src/share/vm/runtime/objectMonitor.cpp

Thu, 13 Oct 2011 09:35:42 -0700

author
dcubed
date
Thu, 13 Oct 2011 09:35:42 -0700
changeset 3202
436b4a3231bf
parent 3156
f08d439fab8c
child 4037
da91efe96a93
permissions
-rw-r--r--

7098194: integrate macosx-port changes
Summary: Integrate bsd-port/hotspot and macosx-port/hotspot changes as of 2011.09.29.
Reviewed-by: kvn, dholmes, never, phh
Contributed-by: Christos Zoulas <christos@zoulas.com>, Greg Lewis <glewis@eyesbeyond.com>, Kurt Miller <kurt@intricatesoftware.com>, Alexander Strange <astrange@apple.com>, Mike Swingler <swingler@apple.com>, Roger Hoover <rhoover@apple.com>, Victor Hernandez <vhernandez@apple.com>, Pratik Solanki <psolanki@apple.com>

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "oops/markOop.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/handles.inline.hpp"
    31 #include "runtime/interfaceSupport.hpp"
    32 #include "runtime/mutexLocker.hpp"
    33 #include "runtime/objectMonitor.hpp"
    34 #include "runtime/objectMonitor.inline.hpp"
    35 #include "runtime/osThread.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/thread.hpp"
    38 #include "services/threadService.hpp"
    39 #include "utilities/dtrace.hpp"
    40 #include "utilities/preserveException.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "os_linux.inline.hpp"
    43 # include "thread_linux.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_solaris
    46 # include "os_solaris.inline.hpp"
    47 # include "thread_solaris.inline.hpp"
    48 #endif
    49 #ifdef TARGET_OS_FAMILY_windows
    50 # include "os_windows.inline.hpp"
    51 # include "thread_windows.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_FAMILY_bsd
    54 # include "os_bsd.inline.hpp"
    55 # include "thread_bsd.inline.hpp"
    56 #endif
    58 #if defined(__GNUC__) && !defined(IA64)
    59   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    60   #define ATTR __attribute__((noinline))
    61 #else
    62   #define ATTR
    63 #endif
    66 #ifdef DTRACE_ENABLED
    68 // Only bother with this argument setup if dtrace is available
    69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    72 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
    73   char* bytes = NULL;                                                      \
    74   int len = 0;                                                             \
    75   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    76   Symbol* klassname = ((oop)(klassOop))->klass()->klass_part()->name();    \
    77   if (klassname != NULL) {                                                 \
    78     bytes = (char*)klassname->bytes();                                     \
    79     len = klassname->utf8_length();                                        \
    80   }
    82 #ifndef USDT2
    84 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
    85   jlong, uintptr_t, char*, int);
    86 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
    87   jlong, uintptr_t, char*, int);
    88 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
    89   jlong, uintptr_t, char*, int);
    90 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
    91   jlong, uintptr_t, char*, int);
    92 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
    93   jlong, uintptr_t, char*, int);
    95 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
    96   {                                                                        \
    97     if (DTraceMonitorProbes) {                                            \
    98       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
    99       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
   100                        (monitor), bytes, len, (millis));                   \
   101     }                                                                      \
   102   }
   104 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
   105   {                                                                        \
   106     if (DTraceMonitorProbes) {                                            \
   107       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
   108       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
   109                        (uintptr_t)(monitor), bytes, len);                  \
   110     }                                                                      \
   111   }
   113 #else /* USDT2 */
   115 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
   116   {                                                                        \
   117     if (DTraceMonitorProbes) {                                            \
   118       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
   119       HOTSPOT_MONITOR_WAIT(jtid,                                           \
   120                        (monitor), bytes, len, (millis));                   \
   121     }                                                                      \
   122   }
   124 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
   125 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
   126 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
   127 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
   128 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
   130 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
   131   {                                                                        \
   132     if (DTraceMonitorProbes) {                                            \
   133       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
   134       HOTSPOT_MONITOR_##probe(jtid,                                               \
   135                        (uintptr_t)(monitor), bytes, len);                  \
   136     }                                                                      \
   137   }
   139 #endif /* USDT2 */
   140 #else //  ndef DTRACE_ENABLED
   142 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
   143 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
   145 #endif // ndef DTRACE_ENABLED
   147 // Tunables ...
   148 // The knob* variables are effectively final.  Once set they should
   149 // never be modified hence.  Consider using __read_mostly with GCC.
   151 int ObjectMonitor::Knob_Verbose    = 0 ;
   152 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
   153 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
   154 static int Knob_HandOff            = 0 ;
   155 static int Knob_ReportSettings     = 0 ;
   157 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
   158 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
   159 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
   160 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
   161 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
   162 static int Knob_SpinEarly          = 1 ;
   163 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
   164 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
   165 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
   166 static int Knob_Bonus              = 100 ;     // spin success bonus
   167 static int Knob_BonusB             = 100 ;     // spin success bonus
   168 static int Knob_Penalty            = 200 ;     // spin failure penalty
   169 static int Knob_Poverty            = 1000 ;
   170 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
   171 static int Knob_FixedSpin          = 0 ;
   172 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
   173 static int Knob_UsePause           = 1 ;
   174 static int Knob_ExitPolicy         = 0 ;
   175 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
   176 static int Knob_ResetEvent         = 0 ;
   177 static int BackOffMask             = 0 ;
   179 static int Knob_FastHSSEC          = 0 ;
   180 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
   181 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
   182 static volatile int InitDone       = 0 ;
   184 #define TrySpin TrySpin_VaryDuration
   186 // -----------------------------------------------------------------------------
   187 // Theory of operations -- Monitors lists, thread residency, etc:
   188 //
   189 // * A thread acquires ownership of a monitor by successfully
   190 //   CAS()ing the _owner field from null to non-null.
   191 //
   192 // * Invariant: A thread appears on at most one monitor list --
   193 //   cxq, EntryList or WaitSet -- at any one time.
   194 //
   195 // * Contending threads "push" themselves onto the cxq with CAS
   196 //   and then spin/park.
   197 //
   198 // * After a contending thread eventually acquires the lock it must
   199 //   dequeue itself from either the EntryList or the cxq.
   200 //
   201 // * The exiting thread identifies and unparks an "heir presumptive"
   202 //   tentative successor thread on the EntryList.  Critically, the
   203 //   exiting thread doesn't unlink the successor thread from the EntryList.
   204 //   After having been unparked, the wakee will recontend for ownership of
   205 //   the monitor.   The successor (wakee) will either acquire the lock or
   206 //   re-park itself.
   207 //
   208 //   Succession is provided for by a policy of competitive handoff.
   209 //   The exiting thread does _not_ grant or pass ownership to the
   210 //   successor thread.  (This is also referred to as "handoff" succession").
   211 //   Instead the exiting thread releases ownership and possibly wakes
   212 //   a successor, so the successor can (re)compete for ownership of the lock.
   213 //   If the EntryList is empty but the cxq is populated the exiting
   214 //   thread will drain the cxq into the EntryList.  It does so by
   215 //   by detaching the cxq (installing null with CAS) and folding
   216 //   the threads from the cxq into the EntryList.  The EntryList is
   217 //   doubly linked, while the cxq is singly linked because of the
   218 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
   219 //
   220 // * Concurrency invariants:
   221 //
   222 //   -- only the monitor owner may access or mutate the EntryList.
   223 //      The mutex property of the monitor itself protects the EntryList
   224 //      from concurrent interference.
   225 //   -- Only the monitor owner may detach the cxq.
   226 //
   227 // * The monitor entry list operations avoid locks, but strictly speaking
   228 //   they're not lock-free.  Enter is lock-free, exit is not.
   229 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
   230 //
   231 // * The cxq can have multiple concurrent "pushers" but only one concurrent
   232 //   detaching thread.  This mechanism is immune from the ABA corruption.
   233 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
   234 //
   235 // * Taken together, the cxq and the EntryList constitute or form a
   236 //   single logical queue of threads stalled trying to acquire the lock.
   237 //   We use two distinct lists to improve the odds of a constant-time
   238 //   dequeue operation after acquisition (in the ::enter() epilog) and
   239 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
   240 //   A key desideratum is to minimize queue & monitor metadata manipulation
   241 //   that occurs while holding the monitor lock -- that is, we want to
   242 //   minimize monitor lock holds times.  Note that even a small amount of
   243 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
   244 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
   245 //   locks and monitor metadata.
   246 //
   247 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
   248 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
   249 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
   250 //   the unlocking thread notices that EntryList is null but _cxq is != null.
   251 //
   252 //   The EntryList is ordered by the prevailing queue discipline and
   253 //   can be organized in any convenient fashion, such as a doubly-linked list or
   254 //   a circular doubly-linked list.  Critically, we want insert and delete operations
   255 //   to operate in constant-time.  If we need a priority queue then something akin
   256 //   to Solaris' sleepq would work nicely.  Viz.,
   257 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
   258 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
   259 //   drains the cxq into the EntryList, and orders or reorders the threads on the
   260 //   EntryList accordingly.
   261 //
   262 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
   263 //   somewhat similar to an elevator-scan.
   264 //
   265 // * The monitor synchronization subsystem avoids the use of native
   266 //   synchronization primitives except for the narrow platform-specific
   267 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
   268 //   the semantics of park-unpark.  Put another way, this monitor implementation
   269 //   depends only on atomic operations and park-unpark.  The monitor subsystem
   270 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
   271 //   underlying OS manages the READY<->RUN transitions.
   272 //
   273 // * Waiting threads reside on the WaitSet list -- wait() puts
   274 //   the caller onto the WaitSet.
   275 //
   276 // * notify() or notifyAll() simply transfers threads from the WaitSet to
   277 //   either the EntryList or cxq.  Subsequent exit() operations will
   278 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
   279 //   it's likely the notifyee would simply impale itself on the lock held
   280 //   by the notifier.
   281 //
   282 // * An interesting alternative is to encode cxq as (List,LockByte) where
   283 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
   284 //   variable, like _recursions, in the scheme.  The threads or Events that form
   285 //   the list would have to be aligned in 256-byte addresses.  A thread would
   286 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
   287 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
   288 //   Note that is is *not* word-tearing, but it does presume that full-word
   289 //   CAS operations are coherent with intermix with STB operations.  That's true
   290 //   on most common processors.
   291 //
   292 // * See also http://blogs.sun.com/dave
   295 // -----------------------------------------------------------------------------
   296 // Enter support
   298 bool ObjectMonitor::try_enter(Thread* THREAD) {
   299   if (THREAD != _owner) {
   300     if (THREAD->is_lock_owned ((address)_owner)) {
   301        assert(_recursions == 0, "internal state error");
   302        _owner = THREAD ;
   303        _recursions = 1 ;
   304        OwnerIsThread = 1 ;
   305        return true;
   306     }
   307     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
   308       return false;
   309     }
   310     return true;
   311   } else {
   312     _recursions++;
   313     return true;
   314   }
   315 }
   317 void ATTR ObjectMonitor::enter(TRAPS) {
   318   // The following code is ordered to check the most common cases first
   319   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
   320   Thread * const Self = THREAD ;
   321   void * cur ;
   323   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
   324   if (cur == NULL) {
   325      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
   326      assert (_recursions == 0   , "invariant") ;
   327      assert (_owner      == Self, "invariant") ;
   328      // CONSIDER: set or assert OwnerIsThread == 1
   329      return ;
   330   }
   332   if (cur == Self) {
   333      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
   334      _recursions ++ ;
   335      return ;
   336   }
   338   if (Self->is_lock_owned ((address)cur)) {
   339     assert (_recursions == 0, "internal state error");
   340     _recursions = 1 ;
   341     // Commute owner from a thread-specific on-stack BasicLockObject address to
   342     // a full-fledged "Thread *".
   343     _owner = Self ;
   344     OwnerIsThread = 1 ;
   345     return ;
   346   }
   348   // We've encountered genuine contention.
   349   assert (Self->_Stalled == 0, "invariant") ;
   350   Self->_Stalled = intptr_t(this) ;
   352   // Try one round of spinning *before* enqueueing Self
   353   // and before going through the awkward and expensive state
   354   // transitions.  The following spin is strictly optional ...
   355   // Note that if we acquire the monitor from an initial spin
   356   // we forgo posting JVMTI events and firing DTRACE probes.
   357   if (Knob_SpinEarly && TrySpin (Self) > 0) {
   358      assert (_owner == Self      , "invariant") ;
   359      assert (_recursions == 0    , "invariant") ;
   360      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   361      Self->_Stalled = 0 ;
   362      return ;
   363   }
   365   assert (_owner != Self          , "invariant") ;
   366   assert (_succ  != Self          , "invariant") ;
   367   assert (Self->is_Java_thread()  , "invariant") ;
   368   JavaThread * jt = (JavaThread *) Self ;
   369   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   370   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
   371   assert (this->object() != NULL  , "invariant") ;
   372   assert (_count >= 0, "invariant") ;
   374   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
   375   // Ensure the object-monitor relationship remains stable while there's contention.
   376   Atomic::inc_ptr(&_count);
   378   { // Change java thread status to indicate blocked on monitor enter.
   379     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
   381     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
   382     if (JvmtiExport::should_post_monitor_contended_enter()) {
   383       JvmtiExport::post_monitor_contended_enter(jt, this);
   384     }
   386     OSThreadContendState osts(Self->osthread());
   387     ThreadBlockInVM tbivm(jt);
   389     Self->set_current_pending_monitor(this);
   391     // TODO-FIXME: change the following for(;;) loop to straight-line code.
   392     for (;;) {
   393       jt->set_suspend_equivalent();
   394       // cleared by handle_special_suspend_equivalent_condition()
   395       // or java_suspend_self()
   397       EnterI (THREAD) ;
   399       if (!ExitSuspendEquivalent(jt)) break ;
   401       //
   402       // We have acquired the contended monitor, but while we were
   403       // waiting another thread suspended us. We don't want to enter
   404       // the monitor while suspended because that would surprise the
   405       // thread that suspended us.
   406       //
   407           _recursions = 0 ;
   408       _succ = NULL ;
   409       exit (Self) ;
   411       jt->java_suspend_self();
   412     }
   413     Self->set_current_pending_monitor(NULL);
   414   }
   416   Atomic::dec_ptr(&_count);
   417   assert (_count >= 0, "invariant") ;
   418   Self->_Stalled = 0 ;
   420   // Must either set _recursions = 0 or ASSERT _recursions == 0.
   421   assert (_recursions == 0     , "invariant") ;
   422   assert (_owner == Self       , "invariant") ;
   423   assert (_succ  != Self       , "invariant") ;
   424   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   426   // The thread -- now the owner -- is back in vm mode.
   427   // Report the glorious news via TI,DTrace and jvmstat.
   428   // The probe effect is non-trivial.  All the reportage occurs
   429   // while we hold the monitor, increasing the length of the critical
   430   // section.  Amdahl's parallel speedup law comes vividly into play.
   431   //
   432   // Another option might be to aggregate the events (thread local or
   433   // per-monitor aggregation) and defer reporting until a more opportune
   434   // time -- such as next time some thread encounters contention but has
   435   // yet to acquire the lock.  While spinning that thread could
   436   // spinning we could increment JVMStat counters, etc.
   438   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
   439   if (JvmtiExport::should_post_monitor_contended_entered()) {
   440     JvmtiExport::post_monitor_contended_entered(jt, this);
   441   }
   442   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
   443      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
   444   }
   445 }
   448 // Caveat: TryLock() is not necessarily serializing if it returns failure.
   449 // Callers must compensate as needed.
   451 int ObjectMonitor::TryLock (Thread * Self) {
   452    for (;;) {
   453       void * own = _owner ;
   454       if (own != NULL) return 0 ;
   455       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
   456          // Either guarantee _recursions == 0 or set _recursions = 0.
   457          assert (_recursions == 0, "invariant") ;
   458          assert (_owner == Self, "invariant") ;
   459          // CONSIDER: set or assert that OwnerIsThread == 1
   460          return 1 ;
   461       }
   462       // The lock had been free momentarily, but we lost the race to the lock.
   463       // Interference -- the CAS failed.
   464       // We can either return -1 or retry.
   465       // Retry doesn't make as much sense because the lock was just acquired.
   466       if (true) return -1 ;
   467    }
   468 }
   470 void ATTR ObjectMonitor::EnterI (TRAPS) {
   471     Thread * Self = THREAD ;
   472     assert (Self->is_Java_thread(), "invariant") ;
   473     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
   475     // Try the lock - TATAS
   476     if (TryLock (Self) > 0) {
   477         assert (_succ != Self              , "invariant") ;
   478         assert (_owner == Self             , "invariant") ;
   479         assert (_Responsible != Self       , "invariant") ;
   480         return ;
   481     }
   483     DeferredInitialize () ;
   485     // We try one round of spinning *before* enqueueing Self.
   486     //
   487     // If the _owner is ready but OFFPROC we could use a YieldTo()
   488     // operation to donate the remainder of this thread's quantum
   489     // to the owner.  This has subtle but beneficial affinity
   490     // effects.
   492     if (TrySpin (Self) > 0) {
   493         assert (_owner == Self        , "invariant") ;
   494         assert (_succ != Self         , "invariant") ;
   495         assert (_Responsible != Self  , "invariant") ;
   496         return ;
   497     }
   499     // The Spin failed -- Enqueue and park the thread ...
   500     assert (_succ  != Self            , "invariant") ;
   501     assert (_owner != Self            , "invariant") ;
   502     assert (_Responsible != Self      , "invariant") ;
   504     // Enqueue "Self" on ObjectMonitor's _cxq.
   505     //
   506     // Node acts as a proxy for Self.
   507     // As an aside, if were to ever rewrite the synchronization code mostly
   508     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
   509     // Java objects.  This would avoid awkward lifecycle and liveness issues,
   510     // as well as eliminate a subset of ABA issues.
   511     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
   512     //
   514     ObjectWaiter node(Self) ;
   515     Self->_ParkEvent->reset() ;
   516     node._prev   = (ObjectWaiter *) 0xBAD ;
   517     node.TState  = ObjectWaiter::TS_CXQ ;
   519     // Push "Self" onto the front of the _cxq.
   520     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
   521     // Note that spinning tends to reduce the rate at which threads
   522     // enqueue and dequeue on EntryList|cxq.
   523     ObjectWaiter * nxt ;
   524     for (;;) {
   525         node._next = nxt = _cxq ;
   526         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
   528         // Interference - the CAS failed because _cxq changed.  Just retry.
   529         // As an optional optimization we retry the lock.
   530         if (TryLock (Self) > 0) {
   531             assert (_succ != Self         , "invariant") ;
   532             assert (_owner == Self        , "invariant") ;
   533             assert (_Responsible != Self  , "invariant") ;
   534             return ;
   535         }
   536     }
   538     // Check for cxq|EntryList edge transition to non-null.  This indicates
   539     // the onset of contention.  While contention persists exiting threads
   540     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
   541     // operations revert to the faster 1-0 mode.  This enter operation may interleave
   542     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
   543     // arrange for one of the contending thread to use a timed park() operations
   544     // to detect and recover from the race.  (Stranding is form of progress failure
   545     // where the monitor is unlocked but all the contending threads remain parked).
   546     // That is, at least one of the contended threads will periodically poll _owner.
   547     // One of the contending threads will become the designated "Responsible" thread.
   548     // The Responsible thread uses a timed park instead of a normal indefinite park
   549     // operation -- it periodically wakes and checks for and recovers from potential
   550     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
   551     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
   552     // be responsible for a monitor.
   553     //
   554     // Currently, one of the contended threads takes on the added role of "Responsible".
   555     // A viable alternative would be to use a dedicated "stranding checker" thread
   556     // that periodically iterated over all the threads (or active monitors) and unparked
   557     // successors where there was risk of stranding.  This would help eliminate the
   558     // timer scalability issues we see on some platforms as we'd only have one thread
   559     // -- the checker -- parked on a timer.
   561     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
   562         // Try to assume the role of responsible thread for the monitor.
   563         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
   564         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   565     }
   567     // The lock have been released while this thread was occupied queueing
   568     // itself onto _cxq.  To close the race and avoid "stranding" and
   569     // progress-liveness failure we must resample-retry _owner before parking.
   570     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
   571     // In this case the ST-MEMBAR is accomplished with CAS().
   572     //
   573     // TODO: Defer all thread state transitions until park-time.
   574     // Since state transitions are heavy and inefficient we'd like
   575     // to defer the state transitions until absolutely necessary,
   576     // and in doing so avoid some transitions ...
   578     TEVENT (Inflated enter - Contention) ;
   579     int nWakeups = 0 ;
   580     int RecheckInterval = 1 ;
   582     for (;;) {
   584         if (TryLock (Self) > 0) break ;
   585         assert (_owner != Self, "invariant") ;
   587         if ((SyncFlags & 2) && _Responsible == NULL) {
   588            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   589         }
   591         // park self
   592         if (_Responsible == Self || (SyncFlags & 1)) {
   593             TEVENT (Inflated enter - park TIMED) ;
   594             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
   595             // Increase the RecheckInterval, but clamp the value.
   596             RecheckInterval *= 8 ;
   597             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
   598         } else {
   599             TEVENT (Inflated enter - park UNTIMED) ;
   600             Self->_ParkEvent->park() ;
   601         }
   603         if (TryLock(Self) > 0) break ;
   605         // The lock is still contested.
   606         // Keep a tally of the # of futile wakeups.
   607         // Note that the counter is not protected by a lock or updated by atomics.
   608         // That is by design - we trade "lossy" counters which are exposed to
   609         // races during updates for a lower probe effect.
   610         TEVENT (Inflated enter - Futile wakeup) ;
   611         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   612            ObjectMonitor::_sync_FutileWakeups->inc() ;
   613         }
   614         ++ nWakeups ;
   616         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
   617         // We can defer clearing _succ until after the spin completes
   618         // TrySpin() must tolerate being called with _succ == Self.
   619         // Try yet another round of adaptive spinning.
   620         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
   622         // We can find that we were unpark()ed and redesignated _succ while
   623         // we were spinning.  That's harmless.  If we iterate and call park(),
   624         // park() will consume the event and return immediately and we'll
   625         // just spin again.  This pattern can repeat, leaving _succ to simply
   626         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
   627         // Alternately, we can sample fired() here, and if set, forgo spinning
   628         // in the next iteration.
   630         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
   631            Self->_ParkEvent->reset() ;
   632            OrderAccess::fence() ;
   633         }
   634         if (_succ == Self) _succ = NULL ;
   636         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
   637         OrderAccess::fence() ;
   638     }
   640     // Egress :
   641     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
   642     // Normally we'll find Self on the EntryList .
   643     // From the perspective of the lock owner (this thread), the
   644     // EntryList is stable and cxq is prepend-only.
   645     // The head of cxq is volatile but the interior is stable.
   646     // In addition, Self.TState is stable.
   648     assert (_owner == Self      , "invariant") ;
   649     assert (object() != NULL    , "invariant") ;
   650     // I'd like to write:
   651     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   652     // but as we're at a safepoint that's not safe.
   654     UnlinkAfterAcquire (Self, &node) ;
   655     if (_succ == Self) _succ = NULL ;
   657     assert (_succ != Self, "invariant") ;
   658     if (_Responsible == Self) {
   659         _Responsible = NULL ;
   660         // Dekker pivot-point.
   661         // Consider OrderAccess::storeload() here
   663         // We may leave threads on cxq|EntryList without a designated
   664         // "Responsible" thread.  This is benign.  When this thread subsequently
   665         // exits the monitor it can "see" such preexisting "old" threads --
   666         // threads that arrived on the cxq|EntryList before the fence, above --
   667         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
   668         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
   669         // non-null and elect a new "Responsible" timer thread.
   670         //
   671         // This thread executes:
   672         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
   673         //    LD cxq|EntryList               (in subsequent exit)
   674         //
   675         // Entering threads in the slow/contended path execute:
   676         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
   677         //    The (ST cxq; MEMBAR) is accomplished with CAS().
   678         //
   679         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
   680         // exit operation from floating above the ST Responsible=null.
   681         //
   682         // In *practice* however, EnterI() is always followed by some atomic
   683         // operation such as the decrement of _count in ::enter().  Those atomics
   684         // obviate the need for the explicit MEMBAR, above.
   685     }
   687     // We've acquired ownership with CAS().
   688     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
   689     // But since the CAS() this thread may have also stored into _succ,
   690     // EntryList, cxq or Responsible.  These meta-data updates must be
   691     // visible __before this thread subsequently drops the lock.
   692     // Consider what could occur if we didn't enforce this constraint --
   693     // STs to monitor meta-data and user-data could reorder with (become
   694     // visible after) the ST in exit that drops ownership of the lock.
   695     // Some other thread could then acquire the lock, but observe inconsistent
   696     // or old monitor meta-data and heap data.  That violates the JMM.
   697     // To that end, the 1-0 exit() operation must have at least STST|LDST
   698     // "release" barrier semantics.  Specifically, there must be at least a
   699     // STST|LDST barrier in exit() before the ST of null into _owner that drops
   700     // the lock.   The barrier ensures that changes to monitor meta-data and data
   701     // protected by the lock will be visible before we release the lock, and
   702     // therefore before some other thread (CPU) has a chance to acquire the lock.
   703     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
   704     //
   705     // Critically, any prior STs to _succ or EntryList must be visible before
   706     // the ST of null into _owner in the *subsequent* (following) corresponding
   707     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
   708     // execute a serializing instruction.
   710     if (SyncFlags & 8) {
   711        OrderAccess::fence() ;
   712     }
   713     return ;
   714 }
   716 // ReenterI() is a specialized inline form of the latter half of the
   717 // contended slow-path from EnterI().  We use ReenterI() only for
   718 // monitor reentry in wait().
   719 //
   720 // In the future we should reconcile EnterI() and ReenterI(), adding
   721 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
   722 // loop accordingly.
   724 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
   725     assert (Self != NULL                , "invariant") ;
   726     assert (SelfNode != NULL            , "invariant") ;
   727     assert (SelfNode->_thread == Self   , "invariant") ;
   728     assert (_waiters > 0                , "invariant") ;
   729     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
   730     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   731     JavaThread * jt = (JavaThread *) Self ;
   733     int nWakeups = 0 ;
   734     for (;;) {
   735         ObjectWaiter::TStates v = SelfNode->TState ;
   736         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
   737         assert    (_owner != Self, "invariant") ;
   739         if (TryLock (Self) > 0) break ;
   740         if (TrySpin (Self) > 0) break ;
   742         TEVENT (Wait Reentry - parking) ;
   744         // State transition wrappers around park() ...
   745         // ReenterI() wisely defers state transitions until
   746         // it's clear we must park the thread.
   747         {
   748            OSThreadContendState osts(Self->osthread());
   749            ThreadBlockInVM tbivm(jt);
   751            // cleared by handle_special_suspend_equivalent_condition()
   752            // or java_suspend_self()
   753            jt->set_suspend_equivalent();
   754            if (SyncFlags & 1) {
   755               Self->_ParkEvent->park ((jlong)1000) ;
   756            } else {
   757               Self->_ParkEvent->park () ;
   758            }
   760            // were we externally suspended while we were waiting?
   761            for (;;) {
   762               if (!ExitSuspendEquivalent (jt)) break ;
   763               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
   764               jt->java_suspend_self();
   765               jt->set_suspend_equivalent();
   766            }
   767         }
   769         // Try again, but just so we distinguish between futile wakeups and
   770         // successful wakeups.  The following test isn't algorithmically
   771         // necessary, but it helps us maintain sensible statistics.
   772         if (TryLock(Self) > 0) break ;
   774         // The lock is still contested.
   775         // Keep a tally of the # of futile wakeups.
   776         // Note that the counter is not protected by a lock or updated by atomics.
   777         // That is by design - we trade "lossy" counters which are exposed to
   778         // races during updates for a lower probe effect.
   779         TEVENT (Wait Reentry - futile wakeup) ;
   780         ++ nWakeups ;
   782         // Assuming this is not a spurious wakeup we'll normally
   783         // find that _succ == Self.
   784         if (_succ == Self) _succ = NULL ;
   786         // Invariant: after clearing _succ a contending thread
   787         // *must* retry  _owner before parking.
   788         OrderAccess::fence() ;
   790         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   791           ObjectMonitor::_sync_FutileWakeups->inc() ;
   792         }
   793     }
   795     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
   796     // Normally we'll find Self on the EntryList.
   797     // Unlinking from the EntryList is constant-time and atomic-free.
   798     // From the perspective of the lock owner (this thread), the
   799     // EntryList is stable and cxq is prepend-only.
   800     // The head of cxq is volatile but the interior is stable.
   801     // In addition, Self.TState is stable.
   803     assert (_owner == Self, "invariant") ;
   804     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   805     UnlinkAfterAcquire (Self, SelfNode) ;
   806     if (_succ == Self) _succ = NULL ;
   807     assert (_succ != Self, "invariant") ;
   808     SelfNode->TState = ObjectWaiter::TS_RUN ;
   809     OrderAccess::fence() ;      // see comments at the end of EnterI()
   810 }
   812 // after the thread acquires the lock in ::enter().  Equally, we could defer
   813 // unlinking the thread until ::exit()-time.
   815 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
   816 {
   817     assert (_owner == Self, "invariant") ;
   818     assert (SelfNode->_thread == Self, "invariant") ;
   820     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
   821         // Normal case: remove Self from the DLL EntryList .
   822         // This is a constant-time operation.
   823         ObjectWaiter * nxt = SelfNode->_next ;
   824         ObjectWaiter * prv = SelfNode->_prev ;
   825         if (nxt != NULL) nxt->_prev = prv ;
   826         if (prv != NULL) prv->_next = nxt ;
   827         if (SelfNode == _EntryList ) _EntryList = nxt ;
   828         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   829         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   830         TEVENT (Unlink from EntryList) ;
   831     } else {
   832         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   833         // Inopportune interleaving -- Self is still on the cxq.
   834         // This usually means the enqueue of self raced an exiting thread.
   835         // Normally we'll find Self near the front of the cxq, so
   836         // dequeueing is typically fast.  If needbe we can accelerate
   837         // this with some MCS/CHL-like bidirectional list hints and advisory
   838         // back-links so dequeueing from the interior will normally operate
   839         // in constant-time.
   840         // Dequeue Self from either the head (with CAS) or from the interior
   841         // with a linear-time scan and normal non-atomic memory operations.
   842         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
   843         // and then unlink Self from EntryList.  We have to drain eventually,
   844         // so it might as well be now.
   846         ObjectWaiter * v = _cxq ;
   847         assert (v != NULL, "invariant") ;
   848         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
   849             // The CAS above can fail from interference IFF a "RAT" arrived.
   850             // In that case Self must be in the interior and can no longer be
   851             // at the head of cxq.
   852             if (v == SelfNode) {
   853                 assert (_cxq != v, "invariant") ;
   854                 v = _cxq ;          // CAS above failed - start scan at head of list
   855             }
   856             ObjectWaiter * p ;
   857             ObjectWaiter * q = NULL ;
   858             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
   859                 q = p ;
   860                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   861             }
   862             assert (v != SelfNode,  "invariant") ;
   863             assert (p == SelfNode,  "Node not found on cxq") ;
   864             assert (p != _cxq,      "invariant") ;
   865             assert (q != NULL,      "invariant") ;
   866             assert (q->_next == p,  "invariant") ;
   867             q->_next = p->_next ;
   868         }
   869         TEVENT (Unlink from cxq) ;
   870     }
   872     // Diagnostic hygiene ...
   873     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
   874     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
   875     SelfNode->TState = ObjectWaiter::TS_RUN ;
   876 }
   878 // -----------------------------------------------------------------------------
   879 // Exit support
   880 //
   881 // exit()
   882 // ~~~~~~
   883 // Note that the collector can't reclaim the objectMonitor or deflate
   884 // the object out from underneath the thread calling ::exit() as the
   885 // thread calling ::exit() never transitions to a stable state.
   886 // This inhibits GC, which in turn inhibits asynchronous (and
   887 // inopportune) reclamation of "this".
   888 //
   889 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
   890 // There's one exception to the claim above, however.  EnterI() can call
   891 // exit() to drop a lock if the acquirer has been externally suspended.
   892 // In that case exit() is called with _thread_state as _thread_blocked,
   893 // but the monitor's _count field is > 0, which inhibits reclamation.
   894 //
   895 // 1-0 exit
   896 // ~~~~~~~~
   897 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
   898 // the fast-path operators have been optimized so the common ::exit()
   899 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
   900 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
   901 // greatly improves latency -- MEMBAR and CAS having considerable local
   902 // latency on modern processors -- but at the cost of "stranding".  Absent the
   903 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
   904 // ::enter() path, resulting in the entering thread being stranding
   905 // and a progress-liveness failure.   Stranding is extremely rare.
   906 // We use timers (timed park operations) & periodic polling to detect
   907 // and recover from stranding.  Potentially stranded threads periodically
   908 // wake up and poll the lock.  See the usage of the _Responsible variable.
   909 //
   910 // The CAS() in enter provides for safety and exclusion, while the CAS or
   911 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
   912 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
   913 // We detect and recover from stranding with timers.
   914 //
   915 // If a thread transiently strands it'll park until (a) another
   916 // thread acquires the lock and then drops the lock, at which time the
   917 // exiting thread will notice and unpark the stranded thread, or, (b)
   918 // the timer expires.  If the lock is high traffic then the stranding latency
   919 // will be low due to (a).  If the lock is low traffic then the odds of
   920 // stranding are lower, although the worst-case stranding latency
   921 // is longer.  Critically, we don't want to put excessive load in the
   922 // platform's timer subsystem.  We want to minimize both the timer injection
   923 // rate (timers created/sec) as well as the number of timers active at
   924 // any one time.  (more precisely, we want to minimize timer-seconds, which is
   925 // the integral of the # of active timers at any instant over time).
   926 // Both impinge on OS scalability.  Given that, at most one thread parked on
   927 // a monitor will use a timer.
   929 void ATTR ObjectMonitor::exit(TRAPS) {
   930    Thread * Self = THREAD ;
   931    if (THREAD != _owner) {
   932      if (THREAD->is_lock_owned((address) _owner)) {
   933        // Transmute _owner from a BasicLock pointer to a Thread address.
   934        // We don't need to hold _mutex for this transition.
   935        // Non-null to Non-null is safe as long as all readers can
   936        // tolerate either flavor.
   937        assert (_recursions == 0, "invariant") ;
   938        _owner = THREAD ;
   939        _recursions = 0 ;
   940        OwnerIsThread = 1 ;
   941      } else {
   942        // NOTE: we need to handle unbalanced monitor enter/exit
   943        // in native code by throwing an exception.
   944        // TODO: Throw an IllegalMonitorStateException ?
   945        TEVENT (Exit - Throw IMSX) ;
   946        assert(false, "Non-balanced monitor enter/exit!");
   947        if (false) {
   948           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
   949        }
   950        return;
   951      }
   952    }
   954    if (_recursions != 0) {
   955      _recursions--;        // this is simple recursive enter
   956      TEVENT (Inflated exit - recursive) ;
   957      return ;
   958    }
   960    // Invariant: after setting Responsible=null an thread must execute
   961    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
   962    if ((SyncFlags & 4) == 0) {
   963       _Responsible = NULL ;
   964    }
   966    for (;;) {
   967       assert (THREAD == _owner, "invariant") ;
   970       if (Knob_ExitPolicy == 0) {
   971          // release semantics: prior loads and stores from within the critical section
   972          // must not float (reorder) past the following store that drops the lock.
   973          // On SPARC that requires MEMBAR #loadstore|#storestore.
   974          // But of course in TSO #loadstore|#storestore is not required.
   975          // I'd like to write one of the following:
   976          // A.  OrderAccess::release() ; _owner = NULL
   977          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
   978          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
   979          // store into a _dummy variable.  That store is not needed, but can result
   980          // in massive wasteful coherency traffic on classic SMP systems.
   981          // Instead, I use release_store(), which is implemented as just a simple
   982          // ST on x64, x86 and SPARC.
   983          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
   984          OrderAccess::storeload() ;                         // See if we need to wake a successor
   985          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
   986             TEVENT (Inflated exit - simple egress) ;
   987             return ;
   988          }
   989          TEVENT (Inflated exit - complex egress) ;
   991          // Normally the exiting thread is responsible for ensuring succession,
   992          // but if other successors are ready or other entering threads are spinning
   993          // then this thread can simply store NULL into _owner and exit without
   994          // waking a successor.  The existence of spinners or ready successors
   995          // guarantees proper succession (liveness).  Responsibility passes to the
   996          // ready or running successors.  The exiting thread delegates the duty.
   997          // More precisely, if a successor already exists this thread is absolved
   998          // of the responsibility of waking (unparking) one.
   999          //
  1000          // The _succ variable is critical to reducing futile wakeup frequency.
  1001          // _succ identifies the "heir presumptive" thread that has been made
  1002          // ready (unparked) but that has not yet run.  We need only one such
  1003          // successor thread to guarantee progress.
  1004          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
  1005          // section 3.3 "Futile Wakeup Throttling" for details.
  1006          //
  1007          // Note that spinners in Enter() also set _succ non-null.
  1008          // In the current implementation spinners opportunistically set
  1009          // _succ so that exiting threads might avoid waking a successor.
  1010          // Another less appealing alternative would be for the exiting thread
  1011          // to drop the lock and then spin briefly to see if a spinner managed
  1012          // to acquire the lock.  If so, the exiting thread could exit
  1013          // immediately without waking a successor, otherwise the exiting
  1014          // thread would need to dequeue and wake a successor.
  1015          // (Note that we'd need to make the post-drop spin short, but no
  1016          // shorter than the worst-case round-trip cache-line migration time.
  1017          // The dropped lock needs to become visible to the spinner, and then
  1018          // the acquisition of the lock by the spinner must become visible to
  1019          // the exiting thread).
  1020          //
  1022          // It appears that an heir-presumptive (successor) must be made ready.
  1023          // Only the current lock owner can manipulate the EntryList or
  1024          // drain _cxq, so we need to reacquire the lock.  If we fail
  1025          // to reacquire the lock the responsibility for ensuring succession
  1026          // falls to the new owner.
  1027          //
  1028          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1029             return ;
  1031          TEVENT (Exit - Reacquired) ;
  1032       } else {
  1033          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  1034             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  1035             OrderAccess::storeload() ;
  1036             // Ratify the previously observed values.
  1037             if (_cxq == NULL || _succ != NULL) {
  1038                 TEVENT (Inflated exit - simple egress) ;
  1039                 return ;
  1042             // inopportune interleaving -- the exiting thread (this thread)
  1043             // in the fast-exit path raced an entering thread in the slow-enter
  1044             // path.
  1045             // We have two choices:
  1046             // A.  Try to reacquire the lock.
  1047             //     If the CAS() fails return immediately, otherwise
  1048             //     we either restart/rerun the exit operation, or simply
  1049             //     fall-through into the code below which wakes a successor.
  1050             // B.  If the elements forming the EntryList|cxq are TSM
  1051             //     we could simply unpark() the lead thread and return
  1052             //     without having set _succ.
  1053             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1054                TEVENT (Inflated exit - reacquired succeeded) ;
  1055                return ;
  1057             TEVENT (Inflated exit - reacquired failed) ;
  1058          } else {
  1059             TEVENT (Inflated exit - complex egress) ;
  1063       guarantee (_owner == THREAD, "invariant") ;
  1065       ObjectWaiter * w = NULL ;
  1066       int QMode = Knob_QMode ;
  1068       if (QMode == 2 && _cxq != NULL) {
  1069           // QMode == 2 : cxq has precedence over EntryList.
  1070           // Try to directly wake a successor from the cxq.
  1071           // If successful, the successor will need to unlink itself from cxq.
  1072           w = _cxq ;
  1073           assert (w != NULL, "invariant") ;
  1074           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1075           ExitEpilog (Self, w) ;
  1076           return ;
  1079       if (QMode == 3 && _cxq != NULL) {
  1080           // Aggressively drain cxq into EntryList at the first opportunity.
  1081           // This policy ensure that recently-run threads live at the head of EntryList.
  1082           // Drain _cxq into EntryList - bulk transfer.
  1083           // First, detach _cxq.
  1084           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1085           w = _cxq ;
  1086           for (;;) {
  1087              assert (w != NULL, "Invariant") ;
  1088              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1089              if (u == w) break ;
  1090              w = u ;
  1092           assert (w != NULL              , "invariant") ;
  1094           ObjectWaiter * q = NULL ;
  1095           ObjectWaiter * p ;
  1096           for (p = w ; p != NULL ; p = p->_next) {
  1097               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1098               p->TState = ObjectWaiter::TS_ENTER ;
  1099               p->_prev = q ;
  1100               q = p ;
  1103           // Append the RATs to the EntryList
  1104           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
  1105           ObjectWaiter * Tail ;
  1106           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
  1107           if (Tail == NULL) {
  1108               _EntryList = w ;
  1109           } else {
  1110               Tail->_next = w ;
  1111               w->_prev = Tail ;
  1114           // Fall thru into code that tries to wake a successor from EntryList
  1117       if (QMode == 4 && _cxq != NULL) {
  1118           // Aggressively drain cxq into EntryList at the first opportunity.
  1119           // This policy ensure that recently-run threads live at the head of EntryList.
  1121           // Drain _cxq into EntryList - bulk transfer.
  1122           // First, detach _cxq.
  1123           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1124           w = _cxq ;
  1125           for (;;) {
  1126              assert (w != NULL, "Invariant") ;
  1127              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1128              if (u == w) break ;
  1129              w = u ;
  1131           assert (w != NULL              , "invariant") ;
  1133           ObjectWaiter * q = NULL ;
  1134           ObjectWaiter * p ;
  1135           for (p = w ; p != NULL ; p = p->_next) {
  1136               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1137               p->TState = ObjectWaiter::TS_ENTER ;
  1138               p->_prev = q ;
  1139               q = p ;
  1142           // Prepend the RATs to the EntryList
  1143           if (_EntryList != NULL) {
  1144               q->_next = _EntryList ;
  1145               _EntryList->_prev = q ;
  1147           _EntryList = w ;
  1149           // Fall thru into code that tries to wake a successor from EntryList
  1152       w = _EntryList  ;
  1153       if (w != NULL) {
  1154           // I'd like to write: guarantee (w->_thread != Self).
  1155           // But in practice an exiting thread may find itself on the EntryList.
  1156           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
  1157           // then calls exit().  Exit release the lock by setting O._owner to NULL.
  1158           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
  1159           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
  1160           // release the lock "O".  T2 resumes immediately after the ST of null into
  1161           // _owner, above.  T2 notices that the EntryList is populated, so it
  1162           // reacquires the lock and then finds itself on the EntryList.
  1163           // Given all that, we have to tolerate the circumstance where "w" is
  1164           // associated with Self.
  1165           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1166           ExitEpilog (Self, w) ;
  1167           return ;
  1170       // If we find that both _cxq and EntryList are null then just
  1171       // re-run the exit protocol from the top.
  1172       w = _cxq ;
  1173       if (w == NULL) continue ;
  1175       // Drain _cxq into EntryList - bulk transfer.
  1176       // First, detach _cxq.
  1177       // The following loop is tantamount to: w = swap (&cxq, NULL)
  1178       for (;;) {
  1179           assert (w != NULL, "Invariant") ;
  1180           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1181           if (u == w) break ;
  1182           w = u ;
  1184       TEVENT (Inflated exit - drain cxq into EntryList) ;
  1186       assert (w != NULL              , "invariant") ;
  1187       assert (_EntryList  == NULL    , "invariant") ;
  1189       // Convert the LIFO SLL anchored by _cxq into a DLL.
  1190       // The list reorganization step operates in O(LENGTH(w)) time.
  1191       // It's critical that this step operate quickly as
  1192       // "Self" still holds the outer-lock, restricting parallelism
  1193       // and effectively lengthening the critical section.
  1194       // Invariant: s chases t chases u.
  1195       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
  1196       // we have faster access to the tail.
  1198       if (QMode == 1) {
  1199          // QMode == 1 : drain cxq to EntryList, reversing order
  1200          // We also reverse the order of the list.
  1201          ObjectWaiter * s = NULL ;
  1202          ObjectWaiter * t = w ;
  1203          ObjectWaiter * u = NULL ;
  1204          while (t != NULL) {
  1205              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  1206              t->TState = ObjectWaiter::TS_ENTER ;
  1207              u = t->_next ;
  1208              t->_prev = u ;
  1209              t->_next = s ;
  1210              s = t;
  1211              t = u ;
  1213          _EntryList  = s ;
  1214          assert (s != NULL, "invariant") ;
  1215       } else {
  1216          // QMode == 0 or QMode == 2
  1217          _EntryList = w ;
  1218          ObjectWaiter * q = NULL ;
  1219          ObjectWaiter * p ;
  1220          for (p = w ; p != NULL ; p = p->_next) {
  1221              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1222              p->TState = ObjectWaiter::TS_ENTER ;
  1223              p->_prev = q ;
  1224              q = p ;
  1228       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
  1229       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
  1231       // See if we can abdicate to a spinner instead of waking a thread.
  1232       // A primary goal of the implementation is to reduce the
  1233       // context-switch rate.
  1234       if (_succ != NULL) continue;
  1236       w = _EntryList  ;
  1237       if (w != NULL) {
  1238           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1239           ExitEpilog (Self, w) ;
  1240           return ;
  1245 // ExitSuspendEquivalent:
  1246 // A faster alternate to handle_special_suspend_equivalent_condition()
  1247 //
  1248 // handle_special_suspend_equivalent_condition() unconditionally
  1249 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
  1250 // operations have high latency.  Note that in ::enter() we call HSSEC
  1251 // while holding the monitor, so we effectively lengthen the critical sections.
  1252 //
  1253 // There are a number of possible solutions:
  1254 //
  1255 // A.  To ameliorate the problem we might also defer state transitions
  1256 //     to as late as possible -- just prior to parking.
  1257 //     Given that, we'd call HSSEC after having returned from park(),
  1258 //     but before attempting to acquire the monitor.  This is only a
  1259 //     partial solution.  It avoids calling HSSEC while holding the
  1260 //     monitor (good), but it still increases successor reacquisition latency --
  1261 //     the interval between unparking a successor and the time the successor
  1262 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
  1263 //     If we use this technique we can also avoid EnterI()-exit() loop
  1264 //     in ::enter() where we iteratively drop the lock and then attempt
  1265 //     to reacquire it after suspending.
  1266 //
  1267 // B.  In the future we might fold all the suspend bits into a
  1268 //     composite per-thread suspend flag and then update it with CAS().
  1269 //     Alternately, a Dekker-like mechanism with multiple variables
  1270 //     would suffice:
  1271 //       ST Self->_suspend_equivalent = false
  1272 //       MEMBAR
  1273 //       LD Self_>_suspend_flags
  1274 //
  1277 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
  1278    int Mode = Knob_FastHSSEC ;
  1279    if (Mode && !jSelf->is_external_suspend()) {
  1280       assert (jSelf->is_suspend_equivalent(), "invariant") ;
  1281       jSelf->clear_suspend_equivalent() ;
  1282       if (2 == Mode) OrderAccess::storeload() ;
  1283       if (!jSelf->is_external_suspend()) return false ;
  1284       // We raced a suspension -- fall thru into the slow path
  1285       TEVENT (ExitSuspendEquivalent - raced) ;
  1286       jSelf->set_suspend_equivalent() ;
  1288    return jSelf->handle_special_suspend_equivalent_condition() ;
  1292 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
  1293    assert (_owner == Self, "invariant") ;
  1295    // Exit protocol:
  1296    // 1. ST _succ = wakee
  1297    // 2. membar #loadstore|#storestore;
  1298    // 2. ST _owner = NULL
  1299    // 3. unpark(wakee)
  1301    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
  1302    ParkEvent * Trigger = Wakee->_event ;
  1304    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
  1305    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
  1306    // out-of-scope (non-extant).
  1307    Wakee  = NULL ;
  1309    // Drop the lock
  1310    OrderAccess::release_store_ptr (&_owner, NULL) ;
  1311    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
  1313    if (SafepointSynchronize::do_call_back()) {
  1314       TEVENT (unpark before SAFEPOINT) ;
  1317    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
  1318    Trigger->unpark() ;
  1320    // Maintain stats and report events to JVMTI
  1321    if (ObjectMonitor::_sync_Parks != NULL) {
  1322       ObjectMonitor::_sync_Parks->inc() ;
  1327 // -----------------------------------------------------------------------------
  1328 // Class Loader deadlock handling.
  1329 //
  1330 // complete_exit exits a lock returning recursion count
  1331 // complete_exit/reenter operate as a wait without waiting
  1332 // complete_exit requires an inflated monitor
  1333 // The _owner field is not always the Thread addr even with an
  1334 // inflated monitor, e.g. the monitor can be inflated by a non-owning
  1335 // thread due to contention.
  1336 intptr_t ObjectMonitor::complete_exit(TRAPS) {
  1337    Thread * const Self = THREAD;
  1338    assert(Self->is_Java_thread(), "Must be Java thread!");
  1339    JavaThread *jt = (JavaThread *)THREAD;
  1341    DeferredInitialize();
  1343    if (THREAD != _owner) {
  1344     if (THREAD->is_lock_owned ((address)_owner)) {
  1345        assert(_recursions == 0, "internal state error");
  1346        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
  1347        _recursions = 0 ;
  1348        OwnerIsThread = 1 ;
  1352    guarantee(Self == _owner, "complete_exit not owner");
  1353    intptr_t save = _recursions; // record the old recursion count
  1354    _recursions = 0;        // set the recursion level to be 0
  1355    exit (Self) ;           // exit the monitor
  1356    guarantee (_owner != Self, "invariant");
  1357    return save;
  1360 // reenter() enters a lock and sets recursion count
  1361 // complete_exit/reenter operate as a wait without waiting
  1362 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
  1363    Thread * const Self = THREAD;
  1364    assert(Self->is_Java_thread(), "Must be Java thread!");
  1365    JavaThread *jt = (JavaThread *)THREAD;
  1367    guarantee(_owner != Self, "reenter already owner");
  1368    enter (THREAD);       // enter the monitor
  1369    guarantee (_recursions == 0, "reenter recursion");
  1370    _recursions = recursions;
  1371    return;
  1375 // -----------------------------------------------------------------------------
  1376 // A macro is used below because there may already be a pending
  1377 // exception which should not abort the execution of the routines
  1378 // which use this (which is why we don't put this into check_slow and
  1379 // call it with a CHECK argument).
  1381 #define CHECK_OWNER()                                                             \
  1382   do {                                                                            \
  1383     if (THREAD != _owner) {                                                       \
  1384       if (THREAD->is_lock_owned((address) _owner)) {                              \
  1385         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
  1386         _recursions = 0;                                                          \
  1387         OwnerIsThread = 1 ;                                                       \
  1388       } else {                                                                    \
  1389         TEVENT (Throw IMSX) ;                                                     \
  1390         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
  1391       }                                                                           \
  1392     }                                                                             \
  1393   } while (false)
  1395 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
  1396 // TODO-FIXME: remove check_slow() -- it's likely dead.
  1398 void ObjectMonitor::check_slow(TRAPS) {
  1399   TEVENT (check_slow - throw IMSX) ;
  1400   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
  1401   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
  1404 static int Adjust (volatile int * adr, int dx) {
  1405   int v ;
  1406   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
  1407   return v ;
  1409 // -----------------------------------------------------------------------------
  1410 // Wait/Notify/NotifyAll
  1411 //
  1412 // Note: a subset of changes to ObjectMonitor::wait()
  1413 // will need to be replicated in complete_exit above
  1414 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
  1415    Thread * const Self = THREAD ;
  1416    assert(Self->is_Java_thread(), "Must be Java thread!");
  1417    JavaThread *jt = (JavaThread *)THREAD;
  1419    DeferredInitialize () ;
  1421    // Throw IMSX or IEX.
  1422    CHECK_OWNER();
  1424    // check for a pending interrupt
  1425    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1426      // post monitor waited event.  Note that this is past-tense, we are done waiting.
  1427      if (JvmtiExport::should_post_monitor_waited()) {
  1428         // Note: 'false' parameter is passed here because the
  1429         // wait was not timed out due to thread interrupt.
  1430         JvmtiExport::post_monitor_waited(jt, this, false);
  1432      TEVENT (Wait - Throw IEX) ;
  1433      THROW(vmSymbols::java_lang_InterruptedException());
  1434      return ;
  1436    TEVENT (Wait) ;
  1438    assert (Self->_Stalled == 0, "invariant") ;
  1439    Self->_Stalled = intptr_t(this) ;
  1440    jt->set_current_waiting_monitor(this);
  1442    // create a node to be put into the queue
  1443    // Critically, after we reset() the event but prior to park(), we must check
  1444    // for a pending interrupt.
  1445    ObjectWaiter node(Self);
  1446    node.TState = ObjectWaiter::TS_WAIT ;
  1447    Self->_ParkEvent->reset() ;
  1448    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
  1450    // Enter the waiting queue, which is a circular doubly linked list in this case
  1451    // but it could be a priority queue or any data structure.
  1452    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
  1453    // by the the owner of the monitor *except* in the case where park()
  1454    // returns because of a timeout of interrupt.  Contention is exceptionally rare
  1455    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
  1457    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
  1458    AddWaiter (&node) ;
  1459    Thread::SpinRelease (&_WaitSetLock) ;
  1461    if ((SyncFlags & 4) == 0) {
  1462       _Responsible = NULL ;
  1464    intptr_t save = _recursions; // record the old recursion count
  1465    _waiters++;                  // increment the number of waiters
  1466    _recursions = 0;             // set the recursion level to be 1
  1467    exit (Self) ;                    // exit the monitor
  1468    guarantee (_owner != Self, "invariant") ;
  1470    // As soon as the ObjectMonitor's ownership is dropped in the exit()
  1471    // call above, another thread can enter() the ObjectMonitor, do the
  1472    // notify(), and exit() the ObjectMonitor. If the other thread's
  1473    // exit() call chooses this thread as the successor and the unpark()
  1474    // call happens to occur while this thread is posting a
  1475    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
  1476    // handler using RawMonitors and consuming the unpark().
  1477    //
  1478    // To avoid the problem, we re-post the event. This does no harm
  1479    // even if the original unpark() was not consumed because we are the
  1480    // chosen successor for this monitor.
  1481    if (node._notified != 0 && _succ == Self) {
  1482       node._event->unpark();
  1485    // The thread is on the WaitSet list - now park() it.
  1486    // On MP systems it's conceivable that a brief spin before we park
  1487    // could be profitable.
  1488    //
  1489    // TODO-FIXME: change the following logic to a loop of the form
  1490    //   while (!timeout && !interrupted && _notified == 0) park()
  1492    int ret = OS_OK ;
  1493    int WasNotified = 0 ;
  1494    { // State transition wrappers
  1495      OSThread* osthread = Self->osthread();
  1496      OSThreadWaitState osts(osthread, true);
  1498        ThreadBlockInVM tbivm(jt);
  1499        // Thread is in thread_blocked state and oop access is unsafe.
  1500        jt->set_suspend_equivalent();
  1502        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
  1503            // Intentionally empty
  1504        } else
  1505        if (node._notified == 0) {
  1506          if (millis <= 0) {
  1507             Self->_ParkEvent->park () ;
  1508          } else {
  1509             ret = Self->_ParkEvent->park (millis) ;
  1513        // were we externally suspended while we were waiting?
  1514        if (ExitSuspendEquivalent (jt)) {
  1515           // TODO-FIXME: add -- if succ == Self then succ = null.
  1516           jt->java_suspend_self();
  1519      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
  1522      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
  1523      // from the WaitSet to the EntryList.
  1524      // See if we need to remove Node from the WaitSet.
  1525      // We use double-checked locking to avoid grabbing _WaitSetLock
  1526      // if the thread is not on the wait queue.
  1527      //
  1528      // Note that we don't need a fence before the fetch of TState.
  1529      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
  1530      // written by the is thread. (perhaps the fetch might even be satisfied
  1531      // by a look-aside into the processor's own store buffer, although given
  1532      // the length of the code path between the prior ST and this load that's
  1533      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
  1534      // then we'll acquire the lock and then re-fetch a fresh TState value.
  1535      // That is, we fail toward safety.
  1537      if (node.TState == ObjectWaiter::TS_WAIT) {
  1538          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
  1539          if (node.TState == ObjectWaiter::TS_WAIT) {
  1540             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
  1541             assert(node._notified == 0, "invariant");
  1542             node.TState = ObjectWaiter::TS_RUN ;
  1544          Thread::SpinRelease (&_WaitSetLock) ;
  1547      // The thread is now either on off-list (TS_RUN),
  1548      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
  1549      // The Node's TState variable is stable from the perspective of this thread.
  1550      // No other threads will asynchronously modify TState.
  1551      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
  1552      OrderAccess::loadload() ;
  1553      if (_succ == Self) _succ = NULL ;
  1554      WasNotified = node._notified ;
  1556      // Reentry phase -- reacquire the monitor.
  1557      // re-enter contended monitor after object.wait().
  1558      // retain OBJECT_WAIT state until re-enter successfully completes
  1559      // Thread state is thread_in_vm and oop access is again safe,
  1560      // although the raw address of the object may have changed.
  1561      // (Don't cache naked oops over safepoints, of course).
  1563      // post monitor waited event. Note that this is past-tense, we are done waiting.
  1564      if (JvmtiExport::should_post_monitor_waited()) {
  1565        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
  1567      OrderAccess::fence() ;
  1569      assert (Self->_Stalled != 0, "invariant") ;
  1570      Self->_Stalled = 0 ;
  1572      assert (_owner != Self, "invariant") ;
  1573      ObjectWaiter::TStates v = node.TState ;
  1574      if (v == ObjectWaiter::TS_RUN) {
  1575          enter (Self) ;
  1576      } else {
  1577          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  1578          ReenterI (Self, &node) ;
  1579          node.wait_reenter_end(this);
  1582      // Self has reacquired the lock.
  1583      // Lifecycle - the node representing Self must not appear on any queues.
  1584      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
  1585      // want residual elements associated with this thread left on any lists.
  1586      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  1587      assert    (_owner == Self, "invariant") ;
  1588      assert    (_succ != Self , "invariant") ;
  1589    } // OSThreadWaitState()
  1591    jt->set_current_waiting_monitor(NULL);
  1593    guarantee (_recursions == 0, "invariant") ;
  1594    _recursions = save;     // restore the old recursion count
  1595    _waiters--;             // decrement the number of waiters
  1597    // Verify a few postconditions
  1598    assert (_owner == Self       , "invariant") ;
  1599    assert (_succ  != Self       , "invariant") ;
  1600    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1602    if (SyncFlags & 32) {
  1603       OrderAccess::fence() ;
  1606    // check if the notification happened
  1607    if (!WasNotified) {
  1608      // no, it could be timeout or Thread.interrupt() or both
  1609      // check for interrupt event, otherwise it is timeout
  1610      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1611        TEVENT (Wait - throw IEX from epilog) ;
  1612        THROW(vmSymbols::java_lang_InterruptedException());
  1616    // NOTE: Spurious wake up will be consider as timeout.
  1617    // Monitor notify has precedence over thread interrupt.
  1621 // Consider:
  1622 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
  1623 // then instead of transferring a thread from the WaitSet to the EntryList
  1624 // we might just dequeue a thread from the WaitSet and directly unpark() it.
  1626 void ObjectMonitor::notify(TRAPS) {
  1627   CHECK_OWNER();
  1628   if (_WaitSet == NULL) {
  1629      TEVENT (Empty-Notify) ;
  1630      return ;
  1632   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
  1634   int Policy = Knob_MoveNotifyee ;
  1636   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  1637   ObjectWaiter * iterator = DequeueWaiter() ;
  1638   if (iterator != NULL) {
  1639      TEVENT (Notify1 - Transfer) ;
  1640      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1641      guarantee (iterator->_notified == 0, "invariant") ;
  1642      if (Policy != 4) {
  1643         iterator->TState = ObjectWaiter::TS_ENTER ;
  1645      iterator->_notified = 1 ;
  1647      ObjectWaiter * List = _EntryList ;
  1648      if (List != NULL) {
  1649         assert (List->_prev == NULL, "invariant") ;
  1650         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1651         assert (List != iterator, "invariant") ;
  1654      if (Policy == 0) {       // prepend to EntryList
  1655          if (List == NULL) {
  1656              iterator->_next = iterator->_prev = NULL ;
  1657              _EntryList = iterator ;
  1658          } else {
  1659              List->_prev = iterator ;
  1660              iterator->_next = List ;
  1661              iterator->_prev = NULL ;
  1662              _EntryList = iterator ;
  1664      } else
  1665      if (Policy == 1) {      // append to EntryList
  1666          if (List == NULL) {
  1667              iterator->_next = iterator->_prev = NULL ;
  1668              _EntryList = iterator ;
  1669          } else {
  1670             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1671             // the EntryList.  We can make tail access constant-time by converting to
  1672             // a CDLL instead of using our current DLL.
  1673             ObjectWaiter * Tail ;
  1674             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1675             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1676             Tail->_next = iterator ;
  1677             iterator->_prev = Tail ;
  1678             iterator->_next = NULL ;
  1680      } else
  1681      if (Policy == 2) {      // prepend to cxq
  1682          // prepend to cxq
  1683          if (List == NULL) {
  1684              iterator->_next = iterator->_prev = NULL ;
  1685              _EntryList = iterator ;
  1686          } else {
  1687             iterator->TState = ObjectWaiter::TS_CXQ ;
  1688             for (;;) {
  1689                 ObjectWaiter * Front = _cxq ;
  1690                 iterator->_next = Front ;
  1691                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1692                     break ;
  1696      } else
  1697      if (Policy == 3) {      // append to cxq
  1698         iterator->TState = ObjectWaiter::TS_CXQ ;
  1699         for (;;) {
  1700             ObjectWaiter * Tail ;
  1701             Tail = _cxq ;
  1702             if (Tail == NULL) {
  1703                 iterator->_next = NULL ;
  1704                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1705                    break ;
  1707             } else {
  1708                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1709                 Tail->_next = iterator ;
  1710                 iterator->_prev = Tail ;
  1711                 iterator->_next = NULL ;
  1712                 break ;
  1715      } else {
  1716         ParkEvent * ev = iterator->_event ;
  1717         iterator->TState = ObjectWaiter::TS_RUN ;
  1718         OrderAccess::fence() ;
  1719         ev->unpark() ;
  1722      if (Policy < 4) {
  1723        iterator->wait_reenter_begin(this);
  1726      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1727      // move the add-to-EntryList operation, above, outside the critical section
  1728      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1729      // exception of  wait() timeouts and interrupts the monitor owner
  1730      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1731      // on _WaitSetLock so it's not profitable to reduce the length of the
  1732      // critical section.
  1735   Thread::SpinRelease (&_WaitSetLock) ;
  1737   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
  1738      ObjectMonitor::_sync_Notifications->inc() ;
  1743 void ObjectMonitor::notifyAll(TRAPS) {
  1744   CHECK_OWNER();
  1745   ObjectWaiter* iterator;
  1746   if (_WaitSet == NULL) {
  1747       TEVENT (Empty-NotifyAll) ;
  1748       return ;
  1750   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
  1752   int Policy = Knob_MoveNotifyee ;
  1753   int Tally = 0 ;
  1754   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
  1756   for (;;) {
  1757      iterator = DequeueWaiter () ;
  1758      if (iterator == NULL) break ;
  1759      TEVENT (NotifyAll - Transfer1) ;
  1760      ++Tally ;
  1762      // Disposition - what might we do with iterator ?
  1763      // a.  add it directly to the EntryList - either tail or head.
  1764      // b.  push it onto the front of the _cxq.
  1765      // For now we use (a).
  1767      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1768      guarantee (iterator->_notified == 0, "invariant") ;
  1769      iterator->_notified = 1 ;
  1770      if (Policy != 4) {
  1771         iterator->TState = ObjectWaiter::TS_ENTER ;
  1774      ObjectWaiter * List = _EntryList ;
  1775      if (List != NULL) {
  1776         assert (List->_prev == NULL, "invariant") ;
  1777         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1778         assert (List != iterator, "invariant") ;
  1781      if (Policy == 0) {       // prepend to EntryList
  1782          if (List == NULL) {
  1783              iterator->_next = iterator->_prev = NULL ;
  1784              _EntryList = iterator ;
  1785          } else {
  1786              List->_prev = iterator ;
  1787              iterator->_next = List ;
  1788              iterator->_prev = NULL ;
  1789              _EntryList = iterator ;
  1791      } else
  1792      if (Policy == 1) {      // append to EntryList
  1793          if (List == NULL) {
  1794              iterator->_next = iterator->_prev = NULL ;
  1795              _EntryList = iterator ;
  1796          } else {
  1797             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1798             // the EntryList.  We can make tail access constant-time by converting to
  1799             // a CDLL instead of using our current DLL.
  1800             ObjectWaiter * Tail ;
  1801             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1802             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1803             Tail->_next = iterator ;
  1804             iterator->_prev = Tail ;
  1805             iterator->_next = NULL ;
  1807      } else
  1808      if (Policy == 2) {      // prepend to cxq
  1809          // prepend to cxq
  1810          iterator->TState = ObjectWaiter::TS_CXQ ;
  1811          for (;;) {
  1812              ObjectWaiter * Front = _cxq ;
  1813              iterator->_next = Front ;
  1814              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1815                  break ;
  1818      } else
  1819      if (Policy == 3) {      // append to cxq
  1820         iterator->TState = ObjectWaiter::TS_CXQ ;
  1821         for (;;) {
  1822             ObjectWaiter * Tail ;
  1823             Tail = _cxq ;
  1824             if (Tail == NULL) {
  1825                 iterator->_next = NULL ;
  1826                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1827                    break ;
  1829             } else {
  1830                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1831                 Tail->_next = iterator ;
  1832                 iterator->_prev = Tail ;
  1833                 iterator->_next = NULL ;
  1834                 break ;
  1837      } else {
  1838         ParkEvent * ev = iterator->_event ;
  1839         iterator->TState = ObjectWaiter::TS_RUN ;
  1840         OrderAccess::fence() ;
  1841         ev->unpark() ;
  1844      if (Policy < 4) {
  1845        iterator->wait_reenter_begin(this);
  1848      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1849      // move the add-to-EntryList operation, above, outside the critical section
  1850      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1851      // exception of  wait() timeouts and interrupts the monitor owner
  1852      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1853      // on _WaitSetLock so it's not profitable to reduce the length of the
  1854      // critical section.
  1857   Thread::SpinRelease (&_WaitSetLock) ;
  1859   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
  1860      ObjectMonitor::_sync_Notifications->inc(Tally) ;
  1864 // -----------------------------------------------------------------------------
  1865 // Adaptive Spinning Support
  1866 //
  1867 // Adaptive spin-then-block - rational spinning
  1868 //
  1869 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
  1870 // algorithm.  On high order SMP systems it would be better to start with
  1871 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
  1872 // a contending thread could enqueue itself on the cxq and then spin locally
  1873 // on a thread-specific variable such as its ParkEvent._Event flag.
  1874 // That's left as an exercise for the reader.  Note that global spinning is
  1875 // not problematic on Niagara, as the L2$ serves the interconnect and has both
  1876 // low latency and massive bandwidth.
  1877 //
  1878 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
  1879 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
  1880 // (duration) or we can fix the count at approximately the duration of
  1881 // a context switch and vary the frequency.   Of course we could also
  1882 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
  1883 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
  1884 //
  1885 // This implementation varies the duration "D", where D varies with
  1886 // the success rate of recent spin attempts. (D is capped at approximately
  1887 // length of a round-trip context switch).  The success rate for recent
  1888 // spin attempts is a good predictor of the success rate of future spin
  1889 // attempts.  The mechanism adapts automatically to varying critical
  1890 // section length (lock modality), system load and degree of parallelism.
  1891 // D is maintained per-monitor in _SpinDuration and is initialized
  1892 // optimistically.  Spin frequency is fixed at 100%.
  1893 //
  1894 // Note that _SpinDuration is volatile, but we update it without locks
  1895 // or atomics.  The code is designed so that _SpinDuration stays within
  1896 // a reasonable range even in the presence of races.  The arithmetic
  1897 // operations on _SpinDuration are closed over the domain of legal values,
  1898 // so at worst a race will install and older but still legal value.
  1899 // At the very worst this introduces some apparent non-determinism.
  1900 // We might spin when we shouldn't or vice-versa, but since the spin
  1901 // count are relatively short, even in the worst case, the effect is harmless.
  1902 //
  1903 // Care must be taken that a low "D" value does not become an
  1904 // an absorbing state.  Transient spinning failures -- when spinning
  1905 // is overall profitable -- should not cause the system to converge
  1906 // on low "D" values.  We want spinning to be stable and predictable
  1907 // and fairly responsive to change and at the same time we don't want
  1908 // it to oscillate, become metastable, be "too" non-deterministic,
  1909 // or converge on or enter undesirable stable absorbing states.
  1910 //
  1911 // We implement a feedback-based control system -- using past behavior
  1912 // to predict future behavior.  We face two issues: (a) if the
  1913 // input signal is random then the spin predictor won't provide optimal
  1914 // results, and (b) if the signal frequency is too high then the control
  1915 // system, which has some natural response lag, will "chase" the signal.
  1916 // (b) can arise from multimodal lock hold times.  Transient preemption
  1917 // can also result in apparent bimodal lock hold times.
  1918 // Although sub-optimal, neither condition is particularly harmful, as
  1919 // in the worst-case we'll spin when we shouldn't or vice-versa.
  1920 // The maximum spin duration is rather short so the failure modes aren't bad.
  1921 // To be conservative, I've tuned the gain in system to bias toward
  1922 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
  1923 // "rings" or oscillates between spinning and not spinning.  This happens
  1924 // when spinning is just on the cusp of profitability, however, so the
  1925 // situation is not dire.  The state is benign -- there's no need to add
  1926 // hysteresis control to damp the transition rate between spinning and
  1927 // not spinning.
  1928 //
  1930 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
  1931 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
  1933 // Spinning: Fixed frequency (100%), vary duration
  1936 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
  1938     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
  1939     int ctr = Knob_FixedSpin ;
  1940     if (ctr != 0) {
  1941         while (--ctr >= 0) {
  1942             if (TryLock (Self) > 0) return 1 ;
  1943             SpinPause () ;
  1945         return 0 ;
  1948     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
  1949       if (TryLock(Self) > 0) {
  1950         // Increase _SpinDuration ...
  1951         // Note that we don't clamp SpinDuration precisely at SpinLimit.
  1952         // Raising _SpurDuration to the poverty line is key.
  1953         int x = _SpinDuration ;
  1954         if (x < Knob_SpinLimit) {
  1955            if (x < Knob_Poverty) x = Knob_Poverty ;
  1956            _SpinDuration = x + Knob_BonusB ;
  1958         return 1 ;
  1960       SpinPause () ;
  1963     // Admission control - verify preconditions for spinning
  1964     //
  1965     // We always spin a little bit, just to prevent _SpinDuration == 0 from
  1966     // becoming an absorbing state.  Put another way, we spin briefly to
  1967     // sample, just in case the system load, parallelism, contention, or lock
  1968     // modality changed.
  1969     //
  1970     // Consider the following alternative:
  1971     // Periodically set _SpinDuration = _SpinLimit and try a long/full
  1972     // spin attempt.  "Periodically" might mean after a tally of
  1973     // the # of failed spin attempts (or iterations) reaches some threshold.
  1974     // This takes us into the realm of 1-out-of-N spinning, where we
  1975     // hold the duration constant but vary the frequency.
  1977     ctr = _SpinDuration  ;
  1978     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
  1979     if (ctr <= 0) return 0 ;
  1981     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
  1982     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
  1983        TEVENT (Spin abort - notrunnable [TOP]);
  1984        return 0 ;
  1987     int MaxSpin = Knob_MaxSpinners ;
  1988     if (MaxSpin >= 0) {
  1989        if (_Spinner > MaxSpin) {
  1990           TEVENT (Spin abort -- too many spinners) ;
  1991           return 0 ;
  1993        // Slighty racy, but benign ...
  1994        Adjust (&_Spinner, 1) ;
  1997     // We're good to spin ... spin ingress.
  1998     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
  1999     // when preparing to LD...CAS _owner, etc and the CAS is likely
  2000     // to succeed.
  2001     int hits    = 0 ;
  2002     int msk     = 0 ;
  2003     int caspty  = Knob_CASPenalty ;
  2004     int oxpty   = Knob_OXPenalty ;
  2005     int sss     = Knob_SpinSetSucc ;
  2006     if (sss && _succ == NULL ) _succ = Self ;
  2007     Thread * prv = NULL ;
  2009     // There are three ways to exit the following loop:
  2010     // 1.  A successful spin where this thread has acquired the lock.
  2011     // 2.  Spin failure with prejudice
  2012     // 3.  Spin failure without prejudice
  2014     while (--ctr >= 0) {
  2016       // Periodic polling -- Check for pending GC
  2017       // Threads may spin while they're unsafe.
  2018       // We don't want spinning threads to delay the JVM from reaching
  2019       // a stop-the-world safepoint or to steal cycles from GC.
  2020       // If we detect a pending safepoint we abort in order that
  2021       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
  2022       // this thread, if safe, doesn't steal cycles from GC.
  2023       // This is in keeping with the "no loitering in runtime" rule.
  2024       // We periodically check to see if there's a safepoint pending.
  2025       if ((ctr & 0xFF) == 0) {
  2026          if (SafepointSynchronize::do_call_back()) {
  2027             TEVENT (Spin: safepoint) ;
  2028             goto Abort ;           // abrupt spin egress
  2030          if (Knob_UsePause & 1) SpinPause () ;
  2032          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
  2033          if (hits > 50 && scb != NULL) {
  2034             int abend = (*scb)(SpinCallbackArgument, 0) ;
  2038       if (Knob_UsePause & 2) SpinPause() ;
  2040       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
  2041       // This is useful on classic SMP systems, but is of less utility on
  2042       // N1-style CMT platforms.
  2043       //
  2044       // Trade-off: lock acquisition latency vs coherency bandwidth.
  2045       // Lock hold times are typically short.  A histogram
  2046       // of successful spin attempts shows that we usually acquire
  2047       // the lock early in the spin.  That suggests we want to
  2048       // sample _owner frequently in the early phase of the spin,
  2049       // but then back-off and sample less frequently as the spin
  2050       // progresses.  The back-off makes a good citizen on SMP big
  2051       // SMP systems.  Oversampling _owner can consume excessive
  2052       // coherency bandwidth.  Relatedly, if we _oversample _owner we
  2053       // can inadvertently interfere with the the ST m->owner=null.
  2054       // executed by the lock owner.
  2055       if (ctr & msk) continue ;
  2056       ++hits ;
  2057       if ((hits & 0xF) == 0) {
  2058         // The 0xF, above, corresponds to the exponent.
  2059         // Consider: (msk+1)|msk
  2060         msk = ((msk << 2)|3) & BackOffMask ;
  2063       // Probe _owner with TATAS
  2064       // If this thread observes the monitor transition or flicker
  2065       // from locked to unlocked to locked, then the odds that this
  2066       // thread will acquire the lock in this spin attempt go down
  2067       // considerably.  The same argument applies if the CAS fails
  2068       // or if we observe _owner change from one non-null value to
  2069       // another non-null value.   In such cases we might abort
  2070       // the spin without prejudice or apply a "penalty" to the
  2071       // spin count-down variable "ctr", reducing it by 100, say.
  2073       Thread * ox = (Thread *) _owner ;
  2074       if (ox == NULL) {
  2075          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  2076          if (ox == NULL) {
  2077             // The CAS succeeded -- this thread acquired ownership
  2078             // Take care of some bookkeeping to exit spin state.
  2079             if (sss && _succ == Self) {
  2080                _succ = NULL ;
  2082             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
  2084             // Increase _SpinDuration :
  2085             // The spin was successful (profitable) so we tend toward
  2086             // longer spin attempts in the future.
  2087             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
  2088             // If we acquired the lock early in the spin cycle it
  2089             // makes sense to increase _SpinDuration proportionally.
  2090             // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2091             int x = _SpinDuration ;
  2092             if (x < Knob_SpinLimit) {
  2093                 if (x < Knob_Poverty) x = Knob_Poverty ;
  2094                 _SpinDuration = x + Knob_Bonus ;
  2096             return 1 ;
  2099          // The CAS failed ... we can take any of the following actions:
  2100          // * penalize: ctr -= Knob_CASPenalty
  2101          // * exit spin with prejudice -- goto Abort;
  2102          // * exit spin without prejudice.
  2103          // * Since CAS is high-latency, retry again immediately.
  2104          prv = ox ;
  2105          TEVENT (Spin: cas failed) ;
  2106          if (caspty == -2) break ;
  2107          if (caspty == -1) goto Abort ;
  2108          ctr -= caspty ;
  2109          continue ;
  2112       // Did lock ownership change hands ?
  2113       if (ox != prv && prv != NULL ) {
  2114           TEVENT (spin: Owner changed)
  2115           if (oxpty == -2) break ;
  2116           if (oxpty == -1) goto Abort ;
  2117           ctr -= oxpty ;
  2119       prv = ox ;
  2121       // Abort the spin if the owner is not executing.
  2122       // The owner must be executing in order to drop the lock.
  2123       // Spinning while the owner is OFFPROC is idiocy.
  2124       // Consider: ctr -= RunnablePenalty ;
  2125       if (Knob_OState && NotRunnable (Self, ox)) {
  2126          TEVENT (Spin abort - notrunnable);
  2127          goto Abort ;
  2129       if (sss && _succ == NULL ) _succ = Self ;
  2132    // Spin failed with prejudice -- reduce _SpinDuration.
  2133    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
  2134    // AIMD is globally stable.
  2135    TEVENT (Spin failure) ;
  2137      int x = _SpinDuration ;
  2138      if (x > 0) {
  2139         // Consider an AIMD scheme like: x -= (x >> 3) + 100
  2140         // This is globally sample and tends to damp the response.
  2141         x -= Knob_Penalty ;
  2142         if (x < 0) x = 0 ;
  2143         _SpinDuration = x ;
  2147  Abort:
  2148    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
  2149    if (sss && _succ == Self) {
  2150       _succ = NULL ;
  2151       // Invariant: after setting succ=null a contending thread
  2152       // must recheck-retry _owner before parking.  This usually happens
  2153       // in the normal usage of TrySpin(), but it's safest
  2154       // to make TrySpin() as foolproof as possible.
  2155       OrderAccess::fence() ;
  2156       if (TryLock(Self) > 0) return 1 ;
  2158    return 0 ;
  2161 // NotRunnable() -- informed spinning
  2162 //
  2163 // Don't bother spinning if the owner is not eligible to drop the lock.
  2164 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
  2165 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
  2166 // The thread must be runnable in order to drop the lock in timely fashion.
  2167 // If the _owner is not runnable then spinning will not likely be
  2168 // successful (profitable).
  2169 //
  2170 // Beware -- the thread referenced by _owner could have died
  2171 // so a simply fetch from _owner->_thread_state might trap.
  2172 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
  2173 // Because of the lifecycle issues the schedctl and _thread_state values
  2174 // observed by NotRunnable() might be garbage.  NotRunnable must
  2175 // tolerate this and consider the observed _thread_state value
  2176 // as advisory.
  2177 //
  2178 // Beware too, that _owner is sometimes a BasicLock address and sometimes
  2179 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
  2180 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
  2181 // with the LSB of _owner.  Another option would be to probablistically probe
  2182 // the putative _owner->TypeTag value.
  2183 //
  2184 // Checking _thread_state isn't perfect.  Even if the thread is
  2185 // in_java it might be blocked on a page-fault or have been preempted
  2186 // and sitting on a ready/dispatch queue.  _thread state in conjunction
  2187 // with schedctl.sc_state gives us a good picture of what the
  2188 // thread is doing, however.
  2189 //
  2190 // TODO: check schedctl.sc_state.
  2191 // We'll need to use SafeFetch32() to read from the schedctl block.
  2192 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
  2193 //
  2194 // The return value from NotRunnable() is *advisory* -- the
  2195 // result is based on sampling and is not necessarily coherent.
  2196 // The caller must tolerate false-negative and false-positive errors.
  2197 // Spinning, in general, is probabilistic anyway.
  2200 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
  2201     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
  2202     if (!OwnerIsThread) return 0 ;
  2204     if (ox == NULL) return 0 ;
  2206     // Avoid transitive spinning ...
  2207     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
  2208     // Immediately after T1 acquires L it's possible that T2, also
  2209     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
  2210     // This occurs transiently after T1 acquired L but before
  2211     // T1 managed to clear T1.Stalled.  T2 does not need to abort
  2212     // its spin in this circumstance.
  2213     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
  2215     if (BlockedOn == 1) return 1 ;
  2216     if (BlockedOn != 0) {
  2217       return BlockedOn != intptr_t(this) && _owner == ox ;
  2220     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
  2221     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
  2222     // consider also: jst != _thread_in_Java -- but that's overspecific.
  2223     return jst == _thread_blocked || jst == _thread_in_native ;
  2227 // -----------------------------------------------------------------------------
  2228 // WaitSet management ...
  2230 ObjectWaiter::ObjectWaiter(Thread* thread) {
  2231   _next     = NULL;
  2232   _prev     = NULL;
  2233   _notified = 0;
  2234   TState    = TS_RUN ;
  2235   _thread   = thread;
  2236   _event    = thread->_ParkEvent ;
  2237   _active   = false;
  2238   assert (_event != NULL, "invariant") ;
  2241 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
  2242   JavaThread *jt = (JavaThread *)this->_thread;
  2243   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
  2246 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
  2247   JavaThread *jt = (JavaThread *)this->_thread;
  2248   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
  2251 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
  2252   assert(node != NULL, "should not dequeue NULL node");
  2253   assert(node->_prev == NULL, "node already in list");
  2254   assert(node->_next == NULL, "node already in list");
  2255   // put node at end of queue (circular doubly linked list)
  2256   if (_WaitSet == NULL) {
  2257     _WaitSet = node;
  2258     node->_prev = node;
  2259     node->_next = node;
  2260   } else {
  2261     ObjectWaiter* head = _WaitSet ;
  2262     ObjectWaiter* tail = head->_prev;
  2263     assert(tail->_next == head, "invariant check");
  2264     tail->_next = node;
  2265     head->_prev = node;
  2266     node->_next = head;
  2267     node->_prev = tail;
  2271 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
  2272   // dequeue the very first waiter
  2273   ObjectWaiter* waiter = _WaitSet;
  2274   if (waiter) {
  2275     DequeueSpecificWaiter(waiter);
  2277   return waiter;
  2280 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
  2281   assert(node != NULL, "should not dequeue NULL node");
  2282   assert(node->_prev != NULL, "node already removed from list");
  2283   assert(node->_next != NULL, "node already removed from list");
  2284   // when the waiter has woken up because of interrupt,
  2285   // timeout or other spurious wake-up, dequeue the
  2286   // waiter from waiting list
  2287   ObjectWaiter* next = node->_next;
  2288   if (next == node) {
  2289     assert(node->_prev == node, "invariant check");
  2290     _WaitSet = NULL;
  2291   } else {
  2292     ObjectWaiter* prev = node->_prev;
  2293     assert(prev->_next == node, "invariant check");
  2294     assert(next->_prev == node, "invariant check");
  2295     next->_prev = prev;
  2296     prev->_next = next;
  2297     if (_WaitSet == node) {
  2298       _WaitSet = next;
  2301   node->_next = NULL;
  2302   node->_prev = NULL;
  2305 // -----------------------------------------------------------------------------
  2306 // PerfData support
  2307 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
  2308 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
  2309 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
  2310 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
  2311 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
  2312 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
  2313 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
  2314 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
  2315 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
  2316 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
  2317 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
  2318 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
  2319 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
  2320 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
  2321 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
  2322 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
  2323 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
  2324 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
  2326 // One-shot global initialization for the sync subsystem.
  2327 // We could also defer initialization and initialize on-demand
  2328 // the first time we call inflate().  Initialization would
  2329 // be protected - like so many things - by the MonitorCache_lock.
  2331 void ObjectMonitor::Initialize () {
  2332   static int InitializationCompleted = 0 ;
  2333   assert (InitializationCompleted == 0, "invariant") ;
  2334   InitializationCompleted = 1 ;
  2335   if (UsePerfData) {
  2336       EXCEPTION_MARK ;
  2337       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2338       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2339       NEWPERFCOUNTER(_sync_Inflations) ;
  2340       NEWPERFCOUNTER(_sync_Deflations) ;
  2341       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
  2342       NEWPERFCOUNTER(_sync_FutileWakeups) ;
  2343       NEWPERFCOUNTER(_sync_Parks) ;
  2344       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
  2345       NEWPERFCOUNTER(_sync_Notifications) ;
  2346       NEWPERFCOUNTER(_sync_SlowEnter) ;
  2347       NEWPERFCOUNTER(_sync_SlowExit) ;
  2348       NEWPERFCOUNTER(_sync_SlowNotify) ;
  2349       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
  2350       NEWPERFCOUNTER(_sync_FailedSpins) ;
  2351       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
  2352       NEWPERFCOUNTER(_sync_PrivateA) ;
  2353       NEWPERFCOUNTER(_sync_PrivateB) ;
  2354       NEWPERFCOUNTER(_sync_MonInCirculation) ;
  2355       NEWPERFCOUNTER(_sync_MonScavenged) ;
  2356       NEWPERFVARIABLE(_sync_MonExtant) ;
  2357       #undef NEWPERFCOUNTER
  2362 // Compile-time asserts
  2363 // When possible, it's better to catch errors deterministically at
  2364 // compile-time than at runtime.  The down-side to using compile-time
  2365 // asserts is that error message -- often something about negative array
  2366 // indices -- is opaque.
  2368 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
  2370 void ObjectMonitor::ctAsserts() {
  2371   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
  2375 static char * kvGet (char * kvList, const char * Key) {
  2376     if (kvList == NULL) return NULL ;
  2377     size_t n = strlen (Key) ;
  2378     char * Search ;
  2379     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
  2380         if (strncmp (Search, Key, n) == 0) {
  2381             if (Search[n] == '=') return Search + n + 1 ;
  2382             if (Search[n] == 0)   return (char *) "1" ;
  2385     return NULL ;
  2388 static int kvGetInt (char * kvList, const char * Key, int Default) {
  2389     char * v = kvGet (kvList, Key) ;
  2390     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
  2391     if (Knob_ReportSettings && v != NULL) {
  2392         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
  2393         ::fflush (stdout) ;
  2395     return rslt ;
  2398 void ObjectMonitor::DeferredInitialize () {
  2399   if (InitDone > 0) return ;
  2400   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
  2401       while (InitDone != 1) ;
  2402       return ;
  2405   // One-shot global initialization ...
  2406   // The initialization is idempotent, so we don't need locks.
  2407   // In the future consider doing this via os::init_2().
  2408   // SyncKnobs consist of <Key>=<Value> pairs in the style
  2409   // of environment variables.  Start by converting ':' to NUL.
  2411   if (SyncKnobs == NULL) SyncKnobs = "" ;
  2413   size_t sz = strlen (SyncKnobs) ;
  2414   char * knobs = (char *) malloc (sz + 2) ;
  2415   if (knobs == NULL) {
  2416      vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
  2417      guarantee (0, "invariant") ;
  2419   strcpy (knobs, SyncKnobs) ;
  2420   knobs[sz+1] = 0 ;
  2421   for (char * p = knobs ; *p ; p++) {
  2422      if (*p == ':') *p = 0 ;
  2425   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
  2426   SETKNOB(ReportSettings) ;
  2427   SETKNOB(Verbose) ;
  2428   SETKNOB(FixedSpin) ;
  2429   SETKNOB(SpinLimit) ;
  2430   SETKNOB(SpinBase) ;
  2431   SETKNOB(SpinBackOff);
  2432   SETKNOB(CASPenalty) ;
  2433   SETKNOB(OXPenalty) ;
  2434   SETKNOB(LogSpins) ;
  2435   SETKNOB(SpinSetSucc) ;
  2436   SETKNOB(SuccEnabled) ;
  2437   SETKNOB(SuccRestrict) ;
  2438   SETKNOB(Penalty) ;
  2439   SETKNOB(Bonus) ;
  2440   SETKNOB(BonusB) ;
  2441   SETKNOB(Poverty) ;
  2442   SETKNOB(SpinAfterFutile) ;
  2443   SETKNOB(UsePause) ;
  2444   SETKNOB(SpinEarly) ;
  2445   SETKNOB(OState) ;
  2446   SETKNOB(MaxSpinners) ;
  2447   SETKNOB(PreSpin) ;
  2448   SETKNOB(ExitPolicy) ;
  2449   SETKNOB(QMode);
  2450   SETKNOB(ResetEvent) ;
  2451   SETKNOB(MoveNotifyee) ;
  2452   SETKNOB(FastHSSEC) ;
  2453   #undef SETKNOB
  2455   if (os::is_MP()) {
  2456      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
  2457      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
  2458      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
  2459   } else {
  2460      Knob_SpinLimit = 0 ;
  2461      Knob_SpinBase  = 0 ;
  2462      Knob_PreSpin   = 0 ;
  2463      Knob_FixedSpin = -1 ;
  2466   if (Knob_LogSpins == 0) {
  2467      ObjectMonitor::_sync_FailedSpins = NULL ;
  2470   free (knobs) ;
  2471   OrderAccess::fence() ;
  2472   InitDone = 1 ;
  2475 #ifndef PRODUCT
  2476 void ObjectMonitor::verify() {
  2479 void ObjectMonitor::print() {
  2481 #endif

mercurial