src/os/bsd/vm/os_bsd.cpp

Thu, 13 Oct 2011 09:35:42 -0700

author
dcubed
date
Thu, 13 Oct 2011 09:35:42 -0700
changeset 3202
436b4a3231bf
parent 3156
f08d439fab8c
child 3281
36b057451829
permissions
-rw-r--r--

7098194: integrate macosx-port changes
Summary: Integrate bsd-port/hotspot and macosx-port/hotspot changes as of 2011.09.29.
Reviewed-by: kvn, dholmes, never, phh
Contributed-by: Christos Zoulas <christos@zoulas.com>, Greg Lewis <glewis@eyesbeyond.com>, Kurt Miller <kurt@intricatesoftware.com>, Alexander Strange <astrange@apple.com>, Mike Swingler <swingler@apple.com>, Roger Hoover <rhoover@apple.com>, Victor Hernandez <vhernandez@apple.com>, Pratik Solanki <psolanki@apple.com>

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_bsd.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/filemap.hpp"
    36 #include "mutex_bsd.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "os_share_bsd.hpp"
    39 #include "prims/jniFastGetField.hpp"
    40 #include "prims/jvm.h"
    41 #include "prims/jvm_misc.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/extendedPC.hpp"
    44 #include "runtime/globals.hpp"
    45 #include "runtime/interfaceSupport.hpp"
    46 #include "runtime/java.hpp"
    47 #include "runtime/javaCalls.hpp"
    48 #include "runtime/mutexLocker.hpp"
    49 #include "runtime/objectMonitor.hpp"
    50 #include "runtime/osThread.hpp"
    51 #include "runtime/perfMemory.hpp"
    52 #include "runtime/sharedRuntime.hpp"
    53 #include "runtime/statSampler.hpp"
    54 #include "runtime/stubRoutines.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/timer.hpp"
    57 #include "services/attachListener.hpp"
    58 #include "services/runtimeService.hpp"
    59 #include "thread_bsd.inline.hpp"
    60 #include "utilities/decoder.hpp"
    61 #include "utilities/defaultStream.hpp"
    62 #include "utilities/events.hpp"
    63 #include "utilities/growableArray.hpp"
    64 #include "utilities/vmError.hpp"
    65 #ifdef TARGET_ARCH_x86
    66 # include "assembler_x86.inline.hpp"
    67 # include "nativeInst_x86.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_sparc
    70 # include "assembler_sparc.inline.hpp"
    71 # include "nativeInst_sparc.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_zero
    74 # include "assembler_zero.inline.hpp"
    75 # include "nativeInst_zero.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_arm
    78 # include "assembler_arm.inline.hpp"
    79 # include "nativeInst_arm.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_ppc
    82 # include "assembler_ppc.inline.hpp"
    83 # include "nativeInst_ppc.hpp"
    84 #endif
    85 #ifdef COMPILER1
    86 #include "c1/c1_Runtime1.hpp"
    87 #endif
    88 #ifdef COMPILER2
    89 #include "opto/runtime.hpp"
    90 #endif
    92 // put OS-includes here
    93 # include <sys/types.h>
    94 # include <sys/mman.h>
    95 # include <sys/stat.h>
    96 # include <sys/select.h>
    97 # include <pthread.h>
    98 # include <signal.h>
    99 # include <errno.h>
   100 # include <dlfcn.h>
   101 # include <stdio.h>
   102 # include <unistd.h>
   103 # include <sys/resource.h>
   104 # include <pthread.h>
   105 # include <sys/stat.h>
   106 # include <sys/time.h>
   107 # include <sys/times.h>
   108 # include <sys/utsname.h>
   109 # include <sys/socket.h>
   110 # include <sys/wait.h>
   111 # include <time.h>
   112 # include <pwd.h>
   113 # include <poll.h>
   114 # include <semaphore.h>
   115 # include <fcntl.h>
   116 # include <string.h>
   117 #ifdef _ALLBSD_SOURCE
   118 # include <sys/param.h>
   119 # include <sys/sysctl.h>
   120 #else
   121 # include <syscall.h>
   122 # include <sys/sysinfo.h>
   123 # include <gnu/libc-version.h>
   124 #endif
   125 # include <sys/ipc.h>
   126 # include <sys/shm.h>
   127 #ifndef __APPLE__
   128 # include <link.h>
   129 #endif
   130 # include <stdint.h>
   131 # include <inttypes.h>
   132 # include <sys/ioctl.h>
   134 #if defined(__FreeBSD__) || defined(__NetBSD__)
   135 # include <elf.h>
   136 #endif
   138 #ifdef __APPLE__
   139 # include <mach/mach.h> // semaphore_* API
   140 # include <mach-o/dyld.h>
   141 # include <sys/proc_info.h>
   142 # include <objc/objc-auto.h>
   143 #endif
   145 #ifndef MAP_ANONYMOUS
   146 #define MAP_ANONYMOUS MAP_ANON
   147 #endif
   149 #define MAX_PATH    (2 * K)
   151 // for timer info max values which include all bits
   152 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   153 #define SEC_IN_NANOSECS  1000000000LL
   155 #define LARGEPAGES_BIT (1 << 6)
   156 ////////////////////////////////////////////////////////////////////////////////
   157 // global variables
   158 julong os::Bsd::_physical_memory = 0;
   160 #ifndef _ALLBSD_SOURCE
   161 address   os::Bsd::_initial_thread_stack_bottom = NULL;
   162 uintptr_t os::Bsd::_initial_thread_stack_size   = 0;
   163 #endif
   165 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   166 #ifndef _ALLBSD_SOURCE
   167 int (*os::Bsd::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   168 Mutex* os::Bsd::_createThread_lock = NULL;
   169 #endif
   170 pthread_t os::Bsd::_main_thread;
   171 int os::Bsd::_page_size = -1;
   172 #ifndef _ALLBSD_SOURCE
   173 bool os::Bsd::_is_floating_stack = false;
   174 bool os::Bsd::_is_NPTL = false;
   175 bool os::Bsd::_supports_fast_thread_cpu_time = false;
   176 const char * os::Bsd::_glibc_version = NULL;
   177 const char * os::Bsd::_libpthread_version = NULL;
   178 #endif
   180 static jlong initial_time_count=0;
   182 static int clock_tics_per_sec = 100;
   184 // For diagnostics to print a message once. see run_periodic_checks
   185 static sigset_t check_signal_done;
   186 static bool check_signals = true;;
   188 static pid_t _initial_pid = 0;
   190 /* Signal number used to suspend/resume a thread */
   192 /* do not use any signal number less than SIGSEGV, see 4355769 */
   193 static int SR_signum = SIGUSR2;
   194 sigset_t SR_sigset;
   197 ////////////////////////////////////////////////////////////////////////////////
   198 // utility functions
   200 static int SR_initialize();
   201 static int SR_finalize();
   203 julong os::available_memory() {
   204   return Bsd::available_memory();
   205 }
   207 julong os::Bsd::available_memory() {
   208 #ifdef _ALLBSD_SOURCE
   209   // XXXBSD: this is just a stopgap implementation
   210   return physical_memory() >> 2;
   211 #else
   212   // values in struct sysinfo are "unsigned long"
   213   struct sysinfo si;
   214   sysinfo(&si);
   216   return (julong)si.freeram * si.mem_unit;
   217 #endif
   218 }
   220 julong os::physical_memory() {
   221   return Bsd::physical_memory();
   222 }
   224 julong os::allocatable_physical_memory(julong size) {
   225 #ifdef _LP64
   226   return size;
   227 #else
   228   julong result = MIN2(size, (julong)3800*M);
   229    if (!is_allocatable(result)) {
   230      // See comments under solaris for alignment considerations
   231      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   232      result =  MIN2(size, reasonable_size);
   233    }
   234    return result;
   235 #endif // _LP64
   236 }
   238 ////////////////////////////////////////////////////////////////////////////////
   239 // environment support
   241 bool os::getenv(const char* name, char* buf, int len) {
   242   const char* val = ::getenv(name);
   243   if (val != NULL && strlen(val) < (size_t)len) {
   244     strcpy(buf, val);
   245     return true;
   246   }
   247   if (len > 0) buf[0] = 0;  // return a null string
   248   return false;
   249 }
   252 // Return true if user is running as root.
   254 bool os::have_special_privileges() {
   255   static bool init = false;
   256   static bool privileges = false;
   257   if (!init) {
   258     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   259     init = true;
   260   }
   261   return privileges;
   262 }
   265 #ifndef _ALLBSD_SOURCE
   266 #ifndef SYS_gettid
   267 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   268 #ifdef __ia64__
   269 #define SYS_gettid 1105
   270 #elif __i386__
   271 #define SYS_gettid 224
   272 #elif __amd64__
   273 #define SYS_gettid 186
   274 #elif __sparc__
   275 #define SYS_gettid 143
   276 #else
   277 #error define gettid for the arch
   278 #endif
   279 #endif
   280 #endif
   282 // Cpu architecture string
   283 #if   defined(ZERO)
   284 static char cpu_arch[] = ZERO_LIBARCH;
   285 #elif defined(IA64)
   286 static char cpu_arch[] = "ia64";
   287 #elif defined(IA32)
   288 static char cpu_arch[] = "i386";
   289 #elif defined(AMD64)
   290 static char cpu_arch[] = "amd64";
   291 #elif defined(ARM)
   292 static char cpu_arch[] = "arm";
   293 #elif defined(PPC)
   294 static char cpu_arch[] = "ppc";
   295 #elif defined(SPARC)
   296 #  ifdef _LP64
   297 static char cpu_arch[] = "sparcv9";
   298 #  else
   299 static char cpu_arch[] = "sparc";
   300 #  endif
   301 #else
   302 #error Add appropriate cpu_arch setting
   303 #endif
   306 #ifndef _ALLBSD_SOURCE
   307 // pid_t gettid()
   308 //
   309 // Returns the kernel thread id of the currently running thread. Kernel
   310 // thread id is used to access /proc.
   311 //
   312 // (Note that getpid() on BsdThreads returns kernel thread id too; but
   313 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   314 //
   315 pid_t os::Bsd::gettid() {
   316   int rslt = syscall(SYS_gettid);
   317   if (rslt == -1) {
   318      // old kernel, no NPTL support
   319      return getpid();
   320   } else {
   321      return (pid_t)rslt;
   322   }
   323 }
   325 // Most versions of bsd have a bug where the number of processors are
   326 // determined by looking at the /proc file system.  In a chroot environment,
   327 // the system call returns 1.  This causes the VM to act as if it is
   328 // a single processor and elide locking (see is_MP() call).
   329 static bool unsafe_chroot_detected = false;
   330 static const char *unstable_chroot_error = "/proc file system not found.\n"
   331                      "Java may be unstable running multithreaded in a chroot "
   332                      "environment on Bsd when /proc filesystem is not mounted.";
   333 #endif
   335 #ifdef _ALLBSD_SOURCE
   336 void os::Bsd::initialize_system_info() {
   337   int mib[2];
   338   size_t len;
   339   int cpu_val;
   340   u_long mem_val;
   342   /* get processors count via hw.ncpus sysctl */
   343   mib[0] = CTL_HW;
   344   mib[1] = HW_NCPU;
   345   len = sizeof(cpu_val);
   346   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
   347        set_processor_count(cpu_val);
   348   }
   349   else {
   350        set_processor_count(1);   // fallback
   351   }
   353   /* get physical memory via hw.usermem sysctl (hw.usermem is used
   354    * instead of hw.physmem because we need size of allocatable memory
   355    */
   356   mib[0] = CTL_HW;
   357   mib[1] = HW_USERMEM;
   358   len = sizeof(mem_val);
   359   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1)
   360        _physical_memory = mem_val;
   361   else
   362        _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
   364 #ifdef __OpenBSD__
   365   {
   366        // limit _physical_memory memory view on OpenBSD since
   367        // datasize rlimit restricts us anyway.
   368        struct rlimit limits;
   369        getrlimit(RLIMIT_DATA, &limits);
   370        _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
   371   }
   372 #endif
   373 }
   374 #else
   375 void os::Bsd::initialize_system_info() {
   376   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   377   if (processor_count() == 1) {
   378     pid_t pid = os::Bsd::gettid();
   379     char fname[32];
   380     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   381     FILE *fp = fopen(fname, "r");
   382     if (fp == NULL) {
   383       unsafe_chroot_detected = true;
   384     } else {
   385       fclose(fp);
   386     }
   387   }
   388   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   389   assert(processor_count() > 0, "bsd error");
   390 }
   391 #endif
   393 #ifdef __APPLE__
   394 static const char *get_home() {
   395   const char *home_dir = ::getenv("HOME");
   396   if ((home_dir == NULL) || (*home_dir == '\0')) {
   397     struct passwd *passwd_info = getpwuid(geteuid());
   398     if (passwd_info != NULL) {
   399       home_dir = passwd_info->pw_dir;
   400     }
   401   }
   403   return home_dir;
   404 }
   405 #endif
   407 void os::init_system_properties_values() {
   408 //  char arch[12];
   409 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   411   // The next steps are taken in the product version:
   412   //
   413   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   414   // This library should be located at:
   415   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   416   //
   417   // If "/jre/lib/" appears at the right place in the path, then we
   418   // assume libjvm[_g].so is installed in a JDK and we use this path.
   419   //
   420   // Otherwise exit with message: "Could not create the Java virtual machine."
   421   //
   422   // The following extra steps are taken in the debugging version:
   423   //
   424   // If "/jre/lib/" does NOT appear at the right place in the path
   425   // instead of exit check for $JAVA_HOME environment variable.
   426   //
   427   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   428   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   429   // it looks like libjvm[_g].so is installed there
   430   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   431   //
   432   // Otherwise exit.
   433   //
   434   // Important note: if the location of libjvm.so changes this
   435   // code needs to be changed accordingly.
   437   // The next few definitions allow the code to be verbatim:
   438 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   439 #define getenv(n) ::getenv(n)
   441 /*
   442  * See ld(1):
   443  *      The linker uses the following search paths to locate required
   444  *      shared libraries:
   445  *        1: ...
   446  *        ...
   447  *        7: The default directories, normally /lib and /usr/lib.
   448  */
   449 #ifndef DEFAULT_LIBPATH
   450 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   451 #endif
   453 #define EXTENSIONS_DIR  "/lib/ext"
   454 #define ENDORSED_DIR    "/lib/endorsed"
   455 #define REG_DIR         "/usr/java/packages"
   457 #ifdef __APPLE__
   458 #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
   459 #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
   460         const char *user_home_dir = get_home();
   461         // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
   462         int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
   463             sizeof(SYS_EXTENSIONS_DIRS);
   464 #endif
   466   {
   467     /* sysclasspath, java_home, dll_dir */
   468     {
   469         char *home_path;
   470         char *dll_path;
   471         char *pslash;
   472         char buf[MAXPATHLEN];
   473         os::jvm_path(buf, sizeof(buf));
   475         // Found the full path to libjvm.so.
   476         // Now cut the path to <java_home>/jre if we can.
   477         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   478         pslash = strrchr(buf, '/');
   479         if (pslash != NULL)
   480             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   481         dll_path = malloc(strlen(buf) + 1);
   482         if (dll_path == NULL)
   483             return;
   484         strcpy(dll_path, buf);
   485         Arguments::set_dll_dir(dll_path);
   487         if (pslash != NULL) {
   488             pslash = strrchr(buf, '/');
   489             if (pslash != NULL) {
   490                 *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
   491 #ifndef __APPLE__
   492                 pslash = strrchr(buf, '/');
   493                 if (pslash != NULL)
   494                     *pslash = '\0';   /* get rid of /lib */
   495 #endif
   496             }
   497         }
   499         home_path = malloc(strlen(buf) + 1);
   500         if (home_path == NULL)
   501             return;
   502         strcpy(home_path, buf);
   503         Arguments::set_java_home(home_path);
   505         if (!set_boot_path('/', ':'))
   506             return;
   507     }
   509     /*
   510      * Where to look for native libraries
   511      *
   512      * Note: Due to a legacy implementation, most of the library path
   513      * is set in the launcher.  This was to accomodate linking restrictions
   514      * on legacy Bsd implementations (which are no longer supported).
   515      * Eventually, all the library path setting will be done here.
   516      *
   517      * However, to prevent the proliferation of improperly built native
   518      * libraries, the new path component /usr/java/packages is added here.
   519      * Eventually, all the library path setting will be done here.
   520      */
   521     {
   522         char *ld_library_path;
   524         /*
   525          * Construct the invariant part of ld_library_path. Note that the
   526          * space for the colon and the trailing null are provided by the
   527          * nulls included by the sizeof operator (so actually we allocate
   528          * a byte more than necessary).
   529          */
   530 #ifdef __APPLE__
   531         ld_library_path = (char *) malloc(system_ext_size);
   532         sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
   533 #else
   534         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   535             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   536         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   537 #endif
   539         /*
   540          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   541          * should always exist (until the legacy problem cited above is
   542          * addressed).
   543          */
   544 #ifdef __APPLE__
   545         // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
   546         char *l = getenv("JAVA_LIBRARY_PATH");
   547         if (l != NULL) {
   548             char *t = ld_library_path;
   549             /* That's +1 for the colon and +1 for the trailing '\0' */
   550             ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
   551             sprintf(ld_library_path, "%s:%s", l, t);
   552             free(t);
   553         }
   555         char *v = getenv("DYLD_LIBRARY_PATH");
   556 #else
   557         char *v = getenv("LD_LIBRARY_PATH");
   558 #endif
   559         if (v != NULL) {
   560             char *t = ld_library_path;
   561             /* That's +1 for the colon and +1 for the trailing '\0' */
   562             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   563             sprintf(ld_library_path, "%s:%s", v, t);
   564             free(t);
   565         }
   566         Arguments::set_library_path(ld_library_path);
   567     }
   569     /*
   570      * Extensions directories.
   571      *
   572      * Note that the space for the colon and the trailing null are provided
   573      * by the nulls included by the sizeof operator (so actually one byte more
   574      * than necessary is allocated).
   575      */
   576     {
   577 #ifdef __APPLE__
   578         char *buf = malloc(strlen(Arguments::get_java_home()) +
   579             sizeof(EXTENSIONS_DIR) + system_ext_size);
   580         sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
   581             SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
   582 #else
   583         char *buf = malloc(strlen(Arguments::get_java_home()) +
   584             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   585         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   586             Arguments::get_java_home());
   587 #endif
   589         Arguments::set_ext_dirs(buf);
   590     }
   592     /* Endorsed standards default directory. */
   593     {
   594         char * buf;
   595         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   596         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   597         Arguments::set_endorsed_dirs(buf);
   598     }
   599   }
   601 #ifdef __APPLE__
   602 #undef SYS_EXTENSIONS_DIR
   603 #endif
   604 #undef malloc
   605 #undef getenv
   606 #undef EXTENSIONS_DIR
   607 #undef ENDORSED_DIR
   609   // Done
   610   return;
   611 }
   613 ////////////////////////////////////////////////////////////////////////////////
   614 // breakpoint support
   616 void os::breakpoint() {
   617   BREAKPOINT;
   618 }
   620 extern "C" void breakpoint() {
   621   // use debugger to set breakpoint here
   622 }
   624 ////////////////////////////////////////////////////////////////////////////////
   625 // signal support
   627 debug_only(static bool signal_sets_initialized = false);
   628 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   630 bool os::Bsd::is_sig_ignored(int sig) {
   631       struct sigaction oact;
   632       sigaction(sig, (struct sigaction*)NULL, &oact);
   633       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   634                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   635       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   636            return true;
   637       else
   638            return false;
   639 }
   641 void os::Bsd::signal_sets_init() {
   642   // Should also have an assertion stating we are still single-threaded.
   643   assert(!signal_sets_initialized, "Already initialized");
   644   // Fill in signals that are necessarily unblocked for all threads in
   645   // the VM. Currently, we unblock the following signals:
   646   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   647   //                         by -Xrs (=ReduceSignalUsage));
   648   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   649   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   650   // the dispositions or masks wrt these signals.
   651   // Programs embedding the VM that want to use the above signals for their
   652   // own purposes must, at this time, use the "-Xrs" option to prevent
   653   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   654   // (See bug 4345157, and other related bugs).
   655   // In reality, though, unblocking these signals is really a nop, since
   656   // these signals are not blocked by default.
   657   sigemptyset(&unblocked_sigs);
   658   sigemptyset(&allowdebug_blocked_sigs);
   659   sigaddset(&unblocked_sigs, SIGILL);
   660   sigaddset(&unblocked_sigs, SIGSEGV);
   661   sigaddset(&unblocked_sigs, SIGBUS);
   662   sigaddset(&unblocked_sigs, SIGFPE);
   663   sigaddset(&unblocked_sigs, SR_signum);
   665   if (!ReduceSignalUsage) {
   666    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   667       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   668       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   669    }
   670    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   671       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   672       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   673    }
   674    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   675       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   676       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   677    }
   678   }
   679   // Fill in signals that are blocked by all but the VM thread.
   680   sigemptyset(&vm_sigs);
   681   if (!ReduceSignalUsage)
   682     sigaddset(&vm_sigs, BREAK_SIGNAL);
   683   debug_only(signal_sets_initialized = true);
   685 }
   687 // These are signals that are unblocked while a thread is running Java.
   688 // (For some reason, they get blocked by default.)
   689 sigset_t* os::Bsd::unblocked_signals() {
   690   assert(signal_sets_initialized, "Not initialized");
   691   return &unblocked_sigs;
   692 }
   694 // These are the signals that are blocked while a (non-VM) thread is
   695 // running Java. Only the VM thread handles these signals.
   696 sigset_t* os::Bsd::vm_signals() {
   697   assert(signal_sets_initialized, "Not initialized");
   698   return &vm_sigs;
   699 }
   701 // These are signals that are blocked during cond_wait to allow debugger in
   702 sigset_t* os::Bsd::allowdebug_blocked_signals() {
   703   assert(signal_sets_initialized, "Not initialized");
   704   return &allowdebug_blocked_sigs;
   705 }
   707 void os::Bsd::hotspot_sigmask(Thread* thread) {
   709   //Save caller's signal mask before setting VM signal mask
   710   sigset_t caller_sigmask;
   711   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   713   OSThread* osthread = thread->osthread();
   714   osthread->set_caller_sigmask(caller_sigmask);
   716   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
   718   if (!ReduceSignalUsage) {
   719     if (thread->is_VM_thread()) {
   720       // Only the VM thread handles BREAK_SIGNAL ...
   721       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   722     } else {
   723       // ... all other threads block BREAK_SIGNAL
   724       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   725     }
   726   }
   727 }
   729 #ifndef _ALLBSD_SOURCE
   730 //////////////////////////////////////////////////////////////////////////////
   731 // detecting pthread library
   733 void os::Bsd::libpthread_init() {
   734   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   735   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   736   // generic name for earlier versions.
   737   // Define macros here so we can build HotSpot on old systems.
   738 # ifndef _CS_GNU_LIBC_VERSION
   739 # define _CS_GNU_LIBC_VERSION 2
   740 # endif
   741 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   742 # define _CS_GNU_LIBPTHREAD_VERSION 3
   743 # endif
   745   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   746   if (n > 0) {
   747      char *str = (char *)malloc(n);
   748      confstr(_CS_GNU_LIBC_VERSION, str, n);
   749      os::Bsd::set_glibc_version(str);
   750   } else {
   751      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   752      static char _gnu_libc_version[32];
   753      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   754               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   755      os::Bsd::set_glibc_version(_gnu_libc_version);
   756   }
   758   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   759   if (n > 0) {
   760      char *str = (char *)malloc(n);
   761      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   762      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   763      // us "NPTL-0.29" even we are running with BsdThreads. Check if this
   764      // is the case. BsdThreads has a hard limit on max number of threads.
   765      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   766      // On the other hand, NPTL does not have such a limit, sysconf()
   767      // will return -1 and errno is not changed. Check if it is really NPTL.
   768      if (strcmp(os::Bsd::glibc_version(), "glibc 2.3.2") == 0 &&
   769          strstr(str, "NPTL") &&
   770          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   771        free(str);
   772        os::Bsd::set_libpthread_version("bsdthreads");
   773      } else {
   774        os::Bsd::set_libpthread_version(str);
   775      }
   776   } else {
   777     // glibc before 2.3.2 only has BsdThreads.
   778     os::Bsd::set_libpthread_version("bsdthreads");
   779   }
   781   if (strstr(libpthread_version(), "NPTL")) {
   782      os::Bsd::set_is_NPTL();
   783   } else {
   784      os::Bsd::set_is_BsdThreads();
   785   }
   787   // BsdThreads have two flavors: floating-stack mode, which allows variable
   788   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   789   if (os::Bsd::is_NPTL() || os::Bsd::supports_variable_stack_size()) {
   790      os::Bsd::set_is_floating_stack();
   791   }
   792 }
   794 /////////////////////////////////////////////////////////////////////////////
   795 // thread stack
   797 // Force Bsd kernel to expand current thread stack. If "bottom" is close
   798 // to the stack guard, caller should block all signals.
   799 //
   800 // MAP_GROWSDOWN:
   801 //   A special mmap() flag that is used to implement thread stacks. It tells
   802 //   kernel that the memory region should extend downwards when needed. This
   803 //   allows early versions of BsdThreads to only mmap the first few pages
   804 //   when creating a new thread. Bsd kernel will automatically expand thread
   805 //   stack as needed (on page faults).
   806 //
   807 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   808 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   809 //   region, it's hard to tell if the fault is due to a legitimate stack
   810 //   access or because of reading/writing non-exist memory (e.g. buffer
   811 //   overrun). As a rule, if the fault happens below current stack pointer,
   812 //   Bsd kernel does not expand stack, instead a SIGSEGV is sent to the
   813 //   application (see Bsd kernel fault.c).
   814 //
   815 //   This Bsd feature can cause SIGSEGV when VM bangs thread stack for
   816 //   stack overflow detection.
   817 //
   818 //   Newer version of BsdThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   819 //   not use this flag. However, the stack of initial thread is not created
   820 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   821 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   822 //   and then attach the thread to JVM.
   823 //
   824 // To get around the problem and allow stack banging on Bsd, we need to
   825 // manually expand thread stack after receiving the SIGSEGV.
   826 //
   827 // There are two ways to expand thread stack to address "bottom", we used
   828 // both of them in JVM before 1.5:
   829 //   1. adjust stack pointer first so that it is below "bottom", and then
   830 //      touch "bottom"
   831 //   2. mmap() the page in question
   832 //
   833 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   834 // if current sp is already near the lower end of page 101, and we need to
   835 // call mmap() to map page 100, it is possible that part of the mmap() frame
   836 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   837 // That will destroy the mmap() frame and cause VM to crash.
   838 //
   839 // The following code works by adjusting sp first, then accessing the "bottom"
   840 // page to force a page fault. Bsd kernel will then automatically expand the
   841 // stack mapping.
   842 //
   843 // _expand_stack_to() assumes its frame size is less than page size, which
   844 // should always be true if the function is not inlined.
   846 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   847 #define NOINLINE
   848 #else
   849 #define NOINLINE __attribute__ ((noinline))
   850 #endif
   852 static void _expand_stack_to(address bottom) NOINLINE;
   854 static void _expand_stack_to(address bottom) {
   855   address sp;
   856   size_t size;
   857   volatile char *p;
   859   // Adjust bottom to point to the largest address within the same page, it
   860   // gives us a one-page buffer if alloca() allocates slightly more memory.
   861   bottom = (address)align_size_down((uintptr_t)bottom, os::Bsd::page_size());
   862   bottom += os::Bsd::page_size() - 1;
   864   // sp might be slightly above current stack pointer; if that's the case, we
   865   // will alloca() a little more space than necessary, which is OK. Don't use
   866   // os::current_stack_pointer(), as its result can be slightly below current
   867   // stack pointer, causing us to not alloca enough to reach "bottom".
   868   sp = (address)&sp;
   870   if (sp > bottom) {
   871     size = sp - bottom;
   872     p = (volatile char *)alloca(size);
   873     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   874     p[0] = '\0';
   875   }
   876 }
   878 bool os::Bsd::manually_expand_stack(JavaThread * t, address addr) {
   879   assert(t!=NULL, "just checking");
   880   assert(t->osthread()->expanding_stack(), "expand should be set");
   881   assert(t->stack_base() != NULL, "stack_base was not initialized");
   883   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   884     sigset_t mask_all, old_sigset;
   885     sigfillset(&mask_all);
   886     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   887     _expand_stack_to(addr);
   888     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   889     return true;
   890   }
   891   return false;
   892 }
   893 #endif
   895 //////////////////////////////////////////////////////////////////////////////
   896 // create new thread
   898 static address highest_vm_reserved_address();
   900 // check if it's safe to start a new thread
   901 static bool _thread_safety_check(Thread* thread) {
   902 #ifdef _ALLBSD_SOURCE
   903     return true;
   904 #else
   905   if (os::Bsd::is_BsdThreads() && !os::Bsd::is_floating_stack()) {
   906     // Fixed stack BsdThreads (SuSE Bsd/x86, and some versions of Redhat)
   907     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   908     //   allocated (MAP_FIXED) from high address space. Every thread stack
   909     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   910     //   it to other values if they rebuild BsdThreads).
   911     //
   912     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   913     // the memory region has already been mmap'ed. That means if we have too
   914     // many threads and/or very large heap, eventually thread stack will
   915     // collide with heap.
   916     //
   917     // Here we try to prevent heap/stack collision by comparing current
   918     // stack bottom with the highest address that has been mmap'ed by JVM
   919     // plus a safety margin for memory maps created by native code.
   920     //
   921     // This feature can be disabled by setting ThreadSafetyMargin to 0
   922     //
   923     if (ThreadSafetyMargin > 0) {
   924       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   926       // not safe if our stack extends below the safety margin
   927       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   928     } else {
   929       return true;
   930     }
   931   } else {
   932     // Floating stack BsdThreads or NPTL:
   933     //   Unlike fixed stack BsdThreads, thread stacks are not MAP_FIXED. When
   934     //   there's not enough space left, pthread_create() will fail. If we come
   935     //   here, that means enough space has been reserved for stack.
   936     return true;
   937   }
   938 #endif
   939 }
   941 #ifdef __APPLE__
   942 // library handle for calling objc_registerThreadWithCollector()
   943 // without static linking to the libobjc library
   944 #define OBJC_LIB "/usr/lib/libobjc.dylib"
   945 #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
   946 typedef void (*objc_registerThreadWithCollector_t)();
   947 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
   948 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
   949 #endif
   951 // Thread start routine for all newly created threads
   952 static void *java_start(Thread *thread) {
   953   // Try to randomize the cache line index of hot stack frames.
   954   // This helps when threads of the same stack traces evict each other's
   955   // cache lines. The threads can be either from the same JVM instance, or
   956   // from different JVM instances. The benefit is especially true for
   957   // processors with hyperthreading technology.
   958   static int counter = 0;
   959   int pid = os::current_process_id();
   960   alloca(((pid ^ counter++) & 7) * 128);
   962   ThreadLocalStorage::set_thread(thread);
   964   OSThread* osthread = thread->osthread();
   965   Monitor* sync = osthread->startThread_lock();
   967   // non floating stack BsdThreads needs extra check, see above
   968   if (!_thread_safety_check(thread)) {
   969     // notify parent thread
   970     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   971     osthread->set_state(ZOMBIE);
   972     sync->notify_all();
   973     return NULL;
   974   }
   976 #ifdef _ALLBSD_SOURCE
   977   // thread_id is pthread_id on BSD
   978   osthread->set_thread_id(::pthread_self());
   979 #else
   980   // thread_id is kernel thread id (similar to Solaris LWP id)
   981   osthread->set_thread_id(os::Bsd::gettid());
   983   if (UseNUMA) {
   984     int lgrp_id = os::numa_get_group_id();
   985     if (lgrp_id != -1) {
   986       thread->set_lgrp_id(lgrp_id);
   987     }
   988   }
   989 #endif
   990   // initialize signal mask for this thread
   991   os::Bsd::hotspot_sigmask(thread);
   993   // initialize floating point control register
   994   os::Bsd::init_thread_fpu_state();
   996 #ifdef __APPLE__
   997   // register thread with objc gc
   998   if (objc_registerThreadWithCollectorFunction != NULL) {
   999     objc_registerThreadWithCollectorFunction();
  1001 #endif
  1003   // handshaking with parent thread
  1005     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
  1007     // notify parent thread
  1008     osthread->set_state(INITIALIZED);
  1009     sync->notify_all();
  1011     // wait until os::start_thread()
  1012     while (osthread->get_state() == INITIALIZED) {
  1013       sync->wait(Mutex::_no_safepoint_check_flag);
  1017   // call one more level start routine
  1018   thread->run();
  1020   return 0;
  1023 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
  1024   assert(thread->osthread() == NULL, "caller responsible");
  1026   // Allocate the OSThread object
  1027   OSThread* osthread = new OSThread(NULL, NULL);
  1028   if (osthread == NULL) {
  1029     return false;
  1032   // set the correct thread state
  1033   osthread->set_thread_type(thr_type);
  1035   // Initial state is ALLOCATED but not INITIALIZED
  1036   osthread->set_state(ALLOCATED);
  1038   thread->set_osthread(osthread);
  1040   // init thread attributes
  1041   pthread_attr_t attr;
  1042   pthread_attr_init(&attr);
  1043   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  1045   // stack size
  1046   if (os::Bsd::supports_variable_stack_size()) {
  1047     // calculate stack size if it's not specified by caller
  1048     if (stack_size == 0) {
  1049       stack_size = os::Bsd::default_stack_size(thr_type);
  1051       switch (thr_type) {
  1052       case os::java_thread:
  1053         // Java threads use ThreadStackSize which default value can be
  1054         // changed with the flag -Xss
  1055         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
  1056         stack_size = JavaThread::stack_size_at_create();
  1057         break;
  1058       case os::compiler_thread:
  1059         if (CompilerThreadStackSize > 0) {
  1060           stack_size = (size_t)(CompilerThreadStackSize * K);
  1061           break;
  1062         } // else fall through:
  1063           // use VMThreadStackSize if CompilerThreadStackSize is not defined
  1064       case os::vm_thread:
  1065       case os::pgc_thread:
  1066       case os::cgc_thread:
  1067       case os::watcher_thread:
  1068         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
  1069         break;
  1073     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
  1074     pthread_attr_setstacksize(&attr, stack_size);
  1075   } else {
  1076     // let pthread_create() pick the default value.
  1079 #ifndef _ALLBSD_SOURCE
  1080   // glibc guard page
  1081   pthread_attr_setguardsize(&attr, os::Bsd::default_guard_size(thr_type));
  1082 #endif
  1084   ThreadState state;
  1088 #ifndef _ALLBSD_SOURCE
  1089     // Serialize thread creation if we are running with fixed stack BsdThreads
  1090     bool lock = os::Bsd::is_BsdThreads() && !os::Bsd::is_floating_stack();
  1091     if (lock) {
  1092       os::Bsd::createThread_lock()->lock_without_safepoint_check();
  1094 #endif
  1096     pthread_t tid;
  1097     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
  1099     pthread_attr_destroy(&attr);
  1101     if (ret != 0) {
  1102       if (PrintMiscellaneous && (Verbose || WizardMode)) {
  1103         perror("pthread_create()");
  1105       // Need to clean up stuff we've allocated so far
  1106       thread->set_osthread(NULL);
  1107       delete osthread;
  1108 #ifndef _ALLBSD_SOURCE
  1109       if (lock) os::Bsd::createThread_lock()->unlock();
  1110 #endif
  1111       return false;
  1114     // Store pthread info into the OSThread
  1115     osthread->set_pthread_id(tid);
  1117     // Wait until child thread is either initialized or aborted
  1119       Monitor* sync_with_child = osthread->startThread_lock();
  1120       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1121       while ((state = osthread->get_state()) == ALLOCATED) {
  1122         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
  1126 #ifndef _ALLBSD_SOURCE
  1127     if (lock) {
  1128       os::Bsd::createThread_lock()->unlock();
  1130 #endif
  1133   // Aborted due to thread limit being reached
  1134   if (state == ZOMBIE) {
  1135       thread->set_osthread(NULL);
  1136       delete osthread;
  1137       return false;
  1140   // The thread is returned suspended (in state INITIALIZED),
  1141   // and is started higher up in the call chain
  1142   assert(state == INITIALIZED, "race condition");
  1143   return true;
  1146 /////////////////////////////////////////////////////////////////////////////
  1147 // attach existing thread
  1149 // bootstrap the main thread
  1150 bool os::create_main_thread(JavaThread* thread) {
  1151   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
  1152   return create_attached_thread(thread);
  1155 bool os::create_attached_thread(JavaThread* thread) {
  1156 #ifdef ASSERT
  1157     thread->verify_not_published();
  1158 #endif
  1160   // Allocate the OSThread object
  1161   OSThread* osthread = new OSThread(NULL, NULL);
  1163   if (osthread == NULL) {
  1164     return false;
  1167   // Store pthread info into the OSThread
  1168 #ifdef _ALLBSD_SOURCE
  1169   osthread->set_thread_id(::pthread_self());
  1170 #else
  1171   osthread->set_thread_id(os::Bsd::gettid());
  1172 #endif
  1173   osthread->set_pthread_id(::pthread_self());
  1175   // initialize floating point control register
  1176   os::Bsd::init_thread_fpu_state();
  1178   // Initial thread state is RUNNABLE
  1179   osthread->set_state(RUNNABLE);
  1181   thread->set_osthread(osthread);
  1183 #ifndef _ALLBSD_SOURCE
  1184   if (UseNUMA) {
  1185     int lgrp_id = os::numa_get_group_id();
  1186     if (lgrp_id != -1) {
  1187       thread->set_lgrp_id(lgrp_id);
  1191   if (os::Bsd::is_initial_thread()) {
  1192     // If current thread is initial thread, its stack is mapped on demand,
  1193     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1194     // the entire stack region to avoid SEGV in stack banging.
  1195     // It is also useful to get around the heap-stack-gap problem on SuSE
  1196     // kernel (see 4821821 for details). We first expand stack to the top
  1197     // of yellow zone, then enable stack yellow zone (order is significant,
  1198     // enabling yellow zone first will crash JVM on SuSE Bsd), so there
  1199     // is no gap between the last two virtual memory regions.
  1201     JavaThread *jt = (JavaThread *)thread;
  1202     address addr = jt->stack_yellow_zone_base();
  1203     assert(addr != NULL, "initialization problem?");
  1204     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1206     osthread->set_expanding_stack();
  1207     os::Bsd::manually_expand_stack(jt, addr);
  1208     osthread->clear_expanding_stack();
  1210 #endif
  1212   // initialize signal mask for this thread
  1213   // and save the caller's signal mask
  1214   os::Bsd::hotspot_sigmask(thread);
  1216   return true;
  1219 void os::pd_start_thread(Thread* thread) {
  1220   OSThread * osthread = thread->osthread();
  1221   assert(osthread->get_state() != INITIALIZED, "just checking");
  1222   Monitor* sync_with_child = osthread->startThread_lock();
  1223   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1224   sync_with_child->notify();
  1227 // Free Bsd resources related to the OSThread
  1228 void os::free_thread(OSThread* osthread) {
  1229   assert(osthread != NULL, "osthread not set");
  1231   if (Thread::current()->osthread() == osthread) {
  1232     // Restore caller's signal mask
  1233     sigset_t sigmask = osthread->caller_sigmask();
  1234     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1237   delete osthread;
  1240 //////////////////////////////////////////////////////////////////////////////
  1241 // thread local storage
  1243 int os::allocate_thread_local_storage() {
  1244   pthread_key_t key;
  1245   int rslt = pthread_key_create(&key, NULL);
  1246   assert(rslt == 0, "cannot allocate thread local storage");
  1247   return (int)key;
  1250 // Note: This is currently not used by VM, as we don't destroy TLS key
  1251 // on VM exit.
  1252 void os::free_thread_local_storage(int index) {
  1253   int rslt = pthread_key_delete((pthread_key_t)index);
  1254   assert(rslt == 0, "invalid index");
  1257 void os::thread_local_storage_at_put(int index, void* value) {
  1258   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1259   assert(rslt == 0, "pthread_setspecific failed");
  1262 extern "C" Thread* get_thread() {
  1263   return ThreadLocalStorage::thread();
  1266 //////////////////////////////////////////////////////////////////////////////
  1267 // initial thread
  1269 #ifndef _ALLBSD_SOURCE
  1270 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1271 bool os::Bsd::is_initial_thread(void) {
  1272   char dummy;
  1273   // If called before init complete, thread stack bottom will be null.
  1274   // Can be called if fatal error occurs before initialization.
  1275   if (initial_thread_stack_bottom() == NULL) return false;
  1276   assert(initial_thread_stack_bottom() != NULL &&
  1277          initial_thread_stack_size()   != 0,
  1278          "os::init did not locate initial thread's stack region");
  1279   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1280       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1281        return true;
  1282   else return false;
  1285 // Find the virtual memory area that contains addr
  1286 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1287   FILE *fp = fopen("/proc/self/maps", "r");
  1288   if (fp) {
  1289     address low, high;
  1290     while (!feof(fp)) {
  1291       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1292         if (low <= addr && addr < high) {
  1293            if (vma_low)  *vma_low  = low;
  1294            if (vma_high) *vma_high = high;
  1295            fclose (fp);
  1296            return true;
  1299       for (;;) {
  1300         int ch = fgetc(fp);
  1301         if (ch == EOF || ch == (int)'\n') break;
  1304     fclose(fp);
  1306   return false;
  1309 // Locate initial thread stack. This special handling of initial thread stack
  1310 // is needed because pthread_getattr_np() on most (all?) Bsd distros returns
  1311 // bogus value for initial thread.
  1312 void os::Bsd::capture_initial_stack(size_t max_size) {
  1313   // stack size is the easy part, get it from RLIMIT_STACK
  1314   size_t stack_size;
  1315   struct rlimit rlim;
  1316   getrlimit(RLIMIT_STACK, &rlim);
  1317   stack_size = rlim.rlim_cur;
  1319   // 6308388: a bug in ld.so will relocate its own .data section to the
  1320   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1321   //   so we won't install guard page on ld.so's data section.
  1322   stack_size -= 2 * page_size();
  1324   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1325   //   7.1, in both cases we will get 2G in return value.
  1326   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1327   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1328   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1329   //   in case other parts in glibc still assumes 2M max stack size.
  1330   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1331 #ifndef IA64
  1332   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1333 #else
  1334   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1335   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1336 #endif
  1338   // Try to figure out where the stack base (top) is. This is harder.
  1339   //
  1340   // When an application is started, glibc saves the initial stack pointer in
  1341   // a global variable "__libc_stack_end", which is then used by system
  1342   // libraries. __libc_stack_end should be pretty close to stack top. The
  1343   // variable is available since the very early days. However, because it is
  1344   // a private interface, it could disappear in the future.
  1345   //
  1346   // Bsd kernel saves start_stack information in /proc/<pid>/stat. Similar
  1347   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1348   // stack top. Note that /proc may not exist if VM is running as a chroot
  1349   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1350   // /proc/<pid>/stat could change in the future (though unlikely).
  1351   //
  1352   // We try __libc_stack_end first. If that doesn't work, look for
  1353   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1354   // as a hint, which should work well in most cases.
  1356   uintptr_t stack_start;
  1358   // try __libc_stack_end first
  1359   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1360   if (p && *p) {
  1361     stack_start = *p;
  1362   } else {
  1363     // see if we can get the start_stack field from /proc/self/stat
  1364     FILE *fp;
  1365     int pid;
  1366     char state;
  1367     int ppid;
  1368     int pgrp;
  1369     int session;
  1370     int nr;
  1371     int tpgrp;
  1372     unsigned long flags;
  1373     unsigned long minflt;
  1374     unsigned long cminflt;
  1375     unsigned long majflt;
  1376     unsigned long cmajflt;
  1377     unsigned long utime;
  1378     unsigned long stime;
  1379     long cutime;
  1380     long cstime;
  1381     long prio;
  1382     long nice;
  1383     long junk;
  1384     long it_real;
  1385     uintptr_t start;
  1386     uintptr_t vsize;
  1387     intptr_t rss;
  1388     uintptr_t rsslim;
  1389     uintptr_t scodes;
  1390     uintptr_t ecode;
  1391     int i;
  1393     // Figure what the primordial thread stack base is. Code is inspired
  1394     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1395     // followed by command name surrounded by parentheses, state, etc.
  1396     char stat[2048];
  1397     int statlen;
  1399     fp = fopen("/proc/self/stat", "r");
  1400     if (fp) {
  1401       statlen = fread(stat, 1, 2047, fp);
  1402       stat[statlen] = '\0';
  1403       fclose(fp);
  1405       // Skip pid and the command string. Note that we could be dealing with
  1406       // weird command names, e.g. user could decide to rename java launcher
  1407       // to "java 1.4.2 :)", then the stat file would look like
  1408       //                1234 (java 1.4.2 :)) R ... ...
  1409       // We don't really need to know the command string, just find the last
  1410       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1411       char * s = strrchr(stat, ')');
  1413       i = 0;
  1414       if (s) {
  1415         // Skip blank chars
  1416         do s++; while (isspace(*s));
  1418 #define _UFM UINTX_FORMAT
  1419 #define _DFM INTX_FORMAT
  1421         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1422         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1423         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1424              &state,          /* 3  %c  */
  1425              &ppid,           /* 4  %d  */
  1426              &pgrp,           /* 5  %d  */
  1427              &session,        /* 6  %d  */
  1428              &nr,             /* 7  %d  */
  1429              &tpgrp,          /* 8  %d  */
  1430              &flags,          /* 9  %lu  */
  1431              &minflt,         /* 10 %lu  */
  1432              &cminflt,        /* 11 %lu  */
  1433              &majflt,         /* 12 %lu  */
  1434              &cmajflt,        /* 13 %lu  */
  1435              &utime,          /* 14 %lu  */
  1436              &stime,          /* 15 %lu  */
  1437              &cutime,         /* 16 %ld  */
  1438              &cstime,         /* 17 %ld  */
  1439              &prio,           /* 18 %ld  */
  1440              &nice,           /* 19 %ld  */
  1441              &junk,           /* 20 %ld  */
  1442              &it_real,        /* 21 %ld  */
  1443              &start,          /* 22 UINTX_FORMAT */
  1444              &vsize,          /* 23 UINTX_FORMAT */
  1445              &rss,            /* 24 INTX_FORMAT  */
  1446              &rsslim,         /* 25 UINTX_FORMAT */
  1447              &scodes,         /* 26 UINTX_FORMAT */
  1448              &ecode,          /* 27 UINTX_FORMAT */
  1449              &stack_start);   /* 28 UINTX_FORMAT */
  1452 #undef _UFM
  1453 #undef _DFM
  1455       if (i != 28 - 2) {
  1456          assert(false, "Bad conversion from /proc/self/stat");
  1457          // product mode - assume we are the initial thread, good luck in the
  1458          // embedded case.
  1459          warning("Can't detect initial thread stack location - bad conversion");
  1460          stack_start = (uintptr_t) &rlim;
  1462     } else {
  1463       // For some reason we can't open /proc/self/stat (for example, running on
  1464       // FreeBSD with a Bsd emulator, or inside chroot), this should work for
  1465       // most cases, so don't abort:
  1466       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1467       stack_start = (uintptr_t) &rlim;
  1471   // Now we have a pointer (stack_start) very close to the stack top, the
  1472   // next thing to do is to figure out the exact location of stack top. We
  1473   // can find out the virtual memory area that contains stack_start by
  1474   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1475   // and its upper limit is the real stack top. (again, this would fail if
  1476   // running inside chroot, because /proc may not exist.)
  1478   uintptr_t stack_top;
  1479   address low, high;
  1480   if (find_vma((address)stack_start, &low, &high)) {
  1481     // success, "high" is the true stack top. (ignore "low", because initial
  1482     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1483     stack_top = (uintptr_t)high;
  1484   } else {
  1485     // failed, likely because /proc/self/maps does not exist
  1486     warning("Can't detect initial thread stack location - find_vma failed");
  1487     // best effort: stack_start is normally within a few pages below the real
  1488     // stack top, use it as stack top, and reduce stack size so we won't put
  1489     // guard page outside stack.
  1490     stack_top = stack_start;
  1491     stack_size -= 16 * page_size();
  1494   // stack_top could be partially down the page so align it
  1495   stack_top = align_size_up(stack_top, page_size());
  1497   if (max_size && stack_size > max_size) {
  1498      _initial_thread_stack_size = max_size;
  1499   } else {
  1500      _initial_thread_stack_size = stack_size;
  1503   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1504   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1506 #endif
  1508 ////////////////////////////////////////////////////////////////////////////////
  1509 // time support
  1511 // Time since start-up in seconds to a fine granularity.
  1512 // Used by VMSelfDestructTimer and the MemProfiler.
  1513 double os::elapsedTime() {
  1515   return (double)(os::elapsed_counter()) * 0.000001;
  1518 jlong os::elapsed_counter() {
  1519   timeval time;
  1520   int status = gettimeofday(&time, NULL);
  1521   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1524 jlong os::elapsed_frequency() {
  1525   return (1000 * 1000);
  1528 // XXX: For now, code this as if BSD does not support vtime.
  1529 bool os::supports_vtime() { return false; }
  1530 bool os::enable_vtime()   { return false; }
  1531 bool os::vtime_enabled()  { return false; }
  1532 double os::elapsedVTime() {
  1533   // better than nothing, but not much
  1534   return elapsedTime();
  1537 jlong os::javaTimeMillis() {
  1538   timeval time;
  1539   int status = gettimeofday(&time, NULL);
  1540   assert(status != -1, "bsd error");
  1541   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1544 #ifndef CLOCK_MONOTONIC
  1545 #define CLOCK_MONOTONIC (1)
  1546 #endif
  1548 #ifdef __APPLE__
  1549 void os::Bsd::clock_init() {
  1550         // XXXDARWIN: Investigate replacement monotonic clock
  1552 #elif defined(_ALLBSD_SOURCE)
  1553 void os::Bsd::clock_init() {
  1554   struct timespec res;
  1555   struct timespec tp;
  1556   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
  1557       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
  1558     // yes, monotonic clock is supported
  1559     _clock_gettime = ::clock_gettime;
  1562 #else
  1563 void os::Bsd::clock_init() {
  1564   // we do dlopen's in this particular order due to bug in bsd
  1565   // dynamical loader (see 6348968) leading to crash on exit
  1566   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1567   if (handle == NULL) {
  1568     handle = dlopen("librt.so", RTLD_LAZY);
  1571   if (handle) {
  1572     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1573            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1574     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1575            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1576     if (clock_getres_func && clock_gettime_func) {
  1577       // See if monotonic clock is supported by the kernel. Note that some
  1578       // early implementations simply return kernel jiffies (updated every
  1579       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1580       // for nano time (though the monotonic property is still nice to have).
  1581       // It's fixed in newer kernels, however clock_getres() still returns
  1582       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1583       // resolution for now. Hopefully as people move to new kernels, this
  1584       // won't be a problem.
  1585       struct timespec res;
  1586       struct timespec tp;
  1587       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1588           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1589         // yes, monotonic clock is supported
  1590         _clock_gettime = clock_gettime_func;
  1591       } else {
  1592         // close librt if there is no monotonic clock
  1593         dlclose(handle);
  1598 #endif
  1600 #ifndef _ALLBSD_SOURCE
  1601 #ifndef SYS_clock_getres
  1603 #if defined(IA32) || defined(AMD64)
  1604 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1605 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1606 #else
  1607 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1608 #define sys_clock_getres(x,y)  -1
  1609 #endif
  1611 #else
  1612 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1613 #endif
  1615 void os::Bsd::fast_thread_clock_init() {
  1616   if (!UseBsdPosixThreadCPUClocks) {
  1617     return;
  1619   clockid_t clockid;
  1620   struct timespec tp;
  1621   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1622       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1624   // Switch to using fast clocks for thread cpu time if
  1625   // the sys_clock_getres() returns 0 error code.
  1626   // Note, that some kernels may support the current thread
  1627   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1628   // returned by the pthread_getcpuclockid().
  1629   // If the fast Posix clocks are supported then the sys_clock_getres()
  1630   // must return at least tp.tv_sec == 0 which means a resolution
  1631   // better than 1 sec. This is extra check for reliability.
  1633   if(pthread_getcpuclockid_func &&
  1634      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1635      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1637     _supports_fast_thread_cpu_time = true;
  1638     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1641 #endif
  1643 jlong os::javaTimeNanos() {
  1644   if (Bsd::supports_monotonic_clock()) {
  1645     struct timespec tp;
  1646     int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
  1647     assert(status == 0, "gettime error");
  1648     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1649     return result;
  1650   } else {
  1651     timeval time;
  1652     int status = gettimeofday(&time, NULL);
  1653     assert(status != -1, "bsd error");
  1654     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1655     return 1000 * usecs;
  1659 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1660   if (Bsd::supports_monotonic_clock()) {
  1661     info_ptr->max_value = ALL_64_BITS;
  1663     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1664     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1665     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1666   } else {
  1667     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1668     info_ptr->max_value = ALL_64_BITS;
  1670     // gettimeofday is a real time clock so it skips
  1671     info_ptr->may_skip_backward = true;
  1672     info_ptr->may_skip_forward = true;
  1675   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1678 // Return the real, user, and system times in seconds from an
  1679 // arbitrary fixed point in the past.
  1680 bool os::getTimesSecs(double* process_real_time,
  1681                       double* process_user_time,
  1682                       double* process_system_time) {
  1683   struct tms ticks;
  1684   clock_t real_ticks = times(&ticks);
  1686   if (real_ticks == (clock_t) (-1)) {
  1687     return false;
  1688   } else {
  1689     double ticks_per_second = (double) clock_tics_per_sec;
  1690     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1691     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1692     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1694     return true;
  1699 char * os::local_time_string(char *buf, size_t buflen) {
  1700   struct tm t;
  1701   time_t long_time;
  1702   time(&long_time);
  1703   localtime_r(&long_time, &t);
  1704   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1705                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1706                t.tm_hour, t.tm_min, t.tm_sec);
  1707   return buf;
  1710 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1711   return localtime_r(clock, res);
  1714 ////////////////////////////////////////////////////////////////////////////////
  1715 // runtime exit support
  1717 // Note: os::shutdown() might be called very early during initialization, or
  1718 // called from signal handler. Before adding something to os::shutdown(), make
  1719 // sure it is async-safe and can handle partially initialized VM.
  1720 void os::shutdown() {
  1722   // allow PerfMemory to attempt cleanup of any persistent resources
  1723   perfMemory_exit();
  1725   // needs to remove object in file system
  1726   AttachListener::abort();
  1728   // flush buffered output, finish log files
  1729   ostream_abort();
  1731   // Check for abort hook
  1732   abort_hook_t abort_hook = Arguments::abort_hook();
  1733   if (abort_hook != NULL) {
  1734     abort_hook();
  1739 // Note: os::abort() might be called very early during initialization, or
  1740 // called from signal handler. Before adding something to os::abort(), make
  1741 // sure it is async-safe and can handle partially initialized VM.
  1742 void os::abort(bool dump_core) {
  1743   os::shutdown();
  1744   if (dump_core) {
  1745 #ifndef PRODUCT
  1746     fdStream out(defaultStream::output_fd());
  1747     out.print_raw("Current thread is ");
  1748     char buf[16];
  1749     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1750     out.print_raw_cr(buf);
  1751     out.print_raw_cr("Dumping core ...");
  1752 #endif
  1753     ::abort(); // dump core
  1756   ::exit(1);
  1759 // Die immediately, no exit hook, no abort hook, no cleanup.
  1760 void os::die() {
  1761   // _exit() on BsdThreads only kills current thread
  1762   ::abort();
  1765 // unused on bsd for now.
  1766 void os::set_error_file(const char *logfile) {}
  1769 // This method is a copy of JDK's sysGetLastErrorString
  1770 // from src/solaris/hpi/src/system_md.c
  1772 size_t os::lasterror(char *buf, size_t len) {
  1774   if (errno == 0)  return 0;
  1776   const char *s = ::strerror(errno);
  1777   size_t n = ::strlen(s);
  1778   if (n >= len) {
  1779     n = len - 1;
  1781   ::strncpy(buf, s, n);
  1782   buf[n] = '\0';
  1783   return n;
  1786 intx os::current_thread_id() { return (intx)pthread_self(); }
  1787 int os::current_process_id() {
  1789   // Under the old bsd thread library, bsd gives each thread
  1790   // its own process id. Because of this each thread will return
  1791   // a different pid if this method were to return the result
  1792   // of getpid(2). Bsd provides no api that returns the pid
  1793   // of the launcher thread for the vm. This implementation
  1794   // returns a unique pid, the pid of the launcher thread
  1795   // that starts the vm 'process'.
  1797   // Under the NPTL, getpid() returns the same pid as the
  1798   // launcher thread rather than a unique pid per thread.
  1799   // Use gettid() if you want the old pre NPTL behaviour.
  1801   // if you are looking for the result of a call to getpid() that
  1802   // returns a unique pid for the calling thread, then look at the
  1803   // OSThread::thread_id() method in osThread_bsd.hpp file
  1805   return (int)(_initial_pid ? _initial_pid : getpid());
  1808 // DLL functions
  1810 #define JNI_LIB_PREFIX "lib"
  1811 #ifdef __APPLE__
  1812 #define JNI_LIB_SUFFIX ".dylib"
  1813 #else
  1814 #define JNI_LIB_SUFFIX ".so"
  1815 #endif
  1817 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
  1819 // This must be hard coded because it's the system's temporary
  1820 // directory not the java application's temp directory, ala java.io.tmpdir.
  1821 #ifdef __APPLE__
  1822 // macosx has a secure per-user temporary directory
  1823 char temp_path_storage[PATH_MAX];
  1824 const char* os::get_temp_directory() {
  1825   static char *temp_path = NULL;
  1826   if (temp_path == NULL) {
  1827     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
  1828     if (pathSize == 0 || pathSize > PATH_MAX) {
  1829       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
  1831     temp_path = temp_path_storage;
  1833   return temp_path;
  1835 #else /* __APPLE__ */
  1836 const char* os::get_temp_directory() { return "/tmp"; }
  1837 #endif /* __APPLE__ */
  1839 static bool file_exists(const char* filename) {
  1840   struct stat statbuf;
  1841   if (filename == NULL || strlen(filename) == 0) {
  1842     return false;
  1844   return os::stat(filename, &statbuf) == 0;
  1847 void os::dll_build_name(char* buffer, size_t buflen,
  1848                         const char* pname, const char* fname) {
  1849   // Copied from libhpi
  1850   const size_t pnamelen = pname ? strlen(pname) : 0;
  1852   // Quietly truncate on buffer overflow.  Should be an error.
  1853   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
  1854       *buffer = '\0';
  1855       return;
  1858   if (pnamelen == 0) {
  1859     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
  1860   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1861     int n;
  1862     char** pelements = split_path(pname, &n);
  1863     for (int i = 0 ; i < n ; i++) {
  1864       // Really shouldn't be NULL, but check can't hurt
  1865       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1866         continue; // skip the empty path values
  1868       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
  1869           pelements[i], fname);
  1870       if (file_exists(buffer)) {
  1871         break;
  1874     // release the storage
  1875     for (int i = 0 ; i < n ; i++) {
  1876       if (pelements[i] != NULL) {
  1877         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1880     if (pelements != NULL) {
  1881       FREE_C_HEAP_ARRAY(char*, pelements);
  1883   } else {
  1884     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
  1888 const char* os::get_current_directory(char *buf, int buflen) {
  1889   return getcwd(buf, buflen);
  1892 // check if addr is inside libjvm[_g].so
  1893 bool os::address_is_in_vm(address addr) {
  1894   static address libjvm_base_addr;
  1895   Dl_info dlinfo;
  1897   if (libjvm_base_addr == NULL) {
  1898     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1899     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1900     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1903   if (dladdr((void *)addr, &dlinfo)) {
  1904     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1907   return false;
  1910 bool os::dll_address_to_function_name(address addr, char *buf,
  1911                                       int buflen, int *offset) {
  1912   Dl_info dlinfo;
  1914   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1915     if (buf != NULL) {
  1916       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1917         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1920     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1921     return true;
  1922   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1923     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1924        dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  1925        return true;
  1929   if (buf != NULL) buf[0] = '\0';
  1930   if (offset != NULL) *offset = -1;
  1931   return false;
  1934 #ifdef _ALLBSD_SOURCE
  1935 // ported from solaris version
  1936 bool os::dll_address_to_library_name(address addr, char* buf,
  1937                                      int buflen, int* offset) {
  1938   Dl_info dlinfo;
  1940   if (dladdr((void*)addr, &dlinfo)){
  1941      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1942      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1943      return true;
  1944   } else {
  1945      if (buf) buf[0] = '\0';
  1946      if (offset) *offset = -1;
  1947      return false;
  1950 #else
  1951 struct _address_to_library_name {
  1952   address addr;          // input : memory address
  1953   size_t  buflen;        //         size of fname
  1954   char*   fname;         // output: library name
  1955   address base;          //         library base addr
  1956 };
  1958 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1959                                             size_t size, void *data) {
  1960   int i;
  1961   bool found = false;
  1962   address libbase = NULL;
  1963   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1965   // iterate through all loadable segments
  1966   for (i = 0; i < info->dlpi_phnum; i++) {
  1967     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1968     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1969       // base address of a library is the lowest address of its loaded
  1970       // segments.
  1971       if (libbase == NULL || libbase > segbase) {
  1972         libbase = segbase;
  1974       // see if 'addr' is within current segment
  1975       if (segbase <= d->addr &&
  1976           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1977         found = true;
  1982   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1983   // so dll_address_to_library_name() can fall through to use dladdr() which
  1984   // can figure out executable name from argv[0].
  1985   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1986     d->base = libbase;
  1987     if (d->fname) {
  1988       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1990     return 1;
  1992   return 0;
  1995 bool os::dll_address_to_library_name(address addr, char* buf,
  1996                                      int buflen, int* offset) {
  1997   Dl_info dlinfo;
  1998   struct _address_to_library_name data;
  2000   // There is a bug in old glibc dladdr() implementation that it could resolve
  2001   // to wrong library name if the .so file has a base address != NULL. Here
  2002   // we iterate through the program headers of all loaded libraries to find
  2003   // out which library 'addr' really belongs to. This workaround can be
  2004   // removed once the minimum requirement for glibc is moved to 2.3.x.
  2005   data.addr = addr;
  2006   data.fname = buf;
  2007   data.buflen = buflen;
  2008   data.base = NULL;
  2009   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  2011   if (rslt) {
  2012      // buf already contains library name
  2013      if (offset) *offset = addr - data.base;
  2014      return true;
  2015   } else if (dladdr((void*)addr, &dlinfo)){
  2016      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  2017      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  2018      return true;
  2019   } else {
  2020      if (buf) buf[0] = '\0';
  2021      if (offset) *offset = -1;
  2022      return false;
  2025 #endif
  2027   // Loads .dll/.so and
  2028   // in case of error it checks if .dll/.so was built for the
  2029   // same architecture as Hotspot is running on
  2031 #ifdef __APPLE__
  2032 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
  2033   void * result= ::dlopen(filename, RTLD_LAZY);
  2034   if (result != NULL) {
  2035     // Successful loading
  2036     return result;
  2039   // Read system error message into ebuf
  2040   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  2041   ebuf[ebuflen-1]='\0';
  2043   return NULL;
  2045 #else
  2046 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  2048   void * result= ::dlopen(filename, RTLD_LAZY);
  2049   if (result != NULL) {
  2050     // Successful loading
  2051     return result;
  2054   Elf32_Ehdr elf_head;
  2056   // Read system error message into ebuf
  2057   // It may or may not be overwritten below
  2058   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  2059   ebuf[ebuflen-1]='\0';
  2060   int diag_msg_max_length=ebuflen-strlen(ebuf);
  2061   char* diag_msg_buf=ebuf+strlen(ebuf);
  2063   if (diag_msg_max_length==0) {
  2064     // No more space in ebuf for additional diagnostics message
  2065     return NULL;
  2069   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  2071   if (file_descriptor < 0) {
  2072     // Can't open library, report dlerror() message
  2073     return NULL;
  2076   bool failed_to_read_elf_head=
  2077     (sizeof(elf_head)!=
  2078         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  2080   ::close(file_descriptor);
  2081   if (failed_to_read_elf_head) {
  2082     // file i/o error - report dlerror() msg
  2083     return NULL;
  2086   typedef struct {
  2087     Elf32_Half  code;         // Actual value as defined in elf.h
  2088     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  2089     char        elf_class;    // 32 or 64 bit
  2090     char        endianess;    // MSB or LSB
  2091     char*       name;         // String representation
  2092   } arch_t;
  2094   #ifndef EM_486
  2095   #define EM_486          6               /* Intel 80486 */
  2096   #endif
  2098   #ifndef EM_MIPS_RS3_LE
  2099   #define EM_MIPS_RS3_LE  10              /* MIPS */
  2100   #endif
  2102   #ifndef EM_PPC64
  2103   #define EM_PPC64        21              /* PowerPC64 */
  2104   #endif
  2106   #ifndef EM_S390
  2107   #define EM_S390         22              /* IBM System/390 */
  2108   #endif
  2110   #ifndef EM_IA_64
  2111   #define EM_IA_64        50              /* HP/Intel IA-64 */
  2112   #endif
  2114   #ifndef EM_X86_64
  2115   #define EM_X86_64       62              /* AMD x86-64 */
  2116   #endif
  2118   static const arch_t arch_array[]={
  2119     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2120     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2121     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  2122     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  2123     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2124     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2125     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  2126     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  2127     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  2128     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  2129     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  2130     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  2131     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  2132     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  2133     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  2134     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  2135   };
  2137   #if  (defined IA32)
  2138     static  Elf32_Half running_arch_code=EM_386;
  2139   #elif   (defined AMD64)
  2140     static  Elf32_Half running_arch_code=EM_X86_64;
  2141   #elif  (defined IA64)
  2142     static  Elf32_Half running_arch_code=EM_IA_64;
  2143   #elif  (defined __sparc) && (defined _LP64)
  2144     static  Elf32_Half running_arch_code=EM_SPARCV9;
  2145   #elif  (defined __sparc) && (!defined _LP64)
  2146     static  Elf32_Half running_arch_code=EM_SPARC;
  2147   #elif  (defined __powerpc64__)
  2148     static  Elf32_Half running_arch_code=EM_PPC64;
  2149   #elif  (defined __powerpc__)
  2150     static  Elf32_Half running_arch_code=EM_PPC;
  2151   #elif  (defined ARM)
  2152     static  Elf32_Half running_arch_code=EM_ARM;
  2153   #elif  (defined S390)
  2154     static  Elf32_Half running_arch_code=EM_S390;
  2155   #elif  (defined ALPHA)
  2156     static  Elf32_Half running_arch_code=EM_ALPHA;
  2157   #elif  (defined MIPSEL)
  2158     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  2159   #elif  (defined PARISC)
  2160     static  Elf32_Half running_arch_code=EM_PARISC;
  2161   #elif  (defined MIPS)
  2162     static  Elf32_Half running_arch_code=EM_MIPS;
  2163   #elif  (defined M68K)
  2164     static  Elf32_Half running_arch_code=EM_68K;
  2165   #else
  2166     #error Method os::dll_load requires that one of following is defined:\
  2167          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  2168   #endif
  2170   // Identify compatability class for VM's architecture and library's architecture
  2171   // Obtain string descriptions for architectures
  2173   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2174   int running_arch_index=-1;
  2176   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2177     if (running_arch_code == arch_array[i].code) {
  2178       running_arch_index    = i;
  2180     if (lib_arch.code == arch_array[i].code) {
  2181       lib_arch.compat_class = arch_array[i].compat_class;
  2182       lib_arch.name         = arch_array[i].name;
  2186   assert(running_arch_index != -1,
  2187     "Didn't find running architecture code (running_arch_code) in arch_array");
  2188   if (running_arch_index == -1) {
  2189     // Even though running architecture detection failed
  2190     // we may still continue with reporting dlerror() message
  2191     return NULL;
  2194   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2195     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2196     return NULL;
  2199 #ifndef S390
  2200   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2201     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2202     return NULL;
  2204 #endif // !S390
  2206   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2207     if ( lib_arch.name!=NULL ) {
  2208       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2209         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2210         lib_arch.name, arch_array[running_arch_index].name);
  2211     } else {
  2212       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2213       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2214         lib_arch.code,
  2215         arch_array[running_arch_index].name);
  2219   return NULL;
  2221 #endif /* !__APPLE__ */
  2223 // XXX: Do we need a lock around this as per Linux?
  2224 void* os::dll_lookup(void* handle, const char* name) {
  2225   return dlsym(handle, name);
  2229 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2230   int fd = ::open(filename, O_RDONLY);
  2231   if (fd == -1) {
  2232      return false;
  2235   char buf[32];
  2236   int bytes;
  2237   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2238     st->print_raw(buf, bytes);
  2241   ::close(fd);
  2243   return true;
  2246 void os::print_dll_info(outputStream *st) {
  2247    st->print_cr("Dynamic libraries:");
  2248 #ifdef _ALLBSD_SOURCE
  2249 #ifdef RTLD_DI_LINKMAP
  2250     Dl_info dli;
  2251     void *handle;
  2252     Link_map *map;
  2253     Link_map *p;
  2255     if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
  2256         st->print_cr("Error: Cannot print dynamic libraries.");
  2257         return;
  2259     handle = dlopen(dli.dli_fname, RTLD_LAZY);
  2260     if (handle == NULL) {
  2261         st->print_cr("Error: Cannot print dynamic libraries.");
  2262         return;
  2264     dlinfo(handle, RTLD_DI_LINKMAP, &map);
  2265     if (map == NULL) {
  2266         st->print_cr("Error: Cannot print dynamic libraries.");
  2267         return;
  2270     while (map->l_prev != NULL)
  2271         map = map->l_prev;
  2273     while (map != NULL) {
  2274         st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  2275         map = map->l_next;
  2278     dlclose(handle);
  2279 #elif defined(__APPLE__)
  2280     uint32_t count;
  2281     uint32_t i;
  2283     count = _dyld_image_count();
  2284     for (i = 1; i < count; i++) {
  2285         const char *name = _dyld_get_image_name(i);
  2286         intptr_t slide = _dyld_get_image_vmaddr_slide(i);
  2287         st->print_cr(PTR_FORMAT " \t%s", slide, name);
  2289 #else
  2290    st->print_cr("Error: Cannot print dynamic libraries.");
  2291 #endif
  2292 #else
  2293    char fname[32];
  2294    pid_t pid = os::Bsd::gettid();
  2296    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2298    if (!_print_ascii_file(fname, st)) {
  2299      st->print("Can not get library information for pid = %d\n", pid);
  2301 #endif
  2305 void os::print_os_info(outputStream* st) {
  2306   st->print("OS:");
  2308   // Try to identify popular distros.
  2309   // Most Bsd distributions have /etc/XXX-release file, which contains
  2310   // the OS version string. Some have more than one /etc/XXX-release file
  2311   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  2312   // so the order is important.
  2313   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  2314       !_print_ascii_file("/etc/sun-release", st) &&
  2315       !_print_ascii_file("/etc/redhat-release", st) &&
  2316       !_print_ascii_file("/etc/SuSE-release", st) &&
  2317       !_print_ascii_file("/etc/turbobsd-release", st) &&
  2318       !_print_ascii_file("/etc/gentoo-release", st) &&
  2319       !_print_ascii_file("/etc/debian_version", st) &&
  2320       !_print_ascii_file("/etc/ltib-release", st) &&
  2321       !_print_ascii_file("/etc/angstrom-version", st)) {
  2322       st->print("Bsd");
  2324   st->cr();
  2326   // kernel
  2327   st->print("uname:");
  2328   struct utsname name;
  2329   uname(&name);
  2330   st->print(name.sysname); st->print(" ");
  2331   st->print(name.release); st->print(" ");
  2332   st->print(name.version); st->print(" ");
  2333   st->print(name.machine);
  2334   st->cr();
  2336 #ifndef _ALLBSD_SOURCE
  2337   // Print warning if unsafe chroot environment detected
  2338   if (unsafe_chroot_detected) {
  2339     st->print("WARNING!! ");
  2340     st->print_cr(unstable_chroot_error);
  2343   // libc, pthread
  2344   st->print("libc:");
  2345   st->print(os::Bsd::glibc_version()); st->print(" ");
  2346   st->print(os::Bsd::libpthread_version()); st->print(" ");
  2347   if (os::Bsd::is_BsdThreads()) {
  2348      st->print("(%s stack)", os::Bsd::is_floating_stack() ? "floating" : "fixed");
  2350   st->cr();
  2351 #endif
  2353   // rlimit
  2354   st->print("rlimit:");
  2355   struct rlimit rlim;
  2357   st->print(" STACK ");
  2358   getrlimit(RLIMIT_STACK, &rlim);
  2359   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2360   else st->print("%uk", rlim.rlim_cur >> 10);
  2362   st->print(", CORE ");
  2363   getrlimit(RLIMIT_CORE, &rlim);
  2364   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2365   else st->print("%uk", rlim.rlim_cur >> 10);
  2367   st->print(", NPROC ");
  2368   getrlimit(RLIMIT_NPROC, &rlim);
  2369   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2370   else st->print("%d", rlim.rlim_cur);
  2372   st->print(", NOFILE ");
  2373   getrlimit(RLIMIT_NOFILE, &rlim);
  2374   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2375   else st->print("%d", rlim.rlim_cur);
  2377 #ifndef _ALLBSD_SOURCE
  2378   st->print(", AS ");
  2379   getrlimit(RLIMIT_AS, &rlim);
  2380   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2381   else st->print("%uk", rlim.rlim_cur >> 10);
  2382   st->cr();
  2384   // load average
  2385   st->print("load average:");
  2386   double loadavg[3];
  2387   os::loadavg(loadavg, 3);
  2388   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  2389   st->cr();
  2390 #endif
  2393 void os::pd_print_cpu_info(outputStream* st) {
  2394   // Nothing to do for now.
  2397 void os::print_memory_info(outputStream* st) {
  2399   st->print("Memory:");
  2400   st->print(" %dk page", os::vm_page_size()>>10);
  2402 #ifndef _ALLBSD_SOURCE
  2403   // values in struct sysinfo are "unsigned long"
  2404   struct sysinfo si;
  2405   sysinfo(&si);
  2406 #endif
  2408   st->print(", physical " UINT64_FORMAT "k",
  2409             os::physical_memory() >> 10);
  2410   st->print("(" UINT64_FORMAT "k free)",
  2411             os::available_memory() >> 10);
  2412 #ifndef _ALLBSD_SOURCE
  2413   st->print(", swap " UINT64_FORMAT "k",
  2414             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2415   st->print("(" UINT64_FORMAT "k free)",
  2416             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2417 #endif
  2418   st->cr();
  2420   // meminfo
  2421   st->print("\n/proc/meminfo:\n");
  2422   _print_ascii_file("/proc/meminfo", st);
  2423   st->cr();
  2426 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2427 // but they're the same for all the bsd arch that we support
  2428 // and they're the same for solaris but there's no common place to put this.
  2429 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2430                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2431                           "ILL_COPROC", "ILL_BADSTK" };
  2433 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2434                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2435                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2437 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2439 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2441 void os::print_siginfo(outputStream* st, void* siginfo) {
  2442   st->print("siginfo:");
  2444   const int buflen = 100;
  2445   char buf[buflen];
  2446   siginfo_t *si = (siginfo_t*)siginfo;
  2447   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2448   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2449     st->print("si_errno=%s", buf);
  2450   } else {
  2451     st->print("si_errno=%d", si->si_errno);
  2453   const int c = si->si_code;
  2454   assert(c > 0, "unexpected si_code");
  2455   switch (si->si_signo) {
  2456   case SIGILL:
  2457     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2458     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2459     break;
  2460   case SIGFPE:
  2461     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2462     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2463     break;
  2464   case SIGSEGV:
  2465     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2466     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2467     break;
  2468   case SIGBUS:
  2469     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2470     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2471     break;
  2472   default:
  2473     st->print(", si_code=%d", si->si_code);
  2474     // no si_addr
  2477   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2478       UseSharedSpaces) {
  2479     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2480     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2481       st->print("\n\nError accessing class data sharing archive."   \
  2482                 " Mapped file inaccessible during execution, "      \
  2483                 " possible disk/network problem.");
  2486   st->cr();
  2490 static void print_signal_handler(outputStream* st, int sig,
  2491                                  char* buf, size_t buflen);
  2493 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2494   st->print_cr("Signal Handlers:");
  2495   print_signal_handler(st, SIGSEGV, buf, buflen);
  2496   print_signal_handler(st, SIGBUS , buf, buflen);
  2497   print_signal_handler(st, SIGFPE , buf, buflen);
  2498   print_signal_handler(st, SIGPIPE, buf, buflen);
  2499   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2500   print_signal_handler(st, SIGILL , buf, buflen);
  2501   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2502   print_signal_handler(st, SR_signum, buf, buflen);
  2503   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2504   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2505   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2506   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2509 static char saved_jvm_path[MAXPATHLEN] = {0};
  2511 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2512 void os::jvm_path(char *buf, jint buflen) {
  2513   // Error checking.
  2514   if (buflen < MAXPATHLEN) {
  2515     assert(false, "must use a large-enough buffer");
  2516     buf[0] = '\0';
  2517     return;
  2519   // Lazy resolve the path to current module.
  2520   if (saved_jvm_path[0] != 0) {
  2521     strcpy(buf, saved_jvm_path);
  2522     return;
  2525   char dli_fname[MAXPATHLEN];
  2526   bool ret = dll_address_to_library_name(
  2527                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2528                 dli_fname, sizeof(dli_fname), NULL);
  2529   assert(ret != 0, "cannot locate libjvm");
  2530   char *rp = realpath(dli_fname, buf);
  2531   if (rp == NULL)
  2532     return;
  2534   if (Arguments::created_by_gamma_launcher()) {
  2535     // Support for the gamma launcher.  Typical value for buf is
  2536     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2537     // the right place in the string, then assume we are installed in a JDK and
  2538     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2539     // up the path so it looks like libjvm.so is installed there (append a
  2540     // fake suffix hotspot/libjvm.so).
  2541     const char *p = buf + strlen(buf) - 1;
  2542     for (int count = 0; p > buf && count < 5; ++count) {
  2543       for (--p; p > buf && *p != '/'; --p)
  2544         /* empty */ ;
  2547     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2548       // Look for JAVA_HOME in the environment.
  2549       char* java_home_var = ::getenv("JAVA_HOME");
  2550       if (java_home_var != NULL && java_home_var[0] != 0) {
  2551         char* jrelib_p;
  2552         int len;
  2554         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2555         p = strrchr(buf, '/');
  2556         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2557         p = strstr(p, "_g") ? "_g" : "";
  2559         rp = realpath(java_home_var, buf);
  2560         if (rp == NULL)
  2561           return;
  2563         // determine if this is a legacy image or modules image
  2564         // modules image doesn't have "jre" subdirectory
  2565         len = strlen(buf);
  2566         jrelib_p = buf + len;
  2567         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2568         if (0 != access(buf, F_OK)) {
  2569           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2572         if (0 == access(buf, F_OK)) {
  2573           // Use current module name "libjvm[_g].so" instead of
  2574           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2575           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2576           len = strlen(buf);
  2577           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2578         } else {
  2579           // Go back to path of .so
  2580           rp = realpath(dli_fname, buf);
  2581           if (rp == NULL)
  2582             return;
  2588   strcpy(saved_jvm_path, buf);
  2591 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2592   // no prefix required, not even "_"
  2595 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2596   // no suffix required
  2599 ////////////////////////////////////////////////////////////////////////////////
  2600 // sun.misc.Signal support
  2602 static volatile jint sigint_count = 0;
  2604 static void
  2605 UserHandler(int sig, void *siginfo, void *context) {
  2606   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2607   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2608   // don't want to flood the manager thread with sem_post requests.
  2609   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2610       return;
  2612   // Ctrl-C is pressed during error reporting, likely because the error
  2613   // handler fails to abort. Let VM die immediately.
  2614   if (sig == SIGINT && is_error_reported()) {
  2615      os::die();
  2618   os::signal_notify(sig);
  2621 void* os::user_handler() {
  2622   return CAST_FROM_FN_PTR(void*, UserHandler);
  2625 extern "C" {
  2626   typedef void (*sa_handler_t)(int);
  2627   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2630 void* os::signal(int signal_number, void* handler) {
  2631   struct sigaction sigAct, oldSigAct;
  2633   sigfillset(&(sigAct.sa_mask));
  2634   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2635   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2637   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2638     // -1 means registration failed
  2639     return (void *)-1;
  2642   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2645 void os::signal_raise(int signal_number) {
  2646   ::raise(signal_number);
  2649 /*
  2650  * The following code is moved from os.cpp for making this
  2651  * code platform specific, which it is by its very nature.
  2652  */
  2654 // Will be modified when max signal is changed to be dynamic
  2655 int os::sigexitnum_pd() {
  2656   return NSIG;
  2659 // a counter for each possible signal value
  2660 static volatile jint pending_signals[NSIG+1] = { 0 };
  2662 // Bsd(POSIX) specific hand shaking semaphore.
  2663 #ifdef __APPLE__
  2664 static semaphore_t sig_sem;
  2665 #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
  2666 #define SEM_WAIT(sem)           semaphore_wait(sem);
  2667 #define SEM_POST(sem)           semaphore_signal(sem);
  2668 #else
  2669 static sem_t sig_sem;
  2670 #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
  2671 #define SEM_WAIT(sem)           sem_wait(&sem);
  2672 #define SEM_POST(sem)           sem_post(&sem);
  2673 #endif
  2675 void os::signal_init_pd() {
  2676   // Initialize signal structures
  2677   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2679   // Initialize signal semaphore
  2680   ::SEM_INIT(sig_sem, 0);
  2683 void os::signal_notify(int sig) {
  2684   Atomic::inc(&pending_signals[sig]);
  2685   ::SEM_POST(sig_sem);
  2688 static int check_pending_signals(bool wait) {
  2689   Atomic::store(0, &sigint_count);
  2690   for (;;) {
  2691     for (int i = 0; i < NSIG + 1; i++) {
  2692       jint n = pending_signals[i];
  2693       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2694         return i;
  2697     if (!wait) {
  2698       return -1;
  2700     JavaThread *thread = JavaThread::current();
  2701     ThreadBlockInVM tbivm(thread);
  2703     bool threadIsSuspended;
  2704     do {
  2705       thread->set_suspend_equivalent();
  2706       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2707       ::SEM_WAIT(sig_sem);
  2709       // were we externally suspended while we were waiting?
  2710       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2711       if (threadIsSuspended) {
  2712         //
  2713         // The semaphore has been incremented, but while we were waiting
  2714         // another thread suspended us. We don't want to continue running
  2715         // while suspended because that would surprise the thread that
  2716         // suspended us.
  2717         //
  2718         ::SEM_POST(sig_sem);
  2720         thread->java_suspend_self();
  2722     } while (threadIsSuspended);
  2726 int os::signal_lookup() {
  2727   return check_pending_signals(false);
  2730 int os::signal_wait() {
  2731   return check_pending_signals(true);
  2734 ////////////////////////////////////////////////////////////////////////////////
  2735 // Virtual Memory
  2737 int os::vm_page_size() {
  2738   // Seems redundant as all get out
  2739   assert(os::Bsd::page_size() != -1, "must call os::init");
  2740   return os::Bsd::page_size();
  2743 // Solaris allocates memory by pages.
  2744 int os::vm_allocation_granularity() {
  2745   assert(os::Bsd::page_size() != -1, "must call os::init");
  2746   return os::Bsd::page_size();
  2749 // Rationale behind this function:
  2750 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2751 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2752 //  samples for JITted code. Here we create private executable mapping over the code cache
  2753 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2754 //  info for the reporting script by storing timestamp and location of symbol
  2755 void bsd_wrap_code(char* base, size_t size) {
  2756   static volatile jint cnt = 0;
  2758   if (!UseOprofile) {
  2759     return;
  2762   char buf[PATH_MAX + 1];
  2763   int num = Atomic::add(1, &cnt);
  2765   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
  2766            os::get_temp_directory(), os::current_process_id(), num);
  2767   unlink(buf);
  2769   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2771   if (fd != -1) {
  2772     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2773     if (rv != (off_t)-1) {
  2774       if (::write(fd, "", 1) == 1) {
  2775         mmap(base, size,
  2776              PROT_READ|PROT_WRITE|PROT_EXEC,
  2777              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2780     ::close(fd);
  2781     unlink(buf);
  2785 // NOTE: Bsd kernel does not really reserve the pages for us.
  2786 //       All it does is to check if there are enough free pages
  2787 //       left at the time of mmap(). This could be a potential
  2788 //       problem.
  2789 bool os::commit_memory(char* addr, size_t size, bool exec) {
  2790   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2791 #ifdef __OpenBSD__
  2792   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
  2793   return ::mprotect(addr, size, prot) == 0;
  2794 #else
  2795   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2796                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2797   return res != (uintptr_t) MAP_FAILED;
  2798 #endif
  2801 #ifndef _ALLBSD_SOURCE
  2802 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2803 #ifndef MAP_HUGETLB
  2804 #define MAP_HUGETLB 0x40000
  2805 #endif
  2807 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2808 #ifndef MADV_HUGEPAGE
  2809 #define MADV_HUGEPAGE 14
  2810 #endif
  2811 #endif
  2813 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2814                        bool exec) {
  2815 #ifndef _ALLBSD_SOURCE
  2816   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2817     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2818     uintptr_t res =
  2819       (uintptr_t) ::mmap(addr, size, prot,
  2820                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
  2821                          -1, 0);
  2822     return res != (uintptr_t) MAP_FAILED;
  2824 #endif
  2826   return commit_memory(addr, size, exec);
  2829 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2830 #ifndef _ALLBSD_SOURCE
  2831   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2832     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2833     // be supported or the memory may already be backed by huge pages.
  2834     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2836 #endif
  2839 void os::free_memory(char *addr, size_t bytes) {
  2840   ::madvise(addr, bytes, MADV_DONTNEED);
  2843 void os::numa_make_global(char *addr, size_t bytes) {
  2846 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2849 bool os::numa_topology_changed()   { return false; }
  2851 size_t os::numa_get_groups_num() {
  2852   return 1;
  2855 int os::numa_get_group_id() {
  2856   return 0;
  2859 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2860   if (size > 0) {
  2861     ids[0] = 0;
  2862     return 1;
  2864   return 0;
  2867 bool os::get_page_info(char *start, page_info* info) {
  2868   return false;
  2871 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2872   return end;
  2875 #ifndef _ALLBSD_SOURCE
  2876 // Something to do with the numa-aware allocator needs these symbols
  2877 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2878 extern "C" JNIEXPORT void numa_error(char *where) { }
  2879 extern "C" JNIEXPORT int fork1() { return fork(); }
  2882 // If we are running with libnuma version > 2, then we should
  2883 // be trying to use symbols with versions 1.1
  2884 // If we are running with earlier version, which did not have symbol versions,
  2885 // we should use the base version.
  2886 void* os::Bsd::libnuma_dlsym(void* handle, const char *name) {
  2887   void *f = dlvsym(handle, name, "libnuma_1.1");
  2888   if (f == NULL) {
  2889     f = dlsym(handle, name);
  2891   return f;
  2894 bool os::Bsd::libnuma_init() {
  2895   // sched_getcpu() should be in libc.
  2896   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2897                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2899   if (sched_getcpu() != -1) { // Does it work?
  2900     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2901     if (handle != NULL) {
  2902       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2903                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2904       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2905                                        libnuma_dlsym(handle, "numa_max_node")));
  2906       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2907                                         libnuma_dlsym(handle, "numa_available")));
  2908       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2909                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2910       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2911                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2914       if (numa_available() != -1) {
  2915         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2916         // Create a cpu -> node mapping
  2917         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
  2918         rebuild_cpu_to_node_map();
  2919         return true;
  2923   return false;
  2926 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2927 // The table is later used in get_node_by_cpu().
  2928 void os::Bsd::rebuild_cpu_to_node_map() {
  2929   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2930                               // in libnuma (possible values are starting from 16,
  2931                               // and continuing up with every other power of 2, but less
  2932                               // than the maximum number of CPUs supported by kernel), and
  2933                               // is a subject to change (in libnuma version 2 the requirements
  2934                               // are more reasonable) we'll just hardcode the number they use
  2935                               // in the library.
  2936   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2938   size_t cpu_num = os::active_processor_count();
  2939   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2940   size_t cpu_map_valid_size =
  2941     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2943   cpu_to_node()->clear();
  2944   cpu_to_node()->at_grow(cpu_num - 1);
  2945   size_t node_num = numa_get_groups_num();
  2947   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
  2948   for (size_t i = 0; i < node_num; i++) {
  2949     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2950       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2951         if (cpu_map[j] != 0) {
  2952           for (size_t k = 0; k < BitsPerCLong; k++) {
  2953             if (cpu_map[j] & (1UL << k)) {
  2954               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2961   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
  2964 int os::Bsd::get_node_by_cpu(int cpu_id) {
  2965   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2966     return cpu_to_node()->at(cpu_id);
  2968   return -1;
  2971 GrowableArray<int>* os::Bsd::_cpu_to_node;
  2972 os::Bsd::sched_getcpu_func_t os::Bsd::_sched_getcpu;
  2973 os::Bsd::numa_node_to_cpus_func_t os::Bsd::_numa_node_to_cpus;
  2974 os::Bsd::numa_max_node_func_t os::Bsd::_numa_max_node;
  2975 os::Bsd::numa_available_func_t os::Bsd::_numa_available;
  2976 os::Bsd::numa_tonode_memory_func_t os::Bsd::_numa_tonode_memory;
  2977 os::Bsd::numa_interleave_memory_func_t os::Bsd::_numa_interleave_memory;
  2978 unsigned long* os::Bsd::_numa_all_nodes;
  2979 #endif
  2981 bool os::uncommit_memory(char* addr, size_t size) {
  2982 #ifdef __OpenBSD__
  2983   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
  2984   return ::mprotect(addr, size, PROT_NONE) == 0;
  2985 #else
  2986   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2987                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2988   return res  != (uintptr_t) MAP_FAILED;
  2989 #endif
  2992 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2993   return os::commit_memory(addr, size);
  2996 // If this is a growable mapping, remove the guard pages entirely by
  2997 // munmap()ping them.  If not, just call uncommit_memory().
  2998 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2999   return os::uncommit_memory(addr, size);
  3002 static address _highest_vm_reserved_address = NULL;
  3004 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3005 // at 'requested_addr'. If there are existing memory mappings at the same
  3006 // location, however, they will be overwritten. If 'fixed' is false,
  3007 // 'requested_addr' is only treated as a hint, the return value may or
  3008 // may not start from the requested address. Unlike Bsd mmap(), this
  3009 // function returns NULL to indicate failure.
  3010 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3011   char * addr;
  3012   int flags;
  3014   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3015   if (fixed) {
  3016     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
  3017     flags |= MAP_FIXED;
  3020   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  3021   // to PROT_EXEC if executable when we commit the page.
  3022   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  3023                        flags, -1, 0);
  3025   if (addr != MAP_FAILED) {
  3026     // anon_mmap() should only get called during VM initialization,
  3027     // don't need lock (actually we can skip locking even it can be called
  3028     // from multiple threads, because _highest_vm_reserved_address is just a
  3029     // hint about the upper limit of non-stack memory regions.)
  3030     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3031       _highest_vm_reserved_address = (address)addr + bytes;
  3035   return addr == MAP_FAILED ? NULL : addr;
  3038 // Don't update _highest_vm_reserved_address, because there might be memory
  3039 // regions above addr + size. If so, releasing a memory region only creates
  3040 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3041 //
  3042 static int anon_munmap(char * addr, size_t size) {
  3043   return ::munmap(addr, size) == 0;
  3046 char* os::reserve_memory(size_t bytes, char* requested_addr,
  3047                          size_t alignment_hint) {
  3048   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3051 bool os::release_memory(char* addr, size_t size) {
  3052   return anon_munmap(addr, size);
  3055 static address highest_vm_reserved_address() {
  3056   return _highest_vm_reserved_address;
  3059 static bool bsd_mprotect(char* addr, size_t size, int prot) {
  3060   // Bsd wants the mprotect address argument to be page aligned.
  3061   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
  3063   // According to SUSv3, mprotect() should only be used with mappings
  3064   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3065   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3066   // protection of malloc'ed or statically allocated memory). Check the
  3067   // caller if you hit this assert.
  3068   assert(addr == bottom, "sanity check");
  3070   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
  3071   return ::mprotect(bottom, size, prot) == 0;
  3074 // Set protections specified
  3075 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3076                         bool is_committed) {
  3077   unsigned int p = 0;
  3078   switch (prot) {
  3079   case MEM_PROT_NONE: p = PROT_NONE; break;
  3080   case MEM_PROT_READ: p = PROT_READ; break;
  3081   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3082   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3083   default:
  3084     ShouldNotReachHere();
  3086   // is_committed is unused.
  3087   return bsd_mprotect(addr, bytes, p);
  3090 bool os::guard_memory(char* addr, size_t size) {
  3091   return bsd_mprotect(addr, size, PROT_NONE);
  3094 bool os::unguard_memory(char* addr, size_t size) {
  3095   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3098 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3099   bool result = false;
  3100 #ifndef _ALLBSD_SOURCE
  3101   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
  3102                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3103                   -1, 0);
  3105   if (p != (void *) -1) {
  3106     // We don't know if this really is a huge page or not.
  3107     FILE *fp = fopen("/proc/self/maps", "r");
  3108     if (fp) {
  3109       while (!feof(fp)) {
  3110         char chars[257];
  3111         long x = 0;
  3112         if (fgets(chars, sizeof(chars), fp)) {
  3113           if (sscanf(chars, "%lx-%*x", &x) == 1
  3114               && x == (long)p) {
  3115             if (strstr (chars, "hugepage")) {
  3116               result = true;
  3117               break;
  3122       fclose(fp);
  3124     munmap (p, page_size);
  3125     if (result)
  3126       return true;
  3129   if (warn) {
  3130     warning("HugeTLBFS is not supported by the operating system.");
  3132 #endif
  3134   return result;
  3137 /*
  3138 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3140 * From the coredump_filter documentation:
  3142 * - (bit 0) anonymous private memory
  3143 * - (bit 1) anonymous shared memory
  3144 * - (bit 2) file-backed private memory
  3145 * - (bit 3) file-backed shared memory
  3146 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3147 *           effective only if the bit 2 is cleared)
  3148 * - (bit 5) hugetlb private memory
  3149 * - (bit 6) hugetlb shared memory
  3150 */
  3151 static void set_coredump_filter(void) {
  3152   FILE *f;
  3153   long cdm;
  3155   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3156     return;
  3159   if (fscanf(f, "%lx", &cdm) != 1) {
  3160     fclose(f);
  3161     return;
  3164   rewind(f);
  3166   if ((cdm & LARGEPAGES_BIT) == 0) {
  3167     cdm |= LARGEPAGES_BIT;
  3168     fprintf(f, "%#lx", cdm);
  3171   fclose(f);
  3174 // Large page support
  3176 static size_t _large_page_size = 0;
  3178 void os::large_page_init() {
  3179 #ifndef _ALLBSD_SOURCE
  3180   if (!UseLargePages) {
  3181     UseHugeTLBFS = false;
  3182     UseSHM = false;
  3183     return;
  3186   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
  3187     // If UseLargePages is specified on the command line try both methods,
  3188     // if it's default, then try only HugeTLBFS.
  3189     if (FLAG_IS_DEFAULT(UseLargePages)) {
  3190       UseHugeTLBFS = true;
  3191     } else {
  3192       UseHugeTLBFS = UseSHM = true;
  3196   if (LargePageSizeInBytes) {
  3197     _large_page_size = LargePageSizeInBytes;
  3198   } else {
  3199     // large_page_size on Bsd is used to round up heap size. x86 uses either
  3200     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3201     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3202     // page as large as 256M.
  3203     //
  3204     // Here we try to figure out page size by parsing /proc/meminfo and looking
  3205     // for a line with the following format:
  3206     //    Hugepagesize:     2048 kB
  3207     //
  3208     // If we can't determine the value (e.g. /proc is not mounted, or the text
  3209     // format has been changed), we'll use the largest page size supported by
  3210     // the processor.
  3212 #ifndef ZERO
  3213     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3214                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3215 #endif // ZERO
  3217     FILE *fp = fopen("/proc/meminfo", "r");
  3218     if (fp) {
  3219       while (!feof(fp)) {
  3220         int x = 0;
  3221         char buf[16];
  3222         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3223           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3224             _large_page_size = x * K;
  3225             break;
  3227         } else {
  3228           // skip to next line
  3229           for (;;) {
  3230             int ch = fgetc(fp);
  3231             if (ch == EOF || ch == (int)'\n') break;
  3235       fclose(fp);
  3239   // print a warning if any large page related flag is specified on command line
  3240   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3242   const size_t default_page_size = (size_t)Bsd::page_size();
  3243   if (_large_page_size > default_page_size) {
  3244     _page_sizes[0] = _large_page_size;
  3245     _page_sizes[1] = default_page_size;
  3246     _page_sizes[2] = 0;
  3248   UseHugeTLBFS = UseHugeTLBFS &&
  3249                  Bsd::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
  3251   if (UseHugeTLBFS)
  3252     UseSHM = false;
  3254   UseLargePages = UseHugeTLBFS || UseSHM;
  3256   set_coredump_filter();
  3257 #endif
  3260 #ifndef _ALLBSD_SOURCE
  3261 #ifndef SHM_HUGETLB
  3262 #define SHM_HUGETLB 04000
  3263 #endif
  3264 #endif
  3266 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  3267   // "exec" is passed in but not used.  Creating the shared image for
  3268   // the code cache doesn't have an SHM_X executable permission to check.
  3269   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3271   key_t key = IPC_PRIVATE;
  3272   char *addr;
  3274   bool warn_on_failure = UseLargePages &&
  3275                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3276                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3277                         );
  3278   char msg[128];
  3280   // Create a large shared memory region to attach to based on size.
  3281   // Currently, size is the total size of the heap
  3282 #ifndef _ALLBSD_SOURCE
  3283   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3284 #else
  3285   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
  3286 #endif
  3287   if (shmid == -1) {
  3288      // Possible reasons for shmget failure:
  3289      // 1. shmmax is too small for Java heap.
  3290      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3291      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3292      // 2. not enough large page memory.
  3293      //    > check available large pages: cat /proc/meminfo
  3294      //    > increase amount of large pages:
  3295      //          echo new_value > /proc/sys/vm/nr_hugepages
  3296      //      Note 1: different Bsd may use different name for this property,
  3297      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3298      //      Note 2: it's possible there's enough physical memory available but
  3299      //            they are so fragmented after a long run that they can't
  3300      //            coalesce into large pages. Try to reserve large pages when
  3301      //            the system is still "fresh".
  3302      if (warn_on_failure) {
  3303        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3304        warning(msg);
  3306      return NULL;
  3309   // attach to the region
  3310   addr = (char*)shmat(shmid, req_addr, 0);
  3311   int err = errno;
  3313   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3314   // will be deleted when it's detached by shmdt() or when the process
  3315   // terminates. If shmat() is not successful this will remove the shared
  3316   // segment immediately.
  3317   shmctl(shmid, IPC_RMID, NULL);
  3319   if ((intptr_t)addr == -1) {
  3320      if (warn_on_failure) {
  3321        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3322        warning(msg);
  3324      return NULL;
  3327   return addr;
  3330 bool os::release_memory_special(char* base, size_t bytes) {
  3331   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3332   int rslt = shmdt(base);
  3333   return rslt == 0;
  3336 size_t os::large_page_size() {
  3337   return _large_page_size;
  3340 // HugeTLBFS allows application to commit large page memory on demand;
  3341 // with SysV SHM the entire memory region must be allocated as shared
  3342 // memory.
  3343 bool os::can_commit_large_page_memory() {
  3344   return UseHugeTLBFS;
  3347 bool os::can_execute_large_page_memory() {
  3348   return UseHugeTLBFS;
  3351 // Reserve memory at an arbitrary address, only if that area is
  3352 // available (and not reserved for something else).
  3354 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3355   const int max_tries = 10;
  3356   char* base[max_tries];
  3357   size_t size[max_tries];
  3358   const size_t gap = 0x000000;
  3360   // Assert only that the size is a multiple of the page size, since
  3361   // that's all that mmap requires, and since that's all we really know
  3362   // about at this low abstraction level.  If we need higher alignment,
  3363   // we can either pass an alignment to this method or verify alignment
  3364   // in one of the methods further up the call chain.  See bug 5044738.
  3365   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3367   // Repeatedly allocate blocks until the block is allocated at the
  3368   // right spot. Give up after max_tries. Note that reserve_memory() will
  3369   // automatically update _highest_vm_reserved_address if the call is
  3370   // successful. The variable tracks the highest memory address every reserved
  3371   // by JVM. It is used to detect heap-stack collision if running with
  3372   // fixed-stack BsdThreads. Because here we may attempt to reserve more
  3373   // space than needed, it could confuse the collision detecting code. To
  3374   // solve the problem, save current _highest_vm_reserved_address and
  3375   // calculate the correct value before return.
  3376   address old_highest = _highest_vm_reserved_address;
  3378   // Bsd mmap allows caller to pass an address as hint; give it a try first,
  3379   // if kernel honors the hint then we can return immediately.
  3380   char * addr = anon_mmap(requested_addr, bytes, false);
  3381   if (addr == requested_addr) {
  3382      return requested_addr;
  3385   if (addr != NULL) {
  3386      // mmap() is successful but it fails to reserve at the requested address
  3387      anon_munmap(addr, bytes);
  3390   int i;
  3391   for (i = 0; i < max_tries; ++i) {
  3392     base[i] = reserve_memory(bytes);
  3394     if (base[i] != NULL) {
  3395       // Is this the block we wanted?
  3396       if (base[i] == requested_addr) {
  3397         size[i] = bytes;
  3398         break;
  3401       // Does this overlap the block we wanted? Give back the overlapped
  3402       // parts and try again.
  3404       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3405       if (top_overlap >= 0 && top_overlap < bytes) {
  3406         unmap_memory(base[i], top_overlap);
  3407         base[i] += top_overlap;
  3408         size[i] = bytes - top_overlap;
  3409       } else {
  3410         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3411         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3412           unmap_memory(requested_addr, bottom_overlap);
  3413           size[i] = bytes - bottom_overlap;
  3414         } else {
  3415           size[i] = bytes;
  3421   // Give back the unused reserved pieces.
  3423   for (int j = 0; j < i; ++j) {
  3424     if (base[j] != NULL) {
  3425       unmap_memory(base[j], size[j]);
  3429   if (i < max_tries) {
  3430     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3431     return requested_addr;
  3432   } else {
  3433     _highest_vm_reserved_address = old_highest;
  3434     return NULL;
  3438 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3439   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
  3442 // TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
  3443 // Solaris uses poll(), bsd uses park().
  3444 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3445 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3446 // SIGSEGV, see 4355769.
  3448 const int NANOSECS_PER_MILLISECS = 1000000;
  3450 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3451   assert(thread == Thread::current(),  "thread consistency check");
  3453   ParkEvent * const slp = thread->_SleepEvent ;
  3454   slp->reset() ;
  3455   OrderAccess::fence() ;
  3457   if (interruptible) {
  3458     jlong prevtime = javaTimeNanos();
  3460     for (;;) {
  3461       if (os::is_interrupted(thread, true)) {
  3462         return OS_INTRPT;
  3465       jlong newtime = javaTimeNanos();
  3467       if (newtime - prevtime < 0) {
  3468         // time moving backwards, should only happen if no monotonic clock
  3469         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3470         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
  3471       } else {
  3472         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3475       if(millis <= 0) {
  3476         return OS_OK;
  3479       prevtime = newtime;
  3482         assert(thread->is_Java_thread(), "sanity check");
  3483         JavaThread *jt = (JavaThread *) thread;
  3484         ThreadBlockInVM tbivm(jt);
  3485         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3487         jt->set_suspend_equivalent();
  3488         // cleared by handle_special_suspend_equivalent_condition() or
  3489         // java_suspend_self() via check_and_wait_while_suspended()
  3491         slp->park(millis);
  3493         // were we externally suspended while we were waiting?
  3494         jt->check_and_wait_while_suspended();
  3497   } else {
  3498     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3499     jlong prevtime = javaTimeNanos();
  3501     for (;;) {
  3502       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3503       // the 1st iteration ...
  3504       jlong newtime = javaTimeNanos();
  3506       if (newtime - prevtime < 0) {
  3507         // time moving backwards, should only happen if no monotonic clock
  3508         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3509         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
  3510       } else {
  3511         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3514       if(millis <= 0) break ;
  3516       prevtime = newtime;
  3517       slp->park(millis);
  3519     return OS_OK ;
  3523 int os::naked_sleep() {
  3524   // %% make the sleep time an integer flag. for now use 1 millisec.
  3525   return os::sleep(Thread::current(), 1, false);
  3528 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3529 void os::infinite_sleep() {
  3530   while (true) {    // sleep forever ...
  3531     ::sleep(100);   // ... 100 seconds at a time
  3535 // Used to convert frequent JVM_Yield() to nops
  3536 bool os::dont_yield() {
  3537   return DontYieldALot;
  3540 void os::yield() {
  3541   sched_yield();
  3544 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3546 void os::yield_all(int attempts) {
  3547   // Yields to all threads, including threads with lower priorities
  3548   // Threads on Bsd are all with same priority. The Solaris style
  3549   // os::yield_all() with nanosleep(1ms) is not necessary.
  3550   sched_yield();
  3553 // Called from the tight loops to possibly influence time-sharing heuristics
  3554 void os::loop_breaker(int attempts) {
  3555   os::yield_all(attempts);
  3558 ////////////////////////////////////////////////////////////////////////////////
  3559 // thread priority support
  3561 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
  3562 // only supports dynamic priority, static priority must be zero. For real-time
  3563 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
  3564 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3565 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3566 // of 5 runs - Sep 2005).
  3567 //
  3568 // The following code actually changes the niceness of kernel-thread/LWP. It
  3569 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3570 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3571 // threads. It has always been the case, but could change in the future. For
  3572 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3573 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3575 #if defined(_ALLBSD_SOURCE) && !defined(__APPLE__)
  3576 int os::java_to_os_priority[MaxPriority + 1] = {
  3577   19,              // 0 Entry should never be used
  3579    0,              // 1 MinPriority
  3580    3,              // 2
  3581    6,              // 3
  3583    10,              // 4
  3584    15,              // 5 NormPriority
  3585    18,              // 6
  3587    21,              // 7
  3588    25,              // 8
  3589    28,              // 9 NearMaxPriority
  3591    31              // 10 MaxPriority
  3592 };
  3593 #elif defined(__APPLE__)
  3594 /* Using Mach high-level priority assignments */
  3595 int os::java_to_os_priority[MaxPriority + 1] = {
  3596    0,              // 0 Entry should never be used (MINPRI_USER)
  3598   27,              // 1 MinPriority
  3599   28,              // 2
  3600   29,              // 3
  3602   30,              // 4
  3603   31,              // 5 NormPriority (BASEPRI_DEFAULT)
  3604   32,              // 6
  3606   33,              // 7
  3607   34,              // 8
  3608   35,              // 9 NearMaxPriority
  3610   36               // 10 MaxPriority
  3611 };
  3612 #else
  3613 int os::java_to_os_priority[MaxPriority + 1] = {
  3614   19,              // 0 Entry should never be used
  3616    4,              // 1 MinPriority
  3617    3,              // 2
  3618    2,              // 3
  3620    1,              // 4
  3621    0,              // 5 NormPriority
  3622   -1,              // 6
  3624   -2,              // 7
  3625   -3,              // 8
  3626   -4,              // 9 NearMaxPriority
  3628   -5               // 10 MaxPriority
  3629 };
  3630 #endif
  3632 static int prio_init() {
  3633   if (ThreadPriorityPolicy == 1) {
  3634     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3635     // if effective uid is not root. Perhaps, a more elegant way of doing
  3636     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3637     if (geteuid() != 0) {
  3638       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3639         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
  3641       ThreadPriorityPolicy = 0;
  3644   return 0;
  3647 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3648   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3650 #ifdef __OpenBSD__
  3651   // OpenBSD pthread_setprio starves low priority threads
  3652   return OS_OK;
  3653 #elif defined(__FreeBSD__)
  3654   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
  3655 #elif defined(__APPLE__) || defined(__NetBSD__)
  3656   struct sched_param sp;
  3657   int policy;
  3658   pthread_t self = pthread_self();
  3660   if (pthread_getschedparam(self, &policy, &sp) != 0)
  3661     return OS_ERR;
  3663   sp.sched_priority = newpri;
  3664   if (pthread_setschedparam(self, policy, &sp) != 0)
  3665     return OS_ERR;
  3667   return OS_OK;
  3668 #else
  3669   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3670   return (ret == 0) ? OS_OK : OS_ERR;
  3671 #endif
  3674 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3675   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3676     *priority_ptr = java_to_os_priority[NormPriority];
  3677     return OS_OK;
  3680   errno = 0;
  3681 #if defined(__OpenBSD__) || defined(__FreeBSD__)
  3682   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
  3683 #elif defined(__APPLE__) || defined(__NetBSD__)
  3684   int policy;
  3685   struct sched_param sp;
  3687   pthread_getschedparam(pthread_self(), &policy, &sp);
  3688   *priority_ptr = sp.sched_priority;
  3689 #else
  3690   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3691 #endif
  3692   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3695 // Hint to the underlying OS that a task switch would not be good.
  3696 // Void return because it's a hint and can fail.
  3697 void os::hint_no_preempt() {}
  3699 ////////////////////////////////////////////////////////////////////////////////
  3700 // suspend/resume support
  3702 //  the low-level signal-based suspend/resume support is a remnant from the
  3703 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3704 //  within hotspot. Now there is a single use-case for this:
  3705 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3706 //      that runs in the watcher thread.
  3707 //  The remaining code is greatly simplified from the more general suspension
  3708 //  code that used to be used.
  3709 //
  3710 //  The protocol is quite simple:
  3711 //  - suspend:
  3712 //      - sends a signal to the target thread
  3713 //      - polls the suspend state of the osthread using a yield loop
  3714 //      - target thread signal handler (SR_handler) sets suspend state
  3715 //        and blocks in sigsuspend until continued
  3716 //  - resume:
  3717 //      - sets target osthread state to continue
  3718 //      - sends signal to end the sigsuspend loop in the SR_handler
  3719 //
  3720 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3721 //
  3723 static void resume_clear_context(OSThread *osthread) {
  3724   osthread->set_ucontext(NULL);
  3725   osthread->set_siginfo(NULL);
  3727   // notify the suspend action is completed, we have now resumed
  3728   osthread->sr.clear_suspended();
  3731 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3732   osthread->set_ucontext(context);
  3733   osthread->set_siginfo(siginfo);
  3736 //
  3737 // Handler function invoked when a thread's execution is suspended or
  3738 // resumed. We have to be careful that only async-safe functions are
  3739 // called here (Note: most pthread functions are not async safe and
  3740 // should be avoided.)
  3741 //
  3742 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3743 // interface point of view, but sigwait() prevents the signal hander
  3744 // from being run. libpthread would get very confused by not having
  3745 // its signal handlers run and prevents sigwait()'s use with the
  3746 // mutex granting granting signal.
  3747 //
  3748 // Currently only ever called on the VMThread
  3749 //
  3750 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3751   // Save and restore errno to avoid confusing native code with EINTR
  3752   // after sigsuspend.
  3753   int old_errno = errno;
  3755   Thread* thread = Thread::current();
  3756   OSThread* osthread = thread->osthread();
  3757   assert(thread->is_VM_thread(), "Must be VMThread");
  3758   // read current suspend action
  3759   int action = osthread->sr.suspend_action();
  3760   if (action == SR_SUSPEND) {
  3761     suspend_save_context(osthread, siginfo, context);
  3763     // Notify the suspend action is about to be completed. do_suspend()
  3764     // waits until SR_SUSPENDED is set and then returns. We will wait
  3765     // here for a resume signal and that completes the suspend-other
  3766     // action. do_suspend/do_resume is always called as a pair from
  3767     // the same thread - so there are no races
  3769     // notify the caller
  3770     osthread->sr.set_suspended();
  3772     sigset_t suspend_set;  // signals for sigsuspend()
  3774     // get current set of blocked signals and unblock resume signal
  3775     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3776     sigdelset(&suspend_set, SR_signum);
  3778     // wait here until we are resumed
  3779     do {
  3780       sigsuspend(&suspend_set);
  3781       // ignore all returns until we get a resume signal
  3782     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3784     resume_clear_context(osthread);
  3786   } else {
  3787     assert(action == SR_CONTINUE, "unexpected sr action");
  3788     // nothing special to do - just leave the handler
  3791   errno = old_errno;
  3795 static int SR_initialize() {
  3796   struct sigaction act;
  3797   char *s;
  3798   /* Get signal number to use for suspend/resume */
  3799   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3800     int sig = ::strtol(s, 0, 10);
  3801     if (sig > 0 || sig < NSIG) {
  3802         SR_signum = sig;
  3806   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3807         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3809   sigemptyset(&SR_sigset);
  3810   sigaddset(&SR_sigset, SR_signum);
  3812   /* Set up signal handler for suspend/resume */
  3813   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3814   act.sa_handler = (void (*)(int)) SR_handler;
  3816   // SR_signum is blocked by default.
  3817   // 4528190 - We also need to block pthread restart signal (32 on all
  3818   // supported Bsd platforms). Note that BsdThreads need to block
  3819   // this signal for all threads to work properly. So we don't have
  3820   // to use hard-coded signal number when setting up the mask.
  3821   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3823   if (sigaction(SR_signum, &act, 0) == -1) {
  3824     return -1;
  3827   // Save signal flag
  3828   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
  3829   return 0;
  3832 static int SR_finalize() {
  3833   return 0;
  3837 // returns true on success and false on error - really an error is fatal
  3838 // but this seems the normal response to library errors
  3839 static bool do_suspend(OSThread* osthread) {
  3840   // mark as suspended and send signal
  3841   osthread->sr.set_suspend_action(SR_SUSPEND);
  3842   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3843   assert_status(status == 0, status, "pthread_kill");
  3845   // check status and wait until notified of suspension
  3846   if (status == 0) {
  3847     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3848       os::yield_all(i);
  3850     osthread->sr.set_suspend_action(SR_NONE);
  3851     return true;
  3853   else {
  3854     osthread->sr.set_suspend_action(SR_NONE);
  3855     return false;
  3859 static void do_resume(OSThread* osthread) {
  3860   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3861   osthread->sr.set_suspend_action(SR_CONTINUE);
  3863   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3864   assert_status(status == 0, status, "pthread_kill");
  3865   // check status and wait unit notified of resumption
  3866   if (status == 0) {
  3867     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3868       os::yield_all(i);
  3871   osthread->sr.set_suspend_action(SR_NONE);
  3874 ////////////////////////////////////////////////////////////////////////////////
  3875 // interrupt support
  3877 void os::interrupt(Thread* thread) {
  3878   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3879     "possibility of dangling Thread pointer");
  3881   OSThread* osthread = thread->osthread();
  3883   if (!osthread->interrupted()) {
  3884     osthread->set_interrupted(true);
  3885     // More than one thread can get here with the same value of osthread,
  3886     // resulting in multiple notifications.  We do, however, want the store
  3887     // to interrupted() to be visible to other threads before we execute unpark().
  3888     OrderAccess::fence();
  3889     ParkEvent * const slp = thread->_SleepEvent ;
  3890     if (slp != NULL) slp->unpark() ;
  3893   // For JSR166. Unpark even if interrupt status already was set
  3894   if (thread->is_Java_thread())
  3895     ((JavaThread*)thread)->parker()->unpark();
  3897   ParkEvent * ev = thread->_ParkEvent ;
  3898   if (ev != NULL) ev->unpark() ;
  3902 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3903   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3904     "possibility of dangling Thread pointer");
  3906   OSThread* osthread = thread->osthread();
  3908   bool interrupted = osthread->interrupted();
  3910   if (interrupted && clear_interrupted) {
  3911     osthread->set_interrupted(false);
  3912     // consider thread->_SleepEvent->reset() ... optional optimization
  3915   return interrupted;
  3918 ///////////////////////////////////////////////////////////////////////////////////
  3919 // signal handling (except suspend/resume)
  3921 // This routine may be used by user applications as a "hook" to catch signals.
  3922 // The user-defined signal handler must pass unrecognized signals to this
  3923 // routine, and if it returns true (non-zero), then the signal handler must
  3924 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3925 // routine will never retun false (zero), but instead will execute a VM panic
  3926 // routine kill the process.
  3927 //
  3928 // If this routine returns false, it is OK to call it again.  This allows
  3929 // the user-defined signal handler to perform checks either before or after
  3930 // the VM performs its own checks.  Naturally, the user code would be making
  3931 // a serious error if it tried to handle an exception (such as a null check
  3932 // or breakpoint) that the VM was generating for its own correct operation.
  3933 //
  3934 // This routine may recognize any of the following kinds of signals:
  3935 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3936 // It should be consulted by handlers for any of those signals.
  3937 //
  3938 // The caller of this routine must pass in the three arguments supplied
  3939 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3940 // field of the structure passed to sigaction().  This routine assumes that
  3941 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3942 //
  3943 // Note that the VM will print warnings if it detects conflicting signal
  3944 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3945 //
  3946 extern "C" JNIEXPORT int
  3947 JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
  3948                         void* ucontext, int abort_if_unrecognized);
  3950 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3951   assert(info != NULL && uc != NULL, "it must be old kernel");
  3952   JVM_handle_bsd_signal(sig, info, uc, true);
  3956 // This boolean allows users to forward their own non-matching signals
  3957 // to JVM_handle_bsd_signal, harmlessly.
  3958 bool os::Bsd::signal_handlers_are_installed = false;
  3960 // For signal-chaining
  3961 struct sigaction os::Bsd::sigact[MAXSIGNUM];
  3962 unsigned int os::Bsd::sigs = 0;
  3963 bool os::Bsd::libjsig_is_loaded = false;
  3964 typedef struct sigaction *(*get_signal_t)(int);
  3965 get_signal_t os::Bsd::get_signal_action = NULL;
  3967 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
  3968   struct sigaction *actp = NULL;
  3970   if (libjsig_is_loaded) {
  3971     // Retrieve the old signal handler from libjsig
  3972     actp = (*get_signal_action)(sig);
  3974   if (actp == NULL) {
  3975     // Retrieve the preinstalled signal handler from jvm
  3976     actp = get_preinstalled_handler(sig);
  3979   return actp;
  3982 static bool call_chained_handler(struct sigaction *actp, int sig,
  3983                                  siginfo_t *siginfo, void *context) {
  3984   // Call the old signal handler
  3985   if (actp->sa_handler == SIG_DFL) {
  3986     // It's more reasonable to let jvm treat it as an unexpected exception
  3987     // instead of taking the default action.
  3988     return false;
  3989   } else if (actp->sa_handler != SIG_IGN) {
  3990     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3991       // automaticlly block the signal
  3992       sigaddset(&(actp->sa_mask), sig);
  3995     sa_handler_t hand;
  3996     sa_sigaction_t sa;
  3997     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3998     // retrieve the chained handler
  3999     if (siginfo_flag_set) {
  4000       sa = actp->sa_sigaction;
  4001     } else {
  4002       hand = actp->sa_handler;
  4005     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4006       actp->sa_handler = SIG_DFL;
  4009     // try to honor the signal mask
  4010     sigset_t oset;
  4011     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4013     // call into the chained handler
  4014     if (siginfo_flag_set) {
  4015       (*sa)(sig, siginfo, context);
  4016     } else {
  4017       (*hand)(sig);
  4020     // restore the signal mask
  4021     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4023   // Tell jvm's signal handler the signal is taken care of.
  4024   return true;
  4027 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4028   bool chained = false;
  4029   // signal-chaining
  4030   if (UseSignalChaining) {
  4031     struct sigaction *actp = get_chained_signal_action(sig);
  4032     if (actp != NULL) {
  4033       chained = call_chained_handler(actp, sig, siginfo, context);
  4036   return chained;
  4039 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
  4040   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4041     return &sigact[sig];
  4043   return NULL;
  4046 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4047   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4048   sigact[sig] = oldAct;
  4049   sigs |= (unsigned int)1 << sig;
  4052 // for diagnostic
  4053 int os::Bsd::sigflags[MAXSIGNUM];
  4055 int os::Bsd::get_our_sigflags(int sig) {
  4056   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4057   return sigflags[sig];
  4060 void os::Bsd::set_our_sigflags(int sig, int flags) {
  4061   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4062   sigflags[sig] = flags;
  4065 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
  4066   // Check for overwrite.
  4067   struct sigaction oldAct;
  4068   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4070   void* oldhand = oldAct.sa_sigaction
  4071                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4072                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4073   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4074       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4075       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4076     if (AllowUserSignalHandlers || !set_installed) {
  4077       // Do not overwrite; user takes responsibility to forward to us.
  4078       return;
  4079     } else if (UseSignalChaining) {
  4080       // save the old handler in jvm
  4081       save_preinstalled_handler(sig, oldAct);
  4082       // libjsig also interposes the sigaction() call below and saves the
  4083       // old sigaction on it own.
  4084     } else {
  4085       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4086                     "%#lx for signal %d.", (long)oldhand, sig));
  4090   struct sigaction sigAct;
  4091   sigfillset(&(sigAct.sa_mask));
  4092   sigAct.sa_handler = SIG_DFL;
  4093   if (!set_installed) {
  4094     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4095   } else {
  4096     sigAct.sa_sigaction = signalHandler;
  4097     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4099   // Save flags, which are set by ours
  4100   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4101   sigflags[sig] = sigAct.sa_flags;
  4103   int ret = sigaction(sig, &sigAct, &oldAct);
  4104   assert(ret == 0, "check");
  4106   void* oldhand2  = oldAct.sa_sigaction
  4107                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4108                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4109   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4112 // install signal handlers for signals that HotSpot needs to
  4113 // handle in order to support Java-level exception handling.
  4115 void os::Bsd::install_signal_handlers() {
  4116   if (!signal_handlers_are_installed) {
  4117     signal_handlers_are_installed = true;
  4119     // signal-chaining
  4120     typedef void (*signal_setting_t)();
  4121     signal_setting_t begin_signal_setting = NULL;
  4122     signal_setting_t end_signal_setting = NULL;
  4123     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4124                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4125     if (begin_signal_setting != NULL) {
  4126       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4127                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4128       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4129                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4130       libjsig_is_loaded = true;
  4131       assert(UseSignalChaining, "should enable signal-chaining");
  4133     if (libjsig_is_loaded) {
  4134       // Tell libjsig jvm is setting signal handlers
  4135       (*begin_signal_setting)();
  4138     set_signal_handler(SIGSEGV, true);
  4139     set_signal_handler(SIGPIPE, true);
  4140     set_signal_handler(SIGBUS, true);
  4141     set_signal_handler(SIGILL, true);
  4142     set_signal_handler(SIGFPE, true);
  4143     set_signal_handler(SIGXFSZ, true);
  4145 #if defined(__APPLE__)
  4146     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
  4147     // signals caught and handled by the JVM. To work around this, we reset the mach task
  4148     // signal handler that's placed on our process by CrashReporter. This disables
  4149     // CrashReporter-based reporting.
  4150     //
  4151     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
  4152     // on caught fatal signals.
  4153     //
  4154     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
  4155     // handlers. By replacing the existing task exception handler, we disable gdb's mach
  4156     // exception handling, while leaving the standard BSD signal handlers functional.
  4157     kern_return_t kr;
  4158     kr = task_set_exception_ports(mach_task_self(),
  4159         EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
  4160         MACH_PORT_NULL,
  4161         EXCEPTION_STATE_IDENTITY,
  4162         MACHINE_THREAD_STATE);
  4164     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
  4165 #endif
  4167     if (libjsig_is_loaded) {
  4168       // Tell libjsig jvm finishes setting signal handlers
  4169       (*end_signal_setting)();
  4172     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4173     // and if UserSignalHandler is installed all bets are off
  4174     if (CheckJNICalls) {
  4175       if (libjsig_is_loaded) {
  4176         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4177         check_signals = false;
  4179       if (AllowUserSignalHandlers) {
  4180         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4181         check_signals = false;
  4187 #ifndef _ALLBSD_SOURCE
  4188 // This is the fastest way to get thread cpu time on Bsd.
  4189 // Returns cpu time (user+sys) for any thread, not only for current.
  4190 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4191 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4192 // For reference, please, see IEEE Std 1003.1-2004:
  4193 //   http://www.unix.org/single_unix_specification
  4195 jlong os::Bsd::fast_thread_cpu_time(clockid_t clockid) {
  4196   struct timespec tp;
  4197   int rc = os::Bsd::clock_gettime(clockid, &tp);
  4198   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4200   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
  4202 #endif
  4204 /////
  4205 // glibc on Bsd platform uses non-documented flag
  4206 // to indicate, that some special sort of signal
  4207 // trampoline is used.
  4208 // We will never set this flag, and we should
  4209 // ignore this flag in our diagnostic
  4210 #ifdef SIGNIFICANT_SIGNAL_MASK
  4211 #undef SIGNIFICANT_SIGNAL_MASK
  4212 #endif
  4213 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4215 static const char* get_signal_handler_name(address handler,
  4216                                            char* buf, int buflen) {
  4217   int offset;
  4218   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4219   if (found) {
  4220     // skip directory names
  4221     const char *p1, *p2;
  4222     p1 = buf;
  4223     size_t len = strlen(os::file_separator());
  4224     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4225     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4226   } else {
  4227     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4229   return buf;
  4232 static void print_signal_handler(outputStream* st, int sig,
  4233                                  char* buf, size_t buflen) {
  4234   struct sigaction sa;
  4236   sigaction(sig, NULL, &sa);
  4238   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4239   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4241   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4243   address handler = (sa.sa_flags & SA_SIGINFO)
  4244     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4245     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4247   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4248     st->print("SIG_DFL");
  4249   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4250     st->print("SIG_IGN");
  4251   } else {
  4252     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4255   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  4257   address rh = VMError::get_resetted_sighandler(sig);
  4258   // May be, handler was resetted by VMError?
  4259   if(rh != NULL) {
  4260     handler = rh;
  4261     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4264   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  4266   // Check: is it our handler?
  4267   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4268      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4269     // It is our signal handler
  4270     // check for flags, reset system-used one!
  4271     if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
  4272       st->print(
  4273                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4274                 os::Bsd::get_our_sigflags(sig));
  4277   st->cr();
  4281 #define DO_SIGNAL_CHECK(sig) \
  4282   if (!sigismember(&check_signal_done, sig)) \
  4283     os::Bsd::check_signal_handler(sig)
  4285 // This method is a periodic task to check for misbehaving JNI applications
  4286 // under CheckJNI, we can add any periodic checks here
  4288 void os::run_periodic_checks() {
  4290   if (check_signals == false) return;
  4292   // SEGV and BUS if overridden could potentially prevent
  4293   // generation of hs*.log in the event of a crash, debugging
  4294   // such a case can be very challenging, so we absolutely
  4295   // check the following for a good measure:
  4296   DO_SIGNAL_CHECK(SIGSEGV);
  4297   DO_SIGNAL_CHECK(SIGILL);
  4298   DO_SIGNAL_CHECK(SIGFPE);
  4299   DO_SIGNAL_CHECK(SIGBUS);
  4300   DO_SIGNAL_CHECK(SIGPIPE);
  4301   DO_SIGNAL_CHECK(SIGXFSZ);
  4304   // ReduceSignalUsage allows the user to override these handlers
  4305   // see comments at the very top and jvm_solaris.h
  4306   if (!ReduceSignalUsage) {
  4307     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4308     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4309     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4310     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4313   DO_SIGNAL_CHECK(SR_signum);
  4314   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4317 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4319 static os_sigaction_t os_sigaction = NULL;
  4321 void os::Bsd::check_signal_handler(int sig) {
  4322   char buf[O_BUFLEN];
  4323   address jvmHandler = NULL;
  4326   struct sigaction act;
  4327   if (os_sigaction == NULL) {
  4328     // only trust the default sigaction, in case it has been interposed
  4329     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4330     if (os_sigaction == NULL) return;
  4333   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4336   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4338   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4339     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4340     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4343   switch(sig) {
  4344   case SIGSEGV:
  4345   case SIGBUS:
  4346   case SIGFPE:
  4347   case SIGPIPE:
  4348   case SIGILL:
  4349   case SIGXFSZ:
  4350     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4351     break;
  4353   case SHUTDOWN1_SIGNAL:
  4354   case SHUTDOWN2_SIGNAL:
  4355   case SHUTDOWN3_SIGNAL:
  4356   case BREAK_SIGNAL:
  4357     jvmHandler = (address)user_handler();
  4358     break;
  4360   case INTERRUPT_SIGNAL:
  4361     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4362     break;
  4364   default:
  4365     if (sig == SR_signum) {
  4366       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4367     } else {
  4368       return;
  4370     break;
  4373   if (thisHandler != jvmHandler) {
  4374     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4375     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4376     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4377     // No need to check this sig any longer
  4378     sigaddset(&check_signal_done, sig);
  4379   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
  4380     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4381     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
  4382     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4383     // No need to check this sig any longer
  4384     sigaddset(&check_signal_done, sig);
  4387   // Dump all the signal
  4388   if (sigismember(&check_signal_done, sig)) {
  4389     print_signal_handlers(tty, buf, O_BUFLEN);
  4393 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4395 extern bool signal_name(int signo, char* buf, size_t len);
  4397 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4398   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4399     // signal
  4400     if (!signal_name(exception_code, buf, size)) {
  4401       jio_snprintf(buf, size, "SIG%d", exception_code);
  4403     return buf;
  4404   } else {
  4405     return NULL;
  4409 // this is called _before_ the most of global arguments have been parsed
  4410 void os::init(void) {
  4411   char dummy;   /* used to get a guess on initial stack address */
  4412 //  first_hrtime = gethrtime();
  4414   // With BsdThreads the JavaMain thread pid (primordial thread)
  4415   // is different than the pid of the java launcher thread.
  4416   // So, on Bsd, the launcher thread pid is passed to the VM
  4417   // via the sun.java.launcher.pid property.
  4418   // Use this property instead of getpid() if it was correctly passed.
  4419   // See bug 6351349.
  4420   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4422   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4424   clock_tics_per_sec = CLK_TCK;
  4426   init_random(1234567);
  4428   ThreadCritical::initialize();
  4430   Bsd::set_page_size(getpagesize());
  4431   if (Bsd::page_size() == -1) {
  4432     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
  4433                   strerror(errno)));
  4435   init_page_sizes((size_t) Bsd::page_size());
  4437   Bsd::initialize_system_info();
  4439   // main_thread points to the aboriginal thread
  4440   Bsd::_main_thread = pthread_self();
  4442   Bsd::clock_init();
  4443   initial_time_count = os::elapsed_counter();
  4445 #ifdef __APPLE__
  4446   // XXXDARWIN
  4447   // Work around the unaligned VM callbacks in hotspot's
  4448   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
  4449   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
  4450   // alignment when doing symbol lookup. To work around this, we force early
  4451   // binding of all symbols now, thus binding when alignment is known-good.
  4452   _dyld_bind_fully_image_containing_address((const void *) &os::init);
  4453 #endif
  4456 // To install functions for atexit system call
  4457 extern "C" {
  4458   static void perfMemory_exit_helper() {
  4459     perfMemory_exit();
  4463 // this is called _after_ the global arguments have been parsed
  4464 jint os::init_2(void)
  4466 #ifndef _ALLBSD_SOURCE
  4467   Bsd::fast_thread_clock_init();
  4468 #endif
  4470   // Allocate a single page and mark it as readable for safepoint polling
  4471   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4472   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4474   os::set_polling_page( polling_page );
  4476 #ifndef PRODUCT
  4477   if(Verbose && PrintMiscellaneous)
  4478     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4479 #endif
  4481   if (!UseMembar) {
  4482     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4483     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4484     os::set_memory_serialize_page( mem_serialize_page );
  4486 #ifndef PRODUCT
  4487     if(Verbose && PrintMiscellaneous)
  4488       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4489 #endif
  4492   os::large_page_init();
  4494   // initialize suspend/resume support - must do this before signal_sets_init()
  4495   if (SR_initialize() != 0) {
  4496     perror("SR_initialize failed");
  4497     return JNI_ERR;
  4500   Bsd::signal_sets_init();
  4501   Bsd::install_signal_handlers();
  4503   // Check minimum allowable stack size for thread creation and to initialize
  4504   // the java system classes, including StackOverflowError - depends on page
  4505   // size.  Add a page for compiler2 recursion in main thread.
  4506   // Add in 2*BytesPerWord times page size to account for VM stack during
  4507   // class initialization depending on 32 or 64 bit VM.
  4508   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
  4509             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4510                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
  4512   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4513   if (threadStackSizeInBytes != 0 &&
  4514       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
  4515         tty->print_cr("\nThe stack size specified is too small, "
  4516                       "Specify at least %dk",
  4517                       os::Bsd::min_stack_allowed/ K);
  4518         return JNI_ERR;
  4521   // Make the stack size a multiple of the page size so that
  4522   // the yellow/red zones can be guarded.
  4523   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4524         vm_page_size()));
  4526 #ifndef _ALLBSD_SOURCE
  4527   Bsd::capture_initial_stack(JavaThread::stack_size_at_create());
  4529   Bsd::libpthread_init();
  4530   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4531      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4532           Bsd::glibc_version(), Bsd::libpthread_version(),
  4533           Bsd::is_floating_stack() ? "floating stack" : "fixed stack");
  4536   if (UseNUMA) {
  4537     if (!Bsd::libnuma_init()) {
  4538       UseNUMA = false;
  4539     } else {
  4540       if ((Bsd::numa_max_node() < 1)) {
  4541         // There's only one node(they start from 0), disable NUMA.
  4542         UseNUMA = false;
  4545     // With SHM large pages we cannot uncommit a page, so there's not way
  4546     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4547     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
  4548     // disable adaptive resizing.
  4549     if (UseNUMA && UseLargePages && UseSHM) {
  4550       if (!FLAG_IS_DEFAULT(UseNUMA)) {
  4551         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
  4552           UseLargePages = false;
  4553         } else {
  4554           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
  4555           UseAdaptiveSizePolicy = false;
  4556           UseAdaptiveNUMAChunkSizing = false;
  4558       } else {
  4559         UseNUMA = false;
  4562     if (!UseNUMA && ForceNUMA) {
  4563       UseNUMA = true;
  4566 #endif
  4568   if (MaxFDLimit) {
  4569     // set the number of file descriptors to max. print out error
  4570     // if getrlimit/setrlimit fails but continue regardless.
  4571     struct rlimit nbr_files;
  4572     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4573     if (status != 0) {
  4574       if (PrintMiscellaneous && (Verbose || WizardMode))
  4575         perror("os::init_2 getrlimit failed");
  4576     } else {
  4577       nbr_files.rlim_cur = nbr_files.rlim_max;
  4579 #ifdef __APPLE__
  4580       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
  4581       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
  4582       // be used instead
  4583       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
  4584 #endif
  4586       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4587       if (status != 0) {
  4588         if (PrintMiscellaneous && (Verbose || WizardMode))
  4589           perror("os::init_2 setrlimit failed");
  4594 #ifndef _ALLBSD_SOURCE
  4595   // Initialize lock used to serialize thread creation (see os::create_thread)
  4596   Bsd::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4597 #endif
  4599   // at-exit methods are called in the reverse order of their registration.
  4600   // atexit functions are called on return from main or as a result of a
  4601   // call to exit(3C). There can be only 32 of these functions registered
  4602   // and atexit() does not set errno.
  4604   if (PerfAllowAtExitRegistration) {
  4605     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4606     // atexit functions can be delayed until process exit time, which
  4607     // can be problematic for embedded VM situations. Embedded VMs should
  4608     // call DestroyJavaVM() to assure that VM resources are released.
  4610     // note: perfMemory_exit_helper atexit function may be removed in
  4611     // the future if the appropriate cleanup code can be added to the
  4612     // VM_Exit VMOperation's doit method.
  4613     if (atexit(perfMemory_exit_helper) != 0) {
  4614       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4618   // initialize thread priority policy
  4619   prio_init();
  4621 #ifdef __APPLE__
  4622   // dynamically link to objective c gc registration
  4623   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
  4624   if (handleLibObjc != NULL) {
  4625     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
  4627 #endif
  4629   return JNI_OK;
  4632 // this is called at the end of vm_initialization
  4633 void os::init_3(void) { }
  4635 // Mark the polling page as unreadable
  4636 void os::make_polling_page_unreadable(void) {
  4637   if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
  4638     fatal("Could not disable polling page");
  4639 };
  4641 // Mark the polling page as readable
  4642 void os::make_polling_page_readable(void) {
  4643   if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
  4644     fatal("Could not enable polling page");
  4646 };
  4648 int os::active_processor_count() {
  4649 #ifdef _ALLBSD_SOURCE
  4650   return _processor_count;
  4651 #else
  4652   // Bsd doesn't yet have a (official) notion of processor sets,
  4653   // so just return the number of online processors.
  4654   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4655   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4656   return online_cpus;
  4657 #endif
  4660 void os::set_native_thread_name(const char *name) {
  4661 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
  4662   // This is only supported in Snow Leopard and beyond
  4663   if (name != NULL) {
  4664     // Add a "Java: " prefix to the name
  4665     char buf[MAXTHREADNAMESIZE];
  4666     snprintf(buf, sizeof(buf), "Java: %s", name);
  4667     pthread_setname_np(buf);
  4669 #endif
  4672 bool os::distribute_processes(uint length, uint* distribution) {
  4673   // Not yet implemented.
  4674   return false;
  4677 bool os::bind_to_processor(uint processor_id) {
  4678   // Not yet implemented.
  4679   return false;
  4682 ///
  4684 // Suspends the target using the signal mechanism and then grabs the PC before
  4685 // resuming the target. Used by the flat-profiler only
  4686 ExtendedPC os::get_thread_pc(Thread* thread) {
  4687   // Make sure that it is called by the watcher for the VMThread
  4688   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4689   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4691   ExtendedPC epc;
  4693   OSThread* osthread = thread->osthread();
  4694   if (do_suspend(osthread)) {
  4695     if (osthread->ucontext() != NULL) {
  4696       epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
  4697     } else {
  4698       // NULL context is unexpected, double-check this is the VMThread
  4699       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4701     do_resume(osthread);
  4703   // failure means pthread_kill failed for some reason - arguably this is
  4704   // a fatal problem, but such problems are ignored elsewhere
  4706   return epc;
  4709 int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4711 #ifdef _ALLBSD_SOURCE
  4712   return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4713 #else
  4714    if (is_NPTL()) {
  4715       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4716    } else {
  4717 #ifndef IA64
  4718       // 6292965: BsdThreads pthread_cond_timedwait() resets FPU control
  4719       // word back to default 64bit precision if condvar is signaled. Java
  4720       // wants 53bit precision.  Save and restore current value.
  4721       int fpu = get_fpu_control_word();
  4722 #endif // IA64
  4723       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4724 #ifndef IA64
  4725       set_fpu_control_word(fpu);
  4726 #endif // IA64
  4727       return status;
  4729 #endif
  4732 ////////////////////////////////////////////////////////////////////////////////
  4733 // debug support
  4735 static address same_page(address x, address y) {
  4736   int page_bits = -os::vm_page_size();
  4737   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  4738     return x;
  4739   else if (x > y)
  4740     return (address)(intptr_t(y) | ~page_bits) + 1;
  4741   else
  4742     return (address)(intptr_t(y) & page_bits);
  4745 bool os::find(address addr, outputStream* st) {
  4746   Dl_info dlinfo;
  4747   memset(&dlinfo, 0, sizeof(dlinfo));
  4748   if (dladdr(addr, &dlinfo)) {
  4749     st->print(PTR_FORMAT ": ", addr);
  4750     if (dlinfo.dli_sname != NULL) {
  4751       st->print("%s+%#x", dlinfo.dli_sname,
  4752                  addr - (intptr_t)dlinfo.dli_saddr);
  4753     } else if (dlinfo.dli_fname) {
  4754       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4755     } else {
  4756       st->print("<absolute address>");
  4758     if (dlinfo.dli_fname) {
  4759       st->print(" in %s", dlinfo.dli_fname);
  4761     if (dlinfo.dli_fbase) {
  4762       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4764     st->cr();
  4766     if (Verbose) {
  4767       // decode some bytes around the PC
  4768       address begin = same_page(addr-40, addr);
  4769       address end   = same_page(addr+40, addr);
  4770       address       lowest = (address) dlinfo.dli_sname;
  4771       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4772       if (begin < lowest)  begin = lowest;
  4773       Dl_info dlinfo2;
  4774       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4775           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4776         end = (address) dlinfo2.dli_saddr;
  4777       Disassembler::decode(begin, end, st);
  4779     return true;
  4781   return false;
  4784 ////////////////////////////////////////////////////////////////////////////////
  4785 // misc
  4787 // This does not do anything on Bsd. This is basically a hook for being
  4788 // able to use structured exception handling (thread-local exception filters)
  4789 // on, e.g., Win32.
  4790 void
  4791 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4792                          JavaCallArguments* args, Thread* thread) {
  4793   f(value, method, args, thread);
  4796 void os::print_statistics() {
  4799 int os::message_box(const char* title, const char* message) {
  4800   int i;
  4801   fdStream err(defaultStream::error_fd());
  4802   for (i = 0; i < 78; i++) err.print_raw("=");
  4803   err.cr();
  4804   err.print_raw_cr(title);
  4805   for (i = 0; i < 78; i++) err.print_raw("-");
  4806   err.cr();
  4807   err.print_raw_cr(message);
  4808   for (i = 0; i < 78; i++) err.print_raw("=");
  4809   err.cr();
  4811   char buf[16];
  4812   // Prevent process from exiting upon "read error" without consuming all CPU
  4813   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4815   return buf[0] == 'y' || buf[0] == 'Y';
  4818 int os::stat(const char *path, struct stat *sbuf) {
  4819   char pathbuf[MAX_PATH];
  4820   if (strlen(path) > MAX_PATH - 1) {
  4821     errno = ENAMETOOLONG;
  4822     return -1;
  4824   os::native_path(strcpy(pathbuf, path));
  4825   return ::stat(pathbuf, sbuf);
  4828 bool os::check_heap(bool force) {
  4829   return true;
  4832 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4833   return ::vsnprintf(buf, count, format, args);
  4836 // Is a (classpath) directory empty?
  4837 bool os::dir_is_empty(const char* path) {
  4838   DIR *dir = NULL;
  4839   struct dirent *ptr;
  4841   dir = opendir(path);
  4842   if (dir == NULL) return true;
  4844   /* Scan the directory */
  4845   bool result = true;
  4846   char buf[sizeof(struct dirent) + MAX_PATH];
  4847   while (result && (ptr = ::readdir(dir)) != NULL) {
  4848     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4849       result = false;
  4852   closedir(dir);
  4853   return result;
  4856 // This code originates from JDK's sysOpen and open64_w
  4857 // from src/solaris/hpi/src/system_md.c
  4859 #ifndef O_DELETE
  4860 #define O_DELETE 0x10000
  4861 #endif
  4863 // Open a file. Unlink the file immediately after open returns
  4864 // if the specified oflag has the O_DELETE flag set.
  4865 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  4867 int os::open(const char *path, int oflag, int mode) {
  4869   if (strlen(path) > MAX_PATH - 1) {
  4870     errno = ENAMETOOLONG;
  4871     return -1;
  4873   int fd;
  4874   int o_delete = (oflag & O_DELETE);
  4875   oflag = oflag & ~O_DELETE;
  4877   fd = ::open(path, oflag, mode);
  4878   if (fd == -1) return -1;
  4880   //If the open succeeded, the file might still be a directory
  4882     struct stat buf;
  4883     int ret = ::fstat(fd, &buf);
  4884     int st_mode = buf.st_mode;
  4886     if (ret != -1) {
  4887       if ((st_mode & S_IFMT) == S_IFDIR) {
  4888         errno = EISDIR;
  4889         ::close(fd);
  4890         return -1;
  4892     } else {
  4893       ::close(fd);
  4894       return -1;
  4898     /*
  4899      * All file descriptors that are opened in the JVM and not
  4900      * specifically destined for a subprocess should have the
  4901      * close-on-exec flag set.  If we don't set it, then careless 3rd
  4902      * party native code might fork and exec without closing all
  4903      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  4904      * UNIXProcess.c), and this in turn might:
  4906      * - cause end-of-file to fail to be detected on some file
  4907      *   descriptors, resulting in mysterious hangs, or
  4909      * - might cause an fopen in the subprocess to fail on a system
  4910      *   suffering from bug 1085341.
  4912      * (Yes, the default setting of the close-on-exec flag is a Unix
  4913      * design flaw)
  4915      * See:
  4916      * 1085341: 32-bit stdio routines should support file descriptors >255
  4917      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  4918      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  4919      */
  4920 #ifdef FD_CLOEXEC
  4922         int flags = ::fcntl(fd, F_GETFD);
  4923         if (flags != -1)
  4924             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  4926 #endif
  4928   if (o_delete != 0) {
  4929     ::unlink(path);
  4931   return fd;
  4935 // create binary file, rewriting existing file if required
  4936 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4937   int oflags = O_WRONLY | O_CREAT;
  4938   if (!rewrite_existing) {
  4939     oflags |= O_EXCL;
  4941   return ::open(path, oflags, S_IREAD | S_IWRITE);
  4944 // return current position of file pointer
  4945 jlong os::current_file_offset(int fd) {
  4946   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
  4949 // move file pointer to the specified offset
  4950 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4951   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
  4954 // This code originates from JDK's sysAvailable
  4955 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  4957 int os::available(int fd, jlong *bytes) {
  4958   jlong cur, end;
  4959   int mode;
  4960   struct stat buf;
  4962   if (::fstat(fd, &buf) >= 0) {
  4963     mode = buf.st_mode;
  4964     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  4965       /*
  4966       * XXX: is the following call interruptible? If so, this might
  4967       * need to go through the INTERRUPT_IO() wrapper as for other
  4968       * blocking, interruptible calls in this file.
  4969       */
  4970       int n;
  4971       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  4972         *bytes = n;
  4973         return 1;
  4977   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
  4978     return 0;
  4979   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
  4980     return 0;
  4981   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
  4982     return 0;
  4984   *bytes = end - cur;
  4985   return 1;
  4988 int os::socket_available(int fd, jint *pbytes) {
  4989    if (fd < 0)
  4990      return OS_OK;
  4992    int ret;
  4994    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  4996    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  4997    // is expected to return 0 on failure and 1 on success to the jdk.
  4999    return (ret == OS_ERR) ? 0 : 1;
  5002 // Map a block of memory.
  5003 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  5004                      char *addr, size_t bytes, bool read_only,
  5005                      bool allow_exec) {
  5006   int prot;
  5007   int flags;
  5009   if (read_only) {
  5010     prot = PROT_READ;
  5011     flags = MAP_SHARED;
  5012   } else {
  5013     prot = PROT_READ | PROT_WRITE;
  5014     flags = MAP_PRIVATE;
  5017   if (allow_exec) {
  5018     prot |= PROT_EXEC;
  5021   if (addr != NULL) {
  5022     flags |= MAP_FIXED;
  5025   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5026                                      fd, file_offset);
  5027   if (mapped_address == MAP_FAILED) {
  5028     return NULL;
  5030   return mapped_address;
  5034 // Remap a block of memory.
  5035 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  5036                        char *addr, size_t bytes, bool read_only,
  5037                        bool allow_exec) {
  5038   // same as map_memory() on this OS
  5039   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5040                         allow_exec);
  5044 // Unmap a block of memory.
  5045 bool os::unmap_memory(char* addr, size_t bytes) {
  5046   return munmap(addr, bytes) == 0;
  5049 #ifndef _ALLBSD_SOURCE
  5050 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5052 static clockid_t thread_cpu_clockid(Thread* thread) {
  5053   pthread_t tid = thread->osthread()->pthread_id();
  5054   clockid_t clockid;
  5056   // Get thread clockid
  5057   int rc = os::Bsd::pthread_getcpuclockid(tid, &clockid);
  5058   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5059   return clockid;
  5061 #endif
  5063 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5064 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5065 // of a thread.
  5066 //
  5067 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5068 // the fast estimate available on the platform.
  5070 jlong os::current_thread_cpu_time() {
  5071 #ifdef __APPLE__
  5072   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
  5073 #elif !defined(_ALLBSD_SOURCE)
  5074   if (os::Bsd::supports_fast_thread_cpu_time()) {
  5075     return os::Bsd::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5076   } else {
  5077     // return user + sys since the cost is the same
  5078     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5080 #endif
  5083 jlong os::thread_cpu_time(Thread* thread) {
  5084 #ifndef _ALLBSD_SOURCE
  5085   // consistent with what current_thread_cpu_time() returns
  5086   if (os::Bsd::supports_fast_thread_cpu_time()) {
  5087     return os::Bsd::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5088   } else {
  5089     return slow_thread_cpu_time(thread, true /* user + sys */);
  5091 #endif
  5094 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5095 #ifdef __APPLE__
  5096   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5097 #elif !defined(_ALLBSD_SOURCE)
  5098   if (user_sys_cpu_time && os::Bsd::supports_fast_thread_cpu_time()) {
  5099     return os::Bsd::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5100   } else {
  5101     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5103 #endif
  5106 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5107 #ifdef __APPLE__
  5108   struct thread_basic_info tinfo;
  5109   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
  5110   kern_return_t kr;
  5111   mach_port_t mach_thread;
  5113   mach_thread = pthread_mach_thread_np(thread->osthread()->thread_id());
  5114   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
  5115   if (kr != KERN_SUCCESS)
  5116     return -1;
  5118   if (user_sys_cpu_time) {
  5119     jlong nanos;
  5120     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
  5121     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
  5122     return nanos;
  5123   } else {
  5124     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
  5126 #elif !defined(_ALLBSD_SOURCE)
  5127   if (user_sys_cpu_time && os::Bsd::supports_fast_thread_cpu_time()) {
  5128     return os::Bsd::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5129   } else {
  5130     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5132 #endif
  5135 #ifndef _ALLBSD_SOURCE
  5136 //
  5137 //  -1 on error.
  5138 //
  5140 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5141   static bool proc_pid_cpu_avail = true;
  5142   static bool proc_task_unchecked = true;
  5143   static const char *proc_stat_path = "/proc/%d/stat";
  5144   pid_t  tid = thread->osthread()->thread_id();
  5145   int i;
  5146   char *s;
  5147   char stat[2048];
  5148   int statlen;
  5149   char proc_name[64];
  5150   int count;
  5151   long sys_time, user_time;
  5152   char string[64];
  5153   char cdummy;
  5154   int idummy;
  5155   long ldummy;
  5156   FILE *fp;
  5158   // We first try accessing /proc/<pid>/cpu since this is faster to
  5159   // process.  If this file is not present (bsd kernels 2.5 and above)
  5160   // then we open /proc/<pid>/stat.
  5161   if ( proc_pid_cpu_avail ) {
  5162     sprintf(proc_name, "/proc/%d/cpu", tid);
  5163     fp =  fopen(proc_name, "r");
  5164     if ( fp != NULL ) {
  5165       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  5166       fclose(fp);
  5167       if ( count != 3 ) return -1;
  5169       if (user_sys_cpu_time) {
  5170         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5171       } else {
  5172         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5175     else proc_pid_cpu_avail = false;
  5178   // The /proc/<tid>/stat aggregates per-process usage on
  5179   // new Bsd kernels 2.6+ where NPTL is supported.
  5180   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5181   // See bug 6328462.
  5182   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  5183   // and possibly in some other cases, so we check its availability.
  5184   if (proc_task_unchecked && os::Bsd::is_NPTL()) {
  5185     // This is executed only once
  5186     proc_task_unchecked = false;
  5187     fp = fopen("/proc/self/task", "r");
  5188     if (fp != NULL) {
  5189       proc_stat_path = "/proc/self/task/%d/stat";
  5190       fclose(fp);
  5194   sprintf(proc_name, proc_stat_path, tid);
  5195   fp = fopen(proc_name, "r");
  5196   if ( fp == NULL ) return -1;
  5197   statlen = fread(stat, 1, 2047, fp);
  5198   stat[statlen] = '\0';
  5199   fclose(fp);
  5201   // Skip pid and the command string. Note that we could be dealing with
  5202   // weird command names, e.g. user could decide to rename java launcher
  5203   // to "java 1.4.2 :)", then the stat file would look like
  5204   //                1234 (java 1.4.2 :)) R ... ...
  5205   // We don't really need to know the command string, just find the last
  5206   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5207   s = strrchr(stat, ')');
  5208   i = 0;
  5209   if (s == NULL ) return -1;
  5211   // Skip blank chars
  5212   do s++; while (isspace(*s));
  5214   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5215                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5216                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5217                  &user_time, &sys_time);
  5218   if ( count != 13 ) return -1;
  5219   if (user_sys_cpu_time) {
  5220     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5221   } else {
  5222     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5225 #endif
  5227 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5228   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5229   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5230   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5231   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5234 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5235   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5236   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5237   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5238   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5241 bool os::is_thread_cpu_time_supported() {
  5242 #ifdef __APPLE__
  5243   return true;
  5244 #elif defined(_ALLBSD_SOURCE)
  5245   return false;
  5246 #else
  5247   return true;
  5248 #endif
  5251 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5252 // Bsd doesn't yet have a (official) notion of processor sets,
  5253 // so just return the system wide load average.
  5254 int os::loadavg(double loadavg[], int nelem) {
  5255   return ::getloadavg(loadavg, nelem);
  5258 void os::pause() {
  5259   char filename[MAX_PATH];
  5260   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5261     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5262   } else {
  5263     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5266   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5267   if (fd != -1) {
  5268     struct stat buf;
  5269     ::close(fd);
  5270     while (::stat(filename, &buf) == 0) {
  5271       (void)::poll(NULL, 0, 100);
  5273   } else {
  5274     jio_fprintf(stderr,
  5275       "Could not open pause file '%s', continuing immediately.\n", filename);
  5280 // Refer to the comments in os_solaris.cpp park-unpark.
  5281 //
  5282 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5283 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5284 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5285 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5286 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5287 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5288 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5289 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5290 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5291 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5292 // of libpthread avoids the problem, but isn't practical.
  5293 //
  5294 // Possible remedies:
  5295 //
  5296 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5297 //      This is palliative and probabilistic, however.  If the thread is preempted
  5298 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5299 //      than the minimum period may have passed, and the abstime may be stale (in the
  5300 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5301 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5302 //
  5303 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5304 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5305 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5306 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5307 //      thread.
  5308 //
  5309 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5310 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5311 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5312 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5313 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5314 //      timers in a graceful fashion.
  5315 //
  5316 // 4.   When the abstime value is in the past it appears that control returns
  5317 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5318 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5319 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5320 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5321 //      It may be possible to avoid reinitialization by checking the return
  5322 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5323 //      condvar we must establish the invariant that cond_signal() is only called
  5324 //      within critical sections protected by the adjunct mutex.  This prevents
  5325 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5326 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5327 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5328 //
  5329 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5330 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5331 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5332 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5333 //
  5334 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5335 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5336 // and only enabling the work-around for vulnerable environments.
  5338 // utility to compute the abstime argument to timedwait:
  5339 // millis is the relative timeout time
  5340 // abstime will be the absolute timeout time
  5341 // TODO: replace compute_abstime() with unpackTime()
  5343 static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
  5344   if (millis < 0)  millis = 0;
  5345   struct timeval now;
  5346   int status = gettimeofday(&now, NULL);
  5347   assert(status == 0, "gettimeofday");
  5348   jlong seconds = millis / 1000;
  5349   millis %= 1000;
  5350   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5351     seconds = 50000000;
  5353   abstime->tv_sec = now.tv_sec  + seconds;
  5354   long       usec = now.tv_usec + millis * 1000;
  5355   if (usec >= 1000000) {
  5356     abstime->tv_sec += 1;
  5357     usec -= 1000000;
  5359   abstime->tv_nsec = usec * 1000;
  5360   return abstime;
  5364 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5365 // Conceptually TryPark() should be equivalent to park(0).
  5367 int os::PlatformEvent::TryPark() {
  5368   for (;;) {
  5369     const int v = _Event ;
  5370     guarantee ((v == 0) || (v == 1), "invariant") ;
  5371     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5375 void os::PlatformEvent::park() {       // AKA "down()"
  5376   // Invariant: Only the thread associated with the Event/PlatformEvent
  5377   // may call park().
  5378   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5379   int v ;
  5380   for (;;) {
  5381       v = _Event ;
  5382       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5384   guarantee (v >= 0, "invariant") ;
  5385   if (v == 0) {
  5386      // Do this the hard way by blocking ...
  5387      int status = pthread_mutex_lock(_mutex);
  5388      assert_status(status == 0, status, "mutex_lock");
  5389      guarantee (_nParked == 0, "invariant") ;
  5390      ++ _nParked ;
  5391      while (_Event < 0) {
  5392         status = pthread_cond_wait(_cond, _mutex);
  5393         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5394         // Treat this the same as if the wait was interrupted
  5395         if (status == ETIMEDOUT) { status = EINTR; }
  5396         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5398      -- _nParked ;
  5400     // In theory we could move the ST of 0 into _Event past the unlock(),
  5401     // but then we'd need a MEMBAR after the ST.
  5402     _Event = 0 ;
  5403      status = pthread_mutex_unlock(_mutex);
  5404      assert_status(status == 0, status, "mutex_unlock");
  5406   guarantee (_Event >= 0, "invariant") ;
  5409 int os::PlatformEvent::park(jlong millis) {
  5410   guarantee (_nParked == 0, "invariant") ;
  5412   int v ;
  5413   for (;;) {
  5414       v = _Event ;
  5415       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5417   guarantee (v >= 0, "invariant") ;
  5418   if (v != 0) return OS_OK ;
  5420   // We do this the hard way, by blocking the thread.
  5421   // Consider enforcing a minimum timeout value.
  5422   struct timespec abst;
  5423   compute_abstime(&abst, millis);
  5425   int ret = OS_TIMEOUT;
  5426   int status = pthread_mutex_lock(_mutex);
  5427   assert_status(status == 0, status, "mutex_lock");
  5428   guarantee (_nParked == 0, "invariant") ;
  5429   ++_nParked ;
  5431   // Object.wait(timo) will return because of
  5432   // (a) notification
  5433   // (b) timeout
  5434   // (c) thread.interrupt
  5435   //
  5436   // Thread.interrupt and object.notify{All} both call Event::set.
  5437   // That is, we treat thread.interrupt as a special case of notification.
  5438   // The underlying Solaris implementation, cond_timedwait, admits
  5439   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5440   // JVM from making those visible to Java code.  As such, we must
  5441   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5442   //
  5443   // TODO: properly differentiate simultaneous notify+interrupt.
  5444   // In that case, we should propagate the notify to another waiter.
  5446   while (_Event < 0) {
  5447     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
  5448     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5449       pthread_cond_destroy (_cond);
  5450       pthread_cond_init (_cond, NULL) ;
  5452     assert_status(status == 0 || status == EINTR ||
  5453                   status == ETIMEDOUT,
  5454                   status, "cond_timedwait");
  5455     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5456     if (status == ETIMEDOUT) break ;
  5457     // We consume and ignore EINTR and spurious wakeups.
  5459   --_nParked ;
  5460   if (_Event >= 0) {
  5461      ret = OS_OK;
  5463   _Event = 0 ;
  5464   status = pthread_mutex_unlock(_mutex);
  5465   assert_status(status == 0, status, "mutex_unlock");
  5466   assert (_nParked == 0, "invariant") ;
  5467   return ret;
  5470 void os::PlatformEvent::unpark() {
  5471   int v, AnyWaiters ;
  5472   for (;;) {
  5473       v = _Event ;
  5474       if (v > 0) {
  5475          // The LD of _Event could have reordered or be satisfied
  5476          // by a read-aside from this processor's write buffer.
  5477          // To avoid problems execute a barrier and then
  5478          // ratify the value.
  5479          OrderAccess::fence() ;
  5480          if (_Event == v) return ;
  5481          continue ;
  5483       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  5485   if (v < 0) {
  5486      // Wait for the thread associated with the event to vacate
  5487      int status = pthread_mutex_lock(_mutex);
  5488      assert_status(status == 0, status, "mutex_lock");
  5489      AnyWaiters = _nParked ;
  5490      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  5491      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5492         AnyWaiters = 0 ;
  5493         pthread_cond_signal (_cond);
  5495      status = pthread_mutex_unlock(_mutex);
  5496      assert_status(status == 0, status, "mutex_unlock");
  5497      if (AnyWaiters != 0) {
  5498         status = pthread_cond_signal(_cond);
  5499         assert_status(status == 0, status, "cond_signal");
  5503   // Note that we signal() _after dropping the lock for "immortal" Events.
  5504   // This is safe and avoids a common class of  futile wakeups.  In rare
  5505   // circumstances this can cause a thread to return prematurely from
  5506   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5507   // simply re-test the condition and re-park itself.
  5511 // JSR166
  5512 // -------------------------------------------------------
  5514 /*
  5515  * The solaris and bsd implementations of park/unpark are fairly
  5516  * conservative for now, but can be improved. They currently use a
  5517  * mutex/condvar pair, plus a a count.
  5518  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5519  * sets count to 1 and signals condvar.  Only one thread ever waits
  5520  * on the condvar. Contention seen when trying to park implies that someone
  5521  * is unparking you, so don't wait. And spurious returns are fine, so there
  5522  * is no need to track notifications.
  5523  */
  5526 #define NANOSECS_PER_SEC 1000000000
  5527 #define NANOSECS_PER_MILLISEC 1000000
  5528 #define MAX_SECS 100000000
  5529 /*
  5530  * This code is common to bsd and solaris and will be moved to a
  5531  * common place in dolphin.
  5533  * The passed in time value is either a relative time in nanoseconds
  5534  * or an absolute time in milliseconds. Either way it has to be unpacked
  5535  * into suitable seconds and nanoseconds components and stored in the
  5536  * given timespec structure.
  5537  * Given time is a 64-bit value and the time_t used in the timespec is only
  5538  * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
  5539  * overflow if times way in the future are given. Further on Solaris versions
  5540  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5541  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5542  * As it will be 28 years before "now + 100000000" will overflow we can
  5543  * ignore overflow and just impose a hard-limit on seconds using the value
  5544  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5545  * years from "now".
  5546  */
  5548 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
  5549   assert (time > 0, "convertTime");
  5551   struct timeval now;
  5552   int status = gettimeofday(&now, NULL);
  5553   assert(status == 0, "gettimeofday");
  5555   time_t max_secs = now.tv_sec + MAX_SECS;
  5557   if (isAbsolute) {
  5558     jlong secs = time / 1000;
  5559     if (secs > max_secs) {
  5560       absTime->tv_sec = max_secs;
  5562     else {
  5563       absTime->tv_sec = secs;
  5565     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5567   else {
  5568     jlong secs = time / NANOSECS_PER_SEC;
  5569     if (secs >= MAX_SECS) {
  5570       absTime->tv_sec = max_secs;
  5571       absTime->tv_nsec = 0;
  5573     else {
  5574       absTime->tv_sec = now.tv_sec + secs;
  5575       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5576       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5577         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5578         ++absTime->tv_sec; // note: this must be <= max_secs
  5582   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5583   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5584   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5585   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5588 void Parker::park(bool isAbsolute, jlong time) {
  5589   // Optional fast-path check:
  5590   // Return immediately if a permit is available.
  5591   if (_counter > 0) {
  5592       _counter = 0 ;
  5593       OrderAccess::fence();
  5594       return ;
  5597   Thread* thread = Thread::current();
  5598   assert(thread->is_Java_thread(), "Must be JavaThread");
  5599   JavaThread *jt = (JavaThread *)thread;
  5601   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5602   // Check interrupt before trying to wait
  5603   if (Thread::is_interrupted(thread, false)) {
  5604     return;
  5607   // Next, demultiplex/decode time arguments
  5608   struct timespec absTime;
  5609   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5610     return;
  5612   if (time > 0) {
  5613     unpackTime(&absTime, isAbsolute, time);
  5617   // Enter safepoint region
  5618   // Beware of deadlocks such as 6317397.
  5619   // The per-thread Parker:: mutex is a classic leaf-lock.
  5620   // In particular a thread must never block on the Threads_lock while
  5621   // holding the Parker:: mutex.  If safepoints are pending both the
  5622   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5623   ThreadBlockInVM tbivm(jt);
  5625   // Don't wait if cannot get lock since interference arises from
  5626   // unblocking.  Also. check interrupt before trying wait
  5627   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5628     return;
  5631   int status ;
  5632   if (_counter > 0)  { // no wait needed
  5633     _counter = 0;
  5634     status = pthread_mutex_unlock(_mutex);
  5635     assert (status == 0, "invariant") ;
  5636     OrderAccess::fence();
  5637     return;
  5640 #ifdef ASSERT
  5641   // Don't catch signals while blocked; let the running threads have the signals.
  5642   // (This allows a debugger to break into the running thread.)
  5643   sigset_t oldsigs;
  5644   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
  5645   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5646 #endif
  5648   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5649   jt->set_suspend_equivalent();
  5650   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5652   if (time == 0) {
  5653     status = pthread_cond_wait (_cond, _mutex) ;
  5654   } else {
  5655     status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  5656     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5657       pthread_cond_destroy (_cond) ;
  5658       pthread_cond_init    (_cond, NULL);
  5661   assert_status(status == 0 || status == EINTR ||
  5662                 status == ETIMEDOUT,
  5663                 status, "cond_timedwait");
  5665 #ifdef ASSERT
  5666   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5667 #endif
  5669   _counter = 0 ;
  5670   status = pthread_mutex_unlock(_mutex) ;
  5671   assert_status(status == 0, status, "invariant") ;
  5672   // If externally suspended while waiting, re-suspend
  5673   if (jt->handle_special_suspend_equivalent_condition()) {
  5674     jt->java_suspend_self();
  5677   OrderAccess::fence();
  5680 void Parker::unpark() {
  5681   int s, status ;
  5682   status = pthread_mutex_lock(_mutex);
  5683   assert (status == 0, "invariant") ;
  5684   s = _counter;
  5685   _counter = 1;
  5686   if (s < 1) {
  5687      if (WorkAroundNPTLTimedWaitHang) {
  5688         status = pthread_cond_signal (_cond) ;
  5689         assert (status == 0, "invariant") ;
  5690         status = pthread_mutex_unlock(_mutex);
  5691         assert (status == 0, "invariant") ;
  5692      } else {
  5693         status = pthread_mutex_unlock(_mutex);
  5694         assert (status == 0, "invariant") ;
  5695         status = pthread_cond_signal (_cond) ;
  5696         assert (status == 0, "invariant") ;
  5698   } else {
  5699     pthread_mutex_unlock(_mutex);
  5700     assert (status == 0, "invariant") ;
  5705 /* Darwin has no "environ" in a dynamic library. */
  5706 #ifdef __APPLE__
  5707 #include <crt_externs.h>
  5708 #define environ (*_NSGetEnviron())
  5709 #else
  5710 extern char** environ;
  5711 #endif
  5713 // Run the specified command in a separate process. Return its exit value,
  5714 // or -1 on failure (e.g. can't fork a new process).
  5715 // Unlike system(), this function can be called from signal handler. It
  5716 // doesn't block SIGINT et al.
  5717 int os::fork_and_exec(char* cmd) {
  5718   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5720   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
  5721   // pthread_atfork handlers and reset pthread library. All we need is a
  5722   // separate process to execve. Make a direct syscall to fork process.
  5723   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5724   // the best...
  5725   pid_t pid = fork();
  5727   if (pid < 0) {
  5728     // fork failed
  5729     return -1;
  5731   } else if (pid == 0) {
  5732     // child process
  5734     // execve() in BsdThreads will call pthread_kill_other_threads_np()
  5735     // first to kill every thread on the thread list. Because this list is
  5736     // not reset by fork() (see notes above), execve() will instead kill
  5737     // every thread in the parent process. We know this is the only thread
  5738     // in the new process, so make a system call directly.
  5739     // IA64 should use normal execve() from glibc to match the glibc fork()
  5740     // above.
  5741     execve("/bin/sh", (char* const*)argv, environ);
  5743     // execve failed
  5744     _exit(-1);
  5746   } else  {
  5747     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5748     // care about the actual exit code, for now.
  5750     int status;
  5752     // Wait for the child process to exit.  This returns immediately if
  5753     // the child has already exited. */
  5754     while (waitpid(pid, &status, 0) < 0) {
  5755         switch (errno) {
  5756         case ECHILD: return 0;
  5757         case EINTR: break;
  5758         default: return -1;
  5762     if (WIFEXITED(status)) {
  5763        // The child exited normally; get its exit code.
  5764        return WEXITSTATUS(status);
  5765     } else if (WIFSIGNALED(status)) {
  5766        // The child exited because of a signal
  5767        // The best value to return is 0x80 + signal number,
  5768        // because that is what all Unix shells do, and because
  5769        // it allows callers to distinguish between process exit and
  5770        // process death by signal.
  5771        return 0x80 + WTERMSIG(status);
  5772     } else {
  5773        // Unknown exit code; pass it through
  5774        return status;
  5779 // is_headless_jre()
  5780 //
  5781 // Test for the existence of libmawt in motif21 or xawt directories
  5782 // in order to report if we are running in a headless jre
  5783 //
  5784 bool os::is_headless_jre() {
  5785     struct stat statbuf;
  5786     char buf[MAXPATHLEN];
  5787     char libmawtpath[MAXPATHLEN];
  5788     const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
  5789     const char *motifstr = "/motif21/libmawt" JNI_LIB_SUFFIX;
  5790     char *p;
  5792     // Get path to libjvm.so
  5793     os::jvm_path(buf, sizeof(buf));
  5795     // Get rid of libjvm.so
  5796     p = strrchr(buf, '/');
  5797     if (p == NULL) return false;
  5798     else *p = '\0';
  5800     // Get rid of client or server
  5801     p = strrchr(buf, '/');
  5802     if (p == NULL) return false;
  5803     else *p = '\0';
  5805     // check xawt/libmawt.so
  5806     strcpy(libmawtpath, buf);
  5807     strcat(libmawtpath, xawtstr);
  5808     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5810     // check motif21/libmawt.so
  5811     strcpy(libmawtpath, buf);
  5812     strcat(libmawtpath, motifstr);
  5813     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5815     return true;

mercurial