src/share/vm/c1/c1_IR.cpp

Fri, 15 Oct 2010 09:38:20 +0200

author
roland
date
Fri, 15 Oct 2010 09:38:20 +0200
changeset 2254
42a10fc37986
parent 2174
f02a8bbe6ed4
child 2314
f95d63e2154a
permissions
-rw-r--r--

6991577: add IfOp optimization to C1
Summary: Ifop optimization for c1
Reviewed-by: never, phh, iveresov

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_IR.cpp.incl"
    29 // Implementation of XHandlers
    30 //
    31 // Note: This code could eventually go away if we are
    32 //       just using the ciExceptionHandlerStream.
    34 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
    35   ciExceptionHandlerStream s(method);
    36   while (!s.is_done()) {
    37     _list.append(new XHandler(s.handler()));
    38     s.next();
    39   }
    40   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
    41 }
    43 // deep copy of all XHandler contained in list
    44 XHandlers::XHandlers(XHandlers* other) :
    45   _list(other->length())
    46 {
    47   for (int i = 0; i < other->length(); i++) {
    48     _list.append(new XHandler(other->handler_at(i)));
    49   }
    50 }
    52 // Returns whether a particular exception type can be caught.  Also
    53 // returns true if klass is unloaded or any exception handler
    54 // classes are unloaded.  type_is_exact indicates whether the throw
    55 // is known to be exactly that class or it might throw a subtype.
    56 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
    57   // the type is unknown so be conservative
    58   if (!klass->is_loaded()) {
    59     return true;
    60   }
    62   for (int i = 0; i < length(); i++) {
    63     XHandler* handler = handler_at(i);
    64     if (handler->is_catch_all()) {
    65       // catch of ANY
    66       return true;
    67     }
    68     ciInstanceKlass* handler_klass = handler->catch_klass();
    69     // if it's unknown it might be catchable
    70     if (!handler_klass->is_loaded()) {
    71       return true;
    72     }
    73     // if the throw type is definitely a subtype of the catch type
    74     // then it can be caught.
    75     if (klass->is_subtype_of(handler_klass)) {
    76       return true;
    77     }
    78     if (!type_is_exact) {
    79       // If the type isn't exactly known then it can also be caught by
    80       // catch statements where the inexact type is a subtype of the
    81       // catch type.
    82       // given: foo extends bar extends Exception
    83       // throw bar can be caught by catch foo, catch bar, and catch
    84       // Exception, however it can't be caught by any handlers without
    85       // bar in its type hierarchy.
    86       if (handler_klass->is_subtype_of(klass)) {
    87         return true;
    88       }
    89     }
    90   }
    92   return false;
    93 }
    96 bool XHandlers::equals(XHandlers* others) const {
    97   if (others == NULL) return false;
    98   if (length() != others->length()) return false;
   100   for (int i = 0; i < length(); i++) {
   101     if (!handler_at(i)->equals(others->handler_at(i))) return false;
   102   }
   103   return true;
   104 }
   106 bool XHandler::equals(XHandler* other) const {
   107   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
   109   if (entry_pco() != other->entry_pco()) return false;
   110   if (scope_count() != other->scope_count()) return false;
   111   if (_desc != other->_desc) return false;
   113   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
   114   return true;
   115 }
   118 // Implementation of IRScope
   119 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
   120   GraphBuilder gm(compilation, this);
   121   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
   122   if (compilation->bailed_out()) return NULL;
   123   return gm.start();
   124 }
   127 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
   128 : _callees(2)
   129 , _compilation(compilation)
   130 , _requires_phi_function(method->max_locals())
   131 {
   132   _caller             = caller;
   133   _level              = caller == NULL ?  0 : caller->level() + 1;
   134   _method             = method;
   135   _xhandlers          = new XHandlers(method);
   136   _number_of_locks    = 0;
   137   _monitor_pairing_ok = method->has_balanced_monitors();
   138   _start              = NULL;
   140   if (osr_bci == -1) {
   141     _requires_phi_function.clear();
   142   } else {
   143         // selective creation of phi functions is not possibel in osr-methods
   144     _requires_phi_function.set_range(0, method->max_locals());
   145   }
   147   assert(method->holder()->is_loaded() , "method holder must be loaded");
   149   // build graph if monitor pairing is ok
   150   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
   151 }
   154 int IRScope::max_stack() const {
   155   int my_max = method()->max_stack();
   156   int callee_max = 0;
   157   for (int i = 0; i < number_of_callees(); i++) {
   158     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
   159   }
   160   return my_max + callee_max;
   161 }
   164 bool IRScopeDebugInfo::should_reexecute() {
   165   ciMethod* cur_method = scope()->method();
   166   int       cur_bci    = bci();
   167   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
   168     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   169     return Interpreter::bytecode_should_reexecute(code);
   170   } else
   171     return false;
   172 }
   175 // Implementation of CodeEmitInfo
   177 // Stack must be NON-null
   178 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers)
   179   : _scope(stack->scope())
   180   , _scope_debug_info(NULL)
   181   , _oop_map(NULL)
   182   , _stack(stack)
   183   , _exception_handlers(exception_handlers)
   184   , _is_method_handle_invoke(false) {
   185   assert(_stack != NULL, "must be non null");
   186 }
   189 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
   190   : _scope(info->_scope)
   191   , _exception_handlers(NULL)
   192   , _scope_debug_info(NULL)
   193   , _oop_map(NULL)
   194   , _stack(stack == NULL ? info->_stack : stack)
   195   , _is_method_handle_invoke(info->_is_method_handle_invoke) {
   197   // deep copy of exception handlers
   198   if (info->_exception_handlers != NULL) {
   199     _exception_handlers = new XHandlers(info->_exception_handlers);
   200   }
   201 }
   204 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
   205   // record the safepoint before recording the debug info for enclosing scopes
   206   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
   207   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
   208   recorder->end_safepoint(pc_offset);
   209 }
   212 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
   213   assert(_oop_map != NULL, "oop map must already exist");
   214   assert(opr->is_single_cpu(), "should not call otherwise");
   216   VMReg name = frame_map()->regname(opr);
   217   _oop_map->set_oop(name);
   218 }
   223 // Implementation of IR
   225 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
   226     _locals_size(in_WordSize(-1))
   227   , _num_loops(0) {
   228   // setup IR fields
   229   _compilation = compilation;
   230   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
   231   _code        = NULL;
   232 }
   235 void IR::optimize() {
   236   Optimizer opt(this);
   237   if (!compilation()->profile_branches()) {
   238     if (DoCEE) {
   239       opt.eliminate_conditional_expressions();
   240 #ifndef PRODUCT
   241       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
   242       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
   243 #endif
   244     }
   245     if (EliminateBlocks) {
   246       opt.eliminate_blocks();
   247 #ifndef PRODUCT
   248       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
   249       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
   250 #endif
   251     }
   252   }
   253   if (EliminateNullChecks) {
   254     opt.eliminate_null_checks();
   255 #ifndef PRODUCT
   256     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
   257     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
   258 #endif
   259   }
   260 }
   263 static int sort_pairs(BlockPair** a, BlockPair** b) {
   264   if ((*a)->from() == (*b)->from()) {
   265     return (*a)->to()->block_id() - (*b)->to()->block_id();
   266   } else {
   267     return (*a)->from()->block_id() - (*b)->from()->block_id();
   268   }
   269 }
   272 class CriticalEdgeFinder: public BlockClosure {
   273   BlockPairList blocks;
   274   IR*       _ir;
   276  public:
   277   CriticalEdgeFinder(IR* ir): _ir(ir) {}
   278   void block_do(BlockBegin* bb) {
   279     BlockEnd* be = bb->end();
   280     int nos = be->number_of_sux();
   281     if (nos >= 2) {
   282       for (int i = 0; i < nos; i++) {
   283         BlockBegin* sux = be->sux_at(i);
   284         if (sux->number_of_preds() >= 2) {
   285           blocks.append(new BlockPair(bb, sux));
   286         }
   287       }
   288     }
   289   }
   291   void split_edges() {
   292     BlockPair* last_pair = NULL;
   293     blocks.sort(sort_pairs);
   294     for (int i = 0; i < blocks.length(); i++) {
   295       BlockPair* pair = blocks.at(i);
   296       if (last_pair != NULL && pair->is_same(last_pair)) continue;
   297       BlockBegin* from = pair->from();
   298       BlockBegin* to = pair->to();
   299       BlockBegin* split = from->insert_block_between(to);
   300 #ifndef PRODUCT
   301       if ((PrintIR || PrintIR1) && Verbose) {
   302         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
   303                       from->block_id(), to->block_id(), split->block_id());
   304       }
   305 #endif
   306       last_pair = pair;
   307     }
   308   }
   309 };
   311 void IR::split_critical_edges() {
   312   CriticalEdgeFinder cef(this);
   314   iterate_preorder(&cef);
   315   cef.split_edges();
   316 }
   319 class UseCountComputer: public ValueVisitor, BlockClosure {
   320  private:
   321   void visit(Value* n) {
   322     // Local instructions and Phis for expression stack values at the
   323     // start of basic blocks are not added to the instruction list
   324     if (!(*n)->is_linked() && (*n)->can_be_linked()) {
   325       assert(false, "a node was not appended to the graph");
   326       Compilation::current()->bailout("a node was not appended to the graph");
   327     }
   328     // use n's input if not visited before
   329     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
   330       // note: a) if the instruction is pinned, it will be handled by compute_use_count
   331       //       b) if the instruction has uses, it was touched before
   332       //       => in both cases we don't need to update n's values
   333       uses_do(n);
   334     }
   335     // use n
   336     (*n)->_use_count++;
   337   }
   339   Values* worklist;
   340   int depth;
   341   enum {
   342     max_recurse_depth = 20
   343   };
   345   void uses_do(Value* n) {
   346     depth++;
   347     if (depth > max_recurse_depth) {
   348       // don't allow the traversal to recurse too deeply
   349       worklist->push(*n);
   350     } else {
   351       (*n)->input_values_do(this);
   352       // special handling for some instructions
   353       if ((*n)->as_BlockEnd() != NULL) {
   354         // note on BlockEnd:
   355         //   must 'use' the stack only if the method doesn't
   356         //   terminate, however, in those cases stack is empty
   357         (*n)->state_values_do(this);
   358       }
   359     }
   360     depth--;
   361   }
   363   void block_do(BlockBegin* b) {
   364     depth = 0;
   365     // process all pinned nodes as the roots of expression trees
   366     for (Instruction* n = b; n != NULL; n = n->next()) {
   367       if (n->is_pinned()) uses_do(&n);
   368     }
   369     assert(depth == 0, "should have counted back down");
   371     // now process any unpinned nodes which recursed too deeply
   372     while (worklist->length() > 0) {
   373       Value t = worklist->pop();
   374       if (!t->is_pinned()) {
   375         // compute the use count
   376         uses_do(&t);
   378         // pin the instruction so that LIRGenerator doesn't recurse
   379         // too deeply during it's evaluation.
   380         t->pin();
   381       }
   382     }
   383     assert(depth == 0, "should have counted back down");
   384   }
   386   UseCountComputer() {
   387     worklist = new Values();
   388     depth = 0;
   389   }
   391  public:
   392   static void compute(BlockList* blocks) {
   393     UseCountComputer ucc;
   394     blocks->iterate_backward(&ucc);
   395   }
   396 };
   399 // helper macro for short definition of trace-output inside code
   400 #ifndef PRODUCT
   401   #define TRACE_LINEAR_SCAN(level, code)       \
   402     if (TraceLinearScanLevel >= level) {       \
   403       code;                                    \
   404     }
   405 #else
   406   #define TRACE_LINEAR_SCAN(level, code)
   407 #endif
   409 class ComputeLinearScanOrder : public StackObj {
   410  private:
   411   int        _max_block_id;        // the highest block_id of a block
   412   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
   413   int        _num_loops;           // total number of loops
   414   bool       _iterative_dominators;// method requires iterative computation of dominatiors
   416   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
   418   BitMap     _visited_blocks;      // used for recursive processing of blocks
   419   BitMap     _active_blocks;       // used for recursive processing of blocks
   420   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
   421   intArray   _forward_branches;    // number of incoming forward branches for each block
   422   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
   423   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
   424   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
   426   Compilation* _compilation;
   428   // accessors for _visited_blocks and _active_blocks
   429   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
   430   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
   431   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
   432   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
   433   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
   434   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
   436   // accessors for _forward_branches
   437   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
   438   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
   440   // accessors for _loop_map
   441   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
   442   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
   443   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
   445   // count edges between blocks
   446   void count_edges(BlockBegin* cur, BlockBegin* parent);
   448   // loop detection
   449   void mark_loops();
   450   void clear_non_natural_loops(BlockBegin* start_block);
   451   void assign_loop_depth(BlockBegin* start_block);
   453   // computation of final block order
   454   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
   455   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
   456   int  compute_weight(BlockBegin* cur);
   457   bool ready_for_processing(BlockBegin* cur);
   458   void sort_into_work_list(BlockBegin* b);
   459   void append_block(BlockBegin* cur);
   460   void compute_order(BlockBegin* start_block);
   462   // fixup of dominators for non-natural loops
   463   bool compute_dominators_iter();
   464   void compute_dominators();
   466   // debug functions
   467   NOT_PRODUCT(void print_blocks();)
   468   DEBUG_ONLY(void verify();)
   470   Compilation* compilation() const { return _compilation; }
   471  public:
   472   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
   474   // accessors for final result
   475   BlockList* linear_scan_order() const    { return _linear_scan_order; }
   476   int        num_loops() const            { return _num_loops; }
   477 };
   480 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
   481   _max_block_id(BlockBegin::number_of_blocks()),
   482   _num_blocks(0),
   483   _num_loops(0),
   484   _iterative_dominators(false),
   485   _visited_blocks(_max_block_id),
   486   _active_blocks(_max_block_id),
   487   _dominator_blocks(_max_block_id),
   488   _forward_branches(_max_block_id, 0),
   489   _loop_end_blocks(8),
   490   _work_list(8),
   491   _linear_scan_order(NULL), // initialized later with correct size
   492   _loop_map(0, 0),          // initialized later with correct size
   493   _compilation(c)
   494 {
   495   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
   497   init_visited();
   498   count_edges(start_block, NULL);
   500   if (compilation()->is_profiling()) {
   501     compilation()->method()->method_data()->set_compilation_stats(_num_loops, _num_blocks);
   502   }
   504   if (_num_loops > 0) {
   505     mark_loops();
   506     clear_non_natural_loops(start_block);
   507     assign_loop_depth(start_block);
   508   }
   510   compute_order(start_block);
   511   compute_dominators();
   513   NOT_PRODUCT(print_blocks());
   514   DEBUG_ONLY(verify());
   515 }
   518 // Traverse the CFG:
   519 // * count total number of blocks
   520 // * count all incoming edges and backward incoming edges
   521 // * number loop header blocks
   522 // * create a list with all loop end blocks
   523 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
   524   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
   525   assert(cur->dominator() == NULL, "dominator already initialized");
   527   if (is_active(cur)) {
   528     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
   529     assert(is_visited(cur), "block must be visisted when block is active");
   530     assert(parent != NULL, "must have parent");
   532     cur->set(BlockBegin::linear_scan_loop_header_flag);
   533     cur->set(BlockBegin::backward_branch_target_flag);
   535     parent->set(BlockBegin::linear_scan_loop_end_flag);
   537     // When a loop header is also the start of an exception handler, then the backward branch is
   538     // an exception edge. Because such edges are usually critical edges which cannot be split, the
   539     // loop must be excluded here from processing.
   540     if (cur->is_set(BlockBegin::exception_entry_flag)) {
   541       // Make sure that dominators are correct in this weird situation
   542       _iterative_dominators = true;
   543       return;
   544     }
   545     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
   546            "loop end blocks must have one successor (critical edges are split)");
   548     _loop_end_blocks.append(parent);
   549     return;
   550   }
   552   // increment number of incoming forward branches
   553   inc_forward_branches(cur);
   555   if (is_visited(cur)) {
   556     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
   557     return;
   558   }
   560   _num_blocks++;
   561   set_visited(cur);
   562   set_active(cur);
   564   // recursive call for all successors
   565   int i;
   566   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   567     count_edges(cur->sux_at(i), cur);
   568   }
   569   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   570     count_edges(cur->exception_handler_at(i), cur);
   571   }
   573   clear_active(cur);
   575   // Each loop has a unique number.
   576   // When multiple loops are nested, assign_loop_depth assumes that the
   577   // innermost loop has the lowest number. This is guaranteed by setting
   578   // the loop number after the recursive calls for the successors above
   579   // have returned.
   580   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
   581     assert(cur->loop_index() == -1, "cannot set loop-index twice");
   582     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
   584     cur->set_loop_index(_num_loops);
   585     _num_loops++;
   586   }
   588   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
   589 }
   592 void ComputeLinearScanOrder::mark_loops() {
   593   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
   595   _loop_map = BitMap2D(_num_loops, _max_block_id);
   596   _loop_map.clear();
   598   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
   599     BlockBegin* loop_end   = _loop_end_blocks.at(i);
   600     BlockBegin* loop_start = loop_end->sux_at(0);
   601     int         loop_idx   = loop_start->loop_index();
   603     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
   604     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
   605     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
   606     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
   607     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
   608     assert(_work_list.is_empty(), "work list must be empty before processing");
   610     // add the end-block of the loop to the working list
   611     _work_list.push(loop_end);
   612     set_block_in_loop(loop_idx, loop_end);
   613     do {
   614       BlockBegin* cur = _work_list.pop();
   616       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
   617       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
   619       // recursive processing of all predecessors ends when start block of loop is reached
   620       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
   621         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
   622           BlockBegin* pred = cur->pred_at(j);
   624           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
   625             // this predecessor has not been processed yet, so add it to work list
   626             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
   627             _work_list.push(pred);
   628             set_block_in_loop(loop_idx, pred);
   629           }
   630         }
   631       }
   632     } while (!_work_list.is_empty());
   633   }
   634 }
   637 // check for non-natural loops (loops where the loop header does not dominate
   638 // all other loop blocks = loops with mulitple entries).
   639 // such loops are ignored
   640 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
   641   for (int i = _num_loops - 1; i >= 0; i--) {
   642     if (is_block_in_loop(i, start_block)) {
   643       // loop i contains the entry block of the method
   644       // -> this is not a natural loop, so ignore it
   645       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
   647       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
   648         clear_block_in_loop(i, block_id);
   649       }
   650       _iterative_dominators = true;
   651     }
   652   }
   653 }
   655 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
   656   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
   657   init_visited();
   659   assert(_work_list.is_empty(), "work list must be empty before processing");
   660   _work_list.append(start_block);
   662   do {
   663     BlockBegin* cur = _work_list.pop();
   665     if (!is_visited(cur)) {
   666       set_visited(cur);
   667       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
   669       // compute loop-depth and loop-index for the block
   670       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
   671       int i;
   672       int loop_depth = 0;
   673       int min_loop_idx = -1;
   674       for (i = _num_loops - 1; i >= 0; i--) {
   675         if (is_block_in_loop(i, cur)) {
   676           loop_depth++;
   677           min_loop_idx = i;
   678         }
   679       }
   680       cur->set_loop_depth(loop_depth);
   681       cur->set_loop_index(min_loop_idx);
   683       // append all unvisited successors to work list
   684       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   685         _work_list.append(cur->sux_at(i));
   686       }
   687       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   688         _work_list.append(cur->exception_handler_at(i));
   689       }
   690     }
   691   } while (!_work_list.is_empty());
   692 }
   695 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
   696   assert(a != NULL && b != NULL, "must have input blocks");
   698   _dominator_blocks.clear();
   699   while (a != NULL) {
   700     _dominator_blocks.set_bit(a->block_id());
   701     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
   702     a = a->dominator();
   703   }
   704   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
   705     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
   706     b = b->dominator();
   707   }
   709   assert(b != NULL, "could not find dominator");
   710   return b;
   711 }
   713 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
   714   if (cur->dominator() == NULL) {
   715     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
   716     cur->set_dominator(parent);
   718   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
   719     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
   720     assert(cur->number_of_preds() > 1, "");
   721     cur->set_dominator(common_dominator(cur->dominator(), parent));
   722   }
   723 }
   726 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
   727   BlockBegin* single_sux = NULL;
   728   if (cur->number_of_sux() == 1) {
   729     single_sux = cur->sux_at(0);
   730   }
   732   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
   733   int weight = (cur->loop_depth() & 0x7FFF) << 16;
   735   // general macro for short definition of weight flags
   736   // the first instance of INC_WEIGHT_IF has the highest priority
   737   int cur_bit = 15;
   738   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
   740   // this is necessery for the (very rare) case that two successing blocks have
   741   // the same loop depth, but a different loop index (can happen for endless loops
   742   // with exception handlers)
   743   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
   745   // loop end blocks (blocks that end with a backward branch) are added
   746   // after all other blocks of the loop.
   747   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
   749   // critical edge split blocks are prefered because than they have a bigger
   750   // proability to be completely empty
   751   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
   753   // exceptions should not be thrown in normal control flow, so these blocks
   754   // are added as late as possible
   755   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
   756   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
   758   // exceptions handlers are added as late as possible
   759   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
   761   // guarantee that weight is > 0
   762   weight |= 1;
   764   #undef INC_WEIGHT_IF
   765   assert(cur_bit >= 0, "too many flags");
   766   assert(weight > 0, "weight cannot become negative");
   768   return weight;
   769 }
   771 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
   772   // Discount the edge just traveled.
   773   // When the number drops to zero, all forward branches were processed
   774   if (dec_forward_branches(cur) != 0) {
   775     return false;
   776   }
   778   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
   779   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
   780   return true;
   781 }
   783 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
   784   assert(_work_list.index_of(cur) == -1, "block already in work list");
   786   int cur_weight = compute_weight(cur);
   788   // the linear_scan_number is used to cache the weight of a block
   789   cur->set_linear_scan_number(cur_weight);
   791 #ifndef PRODUCT
   792   if (StressLinearScan) {
   793     _work_list.insert_before(0, cur);
   794     return;
   795   }
   796 #endif
   798   _work_list.append(NULL); // provide space for new element
   800   int insert_idx = _work_list.length() - 1;
   801   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
   802     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
   803     insert_idx--;
   804   }
   805   _work_list.at_put(insert_idx, cur);
   807   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
   808   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
   810 #ifdef ASSERT
   811   for (int i = 0; i < _work_list.length(); i++) {
   812     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
   813     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
   814   }
   815 #endif
   816 }
   818 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
   819   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
   820   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
   822   // currently, the linear scan order and code emit order are equal.
   823   // therefore the linear_scan_number and the weight of a block must also
   824   // be equal.
   825   cur->set_linear_scan_number(_linear_scan_order->length());
   826   _linear_scan_order->append(cur);
   827 }
   829 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
   830   TRACE_LINEAR_SCAN(3, "----- computing final block order");
   832   // the start block is always the first block in the linear scan order
   833   _linear_scan_order = new BlockList(_num_blocks);
   834   append_block(start_block);
   836   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
   837   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
   838   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
   840   BlockBegin* sux_of_osr_entry = NULL;
   841   if (osr_entry != NULL) {
   842     // special handling for osr entry:
   843     // ignore the edge between the osr entry and its successor for processing
   844     // the osr entry block is added manually below
   845     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
   846     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
   848     sux_of_osr_entry = osr_entry->sux_at(0);
   849     dec_forward_branches(sux_of_osr_entry);
   851     compute_dominator(osr_entry, start_block);
   852     _iterative_dominators = true;
   853   }
   854   compute_dominator(std_entry, start_block);
   856   // start processing with standard entry block
   857   assert(_work_list.is_empty(), "list must be empty before processing");
   859   if (ready_for_processing(std_entry)) {
   860     sort_into_work_list(std_entry);
   861   } else {
   862     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
   863   }
   865   do {
   866     BlockBegin* cur = _work_list.pop();
   868     if (cur == sux_of_osr_entry) {
   869       // the osr entry block is ignored in normal processing, it is never added to the
   870       // work list. Instead, it is added as late as possible manually here.
   871       append_block(osr_entry);
   872       compute_dominator(cur, osr_entry);
   873     }
   874     append_block(cur);
   876     int i;
   877     int num_sux = cur->number_of_sux();
   878     // changed loop order to get "intuitive" order of if- and else-blocks
   879     for (i = 0; i < num_sux; i++) {
   880       BlockBegin* sux = cur->sux_at(i);
   881       compute_dominator(sux, cur);
   882       if (ready_for_processing(sux)) {
   883         sort_into_work_list(sux);
   884       }
   885     }
   886     num_sux = cur->number_of_exception_handlers();
   887     for (i = 0; i < num_sux; i++) {
   888       BlockBegin* sux = cur->exception_handler_at(i);
   889       compute_dominator(sux, cur);
   890       if (ready_for_processing(sux)) {
   891         sort_into_work_list(sux);
   892       }
   893     }
   894   } while (_work_list.length() > 0);
   895 }
   898 bool ComputeLinearScanOrder::compute_dominators_iter() {
   899   bool changed = false;
   900   int num_blocks = _linear_scan_order->length();
   902   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
   903   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
   904   for (int i = 1; i < num_blocks; i++) {
   905     BlockBegin* block = _linear_scan_order->at(i);
   907     BlockBegin* dominator = block->pred_at(0);
   908     int num_preds = block->number_of_preds();
   909     for (int i = 1; i < num_preds; i++) {
   910       dominator = common_dominator(dominator, block->pred_at(i));
   911     }
   913     if (dominator != block->dominator()) {
   914       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
   916       block->set_dominator(dominator);
   917       changed = true;
   918     }
   919   }
   920   return changed;
   921 }
   923 void ComputeLinearScanOrder::compute_dominators() {
   924   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
   926   // iterative computation of dominators is only required for methods with non-natural loops
   927   // and OSR-methods. For all other methods, the dominators computed when generating the
   928   // linear scan block order are correct.
   929   if (_iterative_dominators) {
   930     do {
   931       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
   932     } while (compute_dominators_iter());
   933   }
   935   // check that dominators are correct
   936   assert(!compute_dominators_iter(), "fix point not reached");
   937 }
   940 #ifndef PRODUCT
   941 void ComputeLinearScanOrder::print_blocks() {
   942   if (TraceLinearScanLevel >= 2) {
   943     tty->print_cr("----- loop information:");
   944     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   945       BlockBegin* cur = _linear_scan_order->at(block_idx);
   947       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
   948       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
   949         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
   950       }
   951       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
   952     }
   953   }
   955   if (TraceLinearScanLevel >= 1) {
   956     tty->print_cr("----- linear-scan block order:");
   957     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
   958       BlockBegin* cur = _linear_scan_order->at(block_idx);
   959       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
   961       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
   962       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
   963       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
   964       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
   966       if (cur->dominator() != NULL) {
   967         tty->print("    dom: B%d ", cur->dominator()->block_id());
   968       } else {
   969         tty->print("    dom: NULL ");
   970       }
   972       if (cur->number_of_preds() > 0) {
   973         tty->print("    preds: ");
   974         for (int j = 0; j < cur->number_of_preds(); j++) {
   975           BlockBegin* pred = cur->pred_at(j);
   976           tty->print("B%d ", pred->block_id());
   977         }
   978       }
   979       if (cur->number_of_sux() > 0) {
   980         tty->print("    sux: ");
   981         for (int j = 0; j < cur->number_of_sux(); j++) {
   982           BlockBegin* sux = cur->sux_at(j);
   983           tty->print("B%d ", sux->block_id());
   984         }
   985       }
   986       if (cur->number_of_exception_handlers() > 0) {
   987         tty->print("    ex: ");
   988         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
   989           BlockBegin* ex = cur->exception_handler_at(j);
   990           tty->print("B%d ", ex->block_id());
   991         }
   992       }
   993       tty->cr();
   994     }
   995   }
   996 }
   997 #endif
   999 #ifdef ASSERT
  1000 void ComputeLinearScanOrder::verify() {
  1001   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
  1003   if (StressLinearScan) {
  1004     // blocks are scrambled when StressLinearScan is used
  1005     return;
  1008   // check that all successors of a block have a higher linear-scan-number
  1009   // and that all predecessors of a block have a lower linear-scan-number
  1010   // (only backward branches of loops are ignored)
  1011   int i;
  1012   for (i = 0; i < _linear_scan_order->length(); i++) {
  1013     BlockBegin* cur = _linear_scan_order->at(i);
  1015     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
  1016     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
  1018     int j;
  1019     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
  1020       BlockBegin* sux = cur->sux_at(j);
  1022       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
  1023       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
  1024         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
  1026       if (cur->loop_depth() == sux->loop_depth()) {
  1027         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1031     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
  1032       BlockBegin* pred = cur->pred_at(j);
  1034       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
  1035       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  1036         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
  1038       if (cur->loop_depth() == pred->loop_depth()) {
  1039         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1042       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
  1045     // check dominator
  1046     if (i == 0) {
  1047       assert(cur->dominator() == NULL, "first block has no dominator");
  1048     } else {
  1049       assert(cur->dominator() != NULL, "all but first block must have dominator");
  1051     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
  1054   // check that all loops are continuous
  1055   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1056     int block_idx = 0;
  1057     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
  1059     // skip blocks before the loop
  1060     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1061       block_idx++;
  1063     // skip blocks of loop
  1064     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1065       block_idx++;
  1067     // after the first non-loop block, there must not be another loop-block
  1068     while (block_idx < _num_blocks) {
  1069       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
  1070       block_idx++;
  1074 #endif
  1077 void IR::compute_code() {
  1078   assert(is_valid(), "IR must be valid");
  1080   ComputeLinearScanOrder compute_order(compilation(), start());
  1081   _num_loops = compute_order.num_loops();
  1082   _code = compute_order.linear_scan_order();
  1086 void IR::compute_use_counts() {
  1087   // make sure all values coming out of this block get evaluated.
  1088   int num_blocks = _code->length();
  1089   for (int i = 0; i < num_blocks; i++) {
  1090     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
  1093   // compute use counts
  1094   UseCountComputer::compute(_code);
  1098 void IR::iterate_preorder(BlockClosure* closure) {
  1099   assert(is_valid(), "IR must be valid");
  1100   start()->iterate_preorder(closure);
  1104 void IR::iterate_postorder(BlockClosure* closure) {
  1105   assert(is_valid(), "IR must be valid");
  1106   start()->iterate_postorder(closure);
  1109 void IR::iterate_linear_scan_order(BlockClosure* closure) {
  1110   linear_scan_order()->iterate_forward(closure);
  1114 #ifndef PRODUCT
  1115 class BlockPrinter: public BlockClosure {
  1116  private:
  1117   InstructionPrinter* _ip;
  1118   bool                _cfg_only;
  1119   bool                _live_only;
  1121  public:
  1122   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
  1123     _ip       = ip;
  1124     _cfg_only = cfg_only;
  1125     _live_only = live_only;
  1128   virtual void block_do(BlockBegin* block) {
  1129     if (_cfg_only) {
  1130       _ip->print_instr(block); tty->cr();
  1131     } else {
  1132       block->print_block(*_ip, _live_only);
  1135 };
  1138 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
  1139   ttyLocker ttyl;
  1140   InstructionPrinter ip(!cfg_only);
  1141   BlockPrinter bp(&ip, cfg_only, live_only);
  1142   start->iterate_preorder(&bp);
  1143   tty->cr();
  1146 void IR::print(bool cfg_only, bool live_only) {
  1147   if (is_valid()) {
  1148     print(start(), cfg_only, live_only);
  1149   } else {
  1150     tty->print_cr("invalid IR");
  1155 define_array(BlockListArray, BlockList*)
  1156 define_stack(BlockListList, BlockListArray)
  1158 class PredecessorValidator : public BlockClosure {
  1159  private:
  1160   BlockListList* _predecessors;
  1161   BlockList*     _blocks;
  1163   static int cmp(BlockBegin** a, BlockBegin** b) {
  1164     return (*a)->block_id() - (*b)->block_id();
  1167  public:
  1168   PredecessorValidator(IR* hir) {
  1169     ResourceMark rm;
  1170     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
  1171     _blocks = new BlockList();
  1173     int i;
  1174     hir->start()->iterate_preorder(this);
  1175     if (hir->code() != NULL) {
  1176       assert(hir->code()->length() == _blocks->length(), "must match");
  1177       for (i = 0; i < _blocks->length(); i++) {
  1178         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
  1182     for (i = 0; i < _blocks->length(); i++) {
  1183       BlockBegin* block = _blocks->at(i);
  1184       BlockList* preds = _predecessors->at(block->block_id());
  1185       if (preds == NULL) {
  1186         assert(block->number_of_preds() == 0, "should be the same");
  1187         continue;
  1190       // clone the pred list so we can mutate it
  1191       BlockList* pred_copy = new BlockList();
  1192       int j;
  1193       for (j = 0; j < block->number_of_preds(); j++) {
  1194         pred_copy->append(block->pred_at(j));
  1196       // sort them in the same order
  1197       preds->sort(cmp);
  1198       pred_copy->sort(cmp);
  1199       int length = MIN2(preds->length(), block->number_of_preds());
  1200       for (j = 0; j < block->number_of_preds(); j++) {
  1201         assert(preds->at(j) == pred_copy->at(j), "must match");
  1204       assert(preds->length() == block->number_of_preds(), "should be the same");
  1208   virtual void block_do(BlockBegin* block) {
  1209     _blocks->append(block);
  1210     BlockEnd* be = block->end();
  1211     int n = be->number_of_sux();
  1212     int i;
  1213     for (i = 0; i < n; i++) {
  1214       BlockBegin* sux = be->sux_at(i);
  1215       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
  1217       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1218       if (preds == NULL) {
  1219         preds = new BlockList();
  1220         _predecessors->at_put(sux->block_id(), preds);
  1222       preds->append(block);
  1225     n = block->number_of_exception_handlers();
  1226     for (i = 0; i < n; i++) {
  1227       BlockBegin* sux = block->exception_handler_at(i);
  1228       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
  1230       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1231       if (preds == NULL) {
  1232         preds = new BlockList();
  1233         _predecessors->at_put(sux->block_id(), preds);
  1235       preds->append(block);
  1238 };
  1240 void IR::verify() {
  1241 #ifdef ASSERT
  1242   PredecessorValidator pv(this);
  1243 #endif
  1246 #endif // PRODUCT
  1248 void SubstitutionResolver::visit(Value* v) {
  1249   Value v0 = *v;
  1250   if (v0) {
  1251     Value vs = v0->subst();
  1252     if (vs != v0) {
  1253       *v = v0->subst();
  1258 #ifdef ASSERT
  1259 class SubstitutionChecker: public ValueVisitor {
  1260   void visit(Value* v) {
  1261     Value v0 = *v;
  1262     if (v0) {
  1263       Value vs = v0->subst();
  1264       assert(vs == v0, "missed substitution");
  1267 };
  1268 #endif
  1271 void SubstitutionResolver::block_do(BlockBegin* block) {
  1272   Instruction* last = NULL;
  1273   for (Instruction* n = block; n != NULL;) {
  1274     n->values_do(this);
  1275     // need to remove this instruction from the instruction stream
  1276     if (n->subst() != n) {
  1277       assert(last != NULL, "must have last");
  1278       last->set_next(n->next());
  1279     } else {
  1280       last = n;
  1282     n = last->next();
  1285 #ifdef ASSERT
  1286   SubstitutionChecker check_substitute;
  1287   if (block->state()) block->state()->values_do(&check_substitute);
  1288   block->block_values_do(&check_substitute);
  1289   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
  1290 #endif

mercurial