (!r->isHumongous() && !r->is_young()) {
  2315         add_region(r);
  2318     return false;
  2320   jint marked_regions_added() { return _marked_regions_added; }
  2321   int invokes() { return _invokes; }
  2322 };
  2324 class ParKnownGarbageTask: public AbstractGangTask {
  2325   CollectionSetChooser* _hrSorted;
  2326   jint _chunk_size;
  2327   G1CollectedHeap* _g1;
  2328 public:
  2329   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2330     AbstractGangTask("ParKnownGarbageTask"),
  2331     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2332     _g1(G1CollectedHeap::heap())
  2333   {}
  2335   void work(uint worker_id) {
  2336     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted,
  2337                                                _chunk_size,
  2338                                                worker_id);
  2339     // Back to zero for the claim value.
  2340     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  2341                                          _g1->workers()->active_workers(),
  2342                                          HeapRegion::InitialClaimValue);
  2343     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2344     _hrSorted->incNumMarkedHeapRegions(regions_added);
  2345     if (G1PrintParCleanupStats) {
  2346       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
  2347                  worker_id, parKnownGarbageCl.invokes(), regions_added);
  2350 };
  2352 void
  2353 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  2354   double start_sec;
  2355   if (G1PrintParCleanupStats) {
  2356     start_sec = os::elapsedTime();
  2359   _collectionSetChooser->clearMarkedHeapRegions();
  2360   double clear_marked_end_sec;
  2361   if (G1PrintParCleanupStats) {
  2362     clear_marked_end_sec = os::elapsedTime();
  2363     gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
  2364                            (clear_marked_end_sec - start_sec) * 1000.0);
  2367   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2368     const size_t OverpartitionFactor = 4;
  2369     size_t WorkUnit;
  2370     // The use of MinChunkSize = 8 in the original code
  2371     // causes some assertion failures when the total number of
  2372     // region is less than 8.  The code here tries to fix that.
  2373     // Should the original code also be fixed?
  2374     if (no_of_gc_threads > 0) {
  2375       const size_t MinWorkUnit =
  2376         MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
  2377       WorkUnit =
  2378         MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
  2379              MinWorkUnit);
  2380     } else {
  2381       assert(no_of_gc_threads > 0,
  2382         "The active gc workers should be greater than 0");
  2383       // In a product build do something reasonable to avoid a crash.
  2384       const size_t MinWorkUnit =
  2385         MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
  2386       WorkUnit =
  2387         MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2388              MinWorkUnit);
  2390     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2391                                                              WorkUnit);
  2392     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2393                                             (int) WorkUnit);
  2394     _g1->workers()->run_task(&parKnownGarbageTask);
  2396     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2397            "sanity check");
  2398   } else {
  2399     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2400     _g1->heap_region_iterate(&knownGarbagecl);
  2402   double known_garbage_end_sec;
  2403   if (G1PrintParCleanupStats) {
  2404     known_garbage_end_sec = os::elapsedTime();
  2405     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2406                       (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
  2409   _collectionSetChooser->sortMarkedHeapRegions();
  2410   double end_sec = os::elapsedTime();
  2411   if (G1PrintParCleanupStats) {
  2412     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2413                            (end_sec - known_garbage_end_sec) * 1000.0);
  2416   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  2417   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  2418   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  2419   _prev_collection_pause_end_ms += elapsed_time_ms;
  2420   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  2423 // Add the heap region at the head of the non-incremental collection set
  2424 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  2425   assert(_inc_cset_build_state == Active, "Precondition");
  2426   assert(!hr->is_young(), "non-incremental add of young region");
  2428   if (_g1->mark_in_progress())
  2429     _g1->concurrent_mark()->registerCSetRegion(hr);
  2431   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2432   hr->set_in_collection_set(true);
  2433   hr->set_next_in_collection_set(_collection_set);
  2434   _collection_set = hr;
  2435   _collection_set_bytes_used_before += hr->used();
  2436   _g1->register_region_with_in_cset_fast_test(hr);
  2437   size_t rs_length = hr->rem_set()->occupied();
  2438   _recorded_rs_lengths += rs_length;
  2439   _old_cset_region_length += 1;
  2442 // Initialize the per-collection-set information
  2443 void G1CollectorPolicy::start_incremental_cset_building() {
  2444   assert(_inc_cset_build_state == Inactive, "Precondition");
  2446   _inc_cset_head = NULL;
  2447   _inc_cset_tail = NULL;
  2448   _inc_cset_bytes_used_before = 0;
  2450   _inc_cset_max_finger = 0;
  2451   _inc_cset_recorded_rs_lengths = 0;
  2452   _inc_cset_recorded_rs_lengths_diffs = 0;
  2453   _inc_cset_predicted_elapsed_time_ms = 0.0;
  2454   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2455   _inc_cset_build_state = Active;
  2458 void G1CollectorPolicy::finalize_incremental_cset_building() {
  2459   assert(_inc_cset_build_state == Active, "Precondition");
  2460   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  2462   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  2463   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  2464   // that adds a new region to the CSet. Further updates by the
  2465   // concurrent refinement thread that samples the young RSet lengths
  2466   // are accumulated in the *_diffs fields. Here we add the diffs to
  2467   // the "main" fields.
  2469   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  2470     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  2471   } else {
  2472     // This is defensive. The diff should in theory be always positive
  2473     // as RSets can only grow between GCs. However, given that we
  2474     // sample their size concurrently with other threads updating them
  2475     // it's possible that we might get the wrong size back, which
  2476     // could make the calculations somewhat inaccurate.
  2477     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  2478     if (_inc_cset_recorded_rs_lengths >= diffs) {
  2479       _inc_cset_recorded_rs_lengths -= diffs;
  2480     } else {
  2481       _inc_cset_recorded_rs_lengths = 0;
  2484   _inc_cset_predicted_elapsed_time_ms +=
  2485                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  2487   _inc_cset_recorded_rs_lengths_diffs = 0;
  2488   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  2491 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2492   // This routine is used when:
  2493   // * adding survivor regions to the incremental cset at the end of an
  2494   //   evacuation pause,
  2495   // * adding the current allocation region to the incremental cset
  2496   //   when it is retired, and
  2497   // * updating existing policy information for a region in the
  2498   //   incremental cset via young list RSet sampling.
  2499   // Therefore this routine may be called at a safepoint by the
  2500   // VM thread, or in-between safepoints by mutator threads (when
  2501   // retiring the current allocation region) or a concurrent
  2502   // refine thread (RSet sampling).
  2504   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2505   size_t used_bytes = hr->used();
  2506   _inc_cset_recorded_rs_lengths += rs_length;
  2507   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2508   _inc_cset_bytes_used_before += used_bytes;
  2510   // Cache the values we have added to the aggregated informtion
  2511   // in the heap region in case we have to remove this region from
  2512   // the incremental collection set, or it is updated by the
  2513   // rset sampling code
  2514   hr->set_recorded_rs_length(rs_length);
  2515   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2518 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  2519                                                      size_t new_rs_length) {
  2520   // Update the CSet information that is dependent on the new RS length
  2521   assert(hr->is_young(), "Precondition");
  2522   assert(!SafepointSynchronize::is_at_safepoint(),
  2523                                                "should not be at a safepoint");
  2525   // We could have updated _inc_cset_recorded_rs_lengths and
  2526   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  2527   // that atomically, as this code is executed by a concurrent
  2528   // refinement thread, potentially concurrently with a mutator thread
  2529   // allocating a new region and also updating the same fields. To
  2530   // avoid the atomic operations we accumulate these updates on two
  2531   // separate fields (*_diffs) and we'll just add them to the "main"
  2532   // fields at the start of a GC.
  2534   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  2535   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  2536   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  2538   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2539   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2540   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  2541   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  2543   hr->set_recorded_rs_length(new_rs_length);
  2544   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  2547 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2548   assert(hr->is_young(), "invariant");
  2549   assert(hr->young_index_in_cset() > -1, "should have already been set");
  2550   assert(_inc_cset_build_state == Active, "Precondition");
  2552   // We need to clear and set the cached recorded/cached collection set
  2553   // information in the heap region here (before the region gets added
  2554   // to the collection set). An individual heap region's cached values
  2555   // are calculated, aggregated with the policy collection set info,
  2556   // and cached in the heap region here (initially) and (subsequently)
  2557   // by the Young List sampling code.
  2559   size_t rs_length = hr->rem_set()->occupied();
  2560   add_to_incremental_cset_info(hr, rs_length);
  2562   HeapWord* hr_end = hr->end();
  2563   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2565   assert(!hr->in_collection_set(), "invariant");
  2566   hr->set_in_collection_set(true);
  2567   assert( hr->next_in_collection_set() == NULL, "invariant");
  2569   _g1->register_region_with_in_cset_fast_test(hr);
  2572 // Add the region at the RHS of the incremental cset
  2573 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2574   // We should only ever be appending survivors at the end of a pause
  2575   assert( hr->is_survivor(), "Logic");
  2577   // Do the 'common' stuff
  2578   add_region_to_incremental_cset_common(hr);
  2580   // Now add the region at the right hand side
  2581   if (_inc_cset_tail == NULL) {
  2582     assert(_inc_cset_head == NULL, "invariant");
  2583     _inc_cset_head = hr;
  2584   } else {
  2585     _inc_cset_tail->set_next_in_collection_set(hr);
  2587   _inc_cset_tail = hr;
  2590 // Add the region to the LHS of the incremental cset
  2591 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2592   // Survivors should be added to the RHS at the end of a pause
  2593   assert(!hr->is_survivor(), "Logic");
  2595   // Do the 'common' stuff
  2596   add_region_to_incremental_cset_common(hr);
  2598   // Add the region at the left hand side
  2599   hr->set_next_in_collection_set(_inc_cset_head);
  2600   if (_inc_cset_head == NULL) {
  2601     assert(_inc_cset_tail == NULL, "Invariant");
  2602     _inc_cset_tail = hr;
  2604   _inc_cset_head = hr;
  2607 #ifndef PRODUCT
  2608 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2609   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2611   st->print_cr("\nCollection_set:");
  2612   HeapRegion* csr = list_head;
  2613   while (csr != NULL) {
  2614     HeapRegion* next = csr->next_in_collection_set();
  2615     assert(csr->in_collection_set(), "bad CS");
  2616     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
  2617                  "age: %4d, y: %d, surv: %d",
  2618                         csr->bottom(), csr->end(),
  2619                         csr->top(),
  2620                         csr->prev_top_at_mark_start(),
  2621                         csr->next_top_at_mark_start(),
  2622                         csr->top_at_conc_mark_count(),
  2623                         csr->age_in_surv_rate_group_cond(),
  2624                         csr->is_young(),
  2625                         csr->is_survivor());
  2626     csr = next;
  2629 #endif // !PRODUCT
  2631 void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
  2632   // Set this here - in case we're not doing young collections.
  2633   double non_young_start_time_sec = os::elapsedTime();
  2635   YoungList* young_list = _g1->young_list();
  2636   finalize_incremental_cset_building();
  2638   guarantee(target_pause_time_ms > 0.0,
  2639             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2640                     target_pause_time_ms));
  2641   guarantee(_collection_set == NULL, "Precondition");
  2643   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2644   double predicted_pause_time_ms = base_time_ms;
  2646   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2648   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2649                 "start choosing CSet",
  2650                 ergo_format_ms("predicted base time")
  2651                 ergo_format_ms("remaining time")
  2652                 ergo_format_ms("target pause time"),
  2653                 base_time_ms, time_remaining_ms, target_pause_time_ms);
  2655   // the 10% and 50% values are arbitrary...
  2656   double threshold = 0.10 * target_pause_time_ms;
  2657   if (time_remaining_ms < threshold) {
  2658     double prev_time_remaining_ms = time_remaining_ms;
  2659     time_remaining_ms = 0.50 * target_pause_time_ms;
  2660     ergo_verbose3(ErgoCSetConstruction,
  2661                   "adjust remaining time",
  2662                   ergo_format_reason("remaining time lower than threshold")
  2663                   ergo_format_ms("remaining time")
  2664                   ergo_format_ms("threshold")
  2665                   ergo_format_ms("adjusted remaining time"),
  2666                   prev_time_remaining_ms, threshold, time_remaining_ms);
  2669   size_t expansion_bytes = _g1->expansion_regions() * HeapRegion::GrainBytes;
  2671   HeapRegion* hr;
  2672   double young_start_time_sec = os::elapsedTime();
  2674   _collection_set_bytes_used_before = 0;
  2675   _last_gc_was_young = gcs_are_young() ? true : false;
  2677   if (_last_gc_was_young) {
  2678     ++_young_pause_num;
  2679   } else {
  2680     ++_mixed_pause_num;
  2683   // The young list is laid with the survivor regions from the previous
  2684   // pause are appended to the RHS of the young list, i.e.
  2685   //   [Newly Young Regions ++ Survivors from last pause].
  2687   size_t survivor_region_length = young_list->survivor_length();
  2688   size_t eden_region_length = young_list->length() - survivor_region_length;
  2689   init_cset_region_lengths(eden_region_length, survivor_region_length);
  2690   hr = young_list->first_survivor_region();
  2691   while (hr != NULL) {
  2692     assert(hr->is_survivor(), "badly formed young list");
  2693     hr->set_young();
  2694     hr = hr->get_next_young_region();
  2697   // Clear the fields that point to the survivor list - they are all young now.
  2698   young_list->clear_survivors();
  2700   if (_g1->mark_in_progress())
  2701     _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
  2703   _collection_set = _inc_cset_head;
  2704   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2705   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2706   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2708   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2709                 "add young regions to CSet",
  2710                 ergo_format_region("eden")
  2711                 ergo_format_region("survivors")
  2712                 ergo_format_ms("predicted young region time"),
  2713                 eden_region_length, survivor_region_length,
  2714                 _inc_cset_predicted_elapsed_time_ms);
  2716   // The number of recorded young regions is the incremental
  2717   // collection set's current size
  2718   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2720   double young_end_time_sec = os::elapsedTime();
  2721   _recorded_young_cset_choice_time_ms =
  2722     (young_end_time_sec - young_start_time_sec) * 1000.0;
  2724   // We are doing young collections so reset this.
  2725   non_young_start_time_sec = young_end_time_sec;
  2727   if (!gcs_are_young()) {
  2728     bool should_continue = true;
  2729     NumberSeq seq;
  2730     double avg_prediction = 100000000000000000.0; // something very large
  2732     double prev_predicted_pause_time_ms = predicted_pause_time_ms;
  2733     do {
  2734       // Note that add_old_region_to_cset() increments the
  2735       // _old_cset_region_length field and cset_region_length() returns the
  2736       // sum of _eden_cset_region_length, _survivor_cset_region_length, and
  2737       // _old_cset_region_length. So, as old regions are added to the
  2738       // CSet, _old_cset_region_length will be incremented and
  2739       // cset_region_length(), which is used below, will always reflect
  2740       // the the total number of regions added up to this point to the CSet.
  2742       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
  2743                                                       avg_prediction);
  2744       if (hr != NULL) {
  2745         _g1->old_set_remove(hr);
  2746         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2747         time_remaining_ms -= predicted_time_ms;
  2748         predicted_pause_time_ms += predicted_time_ms;
  2749         add_old_region_to_cset(hr);
  2750         seq.add(predicted_time_ms);
  2751         avg_prediction = seq.avg() + seq.sd();
  2754       should_continue = true;
  2755       if (hr == NULL) {
  2756         // No need for an ergo verbose message here,
  2757         // getNextMarkRegion() does this when it returns NULL.
  2758         should_continue = false;
  2759       } else {
  2760         if (adaptive_young_list_length()) {
  2761           if (time_remaining_ms < 0.0) {
  2762             ergo_verbose1(ErgoCSetConstruction,
  2763                           "stop adding old regions to CSet",
  2764                           ergo_format_reason("remaining time is lower than 0")
  2765                           ergo_format_ms("remaining time"),
  2766                           time_remaining_ms);
  2767             should_continue = false;
  2769         } else {
  2770           if (cset_region_length() >= _young_list_fixed_length) {
  2771             ergo_verbose2(ErgoCSetConstruction,
  2772                           "stop adding old regions to CSet",
  2773                           ergo_format_reason("CSet length reached target")
  2774                           ergo_format_region("CSet")
  2775                           ergo_format_region("young target"),
  2776                           cset_region_length(), _young_list_fixed_length);
  2777             should_continue = false;
  2781     } while (should_continue);
  2783     if (!adaptive_young_list_length() &&
  2784         cset_region_length() < _young_list_fixed_length) {
  2785       ergo_verbose2(ErgoCSetConstruction,
  2786                     "request mixed GCs end",
  2787                     ergo_format_reason("CSet length lower than target")
  2788                     ergo_format_region("CSet")
  2789                     ergo_format_region("young target"),
  2790                     cset_region_length(), _young_list_fixed_length);
  2791       _should_revert_to_young_gcs  = true;
  2794     ergo_verbose2(ErgoCSetConstruction | ErgoHigh,
  2795                   "add old regions to CSet",
  2796                   ergo_format_region("old")
  2797                   ergo_format_ms("predicted old region time"),
  2798                   old_cset_region_length(),
  2799                   predicted_pause_time_ms - prev_predicted_pause_time_ms);
  2802   stop_incremental_cset_building();
  2804   count_CS_bytes_used();
  2806   ergo_verbose5(ErgoCSetConstruction,
  2807                 "finish choosing CSet",
  2808                 ergo_format_region("eden")
  2809                 ergo_format_region("survivors")
  2810                 ergo_format_region("old")
  2811                 ergo_format_ms("predicted pause time")
  2812                 ergo_format_ms("target pause time"),
  2813                 eden_region_length, survivor_region_length,
  2814                 old_cset_region_length(),
  2815                 predicted_pause_time_ms, target_pause_time_ms);
  2817   double non_young_end_time_sec = os::elapsedTime();
  2818   _recorded_non_young_cset_choice_time_ms =
  2819     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;

mercurial