src/os/solaris/vm/perfMemory_solaris.cpp

Wed, 26 Nov 2014 08:57:40 -0800

author
asaha
date
Wed, 26 Nov 2014 08:57:40 -0800
changeset 7495
42f27b59c550
parent 7074
833b0f92429a
parent 7493
d7b6bdd51abe
child 7535
7ae4e26cb1e0
child 7715
f3ffb37f88a6
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "os_solaris.inline.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/perfMemory.hpp"
    33 #include "services/memTracker.hpp"
    34 #include "utilities/exceptions.hpp"
    36 // put OS-includes here
    37 # include <sys/types.h>
    38 # include <sys/mman.h>
    39 # include <errno.h>
    40 # include <stdio.h>
    41 # include <unistd.h>
    42 # include <sys/stat.h>
    43 # include <signal.h>
    44 # include <pwd.h>
    45 # include <procfs.h>
    48 static char* backing_store_file_name = NULL;  // name of the backing store
    49                                               // file, if successfully created.
    51 // Standard Memory Implementation Details
    53 // create the PerfData memory region in standard memory.
    54 //
    55 static char* create_standard_memory(size_t size) {
    57   // allocate an aligned chuck of memory
    58   char* mapAddress = os::reserve_memory(size);
    60   if (mapAddress == NULL) {
    61     return NULL;
    62   }
    64   // commit memory
    65   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
    66     if (PrintMiscellaneous && Verbose) {
    67       warning("Could not commit PerfData memory\n");
    68     }
    69     os::release_memory(mapAddress, size);
    70     return NULL;
    71   }
    73   return mapAddress;
    74 }
    76 // delete the PerfData memory region
    77 //
    78 static void delete_standard_memory(char* addr, size_t size) {
    80   // there are no persistent external resources to cleanup for standard
    81   // memory. since DestroyJavaVM does not support unloading of the JVM,
    82   // cleanup of the memory resource is not performed. The memory will be
    83   // reclaimed by the OS upon termination of the process.
    84   //
    85   return;
    86 }
    88 // save the specified memory region to the given file
    89 //
    90 // Note: this function might be called from signal handler (by os::abort()),
    91 // don't allocate heap memory.
    92 //
    93 static void save_memory_to_file(char* addr, size_t size) {
    95   const char* destfile = PerfMemory::get_perfdata_file_path();
    96   assert(destfile[0] != '\0', "invalid PerfData file path");
    98   int result;
   100   RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
   101               result);;
   102   if (result == OS_ERR) {
   103     if (PrintMiscellaneous && Verbose) {
   104       warning("Could not create Perfdata save file: %s: %s\n",
   105               destfile, strerror(errno));
   106     }
   107   } else {
   109     int fd = result;
   111     for (size_t remaining = size; remaining > 0;) {
   113       RESTARTABLE(::write(fd, addr, remaining), result);
   114       if (result == OS_ERR) {
   115         if (PrintMiscellaneous && Verbose) {
   116           warning("Could not write Perfdata save file: %s: %s\n",
   117                   destfile, strerror(errno));
   118         }
   119         break;
   120       }
   121       remaining -= (size_t)result;
   122       addr += result;
   123     }
   125     result = ::close(fd);
   126     if (PrintMiscellaneous && Verbose) {
   127       if (result == OS_ERR) {
   128         warning("Could not close %s: %s\n", destfile, strerror(errno));
   129       }
   130     }
   131   }
   132   FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
   133 }
   136 // Shared Memory Implementation Details
   138 // Note: the solaris and linux shared memory implementation uses the mmap
   139 // interface with a backing store file to implement named shared memory.
   140 // Using the file system as the name space for shared memory allows a
   141 // common name space to be supported across a variety of platforms. It
   142 // also provides a name space that Java applications can deal with through
   143 // simple file apis.
   144 //
   145 // The solaris and linux implementations store the backing store file in
   146 // a user specific temporary directory located in the /tmp file system,
   147 // which is always a local file system and is sometimes a RAM based file
   148 // system.
   150 // return the user specific temporary directory name.
   151 //
   152 // the caller is expected to free the allocated memory.
   153 //
   154 static char* get_user_tmp_dir(const char* user) {
   156   const char* tmpdir = os::get_temp_directory();
   157   const char* perfdir = PERFDATA_NAME;
   158   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
   159   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   161   // construct the path name to user specific tmp directory
   162   snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
   164   return dirname;
   165 }
   167 // convert the given file name into a process id. if the file
   168 // does not meet the file naming constraints, return 0.
   169 //
   170 static pid_t filename_to_pid(const char* filename) {
   172   // a filename that doesn't begin with a digit is not a
   173   // candidate for conversion.
   174   //
   175   if (!isdigit(*filename)) {
   176     return 0;
   177   }
   179   // check if file name can be converted to an integer without
   180   // any leftover characters.
   181   //
   182   char* remainder = NULL;
   183   errno = 0;
   184   pid_t pid = (pid_t)strtol(filename, &remainder, 10);
   186   if (errno != 0) {
   187     return 0;
   188   }
   190   // check for left over characters. If any, then the filename is
   191   // not a candidate for conversion.
   192   //
   193   if (remainder != NULL && *remainder != '\0') {
   194     return 0;
   195   }
   197   // successful conversion, return the pid
   198   return pid;
   199 }
   202 // Check if the given statbuf is considered a secure directory for
   203 // the backing store files. Returns true if the directory is considered
   204 // a secure location. Returns false if the statbuf is a symbolic link or
   205 // if an error occurred.
   206 //
   207 static bool is_statbuf_secure(struct stat *statp) {
   208   if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
   209     // The path represents a link or some non-directory file type,
   210     // which is not what we expected. Declare it insecure.
   211     //
   212     return false;
   213   }
   214   // We have an existing directory, check if the permissions are safe.
   215   //
   216   if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
   217     // The directory is open for writing and could be subjected
   218     // to a symlink or a hard link attack. Declare it insecure.
   219     //
   220     return false;
   221   }
   222   // See if the uid of the directory matches the effective uid of the process.
   223   //
   224   if (statp->st_uid != geteuid()) {
   225     // The directory was not created by this user, declare it insecure.
   226     //
   227     return false;
   228   }
   229   return true;
   230 }
   233 // Check if the given path is considered a secure directory for
   234 // the backing store files. Returns true if the directory exists
   235 // and is considered a secure location. Returns false if the path
   236 // is a symbolic link or if an error occurred.
   237 //
   238 static bool is_directory_secure(const char* path) {
   239   struct stat statbuf;
   240   int result = 0;
   242   RESTARTABLE(::lstat(path, &statbuf), result);
   243   if (result == OS_ERR) {
   244     return false;
   245   }
   247   // The path exists, see if it is secure.
   248   return is_statbuf_secure(&statbuf);
   249 }
   252 // Check if the given directory file descriptor is considered a secure
   253 // directory for the backing store files. Returns true if the directory
   254 // exists and is considered a secure location. Returns false if the path
   255 // is a symbolic link or if an error occurred.
   256 //
   257 static bool is_dirfd_secure(int dir_fd) {
   258   struct stat statbuf;
   259   int result = 0;
   261   RESTARTABLE(::fstat(dir_fd, &statbuf), result);
   262   if (result == OS_ERR) {
   263     return false;
   264   }
   266   // The path exists, now check its mode.
   267   return is_statbuf_secure(&statbuf);
   268 }
   271 // Check to make sure fd1 and fd2 are referencing the same file system object.
   272 //
   273 static bool is_same_fsobject(int fd1, int fd2) {
   274   struct stat statbuf1;
   275   struct stat statbuf2;
   276   int result = 0;
   278   RESTARTABLE(::fstat(fd1, &statbuf1), result);
   279   if (result == OS_ERR) {
   280     return false;
   281   }
   282   RESTARTABLE(::fstat(fd2, &statbuf2), result);
   283   if (result == OS_ERR) {
   284     return false;
   285   }
   287   if ((statbuf1.st_ino == statbuf2.st_ino) &&
   288       (statbuf1.st_dev == statbuf2.st_dev)) {
   289     return true;
   290   } else {
   291     return false;
   292   }
   293 }
   296 // Open the directory of the given path and validate it.
   297 // Return a DIR * of the open directory.
   298 //
   299 static DIR *open_directory_secure(const char* dirname) {
   300   // Open the directory using open() so that it can be verified
   301   // to be secure by calling is_dirfd_secure(), opendir() and then check
   302   // to see if they are the same file system object.  This method does not
   303   // introduce a window of opportunity for the directory to be attacked that
   304   // calling opendir() and is_directory_secure() does.
   305   int result;
   306   DIR *dirp = NULL;
   307   RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
   308   if (result == OS_ERR) {
   309     // Directory doesn't exist or is a symlink, so there is nothing to cleanup.
   310     if (PrintMiscellaneous && Verbose) {
   311       if (errno == ELOOP) {
   312         warning("directory %s is a symlink and is not secure\n", dirname);
   313       } else {
   314         warning("could not open directory %s: %s\n", dirname, strerror(errno));
   315       }
   316     }
   317     return dirp;
   318   }
   319   int fd = result;
   321   // Determine if the open directory is secure.
   322   if (!is_dirfd_secure(fd)) {
   323     // The directory is not a secure directory.
   324     os::close(fd);
   325     return dirp;
   326   }
   328   // Open the directory.
   329   dirp = ::opendir(dirname);
   330   if (dirp == NULL) {
   331     // The directory doesn't exist, close fd and return.
   332     os::close(fd);
   333     return dirp;
   334   }
   336   // Check to make sure fd and dirp are referencing the same file system object.
   337   if (!is_same_fsobject(fd, dirp->dd_fd)) {
   338     // The directory is not secure.
   339     os::close(fd);
   340     os::closedir(dirp);
   341     dirp = NULL;
   342     return dirp;
   343   }
   345   // Close initial open now that we know directory is secure
   346   os::close(fd);
   348   return dirp;
   349 }
   351 // NOTE: The code below uses fchdir(), open() and unlink() because
   352 // fdopendir(), openat() and unlinkat() are not supported on all
   353 // versions.  Once the support for fdopendir(), openat() and unlinkat()
   354 // is available on all supported versions the code can be changed
   355 // to use these functions.
   357 // Open the directory of the given path, validate it and set the
   358 // current working directory to it.
   359 // Return a DIR * of the open directory and the saved cwd fd.
   360 //
   361 static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
   363   // Open the directory.
   364   DIR* dirp = open_directory_secure(dirname);
   365   if (dirp == NULL) {
   366     // Directory doesn't exist or is insecure, so there is nothing to cleanup.
   367     return dirp;
   368   }
   369   int fd = dirp->dd_fd;
   371   // Open a fd to the cwd and save it off.
   372   int result;
   373   RESTARTABLE(::open(".", O_RDONLY), result);
   374   if (result == OS_ERR) {
   375     *saved_cwd_fd = -1;
   376   } else {
   377     *saved_cwd_fd = result;
   378   }
   380   // Set the current directory to dirname by using the fd of the directory.
   381   result = fchdir(fd);
   383   return dirp;
   384 }
   386 // Close the directory and restore the current working directory.
   387 //
   388 static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
   390   int result;
   391   // If we have a saved cwd change back to it and close the fd.
   392   if (saved_cwd_fd != -1) {
   393     result = fchdir(saved_cwd_fd);
   394     ::close(saved_cwd_fd);
   395   }
   397   // Close the directory.
   398   os::closedir(dirp);
   399 }
   401 // Check if the given file descriptor is considered a secure.
   402 //
   403 static bool is_file_secure(int fd, const char *filename) {
   405   int result;
   406   struct stat statbuf;
   408   // Determine if the file is secure.
   409   RESTARTABLE(::fstat(fd, &statbuf), result);
   410   if (result == OS_ERR) {
   411     if (PrintMiscellaneous && Verbose) {
   412       warning("fstat failed on %s: %s\n", filename, strerror(errno));
   413     }
   414     return false;
   415   }
   416   if (statbuf.st_nlink > 1) {
   417     // A file with multiple links is not expected.
   418     if (PrintMiscellaneous && Verbose) {
   419       warning("file %s has multiple links\n", filename);
   420     }
   421     return false;
   422   }
   423   return true;
   424 }
   426 // return the user name for the given user id
   427 //
   428 // the caller is expected to free the allocated memory.
   429 //
   430 static char* get_user_name(uid_t uid) {
   432   struct passwd pwent;
   434   // determine the max pwbuf size from sysconf, and hardcode
   435   // a default if this not available through sysconf.
   436   //
   437   long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
   438   if (bufsize == -1)
   439     bufsize = 1024;
   441   char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   443 #ifdef _GNU_SOURCE
   444   struct passwd* p = NULL;
   445   int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
   446 #else  // _GNU_SOURCE
   447   struct passwd* p = getpwuid_r(uid, &pwent, pwbuf, (int)bufsize);
   448 #endif // _GNU_SOURCE
   450   if (p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
   451     if (PrintMiscellaneous && Verbose) {
   452       if (p == NULL) {
   453         warning("Could not retrieve passwd entry: %s\n",
   454                 strerror(errno));
   455       }
   456       else {
   457         warning("Could not determine user name: %s\n",
   458                 p->pw_name == NULL ? "pw_name = NULL" :
   459                                      "pw_name zero length");
   460       }
   461     }
   462     FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
   463     return NULL;
   464   }
   466   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
   467   strcpy(user_name, p->pw_name);
   469   FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
   470   return user_name;
   471 }
   473 // return the name of the user that owns the process identified by vmid.
   474 //
   475 // This method uses a slow directory search algorithm to find the backing
   476 // store file for the specified vmid and returns the user name, as determined
   477 // by the user name suffix of the hsperfdata_<username> directory name.
   478 //
   479 // the caller is expected to free the allocated memory.
   480 //
   481 static char* get_user_name_slow(int vmid, TRAPS) {
   483   // short circuit the directory search if the process doesn't even exist.
   484   if (kill(vmid, 0) == OS_ERR) {
   485     if (errno == ESRCH) {
   486       THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
   487                   "Process not found");
   488     }
   489     else /* EPERM */ {
   490       THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
   491     }
   492   }
   494   // directory search
   495   char* oldest_user = NULL;
   496   time_t oldest_ctime = 0;
   498   const char* tmpdirname = os::get_temp_directory();
   500   // open the temp directory
   501   DIR* tmpdirp = os::opendir(tmpdirname);
   503   if (tmpdirp == NULL) {
   504     // Cannot open the directory to get the user name, return.
   505     return NULL;
   506   }
   508   // for each entry in the directory that matches the pattern hsperfdata_*,
   509   // open the directory and check if the file for the given vmid exists.
   510   // The file with the expected name and the latest creation date is used
   511   // to determine the user name for the process id.
   512   //
   513   struct dirent* dentry;
   514   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
   515   errno = 0;
   516   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
   518     // check if the directory entry is a hsperfdata file
   519     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
   520       continue;
   521     }
   523     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
   524                   strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
   525     strcpy(usrdir_name, tmpdirname);
   526     strcat(usrdir_name, "/");
   527     strcat(usrdir_name, dentry->d_name);
   529     // open the user directory
   530     DIR* subdirp = open_directory_secure(usrdir_name);
   532     if (subdirp == NULL) {
   533       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   534       continue;
   535     }
   537     // Since we don't create the backing store files in directories
   538     // pointed to by symbolic links, we also don't follow them when
   539     // looking for the files. We check for a symbolic link after the
   540     // call to opendir in order to eliminate a small window where the
   541     // symlink can be exploited.
   542     //
   543     if (!is_directory_secure(usrdir_name)) {
   544       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   545       os::closedir(subdirp);
   546       continue;
   547     }
   549     struct dirent* udentry;
   550     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
   551     errno = 0;
   552     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
   554       if (filename_to_pid(udentry->d_name) == vmid) {
   555         struct stat statbuf;
   556         int result;
   558         char* filename = NEW_C_HEAP_ARRAY(char,
   559                  strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
   561         strcpy(filename, usrdir_name);
   562         strcat(filename, "/");
   563         strcat(filename, udentry->d_name);
   565         // don't follow symbolic links for the file
   566         RESTARTABLE(::lstat(filename, &statbuf), result);
   567         if (result == OS_ERR) {
   568            FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   569            continue;
   570         }
   572         // skip over files that are not regular files.
   573         if (!S_ISREG(statbuf.st_mode)) {
   574           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   575           continue;
   576         }
   578         // compare and save filename with latest creation time
   579         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
   581           if (statbuf.st_ctime > oldest_ctime) {
   582             char* user = strchr(dentry->d_name, '_') + 1;
   584             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
   585             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
   587             strcpy(oldest_user, user);
   588             oldest_ctime = statbuf.st_ctime;
   589           }
   590         }
   592         FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   593       }
   594     }
   595     os::closedir(subdirp);
   596     FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
   597     FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   598   }
   599   os::closedir(tmpdirp);
   600   FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
   602   return(oldest_user);
   603 }
   605 // return the name of the user that owns the JVM indicated by the given vmid.
   606 //
   607 static char* get_user_name(int vmid, TRAPS) {
   609   char psinfo_name[PATH_MAX];
   610   int result;
   612   snprintf(psinfo_name, PATH_MAX, "/proc/%d/psinfo", vmid);
   614   RESTARTABLE(::open(psinfo_name, O_RDONLY), result);
   616   if (result != OS_ERR) {
   617     int fd = result;
   619     psinfo_t psinfo;
   620     char* addr = (char*)&psinfo;
   622     for (size_t remaining = sizeof(psinfo_t); remaining > 0;) {
   624       RESTARTABLE(::read(fd, addr, remaining), result);
   625       if (result == OS_ERR) {
   626         ::close(fd);
   627         THROW_MSG_0(vmSymbols::java_io_IOException(), "Read error");
   628       } else {
   629         remaining-=result;
   630         addr+=result;
   631       }
   632     }
   634     ::close(fd);
   636     // get the user name for the effective user id of the process
   637     char* user_name = get_user_name(psinfo.pr_euid);
   639     return user_name;
   640   }
   642   if (result == OS_ERR && errno == EACCES) {
   644     // In this case, the psinfo file for the process id existed,
   645     // but we didn't have permission to access it.
   646     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
   647                 strerror(errno));
   648   }
   650   // at this point, we don't know if the process id itself doesn't
   651   // exist or if the psinfo file doesn't exit. If the psinfo file
   652   // doesn't exist, then we are running on Solaris 2.5.1 or earlier.
   653   // since the structured procfs and old procfs interfaces can't be
   654   // mixed, we attempt to find the file through a directory search.
   656   return get_user_name_slow(vmid, CHECK_NULL);
   657 }
   659 // return the file name of the backing store file for the named
   660 // shared memory region for the given user name and vmid.
   661 //
   662 // the caller is expected to free the allocated memory.
   663 //
   664 static char* get_sharedmem_filename(const char* dirname, int vmid) {
   666   // add 2 for the file separator and a NULL terminator.
   667   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
   669   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   670   snprintf(name, nbytes, "%s/%d", dirname, vmid);
   672   return name;
   673 }
   676 // remove file
   677 //
   678 // this method removes the file specified by the given path
   679 //
   680 static void remove_file(const char* path) {
   682   int result;
   684   // if the file is a directory, the following unlink will fail. since
   685   // we don't expect to find directories in the user temp directory, we
   686   // won't try to handle this situation. even if accidentially or
   687   // maliciously planted, the directory's presence won't hurt anything.
   688   //
   689   RESTARTABLE(::unlink(path), result);
   690   if (PrintMiscellaneous && Verbose && result == OS_ERR) {
   691     if (errno != ENOENT) {
   692       warning("Could not unlink shared memory backing"
   693               " store file %s : %s\n", path, strerror(errno));
   694     }
   695   }
   696 }
   699 // cleanup stale shared memory resources
   700 //
   701 // This method attempts to remove all stale shared memory files in
   702 // the named user temporary directory. It scans the named directory
   703 // for files matching the pattern ^$[0-9]*$. For each file found, the
   704 // process id is extracted from the file name and a test is run to
   705 // determine if the process is alive. If the process is not alive,
   706 // any stale file resources are removed.
   707 //
   708 static void cleanup_sharedmem_resources(const char* dirname) {
   710   int saved_cwd_fd;
   711   // open the directory
   712   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
   713   if (dirp == NULL) {
   714      // directory doesn't exist or is insecure, so there is nothing to cleanup
   715     return;
   716   }
   718   // for each entry in the directory that matches the expected file
   719   // name pattern, determine if the file resources are stale and if
   720   // so, remove the file resources. Note, instrumented HotSpot processes
   721   // for this user may start and/or terminate during this search and
   722   // remove or create new files in this directory. The behavior of this
   723   // loop under these conditions is dependent upon the implementation of
   724   // opendir/readdir.
   725   //
   726   struct dirent* entry;
   727   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
   729   errno = 0;
   730   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
   732     pid_t pid = filename_to_pid(entry->d_name);
   734     if (pid == 0) {
   736       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
   738         // attempt to remove all unexpected files, except "." and ".."
   739         unlink(entry->d_name);
   740       }
   742       errno = 0;
   743       continue;
   744     }
   746     // we now have a file name that converts to a valid integer
   747     // that could represent a process id . if this process id
   748     // matches the current process id or the process is not running,
   749     // then remove the stale file resources.
   750     //
   751     // process liveness is detected by sending signal number 0 to
   752     // the process id (see kill(2)). if kill determines that the
   753     // process does not exist, then the file resources are removed.
   754     // if kill determines that that we don't have permission to
   755     // signal the process, then the file resources are assumed to
   756     // be stale and are removed because the resources for such a
   757     // process should be in a different user specific directory.
   758     //
   759     if ((pid == os::current_process_id()) ||
   760         (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
   762         unlink(entry->d_name);
   763     }
   764     errno = 0;
   765   }
   767   // close the directory and reset the current working directory
   768   close_directory_secure_cwd(dirp, saved_cwd_fd);
   770   FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
   771 }
   773 // make the user specific temporary directory. Returns true if
   774 // the directory exists and is secure upon return. Returns false
   775 // if the directory exists but is either a symlink, is otherwise
   776 // insecure, or if an error occurred.
   777 //
   778 static bool make_user_tmp_dir(const char* dirname) {
   780   // create the directory with 0755 permissions. note that the directory
   781   // will be owned by euid::egid, which may not be the same as uid::gid.
   782   //
   783   if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
   784     if (errno == EEXIST) {
   785       // The directory already exists and was probably created by another
   786       // JVM instance. However, this could also be the result of a
   787       // deliberate symlink. Verify that the existing directory is safe.
   788       //
   789       if (!is_directory_secure(dirname)) {
   790         // directory is not secure
   791         if (PrintMiscellaneous && Verbose) {
   792           warning("%s directory is insecure\n", dirname);
   793         }
   794         return false;
   795       }
   796     }
   797     else {
   798       // we encountered some other failure while attempting
   799       // to create the directory
   800       //
   801       if (PrintMiscellaneous && Verbose) {
   802         warning("could not create directory %s: %s\n",
   803                 dirname, strerror(errno));
   804       }
   805       return false;
   806     }
   807   }
   808   return true;
   809 }
   811 // create the shared memory file resources
   812 //
   813 // This method creates the shared memory file with the given size
   814 // This method also creates the user specific temporary directory, if
   815 // it does not yet exist.
   816 //
   817 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
   819   // make the user temporary directory
   820   if (!make_user_tmp_dir(dirname)) {
   821     // could not make/find the directory or the found directory
   822     // was not secure
   823     return -1;
   824   }
   826   int saved_cwd_fd;
   827   // open the directory and set the current working directory to it
   828   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
   829   if (dirp == NULL) {
   830     // Directory doesn't exist or is insecure, so cannot create shared
   831     // memory file.
   832     return -1;
   833   }
   835   // Open the filename in the current directory.
   836   // Cannot use O_TRUNC here; truncation of an existing file has to happen
   837   // after the is_file_secure() check below.
   838   int result;
   839   RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
   840   if (result == OS_ERR) {
   841     if (PrintMiscellaneous && Verbose) {
   842       if (errno == ELOOP) {
   843         warning("file %s is a symlink and is not secure\n", filename);
   844       } else {
   845         warning("could not create file %s: %s\n", filename, strerror(errno));
   846       }
   847     }
   848     // close the directory and reset the current working directory
   849     close_directory_secure_cwd(dirp, saved_cwd_fd);
   851     return -1;
   852   }
   853   // close the directory and reset the current working directory
   854   close_directory_secure_cwd(dirp, saved_cwd_fd);
   856   // save the file descriptor
   857   int fd = result;
   859   // check to see if the file is secure
   860   if (!is_file_secure(fd, filename)) {
   861     ::close(fd);
   862     return -1;
   863   }
   865   // truncate the file to get rid of any existing data
   866   RESTARTABLE(::ftruncate(fd, (off_t)0), result);
   867   if (result == OS_ERR) {
   868     if (PrintMiscellaneous && Verbose) {
   869       warning("could not truncate shared memory file: %s\n", strerror(errno));
   870     }
   871     ::close(fd);
   872     return -1;
   873   }
   874   // set the file size
   875   RESTARTABLE(::ftruncate(fd, (off_t)size), result);
   876   if (result == OS_ERR) {
   877     if (PrintMiscellaneous && Verbose) {
   878       warning("could not set shared memory file size: %s\n", strerror(errno));
   879     }
   880     ::close(fd);
   881     return -1;
   882   }
   884   return fd;
   885 }
   887 // open the shared memory file for the given user and vmid. returns
   888 // the file descriptor for the open file or -1 if the file could not
   889 // be opened.
   890 //
   891 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
   893   // open the file
   894   int result;
   895   RESTARTABLE(::open(filename, oflags), result);
   896   if (result == OS_ERR) {
   897     if (errno == ENOENT) {
   898       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
   899                   "Process not found", OS_ERR);
   900     }
   901     else if (errno == EACCES) {
   902       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
   903                   "Permission denied", OS_ERR);
   904     }
   905     else {
   906       THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
   907     }
   908   }
   909   int fd = result;
   911   // check to see if the file is secure
   912   if (!is_file_secure(fd, filename)) {
   913     ::close(fd);
   914     return -1;
   915   }
   917   return fd;
   918 }
   920 // create a named shared memory region. returns the address of the
   921 // memory region on success or NULL on failure. A return value of
   922 // NULL will ultimately disable the shared memory feature.
   923 //
   924 // On Solaris and Linux, the name space for shared memory objects
   925 // is the file system name space.
   926 //
   927 // A monitoring application attaching to a JVM does not need to know
   928 // the file system name of the shared memory object. However, it may
   929 // be convenient for applications to discover the existence of newly
   930 // created and terminating JVMs by watching the file system name space
   931 // for files being created or removed.
   932 //
   933 static char* mmap_create_shared(size_t size) {
   935   int result;
   936   int fd;
   937   char* mapAddress;
   939   int vmid = os::current_process_id();
   941   char* user_name = get_user_name(geteuid());
   943   if (user_name == NULL)
   944     return NULL;
   946   char* dirname = get_user_tmp_dir(user_name);
   947   char* filename = get_sharedmem_filename(dirname, vmid);
   949   // get the short filename
   950   char* short_filename = strrchr(filename, '/');
   951   if (short_filename == NULL) {
   952     short_filename = filename;
   953   } else {
   954     short_filename++;
   955   }
   957   // cleanup any stale shared memory files
   958   cleanup_sharedmem_resources(dirname);
   960   assert(((size > 0) && (size % os::vm_page_size() == 0)),
   961          "unexpected PerfMemory region size");
   963   fd = create_sharedmem_resources(dirname, short_filename, size);
   965   FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
   966   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
   968   if (fd == -1) {
   969     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   970     return NULL;
   971   }
   973   mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
   975   result = ::close(fd);
   976   assert(result != OS_ERR, "could not close file");
   978   if (mapAddress == MAP_FAILED) {
   979     if (PrintMiscellaneous && Verbose) {
   980       warning("mmap failed -  %s\n", strerror(errno));
   981     }
   982     remove_file(filename);
   983     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   984     return NULL;
   985   }
   987   // save the file name for use in delete_shared_memory()
   988   backing_store_file_name = filename;
   990   // clear the shared memory region
   991   (void)::memset((void*) mapAddress, 0, size);
   993   // it does not go through os api, the operation has to record from here
   994   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
   995     size, CURRENT_PC, mtInternal);
   997   return mapAddress;
   998 }
  1000 // release a named shared memory region
  1001 //
  1002 static void unmap_shared(char* addr, size_t bytes) {
  1003   os::release_memory(addr, bytes);
  1006 // create the PerfData memory region in shared memory.
  1007 //
  1008 static char* create_shared_memory(size_t size) {
  1010   // create the shared memory region.
  1011   return mmap_create_shared(size);
  1014 // delete the shared PerfData memory region
  1015 //
  1016 static void delete_shared_memory(char* addr, size_t size) {
  1018   // cleanup the persistent shared memory resources. since DestroyJavaVM does
  1019   // not support unloading of the JVM, unmapping of the memory resource is
  1020   // not performed. The memory will be reclaimed by the OS upon termination of
  1021   // the process. The backing store file is deleted from the file system.
  1023   assert(!PerfDisableSharedMem, "shouldn't be here");
  1025   if (backing_store_file_name != NULL) {
  1026     remove_file(backing_store_file_name);
  1027     // Don't.. Free heap memory could deadlock os::abort() if it is called
  1028     // from signal handler. OS will reclaim the heap memory.
  1029     // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
  1030     backing_store_file_name = NULL;
  1034 // return the size of the file for the given file descriptor
  1035 // or 0 if it is not a valid size for a shared memory file
  1036 //
  1037 static size_t sharedmem_filesize(int fd, TRAPS) {
  1039   struct stat statbuf;
  1040   int result;
  1042   RESTARTABLE(::fstat(fd, &statbuf), result);
  1043   if (result == OS_ERR) {
  1044     if (PrintMiscellaneous && Verbose) {
  1045       warning("fstat failed: %s\n", strerror(errno));
  1047     THROW_MSG_0(vmSymbols::java_io_IOException(),
  1048                 "Could not determine PerfMemory size");
  1051   if ((statbuf.st_size == 0) ||
  1052      ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
  1053     THROW_MSG_0(vmSymbols::java_lang_Exception(),
  1054                 "Invalid PerfMemory size");
  1057   return (size_t)statbuf.st_size;
  1060 // attach to a named shared memory region.
  1061 //
  1062 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
  1064   char* mapAddress;
  1065   int result;
  1066   int fd;
  1067   size_t size = 0;
  1068   const char* luser = NULL;
  1070   int mmap_prot;
  1071   int file_flags;
  1073   ResourceMark rm;
  1075   // map the high level access mode to the appropriate permission
  1076   // constructs for the file and the shared memory mapping.
  1077   if (mode == PerfMemory::PERF_MODE_RO) {
  1078     mmap_prot = PROT_READ;
  1079     file_flags = O_RDONLY | O_NOFOLLOW;
  1081   else if (mode == PerfMemory::PERF_MODE_RW) {
  1082 #ifdef LATER
  1083     mmap_prot = PROT_READ | PROT_WRITE;
  1084     file_flags = O_RDWR | O_NOFOLLOW;
  1085 #else
  1086     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1087               "Unsupported access mode");
  1088 #endif
  1090   else {
  1091     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1092               "Illegal access mode");
  1095   if (user == NULL || strlen(user) == 0) {
  1096     luser = get_user_name(vmid, CHECK);
  1098   else {
  1099     luser = user;
  1102   if (luser == NULL) {
  1103     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1104               "Could not map vmid to user Name");
  1107   char* dirname = get_user_tmp_dir(luser);
  1109   // since we don't follow symbolic links when creating the backing
  1110   // store file, we don't follow them when attaching either.
  1111   //
  1112   if (!is_directory_secure(dirname)) {
  1113     FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1114     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1115               "Process not found");
  1118   char* filename = get_sharedmem_filename(dirname, vmid);
  1120   // copy heap memory to resource memory. the open_sharedmem_file
  1121   // method below need to use the filename, but could throw an
  1122   // exception. using a resource array prevents the leak that
  1123   // would otherwise occur.
  1124   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  1125   strcpy(rfilename, filename);
  1127   // free the c heap resources that are no longer needed
  1128   if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
  1129   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1130   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
  1132   // open the shared memory file for the give vmid
  1133   fd = open_sharedmem_file(rfilename, file_flags, THREAD);
  1135   if (fd == OS_ERR) {
  1136     return;
  1139   if (HAS_PENDING_EXCEPTION) {
  1140     ::close(fd);
  1141     return;
  1144   if (*sizep == 0) {
  1145     size = sharedmem_filesize(fd, CHECK);
  1146   } else {
  1147     size = *sizep;
  1150   assert(size > 0, "unexpected size <= 0");
  1152   mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
  1154   result = ::close(fd);
  1155   assert(result != OS_ERR, "could not close file");
  1157   if (mapAddress == MAP_FAILED) {
  1158     if (PrintMiscellaneous && Verbose) {
  1159       warning("mmap failed: %s\n", strerror(errno));
  1161     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
  1162               "Could not map PerfMemory");
  1165   // it does not go through os api, the operation has to record from here
  1166   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
  1167     size, CURRENT_PC, mtInternal);
  1169   *addr = mapAddress;
  1170   *sizep = size;
  1172   if (PerfTraceMemOps) {
  1173     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
  1174                INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
  1181 // create the PerfData memory region
  1182 //
  1183 // This method creates the memory region used to store performance
  1184 // data for the JVM. The memory may be created in standard or
  1185 // shared memory.
  1186 //
  1187 void PerfMemory::create_memory_region(size_t size) {
  1189   if (PerfDisableSharedMem) {
  1190     // do not share the memory for the performance data.
  1191     _start = create_standard_memory(size);
  1193   else {
  1194     _start = create_shared_memory(size);
  1195     if (_start == NULL) {
  1197       // creation of the shared memory region failed, attempt
  1198       // to create a contiguous, non-shared memory region instead.
  1199       //
  1200       if (PrintMiscellaneous && Verbose) {
  1201         warning("Reverting to non-shared PerfMemory region.\n");
  1203       PerfDisableSharedMem = true;
  1204       _start = create_standard_memory(size);
  1208   if (_start != NULL) _capacity = size;
  1212 // delete the PerfData memory region
  1213 //
  1214 // This method deletes the memory region used to store performance
  1215 // data for the JVM. The memory region indicated by the <address, size>
  1216 // tuple will be inaccessible after a call to this method.
  1217 //
  1218 void PerfMemory::delete_memory_region() {
  1220   assert((start() != NULL && capacity() > 0), "verify proper state");
  1222   // If user specifies PerfDataSaveFile, it will save the performance data
  1223   // to the specified file name no matter whether PerfDataSaveToFile is specified
  1224   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  1225   // -XX:+PerfDataSaveToFile.
  1226   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
  1227     save_memory_to_file(start(), capacity());
  1230   if (PerfDisableSharedMem) {
  1231     delete_standard_memory(start(), capacity());
  1233   else {
  1234     delete_shared_memory(start(), capacity());
  1238 // attach to the PerfData memory region for another JVM
  1239 //
  1240 // This method returns an <address, size> tuple that points to
  1241 // a memory buffer that is kept reasonably synchronized with
  1242 // the PerfData memory region for the indicated JVM. This
  1243 // buffer may be kept in synchronization via shared memory
  1244 // or some other mechanism that keeps the buffer updated.
  1245 //
  1246 // If the JVM chooses not to support the attachability feature,
  1247 // this method should throw an UnsupportedOperation exception.
  1248 //
  1249 // This implementation utilizes named shared memory to map
  1250 // the indicated process's PerfData memory region into this JVMs
  1251 // address space.
  1252 //
  1253 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
  1255   if (vmid == 0 || vmid == os::current_process_id()) {
  1256      *addrp = start();
  1257      *sizep = capacity();
  1258      return;
  1261   mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
  1264 // detach from the PerfData memory region of another JVM
  1265 //
  1266 // This method detaches the PerfData memory region of another
  1267 // JVM, specified as an <address, size> tuple of a buffer
  1268 // in this process's address space. This method may perform
  1269 // arbitrary actions to accomplish the detachment. The memory
  1270 // region specified by <address, size> will be inaccessible after
  1271 // a call to this method.
  1272 //
  1273 // If the JVM chooses not to support the attachability feature,
  1274 // this method should throw an UnsupportedOperation exception.
  1275 //
  1276 // This implementation utilizes named shared memory to detach
  1277 // the indicated process's PerfData memory region from this
  1278 // process's address space.
  1279 //
  1280 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
  1282   assert(addr != 0, "address sanity check");
  1283   assert(bytes > 0, "capacity sanity check");
  1285   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
  1286     // prevent accidental detachment of this process's PerfMemory region
  1287     return;
  1290   unmap_shared(addr, bytes);
  1293 char* PerfMemory::backing_store_filename() {
  1294   return backing_store_file_name;

mercurial