src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Wed, 21 May 2008 16:31:35 -0700

author
kvn
date
Wed, 21 May 2008 16:31:35 -0700
changeset 600
437d03ea40b1
parent 551
018d5b58dd4f
child 631
d1605aabd0a1
permissions
-rw-r--r--

6703888: Compressed Oops: use the 32-bits gap after klass in a object
Summary: Use the gap also for a narrow oop field and a boxing object value.
Reviewed-by: coleenp, never

     1 /*
     2  * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime_x86_64.cpp.incl"
    28 DeoptimizationBlob *SharedRuntime::_deopt_blob;
    29 #ifdef COMPILER2
    30 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
    31 ExceptionBlob      *OptoRuntime::_exception_blob;
    32 #endif // COMPILER2
    34 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
    35 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
    36 RuntimeStub*       SharedRuntime::_wrong_method_blob;
    37 RuntimeStub*       SharedRuntime::_ic_miss_blob;
    38 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
    39 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
    40 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
    42 #define __ masm->
    44 class SimpleRuntimeFrame {
    46   public:
    48   // Most of the runtime stubs have this simple frame layout.
    49   // This class exists to make the layout shared in one place.
    50   // Offsets are for compiler stack slots, which are jints.
    51   enum layout {
    52     // The frame sender code expects that rbp will be in the "natural" place and
    53     // will override any oopMap setting for it. We must therefore force the layout
    54     // so that it agrees with the frame sender code.
    55     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    56     rbp_off2,
    57     return_off, return_off2,
    58     framesize
    59   };
    60 };
    62 class RegisterSaver {
    63   // Capture info about frame layout.  Layout offsets are in jint
    64   // units because compiler frame slots are jints.
    65 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    66   enum layout {
    67     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    68     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    69     DEF_XMM_OFFS(0),
    70     DEF_XMM_OFFS(1),
    71     DEF_XMM_OFFS(2),
    72     DEF_XMM_OFFS(3),
    73     DEF_XMM_OFFS(4),
    74     DEF_XMM_OFFS(5),
    75     DEF_XMM_OFFS(6),
    76     DEF_XMM_OFFS(7),
    77     DEF_XMM_OFFS(8),
    78     DEF_XMM_OFFS(9),
    79     DEF_XMM_OFFS(10),
    80     DEF_XMM_OFFS(11),
    81     DEF_XMM_OFFS(12),
    82     DEF_XMM_OFFS(13),
    83     DEF_XMM_OFFS(14),
    84     DEF_XMM_OFFS(15),
    85     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
    86     fpu_stateH_end,
    87     r15_off, r15H_off,
    88     r14_off, r14H_off,
    89     r13_off, r13H_off,
    90     r12_off, r12H_off,
    91     r11_off, r11H_off,
    92     r10_off, r10H_off,
    93     r9_off,  r9H_off,
    94     r8_off,  r8H_off,
    95     rdi_off, rdiH_off,
    96     rsi_off, rsiH_off,
    97     ignore_off, ignoreH_off,  // extra copy of rbp
    98     rsp_off, rspH_off,
    99     rbx_off, rbxH_off,
   100     rdx_off, rdxH_off,
   101     rcx_off, rcxH_off,
   102     rax_off, raxH_off,
   103     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
   104     align_off, alignH_off,
   105     flags_off, flagsH_off,
   106     // The frame sender code expects that rbp will be in the "natural" place and
   107     // will override any oopMap setting for it. We must therefore force the layout
   108     // so that it agrees with the frame sender code.
   109     rbp_off, rbpH_off,        // copy of rbp we will restore
   110     return_off, returnH_off,  // slot for return address
   111     reg_save_size             // size in compiler stack slots
   112   };
   114  public:
   115   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   116   static void restore_live_registers(MacroAssembler* masm);
   118   // Offsets into the register save area
   119   // Used by deoptimization when it is managing result register
   120   // values on its own
   122   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
   123   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
   124   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
   125   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
   127   // During deoptimization only the result registers need to be restored,
   128   // all the other values have already been extracted.
   129   static void restore_result_registers(MacroAssembler* masm);
   130 };
   132 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   134   // Always make the frame size 16-byte aligned
   135   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
   136                                      reg_save_size*BytesPerInt, 16);
   137   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
   138   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
   139   // The caller will allocate additional_frame_words
   140   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
   141   // CodeBlob frame size is in words.
   142   int frame_size_in_words = frame_size_in_bytes / wordSize;
   143   *total_frame_words = frame_size_in_words;
   145   // Save registers, fpu state, and flags.
   146   // We assume caller has already pushed the return address onto the
   147   // stack, so rsp is 8-byte aligned here.
   148   // We push rpb twice in this sequence because we want the real rbp
   149   // to be under the return like a normal enter.
   151   __ enter();          // rsp becomes 16-byte aligned here
   152   __ push_CPU_state(); // Push a multiple of 16 bytes
   153   if (frame::arg_reg_save_area_bytes != 0) {
   154     // Allocate argument register save area
   155     __ subq(rsp, frame::arg_reg_save_area_bytes);
   156   }
   158   // Set an oopmap for the call site.  This oopmap will map all
   159   // oop-registers and debug-info registers as callee-saved.  This
   160   // will allow deoptimization at this safepoint to find all possible
   161   // debug-info recordings, as well as let GC find all oops.
   163   OopMapSet *oop_maps = new OopMapSet();
   164   OopMap* map = new OopMap(frame_size_in_slots, 0);
   165   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
   166   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
   167   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
   168   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
   169   // rbp location is known implicitly by the frame sender code, needs no oopmap
   170   // and the location where rbp was saved by is ignored
   171   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
   172   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
   173   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
   174   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
   175   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
   176   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
   177   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
   178   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
   179   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
   180   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
   181   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
   182   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
   183   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
   184   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
   185   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
   186   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
   187   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
   188   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
   189   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
   190   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
   191   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
   192   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
   193   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
   194   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
   195   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
   196   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
   198   // %%% These should all be a waste but we'll keep things as they were for now
   199   if (true) {
   200     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
   201                           rax->as_VMReg()->next());
   202     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
   203                           rcx->as_VMReg()->next());
   204     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
   205                           rdx->as_VMReg()->next());
   206     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
   207                           rbx->as_VMReg()->next());
   208     // rbp location is known implicitly by the frame sender code, needs no oopmap
   209     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
   210                           rsi->as_VMReg()->next());
   211     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
   212                           rdi->as_VMReg()->next());
   213     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
   214                           r8->as_VMReg()->next());
   215     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
   216                           r9->as_VMReg()->next());
   217     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
   218                           r10->as_VMReg()->next());
   219     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
   220                           r11->as_VMReg()->next());
   221     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
   222                           r12->as_VMReg()->next());
   223     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
   224                           r13->as_VMReg()->next());
   225     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
   226                           r14->as_VMReg()->next());
   227     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
   228                           r15->as_VMReg()->next());
   229     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
   230                           xmm0->as_VMReg()->next());
   231     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
   232                           xmm1->as_VMReg()->next());
   233     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
   234                           xmm2->as_VMReg()->next());
   235     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
   236                           xmm3->as_VMReg()->next());
   237     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
   238                           xmm4->as_VMReg()->next());
   239     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
   240                           xmm5->as_VMReg()->next());
   241     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
   242                           xmm6->as_VMReg()->next());
   243     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
   244                           xmm7->as_VMReg()->next());
   245     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
   246                           xmm8->as_VMReg()->next());
   247     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
   248                           xmm9->as_VMReg()->next());
   249     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
   250                           xmm10->as_VMReg()->next());
   251     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
   252                           xmm11->as_VMReg()->next());
   253     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
   254                           xmm12->as_VMReg()->next());
   255     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
   256                           xmm13->as_VMReg()->next());
   257     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
   258                           xmm14->as_VMReg()->next());
   259     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
   260                           xmm15->as_VMReg()->next());
   261   }
   263   return map;
   264 }
   266 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   267   if (frame::arg_reg_save_area_bytes != 0) {
   268     // Pop arg register save area
   269     __ addq(rsp, frame::arg_reg_save_area_bytes);
   270   }
   271   // Recover CPU state
   272   __ pop_CPU_state();
   273   // Get the rbp described implicitly by the calling convention (no oopMap)
   274   __ popq(rbp);
   275 }
   277 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   279   // Just restore result register. Only used by deoptimization. By
   280   // now any callee save register that needs to be restored to a c2
   281   // caller of the deoptee has been extracted into the vframeArray
   282   // and will be stuffed into the c2i adapter we create for later
   283   // restoration so only result registers need to be restored here.
   285   // Restore fp result register
   286   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
   287   // Restore integer result register
   288   __ movq(rax, Address(rsp, rax_offset_in_bytes()));
   289   // Pop all of the register save are off the stack except the return address
   290   __ addq(rsp, return_offset_in_bytes());
   291 }
   293 // The java_calling_convention describes stack locations as ideal slots on
   294 // a frame with no abi restrictions. Since we must observe abi restrictions
   295 // (like the placement of the register window) the slots must be biased by
   296 // the following value.
   297 static int reg2offset_in(VMReg r) {
   298   // Account for saved rbp and return address
   299   // This should really be in_preserve_stack_slots
   300   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
   301 }
   303 static int reg2offset_out(VMReg r) {
   304   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   305 }
   307 // ---------------------------------------------------------------------------
   308 // Read the array of BasicTypes from a signature, and compute where the
   309 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   310 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   311 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   312 // as framesizes are fixed.
   313 // VMRegImpl::stack0 refers to the first slot 0(sp).
   314 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   315 // up to RegisterImpl::number_of_registers) are the 64-bit
   316 // integer registers.
   318 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   319 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   320 // units regardless of build. Of course for i486 there is no 64 bit build
   322 // The Java calling convention is a "shifted" version of the C ABI.
   323 // By skipping the first C ABI register we can call non-static jni methods
   324 // with small numbers of arguments without having to shuffle the arguments
   325 // at all. Since we control the java ABI we ought to at least get some
   326 // advantage out of it.
   328 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   329                                            VMRegPair *regs,
   330                                            int total_args_passed,
   331                                            int is_outgoing) {
   333   // Create the mapping between argument positions and
   334   // registers.
   335   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
   336     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
   337   };
   338   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
   339     j_farg0, j_farg1, j_farg2, j_farg3,
   340     j_farg4, j_farg5, j_farg6, j_farg7
   341   };
   344   uint int_args = 0;
   345   uint fp_args = 0;
   346   uint stk_args = 0; // inc by 2 each time
   348   for (int i = 0; i < total_args_passed; i++) {
   349     switch (sig_bt[i]) {
   350     case T_BOOLEAN:
   351     case T_CHAR:
   352     case T_BYTE:
   353     case T_SHORT:
   354     case T_INT:
   355       if (int_args < Argument::n_int_register_parameters_j) {
   356         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   357       } else {
   358         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   359         stk_args += 2;
   360       }
   361       break;
   362     case T_VOID:
   363       // halves of T_LONG or T_DOUBLE
   364       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   365       regs[i].set_bad();
   366       break;
   367     case T_LONG:
   368       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   369       // fall through
   370     case T_OBJECT:
   371     case T_ARRAY:
   372     case T_ADDRESS:
   373       if (int_args < Argument::n_int_register_parameters_j) {
   374         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   375       } else {
   376         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   377         stk_args += 2;
   378       }
   379       break;
   380     case T_FLOAT:
   381       if (fp_args < Argument::n_float_register_parameters_j) {
   382         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   383       } else {
   384         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   385         stk_args += 2;
   386       }
   387       break;
   388     case T_DOUBLE:
   389       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   390       if (fp_args < Argument::n_float_register_parameters_j) {
   391         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   392       } else {
   393         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   394         stk_args += 2;
   395       }
   396       break;
   397     default:
   398       ShouldNotReachHere();
   399       break;
   400     }
   401   }
   403   return round_to(stk_args, 2);
   404 }
   406 // Patch the callers callsite with entry to compiled code if it exists.
   407 static void patch_callers_callsite(MacroAssembler *masm) {
   408   Label L;
   409   __ verify_oop(rbx);
   410   __ cmpq(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int)NULL_WORD);
   411   __ jcc(Assembler::equal, L);
   413   // Save the current stack pointer
   414   __ movq(r13, rsp);
   415   // Schedule the branch target address early.
   416   // Call into the VM to patch the caller, then jump to compiled callee
   417   // rax isn't live so capture return address while we easily can
   418   __ movq(rax, Address(rsp, 0));
   420   // align stack so push_CPU_state doesn't fault
   421   __ andq(rsp, -(StackAlignmentInBytes));
   422   __ push_CPU_state();
   425   __ verify_oop(rbx);
   426   // VM needs caller's callsite
   427   // VM needs target method
   428   // This needs to be a long call since we will relocate this adapter to
   429   // the codeBuffer and it may not reach
   431   // Allocate argument register save area
   432   if (frame::arg_reg_save_area_bytes != 0) {
   433     __ subq(rsp, frame::arg_reg_save_area_bytes);
   434   }
   435   __ movq(c_rarg0, rbx);
   436   __ movq(c_rarg1, rax);
   437   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   439   // De-allocate argument register save area
   440   if (frame::arg_reg_save_area_bytes != 0) {
   441     __ addq(rsp, frame::arg_reg_save_area_bytes);
   442   }
   444   __ pop_CPU_state();
   445   // restore sp
   446   __ movq(rsp, r13);
   447   __ bind(L);
   448 }
   450 // Helper function to put tags in interpreter stack.
   451 static void  tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
   452   if (TaggedStackInterpreter) {
   453     int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
   454     if (sig == T_OBJECT || sig == T_ARRAY) {
   455       __ mov64(Address(rsp, tag_offset), frame::TagReference);
   456     } else if (sig == T_LONG || sig == T_DOUBLE) {
   457       int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
   458       __ mov64(Address(rsp, next_tag_offset), frame::TagValue);
   459       __ mov64(Address(rsp, tag_offset), frame::TagValue);
   460     } else {
   461       __ mov64(Address(rsp, tag_offset), frame::TagValue);
   462     }
   463   }
   464 }
   467 static void gen_c2i_adapter(MacroAssembler *masm,
   468                             int total_args_passed,
   469                             int comp_args_on_stack,
   470                             const BasicType *sig_bt,
   471                             const VMRegPair *regs,
   472                             Label& skip_fixup) {
   473   // Before we get into the guts of the C2I adapter, see if we should be here
   474   // at all.  We've come from compiled code and are attempting to jump to the
   475   // interpreter, which means the caller made a static call to get here
   476   // (vcalls always get a compiled target if there is one).  Check for a
   477   // compiled target.  If there is one, we need to patch the caller's call.
   478   patch_callers_callsite(masm);
   480   __ bind(skip_fixup);
   482   // Since all args are passed on the stack, total_args_passed *
   483   // Interpreter::stackElementSize is the space we need. Plus 1 because
   484   // we also account for the return address location since
   485   // we store it first rather than hold it in rax across all the shuffling
   487   int extraspace = (total_args_passed * Interpreter::stackElementSize()) + wordSize;
   489   // stack is aligned, keep it that way
   490   extraspace = round_to(extraspace, 2*wordSize);
   492   // Get return address
   493   __ popq(rax);
   495   // set senderSP value
   496   __ movq(r13, rsp);
   498   __ subq(rsp, extraspace);
   500   // Store the return address in the expected location
   501   __ movq(Address(rsp, 0), rax);
   503   // Now write the args into the outgoing interpreter space
   504   for (int i = 0; i < total_args_passed; i++) {
   505     if (sig_bt[i] == T_VOID) {
   506       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   507       continue;
   508     }
   510     // offset to start parameters
   511     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize() +
   512                    Interpreter::value_offset_in_bytes();
   513     int next_off = st_off - Interpreter::stackElementSize();
   515     // Say 4 args:
   516     // i   st_off
   517     // 0   32 T_LONG
   518     // 1   24 T_VOID
   519     // 2   16 T_OBJECT
   520     // 3    8 T_BOOL
   521     // -    0 return address
   522     //
   523     // However to make thing extra confusing. Because we can fit a long/double in
   524     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
   525     // leaves one slot empty and only stores to a single slot. In this case the
   526     // slot that is occupied is the T_VOID slot. See I said it was confusing.
   528     VMReg r_1 = regs[i].first();
   529     VMReg r_2 = regs[i].second();
   530     if (!r_1->is_valid()) {
   531       assert(!r_2->is_valid(), "");
   532       continue;
   533     }
   534     if (r_1->is_stack()) {
   535       // memory to memory use rax
   536       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   537       if (!r_2->is_valid()) {
   538         // sign extend??
   539         __ movl(rax, Address(rsp, ld_off));
   540         __ movq(Address(rsp, st_off), rax);
   541         tag_stack(masm, sig_bt[i], st_off);
   543       } else {
   545         __ movq(rax, Address(rsp, ld_off));
   547         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   548         // T_DOUBLE and T_LONG use two slots in the interpreter
   549         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   550           // ld_off == LSW, ld_off+wordSize == MSW
   551           // st_off == MSW, next_off == LSW
   552           __ movq(Address(rsp, next_off), rax);
   553 #ifdef ASSERT
   554           // Overwrite the unused slot with known junk
   555           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   556           __ movq(Address(rsp, st_off), rax);
   557 #endif /* ASSERT */
   558           tag_stack(masm, sig_bt[i], next_off);
   559         } else {
   560           __ movq(Address(rsp, st_off), rax);
   561           tag_stack(masm, sig_bt[i], st_off);
   562         }
   563       }
   564     } else if (r_1->is_Register()) {
   565       Register r = r_1->as_Register();
   566       if (!r_2->is_valid()) {
   567         // must be only an int (or less ) so move only 32bits to slot
   568         // why not sign extend??
   569         __ movl(Address(rsp, st_off), r);
   570         tag_stack(masm, sig_bt[i], st_off);
   571       } else {
   572         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   573         // T_DOUBLE and T_LONG use two slots in the interpreter
   574         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   575           // long/double in gpr
   576 #ifdef ASSERT
   577           // Overwrite the unused slot with known junk
   578           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
   579           __ movq(Address(rsp, st_off), rax);
   580 #endif /* ASSERT */
   581           __ movq(Address(rsp, next_off), r);
   582           tag_stack(masm, sig_bt[i], next_off);
   583         } else {
   584           __ movq(Address(rsp, st_off), r);
   585           tag_stack(masm, sig_bt[i], st_off);
   586         }
   587       }
   588     } else {
   589       assert(r_1->is_XMMRegister(), "");
   590       if (!r_2->is_valid()) {
   591         // only a float use just part of the slot
   592         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   593         tag_stack(masm, sig_bt[i], st_off);
   594       } else {
   595 #ifdef ASSERT
   596         // Overwrite the unused slot with known junk
   597         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
   598         __ movq(Address(rsp, st_off), rax);
   599 #endif /* ASSERT */
   600         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
   601         tag_stack(masm, sig_bt[i], next_off);
   602       }
   603     }
   604   }
   606   // Schedule the branch target address early.
   607   __ movq(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   608   __ jmp(rcx);
   609 }
   611 static void gen_i2c_adapter(MacroAssembler *masm,
   612                             int total_args_passed,
   613                             int comp_args_on_stack,
   614                             const BasicType *sig_bt,
   615                             const VMRegPair *regs) {
   617   //
   618   // We will only enter here from an interpreted frame and never from after
   619   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   620   // race and use a c2i we will remain interpreted for the race loser(s).
   621   // This removes all sorts of headaches on the x86 side and also eliminates
   622   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   625   // Note: r13 contains the senderSP on entry. We must preserve it since
   626   // we may do a i2c -> c2i transition if we lose a race where compiled
   627   // code goes non-entrant while we get args ready.
   628   // In addition we use r13 to locate all the interpreter args as
   629   // we must align the stack to 16 bytes on an i2c entry else we
   630   // lose alignment we expect in all compiled code and register
   631   // save code can segv when fxsave instructions find improperly
   632   // aligned stack pointer.
   634   __ movq(rax, Address(rsp, 0));
   636   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   637   // in registers, we will occasionally have no stack args.
   638   int comp_words_on_stack = 0;
   639   if (comp_args_on_stack) {
   640     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   641     // registers are below.  By subtracting stack0, we either get a negative
   642     // number (all values in registers) or the maximum stack slot accessed.
   644     // Convert 4-byte c2 stack slots to words.
   645     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   646     // Round up to miminum stack alignment, in wordSize
   647     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   648     __ subq(rsp, comp_words_on_stack * wordSize);
   649   }
   652   // Ensure compiled code always sees stack at proper alignment
   653   __ andq(rsp, -16);
   655   // push the return address and misalign the stack that youngest frame always sees
   656   // as far as the placement of the call instruction
   657   __ pushq(rax);
   659   // Will jump to the compiled code just as if compiled code was doing it.
   660   // Pre-load the register-jump target early, to schedule it better.
   661   __ movq(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   663   // Now generate the shuffle code.  Pick up all register args and move the
   664   // rest through the floating point stack top.
   665   for (int i = 0; i < total_args_passed; i++) {
   666     if (sig_bt[i] == T_VOID) {
   667       // Longs and doubles are passed in native word order, but misaligned
   668       // in the 32-bit build.
   669       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   670       continue;
   671     }
   673     // Pick up 0, 1 or 2 words from SP+offset.
   675     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   676             "scrambled load targets?");
   677     // Load in argument order going down.
   678     // int ld_off = (total_args_passed + comp_words_on_stack -i)*wordSize;
   679     // base ld_off on r13 (sender_sp) as the stack alignment makes offsets from rsp
   680     // unpredictable
   681     int ld_off = ((total_args_passed - 1) - i)*Interpreter::stackElementSize();
   683     // Point to interpreter value (vs. tag)
   684     int next_off = ld_off - Interpreter::stackElementSize();
   685     //
   686     //
   687     //
   688     VMReg r_1 = regs[i].first();
   689     VMReg r_2 = regs[i].second();
   690     if (!r_1->is_valid()) {
   691       assert(!r_2->is_valid(), "");
   692       continue;
   693     }
   694     if (r_1->is_stack()) {
   695       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   696       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   697       if (!r_2->is_valid()) {
   698         // sign extend???
   699         __ movl(rax, Address(r13, ld_off));
   700         __ movq(Address(rsp, st_off), rax);
   701       } else {
   702         //
   703         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   704         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   705         // So we must adjust where to pick up the data to match the interpreter.
   706         //
   707         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   708         // are accessed as negative so LSW is at LOW address
   710         // ld_off is MSW so get LSW
   711         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   712                            next_off : ld_off;
   713         __ movq(rax, Address(r13, offset));
   714         // st_off is LSW (i.e. reg.first())
   715         __ movq(Address(rsp, st_off), rax);
   716       }
   717     } else if (r_1->is_Register()) {  // Register argument
   718       Register r = r_1->as_Register();
   719       assert(r != rax, "must be different");
   720       if (r_2->is_valid()) {
   721         //
   722         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   723         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   724         // So we must adjust where to pick up the data to match the interpreter.
   726         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   727                            next_off : ld_off;
   729         // this can be a misaligned move
   730         __ movq(r, Address(r13, offset));
   731       } else {
   732         // sign extend and use a full word?
   733         __ movl(r, Address(r13, ld_off));
   734       }
   735     } else {
   736       if (!r_2->is_valid()) {
   737         __ movflt(r_1->as_XMMRegister(), Address(r13, ld_off));
   738       } else {
   739         __ movdbl(r_1->as_XMMRegister(), Address(r13, next_off));
   740       }
   741     }
   742   }
   744   // 6243940 We might end up in handle_wrong_method if
   745   // the callee is deoptimized as we race thru here. If that
   746   // happens we don't want to take a safepoint because the
   747   // caller frame will look interpreted and arguments are now
   748   // "compiled" so it is much better to make this transition
   749   // invisible to the stack walking code. Unfortunately if
   750   // we try and find the callee by normal means a safepoint
   751   // is possible. So we stash the desired callee in the thread
   752   // and the vm will find there should this case occur.
   754   __ movq(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
   756   // put methodOop where a c2i would expect should we end up there
   757   // only needed becaus eof c2 resolve stubs return methodOop as a result in
   758   // rax
   759   __ movq(rax, rbx);
   760   __ jmp(r11);
   761 }
   763 // ---------------------------------------------------------------
   764 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   765                                                             int total_args_passed,
   766                                                             int comp_args_on_stack,
   767                                                             const BasicType *sig_bt,
   768                                                             const VMRegPair *regs) {
   769   address i2c_entry = __ pc();
   771   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   773   // -------------------------------------------------------------------------
   774   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
   775   // to the interpreter.  The args start out packed in the compiled layout.  They
   776   // need to be unpacked into the interpreter layout.  This will almost always
   777   // require some stack space.  We grow the current (compiled) stack, then repack
   778   // the args.  We  finally end in a jump to the generic interpreter entry point.
   779   // On exit from the interpreter, the interpreter will restore our SP (lest the
   780   // compiled code, which relys solely on SP and not RBP, get sick).
   782   address c2i_unverified_entry = __ pc();
   783   Label skip_fixup;
   784   Label ok;
   786   Register holder = rax;
   787   Register receiver = j_rarg0;
   788   Register temp = rbx;
   790   {
   791     __ verify_oop(holder);
   792     __ load_klass(temp, receiver);
   793     __ verify_oop(temp);
   795     __ cmpq(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   796     __ movq(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   797     __ jcc(Assembler::equal, ok);
   798     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   800     __ bind(ok);
   801     // Method might have been compiled since the call site was patched to
   802     // interpreted if that is the case treat it as a miss so we can get
   803     // the call site corrected.
   804     __ cmpq(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int)NULL_WORD);
   805     __ jcc(Assembler::equal, skip_fixup);
   806     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   807   }
   809   address c2i_entry = __ pc();
   811   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   813   __ flush();
   814   return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
   815 }
   817 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   818                                          VMRegPair *regs,
   819                                          int total_args_passed) {
   820 // We return the amount of VMRegImpl stack slots we need to reserve for all
   821 // the arguments NOT counting out_preserve_stack_slots.
   823 // NOTE: These arrays will have to change when c1 is ported
   824 #ifdef _WIN64
   825     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   826       c_rarg0, c_rarg1, c_rarg2, c_rarg3
   827     };
   828     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   829       c_farg0, c_farg1, c_farg2, c_farg3
   830     };
   831 #else
   832     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   833       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
   834     };
   835     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   836       c_farg0, c_farg1, c_farg2, c_farg3,
   837       c_farg4, c_farg5, c_farg6, c_farg7
   838     };
   839 #endif // _WIN64
   842     uint int_args = 0;
   843     uint fp_args = 0;
   844     uint stk_args = 0; // inc by 2 each time
   846     for (int i = 0; i < total_args_passed; i++) {
   847       switch (sig_bt[i]) {
   848       case T_BOOLEAN:
   849       case T_CHAR:
   850       case T_BYTE:
   851       case T_SHORT:
   852       case T_INT:
   853         if (int_args < Argument::n_int_register_parameters_c) {
   854           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   855 #ifdef _WIN64
   856           fp_args++;
   857           // Allocate slots for callee to stuff register args the stack.
   858           stk_args += 2;
   859 #endif
   860         } else {
   861           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   862           stk_args += 2;
   863         }
   864         break;
   865       case T_LONG:
   866         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   867         // fall through
   868       case T_OBJECT:
   869       case T_ARRAY:
   870       case T_ADDRESS:
   871         if (int_args < Argument::n_int_register_parameters_c) {
   872           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   873 #ifdef _WIN64
   874           fp_args++;
   875           stk_args += 2;
   876 #endif
   877         } else {
   878           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   879           stk_args += 2;
   880         }
   881         break;
   882       case T_FLOAT:
   883         if (fp_args < Argument::n_float_register_parameters_c) {
   884           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   885 #ifdef _WIN64
   886           int_args++;
   887           // Allocate slots for callee to stuff register args the stack.
   888           stk_args += 2;
   889 #endif
   890         } else {
   891           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   892           stk_args += 2;
   893         }
   894         break;
   895       case T_DOUBLE:
   896         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   897         if (fp_args < Argument::n_float_register_parameters_c) {
   898           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   899 #ifdef _WIN64
   900           int_args++;
   901           // Allocate slots for callee to stuff register args the stack.
   902           stk_args += 2;
   903 #endif
   904         } else {
   905           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   906           stk_args += 2;
   907         }
   908         break;
   909       case T_VOID: // Halves of longs and doubles
   910         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   911         regs[i].set_bad();
   912         break;
   913       default:
   914         ShouldNotReachHere();
   915         break;
   916       }
   917     }
   918 #ifdef _WIN64
   919   // windows abi requires that we always allocate enough stack space
   920   // for 4 64bit registers to be stored down.
   921   if (stk_args < 8) {
   922     stk_args = 8;
   923   }
   924 #endif // _WIN64
   926   return stk_args;
   927 }
   929 // On 64 bit we will store integer like items to the stack as
   930 // 64 bits items (sparc abi) even though java would only store
   931 // 32bits for a parameter. On 32bit it will simply be 32 bits
   932 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
   933 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   934   if (src.first()->is_stack()) {
   935     if (dst.first()->is_stack()) {
   936       // stack to stack
   937       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
   938       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
   939     } else {
   940       // stack to reg
   941       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
   942     }
   943   } else if (dst.first()->is_stack()) {
   944     // reg to stack
   945     // Do we really have to sign extend???
   946     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
   947     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   948   } else {
   949     // Do we really have to sign extend???
   950     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
   951     if (dst.first() != src.first()) {
   952       __ movq(dst.first()->as_Register(), src.first()->as_Register());
   953     }
   954   }
   955 }
   958 // An oop arg. Must pass a handle not the oop itself
   959 static void object_move(MacroAssembler* masm,
   960                         OopMap* map,
   961                         int oop_handle_offset,
   962                         int framesize_in_slots,
   963                         VMRegPair src,
   964                         VMRegPair dst,
   965                         bool is_receiver,
   966                         int* receiver_offset) {
   968   // must pass a handle. First figure out the location we use as a handle
   970   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
   972   // See if oop is NULL if it is we need no handle
   974   if (src.first()->is_stack()) {
   976     // Oop is already on the stack as an argument
   977     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
   978     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
   979     if (is_receiver) {
   980       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
   981     }
   983     __ cmpq(Address(rbp, reg2offset_in(src.first())), (int)NULL_WORD);
   984     __ leaq(rHandle, Address(rbp, reg2offset_in(src.first())));
   985     // conditionally move a NULL
   986     __ cmovq(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
   987   } else {
   989     // Oop is in an a register we must store it to the space we reserve
   990     // on the stack for oop_handles and pass a handle if oop is non-NULL
   992     const Register rOop = src.first()->as_Register();
   993     int oop_slot;
   994     if (rOop == j_rarg0)
   995       oop_slot = 0;
   996     else if (rOop == j_rarg1)
   997       oop_slot = 1;
   998     else if (rOop == j_rarg2)
   999       oop_slot = 2;
  1000     else if (rOop == j_rarg3)
  1001       oop_slot = 3;
  1002     else if (rOop == j_rarg4)
  1003       oop_slot = 4;
  1004     else {
  1005       assert(rOop == j_rarg5, "wrong register");
  1006       oop_slot = 5;
  1009     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
  1010     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1012     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1013     // Store oop in handle area, may be NULL
  1014     __ movq(Address(rsp, offset), rOop);
  1015     if (is_receiver) {
  1016       *receiver_offset = offset;
  1019     __ cmpq(rOop, (int)NULL);
  1020     __ leaq(rHandle, Address(rsp, offset));
  1021     // conditionally move a NULL from the handle area where it was just stored
  1022     __ cmovq(Assembler::equal, rHandle, Address(rsp, offset));
  1025   // If arg is on the stack then place it otherwise it is already in correct reg.
  1026   if (dst.first()->is_stack()) {
  1027     __ movq(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1031 // A float arg may have to do float reg int reg conversion
  1032 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1033   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1035   // The calling conventions assures us that each VMregpair is either
  1036   // all really one physical register or adjacent stack slots.
  1037   // This greatly simplifies the cases here compared to sparc.
  1039   if (src.first()->is_stack()) {
  1040     if (dst.first()->is_stack()) {
  1041       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1042       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1043     } else {
  1044       // stack to reg
  1045       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1046       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
  1048   } else if (dst.first()->is_stack()) {
  1049     // reg to stack
  1050     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1051     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1052   } else {
  1053     // reg to reg
  1054     // In theory these overlap but the ordering is such that this is likely a nop
  1055     if ( src.first() != dst.first()) {
  1056       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  1061 // A long move
  1062 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1064   // The calling conventions assures us that each VMregpair is either
  1065   // all really one physical register or adjacent stack slots.
  1066   // This greatly simplifies the cases here compared to sparc.
  1068   if (src.is_single_phys_reg() ) {
  1069     if (dst.is_single_phys_reg()) {
  1070       if (dst.first() != src.first()) {
  1071         __ movq(dst.first()->as_Register(), src.first()->as_Register());
  1073     } else {
  1074       assert(dst.is_single_reg(), "not a stack pair");
  1075       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1077   } else if (dst.is_single_phys_reg()) {
  1078     assert(src.is_single_reg(),  "not a stack pair");
  1079     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  1080   } else {
  1081     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1082     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1083     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1087 // A double move
  1088 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1090   // The calling conventions assures us that each VMregpair is either
  1091   // all really one physical register or adjacent stack slots.
  1092   // This greatly simplifies the cases here compared to sparc.
  1094   if (src.is_single_phys_reg() ) {
  1095     if (dst.is_single_phys_reg()) {
  1096       // In theory these overlap but the ordering is such that this is likely a nop
  1097       if ( src.first() != dst.first()) {
  1098         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  1100     } else {
  1101       assert(dst.is_single_reg(), "not a stack pair");
  1102       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1104   } else if (dst.is_single_phys_reg()) {
  1105     assert(src.is_single_reg(),  "not a stack pair");
  1106     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  1107   } else {
  1108     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1109     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1110     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1115 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1116   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1117   // which by this time is free to use
  1118   switch (ret_type) {
  1119   case T_FLOAT:
  1120     __ movflt(Address(rbp, -wordSize), xmm0);
  1121     break;
  1122   case T_DOUBLE:
  1123     __ movdbl(Address(rbp, -wordSize), xmm0);
  1124     break;
  1125   case T_VOID:  break;
  1126   default: {
  1127     __ movq(Address(rbp, -wordSize), rax);
  1132 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1133   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1134   // which by this time is free to use
  1135   switch (ret_type) {
  1136   case T_FLOAT:
  1137     __ movflt(xmm0, Address(rbp, -wordSize));
  1138     break;
  1139   case T_DOUBLE:
  1140     __ movdbl(xmm0, Address(rbp, -wordSize));
  1141     break;
  1142   case T_VOID:  break;
  1143   default: {
  1144     __ movq(rax, Address(rbp, -wordSize));
  1149 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1150     for ( int i = first_arg ; i < arg_count ; i++ ) {
  1151       if (args[i].first()->is_Register()) {
  1152         __ pushq(args[i].first()->as_Register());
  1153       } else if (args[i].first()->is_XMMRegister()) {
  1154         __ subq(rsp, 2*wordSize);
  1155         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
  1160 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1161     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
  1162       if (args[i].first()->is_Register()) {
  1163         __ popq(args[i].first()->as_Register());
  1164       } else if (args[i].first()->is_XMMRegister()) {
  1165         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
  1166         __ addq(rsp, 2*wordSize);
  1171 // ---------------------------------------------------------------------------
  1172 // Generate a native wrapper for a given method.  The method takes arguments
  1173 // in the Java compiled code convention, marshals them to the native
  1174 // convention (handlizes oops, etc), transitions to native, makes the call,
  1175 // returns to java state (possibly blocking), unhandlizes any result and
  1176 // returns.
  1177 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1178                                                 methodHandle method,
  1179                                                 int total_in_args,
  1180                                                 int comp_args_on_stack,
  1181                                                 BasicType *in_sig_bt,
  1182                                                 VMRegPair *in_regs,
  1183                                                 BasicType ret_type) {
  1184   // Native nmethod wrappers never take possesion of the oop arguments.
  1185   // So the caller will gc the arguments. The only thing we need an
  1186   // oopMap for is if the call is static
  1187   //
  1188   // An OopMap for lock (and class if static)
  1189   OopMapSet *oop_maps = new OopMapSet();
  1190   intptr_t start = (intptr_t)__ pc();
  1192   // We have received a description of where all the java arg are located
  1193   // on entry to the wrapper. We need to convert these args to where
  1194   // the jni function will expect them. To figure out where they go
  1195   // we convert the java signature to a C signature by inserting
  1196   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1198   int total_c_args = total_in_args + 1;
  1199   if (method->is_static()) {
  1200     total_c_args++;
  1203   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1204   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1206   int argc = 0;
  1207   out_sig_bt[argc++] = T_ADDRESS;
  1208   if (method->is_static()) {
  1209     out_sig_bt[argc++] = T_OBJECT;
  1212   for (int i = 0; i < total_in_args ; i++ ) {
  1213     out_sig_bt[argc++] = in_sig_bt[i];
  1216   // Now figure out where the args must be stored and how much stack space
  1217   // they require.
  1218   //
  1219   int out_arg_slots;
  1220   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1222   // Compute framesize for the wrapper.  We need to handlize all oops in
  1223   // incoming registers
  1225   // Calculate the total number of stack slots we will need.
  1227   // First count the abi requirement plus all of the outgoing args
  1228   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1230   // Now the space for the inbound oop handle area
  1232   int oop_handle_offset = stack_slots;
  1233   stack_slots += 6*VMRegImpl::slots_per_word;
  1235   // Now any space we need for handlizing a klass if static method
  1237   int oop_temp_slot_offset = 0;
  1238   int klass_slot_offset = 0;
  1239   int klass_offset = -1;
  1240   int lock_slot_offset = 0;
  1241   bool is_static = false;
  1243   if (method->is_static()) {
  1244     klass_slot_offset = stack_slots;
  1245     stack_slots += VMRegImpl::slots_per_word;
  1246     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1247     is_static = true;
  1250   // Plus a lock if needed
  1252   if (method->is_synchronized()) {
  1253     lock_slot_offset = stack_slots;
  1254     stack_slots += VMRegImpl::slots_per_word;
  1257   // Now a place (+2) to save return values or temp during shuffling
  1258   // + 4 for return address (which we own) and saved rbp
  1259   stack_slots += 6;
  1261   // Ok The space we have allocated will look like:
  1262   //
  1263   //
  1264   // FP-> |                     |
  1265   //      |---------------------|
  1266   //      | 2 slots for moves   |
  1267   //      |---------------------|
  1268   //      | lock box (if sync)  |
  1269   //      |---------------------| <- lock_slot_offset
  1270   //      | klass (if static)   |
  1271   //      |---------------------| <- klass_slot_offset
  1272   //      | oopHandle area      |
  1273   //      |---------------------| <- oop_handle_offset (6 java arg registers)
  1274   //      | outbound memory     |
  1275   //      | based arguments     |
  1276   //      |                     |
  1277   //      |---------------------|
  1278   //      |                     |
  1279   // SP-> | out_preserved_slots |
  1280   //
  1281   //
  1284   // Now compute actual number of stack words we need rounding to make
  1285   // stack properly aligned.
  1286   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  1288   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1291   // First thing make an ic check to see if we should even be here
  1293   // We are free to use all registers as temps without saving them and
  1294   // restoring them except rbp. rbp is the only callee save register
  1295   // as far as the interpreter and the compiler(s) are concerned.
  1298   const Register ic_reg = rax;
  1299   const Register receiver = j_rarg0;
  1300   const Register tmp = rdx;
  1302   Label ok;
  1303   Label exception_pending;
  1305   __ verify_oop(receiver);
  1306   __ pushq(tmp); // spill (any other registers free here???)
  1307   __ load_klass(tmp, receiver);
  1308   __ cmpq(ic_reg, tmp);
  1309   __ jcc(Assembler::equal, ok);
  1311   __ popq(tmp);
  1312   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1314   __ bind(ok);
  1315   __ popq(tmp);
  1317   // Verified entry point must be aligned
  1318   __ align(8);
  1320   int vep_offset = ((intptr_t)__ pc()) - start;
  1322   // The instruction at the verified entry point must be 5 bytes or longer
  1323   // because it can be patched on the fly by make_non_entrant. The stack bang
  1324   // instruction fits that requirement.
  1326   // Generate stack overflow check
  1328   if (UseStackBanging) {
  1329     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1330   } else {
  1331     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1332     __ fat_nop();
  1335   // Generate a new frame for the wrapper.
  1336   __ enter();
  1337   // -2 because return address is already present and so is saved rbp
  1338   __ subq(rsp, stack_size - 2*wordSize);
  1340     // Frame is now completed as far as size and linkage.
  1342     int frame_complete = ((intptr_t)__ pc()) - start;
  1344 #ifdef ASSERT
  1346       Label L;
  1347       __ movq(rax, rsp);
  1348       __ andq(rax, -16); // must be 16 byte boundry (see amd64 ABI)
  1349       __ cmpq(rax, rsp);
  1350       __ jcc(Assembler::equal, L);
  1351       __ stop("improperly aligned stack");
  1352       __ bind(L);
  1354 #endif /* ASSERT */
  1357   // We use r14 as the oop handle for the receiver/klass
  1358   // It is callee save so it survives the call to native
  1360   const Register oop_handle_reg = r14;
  1364   //
  1365   // We immediately shuffle the arguments so that any vm call we have to
  1366   // make from here on out (sync slow path, jvmti, etc.) we will have
  1367   // captured the oops from our caller and have a valid oopMap for
  1368   // them.
  1370   // -----------------
  1371   // The Grand Shuffle
  1373   // The Java calling convention is either equal (linux) or denser (win64) than the
  1374   // c calling convention. However the because of the jni_env argument the c calling
  1375   // convention always has at least one more (and two for static) arguments than Java.
  1376   // Therefore if we move the args from java -> c backwards then we will never have
  1377   // a register->register conflict and we don't have to build a dependency graph
  1378   // and figure out how to break any cycles.
  1379   //
  1381   // Record esp-based slot for receiver on stack for non-static methods
  1382   int receiver_offset = -1;
  1384   // This is a trick. We double the stack slots so we can claim
  1385   // the oops in the caller's frame. Since we are sure to have
  1386   // more args than the caller doubling is enough to make
  1387   // sure we can capture all the incoming oop args from the
  1388   // caller.
  1389   //
  1390   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1392   // Mark location of rbp (someday)
  1393   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
  1395   // Use eax, ebx as temporaries during any memory-memory moves we have to do
  1396   // All inbound args are referenced based on rbp and all outbound args via rsp.
  1399 #ifdef ASSERT
  1400   bool reg_destroyed[RegisterImpl::number_of_registers];
  1401   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  1402   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  1403     reg_destroyed[r] = false;
  1405   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
  1406     freg_destroyed[f] = false;
  1409 #endif /* ASSERT */
  1412   int c_arg = total_c_args - 1;
  1413   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
  1414 #ifdef ASSERT
  1415     if (in_regs[i].first()->is_Register()) {
  1416       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
  1417     } else if (in_regs[i].first()->is_XMMRegister()) {
  1418       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
  1420     if (out_regs[c_arg].first()->is_Register()) {
  1421       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  1422     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  1423       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  1425 #endif /* ASSERT */
  1426     switch (in_sig_bt[i]) {
  1427       case T_ARRAY:
  1428       case T_OBJECT:
  1429         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1430                     ((i == 0) && (!is_static)),
  1431                     &receiver_offset);
  1432         break;
  1433       case T_VOID:
  1434         break;
  1436       case T_FLOAT:
  1437         float_move(masm, in_regs[i], out_regs[c_arg]);
  1438           break;
  1440       case T_DOUBLE:
  1441         assert( i + 1 < total_in_args &&
  1442                 in_sig_bt[i + 1] == T_VOID &&
  1443                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1444         double_move(masm, in_regs[i], out_regs[c_arg]);
  1445         break;
  1447       case T_LONG :
  1448         long_move(masm, in_regs[i], out_regs[c_arg]);
  1449         break;
  1451       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1453       default:
  1454         move32_64(masm, in_regs[i], out_regs[c_arg]);
  1458   // point c_arg at the first arg that is already loaded in case we
  1459   // need to spill before we call out
  1460   c_arg++;
  1462   // Pre-load a static method's oop into r14.  Used both by locking code and
  1463   // the normal JNI call code.
  1464   if (method->is_static()) {
  1466     //  load oop into a register
  1467     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1469     // Now handlize the static class mirror it's known not-null.
  1470     __ movq(Address(rsp, klass_offset), oop_handle_reg);
  1471     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1473     // Now get the handle
  1474     __ leaq(oop_handle_reg, Address(rsp, klass_offset));
  1475     // store the klass handle as second argument
  1476     __ movq(c_rarg1, oop_handle_reg);
  1477     // and protect the arg if we must spill
  1478     c_arg--;
  1481   // Change state to native (we save the return address in the thread, since it might not
  1482   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1483   // points into the right code segment. It does not have to be the correct return pc.
  1484   // We use the same pc/oopMap repeatedly when we call out
  1486   intptr_t the_pc = (intptr_t) __ pc();
  1487   oop_maps->add_gc_map(the_pc - start, map);
  1489   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
  1492   // We have all of the arguments setup at this point. We must not touch any register
  1493   // argument registers at this point (what if we save/restore them there are no oop?
  1496     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  1497     // protect the args we've loaded
  1498     save_args(masm, total_c_args, c_arg, out_regs);
  1499     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1500     __ call_VM_leaf(
  1501       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1502       r15_thread, c_rarg1);
  1503     restore_args(masm, total_c_args, c_arg, out_regs);
  1506   // Lock a synchronized method
  1508   // Register definitions used by locking and unlocking
  1510   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  1511   const Register obj_reg  = rbx;  // Will contain the oop
  1512   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  1513   const Register old_hdr  = r13;  // value of old header at unlock time
  1515   Label slow_path_lock;
  1516   Label lock_done;
  1518   if (method->is_synchronized()) {
  1521     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1523     // Get the handle (the 2nd argument)
  1524     __ movq(oop_handle_reg, c_rarg1);
  1526     // Get address of the box
  1528     __ leaq(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1530     // Load the oop from the handle
  1531     __ movq(obj_reg, Address(oop_handle_reg, 0));
  1533     if (UseBiasedLocking) {
  1534       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
  1537     // Load immediate 1 into swap_reg %rax
  1538     __ movl(swap_reg, 1);
  1540     // Load (object->mark() | 1) into swap_reg %rax
  1541     __ orq(swap_reg, Address(obj_reg, 0));
  1543     // Save (object->mark() | 1) into BasicLock's displaced header
  1544     __ movq(Address(lock_reg, mark_word_offset), swap_reg);
  1546     if (os::is_MP()) {
  1547       __ lock();
  1550     // src -> dest iff dest == rax else rax <- dest
  1551     __ cmpxchgq(lock_reg, Address(obj_reg, 0));
  1552     __ jcc(Assembler::equal, lock_done);
  1554     // Hmm should this move to the slow path code area???
  1556     // Test if the oopMark is an obvious stack pointer, i.e.,
  1557     //  1) (mark & 3) == 0, and
  1558     //  2) rsp <= mark < mark + os::pagesize()
  1559     // These 3 tests can be done by evaluating the following
  1560     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1561     // assuming both stack pointer and pagesize have their
  1562     // least significant 2 bits clear.
  1563     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
  1565     __ subq(swap_reg, rsp);
  1566     __ andq(swap_reg, 3 - os::vm_page_size());
  1568     // Save the test result, for recursive case, the result is zero
  1569     __ movq(Address(lock_reg, mark_word_offset), swap_reg);
  1570     __ jcc(Assembler::notEqual, slow_path_lock);
  1572     // Slow path will re-enter here
  1574     __ bind(lock_done);
  1578   // Finally just about ready to make the JNI call
  1581   // get JNIEnv* which is first argument to native
  1583   __ leaq(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
  1585   // Now set thread in native
  1586   __ mov64(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
  1588   __ call(RuntimeAddress(method->native_function()));
  1590     // Either restore the MXCSR register after returning from the JNI Call
  1591     // or verify that it wasn't changed.
  1592     if (RestoreMXCSROnJNICalls) {
  1593       __ ldmxcsr(ExternalAddress(StubRoutines::amd64::mxcsr_std()));
  1596     else if (CheckJNICalls ) {
  1597       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::amd64::verify_mxcsr_entry())));
  1601   // Unpack native results.
  1602   switch (ret_type) {
  1603   case T_BOOLEAN: __ c2bool(rax);            break;
  1604   case T_CHAR   : __ movzwl(rax, rax);      break;
  1605   case T_BYTE   : __ sign_extend_byte (rax); break;
  1606   case T_SHORT  : __ sign_extend_short(rax); break;
  1607   case T_INT    : /* nothing to do */        break;
  1608   case T_DOUBLE :
  1609   case T_FLOAT  :
  1610     // Result is in xmm0 we'll save as needed
  1611     break;
  1612   case T_ARRAY:                 // Really a handle
  1613   case T_OBJECT:                // Really a handle
  1614       break; // can't de-handlize until after safepoint check
  1615   case T_VOID: break;
  1616   case T_LONG: break;
  1617   default       : ShouldNotReachHere();
  1620   // Switch thread to "native transition" state before reading the synchronization state.
  1621   // This additional state is necessary because reading and testing the synchronization
  1622   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1623   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1624   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1625   //     Thread A is resumed to finish this native method, but doesn't block here since it
  1626   //     didn't see any synchronization is progress, and escapes.
  1627   __ mov64(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1629   if(os::is_MP()) {
  1630     if (UseMembar) {
  1631       // Force this write out before the read below
  1632       __ membar(Assembler::Membar_mask_bits(
  1633            Assembler::LoadLoad | Assembler::LoadStore |
  1634            Assembler::StoreLoad | Assembler::StoreStore));
  1635     } else {
  1636       // Write serialization page so VM thread can do a pseudo remote membar.
  1637       // We use the current thread pointer to calculate a thread specific
  1638       // offset to write to within the page. This minimizes bus traffic
  1639       // due to cache line collision.
  1640       __ serialize_memory(r15_thread, rcx);
  1645   // check for safepoint operation in progress and/or pending suspend requests
  1647     Label Continue;
  1649     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  1650              SafepointSynchronize::_not_synchronized);
  1652     Label L;
  1653     __ jcc(Assembler::notEqual, L);
  1654     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1655     __ jcc(Assembler::equal, Continue);
  1656     __ bind(L);
  1658     // Don't use call_VM as it will see a possible pending exception and forward it
  1659     // and never return here preventing us from clearing _last_native_pc down below.
  1660     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1661     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1662     // by hand.
  1663     //
  1664     save_native_result(masm, ret_type, stack_slots);
  1665     __ movq(c_rarg0, r15_thread);
  1666     __ movq(r12, rsp); // remember sp
  1667     __ subq(rsp, frame::arg_reg_save_area_bytes); // windows
  1668     __ andq(rsp, -16); // align stack as required by ABI
  1669     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1670     __ movq(rsp, r12); // restore sp
  1671     __ reinit_heapbase();
  1672     // Restore any method result value
  1673     restore_native_result(masm, ret_type, stack_slots);
  1674     __ bind(Continue);
  1677   // change thread state
  1678   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1680   Label reguard;
  1681   Label reguard_done;
  1682   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1683   __ jcc(Assembler::equal, reguard);
  1684   __ bind(reguard_done);
  1686   // native result if any is live
  1688   // Unlock
  1689   Label unlock_done;
  1690   Label slow_path_unlock;
  1691   if (method->is_synchronized()) {
  1693     // Get locked oop from the handle we passed to jni
  1694     __ movq(obj_reg, Address(oop_handle_reg, 0));
  1696     Label done;
  1698     if (UseBiasedLocking) {
  1699       __ biased_locking_exit(obj_reg, old_hdr, done);
  1702     // Simple recursive lock?
  1704     __ cmpq(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int)NULL_WORD);
  1705     __ jcc(Assembler::equal, done);
  1707     // Must save rax if if it is live now because cmpxchg must use it
  1708     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1709       save_native_result(masm, ret_type, stack_slots);
  1713     // get address of the stack lock
  1714     __ leaq(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1715     //  get old displaced header
  1716     __ movq(old_hdr, Address(rax, 0));
  1718     // Atomic swap old header if oop still contains the stack lock
  1719     if (os::is_MP()) {
  1720       __ lock();
  1722     __ cmpxchgq(old_hdr, Address(obj_reg, 0));
  1723     __ jcc(Assembler::notEqual, slow_path_unlock);
  1725     // slow path re-enters here
  1726     __ bind(unlock_done);
  1727     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1728       restore_native_result(masm, ret_type, stack_slots);
  1731     __ bind(done);
  1735     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  1736     save_native_result(masm, ret_type, stack_slots);
  1737     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  1738     __ call_VM_leaf(
  1739          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1740          r15_thread, c_rarg1);
  1741     restore_native_result(masm, ret_type, stack_slots);
  1744   __ reset_last_Java_frame(false, true);
  1746   // Unpack oop result
  1747   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  1748       Label L;
  1749       __ testq(rax, rax);
  1750       __ jcc(Assembler::zero, L);
  1751       __ movq(rax, Address(rax, 0));
  1752       __ bind(L);
  1753       __ verify_oop(rax);
  1756   // reset handle block
  1757   __ movq(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
  1758   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int)NULL_WORD);
  1760   // pop our frame
  1762   __ leave();
  1764   // Any exception pending?
  1765   __ cmpq(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1766   __ jcc(Assembler::notEqual, exception_pending);
  1768   // Return
  1770   __ ret(0);
  1772   // Unexpected paths are out of line and go here
  1774   // forward the exception
  1775   __ bind(exception_pending);
  1777   // and forward the exception
  1778   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1781   // Slow path locking & unlocking
  1782   if (method->is_synchronized()) {
  1784     // BEGIN Slow path lock
  1785     __ bind(slow_path_lock);
  1787     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  1788     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  1790     // protect the args we've loaded
  1791     save_args(masm, total_c_args, c_arg, out_regs);
  1793     __ movq(c_rarg0, obj_reg);
  1794     __ movq(c_rarg1, lock_reg);
  1795     __ movq(c_rarg2, r15_thread);
  1797     // Not a leaf but we have last_Java_frame setup as we want
  1798     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
  1799     restore_args(masm, total_c_args, c_arg, out_regs);
  1801 #ifdef ASSERT
  1802     { Label L;
  1803     __ cmpq(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1804     __ jcc(Assembler::equal, L);
  1805     __ stop("no pending exception allowed on exit from monitorenter");
  1806     __ bind(L);
  1808 #endif
  1809     __ jmp(lock_done);
  1811     // END Slow path lock
  1813     // BEGIN Slow path unlock
  1814     __ bind(slow_path_unlock);
  1816     // If we haven't already saved the native result we must save it now as xmm registers
  1817     // are still exposed.
  1819     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1820       save_native_result(masm, ret_type, stack_slots);
  1823     __ leaq(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  1825     __ movq(c_rarg0, obj_reg);
  1826     __ movq(r12, rsp); // remember sp
  1827     __ subq(rsp, frame::arg_reg_save_area_bytes); // windows
  1828     __ andq(rsp, -16); // align stack as required by ABI
  1830     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  1831     // NOTE that obj_reg == rbx currently
  1832     __ movq(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
  1833     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1835     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  1836     __ movq(rsp, r12); // restore sp
  1837     __ reinit_heapbase();
  1838 #ifdef ASSERT
  1840       Label L;
  1841       __ cmpq(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1842       __ jcc(Assembler::equal, L);
  1843       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  1844       __ bind(L);
  1846 #endif /* ASSERT */
  1848     __ movq(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
  1850     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1851       restore_native_result(masm, ret_type, stack_slots);
  1853     __ jmp(unlock_done);
  1855     // END Slow path unlock
  1857   } // synchronized
  1859   // SLOW PATH Reguard the stack if needed
  1861   __ bind(reguard);
  1862   save_native_result(masm, ret_type, stack_slots);
  1863   __ movq(r12, rsp); // remember sp
  1864   __ subq(rsp, frame::arg_reg_save_area_bytes); // windows
  1865   __ andq(rsp, -16); // align stack as required by ABI
  1866   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1867   __ movq(rsp, r12); // restore sp
  1868   __ reinit_heapbase();
  1869   restore_native_result(masm, ret_type, stack_slots);
  1870   // and continue
  1871   __ jmp(reguard_done);
  1875   __ flush();
  1877   nmethod *nm = nmethod::new_native_nmethod(method,
  1878                                             masm->code(),
  1879                                             vep_offset,
  1880                                             frame_complete,
  1881                                             stack_slots / VMRegImpl::slots_per_word,
  1882                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  1883                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  1884                                             oop_maps);
  1885   return nm;
  1889 #ifdef HAVE_DTRACE_H
  1890 // ---------------------------------------------------------------------------
  1891 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  1892 // in the Java compiled code convention, marshals them to the native
  1893 // abi and then leaves nops at the position you would expect to call a native
  1894 // function. When the probe is enabled the nops are replaced with a trap
  1895 // instruction that dtrace inserts and the trace will cause a notification
  1896 // to dtrace.
  1897 //
  1898 // The probes are only able to take primitive types and java/lang/String as
  1899 // arguments.  No other java types are allowed. Strings are converted to utf8
  1900 // strings so that from dtrace point of view java strings are converted to C
  1901 // strings. There is an arbitrary fixed limit on the total space that a method
  1902 // can use for converting the strings. (256 chars per string in the signature).
  1903 // So any java string larger then this is truncated.
  1905 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  1906 static bool offsets_initialized = false;
  1909 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
  1910                                                 methodHandle method) {
  1913   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  1914   // be single threaded in this method.
  1915   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  1917   if (!offsets_initialized) {
  1918     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
  1919     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
  1920     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
  1921     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
  1922     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
  1923     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
  1925     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
  1926     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
  1927     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
  1928     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
  1929     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
  1930     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
  1931     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
  1932     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
  1934     offsets_initialized = true;
  1936   // Fill in the signature array, for the calling-convention call.
  1937   int total_args_passed = method->size_of_parameters();
  1939   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  1940   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  1942   // The signature we are going to use for the trap that dtrace will see
  1943   // java/lang/String is converted. We drop "this" and any other object
  1944   // is converted to NULL.  (A one-slot java/lang/Long object reference
  1945   // is converted to a two-slot long, which is why we double the allocation).
  1946   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  1947   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  1949   int i=0;
  1950   int total_strings = 0;
  1951   int first_arg_to_pass = 0;
  1952   int total_c_args = 0;
  1954   // Skip the receiver as dtrace doesn't want to see it
  1955   if( !method->is_static() ) {
  1956     in_sig_bt[i++] = T_OBJECT;
  1957     first_arg_to_pass = 1;
  1960   // We need to convert the java args to where a native (non-jni) function
  1961   // would expect them. To figure out where they go we convert the java
  1962   // signature to a C signature.
  1964   SignatureStream ss(method->signature());
  1965   for ( ; !ss.at_return_type(); ss.next()) {
  1966     BasicType bt = ss.type();
  1967     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  1968     out_sig_bt[total_c_args++] = bt;
  1969     if( bt == T_OBJECT) {
  1970       symbolOop s = ss.as_symbol_or_null();
  1971       if (s == vmSymbols::java_lang_String()) {
  1972         total_strings++;
  1973         out_sig_bt[total_c_args-1] = T_ADDRESS;
  1974       } else if (s == vmSymbols::java_lang_Boolean() ||
  1975                  s == vmSymbols::java_lang_Character() ||
  1976                  s == vmSymbols::java_lang_Byte() ||
  1977                  s == vmSymbols::java_lang_Short() ||
  1978                  s == vmSymbols::java_lang_Integer() ||
  1979                  s == vmSymbols::java_lang_Float()) {
  1980         out_sig_bt[total_c_args-1] = T_INT;
  1981       } else if (s == vmSymbols::java_lang_Long() ||
  1982                  s == vmSymbols::java_lang_Double()) {
  1983         out_sig_bt[total_c_args-1] = T_LONG;
  1984         out_sig_bt[total_c_args++] = T_VOID;
  1986     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  1987       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1988       // We convert double to long
  1989       out_sig_bt[total_c_args-1] = T_LONG;
  1990       out_sig_bt[total_c_args++] = T_VOID;
  1991     } else if ( bt == T_FLOAT) {
  1992       // We convert float to int
  1993       out_sig_bt[total_c_args-1] = T_INT;
  1997   assert(i==total_args_passed, "validly parsed signature");
  1999   // Now get the compiled-Java layout as input arguments
  2000   int comp_args_on_stack;
  2001   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2002       in_sig_bt, in_regs, total_args_passed, false);
  2004   // Now figure out where the args must be stored and how much stack space
  2005   // they require (neglecting out_preserve_stack_slots but space for storing
  2006   // the 1st six register arguments). It's weird see int_stk_helper.
  2008   int out_arg_slots;
  2009   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2011   // Calculate the total number of stack slots we will need.
  2013   // First count the abi requirement plus all of the outgoing args
  2014   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2016   // Now space for the string(s) we must convert
  2017   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2018   for (i = 0; i < total_strings ; i++) {
  2019     string_locs[i] = stack_slots;
  2020     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2023   // Plus the temps we might need to juggle register args
  2024   // regs take two slots each
  2025   stack_slots += (Argument::n_int_register_parameters_c +
  2026                   Argument::n_float_register_parameters_c) * 2;
  2029   // + 4 for return address (which we own) and saved rbp,
  2031   stack_slots += 4;
  2033   // Ok The space we have allocated will look like:
  2034   //
  2035   //
  2036   // FP-> |                     |
  2037   //      |---------------------|
  2038   //      | string[n]           |
  2039   //      |---------------------| <- string_locs[n]
  2040   //      | string[n-1]         |
  2041   //      |---------------------| <- string_locs[n-1]
  2042   //      | ...                 |
  2043   //      | ...                 |
  2044   //      |---------------------| <- string_locs[1]
  2045   //      | string[0]           |
  2046   //      |---------------------| <- string_locs[0]
  2047   //      | outbound memory     |
  2048   //      | based arguments     |
  2049   //      |                     |
  2050   //      |---------------------|
  2051   //      |                     |
  2052   // SP-> | out_preserved_slots |
  2053   //
  2054   //
  2056   // Now compute actual number of stack words we need rounding to make
  2057   // stack properly aligned.
  2058   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2060   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2062   intptr_t start = (intptr_t)__ pc();
  2064   // First thing make an ic check to see if we should even be here
  2066   // We are free to use all registers as temps without saving them and
  2067   // restoring them except rbp. rbp, is the only callee save register
  2068   // as far as the interpreter and the compiler(s) are concerned.
  2070   const Register ic_reg = rax;
  2071   const Register receiver = rcx;
  2072   Label hit;
  2073   Label exception_pending;
  2076   __ verify_oop(receiver);
  2077   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2078   __ jcc(Assembler::equal, hit);
  2080   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2082   // verified entry must be aligned for code patching.
  2083   // and the first 5 bytes must be in the same cache line
  2084   // if we align at 8 then we will be sure 5 bytes are in the same line
  2085   __ align(8);
  2087   __ bind(hit);
  2089   int vep_offset = ((intptr_t)__ pc()) - start;
  2092   // The instruction at the verified entry point must be 5 bytes or longer
  2093   // because it can be patched on the fly by make_non_entrant. The stack bang
  2094   // instruction fits that requirement.
  2096   // Generate stack overflow check
  2098   if (UseStackBanging) {
  2099     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2100       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2101     } else {
  2102       __ movl(rax, stack_size);
  2103       __ bang_stack_size(rax, rbx);
  2105   } else {
  2106     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2107     __ fat_nop();
  2110   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
  2111          "valid size for make_non_entrant");
  2113   // Generate a new frame for the wrapper.
  2114   __ enter();
  2116   // -4 because return address is already present and so is saved rbp,
  2117   if (stack_size - 2*wordSize != 0) {
  2118     __ subq(rsp, stack_size - 2*wordSize);
  2121   // Frame is now completed as far a size and linkage.
  2123   int frame_complete = ((intptr_t)__ pc()) - start;
  2125   int c_arg, j_arg;
  2127   // State of input register args
  2129   bool  live[ConcreteRegisterImpl::number_of_registers];
  2131   live[j_rarg0->as_VMReg()->value()] = false;
  2132   live[j_rarg1->as_VMReg()->value()] = false;
  2133   live[j_rarg2->as_VMReg()->value()] = false;
  2134   live[j_rarg3->as_VMReg()->value()] = false;
  2135   live[j_rarg4->as_VMReg()->value()] = false;
  2136   live[j_rarg5->as_VMReg()->value()] = false;
  2138   live[j_farg0->as_VMReg()->value()] = false;
  2139   live[j_farg1->as_VMReg()->value()] = false;
  2140   live[j_farg2->as_VMReg()->value()] = false;
  2141   live[j_farg3->as_VMReg()->value()] = false;
  2142   live[j_farg4->as_VMReg()->value()] = false;
  2143   live[j_farg5->as_VMReg()->value()] = false;
  2144   live[j_farg6->as_VMReg()->value()] = false;
  2145   live[j_farg7->as_VMReg()->value()] = false;
  2148   bool rax_is_zero = false;
  2150   // All args (except strings) destined for the stack are moved first
  2151   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2152        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2153     VMRegPair src = in_regs[j_arg];
  2154     VMRegPair dst = out_regs[c_arg];
  2156     // Get the real reg value or a dummy (rsp)
  2158     int src_reg = src.first()->is_reg() ?
  2159                   src.first()->value() :
  2160                   rsp->as_VMReg()->value();
  2162     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2163                     (in_sig_bt[j_arg] == T_OBJECT &&
  2164                      out_sig_bt[c_arg] != T_INT &&
  2165                      out_sig_bt[c_arg] != T_ADDRESS &&
  2166                      out_sig_bt[c_arg] != T_LONG);
  2168     live[src_reg] = !useless;
  2170     if (dst.first()->is_stack()) {
  2172       // Even though a string arg in a register is still live after this loop
  2173       // after the string conversion loop (next) it will be dead so we take
  2174       // advantage of that now for simpler code to manage live.
  2176       live[src_reg] = false;
  2177       switch (in_sig_bt[j_arg]) {
  2179         case T_ARRAY:
  2180         case T_OBJECT:
  2182             Address stack_dst(rsp, reg2offset_out(dst.first()));
  2184             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2185               // need to unbox a one-word value
  2186               Register in_reg = rax;
  2187               if ( src.first()->is_reg() ) {
  2188                 in_reg = src.first()->as_Register();
  2189               } else {
  2190                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  2191                 rax_is_zero = false;
  2193               Label skipUnbox;
  2194               __ movptr(Address(rsp, reg2offset_out(dst.first())),
  2195                         (int32_t)NULL_WORD);
  2196               __ testq(in_reg, in_reg);
  2197               __ jcc(Assembler::zero, skipUnbox);
  2199               BasicType bt = out_sig_bt[c_arg];
  2200               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2201               Address src1(in_reg, box_offset);
  2202               if ( bt == T_LONG ) {
  2203                 __ movq(in_reg,  src1);
  2204                 __ movq(stack_dst, in_reg);
  2205                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2206                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2207               } else {
  2208                 __ movl(in_reg,  src1);
  2209                 __ movl(stack_dst, in_reg);
  2212               __ bind(skipUnbox);
  2213             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2214               // Convert the arg to NULL
  2215               if (!rax_is_zero) {
  2216                 __ xorq(rax, rax);
  2217                 rax_is_zero = true;
  2219               __ movq(stack_dst, rax);
  2222           break;
  2224         case T_VOID:
  2225           break;
  2227         case T_FLOAT:
  2228           // This does the right thing since we know it is destined for the
  2229           // stack
  2230           float_move(masm, src, dst);
  2231           break;
  2233         case T_DOUBLE:
  2234           // This does the right thing since we know it is destined for the
  2235           // stack
  2236           double_move(masm, src, dst);
  2237           break;
  2239         case T_LONG :
  2240           long_move(masm, src, dst);
  2241           break;
  2243         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2245         default:
  2246           move32_64(masm, src, dst);
  2252   // If we have any strings we must store any register based arg to the stack
  2253   // This includes any still live xmm registers too.
  2255   int sid = 0;
  2257   if (total_strings > 0 ) {
  2258     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2259          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2260       VMRegPair src = in_regs[j_arg];
  2261       VMRegPair dst = out_regs[c_arg];
  2263       if (src.first()->is_reg()) {
  2264         Address src_tmp(rbp, fp_offset[src.first()->value()]);
  2266         // string oops were left untouched by the previous loop even if the
  2267         // eventual (converted) arg is destined for the stack so park them
  2268         // away now (except for first)
  2270         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2271           Address utf8_addr = Address(
  2272               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2273           if (sid != 1) {
  2274             // The first string arg won't be killed until after the utf8
  2275             // conversion
  2276             __ movq(utf8_addr, src.first()->as_Register());
  2278         } else if (dst.first()->is_reg()) {
  2279           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
  2281             // Convert the xmm register to an int and store it in the reserved
  2282             // location for the eventual c register arg
  2283             XMMRegister f = src.first()->as_XMMRegister();
  2284             if (in_sig_bt[j_arg] == T_FLOAT) {
  2285               __ movflt(src_tmp, f);
  2286             } else {
  2287               __ movdbl(src_tmp, f);
  2289           } else {
  2290             // If the arg is an oop type we don't support don't bother to store
  2291             // it remember string was handled above.
  2292             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2293                             (in_sig_bt[j_arg] == T_OBJECT &&
  2294                              out_sig_bt[c_arg] != T_INT &&
  2295                              out_sig_bt[c_arg] != T_LONG);
  2297             if (!useless) {
  2298               __ movq(src_tmp, src.first()->as_Register());
  2303       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2304         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2305         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2309     // Now that the volatile registers are safe, convert all the strings
  2310     sid = 0;
  2312     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2313          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2314       if (out_sig_bt[c_arg] == T_ADDRESS) {
  2315         // It's a string
  2316         Address utf8_addr = Address(
  2317             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2318         // The first string we find might still be in the original java arg
  2319         // register
  2321         VMReg src = in_regs[j_arg].first();
  2323         // We will need to eventually save the final argument to the trap
  2324         // in the von-volatile location dedicated to src. This is the offset
  2325         // from fp we will use.
  2326         int src_off = src->is_reg() ?
  2327             fp_offset[src->value()] : reg2offset_in(src);
  2329         // This is where the argument will eventually reside
  2330         VMRegPair dst = out_regs[c_arg];
  2332         if (src->is_reg()) {
  2333           if (sid == 1) {
  2334             __ movq(c_rarg0, src->as_Register());
  2335           } else {
  2336             __ movq(c_rarg0, utf8_addr);
  2338         } else {
  2339           // arg is still in the original location
  2340           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
  2342         Label done, convert;
  2344         // see if the oop is NULL
  2345         __ testq(c_rarg0, c_rarg0);
  2346         __ jcc(Assembler::notEqual, convert);
  2348         if (dst.first()->is_reg()) {
  2349           // Save the ptr to utf string in the origina src loc or the tmp
  2350           // dedicated to it
  2351           __ movq(Address(rbp, src_off), c_rarg0);
  2352         } else {
  2353           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
  2355         __ jmp(done);
  2357         __ bind(convert);
  2359         __ lea(c_rarg1, utf8_addr);
  2360         if (dst.first()->is_reg()) {
  2361           __ movq(Address(rbp, src_off), c_rarg1);
  2362         } else {
  2363           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
  2365         // And do the conversion
  2366         __ call(RuntimeAddress(
  2367                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
  2369         __ bind(done);
  2371       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2372         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2373         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2376     // The get_utf call killed all the c_arg registers
  2377     live[c_rarg0->as_VMReg()->value()] = false;
  2378     live[c_rarg1->as_VMReg()->value()] = false;
  2379     live[c_rarg2->as_VMReg()->value()] = false;
  2380     live[c_rarg3->as_VMReg()->value()] = false;
  2381     live[c_rarg4->as_VMReg()->value()] = false;
  2382     live[c_rarg5->as_VMReg()->value()] = false;
  2384     live[c_farg0->as_VMReg()->value()] = false;
  2385     live[c_farg1->as_VMReg()->value()] = false;
  2386     live[c_farg2->as_VMReg()->value()] = false;
  2387     live[c_farg3->as_VMReg()->value()] = false;
  2388     live[c_farg4->as_VMReg()->value()] = false;
  2389     live[c_farg5->as_VMReg()->value()] = false;
  2390     live[c_farg6->as_VMReg()->value()] = false;
  2391     live[c_farg7->as_VMReg()->value()] = false;
  2394   // Now we can finally move the register args to their desired locations
  2396   rax_is_zero = false;
  2398   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2399        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2401     VMRegPair src = in_regs[j_arg];
  2402     VMRegPair dst = out_regs[c_arg];
  2404     // Only need to look for args destined for the interger registers (since we
  2405     // convert float/double args to look like int/long outbound)
  2406     if (dst.first()->is_reg()) {
  2407       Register r =  dst.first()->as_Register();
  2409       // Check if the java arg is unsupported and thereofre useless
  2410       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2411                       (in_sig_bt[j_arg] == T_OBJECT &&
  2412                        out_sig_bt[c_arg] != T_INT &&
  2413                        out_sig_bt[c_arg] != T_ADDRESS &&
  2414                        out_sig_bt[c_arg] != T_LONG);
  2417       // If we're going to kill an existing arg save it first
  2418       if (live[dst.first()->value()]) {
  2419         // you can't kill yourself
  2420         if (src.first() != dst.first()) {
  2421           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
  2424       if (src.first()->is_reg()) {
  2425         if (live[src.first()->value()] ) {
  2426           if (in_sig_bt[j_arg] == T_FLOAT) {
  2427             __ movdl(r, src.first()->as_XMMRegister());
  2428           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
  2429             __ movdq(r, src.first()->as_XMMRegister());
  2430           } else if (r != src.first()->as_Register()) {
  2431             if (!useless) {
  2432               __ movq(r, src.first()->as_Register());
  2435         } else {
  2436           // If the arg is an oop type we don't support don't bother to store
  2437           // it
  2438           if (!useless) {
  2439             if (in_sig_bt[j_arg] == T_DOUBLE ||
  2440                 in_sig_bt[j_arg] == T_LONG  ||
  2441                 in_sig_bt[j_arg] == T_OBJECT ) {
  2442               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
  2443             } else {
  2444               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
  2448         live[src.first()->value()] = false;
  2449       } else if (!useless) {
  2450         // full sized move even for int should be ok
  2451         __ movq(r, Address(rbp, reg2offset_in(src.first())));
  2454       // At this point r has the original java arg in the final location
  2455       // (assuming it wasn't useless). If the java arg was an oop
  2456       // we have a bit more to do
  2458       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
  2459         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2460           // need to unbox a one-word value
  2461           Label skip;
  2462           __ testq(r, r);
  2463           __ jcc(Assembler::equal, skip);
  2464           BasicType bt = out_sig_bt[c_arg];
  2465           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2466           Address src1(r, box_offset);
  2467           if ( bt == T_LONG ) {
  2468             __ movq(r, src1);
  2469           } else {
  2470             __ movl(r, src1);
  2472           __ bind(skip);
  2474         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2475           // Convert the arg to NULL
  2476           __ xorq(r, r);
  2480       // dst can longer be holding an input value
  2481       live[dst.first()->value()] = false;
  2483     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2484       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2485       ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2490   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2491   // patch in the trap
  2492   int patch_offset = ((intptr_t)__ pc()) - start;
  2494   __ nop();
  2497   // Return
  2499   __ leave();
  2500   __ ret(0);
  2502   __ flush();
  2504   nmethod *nm = nmethod::new_dtrace_nmethod(
  2505       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2506       stack_slots / VMRegImpl::slots_per_word);
  2507   return nm;
  2511 #endif // HAVE_DTRACE_H
  2513 // this function returns the adjust size (in number of words) to a c2i adapter
  2514 // activation for use during deoptimization
  2515 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2516   return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
  2520 uint SharedRuntime::out_preserve_stack_slots() {
  2521   return 0;
  2525 //------------------------------generate_deopt_blob----------------------------
  2526 void SharedRuntime::generate_deopt_blob() {
  2527   // Allocate space for the code
  2528   ResourceMark rm;
  2529   // Setup code generation tools
  2530   CodeBuffer buffer("deopt_blob", 2048, 1024);
  2531   MacroAssembler* masm = new MacroAssembler(&buffer);
  2532   int frame_size_in_words;
  2533   OopMap* map = NULL;
  2534   OopMapSet *oop_maps = new OopMapSet();
  2536   // -------------
  2537   // This code enters when returning to a de-optimized nmethod.  A return
  2538   // address has been pushed on the the stack, and return values are in
  2539   // registers.
  2540   // If we are doing a normal deopt then we were called from the patched
  2541   // nmethod from the point we returned to the nmethod. So the return
  2542   // address on the stack is wrong by NativeCall::instruction_size
  2543   // We will adjust the value so it looks like we have the original return
  2544   // address on the stack (like when we eagerly deoptimized).
  2545   // In the case of an exception pending when deoptimizing, we enter
  2546   // with a return address on the stack that points after the call we patched
  2547   // into the exception handler. We have the following register state from,
  2548   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  2549   //    rax: exception oop
  2550   //    rbx: exception handler
  2551   //    rdx: throwing pc
  2552   // So in this case we simply jam rdx into the useless return address and
  2553   // the stack looks just like we want.
  2554   //
  2555   // At this point we need to de-opt.  We save the argument return
  2556   // registers.  We call the first C routine, fetch_unroll_info().  This
  2557   // routine captures the return values and returns a structure which
  2558   // describes the current frame size and the sizes of all replacement frames.
  2559   // The current frame is compiled code and may contain many inlined
  2560   // functions, each with their own JVM state.  We pop the current frame, then
  2561   // push all the new frames.  Then we call the C routine unpack_frames() to
  2562   // populate these frames.  Finally unpack_frames() returns us the new target
  2563   // address.  Notice that callee-save registers are BLOWN here; they have
  2564   // already been captured in the vframeArray at the time the return PC was
  2565   // patched.
  2566   address start = __ pc();
  2567   Label cont;
  2569   // Prolog for non exception case!
  2571   // Save everything in sight.
  2572   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2574   // Normal deoptimization.  Save exec mode for unpack_frames.
  2575   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
  2576   __ jmp(cont);
  2577   int exception_offset = __ pc() - start;
  2579   // Prolog for exception case
  2581   // Push throwing pc as return address
  2582   __ pushq(rdx);
  2584   // Save everything in sight.
  2585   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2587   // Deopt during an exception.  Save exec mode for unpack_frames.
  2588   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
  2590   __ bind(cont);
  2592   // Call C code.  Need thread and this frame, but NOT official VM entry
  2593   // crud.  We cannot block on this call, no GC can happen.
  2594   //
  2595   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
  2597   // fetch_unroll_info needs to call last_java_frame().
  2599   __ set_last_Java_frame(noreg, noreg, NULL);
  2600 #ifdef ASSERT
  2601   { Label L;
  2602     __ cmpq(Address(r15_thread,
  2603                     JavaThread::last_Java_fp_offset()),
  2604             0);
  2605     __ jcc(Assembler::equal, L);
  2606     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
  2607     __ bind(L);
  2609 #endif // ASSERT
  2610   __ movq(c_rarg0, r15_thread);
  2611   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2613   // Need to have an oopmap that tells fetch_unroll_info where to
  2614   // find any register it might need.
  2615   oop_maps->add_gc_map(__ pc() - start, map);
  2617   __ reset_last_Java_frame(false, false);
  2619   // Load UnrollBlock* into rdi
  2620   __ movq(rdi, rax);
  2622   // Only register save data is on the stack.
  2623   // Now restore the result registers.  Everything else is either dead
  2624   // or captured in the vframeArray.
  2625   RegisterSaver::restore_result_registers(masm);
  2627   // All of the register save area has been popped of the stack. Only the
  2628   // return address remains.
  2630   // Pop all the frames we must move/replace.
  2631   //
  2632   // Frame picture (youngest to oldest)
  2633   // 1: self-frame (no frame link)
  2634   // 2: deopting frame  (no frame link)
  2635   // 3: caller of deopting frame (could be compiled/interpreted).
  2636   //
  2637   // Note: by leaving the return address of self-frame on the stack
  2638   // and using the size of frame 2 to adjust the stack
  2639   // when we are done the return to frame 3 will still be on the stack.
  2641   // Pop deoptimized frame
  2642   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2643   __ addq(rsp, rcx);
  2645   // rsp should be pointing at the return address to the caller (3)
  2647   // Stack bang to make sure there's enough room for these interpreter frames.
  2648   if (UseStackBanging) {
  2649     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2650     __ bang_stack_size(rbx, rcx);
  2653   // Load address of array of frame pcs into rcx
  2654   __ movq(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2656   // Trash the old pc
  2657   __ addq(rsp, wordSize);
  2659   // Load address of array of frame sizes into rsi
  2660   __ movq(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2662   // Load counter into rdx
  2663   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2665   // Pick up the initial fp we should save
  2666   __ movq(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2668   // Now adjust the caller's stack to make up for the extra locals
  2669   // but record the original sp so that we can save it in the skeletal interpreter
  2670   // frame and the stack walking of interpreter_sender will get the unextended sp
  2671   // value and not the "real" sp value.
  2673   const Register sender_sp = r8;
  2675   __ movq(sender_sp, rsp);
  2676   __ movl(rbx, Address(rdi,
  2677                        Deoptimization::UnrollBlock::
  2678                        caller_adjustment_offset_in_bytes()));
  2679   __ subq(rsp, rbx);
  2681   // Push interpreter frames in a loop
  2682   Label loop;
  2683   __ bind(loop);
  2684   __ movq(rbx, Address(rsi, 0));        // Load frame size
  2685   __ subq(rbx, 2*wordSize);             // We'll push pc and ebp by hand
  2686   __ pushq(Address(rcx, 0));            // Save return address
  2687   __ enter();                           // Save old & set new ebp
  2688   __ subq(rsp, rbx);                    // Prolog
  2689   __ movq(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
  2690           sender_sp);                   // Make it walkable
  2691   // This value is corrected by layout_activation_impl
  2692   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD );
  2693   __ movq(sender_sp, rsp);              // Pass sender_sp to next frame
  2694   __ addq(rsi, wordSize);               // Bump array pointer (sizes)
  2695   __ addq(rcx, wordSize);               // Bump array pointer (pcs)
  2696   __ decrementl(rdx);                   // Decrement counter
  2697   __ jcc(Assembler::notZero, loop);
  2698   __ pushq(Address(rcx, 0));            // Save final return address
  2700   // Re-push self-frame
  2701   __ enter();                           // Save old & set new ebp
  2703   // Allocate a full sized register save area.
  2704   // Return address and rbp are in place, so we allocate two less words.
  2705   __ subq(rsp, (frame_size_in_words - 2) * wordSize);
  2707   // Restore frame locals after moving the frame
  2708   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
  2709   __ movq(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  2711   // Call C code.  Need thread but NOT official VM entry
  2712   // crud.  We cannot block on this call, no GC can happen.  Call should
  2713   // restore return values to their stack-slots with the new SP.
  2714   //
  2715   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
  2717   // Use rbp because the frames look interpreted now
  2718   __ set_last_Java_frame(noreg, rbp, NULL);
  2720   __ movq(c_rarg0, r15_thread);
  2721   __ movl(c_rarg1, r14); // second arg: exec_mode
  2722   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2724   // Set an oopmap for the call site
  2725   oop_maps->add_gc_map(__ pc() - start,
  2726                        new OopMap( frame_size_in_words, 0 ));
  2728   __ reset_last_Java_frame(true, false);
  2730   // Collect return values
  2731   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
  2732   __ movq(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  2734   // Pop self-frame.
  2735   __ leave();                           // Epilog
  2737   // Jump to interpreter
  2738   __ ret(0);
  2740   // Make sure all code is generated
  2741   masm->flush();
  2743   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, 0, frame_size_in_words);
  2746 #ifdef COMPILER2
  2747 //------------------------------generate_uncommon_trap_blob--------------------
  2748 void SharedRuntime::generate_uncommon_trap_blob() {
  2749   // Allocate space for the code
  2750   ResourceMark rm;
  2751   // Setup code generation tools
  2752   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  2753   MacroAssembler* masm = new MacroAssembler(&buffer);
  2755   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  2757   address start = __ pc();
  2759   // Push self-frame.  We get here with a return address on the
  2760   // stack, so rsp is 8-byte aligned until we allocate our frame.
  2761   __ subq(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
  2763   // No callee saved registers. rbp is assumed implicitly saved
  2764   __ movq(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  2766   // compiler left unloaded_class_index in j_rarg0 move to where the
  2767   // runtime expects it.
  2768   __ movl(c_rarg1, j_rarg0);
  2770   __ set_last_Java_frame(noreg, noreg, NULL);
  2772   // Call C code.  Need thread but NOT official VM entry
  2773   // crud.  We cannot block on this call, no GC can happen.  Call should
  2774   // capture callee-saved registers as well as return values.
  2775   // Thread is in rdi already.
  2776   //
  2777   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
  2779   __ movq(c_rarg0, r15_thread);
  2780   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  2782   // Set an oopmap for the call site
  2783   OopMapSet* oop_maps = new OopMapSet();
  2784   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
  2786   // location of rbp is known implicitly by the frame sender code
  2788   oop_maps->add_gc_map(__ pc() - start, map);
  2790   __ reset_last_Java_frame(false, false);
  2792   // Load UnrollBlock* into rdi
  2793   __ movq(rdi, rax);
  2795   // Pop all the frames we must move/replace.
  2796   //
  2797   // Frame picture (youngest to oldest)
  2798   // 1: self-frame (no frame link)
  2799   // 2: deopting frame  (no frame link)
  2800   // 3: caller of deopting frame (could be compiled/interpreted).
  2802   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
  2803   __ addq(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
  2805   // Pop deoptimized frame (int)
  2806   __ movl(rcx, Address(rdi,
  2807                        Deoptimization::UnrollBlock::
  2808                        size_of_deoptimized_frame_offset_in_bytes()));
  2809   __ addq(rsp, rcx);
  2811   // rsp should be pointing at the return address to the caller (3)
  2813   // Stack bang to make sure there's enough room for these interpreter frames.
  2814   if (UseStackBanging) {
  2815     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2816     __ bang_stack_size(rbx, rcx);
  2819   // Load address of array of frame pcs into rcx (address*)
  2820   __ movq(rcx,
  2821           Address(rdi,
  2822                   Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2824   // Trash the return pc
  2825   __ addq(rsp, wordSize);
  2827   // Load address of array of frame sizes into rsi (intptr_t*)
  2828   __ movq(rsi, Address(rdi,
  2829                        Deoptimization::UnrollBlock::
  2830                        frame_sizes_offset_in_bytes()));
  2832   // Counter
  2833   __ movl(rdx, Address(rdi,
  2834                        Deoptimization::UnrollBlock::
  2835                        number_of_frames_offset_in_bytes())); // (int)
  2837   // Pick up the initial fp we should save
  2838   __ movq(rbp,
  2839           Address(rdi,
  2840                   Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2842   // Now adjust the caller's stack to make up for the extra locals but
  2843   // record the original sp so that we can save it in the skeletal
  2844   // interpreter frame and the stack walking of interpreter_sender
  2845   // will get the unextended sp value and not the "real" sp value.
  2847   const Register sender_sp = r8;
  2849   __ movq(sender_sp, rsp);
  2850   __ movl(rbx, Address(rdi,
  2851                        Deoptimization::UnrollBlock::
  2852                        caller_adjustment_offset_in_bytes())); // (int)
  2853   __ subq(rsp, rbx);
  2855   // Push interpreter frames in a loop
  2856   Label loop;
  2857   __ bind(loop);
  2858   __ movq(rbx, Address(rsi, 0)); // Load frame size
  2859   __ subq(rbx, 2 * wordSize); // We'll push pc and rbp by hand
  2860   __ pushq(Address(rcx, 0));  // Save return address
  2861   __ enter();                 // Save old & set new rbp
  2862   __ subq(rsp, rbx);          // Prolog
  2863   __ movq(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
  2864           sender_sp);         // Make it walkable
  2865   // This value is corrected by layout_activation_impl
  2866   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD );
  2867   __ movq(sender_sp, rsp);    // Pass sender_sp to next frame
  2868   __ addq(rsi, wordSize);     // Bump array pointer (sizes)
  2869   __ addq(rcx, wordSize);     // Bump array pointer (pcs)
  2870   __ decrementl(rdx);         // Decrement counter
  2871   __ jcc(Assembler::notZero, loop);
  2872   __ pushq(Address(rcx, 0)); // Save final return address
  2874   // Re-push self-frame
  2875   __ enter();                 // Save old & set new rbp
  2876   __ subq(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
  2877                               // Prolog
  2879   // Use rbp because the frames look interpreted now
  2880   __ set_last_Java_frame(noreg, rbp, NULL);
  2882   // Call C code.  Need thread but NOT official VM entry
  2883   // crud.  We cannot block on this call, no GC can happen.  Call should
  2884   // restore return values to their stack-slots with the new SP.
  2885   // Thread is in rdi already.
  2886   //
  2887   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
  2889   __ movq(c_rarg0, r15_thread);
  2890   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  2891   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2893   // Set an oopmap for the call site
  2894   oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  2896   __ reset_last_Java_frame(true, false);
  2898   // Pop self-frame.
  2899   __ leave();                 // Epilog
  2901   // Jump to interpreter
  2902   __ ret(0);
  2904   // Make sure all code is generated
  2905   masm->flush();
  2907   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
  2908                                                  SimpleRuntimeFrame::framesize >> 1);
  2910 #endif // COMPILER2
  2913 //------------------------------generate_handler_blob------
  2914 //
  2915 // Generate a special Compile2Runtime blob that saves all registers,
  2916 // and setup oopmap.
  2917 //
  2918 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  2919   assert(StubRoutines::forward_exception_entry() != NULL,
  2920          "must be generated before");
  2922   ResourceMark rm;
  2923   OopMapSet *oop_maps = new OopMapSet();
  2924   OopMap* map;
  2926   // Allocate space for the code.  Setup code generation tools.
  2927   CodeBuffer buffer("handler_blob", 2048, 1024);
  2928   MacroAssembler* masm = new MacroAssembler(&buffer);
  2930   address start   = __ pc();
  2931   address call_pc = NULL;
  2932   int frame_size_in_words;
  2934   // Make room for return address (or push it again)
  2935   if (!cause_return) {
  2936     __ pushq(rbx);
  2939   // Save registers, fpu state, and flags
  2940   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  2942   // The following is basically a call_VM.  However, we need the precise
  2943   // address of the call in order to generate an oopmap. Hence, we do all the
  2944   // work outselves.
  2946   __ set_last_Java_frame(noreg, noreg, NULL);
  2948   // The return address must always be correct so that frame constructor never
  2949   // sees an invalid pc.
  2951   if (!cause_return) {
  2952     // overwrite the dummy value we pushed on entry
  2953     __ movq(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
  2954     __ movq(Address(rbp, wordSize), c_rarg0);
  2957   // Do the call
  2958   __ movq(c_rarg0, r15_thread);
  2959   __ call(RuntimeAddress(call_ptr));
  2961   // Set an oopmap for the call site.  This oopmap will map all
  2962   // oop-registers and debug-info registers as callee-saved.  This
  2963   // will allow deoptimization at this safepoint to find all possible
  2964   // debug-info recordings, as well as let GC find all oops.
  2966   oop_maps->add_gc_map( __ pc() - start, map);
  2968   Label noException;
  2970   __ reset_last_Java_frame(false, false);
  2972   __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int)NULL_WORD);
  2973   __ jcc(Assembler::equal, noException);
  2975   // Exception pending
  2977   RegisterSaver::restore_live_registers(masm);
  2979   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2981   // No exception case
  2982   __ bind(noException);
  2984   // Normal exit, restore registers and exit.
  2985   RegisterSaver::restore_live_registers(masm);
  2987   __ ret(0);
  2989   // Make sure all code is generated
  2990   masm->flush();
  2992   // Fill-out other meta info
  2993   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  2996 //
  2997 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  2998 //
  2999 // Generate a stub that calls into vm to find out the proper destination
  3000 // of a java call. All the argument registers are live at this point
  3001 // but since this is generic code we don't know what they are and the caller
  3002 // must do any gc of the args.
  3003 //
  3004 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  3005   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3007   // allocate space for the code
  3008   ResourceMark rm;
  3010   CodeBuffer buffer(name, 1000, 512);
  3011   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3013   int frame_size_in_words;
  3015   OopMapSet *oop_maps = new OopMapSet();
  3016   OopMap* map = NULL;
  3018   int start = __ offset();
  3020   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3022   int frame_complete = __ offset();
  3024   __ set_last_Java_frame(noreg, noreg, NULL);
  3026   __ movq(c_rarg0, r15_thread);
  3028   __ call(RuntimeAddress(destination));
  3031   // Set an oopmap for the call site.
  3032   // We need this not only for callee-saved registers, but also for volatile
  3033   // registers that the compiler might be keeping live across a safepoint.
  3035   oop_maps->add_gc_map( __ offset() - start, map);
  3037   // rax contains the address we are going to jump to assuming no exception got installed
  3039   // clear last_Java_sp
  3040   __ reset_last_Java_frame(false, false);
  3041   // check for pending exceptions
  3042   Label pending;
  3043   __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int)NULL_WORD);
  3044   __ jcc(Assembler::notEqual, pending);
  3046   // get the returned methodOop
  3047   __ movq(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
  3048   __ movq(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
  3050   __ movq(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3052   RegisterSaver::restore_live_registers(masm);
  3054   // We are back the the original state on entry and ready to go.
  3056   __ jmp(rax);
  3058   // Pending exception after the safepoint
  3060   __ bind(pending);
  3062   RegisterSaver::restore_live_registers(masm);
  3064   // exception pending => remove activation and forward to exception handler
  3066   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
  3068   __ movq(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3069   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3071   // -------------
  3072   // make sure all code is generated
  3073   masm->flush();
  3075   // return the  blob
  3076   // frame_size_words or bytes??
  3077   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
  3081 void SharedRuntime::generate_stubs() {
  3083   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
  3084                                         "wrong_method_stub");
  3085   _ic_miss_blob =      generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
  3086                                         "ic_miss_stub");
  3087   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
  3088                                         "resolve_opt_virtual_call");
  3090   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
  3091                                         "resolve_virtual_call");
  3093   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
  3094                                         "resolve_static_call");
  3095   _polling_page_safepoint_handler_blob =
  3096     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3097                    SafepointSynchronize::handle_polling_page_exception), false);
  3099   _polling_page_return_handler_blob =
  3100     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3101                    SafepointSynchronize::handle_polling_page_exception), true);
  3103   generate_deopt_blob();
  3105 #ifdef COMPILER2
  3106   generate_uncommon_trap_blob();
  3107 #endif // COMPILER2
  3111 #ifdef COMPILER2
  3112 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
  3113 //
  3114 //------------------------------generate_exception_blob---------------------------
  3115 // creates exception blob at the end
  3116 // Using exception blob, this code is jumped from a compiled method.
  3117 // (see emit_exception_handler in x86_64.ad file)
  3118 //
  3119 // Given an exception pc at a call we call into the runtime for the
  3120 // handler in this method. This handler might merely restore state
  3121 // (i.e. callee save registers) unwind the frame and jump to the
  3122 // exception handler for the nmethod if there is no Java level handler
  3123 // for the nmethod.
  3124 //
  3125 // This code is entered with a jmp.
  3126 //
  3127 // Arguments:
  3128 //   rax: exception oop
  3129 //   rdx: exception pc
  3130 //
  3131 // Results:
  3132 //   rax: exception oop
  3133 //   rdx: exception pc in caller or ???
  3134 //   destination: exception handler of caller
  3135 //
  3136 // Note: the exception pc MUST be at a call (precise debug information)
  3137 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
  3138 //
  3140 void OptoRuntime::generate_exception_blob() {
  3141   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  3142   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  3143   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
  3145   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3147   // Allocate space for the code
  3148   ResourceMark rm;
  3149   // Setup code generation tools
  3150   CodeBuffer buffer("exception_blob", 2048, 1024);
  3151   MacroAssembler* masm = new MacroAssembler(&buffer);
  3154   address start = __ pc();
  3156   // Exception pc is 'return address' for stack walker
  3157   __ pushq(rdx);
  3158   __ subq(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
  3160   // Save callee-saved registers.  See x86_64.ad.
  3162   // rbp is an implicitly saved callee saved register (i.e. the calling
  3163   // convention will save restore it in prolog/epilog) Other than that
  3164   // there are no callee save registers now that adapter frames are gone.
  3166   __ movq(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3168   // Store exception in Thread object. We cannot pass any arguments to the
  3169   // handle_exception call, since we do not want to make any assumption
  3170   // about the size of the frame where the exception happened in.
  3171   // c_rarg0 is either rdi (Linux) or rcx (Windows).
  3172   __ movq(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  3173   __ movq(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3175   // This call does all the hard work.  It checks if an exception handler
  3176   // exists in the method.
  3177   // If so, it returns the handler address.
  3178   // If not, it prepares for stack-unwinding, restoring the callee-save
  3179   // registers of the frame being removed.
  3180   //
  3181   // address OptoRuntime::handle_exception_C(JavaThread* thread)
  3183   __ set_last_Java_frame(noreg, noreg, NULL);
  3184   __ movq(c_rarg0, r15_thread);
  3185   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
  3187   // Set an oopmap for the call site.  This oopmap will only be used if we
  3188   // are unwinding the stack.  Hence, all locations will be dead.
  3189   // Callee-saved registers will be the same as the frame above (i.e.,
  3190   // handle_exception_stub), since they were restored when we got the
  3191   // exception.
  3193   OopMapSet* oop_maps = new OopMapSet();
  3195   oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3197   __ reset_last_Java_frame(false, false);
  3199   // Restore callee-saved registers
  3201   // rbp is an implicitly saved callee saved register (i.e. the calling
  3202   // convention will save restore it in prolog/epilog) Other than that
  3203   // there are no callee save registers no that adapter frames are gone.
  3205   __ movq(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
  3207   __ addq(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  3208   __ popq(rdx);                  // No need for exception pc anymore
  3210   // rax: exception handler
  3212   // We have a handler in rax (could be deopt blob).
  3213   __ movq(r8, rax);
  3215   // Get the exception oop
  3216   __ movq(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3217   // Get the exception pc in case we are deoptimized
  3218   __ movq(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3219 #ifdef ASSERT
  3220   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  3221   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
  3222 #endif
  3223   // Clear the exception oop so GC no longer processes it as a root.
  3224   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
  3226   // rax: exception oop
  3227   // r8:  exception handler
  3228   // rdx: exception pc
  3229   // Jump to handler
  3231   __ jmp(r8);
  3233   // Make sure all code is generated
  3234   masm->flush();
  3236   // Set exception blob
  3237   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
  3239 #endif // COMPILER2

mercurial