src/share/vm/runtime/advancedThresholdPolicy.cpp

Wed, 20 Jul 2011 18:04:17 -0700

author
iveresov
date
Wed, 20 Jul 2011 18:04:17 -0700
changeset 3035
43f9d800f276
parent 2988
2c359f27615c
child 3385
abcceac2f7cd
permissions
-rw-r--r--

7066339: Tiered: policy should make consistent decisions about osr levels
Summary: Added feedback disabling flag to common(), fixed handling of TieredStopAtLevel.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 2010, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "runtime/advancedThresholdPolicy.hpp"
    27 #include "runtime/simpleThresholdPolicy.inline.hpp"
    29 #ifdef TIERED
    30 // Print an event.
    31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
    32                                              int bci, CompLevel level) {
    33   tty->print(" rate: ");
    34   if (mh->prev_time() == 0) tty->print("n/a");
    35   else tty->print("%f", mh->rate());
    37   tty->print(" k: %.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
    38                                 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
    40 }
    42 void AdvancedThresholdPolicy::initialize() {
    43   // Turn on ergonomic compiler count selection
    44   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    45     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
    46   }
    47   int count = CICompilerCount;
    48   if (CICompilerCountPerCPU) {
    49     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    50     int log_cpu = log2_intptr(os::active_processor_count());
    51     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
    52     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
    53   }
    55   set_c1_count(MAX2(count / 3, 1));
    56   set_c2_count(MAX2(count - count / 3, 1));
    58   // Some inlining tuning
    59 #ifdef X86
    60   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    61     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
    62   }
    63 #endif
    65 #ifdef SPARC
    66   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    67     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
    68   }
    69 #endif
    72   set_start_time(os::javaTimeMillis());
    73 }
    75 // update_rate() is called from select_task() while holding a compile queue lock.
    76 void AdvancedThresholdPolicy::update_rate(jlong t, methodOop m) {
    77   if (is_old(m)) {
    78     // We don't remove old methods from the queue,
    79     // so we can just zero the rate.
    80     m->set_rate(0);
    81     return;
    82   }
    84   // We don't update the rate if we've just came out of a safepoint.
    85   // delta_s is the time since last safepoint in milliseconds.
    86   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
    87   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
    88   // How many events were there since the last time?
    89   int event_count = m->invocation_count() + m->backedge_count();
    90   int delta_e = event_count - m->prev_event_count();
    92   // We should be running for at least 1ms.
    93   if (delta_s >= TieredRateUpdateMinTime) {
    94     // And we must've taken the previous point at least 1ms before.
    95     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
    96       m->set_prev_time(t);
    97       m->set_prev_event_count(event_count);
    98       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
    99     } else
   100       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
   101         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
   102         m->set_rate(0);
   103       }
   104   }
   105 }
   107 // Check if this method has been stale from a given number of milliseconds.
   108 // See select_task().
   109 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, methodOop m) {
   110   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
   111   jlong delta_t = t - m->prev_time();
   112   if (delta_t > timeout && delta_s > timeout) {
   113     int event_count = m->invocation_count() + m->backedge_count();
   114     int delta_e = event_count - m->prev_event_count();
   115     // Return true if there were no events.
   116     return delta_e == 0;
   117   }
   118   return false;
   119 }
   121 // We don't remove old methods from the compile queue even if they have
   122 // very low activity. See select_task().
   123 bool AdvancedThresholdPolicy::is_old(methodOop method) {
   124   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
   125 }
   127 double AdvancedThresholdPolicy::weight(methodOop method) {
   128   return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
   129 }
   131 // Apply heuristics and return true if x should be compiled before y
   132 bool AdvancedThresholdPolicy::compare_methods(methodOop x, methodOop y) {
   133   if (x->highest_comp_level() > y->highest_comp_level()) {
   134     // recompilation after deopt
   135     return true;
   136   } else
   137     if (x->highest_comp_level() == y->highest_comp_level()) {
   138       if (weight(x) > weight(y)) {
   139         return true;
   140       }
   141     }
   142   return false;
   143 }
   145 // Is method profiled enough?
   146 bool AdvancedThresholdPolicy::is_method_profiled(methodOop method) {
   147   methodDataOop mdo = method->method_data();
   148   if (mdo != NULL) {
   149     int i = mdo->invocation_count_delta();
   150     int b = mdo->backedge_count_delta();
   151     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
   152   }
   153   return false;
   154 }
   156 // Called with the queue locked and with at least one element
   157 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
   158   CompileTask *max_task = NULL;
   159   methodOop max_method;
   160   jlong t = os::javaTimeMillis();
   161   // Iterate through the queue and find a method with a maximum rate.
   162   for (CompileTask* task = compile_queue->first(); task != NULL;) {
   163     CompileTask* next_task = task->next();
   164     methodOop method = (methodOop)JNIHandles::resolve(task->method_handle());
   165     methodDataOop mdo = method->method_data();
   166     update_rate(t, method);
   167     if (max_task == NULL) {
   168       max_task = task;
   169       max_method = method;
   170     } else {
   171       // If a method has been stale for some time, remove it from the queue.
   172       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
   173         if (PrintTieredEvents) {
   174           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
   175         }
   176         CompileTaskWrapper ctw(task); // Frees the task
   177         compile_queue->remove(task);
   178         method->clear_queued_for_compilation();
   179         task = next_task;
   180         continue;
   181       }
   183       // Select a method with a higher rate
   184       if (compare_methods(method, max_method)) {
   185         max_task = task;
   186         max_method = method;
   187       }
   188     }
   189     task = next_task;
   190   }
   192   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
   193       && is_method_profiled(max_method)) {
   194     max_task->set_comp_level(CompLevel_limited_profile);
   195     if (PrintTieredEvents) {
   196       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
   197     }
   198   }
   200   return max_task;
   201 }
   203 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
   204   double queue_size = CompileBroker::queue_size(level);
   205   int comp_count = compiler_count(level);
   206   double k = queue_size / (feedback_k * comp_count) + 1;
   207   return k;
   208 }
   210 // Call and loop predicates determine whether a transition to a higher
   211 // compilation level should be performed (pointers to predicate functions
   212 // are passed to common()).
   213 // Tier?LoadFeedback is basically a coefficient that determines of
   214 // how many methods per compiler thread can be in the queue before
   215 // the threshold values double.
   216 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
   217   switch(cur_level) {
   218   case CompLevel_none:
   219   case CompLevel_limited_profile: {
   220     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   221     return loop_predicate_helper<CompLevel_none>(i, b, k);
   222   }
   223   case CompLevel_full_profile: {
   224     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   225     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
   226   }
   227   default:
   228     return true;
   229   }
   230 }
   232 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
   233   switch(cur_level) {
   234   case CompLevel_none:
   235   case CompLevel_limited_profile: {
   236     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   237     return call_predicate_helper<CompLevel_none>(i, b, k);
   238   }
   239   case CompLevel_full_profile: {
   240     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   241     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
   242   }
   243   default:
   244     return true;
   245   }
   246 }
   248 // If a method is old enough and is still in the interpreter we would want to
   249 // start profiling without waiting for the compiled method to arrive.
   250 // We also take the load on compilers into the account.
   251 bool AdvancedThresholdPolicy::should_create_mdo(methodOop method, CompLevel cur_level) {
   252   if (cur_level == CompLevel_none &&
   253       CompileBroker::queue_size(CompLevel_full_optimization) <=
   254       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   255     int i = method->invocation_count();
   256     int b = method->backedge_count();
   257     double k = Tier0ProfilingStartPercentage / 100.0;
   258     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
   259   }
   260   return false;
   261 }
   263 // Inlining control: if we're compiling a profiled method with C1 and the callee
   264 // is known to have OSRed in a C2 version, don't inline it.
   265 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
   266   CompLevel comp_level = (CompLevel)env->comp_level();
   267   if (comp_level == CompLevel_full_profile ||
   268       comp_level == CompLevel_limited_profile) {
   269     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
   270   }
   271   return false;
   272 }
   274 // Create MDO if necessary.
   275 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, TRAPS) {
   276   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
   277   if (mh->method_data() == NULL) {
   278     methodOopDesc::build_interpreter_method_data(mh, THREAD);
   279     if (HAS_PENDING_EXCEPTION) {
   280       CLEAR_PENDING_EXCEPTION;
   281     }
   282   }
   283 }
   286 /*
   287  * Method states:
   288  *   0 - interpreter (CompLevel_none)
   289  *   1 - pure C1 (CompLevel_simple)
   290  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
   291  *   3 - C1 with full profiling (CompLevel_full_profile)
   292  *   4 - C2 (CompLevel_full_optimization)
   293  *
   294  * Common state transition patterns:
   295  * a. 0 -> 3 -> 4.
   296  *    The most common path. But note that even in this straightforward case
   297  *    profiling can start at level 0 and finish at level 3.
   298  *
   299  * b. 0 -> 2 -> 3 -> 4.
   300  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
   301  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
   302  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
   303  *
   304  * c. 0 -> (3->2) -> 4.
   305  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
   306  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
   307  *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
   308  *    is compiling.
   309  *
   310  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
   311  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
   312  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
   313  *
   314  * e. 0 -> 4.
   315  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
   316  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
   317  *    the compiled version already exists).
   318  *
   319  * Note that since state 0 can be reached from any other state via deoptimization different loops
   320  * are possible.
   321  *
   322  */
   324 // Common transition function. Given a predicate determines if a method should transition to another level.
   325 CompLevel AdvancedThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level, bool disable_feedback) {
   326   CompLevel next_level = cur_level;
   327   int i = method->invocation_count();
   328   int b = method->backedge_count();
   330   if (is_trivial(method)) {
   331     next_level = CompLevel_simple;
   332   } else {
   333     switch(cur_level) {
   334     case CompLevel_none:
   335       // If we were at full profile level, would we switch to full opt?
   336       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
   337         next_level = CompLevel_full_optimization;
   338       } else if ((this->*p)(i, b, cur_level)) {
   339         // C1-generated fully profiled code is about 30% slower than the limited profile
   340         // code that has only invocation and backedge counters. The observation is that
   341         // if C2 queue is large enough we can spend too much time in the fully profiled code
   342         // while waiting for C2 to pick the method from the queue. To alleviate this problem
   343         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
   344         // we choose to compile a limited profiled version and then recompile with full profiling
   345         // when the load on C2 goes down.
   346         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
   347                                  Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   348           next_level = CompLevel_limited_profile;
   349         } else {
   350           next_level = CompLevel_full_profile;
   351         }
   352       }
   353       break;
   354     case CompLevel_limited_profile:
   355       if (is_method_profiled(method)) {
   356         // Special case: we got here because this method was fully profiled in the interpreter.
   357         next_level = CompLevel_full_optimization;
   358       } else {
   359         methodDataOop mdo = method->method_data();
   360         if (mdo != NULL) {
   361           if (mdo->would_profile()) {
   362             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
   363                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
   364                                      (this->*p)(i, b, cur_level))) {
   365               next_level = CompLevel_full_profile;
   366             }
   367           } else {
   368             next_level = CompLevel_full_optimization;
   369           }
   370         }
   371       }
   372       break;
   373     case CompLevel_full_profile:
   374       {
   375         methodDataOop mdo = method->method_data();
   376         if (mdo != NULL) {
   377           if (mdo->would_profile()) {
   378             int mdo_i = mdo->invocation_count_delta();
   379             int mdo_b = mdo->backedge_count_delta();
   380             if ((this->*p)(mdo_i, mdo_b, cur_level)) {
   381               next_level = CompLevel_full_optimization;
   382             }
   383           } else {
   384             next_level = CompLevel_full_optimization;
   385           }
   386         }
   387       }
   388       break;
   389     }
   390   }
   391   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
   392 }
   394 // Determine if a method should be compiled with a normal entry point at a different level.
   395 CompLevel AdvancedThresholdPolicy::call_event(methodOop method, CompLevel cur_level) {
   396   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
   397                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
   398   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
   400   // If OSR method level is greater than the regular method level, the levels should be
   401   // equalized by raising the regular method level in order to avoid OSRs during each
   402   // invocation of the method.
   403   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
   404     methodDataOop mdo = method->method_data();
   405     guarantee(mdo != NULL, "MDO should not be NULL");
   406     if (mdo->invocation_count() >= 1) {
   407       next_level = CompLevel_full_optimization;
   408     }
   409   } else {
   410     next_level = MAX2(osr_level, next_level);
   411   }
   412   return next_level;
   413 }
   415 // Determine if we should do an OSR compilation of a given method.
   416 CompLevel AdvancedThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) {
   417   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
   418   if (cur_level == CompLevel_none) {
   419     // If there is a live OSR method that means that we deopted to the interpreter
   420     // for the transition.
   421     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
   422     if (osr_level > CompLevel_none) {
   423       return osr_level;
   424     }
   425   }
   426   return next_level;
   427 }
   429 // Update the rate and submit compile
   430 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
   431   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
   432   update_rate(os::javaTimeMillis(), mh());
   433   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", THREAD);
   434 }
   436 // Handle the invocation event.
   437 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
   438                                                       CompLevel level, nmethod* nm, TRAPS) {
   439   if (should_create_mdo(mh(), level)) {
   440     create_mdo(mh, THREAD);
   441   }
   442   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   443     CompLevel next_level = call_event(mh(), level);
   444     if (next_level != level) {
   445       compile(mh, InvocationEntryBci, next_level, THREAD);
   446     }
   447   }
   448 }
   450 // Handle the back branch event. Notice that we can compile the method
   451 // with a regular entry from here.
   452 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
   453                                                        int bci, CompLevel level, nmethod* nm, TRAPS) {
   454   if (should_create_mdo(mh(), level)) {
   455     create_mdo(mh, THREAD);
   456   }
   457   // Check if MDO should be created for the inlined method
   458   if (should_create_mdo(imh(), level)) {
   459     create_mdo(imh, THREAD);
   460   }
   462   if (is_compilation_enabled()) {
   463     CompLevel next_osr_level = loop_event(imh(), level);
   464     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
   465     // At the very least compile the OSR version
   466     if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_osr_level != level) {
   467       compile(imh, bci, next_osr_level, THREAD);
   468     }
   470     // Use loop event as an opportunity to also check if there's been
   471     // enough calls.
   472     CompLevel cur_level, next_level;
   473     if (mh() != imh()) { // If there is an enclosing method
   474       guarantee(nm != NULL, "Should have nmethod here");
   475       cur_level = comp_level(mh());
   476       next_level = call_event(mh(), cur_level);
   478       if (max_osr_level == CompLevel_full_optimization) {
   479         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
   480         bool make_not_entrant = false;
   481         if (nm->is_osr_method()) {
   482           // This is an osr method, just make it not entrant and recompile later if needed
   483           make_not_entrant = true;
   484         } else {
   485           if (next_level != CompLevel_full_optimization) {
   486             // next_level is not full opt, so we need to recompile the
   487             // enclosing method without the inlinee
   488             cur_level = CompLevel_none;
   489             make_not_entrant = true;
   490           }
   491         }
   492         if (make_not_entrant) {
   493           if (PrintTieredEvents) {
   494             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
   495             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
   496           }
   497           nm->make_not_entrant();
   498         }
   499       }
   500       if (!CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   501         // Fix up next_level if necessary to avoid deopts
   502         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
   503           next_level = CompLevel_full_profile;
   504         }
   505         if (cur_level != next_level) {
   506           compile(mh, InvocationEntryBci, next_level, THREAD);
   507         }
   508       }
   509     } else {
   510       cur_level = comp_level(imh());
   511       next_level = call_event(imh(), cur_level);
   512       if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_level != cur_level) {
   513         compile(imh, InvocationEntryBci, next_level, THREAD);
   514       }
   515     }
   516   }
   517 }
   519 #endif // TIERED

mercurial