src/share/vm/gc_implementation/parallelScavenge/psScavenge.cpp

Mon, 15 Oct 2012 10:02:42 -0700

author
johnc
date
Mon, 15 Oct 2012 10:02:42 -0700
changeset 4176
4202510ee0fe
parent 4129
22b8d3d181d9
child 4465
203f64878aab
permissions
-rw-r--r--

8000831: Heap verification output incorrect/incomplete
Summary: Restore non-silent output of heap verification.
Reviewed-by: ysr, brutisso, jmasa

     1 /*
     2  * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    35 #include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
    36 #include "gc_implementation/parallelScavenge/psTasks.hpp"
    37 #include "gc_implementation/shared/isGCActiveMark.hpp"
    38 #include "gc_implementation/shared/spaceDecorator.hpp"
    39 #include "gc_interface/gcCause.hpp"
    40 #include "memory/collectorPolicy.hpp"
    41 #include "memory/gcLocker.inline.hpp"
    42 #include "memory/referencePolicy.hpp"
    43 #include "memory/referenceProcessor.hpp"
    44 #include "memory/resourceArea.hpp"
    45 #include "oops/oop.inline.hpp"
    46 #include "oops/oop.psgc.inline.hpp"
    47 #include "runtime/biasedLocking.hpp"
    48 #include "runtime/fprofiler.hpp"
    49 #include "runtime/handles.inline.hpp"
    50 #include "runtime/threadCritical.hpp"
    51 #include "runtime/vmThread.hpp"
    52 #include "runtime/vm_operations.hpp"
    53 #include "services/memoryService.hpp"
    54 #include "utilities/stack.inline.hpp"
    57 HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
    58 int                        PSScavenge::_consecutive_skipped_scavenges = 0;
    59 ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
    60 CardTableExtension*        PSScavenge::_card_table = NULL;
    61 bool                       PSScavenge::_survivor_overflow = false;
    62 uint                       PSScavenge::_tenuring_threshold = 0;
    63 HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
    64 elapsedTimer               PSScavenge::_accumulated_time;
    65 Stack<markOop, mtGC>       PSScavenge::_preserved_mark_stack;
    66 Stack<oop, mtGC>           PSScavenge::_preserved_oop_stack;
    67 CollectorCounters*         PSScavenge::_counters = NULL;
    68 bool                       PSScavenge::_promotion_failed = false;
    70 // Define before use
    71 class PSIsAliveClosure: public BoolObjectClosure {
    72 public:
    73   void do_object(oop p) {
    74     assert(false, "Do not call.");
    75   }
    76   bool do_object_b(oop p) {
    77     return (!PSScavenge::is_obj_in_young((HeapWord*) p)) || p->is_forwarded();
    78   }
    79 };
    81 PSIsAliveClosure PSScavenge::_is_alive_closure;
    83 class PSKeepAliveClosure: public OopClosure {
    84 protected:
    85   MutableSpace* _to_space;
    86   PSPromotionManager* _promotion_manager;
    88 public:
    89   PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
    90     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    91     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    92     _to_space = heap->young_gen()->to_space();
    94     assert(_promotion_manager != NULL, "Sanity");
    95   }
    97   template <class T> void do_oop_work(T* p) {
    98     assert (!oopDesc::is_null(*p), "expected non-null ref");
    99     assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
   100             "expected an oop while scanning weak refs");
   102     // Weak refs may be visited more than once.
   103     if (PSScavenge::should_scavenge(p, _to_space)) {
   104       PSScavenge::copy_and_push_safe_barrier<T, /*promote_immediately=*/false>(_promotion_manager, p);
   105     }
   106   }
   107   virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
   108   virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
   109 };
   111 class PSEvacuateFollowersClosure: public VoidClosure {
   112  private:
   113   PSPromotionManager* _promotion_manager;
   114  public:
   115   PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
   117   virtual void do_void() {
   118     assert(_promotion_manager != NULL, "Sanity");
   119     _promotion_manager->drain_stacks(true);
   120     guarantee(_promotion_manager->stacks_empty(),
   121               "stacks should be empty at this point");
   122   }
   123 };
   125 class PSPromotionFailedClosure : public ObjectClosure {
   126   virtual void do_object(oop obj) {
   127     if (obj->is_forwarded()) {
   128       obj->init_mark();
   129     }
   130   }
   131 };
   133 class PSRefProcTaskProxy: public GCTask {
   134   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
   135   ProcessTask & _rp_task;
   136   uint          _work_id;
   137 public:
   138   PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
   139     : _rp_task(rp_task),
   140       _work_id(work_id)
   141   { }
   143 private:
   144   virtual char* name() { return (char *)"Process referents by policy in parallel"; }
   145   virtual void do_it(GCTaskManager* manager, uint which);
   146 };
   148 void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
   149 {
   150   PSPromotionManager* promotion_manager =
   151     PSPromotionManager::gc_thread_promotion_manager(which);
   152   assert(promotion_manager != NULL, "sanity check");
   153   PSKeepAliveClosure keep_alive(promotion_manager);
   154   PSEvacuateFollowersClosure evac_followers(promotion_manager);
   155   PSIsAliveClosure is_alive;
   156   _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
   157 }
   159 class PSRefEnqueueTaskProxy: public GCTask {
   160   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
   161   EnqueueTask& _enq_task;
   162   uint         _work_id;
   164 public:
   165   PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
   166     : _enq_task(enq_task),
   167       _work_id(work_id)
   168   { }
   170   virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
   171   virtual void do_it(GCTaskManager* manager, uint which)
   172   {
   173     _enq_task.work(_work_id);
   174   }
   175 };
   177 class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   178   virtual void execute(ProcessTask& task);
   179   virtual void execute(EnqueueTask& task);
   180 };
   182 void PSRefProcTaskExecutor::execute(ProcessTask& task)
   183 {
   184   GCTaskQueue* q = GCTaskQueue::create();
   185   GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
   186   for(uint i=0; i < manager->active_workers(); i++) {
   187     q->enqueue(new PSRefProcTaskProxy(task, i));
   188   }
   189   ParallelTaskTerminator terminator(manager->active_workers(),
   190                  (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth());
   191   if (task.marks_oops_alive() && manager->active_workers() > 1) {
   192     for (uint j = 0; j < manager->active_workers(); j++) {
   193       q->enqueue(new StealTask(&terminator));
   194     }
   195   }
   196   manager->execute_and_wait(q);
   197 }
   200 void PSRefProcTaskExecutor::execute(EnqueueTask& task)
   201 {
   202   GCTaskQueue* q = GCTaskQueue::create();
   203   GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
   204   for(uint i=0; i < manager->active_workers(); i++) {
   205     q->enqueue(new PSRefEnqueueTaskProxy(task, i));
   206   }
   207   manager->execute_and_wait(q);
   208 }
   210 // This method contains all heap specific policy for invoking scavenge.
   211 // PSScavenge::invoke_no_policy() will do nothing but attempt to
   212 // scavenge. It will not clean up after failed promotions, bail out if
   213 // we've exceeded policy time limits, or any other special behavior.
   214 // All such policy should be placed here.
   215 //
   216 // Note that this method should only be called from the vm_thread while
   217 // at a safepoint!
   218 bool PSScavenge::invoke() {
   219   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   220   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   221   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   223   ParallelScavengeHeap* const heap = (ParallelScavengeHeap*)Universe::heap();
   224   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   226   PSAdaptiveSizePolicy* policy = heap->size_policy();
   227   IsGCActiveMark mark;
   229   const bool scavenge_done = PSScavenge::invoke_no_policy();
   230   const bool need_full_gc = !scavenge_done ||
   231     policy->should_full_GC(heap->old_gen()->free_in_bytes());
   232   bool full_gc_done = false;
   234   if (UsePerfData) {
   235     PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
   236     const int ffs_val = need_full_gc ? full_follows_scavenge : not_skipped;
   237     counters->update_full_follows_scavenge(ffs_val);
   238   }
   240   if (need_full_gc) {
   241     GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
   242     CollectorPolicy* cp = heap->collector_policy();
   243     const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
   245     if (UseParallelOldGC) {
   246       full_gc_done = PSParallelCompact::invoke_no_policy(clear_all_softrefs);
   247     } else {
   248       full_gc_done = PSMarkSweep::invoke_no_policy(clear_all_softrefs);
   249     }
   250   }
   252   return full_gc_done;
   253 }
   255 // This method contains no policy. You should probably
   256 // be calling invoke() instead.
   257 bool PSScavenge::invoke_no_policy() {
   258   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   259   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   261   assert(_preserved_mark_stack.is_empty(), "should be empty");
   262   assert(_preserved_oop_stack.is_empty(), "should be empty");
   264   TimeStamp scavenge_entry;
   265   TimeStamp scavenge_midpoint;
   266   TimeStamp scavenge_exit;
   268   scavenge_entry.update();
   270   if (GC_locker::check_active_before_gc()) {
   271     return false;
   272   }
   274   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   275   GCCause::Cause gc_cause = heap->gc_cause();
   276   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   278   // Check for potential problems.
   279   if (!should_attempt_scavenge()) {
   280     return false;
   281   }
   283   bool promotion_failure_occurred = false;
   285   PSYoungGen* young_gen = heap->young_gen();
   286   PSOldGen* old_gen = heap->old_gen();
   287   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
   288   heap->increment_total_collections();
   290   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   292   if ((gc_cause != GCCause::_java_lang_system_gc) ||
   293        UseAdaptiveSizePolicyWithSystemGC) {
   294     // Gather the feedback data for eden occupancy.
   295     young_gen->eden_space()->accumulate_statistics();
   296   }
   298   if (ZapUnusedHeapArea) {
   299     // Save information needed to minimize mangling
   300     heap->record_gen_tops_before_GC();
   301   }
   303   heap->print_heap_before_gc();
   305   assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
   306   assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
   308   size_t prev_used = heap->used();
   309   assert(promotion_failed() == false, "Sanity");
   311   // Fill in TLABs
   312   heap->accumulate_statistics_all_tlabs();
   313   heap->ensure_parsability(true);  // retire TLABs
   315   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   316     HandleMark hm;  // Discard invalid handles created during verification
   317     gclog_or_tty->print(" VerifyBeforeGC:");
   318     Universe::verify();
   319   }
   321   {
   322     ResourceMark rm;
   323     HandleMark hm;
   325     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   326     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   327     TraceTime t1(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
   328     TraceCollectorStats tcs(counters());
   329     TraceMemoryManagerStats tms(false /* not full GC */,gc_cause);
   331     if (TraceGen0Time) accumulated_time()->start();
   333     // Let the size policy know we're starting
   334     size_policy->minor_collection_begin();
   336     // Verify the object start arrays.
   337     if (VerifyObjectStartArray &&
   338         VerifyBeforeGC) {
   339       old_gen->verify_object_start_array();
   340     }
   342     // Verify no unmarked old->young roots
   343     if (VerifyRememberedSets) {
   344       CardTableExtension::verify_all_young_refs_imprecise();
   345     }
   347     if (!ScavengeWithObjectsInToSpace) {
   348       assert(young_gen->to_space()->is_empty(),
   349              "Attempt to scavenge with live objects in to_space");
   350       young_gen->to_space()->clear(SpaceDecorator::Mangle);
   351     } else if (ZapUnusedHeapArea) {
   352       young_gen->to_space()->mangle_unused_area();
   353     }
   354     save_to_space_top_before_gc();
   356     COMPILER2_PRESENT(DerivedPointerTable::clear());
   358     reference_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   359     reference_processor()->setup_policy(false);
   361     // We track how much was promoted to the next generation for
   362     // the AdaptiveSizePolicy.
   363     size_t old_gen_used_before = old_gen->used_in_bytes();
   365     // For PrintGCDetails
   366     size_t young_gen_used_before = young_gen->used_in_bytes();
   368     // Reset our survivor overflow.
   369     set_survivor_overflow(false);
   371     // We need to save the old top values before
   372     // creating the promotion_manager. We pass the top
   373     // values to the card_table, to prevent it from
   374     // straying into the promotion labs.
   375     HeapWord* old_top = old_gen->object_space()->top();
   377     // Release all previously held resources
   378     gc_task_manager()->release_all_resources();
   380     // Set the number of GC threads to be used in this collection
   381     gc_task_manager()->set_active_gang();
   382     gc_task_manager()->task_idle_workers();
   383     // Get the active number of workers here and use that value
   384     // throughout the methods.
   385     uint active_workers = gc_task_manager()->active_workers();
   386     heap->set_par_threads(active_workers);
   388     PSPromotionManager::pre_scavenge();
   390     // We'll use the promotion manager again later.
   391     PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
   392     {
   393       // TraceTime("Roots");
   394       ParallelScavengeHeap::ParStrongRootsScope psrs;
   396       GCTaskQueue* q = GCTaskQueue::create();
   398       if (!old_gen->object_space()->is_empty()) {
   399         // There are only old-to-young pointers if there are objects
   400         // in the old gen.
   401         uint stripe_total = active_workers;
   402         for(uint i=0; i < stripe_total; i++) {
   403           q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i, stripe_total));
   404         }
   405       }
   407       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
   408       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
   409       // We scan the thread roots in parallel
   410       Threads::create_thread_roots_tasks(q);
   411       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
   412       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
   413       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
   414       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
   415       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
   416       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
   418       ParallelTaskTerminator terminator(
   419         active_workers,
   420                   (TaskQueueSetSuper*) promotion_manager->stack_array_depth());
   421       if (active_workers > 1) {
   422         for (uint j = 0; j < active_workers; j++) {
   423           q->enqueue(new StealTask(&terminator));
   424         }
   425       }
   427       gc_task_manager()->execute_and_wait(q);
   428     }
   430     scavenge_midpoint.update();
   432     // Process reference objects discovered during scavenge
   433     {
   434       reference_processor()->setup_policy(false); // not always_clear
   435       reference_processor()->set_active_mt_degree(active_workers);
   436       PSKeepAliveClosure keep_alive(promotion_manager);
   437       PSEvacuateFollowersClosure evac_followers(promotion_manager);
   438       if (reference_processor()->processing_is_mt()) {
   439         PSRefProcTaskExecutor task_executor;
   440         reference_processor()->process_discovered_references(
   441           &_is_alive_closure, &keep_alive, &evac_followers, &task_executor);
   442       } else {
   443         reference_processor()->process_discovered_references(
   444           &_is_alive_closure, &keep_alive, &evac_followers, NULL);
   445       }
   446     }
   448     // Enqueue reference objects discovered during scavenge.
   449     if (reference_processor()->processing_is_mt()) {
   450       PSRefProcTaskExecutor task_executor;
   451       reference_processor()->enqueue_discovered_references(&task_executor);
   452     } else {
   453       reference_processor()->enqueue_discovered_references(NULL);
   454     }
   456       // Unlink any dead interned Strings
   457       StringTable::unlink(&_is_alive_closure);
   458       // Process the remaining live ones
   459       PSScavengeRootsClosure root_closure(promotion_manager);
   460       StringTable::oops_do(&root_closure);
   462     // Finally, flush the promotion_manager's labs, and deallocate its stacks.
   463     PSPromotionManager::post_scavenge();
   465     promotion_failure_occurred = promotion_failed();
   466     if (promotion_failure_occurred) {
   467       clean_up_failed_promotion();
   468       if (PrintGC) {
   469         gclog_or_tty->print("--");
   470       }
   471     }
   473     // Let the size policy know we're done.  Note that we count promotion
   474     // failure cleanup time as part of the collection (otherwise, we're
   475     // implicitly saying it's mutator time).
   476     size_policy->minor_collection_end(gc_cause);
   478     if (!promotion_failure_occurred) {
   479       // Swap the survivor spaces.
   482       young_gen->eden_space()->clear(SpaceDecorator::Mangle);
   483       young_gen->from_space()->clear(SpaceDecorator::Mangle);
   484       young_gen->swap_spaces();
   486       size_t survived = young_gen->from_space()->used_in_bytes();
   487       size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
   488       size_policy->update_averages(_survivor_overflow, survived, promoted);
   490       // A successful scavenge should restart the GC time limit count which is
   491       // for full GC's.
   492       size_policy->reset_gc_overhead_limit_count();
   493       if (UseAdaptiveSizePolicy) {
   494         // Calculate the new survivor size and tenuring threshold
   496         if (PrintAdaptiveSizePolicy) {
   497           gclog_or_tty->print("AdaptiveSizeStart: ");
   498           gclog_or_tty->stamp();
   499           gclog_or_tty->print_cr(" collection: %d ",
   500                          heap->total_collections());
   502           if (Verbose) {
   503             gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
   504               old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
   505           }
   506         }
   509         if (UsePerfData) {
   510           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   511           counters->update_old_eden_size(
   512             size_policy->calculated_eden_size_in_bytes());
   513           counters->update_old_promo_size(
   514             size_policy->calculated_promo_size_in_bytes());
   515           counters->update_old_capacity(old_gen->capacity_in_bytes());
   516           counters->update_young_capacity(young_gen->capacity_in_bytes());
   517           counters->update_survived(survived);
   518           counters->update_promoted(promoted);
   519           counters->update_survivor_overflowed(_survivor_overflow);
   520         }
   522         size_t survivor_limit =
   523           size_policy->max_survivor_size(young_gen->max_size());
   524         _tenuring_threshold =
   525           size_policy->compute_survivor_space_size_and_threshold(
   526                                                            _survivor_overflow,
   527                                                            _tenuring_threshold,
   528                                                            survivor_limit);
   530        if (PrintTenuringDistribution) {
   531          gclog_or_tty->cr();
   532          gclog_or_tty->print_cr("Desired survivor size %ld bytes, new threshold %u (max %u)",
   533                                 size_policy->calculated_survivor_size_in_bytes(),
   534                                 _tenuring_threshold, MaxTenuringThreshold);
   535        }
   537         if (UsePerfData) {
   538           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   539           counters->update_tenuring_threshold(_tenuring_threshold);
   540           counters->update_survivor_size_counters();
   541         }
   543         // Do call at minor collections?
   544         // Don't check if the size_policy is ready at this
   545         // level.  Let the size_policy check that internally.
   546         if (UseAdaptiveSizePolicy &&
   547             UseAdaptiveGenerationSizePolicyAtMinorCollection &&
   548             ((gc_cause != GCCause::_java_lang_system_gc) ||
   549               UseAdaptiveSizePolicyWithSystemGC)) {
   551           // Calculate optimial free space amounts
   552           assert(young_gen->max_size() >
   553             young_gen->from_space()->capacity_in_bytes() +
   554             young_gen->to_space()->capacity_in_bytes(),
   555             "Sizes of space in young gen are out-of-bounds");
   556           size_t max_eden_size = young_gen->max_size() -
   557             young_gen->from_space()->capacity_in_bytes() -
   558             young_gen->to_space()->capacity_in_bytes();
   559           size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
   560                                    young_gen->eden_space()->used_in_bytes(),
   561                                    old_gen->used_in_bytes(),
   562                                    young_gen->eden_space()->capacity_in_bytes(),
   563                                    old_gen->max_gen_size(),
   564                                    max_eden_size,
   565                                    false  /* full gc*/,
   566                                    gc_cause,
   567                                    heap->collector_policy());
   569         }
   570         // Resize the young generation at every collection
   571         // even if new sizes have not been calculated.  This is
   572         // to allow resizes that may have been inhibited by the
   573         // relative location of the "to" and "from" spaces.
   575         // Resizing the old gen at minor collects can cause increases
   576         // that don't feed back to the generation sizing policy until
   577         // a major collection.  Don't resize the old gen here.
   579         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
   580                         size_policy->calculated_survivor_size_in_bytes());
   582         if (PrintAdaptiveSizePolicy) {
   583           gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   584                          heap->total_collections());
   585         }
   586       }
   588       // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
   589       // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
   590       // Also update() will case adaptive NUMA chunk resizing.
   591       assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
   592       young_gen->eden_space()->update();
   594       heap->gc_policy_counters()->update_counters();
   596       heap->resize_all_tlabs();
   598       assert(young_gen->to_space()->is_empty(), "to space should be empty now");
   599     }
   601     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   603     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
   605     CodeCache::prune_scavenge_root_nmethods();
   607     // Re-verify object start arrays
   608     if (VerifyObjectStartArray &&
   609         VerifyAfterGC) {
   610       old_gen->verify_object_start_array();
   611     }
   613     // Verify all old -> young cards are now precise
   614     if (VerifyRememberedSets) {
   615       // Precise verification will give false positives. Until this is fixed,
   616       // use imprecise verification.
   617       // CardTableExtension::verify_all_young_refs_precise();
   618       CardTableExtension::verify_all_young_refs_imprecise();
   619     }
   621     if (TraceGen0Time) accumulated_time()->stop();
   623     if (PrintGC) {
   624       if (PrintGCDetails) {
   625         // Don't print a GC timestamp here.  This is after the GC so
   626         // would be confusing.
   627         young_gen->print_used_change(young_gen_used_before);
   628       }
   629       heap->print_heap_change(prev_used);
   630     }
   632     // Track memory usage and detect low memory
   633     MemoryService::track_memory_usage();
   634     heap->update_counters();
   636     gc_task_manager()->release_idle_workers();
   637   }
   639   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   640     HandleMark hm;  // Discard invalid handles created during verification
   641     gclog_or_tty->print(" VerifyAfterGC:");
   642     Universe::verify();
   643   }
   645   heap->print_heap_after_gc();
   647   if (ZapUnusedHeapArea) {
   648     young_gen->eden_space()->check_mangled_unused_area_complete();
   649     young_gen->from_space()->check_mangled_unused_area_complete();
   650     young_gen->to_space()->check_mangled_unused_area_complete();
   651   }
   653   scavenge_exit.update();
   655   if (PrintGCTaskTimeStamps) {
   656     tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
   657                   scavenge_entry.ticks(), scavenge_midpoint.ticks(),
   658                   scavenge_exit.ticks());
   659     gc_task_manager()->print_task_time_stamps();
   660   }
   662 #ifdef TRACESPINNING
   663   ParallelTaskTerminator::print_termination_counts();
   664 #endif
   666   return !promotion_failure_occurred;
   667 }
   669 // This method iterates over all objects in the young generation,
   670 // unforwarding markOops. It then restores any preserved mark oops,
   671 // and clears the _preserved_mark_stack.
   672 void PSScavenge::clean_up_failed_promotion() {
   673   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   674   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   675   assert(promotion_failed(), "Sanity");
   677   PSYoungGen* young_gen = heap->young_gen();
   679   {
   680     ResourceMark rm;
   682     // Unforward all pointers in the young gen.
   683     PSPromotionFailedClosure unforward_closure;
   684     young_gen->object_iterate(&unforward_closure);
   686     if (PrintGC && Verbose) {
   687       gclog_or_tty->print_cr("Restoring %d marks", _preserved_oop_stack.size());
   688     }
   690     // Restore any saved marks.
   691     while (!_preserved_oop_stack.is_empty()) {
   692       oop obj      = _preserved_oop_stack.pop();
   693       markOop mark = _preserved_mark_stack.pop();
   694       obj->set_mark(mark);
   695     }
   697     // Clear the preserved mark and oop stack caches.
   698     _preserved_mark_stack.clear(true);
   699     _preserved_oop_stack.clear(true);
   700     _promotion_failed = false;
   701   }
   703   // Reset the PromotionFailureALot counters.
   704   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   705 }
   707 // This method is called whenever an attempt to promote an object
   708 // fails. Some markOops will need preservation, some will not. Note
   709 // that the entire eden is traversed after a failed promotion, with
   710 // all forwarded headers replaced by the default markOop. This means
   711 // it is not neccessary to preserve most markOops.
   712 void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
   713   _promotion_failed = true;
   714   if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
   715     // Should use per-worker private stakcs hetre rather than
   716     // locking a common pair of stacks.
   717     ThreadCritical tc;
   718     _preserved_oop_stack.push(obj);
   719     _preserved_mark_stack.push(obj_mark);
   720   }
   721 }
   723 bool PSScavenge::should_attempt_scavenge() {
   724   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   725   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   726   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   728   if (UsePerfData) {
   729     counters->update_scavenge_skipped(not_skipped);
   730   }
   732   PSYoungGen* young_gen = heap->young_gen();
   733   PSOldGen* old_gen = heap->old_gen();
   735   if (!ScavengeWithObjectsInToSpace) {
   736     // Do not attempt to promote unless to_space is empty
   737     if (!young_gen->to_space()->is_empty()) {
   738       _consecutive_skipped_scavenges++;
   739       if (UsePerfData) {
   740         counters->update_scavenge_skipped(to_space_not_empty);
   741       }
   742       return false;
   743     }
   744   }
   746   // Test to see if the scavenge will likely fail.
   747   PSAdaptiveSizePolicy* policy = heap->size_policy();
   749   // A similar test is done in the policy's should_full_GC().  If this is
   750   // changed, decide if that test should also be changed.
   751   size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
   752   size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
   753   bool result = promotion_estimate < old_gen->free_in_bytes();
   755   if (PrintGCDetails && Verbose) {
   756     gclog_or_tty->print(result ? "  do scavenge: " : "  skip scavenge: ");
   757     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
   758       " padded_average_promoted " SIZE_FORMAT
   759       " free in old gen " SIZE_FORMAT,
   760       (size_t) policy->average_promoted_in_bytes(),
   761       (size_t) policy->padded_average_promoted_in_bytes(),
   762       old_gen->free_in_bytes());
   763     if (young_gen->used_in_bytes() <
   764         (size_t) policy->padded_average_promoted_in_bytes()) {
   765       gclog_or_tty->print_cr(" padded_promoted_average is greater"
   766         " than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
   767     }
   768   }
   770   if (result) {
   771     _consecutive_skipped_scavenges = 0;
   772   } else {
   773     _consecutive_skipped_scavenges++;
   774     if (UsePerfData) {
   775       counters->update_scavenge_skipped(promoted_too_large);
   776     }
   777   }
   778   return result;
   779 }
   781   // Used to add tasks
   782 GCTaskManager* const PSScavenge::gc_task_manager() {
   783   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
   784    "shouldn't return NULL");
   785   return ParallelScavengeHeap::gc_task_manager();
   786 }
   788 void PSScavenge::initialize() {
   789   // Arguments must have been parsed
   791   if (AlwaysTenure) {
   792     _tenuring_threshold = 0;
   793   } else if (NeverTenure) {
   794     _tenuring_threshold = markOopDesc::max_age + 1;
   795   } else {
   796     // We want to smooth out our startup times for the AdaptiveSizePolicy
   797     _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
   798                                                     MaxTenuringThreshold;
   799   }
   801   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   802   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   804   PSYoungGen* young_gen = heap->young_gen();
   805   PSOldGen* old_gen = heap->old_gen();
   807   // Set boundary between young_gen and old_gen
   808   assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
   809          "old above young");
   810   _young_generation_boundary = young_gen->eden_space()->bottom();
   812   // Initialize ref handling object for scavenging.
   813   MemRegion mr = young_gen->reserved();
   815   _ref_processor =
   816     new ReferenceProcessor(mr,                         // span
   817                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
   818                            (int) ParallelGCThreads,    // mt processing degree
   819                            true,                       // mt discovery
   820                            (int) ParallelGCThreads,    // mt discovery degree
   821                            true,                       // atomic_discovery
   822                            NULL,                       // header provides liveness info
   823                            false);                     // next field updates do not need write barrier
   825   // Cache the cardtable
   826   BarrierSet* bs = Universe::heap()->barrier_set();
   827   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   828   _card_table = (CardTableExtension*)bs;
   830   _counters = new CollectorCounters("PSScavenge", 0);
   831 }

mercurial