src/share/vm/opto/compile.cpp

Mon, 06 Jan 2014 11:02:21 +0100

author
goetz
date
Mon, 06 Jan 2014 11:02:21 +0100
changeset 6500
4345c6a92f35
parent 6490
41b780b43b74
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8031188: Fix for 8029015: PPC64 (part 216): opto: trap based null and range checks
Summary: Swap the Projs in the block list so that the new block is added behind the proper node.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/exceptionHandlerTable.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "compiler/oopMap.hpp"
    34 #include "opto/addnode.hpp"
    35 #include "opto/block.hpp"
    36 #include "opto/c2compiler.hpp"
    37 #include "opto/callGenerator.hpp"
    38 #include "opto/callnode.hpp"
    39 #include "opto/cfgnode.hpp"
    40 #include "opto/chaitin.hpp"
    41 #include "opto/compile.hpp"
    42 #include "opto/connode.hpp"
    43 #include "opto/divnode.hpp"
    44 #include "opto/escape.hpp"
    45 #include "opto/idealGraphPrinter.hpp"
    46 #include "opto/loopnode.hpp"
    47 #include "opto/machnode.hpp"
    48 #include "opto/macro.hpp"
    49 #include "opto/matcher.hpp"
    50 #include "opto/mathexactnode.hpp"
    51 #include "opto/memnode.hpp"
    52 #include "opto/mulnode.hpp"
    53 #include "opto/node.hpp"
    54 #include "opto/opcodes.hpp"
    55 #include "opto/output.hpp"
    56 #include "opto/parse.hpp"
    57 #include "opto/phaseX.hpp"
    58 #include "opto/rootnode.hpp"
    59 #include "opto/runtime.hpp"
    60 #include "opto/stringopts.hpp"
    61 #include "opto/type.hpp"
    62 #include "opto/vectornode.hpp"
    63 #include "runtime/arguments.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/stubRoutines.hpp"
    66 #include "runtime/timer.hpp"
    67 #include "trace/tracing.hpp"
    68 #include "utilities/copy.hpp"
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc_32
    85 # include "adfiles/ad_ppc_32.hpp"
    86 #endif
    87 #ifdef TARGET_ARCH_MODEL_ppc_64
    88 # include "adfiles/ad_ppc_64.hpp"
    89 #endif
    92 // -------------------- Compile::mach_constant_base_node -----------------------
    93 // Constant table base node singleton.
    94 MachConstantBaseNode* Compile::mach_constant_base_node() {
    95   if (_mach_constant_base_node == NULL) {
    96     _mach_constant_base_node = new (C) MachConstantBaseNode();
    97     _mach_constant_base_node->add_req(C->root());
    98   }
    99   return _mach_constant_base_node;
   100 }
   103 /// Support for intrinsics.
   105 // Return the index at which m must be inserted (or already exists).
   106 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   107 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   108 #ifdef ASSERT
   109   for (int i = 1; i < _intrinsics->length(); i++) {
   110     CallGenerator* cg1 = _intrinsics->at(i-1);
   111     CallGenerator* cg2 = _intrinsics->at(i);
   112     assert(cg1->method() != cg2->method()
   113            ? cg1->method()     < cg2->method()
   114            : cg1->is_virtual() < cg2->is_virtual(),
   115            "compiler intrinsics list must stay sorted");
   116   }
   117 #endif
   118   // Binary search sorted list, in decreasing intervals [lo, hi].
   119   int lo = 0, hi = _intrinsics->length()-1;
   120   while (lo <= hi) {
   121     int mid = (uint)(hi + lo) / 2;
   122     ciMethod* mid_m = _intrinsics->at(mid)->method();
   123     if (m < mid_m) {
   124       hi = mid-1;
   125     } else if (m > mid_m) {
   126       lo = mid+1;
   127     } else {
   128       // look at minor sort key
   129       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   130       if (is_virtual < mid_virt) {
   131         hi = mid-1;
   132       } else if (is_virtual > mid_virt) {
   133         lo = mid+1;
   134       } else {
   135         return mid;  // exact match
   136       }
   137     }
   138   }
   139   return lo;  // inexact match
   140 }
   142 void Compile::register_intrinsic(CallGenerator* cg) {
   143   if (_intrinsics == NULL) {
   144     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   145   }
   146   // This code is stolen from ciObjectFactory::insert.
   147   // Really, GrowableArray should have methods for
   148   // insert_at, remove_at, and binary_search.
   149   int len = _intrinsics->length();
   150   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   151   if (index == len) {
   152     _intrinsics->append(cg);
   153   } else {
   154 #ifdef ASSERT
   155     CallGenerator* oldcg = _intrinsics->at(index);
   156     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   157 #endif
   158     _intrinsics->append(_intrinsics->at(len-1));
   159     int pos;
   160     for (pos = len-2; pos >= index; pos--) {
   161       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   162     }
   163     _intrinsics->at_put(index, cg);
   164   }
   165   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   166 }
   168 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   169   assert(m->is_loaded(), "don't try this on unloaded methods");
   170   if (_intrinsics != NULL) {
   171     int index = intrinsic_insertion_index(m, is_virtual);
   172     if (index < _intrinsics->length()
   173         && _intrinsics->at(index)->method() == m
   174         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   175       return _intrinsics->at(index);
   176     }
   177   }
   178   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   179   if (m->intrinsic_id() != vmIntrinsics::_none &&
   180       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   181     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   182     if (cg != NULL) {
   183       // Save it for next time:
   184       register_intrinsic(cg);
   185       return cg;
   186     } else {
   187       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   188     }
   189   }
   190   return NULL;
   191 }
   193 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   194 // in library_call.cpp.
   197 #ifndef PRODUCT
   198 // statistics gathering...
   200 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   201 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   203 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   204   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   205   int oflags = _intrinsic_hist_flags[id];
   206   assert(flags != 0, "what happened?");
   207   if (is_virtual) {
   208     flags |= _intrinsic_virtual;
   209   }
   210   bool changed = (flags != oflags);
   211   if ((flags & _intrinsic_worked) != 0) {
   212     juint count = (_intrinsic_hist_count[id] += 1);
   213     if (count == 1) {
   214       changed = true;           // first time
   215     }
   216     // increment the overall count also:
   217     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   218   }
   219   if (changed) {
   220     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   221       // Something changed about the intrinsic's virtuality.
   222       if ((flags & _intrinsic_virtual) != 0) {
   223         // This is the first use of this intrinsic as a virtual call.
   224         if (oflags != 0) {
   225           // We already saw it as a non-virtual, so note both cases.
   226           flags |= _intrinsic_both;
   227         }
   228       } else if ((oflags & _intrinsic_both) == 0) {
   229         // This is the first use of this intrinsic as a non-virtual
   230         flags |= _intrinsic_both;
   231       }
   232     }
   233     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   234   }
   235   // update the overall flags also:
   236   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   237   return changed;
   238 }
   240 static char* format_flags(int flags, char* buf) {
   241   buf[0] = 0;
   242   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   243   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   244   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   245   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   246   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   247   if (buf[0] == 0)  strcat(buf, ",");
   248   assert(buf[0] == ',', "must be");
   249   return &buf[1];
   250 }
   252 void Compile::print_intrinsic_statistics() {
   253   char flagsbuf[100];
   254   ttyLocker ttyl;
   255   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   256   tty->print_cr("Compiler intrinsic usage:");
   257   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   258   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   259   #define PRINT_STAT_LINE(name, c, f) \
   260     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   261   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   262     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   263     int   flags = _intrinsic_hist_flags[id];
   264     juint count = _intrinsic_hist_count[id];
   265     if ((flags | count) != 0) {
   266       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   267     }
   268   }
   269   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   270   if (xtty != NULL)  xtty->tail("statistics");
   271 }
   273 void Compile::print_statistics() {
   274   { ttyLocker ttyl;
   275     if (xtty != NULL)  xtty->head("statistics type='opto'");
   276     Parse::print_statistics();
   277     PhaseCCP::print_statistics();
   278     PhaseRegAlloc::print_statistics();
   279     Scheduling::print_statistics();
   280     PhasePeephole::print_statistics();
   281     PhaseIdealLoop::print_statistics();
   282     if (xtty != NULL)  xtty->tail("statistics");
   283   }
   284   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   285     // put this under its own <statistics> element.
   286     print_intrinsic_statistics();
   287   }
   288 }
   289 #endif //PRODUCT
   291 // Support for bundling info
   292 Bundle* Compile::node_bundling(const Node *n) {
   293   assert(valid_bundle_info(n), "oob");
   294   return &_node_bundling_base[n->_idx];
   295 }
   297 bool Compile::valid_bundle_info(const Node *n) {
   298   return (_node_bundling_limit > n->_idx);
   299 }
   302 void Compile::gvn_replace_by(Node* n, Node* nn) {
   303   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   304     Node* use = n->last_out(i);
   305     bool is_in_table = initial_gvn()->hash_delete(use);
   306     uint uses_found = 0;
   307     for (uint j = 0; j < use->len(); j++) {
   308       if (use->in(j) == n) {
   309         if (j < use->req())
   310           use->set_req(j, nn);
   311         else
   312           use->set_prec(j, nn);
   313         uses_found++;
   314       }
   315     }
   316     if (is_in_table) {
   317       // reinsert into table
   318       initial_gvn()->hash_find_insert(use);
   319     }
   320     record_for_igvn(use);
   321     i -= uses_found;    // we deleted 1 or more copies of this edge
   322   }
   323 }
   326 static inline bool not_a_node(const Node* n) {
   327   if (n == NULL)                   return true;
   328   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   329   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   330   return false;
   331 }
   333 // Identify all nodes that are reachable from below, useful.
   334 // Use breadth-first pass that records state in a Unique_Node_List,
   335 // recursive traversal is slower.
   336 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   337   int estimated_worklist_size = unique();
   338   useful.map( estimated_worklist_size, NULL );  // preallocate space
   340   // Initialize worklist
   341   if (root() != NULL)     { useful.push(root()); }
   342   // If 'top' is cached, declare it useful to preserve cached node
   343   if( cached_top_node() ) { useful.push(cached_top_node()); }
   345   // Push all useful nodes onto the list, breadthfirst
   346   for( uint next = 0; next < useful.size(); ++next ) {
   347     assert( next < unique(), "Unique useful nodes < total nodes");
   348     Node *n  = useful.at(next);
   349     uint max = n->len();
   350     for( uint i = 0; i < max; ++i ) {
   351       Node *m = n->in(i);
   352       if (not_a_node(m))  continue;
   353       useful.push(m);
   354     }
   355   }
   356 }
   358 // Update dead_node_list with any missing dead nodes using useful
   359 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   360 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   361   uint max_idx = unique();
   362   VectorSet& useful_node_set = useful.member_set();
   364   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   365     // If node with index node_idx is not in useful set,
   366     // mark it as dead in dead node list.
   367     if (! useful_node_set.test(node_idx) ) {
   368       record_dead_node(node_idx);
   369     }
   370   }
   371 }
   373 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   374   int shift = 0;
   375   for (int i = 0; i < inlines->length(); i++) {
   376     CallGenerator* cg = inlines->at(i);
   377     CallNode* call = cg->call_node();
   378     if (shift > 0) {
   379       inlines->at_put(i-shift, cg);
   380     }
   381     if (!useful.member(call)) {
   382       shift++;
   383     }
   384   }
   385   inlines->trunc_to(inlines->length()-shift);
   386 }
   388 // Disconnect all useless nodes by disconnecting those at the boundary.
   389 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   390   uint next = 0;
   391   while (next < useful.size()) {
   392     Node *n = useful.at(next++);
   393     // Use raw traversal of out edges since this code removes out edges
   394     int max = n->outcnt();
   395     for (int j = 0; j < max; ++j) {
   396       Node* child = n->raw_out(j);
   397       if (! useful.member(child)) {
   398         assert(!child->is_top() || child != top(),
   399                "If top is cached in Compile object it is in useful list");
   400         // Only need to remove this out-edge to the useless node
   401         n->raw_del_out(j);
   402         --j;
   403         --max;
   404       }
   405     }
   406     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   407       record_for_igvn(n->unique_out());
   408     }
   409   }
   410   // Remove useless macro and predicate opaq nodes
   411   for (int i = C->macro_count()-1; i >= 0; i--) {
   412     Node* n = C->macro_node(i);
   413     if (!useful.member(n)) {
   414       remove_macro_node(n);
   415     }
   416   }
   417   // Remove useless expensive node
   418   for (int i = C->expensive_count()-1; i >= 0; i--) {
   419     Node* n = C->expensive_node(i);
   420     if (!useful.member(n)) {
   421       remove_expensive_node(n);
   422     }
   423   }
   424   // clean up the late inline lists
   425   remove_useless_late_inlines(&_string_late_inlines, useful);
   426   remove_useless_late_inlines(&_boxing_late_inlines, useful);
   427   remove_useless_late_inlines(&_late_inlines, useful);
   428   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   429 }
   431 //------------------------------frame_size_in_words-----------------------------
   432 // frame_slots in units of words
   433 int Compile::frame_size_in_words() const {
   434   // shift is 0 in LP32 and 1 in LP64
   435   const int shift = (LogBytesPerWord - LogBytesPerInt);
   436   int words = _frame_slots >> shift;
   437   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   438   return words;
   439 }
   441 // ============================================================================
   442 //------------------------------CompileWrapper---------------------------------
   443 class CompileWrapper : public StackObj {
   444   Compile *const _compile;
   445  public:
   446   CompileWrapper(Compile* compile);
   448   ~CompileWrapper();
   449 };
   451 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   452   // the Compile* pointer is stored in the current ciEnv:
   453   ciEnv* env = compile->env();
   454   assert(env == ciEnv::current(), "must already be a ciEnv active");
   455   assert(env->compiler_data() == NULL, "compile already active?");
   456   env->set_compiler_data(compile);
   457   assert(compile == Compile::current(), "sanity");
   459   compile->set_type_dict(NULL);
   460   compile->set_type_hwm(NULL);
   461   compile->set_type_last_size(0);
   462   compile->set_last_tf(NULL, NULL);
   463   compile->set_indexSet_arena(NULL);
   464   compile->set_indexSet_free_block_list(NULL);
   465   compile->init_type_arena();
   466   Type::Initialize(compile);
   467   _compile->set_scratch_buffer_blob(NULL);
   468   _compile->begin_method();
   469 }
   470 CompileWrapper::~CompileWrapper() {
   471   _compile->end_method();
   472   if (_compile->scratch_buffer_blob() != NULL)
   473     BufferBlob::free(_compile->scratch_buffer_blob());
   474   _compile->env()->set_compiler_data(NULL);
   475 }
   478 //----------------------------print_compile_messages---------------------------
   479 void Compile::print_compile_messages() {
   480 #ifndef PRODUCT
   481   // Check if recompiling
   482   if (_subsume_loads == false && PrintOpto) {
   483     // Recompiling without allowing machine instructions to subsume loads
   484     tty->print_cr("*********************************************************");
   485     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   486     tty->print_cr("*********************************************************");
   487   }
   488   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   489     // Recompiling without escape analysis
   490     tty->print_cr("*********************************************************");
   491     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   492     tty->print_cr("*********************************************************");
   493   }
   494   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
   495     // Recompiling without boxing elimination
   496     tty->print_cr("*********************************************************");
   497     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
   498     tty->print_cr("*********************************************************");
   499   }
   500   if (env()->break_at_compile()) {
   501     // Open the debugger when compiling this method.
   502     tty->print("### Breaking when compiling: ");
   503     method()->print_short_name();
   504     tty->cr();
   505     BREAKPOINT;
   506   }
   508   if( PrintOpto ) {
   509     if (is_osr_compilation()) {
   510       tty->print("[OSR]%3d", _compile_id);
   511     } else {
   512       tty->print("%3d", _compile_id);
   513     }
   514   }
   515 #endif
   516 }
   519 //-----------------------init_scratch_buffer_blob------------------------------
   520 // Construct a temporary BufferBlob and cache it for this compile.
   521 void Compile::init_scratch_buffer_blob(int const_size) {
   522   // If there is already a scratch buffer blob allocated and the
   523   // constant section is big enough, use it.  Otherwise free the
   524   // current and allocate a new one.
   525   BufferBlob* blob = scratch_buffer_blob();
   526   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   527     // Use the current blob.
   528   } else {
   529     if (blob != NULL) {
   530       BufferBlob::free(blob);
   531     }
   533     ResourceMark rm;
   534     _scratch_const_size = const_size;
   535     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   536     blob = BufferBlob::create("Compile::scratch_buffer", size);
   537     // Record the buffer blob for next time.
   538     set_scratch_buffer_blob(blob);
   539     // Have we run out of code space?
   540     if (scratch_buffer_blob() == NULL) {
   541       // Let CompilerBroker disable further compilations.
   542       record_failure("Not enough space for scratch buffer in CodeCache");
   543       return;
   544     }
   545   }
   547   // Initialize the relocation buffers
   548   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   549   set_scratch_locs_memory(locs_buf);
   550 }
   553 //-----------------------scratch_emit_size-------------------------------------
   554 // Helper function that computes size by emitting code
   555 uint Compile::scratch_emit_size(const Node* n) {
   556   // Start scratch_emit_size section.
   557   set_in_scratch_emit_size(true);
   559   // Emit into a trash buffer and count bytes emitted.
   560   // This is a pretty expensive way to compute a size,
   561   // but it works well enough if seldom used.
   562   // All common fixed-size instructions are given a size
   563   // method by the AD file.
   564   // Note that the scratch buffer blob and locs memory are
   565   // allocated at the beginning of the compile task, and
   566   // may be shared by several calls to scratch_emit_size.
   567   // The allocation of the scratch buffer blob is particularly
   568   // expensive, since it has to grab the code cache lock.
   569   BufferBlob* blob = this->scratch_buffer_blob();
   570   assert(blob != NULL, "Initialize BufferBlob at start");
   571   assert(blob->size() > MAX_inst_size, "sanity");
   572   relocInfo* locs_buf = scratch_locs_memory();
   573   address blob_begin = blob->content_begin();
   574   address blob_end   = (address)locs_buf;
   575   assert(blob->content_contains(blob_end), "sanity");
   576   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   577   buf.initialize_consts_size(_scratch_const_size);
   578   buf.initialize_stubs_size(MAX_stubs_size);
   579   assert(locs_buf != NULL, "sanity");
   580   int lsize = MAX_locs_size / 3;
   581   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   582   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   583   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   585   // Do the emission.
   587   Label fakeL; // Fake label for branch instructions.
   588   Label*   saveL = NULL;
   589   uint save_bnum = 0;
   590   bool is_branch = n->is_MachBranch();
   591   if (is_branch) {
   592     MacroAssembler masm(&buf);
   593     masm.bind(fakeL);
   594     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   595     n->as_MachBranch()->label_set(&fakeL, 0);
   596   }
   597   n->emit(buf, this->regalloc());
   598   if (is_branch) // Restore label.
   599     n->as_MachBranch()->label_set(saveL, save_bnum);
   601   // End scratch_emit_size section.
   602   set_in_scratch_emit_size(false);
   604   return buf.insts_size();
   605 }
   608 // ============================================================================
   609 //------------------------------Compile standard-------------------------------
   610 debug_only( int Compile::_debug_idx = 100000; )
   612 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   613 // the continuation bci for on stack replacement.
   616 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
   617                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
   618                 : Phase(Compiler),
   619                   _env(ci_env),
   620                   _log(ci_env->log()),
   621                   _compile_id(ci_env->compile_id()),
   622                   _save_argument_registers(false),
   623                   _stub_name(NULL),
   624                   _stub_function(NULL),
   625                   _stub_entry_point(NULL),
   626                   _method(target),
   627                   _entry_bci(osr_bci),
   628                   _initial_gvn(NULL),
   629                   _for_igvn(NULL),
   630                   _warm_calls(NULL),
   631                   _subsume_loads(subsume_loads),
   632                   _do_escape_analysis(do_escape_analysis),
   633                   _eliminate_boxing(eliminate_boxing),
   634                   _failure_reason(NULL),
   635                   _code_buffer("Compile::Fill_buffer"),
   636                   _orig_pc_slot(0),
   637                   _orig_pc_slot_offset_in_bytes(0),
   638                   _has_method_handle_invokes(false),
   639                   _mach_constant_base_node(NULL),
   640                   _node_bundling_limit(0),
   641                   _node_bundling_base(NULL),
   642                   _java_calls(0),
   643                   _inner_loops(0),
   644                   _scratch_const_size(-1),
   645                   _in_scratch_emit_size(false),
   646                   _dead_node_list(comp_arena()),
   647                   _dead_node_count(0),
   648 #ifndef PRODUCT
   649                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   650                   _in_dump_cnt(0),
   651                   _printer(IdealGraphPrinter::printer()),
   652 #endif
   653                   _congraph(NULL),
   654                   _late_inlines(comp_arena(), 2, 0, NULL),
   655                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   656                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
   657                   _late_inlines_pos(0),
   658                   _number_of_mh_late_inlines(0),
   659                   _inlining_progress(false),
   660                   _inlining_incrementally(false),
   661                   _print_inlining_list(NULL),
   662                   _print_inlining_idx(0),
   663                   _preserve_jvm_state(0) {
   664   C = this;
   666   CompileWrapper cw(this);
   667 #ifndef PRODUCT
   668   if (TimeCompiler2) {
   669     tty->print(" ");
   670     target->holder()->name()->print();
   671     tty->print(".");
   672     target->print_short_name();
   673     tty->print("  ");
   674   }
   675   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   676   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   677   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   678   if (!print_opto_assembly) {
   679     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   680     if (print_assembly && !Disassembler::can_decode()) {
   681       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   682       print_opto_assembly = true;
   683     }
   684   }
   685   set_print_assembly(print_opto_assembly);
   686   set_parsed_irreducible_loop(false);
   687 #endif
   688   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
   689   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
   691   if (ProfileTraps) {
   692     // Make sure the method being compiled gets its own MDO,
   693     // so we can at least track the decompile_count().
   694     method()->ensure_method_data();
   695   }
   697   Init(::AliasLevel);
   700   print_compile_messages();
   702   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   703     _ilt = InlineTree::build_inline_tree_root();
   704   else
   705     _ilt = NULL;
   707   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   708   assert(num_alias_types() >= AliasIdxRaw, "");
   710 #define MINIMUM_NODE_HASH  1023
   711   // Node list that Iterative GVN will start with
   712   Unique_Node_List for_igvn(comp_arena());
   713   set_for_igvn(&for_igvn);
   715   // GVN that will be run immediately on new nodes
   716   uint estimated_size = method()->code_size()*4+64;
   717   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   718   PhaseGVN gvn(node_arena(), estimated_size);
   719   set_initial_gvn(&gvn);
   721   if (print_inlining() || print_intrinsics()) {
   722     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   723   }
   724   { // Scope for timing the parser
   725     TracePhase t3("parse", &_t_parser, true);
   727     // Put top into the hash table ASAP.
   728     initial_gvn()->transform_no_reclaim(top());
   730     // Set up tf(), start(), and find a CallGenerator.
   731     CallGenerator* cg = NULL;
   732     if (is_osr_compilation()) {
   733       const TypeTuple *domain = StartOSRNode::osr_domain();
   734       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   735       init_tf(TypeFunc::make(domain, range));
   736       StartNode* s = new (this) StartOSRNode(root(), domain);
   737       initial_gvn()->set_type_bottom(s);
   738       init_start(s);
   739       cg = CallGenerator::for_osr(method(), entry_bci());
   740     } else {
   741       // Normal case.
   742       init_tf(TypeFunc::make(method()));
   743       StartNode* s = new (this) StartNode(root(), tf()->domain());
   744       initial_gvn()->set_type_bottom(s);
   745       init_start(s);
   746       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   747         // With java.lang.ref.reference.get() we must go through the
   748         // intrinsic when G1 is enabled - even when get() is the root
   749         // method of the compile - so that, if necessary, the value in
   750         // the referent field of the reference object gets recorded by
   751         // the pre-barrier code.
   752         // Specifically, if G1 is enabled, the value in the referent
   753         // field is recorded by the G1 SATB pre barrier. This will
   754         // result in the referent being marked live and the reference
   755         // object removed from the list of discovered references during
   756         // reference processing.
   757         cg = find_intrinsic(method(), false);
   758       }
   759       if (cg == NULL) {
   760         float past_uses = method()->interpreter_invocation_count();
   761         float expected_uses = past_uses;
   762         cg = CallGenerator::for_inline(method(), expected_uses);
   763       }
   764     }
   765     if (failing())  return;
   766     if (cg == NULL) {
   767       record_method_not_compilable_all_tiers("cannot parse method");
   768       return;
   769     }
   770     JVMState* jvms = build_start_state(start(), tf());
   771     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
   772       record_method_not_compilable("method parse failed");
   773       return;
   774     }
   775     GraphKit kit(jvms);
   777     if (!kit.stopped()) {
   778       // Accept return values, and transfer control we know not where.
   779       // This is done by a special, unique ReturnNode bound to root.
   780       return_values(kit.jvms());
   781     }
   783     if (kit.has_exceptions()) {
   784       // Any exceptions that escape from this call must be rethrown
   785       // to whatever caller is dynamically above us on the stack.
   786       // This is done by a special, unique RethrowNode bound to root.
   787       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   788     }
   790     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   792     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   793       inline_string_calls(true);
   794     }
   796     if (failing())  return;
   798     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
   800     // Remove clutter produced by parsing.
   801     if (!failing()) {
   802       ResourceMark rm;
   803       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   804     }
   805   }
   807   // Note:  Large methods are capped off in do_one_bytecode().
   808   if (failing())  return;
   810   // After parsing, node notes are no longer automagic.
   811   // They must be propagated by register_new_node_with_optimizer(),
   812   // clone(), or the like.
   813   set_default_node_notes(NULL);
   815   for (;;) {
   816     int successes = Inline_Warm();
   817     if (failing())  return;
   818     if (successes == 0)  break;
   819   }
   821   // Drain the list.
   822   Finish_Warm();
   823 #ifndef PRODUCT
   824   if (_printer) {
   825     _printer->print_inlining(this);
   826   }
   827 #endif
   829   if (failing())  return;
   830   NOT_PRODUCT( verify_graph_edges(); )
   832   // Now optimize
   833   Optimize();
   834   if (failing())  return;
   835   NOT_PRODUCT( verify_graph_edges(); )
   837 #ifndef PRODUCT
   838   if (PrintIdeal) {
   839     ttyLocker ttyl;  // keep the following output all in one block
   840     // This output goes directly to the tty, not the compiler log.
   841     // To enable tools to match it up with the compilation activity,
   842     // be sure to tag this tty output with the compile ID.
   843     if (xtty != NULL) {
   844       xtty->head("ideal compile_id='%d'%s", compile_id(),
   845                  is_osr_compilation()    ? " compile_kind='osr'" :
   846                  "");
   847     }
   848     root()->dump(9999);
   849     if (xtty != NULL) {
   850       xtty->tail("ideal");
   851     }
   852   }
   853 #endif
   855   NOT_PRODUCT( verify_barriers(); )
   856   // Now that we know the size of all the monitors we can add a fixed slot
   857   // for the original deopt pc.
   859   _orig_pc_slot =  fixed_slots();
   860   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   861   set_fixed_slots(next_slot);
   863   // Compute when to use implicit null checks. Used by matching trap based
   864   // nodes and NullCheck optimization.
   865   set_allowed_deopt_reasons();
   867   // Now generate code
   868   Code_Gen();
   869   if (failing())  return;
   871   // Check if we want to skip execution of all compiled code.
   872   {
   873 #ifndef PRODUCT
   874     if (OptoNoExecute) {
   875       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   876       return;
   877     }
   878     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   879 #endif
   881     if (is_osr_compilation()) {
   882       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   883       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   884     } else {
   885       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   886       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   887     }
   889     env()->register_method(_method, _entry_bci,
   890                            &_code_offsets,
   891                            _orig_pc_slot_offset_in_bytes,
   892                            code_buffer(),
   893                            frame_size_in_words(), _oop_map_set,
   894                            &_handler_table, &_inc_table,
   895                            compiler,
   896                            env()->comp_level(),
   897                            has_unsafe_access(),
   898                            SharedRuntime::is_wide_vector(max_vector_size())
   899                            );
   901     if (log() != NULL) // Print code cache state into compiler log
   902       log()->code_cache_state();
   903   }
   904 }
   906 //------------------------------Compile----------------------------------------
   907 // Compile a runtime stub
   908 Compile::Compile( ciEnv* ci_env,
   909                   TypeFunc_generator generator,
   910                   address stub_function,
   911                   const char *stub_name,
   912                   int is_fancy_jump,
   913                   bool pass_tls,
   914                   bool save_arg_registers,
   915                   bool return_pc )
   916   : Phase(Compiler),
   917     _env(ci_env),
   918     _log(ci_env->log()),
   919     _compile_id(0),
   920     _save_argument_registers(save_arg_registers),
   921     _method(NULL),
   922     _stub_name(stub_name),
   923     _stub_function(stub_function),
   924     _stub_entry_point(NULL),
   925     _entry_bci(InvocationEntryBci),
   926     _initial_gvn(NULL),
   927     _for_igvn(NULL),
   928     _warm_calls(NULL),
   929     _orig_pc_slot(0),
   930     _orig_pc_slot_offset_in_bytes(0),
   931     _subsume_loads(true),
   932     _do_escape_analysis(false),
   933     _eliminate_boxing(false),
   934     _failure_reason(NULL),
   935     _code_buffer("Compile::Fill_buffer"),
   936     _has_method_handle_invokes(false),
   937     _mach_constant_base_node(NULL),
   938     _node_bundling_limit(0),
   939     _node_bundling_base(NULL),
   940     _java_calls(0),
   941     _inner_loops(0),
   942 #ifndef PRODUCT
   943     _trace_opto_output(TraceOptoOutput),
   944     _in_dump_cnt(0),
   945     _printer(NULL),
   946 #endif
   947     _dead_node_list(comp_arena()),
   948     _dead_node_count(0),
   949     _congraph(NULL),
   950     _number_of_mh_late_inlines(0),
   951     _inlining_progress(false),
   952     _inlining_incrementally(false),
   953     _print_inlining_list(NULL),
   954     _print_inlining_idx(0),
   955     _preserve_jvm_state(0),
   956     _allowed_reasons(0) {
   957   C = this;
   959 #ifndef PRODUCT
   960   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   961   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   962   set_print_assembly(PrintFrameConverterAssembly);
   963   set_parsed_irreducible_loop(false);
   964 #endif
   965   CompileWrapper cw(this);
   966   Init(/*AliasLevel=*/ 0);
   967   init_tf((*generator)());
   969   {
   970     // The following is a dummy for the sake of GraphKit::gen_stub
   971     Unique_Node_List for_igvn(comp_arena());
   972     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   973     PhaseGVN gvn(Thread::current()->resource_area(),255);
   974     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   975     gvn.transform_no_reclaim(top());
   977     GraphKit kit;
   978     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   979   }
   981   NOT_PRODUCT( verify_graph_edges(); )
   982   Code_Gen();
   983   if (failing())  return;
   986   // Entry point will be accessed using compile->stub_entry_point();
   987   if (code_buffer() == NULL) {
   988     Matcher::soft_match_failure();
   989   } else {
   990     if (PrintAssembly && (WizardMode || Verbose))
   991       tty->print_cr("### Stub::%s", stub_name);
   993     if (!failing()) {
   994       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   996       // Make the NMethod
   997       // For now we mark the frame as never safe for profile stackwalking
   998       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   999                                                       code_buffer(),
  1000                                                       CodeOffsets::frame_never_safe,
  1001                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
  1002                                                       frame_size_in_words(),
  1003                                                       _oop_map_set,
  1004                                                       save_arg_registers);
  1005       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
  1007       _stub_entry_point = rs->entry_point();
  1012 //------------------------------Init-------------------------------------------
  1013 // Prepare for a single compilation
  1014 void Compile::Init(int aliaslevel) {
  1015   _unique  = 0;
  1016   _regalloc = NULL;
  1018   _tf      = NULL;  // filled in later
  1019   _top     = NULL;  // cached later
  1020   _matcher = NULL;  // filled in later
  1021   _cfg     = NULL;  // filled in later
  1023   set_24_bit_selection_and_mode(Use24BitFP, false);
  1025   _node_note_array = NULL;
  1026   _default_node_notes = NULL;
  1028   _immutable_memory = NULL; // filled in at first inquiry
  1030   // Globally visible Nodes
  1031   // First set TOP to NULL to give safe behavior during creation of RootNode
  1032   set_cached_top_node(NULL);
  1033   set_root(new (this) RootNode());
  1034   // Now that you have a Root to point to, create the real TOP
  1035   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1036   set_recent_alloc(NULL, NULL);
  1038   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1039   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1040   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1041   env()->set_dependencies(new Dependencies(env()));
  1043   _fixed_slots = 0;
  1044   set_has_split_ifs(false);
  1045   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1046   set_has_stringbuilder(false);
  1047   set_has_boxed_value(false);
  1048   _trap_can_recompile = false;  // no traps emitted yet
  1049   _major_progress = true; // start out assuming good things will happen
  1050   set_has_unsafe_access(false);
  1051   set_max_vector_size(0);
  1052   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1053   set_decompile_count(0);
  1055   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1056   set_num_loop_opts(LoopOptsCount);
  1057   set_do_inlining(Inline);
  1058   set_max_inline_size(MaxInlineSize);
  1059   set_freq_inline_size(FreqInlineSize);
  1060   set_do_scheduling(OptoScheduling);
  1061   set_do_count_invocations(false);
  1062   set_do_method_data_update(false);
  1064   if (debug_info()->recording_non_safepoints()) {
  1065     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1066                         (comp_arena(), 8, 0, NULL));
  1067     set_default_node_notes(Node_Notes::make(this));
  1070   // // -- Initialize types before each compile --
  1071   // // Update cached type information
  1072   // if( _method && _method->constants() )
  1073   //   Type::update_loaded_types(_method, _method->constants());
  1075   // Init alias_type map.
  1076   if (!_do_escape_analysis && aliaslevel == 3)
  1077     aliaslevel = 2;  // No unique types without escape analysis
  1078   _AliasLevel = aliaslevel;
  1079   const int grow_ats = 16;
  1080   _max_alias_types = grow_ats;
  1081   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1082   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1083   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1085     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1087   // Initialize the first few types.
  1088   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1089   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1090   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1091   _num_alias_types = AliasIdxRaw+1;
  1092   // Zero out the alias type cache.
  1093   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1094   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1095   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1097   _intrinsics = NULL;
  1098   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1099   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1100   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1101   register_library_intrinsics();
  1104 //---------------------------init_start----------------------------------------
  1105 // Install the StartNode on this compile object.
  1106 void Compile::init_start(StartNode* s) {
  1107   if (failing())
  1108     return; // already failing
  1109   assert(s == start(), "");
  1112 StartNode* Compile::start() const {
  1113   assert(!failing(), "");
  1114   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1115     Node* start = root()->fast_out(i);
  1116     if( start->is_Start() )
  1117       return start->as_Start();
  1119   ShouldNotReachHere();
  1120   return NULL;
  1123 //-------------------------------immutable_memory-------------------------------------
  1124 // Access immutable memory
  1125 Node* Compile::immutable_memory() {
  1126   if (_immutable_memory != NULL) {
  1127     return _immutable_memory;
  1129   StartNode* s = start();
  1130   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1131     Node *p = s->fast_out(i);
  1132     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1133       _immutable_memory = p;
  1134       return _immutable_memory;
  1137   ShouldNotReachHere();
  1138   return NULL;
  1141 //----------------------set_cached_top_node------------------------------------
  1142 // Install the cached top node, and make sure Node::is_top works correctly.
  1143 void Compile::set_cached_top_node(Node* tn) {
  1144   if (tn != NULL)  verify_top(tn);
  1145   Node* old_top = _top;
  1146   _top = tn;
  1147   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1148   // their _out arrays.
  1149   if (_top != NULL)     _top->setup_is_top();
  1150   if (old_top != NULL)  old_top->setup_is_top();
  1151   assert(_top == NULL || top()->is_top(), "");
  1154 #ifdef ASSERT
  1155 uint Compile::count_live_nodes_by_graph_walk() {
  1156   Unique_Node_List useful(comp_arena());
  1157   // Get useful node list by walking the graph.
  1158   identify_useful_nodes(useful);
  1159   return useful.size();
  1162 void Compile::print_missing_nodes() {
  1164   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1165   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1166     return;
  1169   // This is an expensive function. It is executed only when the user
  1170   // specifies VerifyIdealNodeCount option or otherwise knows the
  1171   // additional work that needs to be done to identify reachable nodes
  1172   // by walking the flow graph and find the missing ones using
  1173   // _dead_node_list.
  1175   Unique_Node_List useful(comp_arena());
  1176   // Get useful node list by walking the graph.
  1177   identify_useful_nodes(useful);
  1179   uint l_nodes = C->live_nodes();
  1180   uint l_nodes_by_walk = useful.size();
  1182   if (l_nodes != l_nodes_by_walk) {
  1183     if (_log != NULL) {
  1184       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1185       _log->stamp();
  1186       _log->end_head();
  1188     VectorSet& useful_member_set = useful.member_set();
  1189     int last_idx = l_nodes_by_walk;
  1190     for (int i = 0; i < last_idx; i++) {
  1191       if (useful_member_set.test(i)) {
  1192         if (_dead_node_list.test(i)) {
  1193           if (_log != NULL) {
  1194             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1196           if (PrintIdealNodeCount) {
  1197             // Print the log message to tty
  1198               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1199               useful.at(i)->dump();
  1203       else if (! _dead_node_list.test(i)) {
  1204         if (_log != NULL) {
  1205           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1207         if (PrintIdealNodeCount) {
  1208           // Print the log message to tty
  1209           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1213     if (_log != NULL) {
  1214       _log->tail("mismatched_nodes");
  1218 #endif
  1220 #ifndef PRODUCT
  1221 void Compile::verify_top(Node* tn) const {
  1222   if (tn != NULL) {
  1223     assert(tn->is_Con(), "top node must be a constant");
  1224     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1225     assert(tn->in(0) != NULL, "must have live top node");
  1228 #endif
  1231 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1233 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1234   guarantee(arr != NULL, "");
  1235   int num_blocks = arr->length();
  1236   if (grow_by < num_blocks)  grow_by = num_blocks;
  1237   int num_notes = grow_by * _node_notes_block_size;
  1238   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1239   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1240   while (num_notes > 0) {
  1241     arr->append(notes);
  1242     notes     += _node_notes_block_size;
  1243     num_notes -= _node_notes_block_size;
  1245   assert(num_notes == 0, "exact multiple, please");
  1248 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1249   if (source == NULL || dest == NULL)  return false;
  1251   if (dest->is_Con())
  1252     return false;               // Do not push debug info onto constants.
  1254 #ifdef ASSERT
  1255   // Leave a bread crumb trail pointing to the original node:
  1256   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1257     dest->set_debug_orig(source);
  1259 #endif
  1261   if (node_note_array() == NULL)
  1262     return false;               // Not collecting any notes now.
  1264   // This is a copy onto a pre-existing node, which may already have notes.
  1265   // If both nodes have notes, do not overwrite any pre-existing notes.
  1266   Node_Notes* source_notes = node_notes_at(source->_idx);
  1267   if (source_notes == NULL || source_notes->is_clear())  return false;
  1268   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1269   if (dest_notes == NULL || dest_notes->is_clear()) {
  1270     return set_node_notes_at(dest->_idx, source_notes);
  1273   Node_Notes merged_notes = (*source_notes);
  1274   // The order of operations here ensures that dest notes will win...
  1275   merged_notes.update_from(dest_notes);
  1276   return set_node_notes_at(dest->_idx, &merged_notes);
  1280 //--------------------------allow_range_check_smearing-------------------------
  1281 // Gating condition for coalescing similar range checks.
  1282 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1283 // single covering check that is at least as strong as any of them.
  1284 // If the optimization succeeds, the simplified (strengthened) range check
  1285 // will always succeed.  If it fails, we will deopt, and then give up
  1286 // on the optimization.
  1287 bool Compile::allow_range_check_smearing() const {
  1288   // If this method has already thrown a range-check,
  1289   // assume it was because we already tried range smearing
  1290   // and it failed.
  1291   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1292   return !already_trapped;
  1296 //------------------------------flatten_alias_type-----------------------------
  1297 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1298   int offset = tj->offset();
  1299   TypePtr::PTR ptr = tj->ptr();
  1301   // Known instance (scalarizable allocation) alias only with itself.
  1302   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1303                        tj->is_oopptr()->is_known_instance();
  1305   // Process weird unsafe references.
  1306   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1307     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1308     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1309     tj = TypeOopPtr::BOTTOM;
  1310     ptr = tj->ptr();
  1311     offset = tj->offset();
  1314   // Array pointers need some flattening
  1315   const TypeAryPtr *ta = tj->isa_aryptr();
  1316   if (ta && ta->is_stable()) {
  1317     // Erase stability property for alias analysis.
  1318     tj = ta = ta->cast_to_stable(false);
  1320   if( ta && is_known_inst ) {
  1321     if ( offset != Type::OffsetBot &&
  1322          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1323       offset = Type::OffsetBot; // Flatten constant access into array body only
  1324       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1326   } else if( ta && _AliasLevel >= 2 ) {
  1327     // For arrays indexed by constant indices, we flatten the alias
  1328     // space to include all of the array body.  Only the header, klass
  1329     // and array length can be accessed un-aliased.
  1330     if( offset != Type::OffsetBot ) {
  1331       if( ta->const_oop() ) { // MethodData* or Method*
  1332         offset = Type::OffsetBot;   // Flatten constant access into array body
  1333         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1334       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1335         // range is OK as-is.
  1336         tj = ta = TypeAryPtr::RANGE;
  1337       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1338         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1339         ta = TypeAryPtr::RANGE; // generic ignored junk
  1340         ptr = TypePtr::BotPTR;
  1341       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1342         tj = TypeInstPtr::MARK;
  1343         ta = TypeAryPtr::RANGE; // generic ignored junk
  1344         ptr = TypePtr::BotPTR;
  1345       } else {                  // Random constant offset into array body
  1346         offset = Type::OffsetBot;   // Flatten constant access into array body
  1347         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1350     // Arrays of fixed size alias with arrays of unknown size.
  1351     if (ta->size() != TypeInt::POS) {
  1352       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1353       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1355     // Arrays of known objects become arrays of unknown objects.
  1356     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1357       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1358       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1360     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1361       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1362       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1364     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1365     // cannot be distinguished by bytecode alone.
  1366     if (ta->elem() == TypeInt::BOOL) {
  1367       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1368       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1369       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1371     // During the 2nd round of IterGVN, NotNull castings are removed.
  1372     // Make sure the Bottom and NotNull variants alias the same.
  1373     // Also, make sure exact and non-exact variants alias the same.
  1374     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
  1375       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1379   // Oop pointers need some flattening
  1380   const TypeInstPtr *to = tj->isa_instptr();
  1381   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1382     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1383     if( ptr == TypePtr::Constant ) {
  1384       if (to->klass() != ciEnv::current()->Class_klass() ||
  1385           offset < k->size_helper() * wordSize) {
  1386         // No constant oop pointers (such as Strings); they alias with
  1387         // unknown strings.
  1388         assert(!is_known_inst, "not scalarizable allocation");
  1389         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1391     } else if( is_known_inst ) {
  1392       tj = to; // Keep NotNull and klass_is_exact for instance type
  1393     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1394       // During the 2nd round of IterGVN, NotNull castings are removed.
  1395       // Make sure the Bottom and NotNull variants alias the same.
  1396       // Also, make sure exact and non-exact variants alias the same.
  1397       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1399     if (to->speculative() != NULL) {
  1400       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
  1402     // Canonicalize the holder of this field
  1403     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1404       // First handle header references such as a LoadKlassNode, even if the
  1405       // object's klass is unloaded at compile time (4965979).
  1406       if (!is_known_inst) { // Do it only for non-instance types
  1407         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1409     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1410       // Static fields are in the space above the normal instance
  1411       // fields in the java.lang.Class instance.
  1412       if (to->klass() != ciEnv::current()->Class_klass()) {
  1413         to = NULL;
  1414         tj = TypeOopPtr::BOTTOM;
  1415         offset = tj->offset();
  1417     } else {
  1418       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1419       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1420         if( is_known_inst ) {
  1421           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1422         } else {
  1423           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1429   // Klass pointers to object array klasses need some flattening
  1430   const TypeKlassPtr *tk = tj->isa_klassptr();
  1431   if( tk ) {
  1432     // If we are referencing a field within a Klass, we need
  1433     // to assume the worst case of an Object.  Both exact and
  1434     // inexact types must flatten to the same alias class so
  1435     // use NotNull as the PTR.
  1436     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1438       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1439                                    TypeKlassPtr::OBJECT->klass(),
  1440                                    offset);
  1443     ciKlass* klass = tk->klass();
  1444     if( klass->is_obj_array_klass() ) {
  1445       ciKlass* k = TypeAryPtr::OOPS->klass();
  1446       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1447         k = TypeInstPtr::BOTTOM->klass();
  1448       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1451     // Check for precise loads from the primary supertype array and force them
  1452     // to the supertype cache alias index.  Check for generic array loads from
  1453     // the primary supertype array and also force them to the supertype cache
  1454     // alias index.  Since the same load can reach both, we need to merge
  1455     // these 2 disparate memories into the same alias class.  Since the
  1456     // primary supertype array is read-only, there's no chance of confusion
  1457     // where we bypass an array load and an array store.
  1458     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1459     if (offset == Type::OffsetBot ||
  1460         (offset >= primary_supers_offset &&
  1461          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1462         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1463       offset = in_bytes(Klass::secondary_super_cache_offset());
  1464       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1468   // Flatten all Raw pointers together.
  1469   if (tj->base() == Type::RawPtr)
  1470     tj = TypeRawPtr::BOTTOM;
  1472   if (tj->base() == Type::AnyPtr)
  1473     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1475   // Flatten all to bottom for now
  1476   switch( _AliasLevel ) {
  1477   case 0:
  1478     tj = TypePtr::BOTTOM;
  1479     break;
  1480   case 1:                       // Flatten to: oop, static, field or array
  1481     switch (tj->base()) {
  1482     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1483     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1484     case Type::AryPtr:   // do not distinguish arrays at all
  1485     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1486     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1487     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1488     default: ShouldNotReachHere();
  1490     break;
  1491   case 2:                       // No collapsing at level 2; keep all splits
  1492   case 3:                       // No collapsing at level 3; keep all splits
  1493     break;
  1494   default:
  1495     Unimplemented();
  1498   offset = tj->offset();
  1499   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1501   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1502           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1503           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1504           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1505           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1506           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1507           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1508           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1509   assert( tj->ptr() != TypePtr::TopPTR &&
  1510           tj->ptr() != TypePtr::AnyNull &&
  1511           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1512 //    assert( tj->ptr() != TypePtr::Constant ||
  1513 //            tj->base() == Type::RawPtr ||
  1514 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1516   return tj;
  1519 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1520   _index = i;
  1521   _adr_type = at;
  1522   _field = NULL;
  1523   _element = NULL;
  1524   _is_rewritable = true; // default
  1525   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1526   if (atoop != NULL && atoop->is_known_instance()) {
  1527     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1528     _general_index = Compile::current()->get_alias_index(gt);
  1529   } else {
  1530     _general_index = 0;
  1534 //---------------------------------print_on------------------------------------
  1535 #ifndef PRODUCT
  1536 void Compile::AliasType::print_on(outputStream* st) {
  1537   if (index() < 10)
  1538         st->print("@ <%d> ", index());
  1539   else  st->print("@ <%d>",  index());
  1540   st->print(is_rewritable() ? "   " : " RO");
  1541   int offset = adr_type()->offset();
  1542   if (offset == Type::OffsetBot)
  1543         st->print(" +any");
  1544   else  st->print(" +%-3d", offset);
  1545   st->print(" in ");
  1546   adr_type()->dump_on(st);
  1547   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1548   if (field() != NULL && tjp) {
  1549     if (tjp->klass()  != field()->holder() ||
  1550         tjp->offset() != field()->offset_in_bytes()) {
  1551       st->print(" != ");
  1552       field()->print();
  1553       st->print(" ***");
  1558 void print_alias_types() {
  1559   Compile* C = Compile::current();
  1560   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1561   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1562     C->alias_type(idx)->print_on(tty);
  1563     tty->cr();
  1566 #endif
  1569 //----------------------------probe_alias_cache--------------------------------
  1570 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1571   intptr_t key = (intptr_t) adr_type;
  1572   key ^= key >> logAliasCacheSize;
  1573   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1577 //-----------------------------grow_alias_types--------------------------------
  1578 void Compile::grow_alias_types() {
  1579   const int old_ats  = _max_alias_types; // how many before?
  1580   const int new_ats  = old_ats;          // how many more?
  1581   const int grow_ats = old_ats+new_ats;  // how many now?
  1582   _max_alias_types = grow_ats;
  1583   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1584   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1585   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1586   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1590 //--------------------------------find_alias_type------------------------------
  1591 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1592   if (_AliasLevel == 0)
  1593     return alias_type(AliasIdxBot);
  1595   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1596   if (ace->_adr_type == adr_type) {
  1597     return alias_type(ace->_index);
  1600   // Handle special cases.
  1601   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1602   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1604   // Do it the slow way.
  1605   const TypePtr* flat = flatten_alias_type(adr_type);
  1607 #ifdef ASSERT
  1608   assert(flat == flatten_alias_type(flat), "idempotent");
  1609   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1610   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1611     const TypeOopPtr* foop = flat->is_oopptr();
  1612     // Scalarizable allocations have exact klass always.
  1613     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1614     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1615     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1617   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1618 #endif
  1620   int idx = AliasIdxTop;
  1621   for (int i = 0; i < num_alias_types(); i++) {
  1622     if (alias_type(i)->adr_type() == flat) {
  1623       idx = i;
  1624       break;
  1628   if (idx == AliasIdxTop) {
  1629     if (no_create)  return NULL;
  1630     // Grow the array if necessary.
  1631     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1632     // Add a new alias type.
  1633     idx = _num_alias_types++;
  1634     _alias_types[idx]->Init(idx, flat);
  1635     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1636     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1637     if (flat->isa_instptr()) {
  1638       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1639           && flat->is_instptr()->klass() == env()->Class_klass())
  1640         alias_type(idx)->set_rewritable(false);
  1642     if (flat->isa_aryptr()) {
  1643 #ifdef ASSERT
  1644       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1645       // (T_BYTE has the weakest alignment and size restrictions...)
  1646       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
  1647 #endif
  1648       if (flat->offset() == TypePtr::OffsetBot) {
  1649         alias_type(idx)->set_element(flat->is_aryptr()->elem());
  1652     if (flat->isa_klassptr()) {
  1653       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1654         alias_type(idx)->set_rewritable(false);
  1655       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1656         alias_type(idx)->set_rewritable(false);
  1657       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1658         alias_type(idx)->set_rewritable(false);
  1659       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1660         alias_type(idx)->set_rewritable(false);
  1662     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1663     // but the base pointer type is not distinctive enough to identify
  1664     // references into JavaThread.)
  1666     // Check for final fields.
  1667     const TypeInstPtr* tinst = flat->isa_instptr();
  1668     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1669       ciField* field;
  1670       if (tinst->const_oop() != NULL &&
  1671           tinst->klass() == ciEnv::current()->Class_klass() &&
  1672           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1673         // static field
  1674         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1675         field = k->get_field_by_offset(tinst->offset(), true);
  1676       } else {
  1677         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1678         field = k->get_field_by_offset(tinst->offset(), false);
  1680       assert(field == NULL ||
  1681              original_field == NULL ||
  1682              (field->holder() == original_field->holder() &&
  1683               field->offset() == original_field->offset() &&
  1684               field->is_static() == original_field->is_static()), "wrong field?");
  1685       // Set field() and is_rewritable() attributes.
  1686       if (field != NULL)  alias_type(idx)->set_field(field);
  1690   // Fill the cache for next time.
  1691   ace->_adr_type = adr_type;
  1692   ace->_index    = idx;
  1693   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1695   // Might as well try to fill the cache for the flattened version, too.
  1696   AliasCacheEntry* face = probe_alias_cache(flat);
  1697   if (face->_adr_type == NULL) {
  1698     face->_adr_type = flat;
  1699     face->_index    = idx;
  1700     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1703   return alias_type(idx);
  1707 Compile::AliasType* Compile::alias_type(ciField* field) {
  1708   const TypeOopPtr* t;
  1709   if (field->is_static())
  1710     t = TypeInstPtr::make(field->holder()->java_mirror());
  1711   else
  1712     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1713   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1714   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
  1715   return atp;
  1719 //------------------------------have_alias_type--------------------------------
  1720 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1721   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1722   if (ace->_adr_type == adr_type) {
  1723     return true;
  1726   // Handle special cases.
  1727   if (adr_type == NULL)             return true;
  1728   if (adr_type == TypePtr::BOTTOM)  return true;
  1730   return find_alias_type(adr_type, true, NULL) != NULL;
  1733 //-----------------------------must_alias--------------------------------------
  1734 // True if all values of the given address type are in the given alias category.
  1735 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1736   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1737   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1738   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1739   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1741   // the only remaining possible overlap is identity
  1742   int adr_idx = get_alias_index(adr_type);
  1743   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1744   assert(adr_idx == alias_idx ||
  1745          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1746           && adr_type                       != TypeOopPtr::BOTTOM),
  1747          "should not be testing for overlap with an unsafe pointer");
  1748   return adr_idx == alias_idx;
  1751 //------------------------------can_alias--------------------------------------
  1752 // True if any values of the given address type are in the given alias category.
  1753 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1754   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1755   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1756   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1757   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1759   // the only remaining possible overlap is identity
  1760   int adr_idx = get_alias_index(adr_type);
  1761   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1762   return adr_idx == alias_idx;
  1767 //---------------------------pop_warm_call-------------------------------------
  1768 WarmCallInfo* Compile::pop_warm_call() {
  1769   WarmCallInfo* wci = _warm_calls;
  1770   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1771   return wci;
  1774 //----------------------------Inline_Warm--------------------------------------
  1775 int Compile::Inline_Warm() {
  1776   // If there is room, try to inline some more warm call sites.
  1777   // %%% Do a graph index compaction pass when we think we're out of space?
  1778   if (!InlineWarmCalls)  return 0;
  1780   int calls_made_hot = 0;
  1781   int room_to_grow   = NodeCountInliningCutoff - unique();
  1782   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1783   int amount_grown   = 0;
  1784   WarmCallInfo* call;
  1785   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1786     int est_size = (int)call->size();
  1787     if (est_size > (room_to_grow - amount_grown)) {
  1788       // This one won't fit anyway.  Get rid of it.
  1789       call->make_cold();
  1790       continue;
  1792     call->make_hot();
  1793     calls_made_hot++;
  1794     amount_grown   += est_size;
  1795     amount_to_grow -= est_size;
  1798   if (calls_made_hot > 0)  set_major_progress();
  1799   return calls_made_hot;
  1803 //----------------------------Finish_Warm--------------------------------------
  1804 void Compile::Finish_Warm() {
  1805   if (!InlineWarmCalls)  return;
  1806   if (failing())  return;
  1807   if (warm_calls() == NULL)  return;
  1809   // Clean up loose ends, if we are out of space for inlining.
  1810   WarmCallInfo* call;
  1811   while ((call = pop_warm_call()) != NULL) {
  1812     call->make_cold();
  1816 //---------------------cleanup_loop_predicates-----------------------
  1817 // Remove the opaque nodes that protect the predicates so that all unused
  1818 // checks and uncommon_traps will be eliminated from the ideal graph
  1819 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1820   if (predicate_count()==0) return;
  1821   for (int i = predicate_count(); i > 0; i--) {
  1822     Node * n = predicate_opaque1_node(i-1);
  1823     assert(n->Opcode() == Op_Opaque1, "must be");
  1824     igvn.replace_node(n, n->in(1));
  1826   assert(predicate_count()==0, "should be clean!");
  1829 // StringOpts and late inlining of string methods
  1830 void Compile::inline_string_calls(bool parse_time) {
  1832     // remove useless nodes to make the usage analysis simpler
  1833     ResourceMark rm;
  1834     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1838     ResourceMark rm;
  1839     print_method(PHASE_BEFORE_STRINGOPTS, 3);
  1840     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1841     print_method(PHASE_AFTER_STRINGOPTS, 3);
  1844   // now inline anything that we skipped the first time around
  1845   if (!parse_time) {
  1846     _late_inlines_pos = _late_inlines.length();
  1849   while (_string_late_inlines.length() > 0) {
  1850     CallGenerator* cg = _string_late_inlines.pop();
  1851     cg->do_late_inline();
  1852     if (failing())  return;
  1854   _string_late_inlines.trunc_to(0);
  1857 // Late inlining of boxing methods
  1858 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
  1859   if (_boxing_late_inlines.length() > 0) {
  1860     assert(has_boxed_value(), "inconsistent");
  1862     PhaseGVN* gvn = initial_gvn();
  1863     set_inlining_incrementally(true);
  1865     assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1866     for_igvn()->clear();
  1867     gvn->replace_with(&igvn);
  1869     while (_boxing_late_inlines.length() > 0) {
  1870       CallGenerator* cg = _boxing_late_inlines.pop();
  1871       cg->do_late_inline();
  1872       if (failing())  return;
  1874     _boxing_late_inlines.trunc_to(0);
  1877       ResourceMark rm;
  1878       PhaseRemoveUseless pru(gvn, for_igvn());
  1881     igvn = PhaseIterGVN(gvn);
  1882     igvn.optimize();
  1884     set_inlining_progress(false);
  1885     set_inlining_incrementally(false);
  1889 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1890   assert(IncrementalInline, "incremental inlining should be on");
  1891   PhaseGVN* gvn = initial_gvn();
  1893   set_inlining_progress(false);
  1894   for_igvn()->clear();
  1895   gvn->replace_with(&igvn);
  1897   int i = 0;
  1899   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  1900     CallGenerator* cg = _late_inlines.at(i);
  1901     _late_inlines_pos = i+1;
  1902     cg->do_late_inline();
  1903     if (failing())  return;
  1905   int j = 0;
  1906   for (; i < _late_inlines.length(); i++, j++) {
  1907     _late_inlines.at_put(j, _late_inlines.at(i));
  1909   _late_inlines.trunc_to(j);
  1912     ResourceMark rm;
  1913     PhaseRemoveUseless pru(gvn, for_igvn());
  1916   igvn = PhaseIterGVN(gvn);
  1919 // Perform incremental inlining until bound on number of live nodes is reached
  1920 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  1921   PhaseGVN* gvn = initial_gvn();
  1923   set_inlining_incrementally(true);
  1924   set_inlining_progress(true);
  1925   uint low_live_nodes = 0;
  1927   while(inlining_progress() && _late_inlines.length() > 0) {
  1929     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1930       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  1931         // PhaseIdealLoop is expensive so we only try it once we are
  1932         // out of loop and we only try it again if the previous helped
  1933         // got the number of nodes down significantly
  1934         PhaseIdealLoop ideal_loop( igvn, false, true );
  1935         if (failing())  return;
  1936         low_live_nodes = live_nodes();
  1937         _major_progress = true;
  1940       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1941         break;
  1945     inline_incrementally_one(igvn);
  1947     if (failing())  return;
  1949     igvn.optimize();
  1951     if (failing())  return;
  1954   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1956   if (_string_late_inlines.length() > 0) {
  1957     assert(has_stringbuilder(), "inconsistent");
  1958     for_igvn()->clear();
  1959     initial_gvn()->replace_with(&igvn);
  1961     inline_string_calls(false);
  1963     if (failing())  return;
  1966       ResourceMark rm;
  1967       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1970     igvn = PhaseIterGVN(gvn);
  1972     igvn.optimize();
  1975   set_inlining_incrementally(false);
  1979 //------------------------------Optimize---------------------------------------
  1980 // Given a graph, optimize it.
  1981 void Compile::Optimize() {
  1982   TracePhase t1("optimizer", &_t_optimizer, true);
  1984 #ifndef PRODUCT
  1985   if (env()->break_at_compile()) {
  1986     BREAKPOINT;
  1989 #endif
  1991   ResourceMark rm;
  1992   int          loop_opts_cnt;
  1994   NOT_PRODUCT( verify_graph_edges(); )
  1996   print_method(PHASE_AFTER_PARSING);
  1999   // Iterative Global Value Numbering, including ideal transforms
  2000   // Initialize IterGVN with types and values from parse-time GVN
  2001   PhaseIterGVN igvn(initial_gvn());
  2003     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  2004     igvn.optimize();
  2007   print_method(PHASE_ITER_GVN1, 2);
  2009   if (failing())  return;
  2012     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2013     inline_incrementally(igvn);
  2016   print_method(PHASE_INCREMENTAL_INLINE, 2);
  2018   if (failing())  return;
  2020   if (eliminate_boxing()) {
  2021     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2022     // Inline valueOf() methods now.
  2023     inline_boxing_calls(igvn);
  2025     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
  2027     if (failing())  return;
  2030   // Remove the speculative part of types and clean up the graph from
  2031   // the extra CastPP nodes whose only purpose is to carry them. Do
  2032   // that early so that optimizations are not disrupted by the extra
  2033   // CastPP nodes.
  2034   remove_speculative_types(igvn);
  2036   // No more new expensive nodes will be added to the list from here
  2037   // so keep only the actual candidates for optimizations.
  2038   cleanup_expensive_nodes(igvn);
  2040   // Perform escape analysis
  2041   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  2042     if (has_loops()) {
  2043       // Cleanup graph (remove dead nodes).
  2044       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2045       PhaseIdealLoop ideal_loop( igvn, false, true );
  2046       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
  2047       if (failing())  return;
  2049     ConnectionGraph::do_analysis(this, &igvn);
  2051     if (failing())  return;
  2053     // Optimize out fields loads from scalar replaceable allocations.
  2054     igvn.optimize();
  2055     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
  2057     if (failing())  return;
  2059     if (congraph() != NULL && macro_count() > 0) {
  2060       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  2061       PhaseMacroExpand mexp(igvn);
  2062       mexp.eliminate_macro_nodes();
  2063       igvn.set_delay_transform(false);
  2065       igvn.optimize();
  2066       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
  2068       if (failing())  return;
  2072   // Loop transforms on the ideal graph.  Range Check Elimination,
  2073   // peeling, unrolling, etc.
  2075   // Set loop opts counter
  2076   loop_opts_cnt = num_loop_opts();
  2077   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  2079       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2080       PhaseIdealLoop ideal_loop( igvn, true );
  2081       loop_opts_cnt--;
  2082       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
  2083       if (failing())  return;
  2085     // Loop opts pass if partial peeling occurred in previous pass
  2086     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  2087       TracePhase t3("idealLoop", &_t_idealLoop, true);
  2088       PhaseIdealLoop ideal_loop( igvn, false );
  2089       loop_opts_cnt--;
  2090       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
  2091       if (failing())  return;
  2093     // Loop opts pass for loop-unrolling before CCP
  2094     if(major_progress() && (loop_opts_cnt > 0)) {
  2095       TracePhase t4("idealLoop", &_t_idealLoop, true);
  2096       PhaseIdealLoop ideal_loop( igvn, false );
  2097       loop_opts_cnt--;
  2098       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
  2100     if (!failing()) {
  2101       // Verify that last round of loop opts produced a valid graph
  2102       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2103       PhaseIdealLoop::verify(igvn);
  2106   if (failing())  return;
  2108   // Conditional Constant Propagation;
  2109   PhaseCCP ccp( &igvn );
  2110   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2112     TracePhase t2("ccp", &_t_ccp, true);
  2113     ccp.do_transform();
  2115   print_method(PHASE_CPP1, 2);
  2117   assert( true, "Break here to ccp.dump_old2new_map()");
  2119   // Iterative Global Value Numbering, including ideal transforms
  2121     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2122     igvn = ccp;
  2123     igvn.optimize();
  2126   print_method(PHASE_ITER_GVN2, 2);
  2128   if (failing())  return;
  2130   // Loop transforms on the ideal graph.  Range Check Elimination,
  2131   // peeling, unrolling, etc.
  2132   if(loop_opts_cnt > 0) {
  2133     debug_only( int cnt = 0; );
  2134     while(major_progress() && (loop_opts_cnt > 0)) {
  2135       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2136       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2137       PhaseIdealLoop ideal_loop( igvn, true);
  2138       loop_opts_cnt--;
  2139       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
  2140       if (failing())  return;
  2145     // Verify that all previous optimizations produced a valid graph
  2146     // at least to this point, even if no loop optimizations were done.
  2147     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2148     PhaseIdealLoop::verify(igvn);
  2152     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2153     PhaseMacroExpand  mex(igvn);
  2154     if (mex.expand_macro_nodes()) {
  2155       assert(failing(), "must bail out w/ explicit message");
  2156       return;
  2160  } // (End scope of igvn; run destructor if necessary for asserts.)
  2162   dump_inlining();
  2163   // A method with only infinite loops has no edges entering loops from root
  2165     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2166     if (final_graph_reshaping()) {
  2167       assert(failing(), "must bail out w/ explicit message");
  2168       return;
  2172   print_method(PHASE_OPTIMIZE_FINISHED, 2);
  2176 //------------------------------Code_Gen---------------------------------------
  2177 // Given a graph, generate code for it
  2178 void Compile::Code_Gen() {
  2179   if (failing()) {
  2180     return;
  2183   // Perform instruction selection.  You might think we could reclaim Matcher
  2184   // memory PDQ, but actually the Matcher is used in generating spill code.
  2185   // Internals of the Matcher (including some VectorSets) must remain live
  2186   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2187   // set a bit in reclaimed memory.
  2189   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2190   // nodes.  Mapping is only valid at the root of each matched subtree.
  2191   NOT_PRODUCT( verify_graph_edges(); )
  2193   Matcher matcher;
  2194   _matcher = &matcher;
  2196     TracePhase t2("matcher", &_t_matcher, true);
  2197     matcher.match();
  2199   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2200   // nodes.  Mapping is only valid at the root of each matched subtree.
  2201   NOT_PRODUCT( verify_graph_edges(); )
  2203   // If you have too many nodes, or if matching has failed, bail out
  2204   check_node_count(0, "out of nodes matching instructions");
  2205   if (failing()) {
  2206     return;
  2209   // Build a proper-looking CFG
  2210   PhaseCFG cfg(node_arena(), root(), matcher);
  2211   _cfg = &cfg;
  2213     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2214     bool success = cfg.do_global_code_motion();
  2215     if (!success) {
  2216       return;
  2219     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
  2220     NOT_PRODUCT( verify_graph_edges(); )
  2221     debug_only( cfg.verify(); )
  2224   PhaseChaitin regalloc(unique(), cfg, matcher);
  2225   _regalloc = &regalloc;
  2227     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2228     // Perform register allocation.  After Chaitin, use-def chains are
  2229     // no longer accurate (at spill code) and so must be ignored.
  2230     // Node->LRG->reg mappings are still accurate.
  2231     _regalloc->Register_Allocate();
  2233     // Bail out if the allocator builds too many nodes
  2234     if (failing()) {
  2235       return;
  2239   // Prior to register allocation we kept empty basic blocks in case the
  2240   // the allocator needed a place to spill.  After register allocation we
  2241   // are not adding any new instructions.  If any basic block is empty, we
  2242   // can now safely remove it.
  2244     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2245     cfg.remove_empty_blocks();
  2246     if (do_freq_based_layout()) {
  2247       PhaseBlockLayout layout(cfg);
  2248     } else {
  2249       cfg.set_loop_alignment();
  2251     cfg.fixup_flow();
  2254   // Apply peephole optimizations
  2255   if( OptoPeephole ) {
  2256     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2257     PhasePeephole peep( _regalloc, cfg);
  2258     peep.do_transform();
  2261   // Do late expand if CPU requires this.
  2262   if (Matcher::require_postalloc_expand) {
  2263     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
  2264     cfg.postalloc_expand(_regalloc);
  2267   // Convert Nodes to instruction bits in a buffer
  2269     // %%%% workspace merge brought two timers together for one job
  2270     TracePhase t2a("output", &_t_output, true);
  2271     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2272     Output();
  2275   print_method(PHASE_FINAL_CODE);
  2277   // He's dead, Jim.
  2278   _cfg     = (PhaseCFG*)0xdeadbeef;
  2279   _regalloc = (PhaseChaitin*)0xdeadbeef;
  2283 //------------------------------dump_asm---------------------------------------
  2284 // Dump formatted assembly
  2285 #ifndef PRODUCT
  2286 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2287   bool cut_short = false;
  2288   tty->print_cr("#");
  2289   tty->print("#  ");  _tf->dump();  tty->cr();
  2290   tty->print_cr("#");
  2292   // For all blocks
  2293   int pc = 0x0;                 // Program counter
  2294   char starts_bundle = ' ';
  2295   _regalloc->dump_frame();
  2297   Node *n = NULL;
  2298   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  2299     if (VMThread::should_terminate()) {
  2300       cut_short = true;
  2301       break;
  2303     Block* block = _cfg->get_block(i);
  2304     if (block->is_connector() && !Verbose) {
  2305       continue;
  2307     n = block->head();
  2308     if (pcs && n->_idx < pc_limit) {
  2309       tty->print("%3.3x   ", pcs[n->_idx]);
  2310     } else {
  2311       tty->print("      ");
  2313     block->dump_head(_cfg);
  2314     if (block->is_connector()) {
  2315       tty->print_cr("        # Empty connector block");
  2316     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2317       tty->print_cr("        # Block is sole successor of call");
  2320     // For all instructions
  2321     Node *delay = NULL;
  2322     for (uint j = 0; j < block->number_of_nodes(); j++) {
  2323       if (VMThread::should_terminate()) {
  2324         cut_short = true;
  2325         break;
  2327       n = block->get_node(j);
  2328       if (valid_bundle_info(n)) {
  2329         Bundle* bundle = node_bundling(n);
  2330         if (bundle->used_in_unconditional_delay()) {
  2331           delay = n;
  2332           continue;
  2334         if (bundle->starts_bundle()) {
  2335           starts_bundle = '+';
  2339       if (WizardMode) {
  2340         n->dump();
  2343       if( !n->is_Region() &&    // Dont print in the Assembly
  2344           !n->is_Phi() &&       // a few noisely useless nodes
  2345           !n->is_Proj() &&
  2346           !n->is_MachTemp() &&
  2347           !n->is_SafePointScalarObject() &&
  2348           !n->is_Catch() &&     // Would be nice to print exception table targets
  2349           !n->is_MergeMem() &&  // Not very interesting
  2350           !n->is_top() &&       // Debug info table constants
  2351           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2352           ) {
  2353         if (pcs && n->_idx < pc_limit)
  2354           tty->print("%3.3x", pcs[n->_idx]);
  2355         else
  2356           tty->print("   ");
  2357         tty->print(" %c ", starts_bundle);
  2358         starts_bundle = ' ';
  2359         tty->print("\t");
  2360         n->format(_regalloc, tty);
  2361         tty->cr();
  2364       // If we have an instruction with a delay slot, and have seen a delay,
  2365       // then back up and print it
  2366       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2367         assert(delay != NULL, "no unconditional delay instruction");
  2368         if (WizardMode) delay->dump();
  2370         if (node_bundling(delay)->starts_bundle())
  2371           starts_bundle = '+';
  2372         if (pcs && n->_idx < pc_limit)
  2373           tty->print("%3.3x", pcs[n->_idx]);
  2374         else
  2375           tty->print("   ");
  2376         tty->print(" %c ", starts_bundle);
  2377         starts_bundle = ' ';
  2378         tty->print("\t");
  2379         delay->format(_regalloc, tty);
  2380         tty->print_cr("");
  2381         delay = NULL;
  2384       // Dump the exception table as well
  2385       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2386         // Print the exception table for this offset
  2387         _handler_table.print_subtable_for(pc);
  2391     if (pcs && n->_idx < pc_limit)
  2392       tty->print_cr("%3.3x", pcs[n->_idx]);
  2393     else
  2394       tty->print_cr("");
  2396     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2398   } // End of per-block dump
  2399   tty->print_cr("");
  2401   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2403 #endif
  2405 //------------------------------Final_Reshape_Counts---------------------------
  2406 // This class defines counters to help identify when a method
  2407 // may/must be executed using hardware with only 24-bit precision.
  2408 struct Final_Reshape_Counts : public StackObj {
  2409   int  _call_count;             // count non-inlined 'common' calls
  2410   int  _float_count;            // count float ops requiring 24-bit precision
  2411   int  _double_count;           // count double ops requiring more precision
  2412   int  _java_call_count;        // count non-inlined 'java' calls
  2413   int  _inner_loop_count;       // count loops which need alignment
  2414   VectorSet _visited;           // Visitation flags
  2415   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2417   Final_Reshape_Counts() :
  2418     _call_count(0), _float_count(0), _double_count(0),
  2419     _java_call_count(0), _inner_loop_count(0),
  2420     _visited( Thread::current()->resource_area() ) { }
  2422   void inc_call_count  () { _call_count  ++; }
  2423   void inc_float_count () { _float_count ++; }
  2424   void inc_double_count() { _double_count++; }
  2425   void inc_java_call_count() { _java_call_count++; }
  2426   void inc_inner_loop_count() { _inner_loop_count++; }
  2428   int  get_call_count  () const { return _call_count  ; }
  2429   int  get_float_count () const { return _float_count ; }
  2430   int  get_double_count() const { return _double_count; }
  2431   int  get_java_call_count() const { return _java_call_count; }
  2432   int  get_inner_loop_count() const { return _inner_loop_count; }
  2433 };
  2435 #ifdef ASSERT
  2436 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2437   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2438   // Make sure the offset goes inside the instance layout.
  2439   return k->contains_field_offset(tp->offset());
  2440   // Note that OffsetBot and OffsetTop are very negative.
  2442 #endif
  2444 // Eliminate trivially redundant StoreCMs and accumulate their
  2445 // precedence edges.
  2446 void Compile::eliminate_redundant_card_marks(Node* n) {
  2447   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2448   if (n->in(MemNode::Address)->outcnt() > 1) {
  2449     // There are multiple users of the same address so it might be
  2450     // possible to eliminate some of the StoreCMs
  2451     Node* mem = n->in(MemNode::Memory);
  2452     Node* adr = n->in(MemNode::Address);
  2453     Node* val = n->in(MemNode::ValueIn);
  2454     Node* prev = n;
  2455     bool done = false;
  2456     // Walk the chain of StoreCMs eliminating ones that match.  As
  2457     // long as it's a chain of single users then the optimization is
  2458     // safe.  Eliminating partially redundant StoreCMs would require
  2459     // cloning copies down the other paths.
  2460     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2461       if (adr == mem->in(MemNode::Address) &&
  2462           val == mem->in(MemNode::ValueIn)) {
  2463         // redundant StoreCM
  2464         if (mem->req() > MemNode::OopStore) {
  2465           // Hasn't been processed by this code yet.
  2466           n->add_prec(mem->in(MemNode::OopStore));
  2467         } else {
  2468           // Already converted to precedence edge
  2469           for (uint i = mem->req(); i < mem->len(); i++) {
  2470             // Accumulate any precedence edges
  2471             if (mem->in(i) != NULL) {
  2472               n->add_prec(mem->in(i));
  2475           // Everything above this point has been processed.
  2476           done = true;
  2478         // Eliminate the previous StoreCM
  2479         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2480         assert(mem->outcnt() == 0, "should be dead");
  2481         mem->disconnect_inputs(NULL, this);
  2482       } else {
  2483         prev = mem;
  2485       mem = prev->in(MemNode::Memory);
  2490 //------------------------------final_graph_reshaping_impl----------------------
  2491 // Implement items 1-5 from final_graph_reshaping below.
  2492 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2494   if ( n->outcnt() == 0 ) return; // dead node
  2495   uint nop = n->Opcode();
  2497   // Check for 2-input instruction with "last use" on right input.
  2498   // Swap to left input.  Implements item (2).
  2499   if( n->req() == 3 &&          // two-input instruction
  2500       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2501       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2502       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2503       !n->in(2)->is_Con() ) {   // right use is not a constant
  2504     // Check for commutative opcode
  2505     switch( nop ) {
  2506     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2507     case Op_MaxI:  case Op_MinI:
  2508     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2509     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2510     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2511       // Move "last use" input to left by swapping inputs
  2512       n->swap_edges(1, 2);
  2513       break;
  2515     default:
  2516       break;
  2520 #ifdef ASSERT
  2521   if( n->is_Mem() ) {
  2522     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2523     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2524             // oop will be recorded in oop map if load crosses safepoint
  2525             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2526                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2527             "raw memory operations should have control edge");
  2529 #endif
  2530   // Count FPU ops and common calls, implements item (3)
  2531   switch( nop ) {
  2532   // Count all float operations that may use FPU
  2533   case Op_AddF:
  2534   case Op_SubF:
  2535   case Op_MulF:
  2536   case Op_DivF:
  2537   case Op_NegF:
  2538   case Op_ModF:
  2539   case Op_ConvI2F:
  2540   case Op_ConF:
  2541   case Op_CmpF:
  2542   case Op_CmpF3:
  2543   // case Op_ConvL2F: // longs are split into 32-bit halves
  2544     frc.inc_float_count();
  2545     break;
  2547   case Op_ConvF2D:
  2548   case Op_ConvD2F:
  2549     frc.inc_float_count();
  2550     frc.inc_double_count();
  2551     break;
  2553   // Count all double operations that may use FPU
  2554   case Op_AddD:
  2555   case Op_SubD:
  2556   case Op_MulD:
  2557   case Op_DivD:
  2558   case Op_NegD:
  2559   case Op_ModD:
  2560   case Op_ConvI2D:
  2561   case Op_ConvD2I:
  2562   // case Op_ConvL2D: // handled by leaf call
  2563   // case Op_ConvD2L: // handled by leaf call
  2564   case Op_ConD:
  2565   case Op_CmpD:
  2566   case Op_CmpD3:
  2567     frc.inc_double_count();
  2568     break;
  2569   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2570   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2571     n->subsume_by(n->in(1), this);
  2572     break;
  2573   case Op_CallStaticJava:
  2574   case Op_CallJava:
  2575   case Op_CallDynamicJava:
  2576     frc.inc_java_call_count(); // Count java call site;
  2577   case Op_CallRuntime:
  2578   case Op_CallLeaf:
  2579   case Op_CallLeafNoFP: {
  2580     assert( n->is_Call(), "" );
  2581     CallNode *call = n->as_Call();
  2582     // Count call sites where the FP mode bit would have to be flipped.
  2583     // Do not count uncommon runtime calls:
  2584     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2585     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2586     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2587       frc.inc_call_count();   // Count the call site
  2588     } else {                  // See if uncommon argument is shared
  2589       Node *n = call->in(TypeFunc::Parms);
  2590       int nop = n->Opcode();
  2591       // Clone shared simple arguments to uncommon calls, item (1).
  2592       if( n->outcnt() > 1 &&
  2593           !n->is_Proj() &&
  2594           nop != Op_CreateEx &&
  2595           nop != Op_CheckCastPP &&
  2596           nop != Op_DecodeN &&
  2597           nop != Op_DecodeNKlass &&
  2598           !n->is_Mem() ) {
  2599         Node *x = n->clone();
  2600         call->set_req( TypeFunc::Parms, x );
  2603     break;
  2606   case Op_StoreD:
  2607   case Op_LoadD:
  2608   case Op_LoadD_unaligned:
  2609     frc.inc_double_count();
  2610     goto handle_mem;
  2611   case Op_StoreF:
  2612   case Op_LoadF:
  2613     frc.inc_float_count();
  2614     goto handle_mem;
  2616   case Op_StoreCM:
  2618       // Convert OopStore dependence into precedence edge
  2619       Node* prec = n->in(MemNode::OopStore);
  2620       n->del_req(MemNode::OopStore);
  2621       n->add_prec(prec);
  2622       eliminate_redundant_card_marks(n);
  2625     // fall through
  2627   case Op_StoreB:
  2628   case Op_StoreC:
  2629   case Op_StorePConditional:
  2630   case Op_StoreI:
  2631   case Op_StoreL:
  2632   case Op_StoreIConditional:
  2633   case Op_StoreLConditional:
  2634   case Op_CompareAndSwapI:
  2635   case Op_CompareAndSwapL:
  2636   case Op_CompareAndSwapP:
  2637   case Op_CompareAndSwapN:
  2638   case Op_GetAndAddI:
  2639   case Op_GetAndAddL:
  2640   case Op_GetAndSetI:
  2641   case Op_GetAndSetL:
  2642   case Op_GetAndSetP:
  2643   case Op_GetAndSetN:
  2644   case Op_StoreP:
  2645   case Op_StoreN:
  2646   case Op_StoreNKlass:
  2647   case Op_LoadB:
  2648   case Op_LoadUB:
  2649   case Op_LoadUS:
  2650   case Op_LoadI:
  2651   case Op_LoadKlass:
  2652   case Op_LoadNKlass:
  2653   case Op_LoadL:
  2654   case Op_LoadL_unaligned:
  2655   case Op_LoadPLocked:
  2656   case Op_LoadP:
  2657   case Op_LoadN:
  2658   case Op_LoadRange:
  2659   case Op_LoadS: {
  2660   handle_mem:
  2661 #ifdef ASSERT
  2662     if( VerifyOptoOopOffsets ) {
  2663       assert( n->is_Mem(), "" );
  2664       MemNode *mem  = (MemNode*)n;
  2665       // Check to see if address types have grounded out somehow.
  2666       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2667       assert( !tp || oop_offset_is_sane(tp), "" );
  2669 #endif
  2670     break;
  2673   case Op_AddP: {               // Assert sane base pointers
  2674     Node *addp = n->in(AddPNode::Address);
  2675     assert( !addp->is_AddP() ||
  2676             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2677             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2678             "Base pointers must match" );
  2679 #ifdef _LP64
  2680     if ((UseCompressedOops || UseCompressedClassPointers) &&
  2681         addp->Opcode() == Op_ConP &&
  2682         addp == n->in(AddPNode::Base) &&
  2683         n->in(AddPNode::Offset)->is_Con()) {
  2684       // Use addressing with narrow klass to load with offset on x86.
  2685       // On sparc loading 32-bits constant and decoding it have less
  2686       // instructions (4) then load 64-bits constant (7).
  2687       // Do this transformation here since IGVN will convert ConN back to ConP.
  2688       const Type* t = addp->bottom_type();
  2689       if (t->isa_oopptr() || t->isa_klassptr()) {
  2690         Node* nn = NULL;
  2692         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2694         // Look for existing ConN node of the same exact type.
  2695         Node* r  = root();
  2696         uint cnt = r->outcnt();
  2697         for (uint i = 0; i < cnt; i++) {
  2698           Node* m = r->raw_out(i);
  2699           if (m!= NULL && m->Opcode() == op &&
  2700               m->bottom_type()->make_ptr() == t) {
  2701             nn = m;
  2702             break;
  2705         if (nn != NULL) {
  2706           // Decode a narrow oop to match address
  2707           // [R12 + narrow_oop_reg<<3 + offset]
  2708           if (t->isa_oopptr()) {
  2709             nn = new (this) DecodeNNode(nn, t);
  2710           } else {
  2711             nn = new (this) DecodeNKlassNode(nn, t);
  2713           n->set_req(AddPNode::Base, nn);
  2714           n->set_req(AddPNode::Address, nn);
  2715           if (addp->outcnt() == 0) {
  2716             addp->disconnect_inputs(NULL, this);
  2721 #endif
  2722     break;
  2725 #ifdef _LP64
  2726   case Op_CastPP:
  2727     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2728       Node* in1 = n->in(1);
  2729       const Type* t = n->bottom_type();
  2730       Node* new_in1 = in1->clone();
  2731       new_in1->as_DecodeN()->set_type(t);
  2733       if (!Matcher::narrow_oop_use_complex_address()) {
  2734         //
  2735         // x86, ARM and friends can handle 2 adds in addressing mode
  2736         // and Matcher can fold a DecodeN node into address by using
  2737         // a narrow oop directly and do implicit NULL check in address:
  2738         //
  2739         // [R12 + narrow_oop_reg<<3 + offset]
  2740         // NullCheck narrow_oop_reg
  2741         //
  2742         // On other platforms (Sparc) we have to keep new DecodeN node and
  2743         // use it to do implicit NULL check in address:
  2744         //
  2745         // decode_not_null narrow_oop_reg, base_reg
  2746         // [base_reg + offset]
  2747         // NullCheck base_reg
  2748         //
  2749         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2750         // to keep the information to which NULL check the new DecodeN node
  2751         // corresponds to use it as value in implicit_null_check().
  2752         //
  2753         new_in1->set_req(0, n->in(0));
  2756       n->subsume_by(new_in1, this);
  2757       if (in1->outcnt() == 0) {
  2758         in1->disconnect_inputs(NULL, this);
  2761     break;
  2763   case Op_CmpP:
  2764     // Do this transformation here to preserve CmpPNode::sub() and
  2765     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2766     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2767       Node* in1 = n->in(1);
  2768       Node* in2 = n->in(2);
  2769       if (!in1->is_DecodeNarrowPtr()) {
  2770         in2 = in1;
  2771         in1 = n->in(2);
  2773       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2775       Node* new_in2 = NULL;
  2776       if (in2->is_DecodeNarrowPtr()) {
  2777         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2778         new_in2 = in2->in(1);
  2779       } else if (in2->Opcode() == Op_ConP) {
  2780         const Type* t = in2->bottom_type();
  2781         if (t == TypePtr::NULL_PTR) {
  2782           assert(in1->is_DecodeN(), "compare klass to null?");
  2783           // Don't convert CmpP null check into CmpN if compressed
  2784           // oops implicit null check is not generated.
  2785           // This will allow to generate normal oop implicit null check.
  2786           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2787             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2788           //
  2789           // This transformation together with CastPP transformation above
  2790           // will generated code for implicit NULL checks for compressed oops.
  2791           //
  2792           // The original code after Optimize()
  2793           //
  2794           //    LoadN memory, narrow_oop_reg
  2795           //    decode narrow_oop_reg, base_reg
  2796           //    CmpP base_reg, NULL
  2797           //    CastPP base_reg // NotNull
  2798           //    Load [base_reg + offset], val_reg
  2799           //
  2800           // after these transformations will be
  2801           //
  2802           //    LoadN memory, narrow_oop_reg
  2803           //    CmpN narrow_oop_reg, NULL
  2804           //    decode_not_null narrow_oop_reg, base_reg
  2805           //    Load [base_reg + offset], val_reg
  2806           //
  2807           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2808           // since narrow oops can be used in debug info now (see the code in
  2809           // final_graph_reshaping_walk()).
  2810           //
  2811           // At the end the code will be matched to
  2812           // on x86:
  2813           //
  2814           //    Load_narrow_oop memory, narrow_oop_reg
  2815           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2816           //    NullCheck narrow_oop_reg
  2817           //
  2818           // and on sparc:
  2819           //
  2820           //    Load_narrow_oop memory, narrow_oop_reg
  2821           //    decode_not_null narrow_oop_reg, base_reg
  2822           //    Load [base_reg + offset], val_reg
  2823           //    NullCheck base_reg
  2824           //
  2825         } else if (t->isa_oopptr()) {
  2826           new_in2 = ConNode::make(this, t->make_narrowoop());
  2827         } else if (t->isa_klassptr()) {
  2828           new_in2 = ConNode::make(this, t->make_narrowklass());
  2831       if (new_in2 != NULL) {
  2832         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2833         n->subsume_by(cmpN, this);
  2834         if (in1->outcnt() == 0) {
  2835           in1->disconnect_inputs(NULL, this);
  2837         if (in2->outcnt() == 0) {
  2838           in2->disconnect_inputs(NULL, this);
  2842     break;
  2844   case Op_DecodeN:
  2845   case Op_DecodeNKlass:
  2846     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2847     // DecodeN could be pinned when it can't be fold into
  2848     // an address expression, see the code for Op_CastPP above.
  2849     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2850     break;
  2852   case Op_EncodeP:
  2853   case Op_EncodePKlass: {
  2854     Node* in1 = n->in(1);
  2855     if (in1->is_DecodeNarrowPtr()) {
  2856       n->subsume_by(in1->in(1), this);
  2857     } else if (in1->Opcode() == Op_ConP) {
  2858       const Type* t = in1->bottom_type();
  2859       if (t == TypePtr::NULL_PTR) {
  2860         assert(t->isa_oopptr(), "null klass?");
  2861         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2862       } else if (t->isa_oopptr()) {
  2863         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2864       } else if (t->isa_klassptr()) {
  2865         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  2868     if (in1->outcnt() == 0) {
  2869       in1->disconnect_inputs(NULL, this);
  2871     break;
  2874   case Op_Proj: {
  2875     if (OptimizeStringConcat) {
  2876       ProjNode* p = n->as_Proj();
  2877       if (p->_is_io_use) {
  2878         // Separate projections were used for the exception path which
  2879         // are normally removed by a late inline.  If it wasn't inlined
  2880         // then they will hang around and should just be replaced with
  2881         // the original one.
  2882         Node* proj = NULL;
  2883         // Replace with just one
  2884         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2885           Node *use = i.get();
  2886           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2887             proj = use;
  2888             break;
  2891         assert(proj != NULL, "must be found");
  2892         p->subsume_by(proj, this);
  2895     break;
  2898   case Op_Phi:
  2899     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  2900       // The EncodeP optimization may create Phi with the same edges
  2901       // for all paths. It is not handled well by Register Allocator.
  2902       Node* unique_in = n->in(1);
  2903       assert(unique_in != NULL, "");
  2904       uint cnt = n->req();
  2905       for (uint i = 2; i < cnt; i++) {
  2906         Node* m = n->in(i);
  2907         assert(m != NULL, "");
  2908         if (unique_in != m)
  2909           unique_in = NULL;
  2911       if (unique_in != NULL) {
  2912         n->subsume_by(unique_in, this);
  2915     break;
  2917 #endif
  2919   case Op_ModI:
  2920     if (UseDivMod) {
  2921       // Check if a%b and a/b both exist
  2922       Node* d = n->find_similar(Op_DivI);
  2923       if (d) {
  2924         // Replace them with a fused divmod if supported
  2925         if (Matcher::has_match_rule(Op_DivModI)) {
  2926           DivModINode* divmod = DivModINode::make(this, n);
  2927           d->subsume_by(divmod->div_proj(), this);
  2928           n->subsume_by(divmod->mod_proj(), this);
  2929         } else {
  2930           // replace a%b with a-((a/b)*b)
  2931           Node* mult = new (this) MulINode(d, d->in(2));
  2932           Node* sub  = new (this) SubINode(d->in(1), mult);
  2933           n->subsume_by(sub, this);
  2937     break;
  2939   case Op_ModL:
  2940     if (UseDivMod) {
  2941       // Check if a%b and a/b both exist
  2942       Node* d = n->find_similar(Op_DivL);
  2943       if (d) {
  2944         // Replace them with a fused divmod if supported
  2945         if (Matcher::has_match_rule(Op_DivModL)) {
  2946           DivModLNode* divmod = DivModLNode::make(this, n);
  2947           d->subsume_by(divmod->div_proj(), this);
  2948           n->subsume_by(divmod->mod_proj(), this);
  2949         } else {
  2950           // replace a%b with a-((a/b)*b)
  2951           Node* mult = new (this) MulLNode(d, d->in(2));
  2952           Node* sub  = new (this) SubLNode(d->in(1), mult);
  2953           n->subsume_by(sub, this);
  2957     break;
  2959   case Op_LoadVector:
  2960   case Op_StoreVector:
  2961     break;
  2963   case Op_PackB:
  2964   case Op_PackS:
  2965   case Op_PackI:
  2966   case Op_PackF:
  2967   case Op_PackL:
  2968   case Op_PackD:
  2969     if (n->req()-1 > 2) {
  2970       // Replace many operand PackNodes with a binary tree for matching
  2971       PackNode* p = (PackNode*) n;
  2972       Node* btp = p->binary_tree_pack(this, 1, n->req());
  2973       n->subsume_by(btp, this);
  2975     break;
  2976   case Op_Loop:
  2977   case Op_CountedLoop:
  2978     if (n->as_Loop()->is_inner_loop()) {
  2979       frc.inc_inner_loop_count();
  2981     break;
  2982   case Op_LShiftI:
  2983   case Op_RShiftI:
  2984   case Op_URShiftI:
  2985   case Op_LShiftL:
  2986   case Op_RShiftL:
  2987   case Op_URShiftL:
  2988     if (Matcher::need_masked_shift_count) {
  2989       // The cpu's shift instructions don't restrict the count to the
  2990       // lower 5/6 bits. We need to do the masking ourselves.
  2991       Node* in2 = n->in(2);
  2992       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2993       const TypeInt* t = in2->find_int_type();
  2994       if (t != NULL && t->is_con()) {
  2995         juint shift = t->get_con();
  2996         if (shift > mask) { // Unsigned cmp
  2997           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  2999       } else {
  3000         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  3001           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  3002           n->set_req(2, shift);
  3005       if (in2->outcnt() == 0) { // Remove dead node
  3006         in2->disconnect_inputs(NULL, this);
  3009     break;
  3010   case Op_MemBarStoreStore:
  3011   case Op_MemBarRelease:
  3012     // Break the link with AllocateNode: it is no longer useful and
  3013     // confuses register allocation.
  3014     if (n->req() > MemBarNode::Precedent) {
  3015       n->set_req(MemBarNode::Precedent, top());
  3017     break;
  3018     // Must set a control edge on all nodes that produce a FlagsProj
  3019     // so they can't escape the block that consumes the flags.
  3020     // Must also set the non throwing branch as the control
  3021     // for all nodes that depends on the result. Unless the node
  3022     // already have a control that isn't the control of the
  3023     // flag producer
  3024   case Op_FlagsProj:
  3026       MathExactNode* math = (MathExactNode*)  n->in(0);
  3027       Node* ctrl = math->control_node();
  3028       Node* non_throwing = math->non_throwing_branch();
  3029       math->set_req(0, ctrl);
  3031       Node* result = math->result_node();
  3032       if (result != NULL) {
  3033         for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
  3034           Node* out = result->fast_out(j);
  3035           // Phi nodes shouldn't be moved. They would only match below if they
  3036           // had the same control as the MathExactNode. The only time that
  3037           // would happen is if the Phi is also an input to the MathExact
  3038           //
  3039           // Cmp nodes shouldn't have control set at all.
  3040           if (out->is_Phi() ||
  3041               out->is_Cmp()) {
  3042             continue;
  3045           if (out->in(0) == NULL) {
  3046             out->set_req(0, non_throwing);
  3047           } else if (out->in(0) == ctrl) {
  3048             out->set_req(0, non_throwing);
  3053     break;
  3054   default:
  3055     assert( !n->is_Call(), "" );
  3056     assert( !n->is_Mem(), "" );
  3057     break;
  3060   // Collect CFG split points
  3061   if (n->is_MultiBranch())
  3062     frc._tests.push(n);
  3065 //------------------------------final_graph_reshaping_walk---------------------
  3066 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  3067 // requires that the walk visits a node's inputs before visiting the node.
  3068 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  3069   ResourceArea *area = Thread::current()->resource_area();
  3070   Unique_Node_List sfpt(area);
  3072   frc._visited.set(root->_idx); // first, mark node as visited
  3073   uint cnt = root->req();
  3074   Node *n = root;
  3075   uint  i = 0;
  3076   while (true) {
  3077     if (i < cnt) {
  3078       // Place all non-visited non-null inputs onto stack
  3079       Node* m = n->in(i);
  3080       ++i;
  3081       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  3082         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  3083           sfpt.push(m);
  3084         cnt = m->req();
  3085         nstack.push(n, i); // put on stack parent and next input's index
  3086         n = m;
  3087         i = 0;
  3089     } else {
  3090       // Now do post-visit work
  3091       final_graph_reshaping_impl( n, frc );
  3092       if (nstack.is_empty())
  3093         break;             // finished
  3094       n = nstack.node();   // Get node from stack
  3095       cnt = n->req();
  3096       i = nstack.index();
  3097       nstack.pop();        // Shift to the next node on stack
  3101   // Skip next transformation if compressed oops are not used.
  3102   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  3103       (!UseCompressedOops && !UseCompressedClassPointers))
  3104     return;
  3106   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  3107   // It could be done for an uncommon traps or any safepoints/calls
  3108   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  3109   while (sfpt.size() > 0) {
  3110     n = sfpt.pop();
  3111     JVMState *jvms = n->as_SafePoint()->jvms();
  3112     assert(jvms != NULL, "sanity");
  3113     int start = jvms->debug_start();
  3114     int end   = n->req();
  3115     bool is_uncommon = (n->is_CallStaticJava() &&
  3116                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  3117     for (int j = start; j < end; j++) {
  3118       Node* in = n->in(j);
  3119       if (in->is_DecodeNarrowPtr()) {
  3120         bool safe_to_skip = true;
  3121         if (!is_uncommon ) {
  3122           // Is it safe to skip?
  3123           for (uint i = 0; i < in->outcnt(); i++) {
  3124             Node* u = in->raw_out(i);
  3125             if (!u->is_SafePoint() ||
  3126                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  3127               safe_to_skip = false;
  3131         if (safe_to_skip) {
  3132           n->set_req(j, in->in(1));
  3134         if (in->outcnt() == 0) {
  3135           in->disconnect_inputs(NULL, this);
  3142 //------------------------------final_graph_reshaping--------------------------
  3143 // Final Graph Reshaping.
  3144 //
  3145 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  3146 //     and not commoned up and forced early.  Must come after regular
  3147 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  3148 //     inputs to Loop Phis; these will be split by the allocator anyways.
  3149 //     Remove Opaque nodes.
  3150 // (2) Move last-uses by commutative operations to the left input to encourage
  3151 //     Intel update-in-place two-address operations and better register usage
  3152 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  3153 //     calls canonicalizing them back.
  3154 // (3) Count the number of double-precision FP ops, single-precision FP ops
  3155 //     and call sites.  On Intel, we can get correct rounding either by
  3156 //     forcing singles to memory (requires extra stores and loads after each
  3157 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  3158 //     clearing the mode bit around call sites).  The mode bit is only used
  3159 //     if the relative frequency of single FP ops to calls is low enough.
  3160 //     This is a key transform for SPEC mpeg_audio.
  3161 // (4) Detect infinite loops; blobs of code reachable from above but not
  3162 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  3163 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3164 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3165 //     Detection is by looking for IfNodes where only 1 projection is
  3166 //     reachable from below or CatchNodes missing some targets.
  3167 // (5) Assert for insane oop offsets in debug mode.
  3169 bool Compile::final_graph_reshaping() {
  3170   // an infinite loop may have been eliminated by the optimizer,
  3171   // in which case the graph will be empty.
  3172   if (root()->req() == 1) {
  3173     record_method_not_compilable("trivial infinite loop");
  3174     return true;
  3177   // Expensive nodes have their control input set to prevent the GVN
  3178   // from freely commoning them. There's no GVN beyond this point so
  3179   // no need to keep the control input. We want the expensive nodes to
  3180   // be freely moved to the least frequent code path by gcm.
  3181   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
  3182   for (int i = 0; i < expensive_count(); i++) {
  3183     _expensive_nodes->at(i)->set_req(0, NULL);
  3186   Final_Reshape_Counts frc;
  3188   // Visit everybody reachable!
  3189   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  3190   Node_Stack nstack(unique() >> 1);
  3191   final_graph_reshaping_walk(nstack, root(), frc);
  3193   // Check for unreachable (from below) code (i.e., infinite loops).
  3194   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3195     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3196     // Get number of CFG targets.
  3197     // Note that PCTables include exception targets after calls.
  3198     uint required_outcnt = n->required_outcnt();
  3199     if (n->outcnt() != required_outcnt) {
  3200       // Check for a few special cases.  Rethrow Nodes never take the
  3201       // 'fall-thru' path, so expected kids is 1 less.
  3202       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3203         if (n->in(0)->in(0)->is_Call()) {
  3204           CallNode *call = n->in(0)->in(0)->as_Call();
  3205           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3206             required_outcnt--;      // Rethrow always has 1 less kid
  3207           } else if (call->req() > TypeFunc::Parms &&
  3208                      call->is_CallDynamicJava()) {
  3209             // Check for null receiver. In such case, the optimizer has
  3210             // detected that the virtual call will always result in a null
  3211             // pointer exception. The fall-through projection of this CatchNode
  3212             // will not be populated.
  3213             Node *arg0 = call->in(TypeFunc::Parms);
  3214             if (arg0->is_Type() &&
  3215                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3216               required_outcnt--;
  3218           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3219                      call->req() > TypeFunc::Parms+1 &&
  3220                      call->is_CallStaticJava()) {
  3221             // Check for negative array length. In such case, the optimizer has
  3222             // detected that the allocation attempt will always result in an
  3223             // exception. There is no fall-through projection of this CatchNode .
  3224             Node *arg1 = call->in(TypeFunc::Parms+1);
  3225             if (arg1->is_Type() &&
  3226                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3227               required_outcnt--;
  3232       // Recheck with a better notion of 'required_outcnt'
  3233       if (n->outcnt() != required_outcnt) {
  3234         record_method_not_compilable("malformed control flow");
  3235         return true;            // Not all targets reachable!
  3238     // Check that I actually visited all kids.  Unreached kids
  3239     // must be infinite loops.
  3240     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3241       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3242         record_method_not_compilable("infinite loop");
  3243         return true;            // Found unvisited kid; must be unreach
  3247   // If original bytecodes contained a mixture of floats and doubles
  3248   // check if the optimizer has made it homogenous, item (3).
  3249   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3250       frc.get_float_count() > 32 &&
  3251       frc.get_double_count() == 0 &&
  3252       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3253     set_24_bit_selection_and_mode( false,  true );
  3256   set_java_calls(frc.get_java_call_count());
  3257   set_inner_loops(frc.get_inner_loop_count());
  3259   // No infinite loops, no reason to bail out.
  3260   return false;
  3263 //-----------------------------too_many_traps----------------------------------
  3264 // Report if there are too many traps at the current method and bci.
  3265 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3266 bool Compile::too_many_traps(ciMethod* method,
  3267                              int bci,
  3268                              Deoptimization::DeoptReason reason) {
  3269   ciMethodData* md = method->method_data();
  3270   if (md->is_empty()) {
  3271     // Assume the trap has not occurred, or that it occurred only
  3272     // because of a transient condition during start-up in the interpreter.
  3273     return false;
  3275   if (md->has_trap_at(bci, reason) != 0) {
  3276     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3277     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3278     // assume the worst.
  3279     if (log())
  3280       log()->elem("observe trap='%s' count='%d'",
  3281                   Deoptimization::trap_reason_name(reason),
  3282                   md->trap_count(reason));
  3283     return true;
  3284   } else {
  3285     // Ignore method/bci and see if there have been too many globally.
  3286     return too_many_traps(reason, md);
  3290 // Less-accurate variant which does not require a method and bci.
  3291 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3292                              ciMethodData* logmd) {
  3293  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  3294     // Too many traps globally.
  3295     // Note that we use cumulative trap_count, not just md->trap_count.
  3296     if (log()) {
  3297       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3298       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3299                   Deoptimization::trap_reason_name(reason),
  3300                   mcount, trap_count(reason));
  3302     return true;
  3303   } else {
  3304     // The coast is clear.
  3305     return false;
  3309 //--------------------------too_many_recompiles--------------------------------
  3310 // Report if there are too many recompiles at the current method and bci.
  3311 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3312 // Is not eager to return true, since this will cause the compiler to use
  3313 // Action_none for a trap point, to avoid too many recompilations.
  3314 bool Compile::too_many_recompiles(ciMethod* method,
  3315                                   int bci,
  3316                                   Deoptimization::DeoptReason reason) {
  3317   ciMethodData* md = method->method_data();
  3318   if (md->is_empty()) {
  3319     // Assume the trap has not occurred, or that it occurred only
  3320     // because of a transient condition during start-up in the interpreter.
  3321     return false;
  3323   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3324   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3325   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3326   Deoptimization::DeoptReason per_bc_reason
  3327     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3328   if ((per_bc_reason == Deoptimization::Reason_none
  3329        || md->has_trap_at(bci, reason) != 0)
  3330       // The trap frequency measure we care about is the recompile count:
  3331       && md->trap_recompiled_at(bci)
  3332       && md->overflow_recompile_count() >= bc_cutoff) {
  3333     // Do not emit a trap here if it has already caused recompilations.
  3334     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3335     // assume the worst.
  3336     if (log())
  3337       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3338                   Deoptimization::trap_reason_name(reason),
  3339                   md->trap_count(reason),
  3340                   md->overflow_recompile_count());
  3341     return true;
  3342   } else if (trap_count(reason) != 0
  3343              && decompile_count() >= m_cutoff) {
  3344     // Too many recompiles globally, and we have seen this sort of trap.
  3345     // Use cumulative decompile_count, not just md->decompile_count.
  3346     if (log())
  3347       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3348                   Deoptimization::trap_reason_name(reason),
  3349                   md->trap_count(reason), trap_count(reason),
  3350                   md->decompile_count(), decompile_count());
  3351     return true;
  3352   } else {
  3353     // The coast is clear.
  3354     return false;
  3358 // Compute when not to trap. Used by matching trap based nodes and
  3359 // NullCheck optimization.
  3360 void Compile::set_allowed_deopt_reasons() {
  3361   _allowed_reasons = 0;
  3362   if (is_method_compilation()) {
  3363     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
  3364       assert(rs < BitsPerInt, "recode bit map");
  3365       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
  3366         _allowed_reasons |= nth_bit(rs);
  3372 #ifndef PRODUCT
  3373 //------------------------------verify_graph_edges---------------------------
  3374 // Walk the Graph and verify that there is a one-to-one correspondence
  3375 // between Use-Def edges and Def-Use edges in the graph.
  3376 void Compile::verify_graph_edges(bool no_dead_code) {
  3377   if (VerifyGraphEdges) {
  3378     ResourceArea *area = Thread::current()->resource_area();
  3379     Unique_Node_List visited(area);
  3380     // Call recursive graph walk to check edges
  3381     _root->verify_edges(visited);
  3382     if (no_dead_code) {
  3383       // Now make sure that no visited node is used by an unvisited node.
  3384       bool dead_nodes = 0;
  3385       Unique_Node_List checked(area);
  3386       while (visited.size() > 0) {
  3387         Node* n = visited.pop();
  3388         checked.push(n);
  3389         for (uint i = 0; i < n->outcnt(); i++) {
  3390           Node* use = n->raw_out(i);
  3391           if (checked.member(use))  continue;  // already checked
  3392           if (visited.member(use))  continue;  // already in the graph
  3393           if (use->is_Con())        continue;  // a dead ConNode is OK
  3394           // At this point, we have found a dead node which is DU-reachable.
  3395           if (dead_nodes++ == 0)
  3396             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3397           use->dump(2);
  3398           tty->print_cr("---");
  3399           checked.push(use);  // No repeats; pretend it is now checked.
  3402       assert(dead_nodes == 0, "using nodes must be reachable from root");
  3407 // Verify GC barriers consistency
  3408 // Currently supported:
  3409 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
  3410 void Compile::verify_barriers() {
  3411   if (UseG1GC) {
  3412     // Verify G1 pre-barriers
  3413     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
  3415     ResourceArea *area = Thread::current()->resource_area();
  3416     Unique_Node_List visited(area);
  3417     Node_List worklist(area);
  3418     // We're going to walk control flow backwards starting from the Root
  3419     worklist.push(_root);
  3420     while (worklist.size() > 0) {
  3421       Node* x = worklist.pop();
  3422       if (x == NULL || x == top()) continue;
  3423       if (visited.member(x)) {
  3424         continue;
  3425       } else {
  3426         visited.push(x);
  3429       if (x->is_Region()) {
  3430         for (uint i = 1; i < x->req(); i++) {
  3431           worklist.push(x->in(i));
  3433       } else {
  3434         worklist.push(x->in(0));
  3435         // We are looking for the pattern:
  3436         //                            /->ThreadLocal
  3437         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
  3438         //              \->ConI(0)
  3439         // We want to verify that the If and the LoadB have the same control
  3440         // See GraphKit::g1_write_barrier_pre()
  3441         if (x->is_If()) {
  3442           IfNode *iff = x->as_If();
  3443           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
  3444             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
  3445             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
  3446                 && cmp->in(1)->is_Load()) {
  3447               LoadNode* load = cmp->in(1)->as_Load();
  3448               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
  3449                   && load->in(2)->in(3)->is_Con()
  3450                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
  3452                 Node* if_ctrl = iff->in(0);
  3453                 Node* load_ctrl = load->in(0);
  3455                 if (if_ctrl != load_ctrl) {
  3456                   // Skip possible CProj->NeverBranch in infinite loops
  3457                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
  3458                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
  3459                     if_ctrl = if_ctrl->in(0)->in(0);
  3462                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
  3472 #endif
  3474 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3475 // This is required because there is not quite a 1-1 relation between the
  3476 // ciEnv and its compilation task and the Compile object.  Note that one
  3477 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3478 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3479 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3480 // by the logic in C2Compiler.
  3481 void Compile::record_failure(const char* reason) {
  3482   if (log() != NULL) {
  3483     log()->elem("failure reason='%s' phase='compile'", reason);
  3485   if (_failure_reason == NULL) {
  3486     // Record the first failure reason.
  3487     _failure_reason = reason;
  3490   EventCompilerFailure event;
  3491   if (event.should_commit()) {
  3492     event.set_compileID(Compile::compile_id());
  3493     event.set_failure(reason);
  3494     event.commit();
  3497   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3498     C->print_method(PHASE_FAILURE);
  3500   _root = NULL;  // flush the graph, too
  3503 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3504   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3505     _phase_name(name), _dolog(dolog)
  3507   if (dolog) {
  3508     C = Compile::current();
  3509     _log = C->log();
  3510   } else {
  3511     C = NULL;
  3512     _log = NULL;
  3514   if (_log != NULL) {
  3515     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3516     _log->stamp();
  3517     _log->end_head();
  3521 Compile::TracePhase::~TracePhase() {
  3523   C = Compile::current();
  3524   if (_dolog) {
  3525     _log = C->log();
  3526   } else {
  3527     _log = NULL;
  3530 #ifdef ASSERT
  3531   if (PrintIdealNodeCount) {
  3532     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3533                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3536   if (VerifyIdealNodeCount) {
  3537     Compile::current()->print_missing_nodes();
  3539 #endif
  3541   if (_log != NULL) {
  3542     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3546 //=============================================================================
  3547 // Two Constant's are equal when the type and the value are equal.
  3548 bool Compile::Constant::operator==(const Constant& other) {
  3549   if (type()          != other.type()         )  return false;
  3550   if (can_be_reused() != other.can_be_reused())  return false;
  3551   // For floating point values we compare the bit pattern.
  3552   switch (type()) {
  3553   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3554   case T_LONG:
  3555   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3556   case T_OBJECT:
  3557   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3558   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3559   case T_METADATA: return (_v._metadata == other._v._metadata);
  3560   default: ShouldNotReachHere();
  3562   return false;
  3565 static int type_to_size_in_bytes(BasicType t) {
  3566   switch (t) {
  3567   case T_LONG:    return sizeof(jlong  );
  3568   case T_FLOAT:   return sizeof(jfloat );
  3569   case T_DOUBLE:  return sizeof(jdouble);
  3570   case T_METADATA: return sizeof(Metadata*);
  3571     // We use T_VOID as marker for jump-table entries (labels) which
  3572     // need an internal word relocation.
  3573   case T_VOID:
  3574   case T_ADDRESS:
  3575   case T_OBJECT:  return sizeof(jobject);
  3578   ShouldNotReachHere();
  3579   return -1;
  3582 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3583   // sort descending
  3584   if (a->freq() > b->freq())  return -1;
  3585   if (a->freq() < b->freq())  return  1;
  3586   return 0;
  3589 void Compile::ConstantTable::calculate_offsets_and_size() {
  3590   // First, sort the array by frequencies.
  3591   _constants.sort(qsort_comparator);
  3593 #ifdef ASSERT
  3594   // Make sure all jump-table entries were sorted to the end of the
  3595   // array (they have a negative frequency).
  3596   bool found_void = false;
  3597   for (int i = 0; i < _constants.length(); i++) {
  3598     Constant con = _constants.at(i);
  3599     if (con.type() == T_VOID)
  3600       found_void = true;  // jump-tables
  3601     else
  3602       assert(!found_void, "wrong sorting");
  3604 #endif
  3606   int offset = 0;
  3607   for (int i = 0; i < _constants.length(); i++) {
  3608     Constant* con = _constants.adr_at(i);
  3610     // Align offset for type.
  3611     int typesize = type_to_size_in_bytes(con->type());
  3612     offset = align_size_up(offset, typesize);
  3613     con->set_offset(offset);   // set constant's offset
  3615     if (con->type() == T_VOID) {
  3616       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3617       offset = offset + typesize * n->outcnt();  // expand jump-table
  3618     } else {
  3619       offset = offset + typesize;
  3623   // Align size up to the next section start (which is insts; see
  3624   // CodeBuffer::align_at_start).
  3625   assert(_size == -1, "already set?");
  3626   _size = align_size_up(offset, CodeEntryAlignment);
  3629 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3630   MacroAssembler _masm(&cb);
  3631   for (int i = 0; i < _constants.length(); i++) {
  3632     Constant con = _constants.at(i);
  3633     address constant_addr;
  3634     switch (con.type()) {
  3635     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3636     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3637     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3638     case T_OBJECT: {
  3639       jobject obj = con.get_jobject();
  3640       int oop_index = _masm.oop_recorder()->find_index(obj);
  3641       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3642       break;
  3644     case T_ADDRESS: {
  3645       address addr = (address) con.get_jobject();
  3646       constant_addr = _masm.address_constant(addr);
  3647       break;
  3649     // We use T_VOID as marker for jump-table entries (labels) which
  3650     // need an internal word relocation.
  3651     case T_VOID: {
  3652       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3653       // Fill the jump-table with a dummy word.  The real value is
  3654       // filled in later in fill_jump_table.
  3655       address dummy = (address) n;
  3656       constant_addr = _masm.address_constant(dummy);
  3657       // Expand jump-table
  3658       for (uint i = 1; i < n->outcnt(); i++) {
  3659         address temp_addr = _masm.address_constant(dummy + i);
  3660         assert(temp_addr, "consts section too small");
  3662       break;
  3664     case T_METADATA: {
  3665       Metadata* obj = con.get_metadata();
  3666       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3667       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3668       break;
  3670     default: ShouldNotReachHere();
  3672     assert(constant_addr, "consts section too small");
  3673     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3677 int Compile::ConstantTable::find_offset(Constant& con) const {
  3678   int idx = _constants.find(con);
  3679   assert(idx != -1, "constant must be in constant table");
  3680   int offset = _constants.at(idx).offset();
  3681   assert(offset != -1, "constant table not emitted yet?");
  3682   return offset;
  3685 void Compile::ConstantTable::add(Constant& con) {
  3686   if (con.can_be_reused()) {
  3687     int idx = _constants.find(con);
  3688     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3689       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3690       return;
  3693   (void) _constants.append(con);
  3696 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3697   Block* b = Compile::current()->cfg()->get_block_for_node(n);
  3698   Constant con(type, value, b->_freq);
  3699   add(con);
  3700   return con;
  3703 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3704   Constant con(metadata);
  3705   add(con);
  3706   return con;
  3709 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3710   jvalue value;
  3711   BasicType type = oper->type()->basic_type();
  3712   switch (type) {
  3713   case T_LONG:    value.j = oper->constantL(); break;
  3714   case T_FLOAT:   value.f = oper->constantF(); break;
  3715   case T_DOUBLE:  value.d = oper->constantD(); break;
  3716   case T_OBJECT:
  3717   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3718   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3719   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3721   return add(n, type, value);
  3724 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3725   jvalue value;
  3726   // We can use the node pointer here to identify the right jump-table
  3727   // as this method is called from Compile::Fill_buffer right before
  3728   // the MachNodes are emitted and the jump-table is filled (means the
  3729   // MachNode pointers do not change anymore).
  3730   value.l = (jobject) n;
  3731   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3732   add(con);
  3733   return con;
  3736 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3737   // If called from Compile::scratch_emit_size do nothing.
  3738   if (Compile::current()->in_scratch_emit_size())  return;
  3740   assert(labels.is_nonempty(), "must be");
  3741   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3743   // Since MachConstantNode::constant_offset() also contains
  3744   // table_base_offset() we need to subtract the table_base_offset()
  3745   // to get the plain offset into the constant table.
  3746   int offset = n->constant_offset() - table_base_offset();
  3748   MacroAssembler _masm(&cb);
  3749   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3751   for (uint i = 0; i < n->outcnt(); i++) {
  3752     address* constant_addr = &jump_table_base[i];
  3753     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
  3754     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3755     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3759 void Compile::dump_inlining() {
  3760   if (print_inlining() || print_intrinsics()) {
  3761     // Print inlining message for candidates that we couldn't inline
  3762     // for lack of space or non constant receiver
  3763     for (int i = 0; i < _late_inlines.length(); i++) {
  3764       CallGenerator* cg = _late_inlines.at(i);
  3765       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3767     Unique_Node_List useful;
  3768     useful.push(root());
  3769     for (uint next = 0; next < useful.size(); ++next) {
  3770       Node* n  = useful.at(next);
  3771       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3772         CallNode* call = n->as_Call();
  3773         CallGenerator* cg = call->generator();
  3774         cg->print_inlining_late("receiver not constant");
  3776       uint max = n->len();
  3777       for ( uint i = 0; i < max; ++i ) {
  3778         Node *m = n->in(i);
  3779         if ( m == NULL ) continue;
  3780         useful.push(m);
  3783     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3784       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
  3789 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
  3790   if (n1->Opcode() < n2->Opcode())      return -1;
  3791   else if (n1->Opcode() > n2->Opcode()) return 1;
  3793   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
  3794   for (uint i = 1; i < n1->req(); i++) {
  3795     if (n1->in(i) < n2->in(i))      return -1;
  3796     else if (n1->in(i) > n2->in(i)) return 1;
  3799   return 0;
  3802 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
  3803   Node* n1 = *n1p;
  3804   Node* n2 = *n2p;
  3806   return cmp_expensive_nodes(n1, n2);
  3809 void Compile::sort_expensive_nodes() {
  3810   if (!expensive_nodes_sorted()) {
  3811     _expensive_nodes->sort(cmp_expensive_nodes);
  3815 bool Compile::expensive_nodes_sorted() const {
  3816   for (int i = 1; i < _expensive_nodes->length(); i++) {
  3817     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
  3818       return false;
  3821   return true;
  3824 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
  3825   if (_expensive_nodes->length() == 0) {
  3826     return false;
  3829   assert(OptimizeExpensiveOps, "optimization off?");
  3831   // Take this opportunity to remove dead nodes from the list
  3832   int j = 0;
  3833   for (int i = 0; i < _expensive_nodes->length(); i++) {
  3834     Node* n = _expensive_nodes->at(i);
  3835     if (!n->is_unreachable(igvn)) {
  3836       assert(n->is_expensive(), "should be expensive");
  3837       _expensive_nodes->at_put(j, n);
  3838       j++;
  3841   _expensive_nodes->trunc_to(j);
  3843   // Then sort the list so that similar nodes are next to each other
  3844   // and check for at least two nodes of identical kind with same data
  3845   // inputs.
  3846   sort_expensive_nodes();
  3848   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
  3849     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
  3850       return true;
  3854   return false;
  3857 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
  3858   if (_expensive_nodes->length() == 0) {
  3859     return;
  3862   assert(OptimizeExpensiveOps, "optimization off?");
  3864   // Sort to bring similar nodes next to each other and clear the
  3865   // control input of nodes for which there's only a single copy.
  3866   sort_expensive_nodes();
  3868   int j = 0;
  3869   int identical = 0;
  3870   int i = 0;
  3871   for (; i < _expensive_nodes->length()-1; i++) {
  3872     assert(j <= i, "can't write beyond current index");
  3873     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
  3874       identical++;
  3875       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3876       continue;
  3878     if (identical > 0) {
  3879       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3880       identical = 0;
  3881     } else {
  3882       Node* n = _expensive_nodes->at(i);
  3883       igvn.hash_delete(n);
  3884       n->set_req(0, NULL);
  3885       igvn.hash_insert(n);
  3888   if (identical > 0) {
  3889     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3890   } else if (_expensive_nodes->length() >= 1) {
  3891     Node* n = _expensive_nodes->at(i);
  3892     igvn.hash_delete(n);
  3893     n->set_req(0, NULL);
  3894     igvn.hash_insert(n);
  3896   _expensive_nodes->trunc_to(j);
  3899 void Compile::add_expensive_node(Node * n) {
  3900   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
  3901   assert(n->is_expensive(), "expensive nodes with non-null control here only");
  3902   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
  3903   if (OptimizeExpensiveOps) {
  3904     _expensive_nodes->append(n);
  3905   } else {
  3906     // Clear control input and let IGVN optimize expensive nodes if
  3907     // OptimizeExpensiveOps is off.
  3908     n->set_req(0, NULL);
  3912 /**
  3913  * Remove the speculative part of types and clean up the graph
  3914  */
  3915 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
  3916   if (UseTypeSpeculation) {
  3917     Unique_Node_List worklist;
  3918     worklist.push(root());
  3919     int modified = 0;
  3920     // Go over all type nodes that carry a speculative type, drop the
  3921     // speculative part of the type and enqueue the node for an igvn
  3922     // which may optimize it out.
  3923     for (uint next = 0; next < worklist.size(); ++next) {
  3924       Node *n  = worklist.at(next);
  3925       if (n->is_Type() && n->as_Type()->type()->isa_oopptr() != NULL &&
  3926           n->as_Type()->type()->is_oopptr()->speculative() != NULL) {
  3927         TypeNode* tn = n->as_Type();
  3928         const TypeOopPtr* t = tn->type()->is_oopptr();
  3929         bool in_hash = igvn.hash_delete(n);
  3930         assert(in_hash, "node should be in igvn hash table");
  3931         tn->set_type(t->remove_speculative());
  3932         igvn.hash_insert(n);
  3933         igvn._worklist.push(n); // give it a chance to go away
  3934         modified++;
  3936       uint max = n->len();
  3937       for( uint i = 0; i < max; ++i ) {
  3938         Node *m = n->in(i);
  3939         if (not_a_node(m))  continue;
  3940         worklist.push(m);
  3943     // Drop the speculative part of all types in the igvn's type table
  3944     igvn.remove_speculative_types();
  3945     if (modified > 0) {
  3946       igvn.optimize();
  3951 // Auxiliary method to support randomized stressing/fuzzing.
  3952 //
  3953 // This method can be called the arbitrary number of times, with current count
  3954 // as the argument. The logic allows selecting a single candidate from the
  3955 // running list of candidates as follows:
  3956 //    int count = 0;
  3957 //    Cand* selected = null;
  3958 //    while(cand = cand->next()) {
  3959 //      if (randomized_select(++count)) {
  3960 //        selected = cand;
  3961 //      }
  3962 //    }
  3963 //
  3964 // Including count equalizes the chances any candidate is "selected".
  3965 // This is useful when we don't have the complete list of candidates to choose
  3966 // from uniformly. In this case, we need to adjust the randomicity of the
  3967 // selection, or else we will end up biasing the selection towards the latter
  3968 // candidates.
  3969 //
  3970 // Quick back-envelope calculation shows that for the list of n candidates
  3971 // the equal probability for the candidate to persist as "best" can be
  3972 // achieved by replacing it with "next" k-th candidate with the probability
  3973 // of 1/k. It can be easily shown that by the end of the run, the
  3974 // probability for any candidate is converged to 1/n, thus giving the
  3975 // uniform distribution among all the candidates.
  3976 //
  3977 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
  3978 #define RANDOMIZED_DOMAIN_POW 29
  3979 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
  3980 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
  3981 bool Compile::randomized_select(int count) {
  3982   assert(count > 0, "only positive");
  3983   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);

mercurial