src/share/vm/opto/macro.cpp

Tue, 15 Jun 2010 18:07:27 -0700

author
kvn
date
Tue, 15 Jun 2010 18:07:27 -0700
changeset 1964
4311f23817fd
parent 1907
c18cbe5936b8
child 1976
6027dddc26c6
permissions
-rw-r--r--

6959430: Make sure raw loads have control edge
Summary: check that raw loads have control edge
Reviewed-by: never, twisti

     1 /*
     2  * Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_macro.cpp.incl"
    29 //
    30 // Replace any references to "oldref" in inputs to "use" with "newref".
    31 // Returns the number of replacements made.
    32 //
    33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    34   int nreplacements = 0;
    35   uint req = use->req();
    36   for (uint j = 0; j < use->len(); j++) {
    37     Node *uin = use->in(j);
    38     if (uin == oldref) {
    39       if (j < req)
    40         use->set_req(j, newref);
    41       else
    42         use->set_prec(j, newref);
    43       nreplacements++;
    44     } else if (j >= req && uin == NULL) {
    45       break;
    46     }
    47   }
    48   return nreplacements;
    49 }
    51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    52   // Copy debug information and adjust JVMState information
    53   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    54   uint new_dbg_start = newcall->tf()->domain()->cnt();
    55   int jvms_adj  = new_dbg_start - old_dbg_start;
    56   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    58   Dict* sosn_map = new Dict(cmpkey,hashkey);
    59   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    60     Node* old_in = oldcall->in(i);
    61     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    62     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
    63       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
    64       uint old_unique = C->unique();
    65       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
    66       if (old_unique != C->unique()) {
    67         new_in->set_req(0, newcall->in(0)); // reset control edge
    68         new_in = transform_later(new_in); // Register new node.
    69       }
    70       old_in = new_in;
    71     }
    72     newcall->add_req(old_in);
    73   }
    75   newcall->set_jvms(oldcall->jvms());
    76   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    77     jvms->set_map(newcall);
    78     jvms->set_locoff(jvms->locoff()+jvms_adj);
    79     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    80     jvms->set_monoff(jvms->monoff()+jvms_adj);
    81     jvms->set_scloff(jvms->scloff()+jvms_adj);
    82     jvms->set_endoff(jvms->endoff()+jvms_adj);
    83   }
    84 }
    86 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
    87   Node* cmp;
    88   if (mask != 0) {
    89     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
    90     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
    91   } else {
    92     cmp = word;
    93   }
    94   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
    95   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
    96   transform_later(iff);
    98   // Fast path taken.
    99   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
   101   // Fast path not-taken, i.e. slow path
   102   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
   104   if (return_fast_path) {
   105     region->init_req(edge, slow_taken); // Capture slow-control
   106     return fast_taken;
   107   } else {
   108     region->init_req(edge, fast_taken); // Capture fast-control
   109     return slow_taken;
   110   }
   111 }
   113 //--------------------copy_predefined_input_for_runtime_call--------------------
   114 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
   115   // Set fixed predefined input arguments
   116   call->init_req( TypeFunc::Control, ctrl );
   117   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
   118   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
   119   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
   120   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
   121 }
   123 //------------------------------make_slow_call---------------------------------
   124 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
   126   // Slow-path call
   127   int size = slow_call_type->domain()->cnt();
   128  CallNode *call = leaf_name
   129    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   130    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   132   // Slow path call has no side-effects, uses few values
   133   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   134   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   135   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   136   copy_call_debug_info(oldcall, call);
   137   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   138   _igvn.hash_delete(oldcall);
   139   _igvn.subsume_node(oldcall, call);
   140   transform_later(call);
   142   return call;
   143 }
   145 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   146   _fallthroughproj = NULL;
   147   _fallthroughcatchproj = NULL;
   148   _ioproj_fallthrough = NULL;
   149   _ioproj_catchall = NULL;
   150   _catchallcatchproj = NULL;
   151   _memproj_fallthrough = NULL;
   152   _memproj_catchall = NULL;
   153   _resproj = NULL;
   154   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   155     ProjNode *pn = call->fast_out(i)->as_Proj();
   156     switch (pn->_con) {
   157       case TypeFunc::Control:
   158       {
   159         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   160         _fallthroughproj = pn;
   161         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   162         const Node *cn = pn->fast_out(j);
   163         if (cn->is_Catch()) {
   164           ProjNode *cpn = NULL;
   165           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   166             cpn = cn->fast_out(k)->as_Proj();
   167             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   168             if (cpn->_con == CatchProjNode::fall_through_index)
   169               _fallthroughcatchproj = cpn;
   170             else {
   171               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   172               _catchallcatchproj = cpn;
   173             }
   174           }
   175         }
   176         break;
   177       }
   178       case TypeFunc::I_O:
   179         if (pn->_is_io_use)
   180           _ioproj_catchall = pn;
   181         else
   182           _ioproj_fallthrough = pn;
   183         break;
   184       case TypeFunc::Memory:
   185         if (pn->_is_io_use)
   186           _memproj_catchall = pn;
   187         else
   188           _memproj_fallthrough = pn;
   189         break;
   190       case TypeFunc::Parms:
   191         _resproj = pn;
   192         break;
   193       default:
   194         assert(false, "unexpected projection from allocation node.");
   195     }
   196   }
   198 }
   200 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
   201 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
   202   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
   203   if (!UseG1GC) {
   204     // vanilla/CMS post barrier
   205     Node *shift = p2x->unique_out();
   206     Node *addp = shift->unique_out();
   207     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
   208       Node *st = addp->last_out(j);
   209       assert(st->is_Store(), "store required");
   210       _igvn.replace_node(st, st->in(MemNode::Memory));
   211     }
   212   } else {
   213     // G1 pre/post barriers
   214     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
   215     // It could be only one user, URShift node, in Object.clone() instrinsic
   216     // but the new allocation is passed to arraycopy stub and it could not
   217     // be scalar replaced. So we don't check the case.
   219     // Remove G1 post barrier.
   221     // Search for CastP2X->Xor->URShift->Cmp path which
   222     // checks if the store done to a different from the value's region.
   223     // And replace Cmp with #0 (false) to collapse G1 post barrier.
   224     Node* xorx = NULL;
   225     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
   226       Node* u = p2x->fast_out(i);
   227       if (u->Opcode() == Op_XorX) {
   228         xorx = u;
   229         break;
   230       }
   231     }
   232     assert(xorx != NULL, "missing G1 post barrier");
   233     Node* shift = xorx->unique_out();
   234     Node* cmpx = shift->unique_out();
   235     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
   236     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
   237     "missing region check in G1 post barrier");
   238     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   240     // Remove G1 pre barrier.
   242     // Search "if (marking != 0)" check and set it to "false".
   243     Node* this_region = p2x->in(0);
   244     assert(this_region != NULL, "");
   245     // There is no G1 pre barrier if previous stored value is NULL
   246     // (for example, after initialization).
   247     if (this_region->is_Region() && this_region->req() == 3) {
   248       int ind = 1;
   249       if (!this_region->in(ind)->is_IfFalse()) {
   250         ind = 2;
   251       }
   252       if (this_region->in(ind)->is_IfFalse()) {
   253         Node* bol = this_region->in(ind)->in(0)->in(1);
   254         assert(bol->is_Bool(), "");
   255         cmpx = bol->in(1);
   256         if (bol->as_Bool()->_test._test == BoolTest::ne &&
   257             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
   258             cmpx->in(1)->is_Load()) {
   259           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
   260           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
   261                                               PtrQueue::byte_offset_of_active());
   262           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
   263               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   264               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
   265             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   266           }
   267         }
   268       }
   269     }
   270     // Now CastP2X can be removed since it is used only on dead path
   271     // which currently still alive until igvn optimize it.
   272     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
   273     _igvn.replace_node(p2x, top());
   274   }
   275 }
   277 // Search for a memory operation for the specified memory slice.
   278 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
   279   Node *orig_mem = mem;
   280   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   281   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
   282   while (true) {
   283     if (mem == alloc_mem || mem == start_mem ) {
   284       return mem;  // hit one of our sentinels
   285     } else if (mem->is_MergeMem()) {
   286       mem = mem->as_MergeMem()->memory_at(alias_idx);
   287     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
   288       Node *in = mem->in(0);
   289       // we can safely skip over safepoints, calls, locks and membars because we
   290       // already know that the object is safe to eliminate.
   291       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
   292         return in;
   293       } else if (in->is_Call()) {
   294         CallNode *call = in->as_Call();
   295         if (!call->may_modify(tinst, phase)) {
   296           mem = call->in(TypeFunc::Memory);
   297         }
   298         mem = in->in(TypeFunc::Memory);
   299       } else if (in->is_MemBar()) {
   300         mem = in->in(TypeFunc::Memory);
   301       } else {
   302         assert(false, "unexpected projection");
   303       }
   304     } else if (mem->is_Store()) {
   305       const TypePtr* atype = mem->as_Store()->adr_type();
   306       int adr_idx = Compile::current()->get_alias_index(atype);
   307       if (adr_idx == alias_idx) {
   308         assert(atype->isa_oopptr(), "address type must be oopptr");
   309         int adr_offset = atype->offset();
   310         uint adr_iid = atype->is_oopptr()->instance_id();
   311         // Array elements references have the same alias_idx
   312         // but different offset and different instance_id.
   313         if (adr_offset == offset && adr_iid == alloc->_idx)
   314           return mem;
   315       } else {
   316         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
   317       }
   318       mem = mem->in(MemNode::Memory);
   319     } else if (mem->is_ClearArray()) {
   320       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
   321         // Can not bypass initialization of the instance
   322         // we are looking.
   323         debug_only(intptr_t offset;)
   324         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
   325         InitializeNode* init = alloc->as_Allocate()->initialization();
   326         // We are looking for stored value, return Initialize node
   327         // or memory edge from Allocate node.
   328         if (init != NULL)
   329           return init;
   330         else
   331           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
   332       }
   333       // Otherwise skip it (the call updated 'mem' value).
   334     } else if (mem->Opcode() == Op_SCMemProj) {
   335       assert(mem->in(0)->is_LoadStore(), "sanity");
   336       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
   337       int adr_idx = Compile::current()->get_alias_index(atype);
   338       if (adr_idx == alias_idx) {
   339         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   340         return NULL;
   341       }
   342       mem = mem->in(0)->in(MemNode::Memory);
   343     } else {
   344       return mem;
   345     }
   346     assert(mem != orig_mem, "dead memory loop");
   347   }
   348 }
   350 //
   351 // Given a Memory Phi, compute a value Phi containing the values from stores
   352 // on the input paths.
   353 // Note: this function is recursive, its depth is limied by the "level" argument
   354 // Returns the computed Phi, or NULL if it cannot compute it.
   355 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
   356   assert(mem->is_Phi(), "sanity");
   357   int alias_idx = C->get_alias_index(adr_t);
   358   int offset = adr_t->offset();
   359   int instance_id = adr_t->instance_id();
   361   // Check if an appropriate value phi already exists.
   362   Node* region = mem->in(0);
   363   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   364     Node* phi = region->fast_out(k);
   365     if (phi->is_Phi() && phi != mem &&
   366         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
   367       return phi;
   368     }
   369   }
   370   // Check if an appropriate new value phi already exists.
   371   Node* new_phi = NULL;
   372   uint size = value_phis->size();
   373   for (uint i=0; i < size; i++) {
   374     if ( mem->_idx == value_phis->index_at(i) ) {
   375       return value_phis->node_at(i);
   376     }
   377   }
   379   if (level <= 0) {
   380     return NULL; // Give up: phi tree too deep
   381   }
   382   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   383   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   385   uint length = mem->req();
   386   GrowableArray <Node *> values(length, length, NULL);
   388   // create a new Phi for the value
   389   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
   390   transform_later(phi);
   391   value_phis->push(phi, mem->_idx);
   393   for (uint j = 1; j < length; j++) {
   394     Node *in = mem->in(j);
   395     if (in == NULL || in->is_top()) {
   396       values.at_put(j, in);
   397     } else  {
   398       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
   399       if (val == start_mem || val == alloc_mem) {
   400         // hit a sentinel, return appropriate 0 value
   401         values.at_put(j, _igvn.zerocon(ft));
   402         continue;
   403       }
   404       if (val->is_Initialize()) {
   405         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   406       }
   407       if (val == NULL) {
   408         return NULL;  // can't find a value on this path
   409       }
   410       if (val == mem) {
   411         values.at_put(j, mem);
   412       } else if (val->is_Store()) {
   413         values.at_put(j, val->in(MemNode::ValueIn));
   414       } else if(val->is_Proj() && val->in(0) == alloc) {
   415         values.at_put(j, _igvn.zerocon(ft));
   416       } else if (val->is_Phi()) {
   417         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
   418         if (val == NULL) {
   419           return NULL;
   420         }
   421         values.at_put(j, val);
   422       } else if (val->Opcode() == Op_SCMemProj) {
   423         assert(val->in(0)->is_LoadStore(), "sanity");
   424         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   425         return NULL;
   426       } else {
   427 #ifdef ASSERT
   428         val->dump();
   429         assert(false, "unknown node on this path");
   430 #endif
   431         return NULL;  // unknown node on this path
   432       }
   433     }
   434   }
   435   // Set Phi's inputs
   436   for (uint j = 1; j < length; j++) {
   437     if (values.at(j) == mem) {
   438       phi->init_req(j, phi);
   439     } else {
   440       phi->init_req(j, values.at(j));
   441     }
   442   }
   443   return phi;
   444 }
   446 // Search the last value stored into the object's field.
   447 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
   448   assert(adr_t->is_known_instance_field(), "instance required");
   449   int instance_id = adr_t->instance_id();
   450   assert((uint)instance_id == alloc->_idx, "wrong allocation");
   452   int alias_idx = C->get_alias_index(adr_t);
   453   int offset = adr_t->offset();
   454   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   455   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
   456   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   457   Arena *a = Thread::current()->resource_area();
   458   VectorSet visited(a);
   461   bool done = sfpt_mem == alloc_mem;
   462   Node *mem = sfpt_mem;
   463   while (!done) {
   464     if (visited.test_set(mem->_idx)) {
   465       return NULL;  // found a loop, give up
   466     }
   467     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
   468     if (mem == start_mem || mem == alloc_mem) {
   469       done = true;  // hit a sentinel, return appropriate 0 value
   470     } else if (mem->is_Initialize()) {
   471       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   472       if (mem == NULL) {
   473         done = true; // Something go wrong.
   474       } else if (mem->is_Store()) {
   475         const TypePtr* atype = mem->as_Store()->adr_type();
   476         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
   477         done = true;
   478       }
   479     } else if (mem->is_Store()) {
   480       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
   481       assert(atype != NULL, "address type must be oopptr");
   482       assert(C->get_alias_index(atype) == alias_idx &&
   483              atype->is_known_instance_field() && atype->offset() == offset &&
   484              atype->instance_id() == instance_id, "store is correct memory slice");
   485       done = true;
   486     } else if (mem->is_Phi()) {
   487       // try to find a phi's unique input
   488       Node *unique_input = NULL;
   489       Node *top = C->top();
   490       for (uint i = 1; i < mem->req(); i++) {
   491         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
   492         if (n == NULL || n == top || n == mem) {
   493           continue;
   494         } else if (unique_input == NULL) {
   495           unique_input = n;
   496         } else if (unique_input != n) {
   497           unique_input = top;
   498           break;
   499         }
   500       }
   501       if (unique_input != NULL && unique_input != top) {
   502         mem = unique_input;
   503       } else {
   504         done = true;
   505       }
   506     } else {
   507       assert(false, "unexpected node");
   508     }
   509   }
   510   if (mem != NULL) {
   511     if (mem == start_mem || mem == alloc_mem) {
   512       // hit a sentinel, return appropriate 0 value
   513       return _igvn.zerocon(ft);
   514     } else if (mem->is_Store()) {
   515       return mem->in(MemNode::ValueIn);
   516     } else if (mem->is_Phi()) {
   517       // attempt to produce a Phi reflecting the values on the input paths of the Phi
   518       Node_Stack value_phis(a, 8);
   519       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
   520       if (phi != NULL) {
   521         return phi;
   522       } else {
   523         // Kill all new Phis
   524         while(value_phis.is_nonempty()) {
   525           Node* n = value_phis.node();
   526           _igvn.hash_delete(n);
   527           _igvn.subsume_node(n, C->top());
   528           value_phis.pop();
   529         }
   530       }
   531     }
   532   }
   533   // Something go wrong.
   534   return NULL;
   535 }
   537 // Check the possibility of scalar replacement.
   538 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   539   //  Scan the uses of the allocation to check for anything that would
   540   //  prevent us from eliminating it.
   541   NOT_PRODUCT( const char* fail_eliminate = NULL; )
   542   DEBUG_ONLY( Node* disq_node = NULL; )
   543   bool  can_eliminate = true;
   545   Node* res = alloc->result_cast();
   546   const TypeOopPtr* res_type = NULL;
   547   if (res == NULL) {
   548     // All users were eliminated.
   549   } else if (!res->is_CheckCastPP()) {
   550     alloc->_is_scalar_replaceable = false;  // don't try again
   551     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
   552     can_eliminate = false;
   553   } else {
   554     res_type = _igvn.type(res)->isa_oopptr();
   555     if (res_type == NULL) {
   556       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
   557       can_eliminate = false;
   558     } else if (res_type->isa_aryptr()) {
   559       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   560       if (length < 0) {
   561         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
   562         can_eliminate = false;
   563       }
   564     }
   565   }
   567   if (can_eliminate && res != NULL) {
   568     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
   569                                j < jmax && can_eliminate; j++) {
   570       Node* use = res->fast_out(j);
   572       if (use->is_AddP()) {
   573         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
   574         int offset = addp_type->offset();
   576         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
   577           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
   578           can_eliminate = false;
   579           break;
   580         }
   581         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
   582                                    k < kmax && can_eliminate; k++) {
   583           Node* n = use->fast_out(k);
   584           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
   585             DEBUG_ONLY(disq_node = n;)
   586             if (n->is_Load() || n->is_LoadStore()) {
   587               NOT_PRODUCT(fail_eliminate = "Field load";)
   588             } else {
   589               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
   590             }
   591             can_eliminate = false;
   592           }
   593         }
   594       } else if (use->is_SafePoint()) {
   595         SafePointNode* sfpt = use->as_SafePoint();
   596         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
   597           // Object is passed as argument.
   598           DEBUG_ONLY(disq_node = use;)
   599           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
   600           can_eliminate = false;
   601         }
   602         Node* sfptMem = sfpt->memory();
   603         if (sfptMem == NULL || sfptMem->is_top()) {
   604           DEBUG_ONLY(disq_node = use;)
   605           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
   606           can_eliminate = false;
   607         } else {
   608           safepoints.append_if_missing(sfpt);
   609         }
   610       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
   611         if (use->is_Phi()) {
   612           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
   613             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   614           } else {
   615             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
   616           }
   617           DEBUG_ONLY(disq_node = use;)
   618         } else {
   619           if (use->Opcode() == Op_Return) {
   620             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   621           }else {
   622             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
   623           }
   624           DEBUG_ONLY(disq_node = use;)
   625         }
   626         can_eliminate = false;
   627       }
   628     }
   629   }
   631 #ifndef PRODUCT
   632   if (PrintEliminateAllocations) {
   633     if (can_eliminate) {
   634       tty->print("Scalar ");
   635       if (res == NULL)
   636         alloc->dump();
   637       else
   638         res->dump();
   639     } else {
   640       tty->print("NotScalar (%s)", fail_eliminate);
   641       if (res == NULL)
   642         alloc->dump();
   643       else
   644         res->dump();
   645 #ifdef ASSERT
   646       if (disq_node != NULL) {
   647           tty->print("  >>>> ");
   648           disq_node->dump();
   649       }
   650 #endif /*ASSERT*/
   651     }
   652   }
   653 #endif
   654   return can_eliminate;
   655 }
   657 // Do scalar replacement.
   658 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   659   GrowableArray <SafePointNode *> safepoints_done;
   661   ciKlass* klass = NULL;
   662   ciInstanceKlass* iklass = NULL;
   663   int nfields = 0;
   664   int array_base;
   665   int element_size;
   666   BasicType basic_elem_type;
   667   ciType* elem_type;
   669   Node* res = alloc->result_cast();
   670   const TypeOopPtr* res_type = NULL;
   671   if (res != NULL) { // Could be NULL when there are no users
   672     res_type = _igvn.type(res)->isa_oopptr();
   673   }
   675   if (res != NULL) {
   676     klass = res_type->klass();
   677     if (res_type->isa_instptr()) {
   678       // find the fields of the class which will be needed for safepoint debug information
   679       assert(klass->is_instance_klass(), "must be an instance klass.");
   680       iklass = klass->as_instance_klass();
   681       nfields = iklass->nof_nonstatic_fields();
   682     } else {
   683       // find the array's elements which will be needed for safepoint debug information
   684       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   685       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
   686       elem_type = klass->as_array_klass()->element_type();
   687       basic_elem_type = elem_type->basic_type();
   688       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
   689       element_size = type2aelembytes(basic_elem_type);
   690     }
   691   }
   692   //
   693   // Process the safepoint uses
   694   //
   695   while (safepoints.length() > 0) {
   696     SafePointNode* sfpt = safepoints.pop();
   697     Node* mem = sfpt->memory();
   698     uint first_ind = sfpt->req();
   699     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
   700 #ifdef ASSERT
   701                                                  alloc,
   702 #endif
   703                                                  first_ind, nfields);
   704     sobj->init_req(0, sfpt->in(TypeFunc::Control));
   705     transform_later(sobj);
   707     // Scan object's fields adding an input to the safepoint for each field.
   708     for (int j = 0; j < nfields; j++) {
   709       intptr_t offset;
   710       ciField* field = NULL;
   711       if (iklass != NULL) {
   712         field = iklass->nonstatic_field_at(j);
   713         offset = field->offset();
   714         elem_type = field->type();
   715         basic_elem_type = field->layout_type();
   716       } else {
   717         offset = array_base + j * (intptr_t)element_size;
   718       }
   720       const Type *field_type;
   721       // The next code is taken from Parse::do_get_xxx().
   722       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
   723         if (!elem_type->is_loaded()) {
   724           field_type = TypeInstPtr::BOTTOM;
   725         } else if (field != NULL && field->is_constant()) {
   726           // This can happen if the constant oop is non-perm.
   727           ciObject* con = field->constant_value().as_object();
   728           // Do not "join" in the previous type; it doesn't add value,
   729           // and may yield a vacuous result if the field is of interface type.
   730           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   731           assert(field_type != NULL, "field singleton type must be consistent");
   732         } else {
   733           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
   734         }
   735         if (UseCompressedOops) {
   736           field_type = field_type->make_narrowoop();
   737           basic_elem_type = T_NARROWOOP;
   738         }
   739       } else {
   740         field_type = Type::get_const_basic_type(basic_elem_type);
   741       }
   743       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
   745       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
   746       if (field_val == NULL) {
   747         // we weren't able to find a value for this field,
   748         // give up on eliminating this allocation
   749         alloc->_is_scalar_replaceable = false;  // don't try again
   750         // remove any extra entries we added to the safepoint
   751         uint last = sfpt->req() - 1;
   752         for (int k = 0;  k < j; k++) {
   753           sfpt->del_req(last--);
   754         }
   755         // rollback processed safepoints
   756         while (safepoints_done.length() > 0) {
   757           SafePointNode* sfpt_done = safepoints_done.pop();
   758           // remove any extra entries we added to the safepoint
   759           last = sfpt_done->req() - 1;
   760           for (int k = 0;  k < nfields; k++) {
   761             sfpt_done->del_req(last--);
   762           }
   763           JVMState *jvms = sfpt_done->jvms();
   764           jvms->set_endoff(sfpt_done->req());
   765           // Now make a pass over the debug information replacing any references
   766           // to SafePointScalarObjectNode with the allocated object.
   767           int start = jvms->debug_start();
   768           int end   = jvms->debug_end();
   769           for (int i = start; i < end; i++) {
   770             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
   771               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
   772               if (scobj->first_index() == sfpt_done->req() &&
   773                   scobj->n_fields() == (uint)nfields) {
   774                 assert(scobj->alloc() == alloc, "sanity");
   775                 sfpt_done->set_req(i, res);
   776               }
   777             }
   778           }
   779         }
   780 #ifndef PRODUCT
   781         if (PrintEliminateAllocations) {
   782           if (field != NULL) {
   783             tty->print("=== At SafePoint node %d can't find value of Field: ",
   784                        sfpt->_idx);
   785             field->print();
   786             int field_idx = C->get_alias_index(field_addr_type);
   787             tty->print(" (alias_idx=%d)", field_idx);
   788           } else { // Array's element
   789             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
   790                        sfpt->_idx, j);
   791           }
   792           tty->print(", which prevents elimination of: ");
   793           if (res == NULL)
   794             alloc->dump();
   795           else
   796             res->dump();
   797         }
   798 #endif
   799         return false;
   800       }
   801       if (UseCompressedOops && field_type->isa_narrowoop()) {
   802         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
   803         // to be able scalar replace the allocation.
   804         if (field_val->is_EncodeP()) {
   805           field_val = field_val->in(1);
   806         } else {
   807           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
   808         }
   809       }
   810       sfpt->add_req(field_val);
   811     }
   812     JVMState *jvms = sfpt->jvms();
   813     jvms->set_endoff(sfpt->req());
   814     // Now make a pass over the debug information replacing any references
   815     // to the allocated object with "sobj"
   816     int start = jvms->debug_start();
   817     int end   = jvms->debug_end();
   818     for (int i = start; i < end; i++) {
   819       if (sfpt->in(i) == res) {
   820         sfpt->set_req(i, sobj);
   821       }
   822     }
   823     safepoints_done.append_if_missing(sfpt); // keep it for rollback
   824   }
   825   return true;
   826 }
   828 // Process users of eliminated allocation.
   829 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
   830   Node* res = alloc->result_cast();
   831   if (res != NULL) {
   832     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
   833       Node *use = res->last_out(j);
   834       uint oc1 = res->outcnt();
   836       if (use->is_AddP()) {
   837         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
   838           Node *n = use->last_out(k);
   839           uint oc2 = use->outcnt();
   840           if (n->is_Store()) {
   841 #ifdef ASSERT
   842             // Verify that there is no dependent MemBarVolatile nodes,
   843             // they should be removed during IGVN, see MemBarNode::Ideal().
   844             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
   845                                        p < pmax; p++) {
   846               Node* mb = n->fast_out(p);
   847               assert(mb->is_Initialize() || !mb->is_MemBar() ||
   848                      mb->req() <= MemBarNode::Precedent ||
   849                      mb->in(MemBarNode::Precedent) != n,
   850                      "MemBarVolatile should be eliminated for non-escaping object");
   851             }
   852 #endif
   853             _igvn.replace_node(n, n->in(MemNode::Memory));
   854           } else {
   855             eliminate_card_mark(n);
   856           }
   857           k -= (oc2 - use->outcnt());
   858         }
   859       } else {
   860         eliminate_card_mark(use);
   861       }
   862       j -= (oc1 - res->outcnt());
   863     }
   864     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
   865     _igvn.remove_dead_node(res);
   866   }
   868   //
   869   // Process other users of allocation's projections
   870   //
   871   if (_resproj != NULL && _resproj->outcnt() != 0) {
   872     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
   873       Node *use = _resproj->last_out(j);
   874       uint oc1 = _resproj->outcnt();
   875       if (use->is_Initialize()) {
   876         // Eliminate Initialize node.
   877         InitializeNode *init = use->as_Initialize();
   878         assert(init->outcnt() <= 2, "only a control and memory projection expected");
   879         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
   880         if (ctrl_proj != NULL) {
   881            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
   882           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
   883         }
   884         Node *mem_proj = init->proj_out(TypeFunc::Memory);
   885         if (mem_proj != NULL) {
   886           Node *mem = init->in(TypeFunc::Memory);
   887 #ifdef ASSERT
   888           if (mem->is_MergeMem()) {
   889             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
   890           } else {
   891             assert(mem == _memproj_fallthrough, "allocation memory projection");
   892           }
   893 #endif
   894           _igvn.replace_node(mem_proj, mem);
   895         }
   896       } else if (use->is_AddP()) {
   897         // raw memory addresses used only by the initialization
   898         _igvn.replace_node(use, C->top());
   899       } else  {
   900         assert(false, "only Initialize or AddP expected");
   901       }
   902       j -= (oc1 - _resproj->outcnt());
   903     }
   904   }
   905   if (_fallthroughcatchproj != NULL) {
   906     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
   907   }
   908   if (_memproj_fallthrough != NULL) {
   909     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
   910   }
   911   if (_memproj_catchall != NULL) {
   912     _igvn.replace_node(_memproj_catchall, C->top());
   913   }
   914   if (_ioproj_fallthrough != NULL) {
   915     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
   916   }
   917   if (_ioproj_catchall != NULL) {
   918     _igvn.replace_node(_ioproj_catchall, C->top());
   919   }
   920   if (_catchallcatchproj != NULL) {
   921     _igvn.replace_node(_catchallcatchproj, C->top());
   922   }
   923 }
   925 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
   927   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
   928     return false;
   929   }
   931   extract_call_projections(alloc);
   933   GrowableArray <SafePointNode *> safepoints;
   934   if (!can_eliminate_allocation(alloc, safepoints)) {
   935     return false;
   936   }
   938   if (!scalar_replacement(alloc, safepoints)) {
   939     return false;
   940   }
   942   CompileLog* log = C->log();
   943   if (log != NULL) {
   944     Node* klass = alloc->in(AllocateNode::KlassNode);
   945     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
   946     log->head("eliminate_allocation type='%d'",
   947               log->identify(tklass->klass()));
   948     JVMState* p = alloc->jvms();
   949     while (p != NULL) {
   950       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
   951       p = p->caller();
   952     }
   953     log->tail("eliminate_allocation");
   954   }
   956   process_users_of_allocation(alloc);
   958 #ifndef PRODUCT
   959   if (PrintEliminateAllocations) {
   960     if (alloc->is_AllocateArray())
   961       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
   962     else
   963       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
   964   }
   965 #endif
   967   return true;
   968 }
   971 //---------------------------set_eden_pointers-------------------------
   972 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
   973   if (UseTLAB) {                // Private allocation: load from TLS
   974     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
   975     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
   976     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
   977     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
   978     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
   979   } else {                      // Shared allocation: load from globals
   980     CollectedHeap* ch = Universe::heap();
   981     address top_adr = (address)ch->top_addr();
   982     address end_adr = (address)ch->end_addr();
   983     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
   984     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
   985   }
   986 }
   989 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
   990   Node* adr = basic_plus_adr(base, offset);
   991   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
   992   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
   993   transform_later(value);
   994   return value;
   995 }
   998 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
   999   Node* adr = basic_plus_adr(base, offset);
  1000   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
  1001   transform_later(mem);
  1002   return mem;
  1005 //=============================================================================
  1006 //
  1007 //                              A L L O C A T I O N
  1008 //
  1009 // Allocation attempts to be fast in the case of frequent small objects.
  1010 // It breaks down like this:
  1011 //
  1012 // 1) Size in doublewords is computed.  This is a constant for objects and
  1013 // variable for most arrays.  Doubleword units are used to avoid size
  1014 // overflow of huge doubleword arrays.  We need doublewords in the end for
  1015 // rounding.
  1016 //
  1017 // 2) Size is checked for being 'too large'.  Too-large allocations will go
  1018 // the slow path into the VM.  The slow path can throw any required
  1019 // exceptions, and does all the special checks for very large arrays.  The
  1020 // size test can constant-fold away for objects.  For objects with
  1021 // finalizers it constant-folds the otherway: you always go slow with
  1022 // finalizers.
  1023 //
  1024 // 3) If NOT using TLABs, this is the contended loop-back point.
  1025 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
  1026 //
  1027 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
  1028 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
  1029 // "size*8" we always enter the VM, where "largish" is a constant picked small
  1030 // enough that there's always space between the eden max and 4Gig (old space is
  1031 // there so it's quite large) and large enough that the cost of entering the VM
  1032 // is dwarfed by the cost to initialize the space.
  1033 //
  1034 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
  1035 // down.  If contended, repeat at step 3.  If using TLABs normal-store
  1036 // adjusted heap top back down; there is no contention.
  1037 //
  1038 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
  1039 // fields.
  1040 //
  1041 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
  1042 // oop flavor.
  1043 //
  1044 //=============================================================================
  1045 // FastAllocateSizeLimit value is in DOUBLEWORDS.
  1046 // Allocations bigger than this always go the slow route.
  1047 // This value must be small enough that allocation attempts that need to
  1048 // trigger exceptions go the slow route.  Also, it must be small enough so
  1049 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
  1050 //=============================================================================j//
  1051 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
  1052 // The allocator will coalesce int->oop copies away.  See comment in
  1053 // coalesce.cpp about how this works.  It depends critically on the exact
  1054 // code shape produced here, so if you are changing this code shape
  1055 // make sure the GC info for the heap-top is correct in and around the
  1056 // slow-path call.
  1057 //
  1059 void PhaseMacroExpand::expand_allocate_common(
  1060             AllocateNode* alloc, // allocation node to be expanded
  1061             Node* length,  // array length for an array allocation
  1062             const TypeFunc* slow_call_type, // Type of slow call
  1063             address slow_call_address  // Address of slow call
  1067   Node* ctrl = alloc->in(TypeFunc::Control);
  1068   Node* mem  = alloc->in(TypeFunc::Memory);
  1069   Node* i_o  = alloc->in(TypeFunc::I_O);
  1070   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  1071   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  1072   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
  1074   assert(ctrl != NULL, "must have control");
  1075   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  1076   // they will not be used if "always_slow" is set
  1077   enum { slow_result_path = 1, fast_result_path = 2 };
  1078   Node *result_region;
  1079   Node *result_phi_rawmem;
  1080   Node *result_phi_rawoop;
  1081   Node *result_phi_i_o;
  1083   // The initial slow comparison is a size check, the comparison
  1084   // we want to do is a BoolTest::gt
  1085   bool always_slow = false;
  1086   int tv = _igvn.find_int_con(initial_slow_test, -1);
  1087   if (tv >= 0) {
  1088     always_slow = (tv == 1);
  1089     initial_slow_test = NULL;
  1090   } else {
  1091     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  1094   if (C->env()->dtrace_alloc_probes() ||
  1095       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
  1096                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
  1097     // Force slow-path allocation
  1098     always_slow = true;
  1099     initial_slow_test = NULL;
  1103   enum { too_big_or_final_path = 1, need_gc_path = 2 };
  1104   Node *slow_region = NULL;
  1105   Node *toobig_false = ctrl;
  1107   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  1108   // generate the initial test if necessary
  1109   if (initial_slow_test != NULL ) {
  1110     slow_region = new (C, 3) RegionNode(3);
  1112     // Now make the initial failure test.  Usually a too-big test but
  1113     // might be a TRUE for finalizers or a fancy class check for
  1114     // newInstance0.
  1115     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  1116     transform_later(toobig_iff);
  1117     // Plug the failing-too-big test into the slow-path region
  1118     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
  1119     transform_later(toobig_true);
  1120     slow_region    ->init_req( too_big_or_final_path, toobig_true );
  1121     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
  1122     transform_later(toobig_false);
  1123   } else {         // No initial test, just fall into next case
  1124     toobig_false = ctrl;
  1125     debug_only(slow_region = NodeSentinel);
  1128   Node *slow_mem = mem;  // save the current memory state for slow path
  1129   // generate the fast allocation code unless we know that the initial test will always go slow
  1130   if (!always_slow) {
  1131     // Fast path modifies only raw memory.
  1132     if (mem->is_MergeMem()) {
  1133       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  1136     Node* eden_top_adr;
  1137     Node* eden_end_adr;
  1139     set_eden_pointers(eden_top_adr, eden_end_adr);
  1141     // Load Eden::end.  Loop invariant and hoisted.
  1142     //
  1143     // Note: We set the control input on "eden_end" and "old_eden_top" when using
  1144     //       a TLAB to work around a bug where these values were being moved across
  1145     //       a safepoint.  These are not oops, so they cannot be include in the oop
  1146     //       map, but the can be changed by a GC.   The proper way to fix this would
  1147     //       be to set the raw memory state when generating a  SafepointNode.  However
  1148     //       this will require extensive changes to the loop optimization in order to
  1149     //       prevent a degradation of the optimization.
  1150     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  1151     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
  1153     // allocate the Region and Phi nodes for the result
  1154     result_region = new (C, 3) RegionNode(3);
  1155     result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
  1156     result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
  1157     result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
  1159     // We need a Region for the loop-back contended case.
  1160     enum { fall_in_path = 1, contended_loopback_path = 2 };
  1161     Node *contended_region;
  1162     Node *contended_phi_rawmem;
  1163     if( UseTLAB ) {
  1164       contended_region = toobig_false;
  1165       contended_phi_rawmem = mem;
  1166     } else {
  1167       contended_region = new (C, 3) RegionNode(3);
  1168       contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1169       // Now handle the passing-too-big test.  We fall into the contended
  1170       // loop-back merge point.
  1171       contended_region    ->init_req( fall_in_path, toobig_false );
  1172       contended_phi_rawmem->init_req( fall_in_path, mem );
  1173       transform_later(contended_region);
  1174       transform_later(contended_phi_rawmem);
  1177     // Load(-locked) the heap top.
  1178     // See note above concerning the control input when using a TLAB
  1179     Node *old_eden_top = UseTLAB
  1180       ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
  1181       : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
  1183     transform_later(old_eden_top);
  1184     // Add to heap top to get a new heap top
  1185     Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
  1186     transform_later(new_eden_top);
  1187     // Check for needing a GC; compare against heap end
  1188     Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
  1189     transform_later(needgc_cmp);
  1190     Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
  1191     transform_later(needgc_bol);
  1192     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1193     transform_later(needgc_iff);
  1195     // Plug the failing-heap-space-need-gc test into the slow-path region
  1196     Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
  1197     transform_later(needgc_true);
  1198     if( initial_slow_test ) {
  1199       slow_region    ->init_req( need_gc_path, needgc_true );
  1200       // This completes all paths into the slow merge point
  1201       transform_later(slow_region);
  1202     } else {                      // No initial slow path needed!
  1203       // Just fall from the need-GC path straight into the VM call.
  1204       slow_region    = needgc_true;
  1206     // No need for a GC.  Setup for the Store-Conditional
  1207     Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
  1208     transform_later(needgc_false);
  1210     // Grab regular I/O before optional prefetch may change it.
  1211     // Slow-path does no I/O so just set it to the original I/O.
  1212     result_phi_i_o->init_req( slow_result_path, i_o );
  1214     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
  1215                               old_eden_top, new_eden_top, length);
  1217     // Store (-conditional) the modified eden top back down.
  1218     // StorePConditional produces flags for a test PLUS a modified raw
  1219     // memory state.
  1220     Node *store_eden_top;
  1221     Node *fast_oop_ctrl;
  1222     if( UseTLAB ) {
  1223       store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
  1224       transform_later(store_eden_top);
  1225       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
  1226     } else {
  1227       store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
  1228       transform_later(store_eden_top);
  1229       Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
  1230       transform_later(contention_check);
  1231       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
  1232       transform_later(store_eden_top);
  1234       // If not using TLABs, check to see if there was contention.
  1235       IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
  1236       transform_later(contention_iff);
  1237       Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
  1238       transform_later(contention_true);
  1239       // If contention, loopback and try again.
  1240       contended_region->init_req( contended_loopback_path, contention_true );
  1241       contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
  1243       // Fast-path succeeded with no contention!
  1244       Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
  1245       transform_later(contention_false);
  1246       fast_oop_ctrl = contention_false;
  1249     // Rename successful fast-path variables to make meaning more obvious
  1250     Node* fast_oop        = old_eden_top;
  1251     Node* fast_oop_rawmem = store_eden_top;
  1252     fast_oop_rawmem = initialize_object(alloc,
  1253                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
  1254                                         klass_node, length, size_in_bytes);
  1256     if (C->env()->dtrace_extended_probes()) {
  1257       // Slow-path call
  1258       int size = TypeFunc::Parms + 2;
  1259       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
  1260                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
  1261                                                       "dtrace_object_alloc",
  1262                                                       TypeRawPtr::BOTTOM);
  1264       // Get base of thread-local storage area
  1265       Node* thread = new (C, 1) ThreadLocalNode();
  1266       transform_later(thread);
  1268       call->init_req(TypeFunc::Parms+0, thread);
  1269       call->init_req(TypeFunc::Parms+1, fast_oop);
  1270       call->init_req( TypeFunc::Control, fast_oop_ctrl );
  1271       call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
  1272       call->init_req( TypeFunc::Memory , fast_oop_rawmem );
  1273       call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1274       call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1275       transform_later(call);
  1276       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  1277       transform_later(fast_oop_ctrl);
  1278       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  1279       transform_later(fast_oop_rawmem);
  1282     // Plug in the successful fast-path into the result merge point
  1283     result_region    ->init_req( fast_result_path, fast_oop_ctrl );
  1284     result_phi_rawoop->init_req( fast_result_path, fast_oop );
  1285     result_phi_i_o   ->init_req( fast_result_path, i_o );
  1286     result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
  1287   } else {
  1288     slow_region = ctrl;
  1291   // Generate slow-path call
  1292   CallNode *call = new (C, slow_call_type->domain()->cnt())
  1293     CallStaticJavaNode(slow_call_type, slow_call_address,
  1294                        OptoRuntime::stub_name(slow_call_address),
  1295                        alloc->jvms()->bci(),
  1296                        TypePtr::BOTTOM);
  1297   call->init_req( TypeFunc::Control, slow_region );
  1298   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  1299   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  1300   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1301   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1303   call->init_req(TypeFunc::Parms+0, klass_node);
  1304   if (length != NULL) {
  1305     call->init_req(TypeFunc::Parms+1, length);
  1308   // Copy debug information and adjust JVMState information, then replace
  1309   // allocate node with the call
  1310   copy_call_debug_info((CallNode *) alloc,  call);
  1311   if (!always_slow) {
  1312     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  1314   _igvn.hash_delete(alloc);
  1315   _igvn.subsume_node(alloc, call);
  1316   transform_later(call);
  1318   // Identify the output projections from the allocate node and
  1319   // adjust any references to them.
  1320   // The control and io projections look like:
  1321   //
  1322   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  1323   //  Allocate                   Catch
  1324   //        ^---Proj(io) <-------+   ^---CatchProj(io)
  1325   //
  1326   //  We are interested in the CatchProj nodes.
  1327   //
  1328   extract_call_projections(call);
  1330   // An allocate node has separate memory projections for the uses on the control and i_o paths
  1331   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
  1332   if (!always_slow && _memproj_fallthrough != NULL) {
  1333     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1334       Node *use = _memproj_fallthrough->fast_out(i);
  1335       _igvn.hash_delete(use);
  1336       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
  1337       _igvn._worklist.push(use);
  1338       // back up iterator
  1339       --i;
  1342   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
  1343   // we end up with a call that has only 1 memory projection
  1344   if (_memproj_catchall != NULL ) {
  1345     if (_memproj_fallthrough == NULL) {
  1346       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
  1347       transform_later(_memproj_fallthrough);
  1349     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
  1350       Node *use = _memproj_catchall->fast_out(i);
  1351       _igvn.hash_delete(use);
  1352       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
  1353       _igvn._worklist.push(use);
  1354       // back up iterator
  1355       --i;
  1359   // An allocate node has separate i_o projections for the uses on the control and i_o paths
  1360   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
  1361   if (_ioproj_fallthrough == NULL) {
  1362     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
  1363     transform_later(_ioproj_fallthrough);
  1364   } else if (!always_slow) {
  1365     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1366       Node *use = _ioproj_fallthrough->fast_out(i);
  1368       _igvn.hash_delete(use);
  1369       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
  1370       _igvn._worklist.push(use);
  1371       // back up iterator
  1372       --i;
  1375   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
  1376   // we end up with a call that has only 1 control projection
  1377   if (_ioproj_catchall != NULL ) {
  1378     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
  1379       Node *use = _ioproj_catchall->fast_out(i);
  1380       _igvn.hash_delete(use);
  1381       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
  1382       _igvn._worklist.push(use);
  1383       // back up iterator
  1384       --i;
  1388   // if we generated only a slow call, we are done
  1389   if (always_slow)
  1390     return;
  1393   if (_fallthroughcatchproj != NULL) {
  1394     ctrl = _fallthroughcatchproj->clone();
  1395     transform_later(ctrl);
  1396     _igvn.replace_node(_fallthroughcatchproj, result_region);
  1397   } else {
  1398     ctrl = top();
  1400   Node *slow_result;
  1401   if (_resproj == NULL) {
  1402     // no uses of the allocation result
  1403     slow_result = top();
  1404   } else {
  1405     slow_result = _resproj->clone();
  1406     transform_later(slow_result);
  1407     _igvn.replace_node(_resproj, result_phi_rawoop);
  1410   // Plug slow-path into result merge point
  1411   result_region    ->init_req( slow_result_path, ctrl );
  1412   result_phi_rawoop->init_req( slow_result_path, slow_result);
  1413   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  1414   transform_later(result_region);
  1415   transform_later(result_phi_rawoop);
  1416   transform_later(result_phi_rawmem);
  1417   transform_later(result_phi_i_o);
  1418   // This completes all paths into the result merge point
  1422 // Helper for PhaseMacroExpand::expand_allocate_common.
  1423 // Initializes the newly-allocated storage.
  1424 Node*
  1425 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
  1426                                     Node* control, Node* rawmem, Node* object,
  1427                                     Node* klass_node, Node* length,
  1428                                     Node* size_in_bytes) {
  1429   InitializeNode* init = alloc->initialization();
  1430   // Store the klass & mark bits
  1431   Node* mark_node = NULL;
  1432   // For now only enable fast locking for non-array types
  1433   if (UseBiasedLocking && (length == NULL)) {
  1434     mark_node = make_load(control, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
  1435   } else {
  1436     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  1438   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
  1440   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
  1441   int header_size = alloc->minimum_header_size();  // conservatively small
  1443   // Array length
  1444   if (length != NULL) {         // Arrays need length field
  1445     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
  1446     // conservatively small header size:
  1447     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1448     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1449     if (k->is_array_klass())    // we know the exact header size in most cases:
  1450       header_size = Klass::layout_helper_header_size(k->layout_helper());
  1453   // Clear the object body, if necessary.
  1454   if (init == NULL) {
  1455     // The init has somehow disappeared; be cautious and clear everything.
  1456     //
  1457     // This can happen if a node is allocated but an uncommon trap occurs
  1458     // immediately.  In this case, the Initialize gets associated with the
  1459     // trap, and may be placed in a different (outer) loop, if the Allocate
  1460     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
  1461     // there can be two Allocates to one Initialize.  The answer in all these
  1462     // edge cases is safety first.  It is always safe to clear immediately
  1463     // within an Allocate, and then (maybe or maybe not) clear some more later.
  1464     if (!ZeroTLAB)
  1465       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
  1466                                             header_size, size_in_bytes,
  1467                                             &_igvn);
  1468   } else {
  1469     if (!init->is_complete()) {
  1470       // Try to win by zeroing only what the init does not store.
  1471       // We can also try to do some peephole optimizations,
  1472       // such as combining some adjacent subword stores.
  1473       rawmem = init->complete_stores(control, rawmem, object,
  1474                                      header_size, size_in_bytes, &_igvn);
  1476     // We have no more use for this link, since the AllocateNode goes away:
  1477     init->set_req(InitializeNode::RawAddress, top());
  1478     // (If we keep the link, it just confuses the register allocator,
  1479     // who thinks he sees a real use of the address by the membar.)
  1482   return rawmem;
  1485 // Generate prefetch instructions for next allocations.
  1486 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
  1487                                         Node*& contended_phi_rawmem,
  1488                                         Node* old_eden_top, Node* new_eden_top,
  1489                                         Node* length) {
  1490    enum { fall_in_path = 1, pf_path = 2 };
  1491    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
  1492       // Generate prefetch allocation with watermark check.
  1493       // As an allocation hits the watermark, we will prefetch starting
  1494       // at a "distance" away from watermark.
  1496       Node *pf_region = new (C, 3) RegionNode(3);
  1497       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1498                                                 TypeRawPtr::BOTTOM );
  1499       // I/O is used for Prefetch
  1500       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
  1502       Node *thread = new (C, 1) ThreadLocalNode();
  1503       transform_later(thread);
  1505       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
  1506                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
  1507       transform_later(eden_pf_adr);
  1509       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
  1510                                    contended_phi_rawmem, eden_pf_adr,
  1511                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
  1512       transform_later(old_pf_wm);
  1514       // check against new_eden_top
  1515       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
  1516       transform_later(need_pf_cmp);
  1517       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
  1518       transform_later(need_pf_bol);
  1519       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
  1520                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1521       transform_later(need_pf_iff);
  1523       // true node, add prefetchdistance
  1524       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
  1525       transform_later(need_pf_true);
  1527       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
  1528       transform_later(need_pf_false);
  1530       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
  1531                                     _igvn.MakeConX(AllocatePrefetchDistance) );
  1532       transform_later(new_pf_wmt );
  1533       new_pf_wmt->set_req(0, need_pf_true);
  1535       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
  1536                                        contended_phi_rawmem, eden_pf_adr,
  1537                                        TypeRawPtr::BOTTOM, new_pf_wmt );
  1538       transform_later(store_new_wmt);
  1540       // adding prefetches
  1541       pf_phi_abio->init_req( fall_in_path, i_o );
  1543       Node *prefetch_adr;
  1544       Node *prefetch;
  1545       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
  1546       uint step_size = AllocatePrefetchStepSize;
  1547       uint distance = 0;
  1549       for ( uint i = 0; i < lines; i++ ) {
  1550         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
  1551                                             _igvn.MakeConX(distance) );
  1552         transform_later(prefetch_adr);
  1553         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1554         transform_later(prefetch);
  1555         distance += step_size;
  1556         i_o = prefetch;
  1558       pf_phi_abio->set_req( pf_path, i_o );
  1560       pf_region->init_req( fall_in_path, need_pf_false );
  1561       pf_region->init_req( pf_path, need_pf_true );
  1563       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
  1564       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
  1566       transform_later(pf_region);
  1567       transform_later(pf_phi_rawmem);
  1568       transform_later(pf_phi_abio);
  1570       needgc_false = pf_region;
  1571       contended_phi_rawmem = pf_phi_rawmem;
  1572       i_o = pf_phi_abio;
  1573    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
  1574       // Insert a prefetch for each allocation only on the fast-path
  1575       Node *pf_region = new (C, 3) RegionNode(3);
  1576       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1577                                                 TypeRawPtr::BOTTOM );
  1579       // Generate several prefetch instructions only for arrays.
  1580       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1581       uint step_size = AllocatePrefetchStepSize;
  1582       uint distance = AllocatePrefetchDistance;
  1584       // Next cache address.
  1585       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
  1586                                             _igvn.MakeConX(distance));
  1587       transform_later(cache_adr);
  1588       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
  1589       transform_later(cache_adr);
  1590       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
  1591       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
  1592       transform_later(cache_adr);
  1593       cache_adr = new (C, 2) CastX2PNode(cache_adr);
  1594       transform_later(cache_adr);
  1596       // Prefetch
  1597       Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
  1598       prefetch->set_req(0, needgc_false);
  1599       transform_later(prefetch);
  1600       contended_phi_rawmem = prefetch;
  1601       Node *prefetch_adr;
  1602       distance = step_size;
  1603       for ( uint i = 1; i < lines; i++ ) {
  1604         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
  1605                                             _igvn.MakeConX(distance) );
  1606         transform_later(prefetch_adr);
  1607         prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
  1608         transform_later(prefetch);
  1609         distance += step_size;
  1610         contended_phi_rawmem = prefetch;
  1612    } else if( AllocatePrefetchStyle > 0 ) {
  1613       // Insert a prefetch for each allocation only on the fast-path
  1614       Node *prefetch_adr;
  1615       Node *prefetch;
  1616       // Generate several prefetch instructions only for arrays.
  1617       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1618       uint step_size = AllocatePrefetchStepSize;
  1619       uint distance = AllocatePrefetchDistance;
  1620       for ( uint i = 0; i < lines; i++ ) {
  1621         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
  1622                                             _igvn.MakeConX(distance) );
  1623         transform_later(prefetch_adr);
  1624         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1625         // Do not let it float too high, since if eden_top == eden_end,
  1626         // both might be null.
  1627         if( i == 0 ) { // Set control for first prefetch, next follows it
  1628           prefetch->init_req(0, needgc_false);
  1630         transform_later(prefetch);
  1631         distance += step_size;
  1632         i_o = prefetch;
  1635    return i_o;
  1639 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  1640   expand_allocate_common(alloc, NULL,
  1641                          OptoRuntime::new_instance_Type(),
  1642                          OptoRuntime::new_instance_Java());
  1645 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  1646   Node* length = alloc->in(AllocateNode::ALength);
  1647   expand_allocate_common(alloc, length,
  1648                          OptoRuntime::new_array_Type(),
  1649                          OptoRuntime::new_array_Java());
  1653 // we have determined that this lock/unlock can be eliminated, we simply
  1654 // eliminate the node without expanding it.
  1655 //
  1656 // Note:  The membar's associated with the lock/unlock are currently not
  1657 //        eliminated.  This should be investigated as a future enhancement.
  1658 //
  1659 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
  1661   if (!alock->is_eliminated()) {
  1662     return false;
  1664   if (alock->is_Lock() && !alock->is_coarsened()) {
  1665       // Create new "eliminated" BoxLock node and use it
  1666       // in monitor debug info for the same object.
  1667       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  1668       Node* obj = alock->obj_node();
  1669       if (!oldbox->is_eliminated()) {
  1670         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
  1671         newbox->set_eliminated();
  1672         transform_later(newbox);
  1673         // Replace old box node with new box for all users
  1674         // of the same object.
  1675         for (uint i = 0; i < oldbox->outcnt();) {
  1677           bool next_edge = true;
  1678           Node* u = oldbox->raw_out(i);
  1679           if (u == alock) {
  1680             i++;
  1681             continue; // It will be removed below
  1683           if (u->is_Lock() &&
  1684               u->as_Lock()->obj_node() == obj &&
  1685               // oldbox could be referenced in debug info also
  1686               u->as_Lock()->box_node() == oldbox) {
  1687             assert(u->as_Lock()->is_eliminated(), "sanity");
  1688             _igvn.hash_delete(u);
  1689             u->set_req(TypeFunc::Parms + 1, newbox);
  1690             next_edge = false;
  1691 #ifdef ASSERT
  1692           } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
  1693             assert(u->as_Unlock()->is_eliminated(), "sanity");
  1694 #endif
  1696           // Replace old box in monitor debug info.
  1697           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
  1698             SafePointNode* sfn = u->as_SafePoint();
  1699             JVMState* youngest_jvms = sfn->jvms();
  1700             int max_depth = youngest_jvms->depth();
  1701             for (int depth = 1; depth <= max_depth; depth++) {
  1702               JVMState* jvms = youngest_jvms->of_depth(depth);
  1703               int num_mon  = jvms->nof_monitors();
  1704               // Loop over monitors
  1705               for (int idx = 0; idx < num_mon; idx++) {
  1706                 Node* obj_node = sfn->monitor_obj(jvms, idx);
  1707                 Node* box_node = sfn->monitor_box(jvms, idx);
  1708                 if (box_node == oldbox && obj_node == obj) {
  1709                   int j = jvms->monitor_box_offset(idx);
  1710                   _igvn.hash_delete(u);
  1711                   u->set_req(j, newbox);
  1712                   next_edge = false;
  1714               } // for (int idx = 0;
  1715             } // for (int depth = 1;
  1716           } // if (u->is_SafePoint()
  1717           if (next_edge) i++;
  1718         } // for (uint i = 0; i < oldbox->outcnt();)
  1719       } // if (!oldbox->is_eliminated())
  1720   } // if (alock->is_Lock() && !lock->is_coarsened())
  1722   CompileLog* log = C->log();
  1723   if (log != NULL) {
  1724     log->head("eliminate_lock lock='%d'",
  1725               alock->is_Lock());
  1726     JVMState* p = alock->jvms();
  1727     while (p != NULL) {
  1728       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1729       p = p->caller();
  1731     log->tail("eliminate_lock");
  1734   #ifndef PRODUCT
  1735   if (PrintEliminateLocks) {
  1736     if (alock->is_Lock()) {
  1737       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
  1738     } else {
  1739       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
  1742   #endif
  1744   Node* mem  = alock->in(TypeFunc::Memory);
  1745   Node* ctrl = alock->in(TypeFunc::Control);
  1747   extract_call_projections(alock);
  1748   // There are 2 projections from the lock.  The lock node will
  1749   // be deleted when its last use is subsumed below.
  1750   assert(alock->outcnt() == 2 &&
  1751          _fallthroughproj != NULL &&
  1752          _memproj_fallthrough != NULL,
  1753          "Unexpected projections from Lock/Unlock");
  1755   Node* fallthroughproj = _fallthroughproj;
  1756   Node* memproj_fallthrough = _memproj_fallthrough;
  1758   // The memory projection from a lock/unlock is RawMem
  1759   // The input to a Lock is merged memory, so extract its RawMem input
  1760   // (unless the MergeMem has been optimized away.)
  1761   if (alock->is_Lock()) {
  1762     // Seach for MemBarAcquire node and delete it also.
  1763     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
  1764     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
  1765     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
  1766     Node* memproj = membar->proj_out(TypeFunc::Memory);
  1767     _igvn.replace_node(ctrlproj, fallthroughproj);
  1768     _igvn.replace_node(memproj, memproj_fallthrough);
  1770     // Delete FastLock node also if this Lock node is unique user
  1771     // (a loop peeling may clone a Lock node).
  1772     Node* flock = alock->as_Lock()->fastlock_node();
  1773     if (flock->outcnt() == 1) {
  1774       assert(flock->unique_out() == alock, "sanity");
  1775       _igvn.replace_node(flock, top());
  1779   // Seach for MemBarRelease node and delete it also.
  1780   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
  1781       ctrl->in(0)->is_MemBar()) {
  1782     MemBarNode* membar = ctrl->in(0)->as_MemBar();
  1783     assert(membar->Opcode() == Op_MemBarRelease &&
  1784            mem->is_Proj() && membar == mem->in(0), "");
  1785     _igvn.replace_node(fallthroughproj, ctrl);
  1786     _igvn.replace_node(memproj_fallthrough, mem);
  1787     fallthroughproj = ctrl;
  1788     memproj_fallthrough = mem;
  1789     ctrl = membar->in(TypeFunc::Control);
  1790     mem  = membar->in(TypeFunc::Memory);
  1793   _igvn.replace_node(fallthroughproj, ctrl);
  1794   _igvn.replace_node(memproj_fallthrough, mem);
  1795   return true;
  1799 //------------------------------expand_lock_node----------------------
  1800 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
  1802   Node* ctrl = lock->in(TypeFunc::Control);
  1803   Node* mem = lock->in(TypeFunc::Memory);
  1804   Node* obj = lock->obj_node();
  1805   Node* box = lock->box_node();
  1806   Node* flock = lock->fastlock_node();
  1808   // Make the merge point
  1809   Node *region;
  1810   Node *mem_phi;
  1811   Node *slow_path;
  1813   if (UseOptoBiasInlining) {
  1814     /*
  1815      *  See the full description in MacroAssembler::biased_locking_enter().
  1817      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
  1818      *    // The object is biased.
  1819      *    proto_node = klass->prototype_header;
  1820      *    o_node = thread | proto_node;
  1821      *    x_node = o_node ^ mark_word;
  1822      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
  1823      *      // Done.
  1824      *    } else {
  1825      *      if( (x_node & biased_lock_mask) != 0 ) {
  1826      *        // The klass's prototype header is no longer biased.
  1827      *        cas(&mark_word, mark_word, proto_node)
  1828      *        goto cas_lock;
  1829      *      } else {
  1830      *        // The klass's prototype header is still biased.
  1831      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
  1832      *          old = mark_word;
  1833      *          new = o_node;
  1834      *        } else {
  1835      *          // Different thread or anonymous biased.
  1836      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
  1837      *          new = thread | old;
  1838      *        }
  1839      *        // Try to rebias.
  1840      *        if( cas(&mark_word, old, new) == 0 ) {
  1841      *          // Done.
  1842      *        } else {
  1843      *          goto slow_path; // Failed.
  1844      *        }
  1845      *      }
  1846      *    }
  1847      *  } else {
  1848      *    // The object is not biased.
  1849      *    cas_lock:
  1850      *    if( FastLock(obj) == 0 ) {
  1851      *      // Done.
  1852      *    } else {
  1853      *      slow_path:
  1854      *      OptoRuntime::complete_monitor_locking_Java(obj);
  1855      *    }
  1856      *  }
  1857      */
  1859     region  = new (C, 5) RegionNode(5);
  1860     // create a Phi for the memory state
  1861     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1863     Node* fast_lock_region  = new (C, 3) RegionNode(3);
  1864     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1866     // First, check mark word for the biased lock pattern.
  1867     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  1869     // Get fast path - mark word has the biased lock pattern.
  1870     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
  1871                          markOopDesc::biased_lock_mask_in_place,
  1872                          markOopDesc::biased_lock_pattern, true);
  1873     // fast_lock_region->in(1) is set to slow path.
  1874     fast_lock_mem_phi->init_req(1, mem);
  1876     // Now check that the lock is biased to the current thread and has
  1877     // the same epoch and bias as Klass::_prototype_header.
  1879     // Special-case a fresh allocation to avoid building nodes:
  1880     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
  1881     if (klass_node == NULL) {
  1882       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1883       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
  1884 #ifdef _LP64
  1885       if (UseCompressedOops && klass_node->is_DecodeN()) {
  1886         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
  1887         klass_node->in(1)->init_req(0, ctrl);
  1888       } else
  1889 #endif
  1890       klass_node->init_req(0, ctrl);
  1892     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
  1894     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
  1895     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  1896     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
  1897     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
  1899     // Get slow path - mark word does NOT match the value.
  1900     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
  1901                                       (~markOopDesc::age_mask_in_place), 0);
  1902     // region->in(3) is set to fast path - the object is biased to the current thread.
  1903     mem_phi->init_req(3, mem);
  1906     // Mark word does NOT match the value (thread | Klass::_prototype_header).
  1909     // First, check biased pattern.
  1910     // Get fast path - _prototype_header has the same biased lock pattern.
  1911     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
  1912                           markOopDesc::biased_lock_mask_in_place, 0, true);
  1914     not_biased_ctrl = fast_lock_region->in(2); // Slow path
  1915     // fast_lock_region->in(2) - the prototype header is no longer biased
  1916     // and we have to revoke the bias on this object.
  1917     // We are going to try to reset the mark of this object to the prototype
  1918     // value and fall through to the CAS-based locking scheme.
  1919     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  1920     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
  1921                                                  proto_node, mark_node);
  1922     transform_later(cas);
  1923     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
  1924     fast_lock_mem_phi->init_req(2, proj);
  1927     // Second, check epoch bits.
  1928     Node* rebiased_region  = new (C, 3) RegionNode(3);
  1929     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1930     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1932     // Get slow path - mark word does NOT match epoch bits.
  1933     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
  1934                                       markOopDesc::epoch_mask_in_place, 0);
  1935     // The epoch of the current bias is not valid, attempt to rebias the object
  1936     // toward the current thread.
  1937     rebiased_region->init_req(2, epoch_ctrl);
  1938     old_phi->init_req(2, mark_node);
  1939     new_phi->init_req(2, o_node);
  1941     // rebiased_region->in(1) is set to fast path.
  1942     // The epoch of the current bias is still valid but we know
  1943     // nothing about the owner; it might be set or it might be clear.
  1944     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
  1945                              markOopDesc::age_mask_in_place |
  1946                              markOopDesc::epoch_mask_in_place);
  1947     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
  1948     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  1949     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
  1950     old_phi->init_req(1, old);
  1951     new_phi->init_req(1, new_mark);
  1953     transform_later(rebiased_region);
  1954     transform_later(old_phi);
  1955     transform_later(new_phi);
  1957     // Try to acquire the bias of the object using an atomic operation.
  1958     // If this fails we will go in to the runtime to revoke the object's bias.
  1959     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
  1960                                            new_phi, old_phi);
  1961     transform_later(cas);
  1962     proj = transform_later( new (C, 1) SCMemProjNode(cas));
  1964     // Get slow path - Failed to CAS.
  1965     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
  1966     mem_phi->init_req(4, proj);
  1967     // region->in(4) is set to fast path - the object is rebiased to the current thread.
  1969     // Failed to CAS.
  1970     slow_path  = new (C, 3) RegionNode(3);
  1971     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
  1973     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
  1974     slow_mem->init_req(1, proj);
  1976     // Call CAS-based locking scheme (FastLock node).
  1978     transform_later(fast_lock_region);
  1979     transform_later(fast_lock_mem_phi);
  1981     // Get slow path - FastLock failed to lock the object.
  1982     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
  1983     mem_phi->init_req(2, fast_lock_mem_phi);
  1984     // region->in(2) is set to fast path - the object is locked to the current thread.
  1986     slow_path->init_req(2, ctrl); // Capture slow-control
  1987     slow_mem->init_req(2, fast_lock_mem_phi);
  1989     transform_later(slow_path);
  1990     transform_later(slow_mem);
  1991     // Reset lock's memory edge.
  1992     lock->set_req(TypeFunc::Memory, slow_mem);
  1994   } else {
  1995     region  = new (C, 3) RegionNode(3);
  1996     // create a Phi for the memory state
  1997     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1999     // Optimize test; set region slot 2
  2000     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
  2001     mem_phi->init_req(2, mem);
  2004   // Make slow path call
  2005   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
  2007   extract_call_projections(call);
  2009   // Slow path can only throw asynchronous exceptions, which are always
  2010   // de-opted.  So the compiler thinks the slow-call can never throw an
  2011   // exception.  If it DOES throw an exception we would need the debug
  2012   // info removed first (since if it throws there is no monitor).
  2013   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2014            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2016   // Capture slow path
  2017   // disconnect fall-through projection from call and create a new one
  2018   // hook up users of fall-through projection to region
  2019   Node *slow_ctrl = _fallthroughproj->clone();
  2020   transform_later(slow_ctrl);
  2021   _igvn.hash_delete(_fallthroughproj);
  2022   _fallthroughproj->disconnect_inputs(NULL);
  2023   region->init_req(1, slow_ctrl);
  2024   // region inputs are now complete
  2025   transform_later(region);
  2026   _igvn.replace_node(_fallthroughproj, region);
  2028   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2029   mem_phi->init_req(1, memproj );
  2030   transform_later(mem_phi);
  2031   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2034 //------------------------------expand_unlock_node----------------------
  2035 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
  2037   Node* ctrl = unlock->in(TypeFunc::Control);
  2038   Node* mem = unlock->in(TypeFunc::Memory);
  2039   Node* obj = unlock->obj_node();
  2040   Node* box = unlock->box_node();
  2042   // No need for a null check on unlock
  2044   // Make the merge point
  2045   Node *region;
  2046   Node *mem_phi;
  2048   if (UseOptoBiasInlining) {
  2049     // Check for biased locking unlock case, which is a no-op.
  2050     // See the full description in MacroAssembler::biased_locking_exit().
  2051     region  = new (C, 4) RegionNode(4);
  2052     // create a Phi for the memory state
  2053     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2054     mem_phi->init_req(3, mem);
  2056     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2057     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
  2058                          markOopDesc::biased_lock_mask_in_place,
  2059                          markOopDesc::biased_lock_pattern);
  2060   } else {
  2061     region  = new (C, 3) RegionNode(3);
  2062     // create a Phi for the memory state
  2063     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2066   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
  2067   funlock = transform_later( funlock )->as_FastUnlock();
  2068   // Optimize test; set region slot 2
  2069   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
  2071   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
  2073   extract_call_projections(call);
  2075   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2076            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2078   // No exceptions for unlocking
  2079   // Capture slow path
  2080   // disconnect fall-through projection from call and create a new one
  2081   // hook up users of fall-through projection to region
  2082   Node *slow_ctrl = _fallthroughproj->clone();
  2083   transform_later(slow_ctrl);
  2084   _igvn.hash_delete(_fallthroughproj);
  2085   _fallthroughproj->disconnect_inputs(NULL);
  2086   region->init_req(1, slow_ctrl);
  2087   // region inputs are now complete
  2088   transform_later(region);
  2089   _igvn.replace_node(_fallthroughproj, region);
  2091   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2092   mem_phi->init_req(1, memproj );
  2093   mem_phi->init_req(2, mem);
  2094   transform_later(mem_phi);
  2095   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2098 //------------------------------expand_macro_nodes----------------------
  2099 //  Returns true if a failure occurred.
  2100 bool PhaseMacroExpand::expand_macro_nodes() {
  2101   if (C->macro_count() == 0)
  2102     return false;
  2103   // First, attempt to eliminate locks
  2104   bool progress = true;
  2105   while (progress) {
  2106     progress = false;
  2107     for (int i = C->macro_count(); i > 0; i--) {
  2108       Node * n = C->macro_node(i-1);
  2109       bool success = false;
  2110       debug_only(int old_macro_count = C->macro_count(););
  2111       if (n->is_AbstractLock()) {
  2112         success = eliminate_locking_node(n->as_AbstractLock());
  2113       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
  2114         _igvn.replace_node(n, n->in(1));
  2115         success = true;
  2117       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2118       progress = progress || success;
  2121   // Next, attempt to eliminate allocations
  2122   progress = true;
  2123   while (progress) {
  2124     progress = false;
  2125     for (int i = C->macro_count(); i > 0; i--) {
  2126       Node * n = C->macro_node(i-1);
  2127       bool success = false;
  2128       debug_only(int old_macro_count = C->macro_count(););
  2129       switch (n->class_id()) {
  2130       case Node::Class_Allocate:
  2131       case Node::Class_AllocateArray:
  2132         success = eliminate_allocate_node(n->as_Allocate());
  2133         break;
  2134       case Node::Class_Lock:
  2135       case Node::Class_Unlock:
  2136         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
  2137         break;
  2138       default:
  2139         assert(false, "unknown node type in macro list");
  2141       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2142       progress = progress || success;
  2145   // Make sure expansion will not cause node limit to be exceeded.
  2146   // Worst case is a macro node gets expanded into about 50 nodes.
  2147   // Allow 50% more for optimization.
  2148   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
  2149     return true;
  2151   // expand "macro" nodes
  2152   // nodes are removed from the macro list as they are processed
  2153   while (C->macro_count() > 0) {
  2154     int macro_count = C->macro_count();
  2155     Node * n = C->macro_node(macro_count-1);
  2156     assert(n->is_macro(), "only macro nodes expected here");
  2157     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
  2158       // node is unreachable, so don't try to expand it
  2159       C->remove_macro_node(n);
  2160       continue;
  2162     switch (n->class_id()) {
  2163     case Node::Class_Allocate:
  2164       expand_allocate(n->as_Allocate());
  2165       break;
  2166     case Node::Class_AllocateArray:
  2167       expand_allocate_array(n->as_AllocateArray());
  2168       break;
  2169     case Node::Class_Lock:
  2170       expand_lock_node(n->as_Lock());
  2171       break;
  2172     case Node::Class_Unlock:
  2173       expand_unlock_node(n->as_Unlock());
  2174       break;
  2175     default:
  2176       assert(false, "unknown node type in macro list");
  2178     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
  2179     if (C->failing())  return true;
  2182   _igvn.set_delay_transform(false);
  2183   _igvn.optimize();
  2184   return false;

mercurial