src/share/vm/opto/library_call.cpp

Sat, 26 Feb 2011 12:10:54 -0800

author
kvn
date
Sat, 26 Feb 2011 12:10:54 -0800
changeset 2602
41d4973cf100
parent 2314
f95d63e2154a
child 2606
0ac769a57c64
permissions
-rw-r--r--

6942326: x86 code in string_indexof() could read beyond reserved heap space
Summary: copy small (<8) strings on stack if str+16 crosses a page boundary and load from stack into XMM. Back up pointer when loading string's tail.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileLog.hpp"
    29 #include "oops/objArrayKlass.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callGenerator.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/idealKit.hpp"
    34 #include "opto/mulnode.hpp"
    35 #include "opto/parse.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "opto/subnode.hpp"
    38 #include "prims/nativeLookup.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    41 class LibraryIntrinsic : public InlineCallGenerator {
    42   // Extend the set of intrinsics known to the runtime:
    43  public:
    44  private:
    45   bool             _is_virtual;
    46   vmIntrinsics::ID _intrinsic_id;
    48  public:
    49   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    50     : InlineCallGenerator(m),
    51       _is_virtual(is_virtual),
    52       _intrinsic_id(id)
    53   {
    54   }
    55   virtual bool is_intrinsic() const { return true; }
    56   virtual bool is_virtual()   const { return _is_virtual; }
    57   virtual JVMState* generate(JVMState* jvms);
    58   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    59 };
    62 // Local helper class for LibraryIntrinsic:
    63 class LibraryCallKit : public GraphKit {
    64  private:
    65   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    67  public:
    68   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    69     : GraphKit(caller),
    70       _intrinsic(intrinsic)
    71   {
    72   }
    74   ciMethod*         caller()    const    { return jvms()->method(); }
    75   int               bci()       const    { return jvms()->bci(); }
    76   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    77   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    78   ciMethod*         callee()    const    { return _intrinsic->method(); }
    79   ciSignature*      signature() const    { return callee()->signature(); }
    80   int               arg_size()  const    { return callee()->arg_size(); }
    82   bool try_to_inline();
    84   // Helper functions to inline natives
    85   void push_result(RegionNode* region, PhiNode* value);
    86   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    87   Node* generate_slow_guard(Node* test, RegionNode* region);
    88   Node* generate_fair_guard(Node* test, RegionNode* region);
    89   Node* generate_negative_guard(Node* index, RegionNode* region,
    90                                 // resulting CastII of index:
    91                                 Node* *pos_index = NULL);
    92   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    93                                    // resulting CastII of index:
    94                                    Node* *pos_index = NULL);
    95   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    96                              Node* array_length,
    97                              RegionNode* region);
    98   Node* generate_current_thread(Node* &tls_output);
    99   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   100                               bool disjoint_bases, const char* &name);
   101   Node* load_mirror_from_klass(Node* klass);
   102   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   103                                       int nargs,
   104                                       RegionNode* region, int null_path,
   105                                       int offset);
   106   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
   107                                RegionNode* region, int null_path) {
   108     int offset = java_lang_Class::klass_offset_in_bytes();
   109     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   110                                          region, null_path,
   111                                          offset);
   112   }
   113   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   114                                      int nargs,
   115                                      RegionNode* region, int null_path) {
   116     int offset = java_lang_Class::array_klass_offset_in_bytes();
   117     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   118                                          region, null_path,
   119                                          offset);
   120   }
   121   Node* generate_access_flags_guard(Node* kls,
   122                                     int modifier_mask, int modifier_bits,
   123                                     RegionNode* region);
   124   Node* generate_interface_guard(Node* kls, RegionNode* region);
   125   Node* generate_array_guard(Node* kls, RegionNode* region) {
   126     return generate_array_guard_common(kls, region, false, false);
   127   }
   128   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   129     return generate_array_guard_common(kls, region, false, true);
   130   }
   131   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   132     return generate_array_guard_common(kls, region, true, false);
   133   }
   134   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   135     return generate_array_guard_common(kls, region, true, true);
   136   }
   137   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   138                                     bool obj_array, bool not_array);
   139   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   140   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   141                                      bool is_virtual = false, bool is_static = false);
   142   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   143     return generate_method_call(method_id, false, true);
   144   }
   145   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   146     return generate_method_call(method_id, true, false);
   147   }
   149   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
   150   bool inline_string_compareTo();
   151   bool inline_string_indexOf();
   152   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   153   bool inline_string_equals();
   154   Node* pop_math_arg();
   155   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   156   bool inline_math_native(vmIntrinsics::ID id);
   157   bool inline_trig(vmIntrinsics::ID id);
   158   bool inline_trans(vmIntrinsics::ID id);
   159   bool inline_abs(vmIntrinsics::ID id);
   160   bool inline_sqrt(vmIntrinsics::ID id);
   161   bool inline_pow(vmIntrinsics::ID id);
   162   bool inline_exp(vmIntrinsics::ID id);
   163   bool inline_min_max(vmIntrinsics::ID id);
   164   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   165   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   166   int classify_unsafe_addr(Node* &base, Node* &offset);
   167   Node* make_unsafe_address(Node* base, Node* offset);
   168   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   169   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   170   bool inline_unsafe_allocate();
   171   bool inline_unsafe_copyMemory();
   172   bool inline_native_currentThread();
   173   bool inline_native_time_funcs(bool isNano);
   174   bool inline_native_isInterrupted();
   175   bool inline_native_Class_query(vmIntrinsics::ID id);
   176   bool inline_native_subtype_check();
   178   bool inline_native_newArray();
   179   bool inline_native_getLength();
   180   bool inline_array_copyOf(bool is_copyOfRange);
   181   bool inline_array_equals();
   182   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   183   bool inline_native_clone(bool is_virtual);
   184   bool inline_native_Reflection_getCallerClass();
   185   bool inline_native_AtomicLong_get();
   186   bool inline_native_AtomicLong_attemptUpdate();
   187   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   188   // Helper function for inlining native object hash method
   189   bool inline_native_hashcode(bool is_virtual, bool is_static);
   190   bool inline_native_getClass();
   192   // Helper functions for inlining arraycopy
   193   bool inline_arraycopy();
   194   void generate_arraycopy(const TypePtr* adr_type,
   195                           BasicType basic_elem_type,
   196                           Node* src,  Node* src_offset,
   197                           Node* dest, Node* dest_offset,
   198                           Node* copy_length,
   199                           bool disjoint_bases = false,
   200                           bool length_never_negative = false,
   201                           RegionNode* slow_region = NULL);
   202   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   203                                                 RegionNode* slow_region);
   204   void generate_clear_array(const TypePtr* adr_type,
   205                             Node* dest,
   206                             BasicType basic_elem_type,
   207                             Node* slice_off,
   208                             Node* slice_len,
   209                             Node* slice_end);
   210   bool generate_block_arraycopy(const TypePtr* adr_type,
   211                                 BasicType basic_elem_type,
   212                                 AllocateNode* alloc,
   213                                 Node* src,  Node* src_offset,
   214                                 Node* dest, Node* dest_offset,
   215                                 Node* dest_size);
   216   void generate_slow_arraycopy(const TypePtr* adr_type,
   217                                Node* src,  Node* src_offset,
   218                                Node* dest, Node* dest_offset,
   219                                Node* copy_length);
   220   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   221                                      Node* dest_elem_klass,
   222                                      Node* src,  Node* src_offset,
   223                                      Node* dest, Node* dest_offset,
   224                                      Node* copy_length);
   225   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   226                                    Node* src,  Node* src_offset,
   227                                    Node* dest, Node* dest_offset,
   228                                    Node* copy_length);
   229   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   230                                     BasicType basic_elem_type,
   231                                     bool disjoint_bases,
   232                                     Node* src,  Node* src_offset,
   233                                     Node* dest, Node* dest_offset,
   234                                     Node* copy_length);
   235   bool inline_unsafe_CAS(BasicType type);
   236   bool inline_unsafe_ordered_store(BasicType type);
   237   bool inline_fp_conversions(vmIntrinsics::ID id);
   238   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   239   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   240   bool inline_bitCount(vmIntrinsics::ID id);
   241   bool inline_reverseBytes(vmIntrinsics::ID id);
   242 };
   245 //---------------------------make_vm_intrinsic----------------------------
   246 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   247   vmIntrinsics::ID id = m->intrinsic_id();
   248   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   250   if (DisableIntrinsic[0] != '\0'
   251       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   252     // disabled by a user request on the command line:
   253     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   254     return NULL;
   255   }
   257   if (!m->is_loaded()) {
   258     // do not attempt to inline unloaded methods
   259     return NULL;
   260   }
   262   // Only a few intrinsics implement a virtual dispatch.
   263   // They are expensive calls which are also frequently overridden.
   264   if (is_virtual) {
   265     switch (id) {
   266     case vmIntrinsics::_hashCode:
   267     case vmIntrinsics::_clone:
   268       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   269       break;
   270     default:
   271       return NULL;
   272     }
   273   }
   275   // -XX:-InlineNatives disables nearly all intrinsics:
   276   if (!InlineNatives) {
   277     switch (id) {
   278     case vmIntrinsics::_indexOf:
   279     case vmIntrinsics::_compareTo:
   280     case vmIntrinsics::_equals:
   281     case vmIntrinsics::_equalsC:
   282       break;  // InlineNatives does not control String.compareTo
   283     default:
   284       return NULL;
   285     }
   286   }
   288   switch (id) {
   289   case vmIntrinsics::_compareTo:
   290     if (!SpecialStringCompareTo)  return NULL;
   291     break;
   292   case vmIntrinsics::_indexOf:
   293     if (!SpecialStringIndexOf)  return NULL;
   294     break;
   295   case vmIntrinsics::_equals:
   296     if (!SpecialStringEquals)  return NULL;
   297     break;
   298   case vmIntrinsics::_equalsC:
   299     if (!SpecialArraysEquals)  return NULL;
   300     break;
   301   case vmIntrinsics::_arraycopy:
   302     if (!InlineArrayCopy)  return NULL;
   303     break;
   304   case vmIntrinsics::_copyMemory:
   305     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   306     if (!InlineArrayCopy)  return NULL;
   307     break;
   308   case vmIntrinsics::_hashCode:
   309     if (!InlineObjectHash)  return NULL;
   310     break;
   311   case vmIntrinsics::_clone:
   312   case vmIntrinsics::_copyOf:
   313   case vmIntrinsics::_copyOfRange:
   314     if (!InlineObjectCopy)  return NULL;
   315     // These also use the arraycopy intrinsic mechanism:
   316     if (!InlineArrayCopy)  return NULL;
   317     break;
   318   case vmIntrinsics::_checkIndex:
   319     // We do not intrinsify this.  The optimizer does fine with it.
   320     return NULL;
   322   case vmIntrinsics::_get_AtomicLong:
   323   case vmIntrinsics::_attemptUpdate:
   324     if (!InlineAtomicLong)  return NULL;
   325     break;
   327   case vmIntrinsics::_getCallerClass:
   328     if (!UseNewReflection)  return NULL;
   329     if (!InlineReflectionGetCallerClass)  return NULL;
   330     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   331     break;
   333   case vmIntrinsics::_bitCount_i:
   334   case vmIntrinsics::_bitCount_l:
   335     if (!UsePopCountInstruction)  return NULL;
   336     break;
   338  default:
   339     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   340     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   341     break;
   342   }
   344   // -XX:-InlineClassNatives disables natives from the Class class.
   345   // The flag applies to all reflective calls, notably Array.newArray
   346   // (visible to Java programmers as Array.newInstance).
   347   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   348       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   349     if (!InlineClassNatives)  return NULL;
   350   }
   352   // -XX:-InlineThreadNatives disables natives from the Thread class.
   353   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   354     if (!InlineThreadNatives)  return NULL;
   355   }
   357   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   358   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   359       m->holder()->name() == ciSymbol::java_lang_Float() ||
   360       m->holder()->name() == ciSymbol::java_lang_Double()) {
   361     if (!InlineMathNatives)  return NULL;
   362   }
   364   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   365   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   366     if (!InlineUnsafeOps)  return NULL;
   367   }
   369   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   370 }
   372 //----------------------register_library_intrinsics-----------------------
   373 // Initialize this file's data structures, for each Compile instance.
   374 void Compile::register_library_intrinsics() {
   375   // Nothing to do here.
   376 }
   378 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   379   LibraryCallKit kit(jvms, this);
   380   Compile* C = kit.C;
   381   int nodes = C->unique();
   382 #ifndef PRODUCT
   383   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   384     char buf[1000];
   385     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   386     tty->print_cr("Intrinsic %s", str);
   387   }
   388 #endif
   389   if (kit.try_to_inline()) {
   390     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   391       tty->print("Inlining intrinsic %s%s at bci:%d in",
   392                  vmIntrinsics::name_at(intrinsic_id()),
   393                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   394       kit.caller()->print_short_name(tty);
   395       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   396     }
   397     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   398     if (C->log()) {
   399       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   400                      vmIntrinsics::name_at(intrinsic_id()),
   401                      (is_virtual() ? " virtual='1'" : ""),
   402                      C->unique() - nodes);
   403     }
   404     return kit.transfer_exceptions_into_jvms();
   405   }
   407   if (PrintIntrinsics) {
   408     tty->print("Did not inline intrinsic %s%s at bci:%d in",
   409                vmIntrinsics::name_at(intrinsic_id()),
   410                (is_virtual() ? " (virtual)" : ""), kit.bci());
   411     kit.caller()->print_short_name(tty);
   412     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   413   }
   414   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   415   return NULL;
   416 }
   418 bool LibraryCallKit::try_to_inline() {
   419   // Handle symbolic names for otherwise undistinguished boolean switches:
   420   const bool is_store       = true;
   421   const bool is_native_ptr  = true;
   422   const bool is_static      = true;
   424   switch (intrinsic_id()) {
   425   case vmIntrinsics::_hashCode:
   426     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   427   case vmIntrinsics::_identityHashCode:
   428     return inline_native_hashcode(/*!virtual*/ false, is_static);
   429   case vmIntrinsics::_getClass:
   430     return inline_native_getClass();
   432   case vmIntrinsics::_dsin:
   433   case vmIntrinsics::_dcos:
   434   case vmIntrinsics::_dtan:
   435   case vmIntrinsics::_dabs:
   436   case vmIntrinsics::_datan2:
   437   case vmIntrinsics::_dsqrt:
   438   case vmIntrinsics::_dexp:
   439   case vmIntrinsics::_dlog:
   440   case vmIntrinsics::_dlog10:
   441   case vmIntrinsics::_dpow:
   442     return inline_math_native(intrinsic_id());
   444   case vmIntrinsics::_min:
   445   case vmIntrinsics::_max:
   446     return inline_min_max(intrinsic_id());
   448   case vmIntrinsics::_arraycopy:
   449     return inline_arraycopy();
   451   case vmIntrinsics::_compareTo:
   452     return inline_string_compareTo();
   453   case vmIntrinsics::_indexOf:
   454     return inline_string_indexOf();
   455   case vmIntrinsics::_equals:
   456     return inline_string_equals();
   458   case vmIntrinsics::_getObject:
   459     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   460   case vmIntrinsics::_getBoolean:
   461     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   462   case vmIntrinsics::_getByte:
   463     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   464   case vmIntrinsics::_getShort:
   465     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   466   case vmIntrinsics::_getChar:
   467     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   468   case vmIntrinsics::_getInt:
   469     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   470   case vmIntrinsics::_getLong:
   471     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   472   case vmIntrinsics::_getFloat:
   473     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   474   case vmIntrinsics::_getDouble:
   475     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   477   case vmIntrinsics::_putObject:
   478     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   479   case vmIntrinsics::_putBoolean:
   480     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   481   case vmIntrinsics::_putByte:
   482     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   483   case vmIntrinsics::_putShort:
   484     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   485   case vmIntrinsics::_putChar:
   486     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   487   case vmIntrinsics::_putInt:
   488     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   489   case vmIntrinsics::_putLong:
   490     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   491   case vmIntrinsics::_putFloat:
   492     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   493   case vmIntrinsics::_putDouble:
   494     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   496   case vmIntrinsics::_getByte_raw:
   497     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   498   case vmIntrinsics::_getShort_raw:
   499     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   500   case vmIntrinsics::_getChar_raw:
   501     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   502   case vmIntrinsics::_getInt_raw:
   503     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   504   case vmIntrinsics::_getLong_raw:
   505     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   506   case vmIntrinsics::_getFloat_raw:
   507     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   508   case vmIntrinsics::_getDouble_raw:
   509     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   510   case vmIntrinsics::_getAddress_raw:
   511     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   513   case vmIntrinsics::_putByte_raw:
   514     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   515   case vmIntrinsics::_putShort_raw:
   516     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   517   case vmIntrinsics::_putChar_raw:
   518     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   519   case vmIntrinsics::_putInt_raw:
   520     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   521   case vmIntrinsics::_putLong_raw:
   522     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   523   case vmIntrinsics::_putFloat_raw:
   524     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   525   case vmIntrinsics::_putDouble_raw:
   526     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   527   case vmIntrinsics::_putAddress_raw:
   528     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   530   case vmIntrinsics::_getObjectVolatile:
   531     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   532   case vmIntrinsics::_getBooleanVolatile:
   533     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   534   case vmIntrinsics::_getByteVolatile:
   535     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   536   case vmIntrinsics::_getShortVolatile:
   537     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   538   case vmIntrinsics::_getCharVolatile:
   539     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   540   case vmIntrinsics::_getIntVolatile:
   541     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   542   case vmIntrinsics::_getLongVolatile:
   543     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   544   case vmIntrinsics::_getFloatVolatile:
   545     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   546   case vmIntrinsics::_getDoubleVolatile:
   547     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   549   case vmIntrinsics::_putObjectVolatile:
   550     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   551   case vmIntrinsics::_putBooleanVolatile:
   552     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   553   case vmIntrinsics::_putByteVolatile:
   554     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   555   case vmIntrinsics::_putShortVolatile:
   556     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   557   case vmIntrinsics::_putCharVolatile:
   558     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   559   case vmIntrinsics::_putIntVolatile:
   560     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   561   case vmIntrinsics::_putLongVolatile:
   562     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   563   case vmIntrinsics::_putFloatVolatile:
   564     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   565   case vmIntrinsics::_putDoubleVolatile:
   566     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   568   case vmIntrinsics::_prefetchRead:
   569     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   570   case vmIntrinsics::_prefetchWrite:
   571     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   572   case vmIntrinsics::_prefetchReadStatic:
   573     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   574   case vmIntrinsics::_prefetchWriteStatic:
   575     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   577   case vmIntrinsics::_compareAndSwapObject:
   578     return inline_unsafe_CAS(T_OBJECT);
   579   case vmIntrinsics::_compareAndSwapInt:
   580     return inline_unsafe_CAS(T_INT);
   581   case vmIntrinsics::_compareAndSwapLong:
   582     return inline_unsafe_CAS(T_LONG);
   584   case vmIntrinsics::_putOrderedObject:
   585     return inline_unsafe_ordered_store(T_OBJECT);
   586   case vmIntrinsics::_putOrderedInt:
   587     return inline_unsafe_ordered_store(T_INT);
   588   case vmIntrinsics::_putOrderedLong:
   589     return inline_unsafe_ordered_store(T_LONG);
   591   case vmIntrinsics::_currentThread:
   592     return inline_native_currentThread();
   593   case vmIntrinsics::_isInterrupted:
   594     return inline_native_isInterrupted();
   596   case vmIntrinsics::_currentTimeMillis:
   597     return inline_native_time_funcs(false);
   598   case vmIntrinsics::_nanoTime:
   599     return inline_native_time_funcs(true);
   600   case vmIntrinsics::_allocateInstance:
   601     return inline_unsafe_allocate();
   602   case vmIntrinsics::_copyMemory:
   603     return inline_unsafe_copyMemory();
   604   case vmIntrinsics::_newArray:
   605     return inline_native_newArray();
   606   case vmIntrinsics::_getLength:
   607     return inline_native_getLength();
   608   case vmIntrinsics::_copyOf:
   609     return inline_array_copyOf(false);
   610   case vmIntrinsics::_copyOfRange:
   611     return inline_array_copyOf(true);
   612   case vmIntrinsics::_equalsC:
   613     return inline_array_equals();
   614   case vmIntrinsics::_clone:
   615     return inline_native_clone(intrinsic()->is_virtual());
   617   case vmIntrinsics::_isAssignableFrom:
   618     return inline_native_subtype_check();
   620   case vmIntrinsics::_isInstance:
   621   case vmIntrinsics::_getModifiers:
   622   case vmIntrinsics::_isInterface:
   623   case vmIntrinsics::_isArray:
   624   case vmIntrinsics::_isPrimitive:
   625   case vmIntrinsics::_getSuperclass:
   626   case vmIntrinsics::_getComponentType:
   627   case vmIntrinsics::_getClassAccessFlags:
   628     return inline_native_Class_query(intrinsic_id());
   630   case vmIntrinsics::_floatToRawIntBits:
   631   case vmIntrinsics::_floatToIntBits:
   632   case vmIntrinsics::_intBitsToFloat:
   633   case vmIntrinsics::_doubleToRawLongBits:
   634   case vmIntrinsics::_doubleToLongBits:
   635   case vmIntrinsics::_longBitsToDouble:
   636     return inline_fp_conversions(intrinsic_id());
   638   case vmIntrinsics::_numberOfLeadingZeros_i:
   639   case vmIntrinsics::_numberOfLeadingZeros_l:
   640     return inline_numberOfLeadingZeros(intrinsic_id());
   642   case vmIntrinsics::_numberOfTrailingZeros_i:
   643   case vmIntrinsics::_numberOfTrailingZeros_l:
   644     return inline_numberOfTrailingZeros(intrinsic_id());
   646   case vmIntrinsics::_bitCount_i:
   647   case vmIntrinsics::_bitCount_l:
   648     return inline_bitCount(intrinsic_id());
   650   case vmIntrinsics::_reverseBytes_i:
   651   case vmIntrinsics::_reverseBytes_l:
   652   case vmIntrinsics::_reverseBytes_s:
   653   case vmIntrinsics::_reverseBytes_c:
   654     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   656   case vmIntrinsics::_get_AtomicLong:
   657     return inline_native_AtomicLong_get();
   658   case vmIntrinsics::_attemptUpdate:
   659     return inline_native_AtomicLong_attemptUpdate();
   661   case vmIntrinsics::_getCallerClass:
   662     return inline_native_Reflection_getCallerClass();
   664   default:
   665     // If you get here, it may be that someone has added a new intrinsic
   666     // to the list in vmSymbols.hpp without implementing it here.
   667 #ifndef PRODUCT
   668     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   669       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   670                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   671     }
   672 #endif
   673     return false;
   674   }
   675 }
   677 //------------------------------push_result------------------------------
   678 // Helper function for finishing intrinsics.
   679 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   680   record_for_igvn(region);
   681   set_control(_gvn.transform(region));
   682   BasicType value_type = value->type()->basic_type();
   683   push_node(value_type, _gvn.transform(value));
   684 }
   686 //------------------------------generate_guard---------------------------
   687 // Helper function for generating guarded fast-slow graph structures.
   688 // The given 'test', if true, guards a slow path.  If the test fails
   689 // then a fast path can be taken.  (We generally hope it fails.)
   690 // In all cases, GraphKit::control() is updated to the fast path.
   691 // The returned value represents the control for the slow path.
   692 // The return value is never 'top'; it is either a valid control
   693 // or NULL if it is obvious that the slow path can never be taken.
   694 // Also, if region and the slow control are not NULL, the slow edge
   695 // is appended to the region.
   696 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   697   if (stopped()) {
   698     // Already short circuited.
   699     return NULL;
   700   }
   702   // Build an if node and its projections.
   703   // If test is true we take the slow path, which we assume is uncommon.
   704   if (_gvn.type(test) == TypeInt::ZERO) {
   705     // The slow branch is never taken.  No need to build this guard.
   706     return NULL;
   707   }
   709   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   711   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   712   if (if_slow == top()) {
   713     // The slow branch is never taken.  No need to build this guard.
   714     return NULL;
   715   }
   717   if (region != NULL)
   718     region->add_req(if_slow);
   720   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   721   set_control(if_fast);
   723   return if_slow;
   724 }
   726 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   727   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   728 }
   729 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   730   return generate_guard(test, region, PROB_FAIR);
   731 }
   733 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   734                                                      Node* *pos_index) {
   735   if (stopped())
   736     return NULL;                // already stopped
   737   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   738     return NULL;                // index is already adequately typed
   739   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   740   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   741   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   742   if (is_neg != NULL && pos_index != NULL) {
   743     // Emulate effect of Parse::adjust_map_after_if.
   744     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   745     ccast->set_req(0, control());
   746     (*pos_index) = _gvn.transform(ccast);
   747   }
   748   return is_neg;
   749 }
   751 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   752                                                         Node* *pos_index) {
   753   if (stopped())
   754     return NULL;                // already stopped
   755   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   756     return NULL;                // index is already adequately typed
   757   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   758   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   759   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   760   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   761   if (is_notp != NULL && pos_index != NULL) {
   762     // Emulate effect of Parse::adjust_map_after_if.
   763     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   764     ccast->set_req(0, control());
   765     (*pos_index) = _gvn.transform(ccast);
   766   }
   767   return is_notp;
   768 }
   770 // Make sure that 'position' is a valid limit index, in [0..length].
   771 // There are two equivalent plans for checking this:
   772 //   A. (offset + copyLength)  unsigned<=  arrayLength
   773 //   B. offset  <=  (arrayLength - copyLength)
   774 // We require that all of the values above, except for the sum and
   775 // difference, are already known to be non-negative.
   776 // Plan A is robust in the face of overflow, if offset and copyLength
   777 // are both hugely positive.
   778 //
   779 // Plan B is less direct and intuitive, but it does not overflow at
   780 // all, since the difference of two non-negatives is always
   781 // representable.  Whenever Java methods must perform the equivalent
   782 // check they generally use Plan B instead of Plan A.
   783 // For the moment we use Plan A.
   784 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   785                                                   Node* subseq_length,
   786                                                   Node* array_length,
   787                                                   RegionNode* region) {
   788   if (stopped())
   789     return NULL;                // already stopped
   790   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   791   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   792     return NULL;                // common case of whole-array copy
   793   Node* last = subseq_length;
   794   if (!zero_offset)             // last += offset
   795     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   796   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   797   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   798   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   799   return is_over;
   800 }
   803 //--------------------------generate_current_thread--------------------
   804 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   805   ciKlass*    thread_klass = env()->Thread_klass();
   806   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   807   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   808   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   809   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   810   tls_output = thread;
   811   return threadObj;
   812 }
   815 //------------------------------make_string_method_node------------------------
   816 // Helper method for String intrinsic finctions.
   817 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
   818   const int value_offset  = java_lang_String::value_offset_in_bytes();
   819   const int count_offset  = java_lang_String::count_offset_in_bytes();
   820   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   822   Node* no_ctrl = NULL;
   824   ciInstanceKlass* klass = env()->String_klass();
   825   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   827   const TypeAryPtr* value_type =
   828         TypeAryPtr::make(TypePtr::NotNull,
   829                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
   830                          ciTypeArrayKlass::make(T_CHAR), true, 0);
   832   // Get start addr of string and substring
   833   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
   834   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   835   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
   836   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   837   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   839   // Pin loads from String::equals() argument since it could be NULL.
   840   Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
   841   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
   842   Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   843   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
   844   Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   845   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   847   Node* result = NULL;
   848   switch (opcode) {
   849   case Op_StrIndexOf:
   850     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   851                                        str1_start, cnt1, str2_start, cnt2);
   852     break;
   853   case Op_StrComp:
   854     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   855                                     str1_start, cnt1, str2_start, cnt2);
   856     break;
   857   case Op_StrEquals:
   858     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   859                                       str1_start, str2_start, cnt1);
   860     break;
   861   default:
   862     ShouldNotReachHere();
   863     return NULL;
   864   }
   866   // All these intrinsics have checks.
   867   C->set_has_split_ifs(true); // Has chance for split-if optimization
   869   return _gvn.transform(result);
   870 }
   872 //------------------------------inline_string_compareTo------------------------
   873 bool LibraryCallKit::inline_string_compareTo() {
   875   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   877   const int value_offset = java_lang_String::value_offset_in_bytes();
   878   const int count_offset = java_lang_String::count_offset_in_bytes();
   879   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   881   _sp += 2;
   882   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   883   Node *receiver = pop();
   885   // Null check on self without removing any arguments.  The argument
   886   // null check technically happens in the wrong place, which can lead to
   887   // invalid stack traces when string compare is inlined into a method
   888   // which handles NullPointerExceptions.
   889   _sp += 2;
   890   receiver = do_null_check(receiver, T_OBJECT);
   891   argument = do_null_check(argument, T_OBJECT);
   892   _sp -= 2;
   893   if (stopped()) {
   894     return true;
   895   }
   897   ciInstanceKlass* klass = env()->String_klass();
   898   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   899   Node* no_ctrl = NULL;
   901   // Get counts for string and argument
   902   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   903   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   905   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   906   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   908   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
   909   push(compare);
   910   return true;
   911 }
   913 //------------------------------inline_string_equals------------------------
   914 bool LibraryCallKit::inline_string_equals() {
   916   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   918   const int value_offset = java_lang_String::value_offset_in_bytes();
   919   const int count_offset = java_lang_String::count_offset_in_bytes();
   920   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   922   int nargs = 2;
   923   _sp += nargs;
   924   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   925   Node* receiver = pop();
   927   // Null check on self without removing any arguments.  The argument
   928   // null check technically happens in the wrong place, which can lead to
   929   // invalid stack traces when string compare is inlined into a method
   930   // which handles NullPointerExceptions.
   931   _sp += nargs;
   932   receiver = do_null_check(receiver, T_OBJECT);
   933   //should not do null check for argument for String.equals(), because spec
   934   //allows to specify NULL as argument.
   935   _sp -= nargs;
   937   if (stopped()) {
   938     return true;
   939   }
   941   // paths (plus control) merge
   942   RegionNode* region = new (C, 5) RegionNode(5);
   943   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
   945   // does source == target string?
   946   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
   947   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
   949   Node* if_eq = generate_slow_guard(bol, NULL);
   950   if (if_eq != NULL) {
   951     // receiver == argument
   952     phi->init_req(2, intcon(1));
   953     region->init_req(2, if_eq);
   954   }
   956   // get String klass for instanceOf
   957   ciInstanceKlass* klass = env()->String_klass();
   959   if (!stopped()) {
   960     _sp += nargs;          // gen_instanceof might do an uncommon trap
   961     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
   962     _sp -= nargs;
   963     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
   964     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
   966     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
   967     //instanceOf == true, fallthrough
   969     if (inst_false != NULL) {
   970       phi->init_req(3, intcon(0));
   971       region->init_req(3, inst_false);
   972     }
   973   }
   975   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   977   Node* no_ctrl = NULL;
   978   Node* receiver_cnt;
   979   Node* argument_cnt;
   981   if (!stopped()) {
   982     // Properly cast the argument to String
   983     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
   985     // Get counts for string and argument
   986     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   987     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   989     // Pin load from argument string since it could be NULL.
   990     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   991     argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   993     // Check for receiver count != argument count
   994     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
   995     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
   996     Node* if_ne = generate_slow_guard(bol, NULL);
   997     if (if_ne != NULL) {
   998       phi->init_req(4, intcon(0));
   999       region->init_req(4, if_ne);
  1003   // Check for count == 0 is done by mach node StrEquals.
  1005   if (!stopped()) {
  1006     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
  1007     phi->init_req(1, equals);
  1008     region->init_req(1, control());
  1011   // post merge
  1012   set_control(_gvn.transform(region));
  1013   record_for_igvn(region);
  1015   push(_gvn.transform(phi));
  1017   return true;
  1020 //------------------------------inline_array_equals----------------------------
  1021 bool LibraryCallKit::inline_array_equals() {
  1023   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1025   _sp += 2;
  1026   Node *argument2 = pop();
  1027   Node *argument1 = pop();
  1029   Node* equals =
  1030     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1031                                         argument1, argument2) );
  1032   push(equals);
  1033   return true;
  1036 // Java version of String.indexOf(constant string)
  1037 // class StringDecl {
  1038 //   StringDecl(char[] ca) {
  1039 //     offset = 0;
  1040 //     count = ca.length;
  1041 //     value = ca;
  1042 //   }
  1043 //   int offset;
  1044 //   int count;
  1045 //   char[] value;
  1046 // }
  1047 //
  1048 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1049 //                             int targetOffset, int cache_i, int md2) {
  1050 //   int cache = cache_i;
  1051 //   int sourceOffset = string_object.offset;
  1052 //   int sourceCount = string_object.count;
  1053 //   int targetCount = target_object.length;
  1054 //
  1055 //   int targetCountLess1 = targetCount - 1;
  1056 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1057 //
  1058 //   char[] source = string_object.value;
  1059 //   char[] target = target_object;
  1060 //   int lastChar = target[targetCountLess1];
  1061 //
  1062 //  outer_loop:
  1063 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1064 //     int src = source[i + targetCountLess1];
  1065 //     if (src == lastChar) {
  1066 //       // With random strings and a 4-character alphabet,
  1067 //       // reverse matching at this point sets up 0.8% fewer
  1068 //       // frames, but (paradoxically) makes 0.3% more probes.
  1069 //       // Since those probes are nearer the lastChar probe,
  1070 //       // there is may be a net D$ win with reverse matching.
  1071 //       // But, reversing loop inhibits unroll of inner loop
  1072 //       // for unknown reason.  So, does running outer loop from
  1073 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1074 //       for (int j = 0; j < targetCountLess1; j++) {
  1075 //         if (target[targetOffset + j] != source[i+j]) {
  1076 //           if ((cache & (1 << source[i+j])) == 0) {
  1077 //             if (md2 < j+1) {
  1078 //               i += j+1;
  1079 //               continue outer_loop;
  1080 //             }
  1081 //           }
  1082 //           i += md2;
  1083 //           continue outer_loop;
  1084 //         }
  1085 //       }
  1086 //       return i - sourceOffset;
  1087 //     }
  1088 //     if ((cache & (1 << src)) == 0) {
  1089 //       i += targetCountLess1;
  1090 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1091 //     i++;
  1092 //   }
  1093 //   return -1;
  1094 // }
  1096 //------------------------------string_indexOf------------------------
  1097 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1098                                      jint cache_i, jint md2_i) {
  1100   Node* no_ctrl  = NULL;
  1101   float likely   = PROB_LIKELY(0.9);
  1102   float unlikely = PROB_UNLIKELY(0.9);
  1104   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1105   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1106   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1108   ciInstanceKlass* klass = env()->String_klass();
  1109   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1110   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
  1112   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  1113   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  1114   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  1115   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1116   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  1117   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
  1119   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
  1120   jint target_length = target_array->length();
  1121   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1122   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1124   IdealKit kit(gvn(), control(), merged_memory(), false, true);
  1125 #define __ kit.
  1126   Node* zero             = __ ConI(0);
  1127   Node* one              = __ ConI(1);
  1128   Node* cache            = __ ConI(cache_i);
  1129   Node* md2              = __ ConI(md2_i);
  1130   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1131   Node* targetCount      = __ ConI(target_length);
  1132   Node* targetCountLess1 = __ ConI(target_length - 1);
  1133   Node* targetOffset     = __ ConI(targetOffset_i);
  1134   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1136   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1137   Node* outer_loop = __ make_label(2 /* goto */);
  1138   Node* return_    = __ make_label(1);
  1140   __ set(rtn,__ ConI(-1));
  1141   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
  1142        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1143        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1144        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1145        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1146          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
  1147               Node* tpj = __ AddI(targetOffset, __ value(j));
  1148               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1149               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1150               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1151               __ if_then(targ, BoolTest::ne, src2); {
  1152                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1153                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1154                     __ increment(i, __ AddI(__ value(j), one));
  1155                     __ goto_(outer_loop);
  1156                   } __ end_if(); __ dead(j);
  1157                 }__ end_if(); __ dead(j);
  1158                 __ increment(i, md2);
  1159                 __ goto_(outer_loop);
  1160               }__ end_if();
  1161               __ increment(j, one);
  1162          }__ end_loop(); __ dead(j);
  1163          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1164          __ goto_(return_);
  1165        }__ end_if();
  1166        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1167          __ increment(i, targetCountLess1);
  1168        }__ end_if();
  1169        __ increment(i, one);
  1170        __ bind(outer_loop);
  1171   }__ end_loop(); __ dead(i);
  1172   __ bind(return_);
  1174   // Final sync IdealKit and GraphKit.
  1175   sync_kit(kit);
  1176   Node* result = __ value(rtn);
  1177 #undef __
  1178   C->set_has_loops(true);
  1179   return result;
  1182 //------------------------------inline_string_indexOf------------------------
  1183 bool LibraryCallKit::inline_string_indexOf() {
  1185   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1186   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1187   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1189   _sp += 2;
  1190   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1191   Node *receiver = pop();
  1193   Node* result;
  1194   // Disable the use of pcmpestri until it can be guaranteed that
  1195   // the load doesn't cross into the uncommited space.
  1196   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1197       UseSSE42Intrinsics) {
  1198     // Generate SSE4.2 version of indexOf
  1199     // We currently only have match rules that use SSE4.2
  1201     // Null check on self without removing any arguments.  The argument
  1202     // null check technically happens in the wrong place, which can lead to
  1203     // invalid stack traces when string compare is inlined into a method
  1204     // which handles NullPointerExceptions.
  1205     _sp += 2;
  1206     receiver = do_null_check(receiver, T_OBJECT);
  1207     argument = do_null_check(argument, T_OBJECT);
  1208     _sp -= 2;
  1210     if (stopped()) {
  1211       return true;
  1214     ciInstanceKlass* str_klass = env()->String_klass();
  1215     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1217     // Make the merge point
  1218     RegionNode* result_rgn = new (C, 4) RegionNode(4);
  1219     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
  1220     Node* no_ctrl  = NULL;
  1222     // Get counts for string and substr
  1223     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1224     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1226     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
  1227     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1229     // Check for substr count > string count
  1230     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
  1231     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
  1232     Node* if_gt = generate_slow_guard(bol, NULL);
  1233     if (if_gt != NULL) {
  1234       result_phi->init_req(2, intcon(-1));
  1235       result_rgn->init_req(2, if_gt);
  1238     if (!stopped()) {
  1239       // Check for substr count == 0
  1240       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
  1241       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  1242       Node* if_zero = generate_slow_guard(bol, NULL);
  1243       if (if_zero != NULL) {
  1244         result_phi->init_req(3, intcon(0));
  1245         result_rgn->init_req(3, if_zero);
  1249     if (!stopped()) {
  1250       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
  1251       result_phi->init_req(1, result);
  1252       result_rgn->init_req(1, control());
  1254     set_control(_gvn.transform(result_rgn));
  1255     record_for_igvn(result_rgn);
  1256     result = _gvn.transform(result_phi);
  1258   } else { // Use LibraryCallKit::string_indexOf
  1259     // don't intrinsify if argument isn't a constant string.
  1260     if (!argument->is_Con()) {
  1261      return false;
  1263     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1264     if (str_type == NULL) {
  1265       return false;
  1267     ciInstanceKlass* klass = env()->String_klass();
  1268     ciObject* str_const = str_type->const_oop();
  1269     if (str_const == NULL || str_const->klass() != klass) {
  1270       return false;
  1272     ciInstance* str = str_const->as_instance();
  1273     assert(str != NULL, "must be instance");
  1275     ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1276     int       o = str->field_value_by_offset(offset_offset).as_int();
  1277     int       c = str->field_value_by_offset(count_offset).as_int();
  1278     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1280     // constant strings have no offset and count == length which
  1281     // simplifies the resulting code somewhat so lets optimize for that.
  1282     if (o != 0 || c != pat->length()) {
  1283      return false;
  1286     // Null check on self without removing any arguments.  The argument
  1287     // null check technically happens in the wrong place, which can lead to
  1288     // invalid stack traces when string compare is inlined into a method
  1289     // which handles NullPointerExceptions.
  1290     _sp += 2;
  1291     receiver = do_null_check(receiver, T_OBJECT);
  1292     // No null check on the argument is needed since it's a constant String oop.
  1293     _sp -= 2;
  1294     if (stopped()) {
  1295       return true;
  1298     // The null string as a pattern always returns 0 (match at beginning of string)
  1299     if (c == 0) {
  1300       push(intcon(0));
  1301       return true;
  1304     // Generate default indexOf
  1305     jchar lastChar = pat->char_at(o + (c - 1));
  1306     int cache = 0;
  1307     int i;
  1308     for (i = 0; i < c - 1; i++) {
  1309       assert(i < pat->length(), "out of range");
  1310       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1313     int md2 = c;
  1314     for (i = 0; i < c - 1; i++) {
  1315       assert(i < pat->length(), "out of range");
  1316       if (pat->char_at(o + i) == lastChar) {
  1317         md2 = (c - 1) - i;
  1321     result = string_indexOf(receiver, pat, o, cache, md2);
  1324   push(result);
  1325   return true;
  1328 //--------------------------pop_math_arg--------------------------------
  1329 // Pop a double argument to a math function from the stack
  1330 // rounding it if necessary.
  1331 Node * LibraryCallKit::pop_math_arg() {
  1332   Node *arg = pop_pair();
  1333   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1334     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1335   return arg;
  1338 //------------------------------inline_trig----------------------------------
  1339 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1340 // argument reduction which will turn into a fast/slow diamond.
  1341 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1342   _sp += arg_size();            // restore stack pointer
  1343   Node* arg = pop_math_arg();
  1344   Node* trig = NULL;
  1346   switch (id) {
  1347   case vmIntrinsics::_dsin:
  1348     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1349     break;
  1350   case vmIntrinsics::_dcos:
  1351     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1352     break;
  1353   case vmIntrinsics::_dtan:
  1354     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1355     break;
  1356   default:
  1357     assert(false, "bad intrinsic was passed in");
  1358     return false;
  1361   // Rounding required?  Check for argument reduction!
  1362   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1364     static const double     pi_4 =  0.7853981633974483;
  1365     static const double neg_pi_4 = -0.7853981633974483;
  1366     // pi/2 in 80-bit extended precision
  1367     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1368     // -pi/2 in 80-bit extended precision
  1369     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1370     // Cutoff value for using this argument reduction technique
  1371     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1372     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1374     // Pseudocode for sin:
  1375     // if (x <= Math.PI / 4.0) {
  1376     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1377     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1378     // } else {
  1379     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1380     // }
  1381     // return StrictMath.sin(x);
  1383     // Pseudocode for cos:
  1384     // if (x <= Math.PI / 4.0) {
  1385     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1386     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1387     // } else {
  1388     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1389     // }
  1390     // return StrictMath.cos(x);
  1392     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1393     // requires a special machine instruction to load it.  Instead we'll try
  1394     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1395     // probably do the math inside the SIN encoding.
  1397     // Make the merge point
  1398     RegionNode *r = new (C, 3) RegionNode(3);
  1399     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1401     // Flatten arg so we need only 1 test
  1402     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1403     // Node for PI/4 constant
  1404     Node *pi4 = makecon(TypeD::make(pi_4));
  1405     // Check PI/4 : abs(arg)
  1406     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1407     // Check: If PI/4 < abs(arg) then go slow
  1408     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1409     // Branch either way
  1410     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1411     set_control(opt_iff(r,iff));
  1413     // Set fast path result
  1414     phi->init_req(2,trig);
  1416     // Slow path - non-blocking leaf call
  1417     Node* call = NULL;
  1418     switch (id) {
  1419     case vmIntrinsics::_dsin:
  1420       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1421                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1422                                "Sin", NULL, arg, top());
  1423       break;
  1424     case vmIntrinsics::_dcos:
  1425       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1426                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1427                                "Cos", NULL, arg, top());
  1428       break;
  1429     case vmIntrinsics::_dtan:
  1430       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1431                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1432                                "Tan", NULL, arg, top());
  1433       break;
  1435     assert(control()->in(0) == call, "");
  1436     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1437     r->init_req(1,control());
  1438     phi->init_req(1,slow_result);
  1440     // Post-merge
  1441     set_control(_gvn.transform(r));
  1442     record_for_igvn(r);
  1443     trig = _gvn.transform(phi);
  1445     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1447   // Push result back on JVM stack
  1448   push_pair(trig);
  1449   return true;
  1452 //------------------------------inline_sqrt-------------------------------------
  1453 // Inline square root instruction, if possible.
  1454 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1455   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1456   _sp += arg_size();        // restore stack pointer
  1457   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1458   return true;
  1461 //------------------------------inline_abs-------------------------------------
  1462 // Inline absolute value instruction, if possible.
  1463 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1464   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1465   _sp += arg_size();        // restore stack pointer
  1466   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1467   return true;
  1470 //------------------------------inline_exp-------------------------------------
  1471 // Inline exp instructions, if possible.  The Intel hardware only misses
  1472 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1473 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1474   assert(id == vmIntrinsics::_dexp, "Not exp");
  1476   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1477   // every again.  NaN results requires StrictMath.exp handling.
  1478   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1480   // Do not intrinsify on older platforms which lack cmove.
  1481   if (ConditionalMoveLimit == 0)  return false;
  1483   _sp += arg_size();        // restore stack pointer
  1484   Node *x = pop_math_arg();
  1485   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1487   //-------------------
  1488   //result=(result.isNaN())? StrictMath::exp():result;
  1489   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1490   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1491   // Build the boolean node
  1492   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1494   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1495     // End the current control-flow path
  1496     push_pair(x);
  1497     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1498     // to handle.  Recompile without intrinsifying Math.exp
  1499     uncommon_trap(Deoptimization::Reason_intrinsic,
  1500                   Deoptimization::Action_make_not_entrant);
  1503   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1505   push_pair(result);
  1507   return true;
  1510 //------------------------------inline_pow-------------------------------------
  1511 // Inline power instructions, if possible.
  1512 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1513   assert(id == vmIntrinsics::_dpow, "Not pow");
  1515   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1516   // every again.  NaN results requires StrictMath.pow handling.
  1517   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1519   // Do not intrinsify on older platforms which lack cmove.
  1520   if (ConditionalMoveLimit == 0)  return false;
  1522   // Pseudocode for pow
  1523   // if (x <= 0.0) {
  1524   //   if ((double)((int)y)==y) { // if y is int
  1525   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1526   //   } else {
  1527   //     result = NaN;
  1528   //   }
  1529   // } else {
  1530   //   result = DPow(x,y);
  1531   // }
  1532   // if (result != result)?  {
  1533   //   uncommon_trap();
  1534   // }
  1535   // return result;
  1537   _sp += arg_size();        // restore stack pointer
  1538   Node* y = pop_math_arg();
  1539   Node* x = pop_math_arg();
  1541   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1543   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1544   // inside of something) then skip the fancy tests and just check for
  1545   // NaN result.
  1546   Node *result = NULL;
  1547   if( jvms()->depth() >= 1 ) {
  1548     result = fast_result;
  1549   } else {
  1551     // Set the merge point for If node with condition of (x <= 0.0)
  1552     // There are four possible paths to region node and phi node
  1553     RegionNode *r = new (C, 4) RegionNode(4);
  1554     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1556     // Build the first if node: if (x <= 0.0)
  1557     // Node for 0 constant
  1558     Node *zeronode = makecon(TypeD::ZERO);
  1559     // Check x:0
  1560     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1561     // Check: If (x<=0) then go complex path
  1562     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1563     // Branch either way
  1564     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1565     Node *opt_test = _gvn.transform(if1);
  1566     //assert( opt_test->is_If(), "Expect an IfNode");
  1567     IfNode *opt_if1 = (IfNode*)opt_test;
  1568     // Fast path taken; set region slot 3
  1569     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1570     r->init_req(3,fast_taken); // Capture fast-control
  1572     // Fast path not-taken, i.e. slow path
  1573     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1575     // Set fast path result
  1576     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1577     phi->init_req(3, fast_result);
  1579     // Complex path
  1580     // Build the second if node (if y is int)
  1581     // Node for (int)y
  1582     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1583     // Node for (double)((int) y)
  1584     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1585     // Check (double)((int) y) : y
  1586     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1587     // Check if (y isn't int) then go to slow path
  1589     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1590     // Branch either way
  1591     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1592     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1594     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1595     // Node for constant 1
  1596     Node *conone = intcon(1);
  1597     // 1& (int)y
  1598     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1599     // zero node
  1600     Node *conzero = intcon(0);
  1601     // Check (1&(int)y)==0?
  1602     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1603     // Check if (1&(int)y)!=0?, if so the result is negative
  1604     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1605     // abs(x)
  1606     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1607     // abs(x)^y
  1608     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1609     // -abs(x)^y
  1610     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1611     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1612     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1613     // Set complex path fast result
  1614     phi->init_req(2, signresult);
  1616     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1617     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1618     r->init_req(1,slow_path);
  1619     phi->init_req(1,slow_result);
  1621     // Post merge
  1622     set_control(_gvn.transform(r));
  1623     record_for_igvn(r);
  1624     result=_gvn.transform(phi);
  1627   //-------------------
  1628   //result=(result.isNaN())? uncommon_trap():result;
  1629   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1630   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1631   // Build the boolean node
  1632   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1634   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1635     // End the current control-flow path
  1636     push_pair(x);
  1637     push_pair(y);
  1638     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1639     // to handle.  Recompile without intrinsifying Math.pow.
  1640     uncommon_trap(Deoptimization::Reason_intrinsic,
  1641                   Deoptimization::Action_make_not_entrant);
  1644   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1646   push_pair(result);
  1648   return true;
  1651 //------------------------------inline_trans-------------------------------------
  1652 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1653 // these right, no funny corner cases missed.
  1654 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1655   _sp += arg_size();        // restore stack pointer
  1656   Node* arg = pop_math_arg();
  1657   Node* trans = NULL;
  1659   switch (id) {
  1660   case vmIntrinsics::_dlog:
  1661     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1662     break;
  1663   case vmIntrinsics::_dlog10:
  1664     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1665     break;
  1666   default:
  1667     assert(false, "bad intrinsic was passed in");
  1668     return false;
  1671   // Push result back on JVM stack
  1672   push_pair(trans);
  1673   return true;
  1676 //------------------------------runtime_math-----------------------------
  1677 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1678   Node* a = NULL;
  1679   Node* b = NULL;
  1681   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1682          "must be (DD)D or (D)D type");
  1684   // Inputs
  1685   _sp += arg_size();        // restore stack pointer
  1686   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1687     b = pop_math_arg();
  1689   a = pop_math_arg();
  1691   const TypePtr* no_memory_effects = NULL;
  1692   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1693                                  no_memory_effects,
  1694                                  a, top(), b, b ? top() : NULL);
  1695   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1696 #ifdef ASSERT
  1697   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1698   assert(value_top == top(), "second value must be top");
  1699 #endif
  1701   push_pair(value);
  1702   return true;
  1705 //------------------------------inline_math_native-----------------------------
  1706 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1707   switch (id) {
  1708     // These intrinsics are not properly supported on all hardware
  1709   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1710     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1711   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1712     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1713   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1714     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1716   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1717     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1718   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1719     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1721     // These intrinsics are supported on all hardware
  1722   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1723   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1725     // These intrinsics don't work on X86.  The ad implementation doesn't
  1726     // handle NaN's properly.  Instead of returning infinity, the ad
  1727     // implementation returns a NaN on overflow. See bug: 6304089
  1728     // Once the ad implementations are fixed, change the code below
  1729     // to match the intrinsics above
  1731   case vmIntrinsics::_dexp:  return
  1732     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1733   case vmIntrinsics::_dpow:  return
  1734     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1736    // These intrinsics are not yet correctly implemented
  1737   case vmIntrinsics::_datan2:
  1738     return false;
  1740   default:
  1741     ShouldNotReachHere();
  1742     return false;
  1746 static bool is_simple_name(Node* n) {
  1747   return (n->req() == 1         // constant
  1748           || (n->is_Type() && n->as_Type()->type()->singleton())
  1749           || n->is_Proj()       // parameter or return value
  1750           || n->is_Phi()        // local of some sort
  1751           );
  1754 //----------------------------inline_min_max-----------------------------------
  1755 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1756   push(generate_min_max(id, argument(0), argument(1)));
  1758   return true;
  1761 Node*
  1762 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1763   // These are the candidate return value:
  1764   Node* xvalue = x0;
  1765   Node* yvalue = y0;
  1767   if (xvalue == yvalue) {
  1768     return xvalue;
  1771   bool want_max = (id == vmIntrinsics::_max);
  1773   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1774   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1775   if (txvalue == NULL || tyvalue == NULL)  return top();
  1776   // This is not really necessary, but it is consistent with a
  1777   // hypothetical MaxINode::Value method:
  1778   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1780   // %%% This folding logic should (ideally) be in a different place.
  1781   // Some should be inside IfNode, and there to be a more reliable
  1782   // transformation of ?: style patterns into cmoves.  We also want
  1783   // more powerful optimizations around cmove and min/max.
  1785   // Try to find a dominating comparison of these guys.
  1786   // It can simplify the index computation for Arrays.copyOf
  1787   // and similar uses of System.arraycopy.
  1788   // First, compute the normalized version of CmpI(x, y).
  1789   int   cmp_op = Op_CmpI;
  1790   Node* xkey = xvalue;
  1791   Node* ykey = yvalue;
  1792   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1793   if (ideal_cmpxy->is_Cmp()) {
  1794     // E.g., if we have CmpI(length - offset, count),
  1795     // it might idealize to CmpI(length, count + offset)
  1796     cmp_op = ideal_cmpxy->Opcode();
  1797     xkey = ideal_cmpxy->in(1);
  1798     ykey = ideal_cmpxy->in(2);
  1801   // Start by locating any relevant comparisons.
  1802   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1803   Node* cmpxy = NULL;
  1804   Node* cmpyx = NULL;
  1805   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1806     Node* cmp = start_from->fast_out(k);
  1807     if (cmp->outcnt() > 0 &&            // must have prior uses
  1808         cmp->in(0) == NULL &&           // must be context-independent
  1809         cmp->Opcode() == cmp_op) {      // right kind of compare
  1810       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1811       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1815   const int NCMPS = 2;
  1816   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1817   int cmpn;
  1818   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1819     if (cmps[cmpn] != NULL)  break;     // find a result
  1821   if (cmpn < NCMPS) {
  1822     // Look for a dominating test that tells us the min and max.
  1823     int depth = 0;                // Limit search depth for speed
  1824     Node* dom = control();
  1825     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1826       if (++depth >= 100)  break;
  1827       Node* ifproj = dom;
  1828       if (!ifproj->is_Proj())  continue;
  1829       Node* iff = ifproj->in(0);
  1830       if (!iff->is_If())  continue;
  1831       Node* bol = iff->in(1);
  1832       if (!bol->is_Bool())  continue;
  1833       Node* cmp = bol->in(1);
  1834       if (cmp == NULL)  continue;
  1835       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1836         if (cmps[cmpn] == cmp)  break;
  1837       if (cmpn == NCMPS)  continue;
  1838       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1839       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1840       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1841       // At this point, we know that 'x btest y' is true.
  1842       switch (btest) {
  1843       case BoolTest::eq:
  1844         // They are proven equal, so we can collapse the min/max.
  1845         // Either value is the answer.  Choose the simpler.
  1846         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1847           return yvalue;
  1848         return xvalue;
  1849       case BoolTest::lt:          // x < y
  1850       case BoolTest::le:          // x <= y
  1851         return (want_max ? yvalue : xvalue);
  1852       case BoolTest::gt:          // x > y
  1853       case BoolTest::ge:          // x >= y
  1854         return (want_max ? xvalue : yvalue);
  1859   // We failed to find a dominating test.
  1860   // Let's pick a test that might GVN with prior tests.
  1861   Node*          best_bol   = NULL;
  1862   BoolTest::mask best_btest = BoolTest::illegal;
  1863   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1864     Node* cmp = cmps[cmpn];
  1865     if (cmp == NULL)  continue;
  1866     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1867       Node* bol = cmp->fast_out(j);
  1868       if (!bol->is_Bool())  continue;
  1869       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1870       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1871       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1872       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1873         best_bol   = bol->as_Bool();
  1874         best_btest = btest;
  1879   Node* answer_if_true  = NULL;
  1880   Node* answer_if_false = NULL;
  1881   switch (best_btest) {
  1882   default:
  1883     if (cmpxy == NULL)
  1884       cmpxy = ideal_cmpxy;
  1885     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1886     // and fall through:
  1887   case BoolTest::lt:          // x < y
  1888   case BoolTest::le:          // x <= y
  1889     answer_if_true  = (want_max ? yvalue : xvalue);
  1890     answer_if_false = (want_max ? xvalue : yvalue);
  1891     break;
  1892   case BoolTest::gt:          // x > y
  1893   case BoolTest::ge:          // x >= y
  1894     answer_if_true  = (want_max ? xvalue : yvalue);
  1895     answer_if_false = (want_max ? yvalue : xvalue);
  1896     break;
  1899   jint hi, lo;
  1900   if (want_max) {
  1901     // We can sharpen the minimum.
  1902     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1903     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1904   } else {
  1905     // We can sharpen the maximum.
  1906     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1907     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1910   // Use a flow-free graph structure, to avoid creating excess control edges
  1911   // which could hinder other optimizations.
  1912   // Since Math.min/max is often used with arraycopy, we want
  1913   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1914   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1915                                answer_if_false, answer_if_true,
  1916                                TypeInt::make(lo, hi, widen));
  1918   return _gvn.transform(cmov);
  1920   /*
  1921   // This is not as desirable as it may seem, since Min and Max
  1922   // nodes do not have a full set of optimizations.
  1923   // And they would interfere, anyway, with 'if' optimizations
  1924   // and with CMoveI canonical forms.
  1925   switch (id) {
  1926   case vmIntrinsics::_min:
  1927     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1928   case vmIntrinsics::_max:
  1929     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1930   default:
  1931     ShouldNotReachHere();
  1933   */
  1936 inline int
  1937 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1938   const TypePtr* base_type = TypePtr::NULL_PTR;
  1939   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1940   if (base_type == NULL) {
  1941     // Unknown type.
  1942     return Type::AnyPtr;
  1943   } else if (base_type == TypePtr::NULL_PTR) {
  1944     // Since this is a NULL+long form, we have to switch to a rawptr.
  1945     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1946     offset = MakeConX(0);
  1947     return Type::RawPtr;
  1948   } else if (base_type->base() == Type::RawPtr) {
  1949     return Type::RawPtr;
  1950   } else if (base_type->isa_oopptr()) {
  1951     // Base is never null => always a heap address.
  1952     if (base_type->ptr() == TypePtr::NotNull) {
  1953       return Type::OopPtr;
  1955     // Offset is small => always a heap address.
  1956     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1957     if (offset_type != NULL &&
  1958         base_type->offset() == 0 &&     // (should always be?)
  1959         offset_type->_lo >= 0 &&
  1960         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1961       return Type::OopPtr;
  1963     // Otherwise, it might either be oop+off or NULL+addr.
  1964     return Type::AnyPtr;
  1965   } else {
  1966     // No information:
  1967     return Type::AnyPtr;
  1971 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1972   int kind = classify_unsafe_addr(base, offset);
  1973   if (kind == Type::RawPtr) {
  1974     return basic_plus_adr(top(), base, offset);
  1975   } else {
  1976     return basic_plus_adr(base, offset);
  1980 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  1981 // inline int Integer.numberOfLeadingZeros(int)
  1982 // inline int Long.numberOfLeadingZeros(long)
  1983 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  1984   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  1985   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  1986   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  1987   _sp += arg_size();  // restore stack pointer
  1988   switch (id) {
  1989   case vmIntrinsics::_numberOfLeadingZeros_i:
  1990     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  1991     break;
  1992   case vmIntrinsics::_numberOfLeadingZeros_l:
  1993     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  1994     break;
  1995   default:
  1996     ShouldNotReachHere();
  1998   return true;
  2001 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  2002 // inline int Integer.numberOfTrailingZeros(int)
  2003 // inline int Long.numberOfTrailingZeros(long)
  2004 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  2005   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  2006   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  2007   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  2008   _sp += arg_size();  // restore stack pointer
  2009   switch (id) {
  2010   case vmIntrinsics::_numberOfTrailingZeros_i:
  2011     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  2012     break;
  2013   case vmIntrinsics::_numberOfTrailingZeros_l:
  2014     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  2015     break;
  2016   default:
  2017     ShouldNotReachHere();
  2019   return true;
  2022 //----------------------------inline_bitCount_int/long-----------------------
  2023 // inline int Integer.bitCount(int)
  2024 // inline int Long.bitCount(long)
  2025 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  2026   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2027   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2028   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2029   _sp += arg_size();  // restore stack pointer
  2030   switch (id) {
  2031   case vmIntrinsics::_bitCount_i:
  2032     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  2033     break;
  2034   case vmIntrinsics::_bitCount_l:
  2035     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  2036     break;
  2037   default:
  2038     ShouldNotReachHere();
  2040   return true;
  2043 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2044 // inline Integer.reverseBytes(int)
  2045 // inline Long.reverseBytes(long)
  2046 // inline Character.reverseBytes(char)
  2047 // inline Short.reverseBytes(short)
  2048 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2049   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2050          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2051          "not reverse Bytes");
  2052   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2053   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2054   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2055   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2056   _sp += arg_size();        // restore stack pointer
  2057   switch (id) {
  2058   case vmIntrinsics::_reverseBytes_i:
  2059     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  2060     break;
  2061   case vmIntrinsics::_reverseBytes_l:
  2062     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  2063     break;
  2064   case vmIntrinsics::_reverseBytes_c:
  2065     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
  2066     break;
  2067   case vmIntrinsics::_reverseBytes_s:
  2068     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
  2069     break;
  2070   default:
  2073   return true;
  2076 //----------------------------inline_unsafe_access----------------------------
  2078 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2080 // Interpret Unsafe.fieldOffset cookies correctly:
  2081 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2083 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2084   if (callee()->is_static())  return false;  // caller must have the capability!
  2086 #ifndef PRODUCT
  2088     ResourceMark rm;
  2089     // Check the signatures.
  2090     ciSignature* sig = signature();
  2091 #ifdef ASSERT
  2092     if (!is_store) {
  2093       // Object getObject(Object base, int/long offset), etc.
  2094       BasicType rtype = sig->return_type()->basic_type();
  2095       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2096           rtype = T_ADDRESS;  // it is really a C void*
  2097       assert(rtype == type, "getter must return the expected value");
  2098       if (!is_native_ptr) {
  2099         assert(sig->count() == 2, "oop getter has 2 arguments");
  2100         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2101         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2102       } else {
  2103         assert(sig->count() == 1, "native getter has 1 argument");
  2104         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2106     } else {
  2107       // void putObject(Object base, int/long offset, Object x), etc.
  2108       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2109       if (!is_native_ptr) {
  2110         assert(sig->count() == 3, "oop putter has 3 arguments");
  2111         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2112         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2113       } else {
  2114         assert(sig->count() == 2, "native putter has 2 arguments");
  2115         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2117       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2118       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2119         vtype = T_ADDRESS;  // it is really a C void*
  2120       assert(vtype == type, "putter must accept the expected value");
  2122 #endif // ASSERT
  2124 #endif //PRODUCT
  2126   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2128   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2130   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2131   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2133   debug_only(int saved_sp = _sp);
  2134   _sp += nargs;
  2136   Node* val;
  2137   debug_only(val = (Node*)(uintptr_t)-1);
  2140   if (is_store) {
  2141     // Get the value being stored.  (Pop it first; it was pushed last.)
  2142     switch (type) {
  2143     case T_DOUBLE:
  2144     case T_LONG:
  2145     case T_ADDRESS:
  2146       val = pop_pair();
  2147       break;
  2148     default:
  2149       val = pop();
  2153   // Build address expression.  See the code in inline_unsafe_prefetch.
  2154   Node *adr;
  2155   Node *heap_base_oop = top();
  2156   if (!is_native_ptr) {
  2157     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2158     Node* offset = pop_pair();
  2159     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2160     Node* base   = pop();
  2161     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2162     // to be plain byte offsets, which are also the same as those accepted
  2163     // by oopDesc::field_base.
  2164     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2165            "fieldOffset must be byte-scaled");
  2166     // 32-bit machines ignore the high half!
  2167     offset = ConvL2X(offset);
  2168     adr = make_unsafe_address(base, offset);
  2169     heap_base_oop = base;
  2170   } else {
  2171     Node* ptr = pop_pair();
  2172     // Adjust Java long to machine word:
  2173     ptr = ConvL2X(ptr);
  2174     adr = make_unsafe_address(NULL, ptr);
  2177   // Pop receiver last:  it was pushed first.
  2178   Node *receiver = pop();
  2180   assert(saved_sp == _sp, "must have correct argument count");
  2182   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2184   // First guess at the value type.
  2185   const Type *value_type = Type::get_const_basic_type(type);
  2187   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2188   // there was not enough information to nail it down.
  2189   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2190   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2192   // We will need memory barriers unless we can determine a unique
  2193   // alias category for this reference.  (Note:  If for some reason
  2194   // the barriers get omitted and the unsafe reference begins to "pollute"
  2195   // the alias analysis of the rest of the graph, either Compile::can_alias
  2196   // or Compile::must_alias will throw a diagnostic assert.)
  2197   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2199   if (!is_store && type == T_OBJECT) {
  2200     // Attempt to infer a sharper value type from the offset and base type.
  2201     ciKlass* sharpened_klass = NULL;
  2203     // See if it is an instance field, with an object type.
  2204     if (alias_type->field() != NULL) {
  2205       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2206       if (alias_type->field()->type()->is_klass()) {
  2207         sharpened_klass = alias_type->field()->type()->as_klass();
  2211     // See if it is a narrow oop array.
  2212     if (adr_type->isa_aryptr()) {
  2213       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2214         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2215         if (elem_type != NULL) {
  2216           sharpened_klass = elem_type->klass();
  2221     if (sharpened_klass != NULL) {
  2222       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2224       // Sharpen the value type.
  2225       value_type = tjp;
  2227 #ifndef PRODUCT
  2228       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2229         tty->print("  from base type:  ");   adr_type->dump();
  2230         tty->print("  sharpened value: "); value_type->dump();
  2232 #endif
  2236   // Null check on self without removing any arguments.  The argument
  2237   // null check technically happens in the wrong place, which can lead to
  2238   // invalid stack traces when the primitive is inlined into a method
  2239   // which handles NullPointerExceptions.
  2240   _sp += nargs;
  2241   do_null_check(receiver, T_OBJECT);
  2242   _sp -= nargs;
  2243   if (stopped()) {
  2244     return true;
  2246   // Heap pointers get a null-check from the interpreter,
  2247   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2248   // and it is not possible to fully distinguish unintended nulls
  2249   // from intended ones in this API.
  2251   if (is_volatile) {
  2252     // We need to emit leading and trailing CPU membars (see below) in
  2253     // addition to memory membars when is_volatile. This is a little
  2254     // too strong, but avoids the need to insert per-alias-type
  2255     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2256     // we cannot do effectively here because we probably only have a
  2257     // rough approximation of type.
  2258     need_mem_bar = true;
  2259     // For Stores, place a memory ordering barrier now.
  2260     if (is_store)
  2261       insert_mem_bar(Op_MemBarRelease);
  2264   // Memory barrier to prevent normal and 'unsafe' accesses from
  2265   // bypassing each other.  Happens after null checks, so the
  2266   // exception paths do not take memory state from the memory barrier,
  2267   // so there's no problems making a strong assert about mixing users
  2268   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2269   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2270   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2272   if (!is_store) {
  2273     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2274     // load value and push onto stack
  2275     switch (type) {
  2276     case T_BOOLEAN:
  2277     case T_CHAR:
  2278     case T_BYTE:
  2279     case T_SHORT:
  2280     case T_INT:
  2281     case T_FLOAT:
  2282     case T_OBJECT:
  2283       push( p );
  2284       break;
  2285     case T_ADDRESS:
  2286       // Cast to an int type.
  2287       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2288       p = ConvX2L(p);
  2289       push_pair(p);
  2290       break;
  2291     case T_DOUBLE:
  2292     case T_LONG:
  2293       push_pair( p );
  2294       break;
  2295     default: ShouldNotReachHere();
  2297   } else {
  2298     // place effect of store into memory
  2299     switch (type) {
  2300     case T_DOUBLE:
  2301       val = dstore_rounding(val);
  2302       break;
  2303     case T_ADDRESS:
  2304       // Repackage the long as a pointer.
  2305       val = ConvL2X(val);
  2306       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2307       break;
  2310     if (type != T_OBJECT ) {
  2311       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2312     } else {
  2313       // Possibly an oop being stored to Java heap or native memory
  2314       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2315         // oop to Java heap.
  2316         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2317       } else {
  2318         // We can't tell at compile time if we are storing in the Java heap or outside
  2319         // of it. So we need to emit code to conditionally do the proper type of
  2320         // store.
  2322         IdealKit ideal(gvn(), control(),  merged_memory());
  2323 #define __ ideal.
  2324         // QQQ who knows what probability is here??
  2325         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2326           // Sync IdealKit and graphKit.
  2327           set_all_memory( __ merged_memory());
  2328           set_control(__ ctrl());
  2329           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2330           // Update IdealKit memory.
  2331           __ set_all_memory(merged_memory());
  2332           __ set_ctrl(control());
  2333         } __ else_(); {
  2334           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2335         } __ end_if();
  2336         // Final sync IdealKit and GraphKit.
  2337         sync_kit(ideal);
  2338 #undef __
  2343   if (is_volatile) {
  2344     if (!is_store)
  2345       insert_mem_bar(Op_MemBarAcquire);
  2346     else
  2347       insert_mem_bar(Op_MemBarVolatile);
  2350   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2352   return true;
  2355 //----------------------------inline_unsafe_prefetch----------------------------
  2357 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2358 #ifndef PRODUCT
  2360     ResourceMark rm;
  2361     // Check the signatures.
  2362     ciSignature* sig = signature();
  2363 #ifdef ASSERT
  2364     // Object getObject(Object base, int/long offset), etc.
  2365     BasicType rtype = sig->return_type()->basic_type();
  2366     if (!is_native_ptr) {
  2367       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2368       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2369       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2370     } else {
  2371       assert(sig->count() == 1, "native prefetch has 1 argument");
  2372       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2374 #endif // ASSERT
  2376 #endif // !PRODUCT
  2378   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2380   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2381   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2383   debug_only(int saved_sp = _sp);
  2384   _sp += nargs;
  2386   // Build address expression.  See the code in inline_unsafe_access.
  2387   Node *adr;
  2388   if (!is_native_ptr) {
  2389     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2390     Node* offset = pop_pair();
  2391     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2392     Node* base   = pop();
  2393     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2394     // to be plain byte offsets, which are also the same as those accepted
  2395     // by oopDesc::field_base.
  2396     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2397            "fieldOffset must be byte-scaled");
  2398     // 32-bit machines ignore the high half!
  2399     offset = ConvL2X(offset);
  2400     adr = make_unsafe_address(base, offset);
  2401   } else {
  2402     Node* ptr = pop_pair();
  2403     // Adjust Java long to machine word:
  2404     ptr = ConvL2X(ptr);
  2405     adr = make_unsafe_address(NULL, ptr);
  2408   if (is_static) {
  2409     assert(saved_sp == _sp, "must have correct argument count");
  2410   } else {
  2411     // Pop receiver last:  it was pushed first.
  2412     Node *receiver = pop();
  2413     assert(saved_sp == _sp, "must have correct argument count");
  2415     // Null check on self without removing any arguments.  The argument
  2416     // null check technically happens in the wrong place, which can lead to
  2417     // invalid stack traces when the primitive is inlined into a method
  2418     // which handles NullPointerExceptions.
  2419     _sp += nargs;
  2420     do_null_check(receiver, T_OBJECT);
  2421     _sp -= nargs;
  2422     if (stopped()) {
  2423       return true;
  2427   // Generate the read or write prefetch
  2428   Node *prefetch;
  2429   if (is_store) {
  2430     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2431   } else {
  2432     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2434   prefetch->init_req(0, control());
  2435   set_i_o(_gvn.transform(prefetch));
  2437   return true;
  2440 //----------------------------inline_unsafe_CAS----------------------------
  2442 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2443   // This basic scheme here is the same as inline_unsafe_access, but
  2444   // differs in enough details that combining them would make the code
  2445   // overly confusing.  (This is a true fact! I originally combined
  2446   // them, but even I was confused by it!) As much code/comments as
  2447   // possible are retained from inline_unsafe_access though to make
  2448   // the correspondences clearer. - dl
  2450   if (callee()->is_static())  return false;  // caller must have the capability!
  2452 #ifndef PRODUCT
  2454     ResourceMark rm;
  2455     // Check the signatures.
  2456     ciSignature* sig = signature();
  2457 #ifdef ASSERT
  2458     BasicType rtype = sig->return_type()->basic_type();
  2459     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2460     assert(sig->count() == 4, "CAS has 4 arguments");
  2461     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2462     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2463 #endif // ASSERT
  2465 #endif //PRODUCT
  2467   // number of stack slots per value argument (1 or 2)
  2468   int type_words = type2size[type];
  2470   // Cannot inline wide CAS on machines that don't support it natively
  2471   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2472     return false;
  2474   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2476   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2477   int nargs = 1 + 1 + 2  + type_words + type_words;
  2479   // pop arguments: newval, oldval, offset, base, and receiver
  2480   debug_only(int saved_sp = _sp);
  2481   _sp += nargs;
  2482   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2483   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2484   Node *offset   = pop_pair();
  2485   Node *base     = pop();
  2486   Node *receiver = pop();
  2487   assert(saved_sp == _sp, "must have correct argument count");
  2489   //  Null check receiver.
  2490   _sp += nargs;
  2491   do_null_check(receiver, T_OBJECT);
  2492   _sp -= nargs;
  2493   if (stopped()) {
  2494     return true;
  2497   // Build field offset expression.
  2498   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2499   // to be plain byte offsets, which are also the same as those accepted
  2500   // by oopDesc::field_base.
  2501   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2502   // 32-bit machines ignore the high half of long offsets
  2503   offset = ConvL2X(offset);
  2504   Node* adr = make_unsafe_address(base, offset);
  2505   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2507   // (Unlike inline_unsafe_access, there seems no point in trying
  2508   // to refine types. Just use the coarse types here.
  2509   const Type *value_type = Type::get_const_basic_type(type);
  2510   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2511   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2512   int alias_idx = C->get_alias_index(adr_type);
  2514   // Memory-model-wise, a CAS acts like a little synchronized block,
  2515   // so needs barriers on each side.  These don't translate into
  2516   // actual barriers on most machines, but we still need rest of
  2517   // compiler to respect ordering.
  2519   insert_mem_bar(Op_MemBarRelease);
  2520   insert_mem_bar(Op_MemBarCPUOrder);
  2522   // 4984716: MemBars must be inserted before this
  2523   //          memory node in order to avoid a false
  2524   //          dependency which will confuse the scheduler.
  2525   Node *mem = memory(alias_idx);
  2527   // For now, we handle only those cases that actually exist: ints,
  2528   // longs, and Object. Adding others should be straightforward.
  2529   Node* cas;
  2530   switch(type) {
  2531   case T_INT:
  2532     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2533     break;
  2534   case T_LONG:
  2535     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2536     break;
  2537   case T_OBJECT:
  2538      // reference stores need a store barrier.
  2539     // (They don't if CAS fails, but it isn't worth checking.)
  2540     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
  2541 #ifdef _LP64
  2542     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2543       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2544       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2545       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2546                                                           newval_enc, oldval_enc));
  2547     } else
  2548 #endif
  2550       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2552     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2553     break;
  2554   default:
  2555     ShouldNotReachHere();
  2556     break;
  2559   // SCMemProjNodes represent the memory state of CAS. Their main
  2560   // role is to prevent CAS nodes from being optimized away when their
  2561   // results aren't used.
  2562   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2563   set_memory(proj, alias_idx);
  2565   // Add the trailing membar surrounding the access
  2566   insert_mem_bar(Op_MemBarCPUOrder);
  2567   insert_mem_bar(Op_MemBarAcquire);
  2569   push(cas);
  2570   return true;
  2573 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2574   // This is another variant of inline_unsafe_access, differing in
  2575   // that it always issues store-store ("release") barrier and ensures
  2576   // store-atomicity (which only matters for "long").
  2578   if (callee()->is_static())  return false;  // caller must have the capability!
  2580 #ifndef PRODUCT
  2582     ResourceMark rm;
  2583     // Check the signatures.
  2584     ciSignature* sig = signature();
  2585 #ifdef ASSERT
  2586     BasicType rtype = sig->return_type()->basic_type();
  2587     assert(rtype == T_VOID, "must return void");
  2588     assert(sig->count() == 3, "has 3 arguments");
  2589     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2590     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2591 #endif // ASSERT
  2593 #endif //PRODUCT
  2595   // number of stack slots per value argument (1 or 2)
  2596   int type_words = type2size[type];
  2598   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2600   // Argument words:  "this" plus oop plus offset plus value;
  2601   int nargs = 1 + 1 + 2 + type_words;
  2603   // pop arguments: val, offset, base, and receiver
  2604   debug_only(int saved_sp = _sp);
  2605   _sp += nargs;
  2606   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2607   Node *offset   = pop_pair();
  2608   Node *base     = pop();
  2609   Node *receiver = pop();
  2610   assert(saved_sp == _sp, "must have correct argument count");
  2612   //  Null check receiver.
  2613   _sp += nargs;
  2614   do_null_check(receiver, T_OBJECT);
  2615   _sp -= nargs;
  2616   if (stopped()) {
  2617     return true;
  2620   // Build field offset expression.
  2621   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2622   // 32-bit machines ignore the high half of long offsets
  2623   offset = ConvL2X(offset);
  2624   Node* adr = make_unsafe_address(base, offset);
  2625   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2626   const Type *value_type = Type::get_const_basic_type(type);
  2627   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2629   insert_mem_bar(Op_MemBarRelease);
  2630   insert_mem_bar(Op_MemBarCPUOrder);
  2631   // Ensure that the store is atomic for longs:
  2632   bool require_atomic_access = true;
  2633   Node* store;
  2634   if (type == T_OBJECT) // reference stores need a store barrier.
  2635     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2636   else {
  2637     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2639   insert_mem_bar(Op_MemBarCPUOrder);
  2640   return true;
  2643 bool LibraryCallKit::inline_unsafe_allocate() {
  2644   if (callee()->is_static())  return false;  // caller must have the capability!
  2645   int nargs = 1 + 1;
  2646   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2647   null_check_receiver(callee());  // check then ignore argument(0)
  2648   _sp += nargs;  // set original stack for use by uncommon_trap
  2649   Node* cls = do_null_check(argument(1), T_OBJECT);
  2650   _sp -= nargs;
  2651   if (stopped())  return true;
  2653   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2654   _sp += nargs;  // set original stack for use by uncommon_trap
  2655   kls = do_null_check(kls, T_OBJECT);
  2656   _sp -= nargs;
  2657   if (stopped())  return true;  // argument was like int.class
  2659   // Note:  The argument might still be an illegal value like
  2660   // Serializable.class or Object[].class.   The runtime will handle it.
  2661   // But we must make an explicit check for initialization.
  2662   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2663   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2664   Node* bits = intcon(instanceKlass::fully_initialized);
  2665   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2666   // The 'test' is non-zero if we need to take a slow path.
  2668   Node* obj = new_instance(kls, test);
  2669   push(obj);
  2671   return true;
  2674 //------------------------inline_native_time_funcs--------------
  2675 // inline code for System.currentTimeMillis() and System.nanoTime()
  2676 // these have the same type and signature
  2677 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2678   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2679                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2680   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2681   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2682   const TypePtr* no_memory_effects = NULL;
  2683   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2684   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2685 #ifdef ASSERT
  2686   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2687   assert(value_top == top(), "second value must be top");
  2688 #endif
  2689   push_pair(value);
  2690   return true;
  2693 //------------------------inline_native_currentThread------------------
  2694 bool LibraryCallKit::inline_native_currentThread() {
  2695   Node* junk = NULL;
  2696   push(generate_current_thread(junk));
  2697   return true;
  2700 //------------------------inline_native_isInterrupted------------------
  2701 bool LibraryCallKit::inline_native_isInterrupted() {
  2702   const int nargs = 1+1;  // receiver + boolean
  2703   assert(nargs == arg_size(), "sanity");
  2704   // Add a fast path to t.isInterrupted(clear_int):
  2705   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2706   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2707   // So, in the common case that the interrupt bit is false,
  2708   // we avoid making a call into the VM.  Even if the interrupt bit
  2709   // is true, if the clear_int argument is false, we avoid the VM call.
  2710   // However, if the receiver is not currentThread, we must call the VM,
  2711   // because there must be some locking done around the operation.
  2713   // We only go to the fast case code if we pass two guards.
  2714   // Paths which do not pass are accumulated in the slow_region.
  2715   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2716   record_for_igvn(slow_region);
  2717   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2718   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2719   enum { no_int_result_path   = 1,
  2720          no_clear_result_path = 2,
  2721          slow_result_path     = 3
  2722   };
  2724   // (a) Receiving thread must be the current thread.
  2725   Node* rec_thr = argument(0);
  2726   Node* tls_ptr = NULL;
  2727   Node* cur_thr = generate_current_thread(tls_ptr);
  2728   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2729   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2731   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2732   if (!known_current_thread)
  2733     generate_slow_guard(bol_thr, slow_region);
  2735   // (b) Interrupt bit on TLS must be false.
  2736   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2737   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2738   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2739   // Set the control input on the field _interrupted read to prevent it floating up.
  2740   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2741   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2742   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2744   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2746   // First fast path:  if (!TLS._interrupted) return false;
  2747   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2748   result_rgn->init_req(no_int_result_path, false_bit);
  2749   result_val->init_req(no_int_result_path, intcon(0));
  2751   // drop through to next case
  2752   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2754   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2755   Node* clr_arg = argument(1);
  2756   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2757   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2758   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2760   // Second fast path:  ... else if (!clear_int) return true;
  2761   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2762   result_rgn->init_req(no_clear_result_path, false_arg);
  2763   result_val->init_req(no_clear_result_path, intcon(1));
  2765   // drop through to next case
  2766   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2768   // (d) Otherwise, go to the slow path.
  2769   slow_region->add_req(control());
  2770   set_control( _gvn.transform(slow_region) );
  2772   if (stopped()) {
  2773     // There is no slow path.
  2774     result_rgn->init_req(slow_result_path, top());
  2775     result_val->init_req(slow_result_path, top());
  2776   } else {
  2777     // non-virtual because it is a private non-static
  2778     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2780     Node* slow_val = set_results_for_java_call(slow_call);
  2781     // this->control() comes from set_results_for_java_call
  2783     // If we know that the result of the slow call will be true, tell the optimizer!
  2784     if (known_current_thread)  slow_val = intcon(1);
  2786     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2787     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2788     // These two phis are pre-filled with copies of of the fast IO and Memory
  2789     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2790     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2792     result_rgn->init_req(slow_result_path, control());
  2793     io_phi    ->init_req(slow_result_path, i_o());
  2794     mem_phi   ->init_req(slow_result_path, reset_memory());
  2795     result_val->init_req(slow_result_path, slow_val);
  2797     set_all_memory( _gvn.transform(mem_phi) );
  2798     set_i_o(        _gvn.transform(io_phi) );
  2801   push_result(result_rgn, result_val);
  2802   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2804   return true;
  2807 //---------------------------load_mirror_from_klass----------------------------
  2808 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2809 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2810   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2811   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2814 //-----------------------load_klass_from_mirror_common-------------------------
  2815 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2816 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2817 // and branch to the given path on the region.
  2818 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2819 // compile for the non-null case.
  2820 // If the region is NULL, force never_see_null = true.
  2821 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2822                                                     bool never_see_null,
  2823                                                     int nargs,
  2824                                                     RegionNode* region,
  2825                                                     int null_path,
  2826                                                     int offset) {
  2827   if (region == NULL)  never_see_null = true;
  2828   Node* p = basic_plus_adr(mirror, offset);
  2829   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2830   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2831   _sp += nargs; // any deopt will start just before call to enclosing method
  2832   Node* null_ctl = top();
  2833   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2834   if (region != NULL) {
  2835     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2836     region->init_req(null_path, null_ctl);
  2837   } else {
  2838     assert(null_ctl == top(), "no loose ends");
  2840   _sp -= nargs;
  2841   return kls;
  2844 //--------------------(inline_native_Class_query helpers)---------------------
  2845 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2846 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2847 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2848   // Branch around if the given klass has the given modifier bit set.
  2849   // Like generate_guard, adds a new path onto the region.
  2850   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2851   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2852   Node* mask = intcon(modifier_mask);
  2853   Node* bits = intcon(modifier_bits);
  2854   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  2855   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  2856   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  2857   return generate_fair_guard(bol, region);
  2859 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  2860   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  2863 //-------------------------inline_native_Class_query-------------------
  2864 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  2865   int nargs = 1+0;  // just the Class mirror, in most cases
  2866   const Type* return_type = TypeInt::BOOL;
  2867   Node* prim_return_value = top();  // what happens if it's a primitive class?
  2868   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2869   bool expect_prim = false;     // most of these guys expect to work on refs
  2871   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  2873   switch (id) {
  2874   case vmIntrinsics::_isInstance:
  2875     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  2876     // nothing is an instance of a primitive type
  2877     prim_return_value = intcon(0);
  2878     break;
  2879   case vmIntrinsics::_getModifiers:
  2880     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2881     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  2882     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  2883     break;
  2884   case vmIntrinsics::_isInterface:
  2885     prim_return_value = intcon(0);
  2886     break;
  2887   case vmIntrinsics::_isArray:
  2888     prim_return_value = intcon(0);
  2889     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  2890     break;
  2891   case vmIntrinsics::_isPrimitive:
  2892     prim_return_value = intcon(1);
  2893     expect_prim = true;  // obviously
  2894     break;
  2895   case vmIntrinsics::_getSuperclass:
  2896     prim_return_value = null();
  2897     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2898     break;
  2899   case vmIntrinsics::_getComponentType:
  2900     prim_return_value = null();
  2901     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2902     break;
  2903   case vmIntrinsics::_getClassAccessFlags:
  2904     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2905     return_type = TypeInt::INT;  // not bool!  6297094
  2906     break;
  2907   default:
  2908     ShouldNotReachHere();
  2911   Node* mirror =                      argument(0);
  2912   Node* obj    = (nargs <= 1)? top(): argument(1);
  2914   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  2915   if (mirror_con == NULL)  return false;  // cannot happen?
  2917 #ifndef PRODUCT
  2918   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2919     ciType* k = mirror_con->java_mirror_type();
  2920     if (k) {
  2921       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  2922       k->print_name();
  2923       tty->cr();
  2926 #endif
  2928   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  2929   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2930   record_for_igvn(region);
  2931   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  2933   // The mirror will never be null of Reflection.getClassAccessFlags, however
  2934   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  2935   // if it is. See bug 4774291.
  2937   // For Reflection.getClassAccessFlags(), the null check occurs in
  2938   // the wrong place; see inline_unsafe_access(), above, for a similar
  2939   // situation.
  2940   _sp += nargs;  // set original stack for use by uncommon_trap
  2941   mirror = do_null_check(mirror, T_OBJECT);
  2942   _sp -= nargs;
  2943   // If mirror or obj is dead, only null-path is taken.
  2944   if (stopped())  return true;
  2946   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  2948   // Now load the mirror's klass metaobject, and null-check it.
  2949   // Side-effects region with the control path if the klass is null.
  2950   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  2951                                      region, _prim_path);
  2952   // If kls is null, we have a primitive mirror.
  2953   phi->init_req(_prim_path, prim_return_value);
  2954   if (stopped()) { push_result(region, phi); return true; }
  2956   Node* p;  // handy temp
  2957   Node* null_ctl;
  2959   // Now that we have the non-null klass, we can perform the real query.
  2960   // For constant classes, the query will constant-fold in LoadNode::Value.
  2961   Node* query_value = top();
  2962   switch (id) {
  2963   case vmIntrinsics::_isInstance:
  2964     // nothing is an instance of a primitive type
  2965     _sp += nargs;          // gen_instanceof might do an uncommon trap
  2966     query_value = gen_instanceof(obj, kls);
  2967     _sp -= nargs;
  2968     break;
  2970   case vmIntrinsics::_getModifiers:
  2971     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  2972     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2973     break;
  2975   case vmIntrinsics::_isInterface:
  2976     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2977     if (generate_interface_guard(kls, region) != NULL)
  2978       // A guard was added.  If the guard is taken, it was an interface.
  2979       phi->add_req(intcon(1));
  2980     // If we fall through, it's a plain class.
  2981     query_value = intcon(0);
  2982     break;
  2984   case vmIntrinsics::_isArray:
  2985     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  2986     if (generate_array_guard(kls, region) != NULL)
  2987       // A guard was added.  If the guard is taken, it was an array.
  2988       phi->add_req(intcon(1));
  2989     // If we fall through, it's a plain class.
  2990     query_value = intcon(0);
  2991     break;
  2993   case vmIntrinsics::_isPrimitive:
  2994     query_value = intcon(0); // "normal" path produces false
  2995     break;
  2997   case vmIntrinsics::_getSuperclass:
  2998     // The rules here are somewhat unfortunate, but we can still do better
  2999     // with random logic than with a JNI call.
  3000     // Interfaces store null or Object as _super, but must report null.
  3001     // Arrays store an intermediate super as _super, but must report Object.
  3002     // Other types can report the actual _super.
  3003     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3004     if (generate_interface_guard(kls, region) != NULL)
  3005       // A guard was added.  If the guard is taken, it was an interface.
  3006       phi->add_req(null());
  3007     if (generate_array_guard(kls, region) != NULL)
  3008       // A guard was added.  If the guard is taken, it was an array.
  3009       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3010     // If we fall through, it's a plain class.  Get its _super.
  3011     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  3012     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3013     null_ctl = top();
  3014     kls = null_check_oop(kls, &null_ctl);
  3015     if (null_ctl != top()) {
  3016       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3017       region->add_req(null_ctl);
  3018       phi   ->add_req(null());
  3020     if (!stopped()) {
  3021       query_value = load_mirror_from_klass(kls);
  3023     break;
  3025   case vmIntrinsics::_getComponentType:
  3026     if (generate_array_guard(kls, region) != NULL) {
  3027       // Be sure to pin the oop load to the guard edge just created:
  3028       Node* is_array_ctrl = region->in(region->req()-1);
  3029       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  3030       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3031       phi->add_req(cmo);
  3033     query_value = null();  // non-array case is null
  3034     break;
  3036   case vmIntrinsics::_getClassAccessFlags:
  3037     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  3038     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3039     break;
  3041   default:
  3042     ShouldNotReachHere();
  3045   // Fall-through is the normal case of a query to a real class.
  3046   phi->init_req(1, query_value);
  3047   region->init_req(1, control());
  3049   push_result(region, phi);
  3050   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3052   return true;
  3055 //--------------------------inline_native_subtype_check------------------------
  3056 // This intrinsic takes the JNI calls out of the heart of
  3057 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3058 bool LibraryCallKit::inline_native_subtype_check() {
  3059   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3061   // Pull both arguments off the stack.
  3062   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3063   args[0] = argument(0);
  3064   args[1] = argument(1);
  3065   Node* klasses[2];             // corresponding Klasses: superk, subk
  3066   klasses[0] = klasses[1] = top();
  3068   enum {
  3069     // A full decision tree on {superc is prim, subc is prim}:
  3070     _prim_0_path = 1,           // {P,N} => false
  3071                                 // {P,P} & superc!=subc => false
  3072     _prim_same_path,            // {P,P} & superc==subc => true
  3073     _prim_1_path,               // {N,P} => false
  3074     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3075     _both_ref_path,             // {N,N} & subtype check loses => false
  3076     PATH_LIMIT
  3077   };
  3079   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3080   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  3081   record_for_igvn(region);
  3083   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3084   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3085   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3087   // First null-check both mirrors and load each mirror's klass metaobject.
  3088   int which_arg;
  3089   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3090     Node* arg = args[which_arg];
  3091     _sp += nargs;  // set original stack for use by uncommon_trap
  3092     arg = do_null_check(arg, T_OBJECT);
  3093     _sp -= nargs;
  3094     if (stopped())  break;
  3095     args[which_arg] = _gvn.transform(arg);
  3097     Node* p = basic_plus_adr(arg, class_klass_offset);
  3098     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3099     klasses[which_arg] = _gvn.transform(kls);
  3102   // Having loaded both klasses, test each for null.
  3103   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3104   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3105     Node* kls = klasses[which_arg];
  3106     Node* null_ctl = top();
  3107     _sp += nargs;  // set original stack for use by uncommon_trap
  3108     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3109     _sp -= nargs;
  3110     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3111     region->init_req(prim_path, null_ctl);
  3112     if (stopped())  break;
  3113     klasses[which_arg] = kls;
  3116   if (!stopped()) {
  3117     // now we have two reference types, in klasses[0..1]
  3118     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3119     Node* superk = klasses[0];  // the receiver
  3120     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3121     // now we have a successful reference subtype check
  3122     region->set_req(_ref_subtype_path, control());
  3125   // If both operands are primitive (both klasses null), then
  3126   // we must return true when they are identical primitives.
  3127   // It is convenient to test this after the first null klass check.
  3128   set_control(region->in(_prim_0_path)); // go back to first null check
  3129   if (!stopped()) {
  3130     // Since superc is primitive, make a guard for the superc==subc case.
  3131     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  3132     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  3133     generate_guard(bol_eq, region, PROB_FAIR);
  3134     if (region->req() == PATH_LIMIT+1) {
  3135       // A guard was added.  If the added guard is taken, superc==subc.
  3136       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3137       region->del_req(PATH_LIMIT);
  3139     region->set_req(_prim_0_path, control()); // Not equal after all.
  3142   // these are the only paths that produce 'true':
  3143   phi->set_req(_prim_same_path,   intcon(1));
  3144   phi->set_req(_ref_subtype_path, intcon(1));
  3146   // pull together the cases:
  3147   assert(region->req() == PATH_LIMIT, "sane region");
  3148   for (uint i = 1; i < region->req(); i++) {
  3149     Node* ctl = region->in(i);
  3150     if (ctl == NULL || ctl == top()) {
  3151       region->set_req(i, top());
  3152       phi   ->set_req(i, top());
  3153     } else if (phi->in(i) == NULL) {
  3154       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3158   set_control(_gvn.transform(region));
  3159   push(_gvn.transform(phi));
  3161   return true;
  3164 //---------------------generate_array_guard_common------------------------
  3165 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3166                                                   bool obj_array, bool not_array) {
  3167   // If obj_array/non_array==false/false:
  3168   // Branch around if the given klass is in fact an array (either obj or prim).
  3169   // If obj_array/non_array==false/true:
  3170   // Branch around if the given klass is not an array klass of any kind.
  3171   // If obj_array/non_array==true/true:
  3172   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3173   // If obj_array/non_array==true/false:
  3174   // Branch around if the kls is an oop array (Object[] or subtype)
  3175   //
  3176   // Like generate_guard, adds a new path onto the region.
  3177   jint  layout_con = 0;
  3178   Node* layout_val = get_layout_helper(kls, layout_con);
  3179   if (layout_val == NULL) {
  3180     bool query = (obj_array
  3181                   ? Klass::layout_helper_is_objArray(layout_con)
  3182                   : Klass::layout_helper_is_javaArray(layout_con));
  3183     if (query == not_array) {
  3184       return NULL;                       // never a branch
  3185     } else {                             // always a branch
  3186       Node* always_branch = control();
  3187       if (region != NULL)
  3188         region->add_req(always_branch);
  3189       set_control(top());
  3190       return always_branch;
  3193   // Now test the correct condition.
  3194   jint  nval = (obj_array
  3195                 ? ((jint)Klass::_lh_array_tag_type_value
  3196                    <<    Klass::_lh_array_tag_shift)
  3197                 : Klass::_lh_neutral_value);
  3198   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3199   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3200   // invert the test if we are looking for a non-array
  3201   if (not_array)  btest = BoolTest(btest).negate();
  3202   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3203   return generate_fair_guard(bol, region);
  3207 //-----------------------inline_native_newArray--------------------------
  3208 bool LibraryCallKit::inline_native_newArray() {
  3209   int nargs = 2;
  3210   Node* mirror    = argument(0);
  3211   Node* count_val = argument(1);
  3213   _sp += nargs;  // set original stack for use by uncommon_trap
  3214   mirror = do_null_check(mirror, T_OBJECT);
  3215   _sp -= nargs;
  3216   // If mirror or obj is dead, only null-path is taken.
  3217   if (stopped())  return true;
  3219   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3220   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3221   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3222                                                       TypeInstPtr::NOTNULL);
  3223   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3224   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3225                                                       TypePtr::BOTTOM);
  3227   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3228   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3229                                                   nargs,
  3230                                                   result_reg, _slow_path);
  3231   Node* normal_ctl   = control();
  3232   Node* no_array_ctl = result_reg->in(_slow_path);
  3234   // Generate code for the slow case.  We make a call to newArray().
  3235   set_control(no_array_ctl);
  3236   if (!stopped()) {
  3237     // Either the input type is void.class, or else the
  3238     // array klass has not yet been cached.  Either the
  3239     // ensuing call will throw an exception, or else it
  3240     // will cache the array klass for next time.
  3241     PreserveJVMState pjvms(this);
  3242     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3243     Node* slow_result = set_results_for_java_call(slow_call);
  3244     // this->control() comes from set_results_for_java_call
  3245     result_reg->set_req(_slow_path, control());
  3246     result_val->set_req(_slow_path, slow_result);
  3247     result_io ->set_req(_slow_path, i_o());
  3248     result_mem->set_req(_slow_path, reset_memory());
  3251   set_control(normal_ctl);
  3252   if (!stopped()) {
  3253     // Normal case:  The array type has been cached in the java.lang.Class.
  3254     // The following call works fine even if the array type is polymorphic.
  3255     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3256     Node* obj = new_array(klass_node, count_val, nargs);
  3257     result_reg->init_req(_normal_path, control());
  3258     result_val->init_req(_normal_path, obj);
  3259     result_io ->init_req(_normal_path, i_o());
  3260     result_mem->init_req(_normal_path, reset_memory());
  3263   // Return the combined state.
  3264   set_i_o(        _gvn.transform(result_io)  );
  3265   set_all_memory( _gvn.transform(result_mem) );
  3266   push_result(result_reg, result_val);
  3267   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3269   return true;
  3272 //----------------------inline_native_getLength--------------------------
  3273 bool LibraryCallKit::inline_native_getLength() {
  3274   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3276   int nargs = 1;
  3277   Node* array = argument(0);
  3279   _sp += nargs;  // set original stack for use by uncommon_trap
  3280   array = do_null_check(array, T_OBJECT);
  3281   _sp -= nargs;
  3283   // If array is dead, only null-path is taken.
  3284   if (stopped())  return true;
  3286   // Deoptimize if it is a non-array.
  3287   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3289   if (non_array != NULL) {
  3290     PreserveJVMState pjvms(this);
  3291     set_control(non_array);
  3292     _sp += nargs;  // push the arguments back on the stack
  3293     uncommon_trap(Deoptimization::Reason_intrinsic,
  3294                   Deoptimization::Action_maybe_recompile);
  3297   // If control is dead, only non-array-path is taken.
  3298   if (stopped())  return true;
  3300   // The works fine even if the array type is polymorphic.
  3301   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3302   push( load_array_length(array) );
  3304   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3306   return true;
  3309 //------------------------inline_array_copyOf----------------------------
  3310 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3311   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3313   // Restore the stack and pop off the arguments.
  3314   int nargs = 3 + (is_copyOfRange? 1: 0);
  3315   Node* original          = argument(0);
  3316   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3317   Node* end               = is_copyOfRange? argument(2): argument(1);
  3318   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3320   Node* newcopy;
  3322   //set the original stack and the reexecute bit for the interpreter to reexecute
  3323   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3324   { PreserveReexecuteState preexecs(this);
  3325     _sp += nargs;
  3326     jvms()->set_should_reexecute(true);
  3328     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3329     original          = do_null_check(original, T_OBJECT);
  3331     // Check if a null path was taken unconditionally.
  3332     if (stopped())  return true;
  3334     Node* orig_length = load_array_length(original);
  3336     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3337                                               NULL, 0);
  3338     klass_node = do_null_check(klass_node, T_OBJECT);
  3340     RegionNode* bailout = new (C, 1) RegionNode(1);
  3341     record_for_igvn(bailout);
  3343     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3344     // Bail out if that is so.
  3345     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3346     if (not_objArray != NULL) {
  3347       // Improve the klass node's type from the new optimistic assumption:
  3348       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3349       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3350       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3351       cast->init_req(0, control());
  3352       klass_node = _gvn.transform(cast);
  3355     // Bail out if either start or end is negative.
  3356     generate_negative_guard(start, bailout, &start);
  3357     generate_negative_guard(end,   bailout, &end);
  3359     Node* length = end;
  3360     if (_gvn.type(start) != TypeInt::ZERO) {
  3361       length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3364     // Bail out if length is negative.
  3365     // ...Not needed, since the new_array will throw the right exception.
  3366     //generate_negative_guard(length, bailout, &length);
  3368     if (bailout->req() > 1) {
  3369       PreserveJVMState pjvms(this);
  3370       set_control( _gvn.transform(bailout) );
  3371       uncommon_trap(Deoptimization::Reason_intrinsic,
  3372                     Deoptimization::Action_maybe_recompile);
  3375     if (!stopped()) {
  3377       // How many elements will we copy from the original?
  3378       // The answer is MinI(orig_length - start, length).
  3379       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3380       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3382       const bool raw_mem_only = true;
  3383       newcopy = new_array(klass_node, length, 0, raw_mem_only);
  3385       // Generate a direct call to the right arraycopy function(s).
  3386       // We know the copy is disjoint but we might not know if the
  3387       // oop stores need checking.
  3388       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3389       // This will fail a store-check if x contains any non-nulls.
  3390       bool disjoint_bases = true;
  3391       bool length_never_negative = true;
  3392       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3393                          original, start, newcopy, intcon(0), moved,
  3394                          disjoint_bases, length_never_negative);
  3396   } //original reexecute and sp are set back here
  3398   if(!stopped()) {
  3399     push(newcopy);
  3402   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3404   return true;
  3408 //----------------------generate_virtual_guard---------------------------
  3409 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3410 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3411                                              RegionNode* slow_region) {
  3412   ciMethod* method = callee();
  3413   int vtable_index = method->vtable_index();
  3414   // Get the methodOop out of the appropriate vtable entry.
  3415   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3416                      vtable_index*vtableEntry::size()) * wordSize +
  3417                      vtableEntry::method_offset_in_bytes();
  3418   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3419   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3421   // Compare the target method with the expected method (e.g., Object.hashCode).
  3422   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3424   Node* native_call = makecon(native_call_addr);
  3425   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3426   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3428   return generate_slow_guard(test_native, slow_region);
  3431 //-----------------------generate_method_call----------------------------
  3432 // Use generate_method_call to make a slow-call to the real
  3433 // method if the fast path fails.  An alternative would be to
  3434 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3435 // This only works for expanding the current library call,
  3436 // not another intrinsic.  (E.g., don't use this for making an
  3437 // arraycopy call inside of the copyOf intrinsic.)
  3438 CallJavaNode*
  3439 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3440   // When compiling the intrinsic method itself, do not use this technique.
  3441   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3443   ciMethod* method = callee();
  3444   // ensure the JVMS we have will be correct for this call
  3445   guarantee(method_id == method->intrinsic_id(), "must match");
  3447   const TypeFunc* tf = TypeFunc::make(method);
  3448   int tfdc = tf->domain()->cnt();
  3449   CallJavaNode* slow_call;
  3450   if (is_static) {
  3451     assert(!is_virtual, "");
  3452     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3453                                 SharedRuntime::get_resolve_static_call_stub(),
  3454                                 method, bci());
  3455   } else if (is_virtual) {
  3456     null_check_receiver(method);
  3457     int vtable_index = methodOopDesc::invalid_vtable_index;
  3458     if (UseInlineCaches) {
  3459       // Suppress the vtable call
  3460     } else {
  3461       // hashCode and clone are not a miranda methods,
  3462       // so the vtable index is fixed.
  3463       // No need to use the linkResolver to get it.
  3464        vtable_index = method->vtable_index();
  3466     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3467                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3468                                 method, vtable_index, bci());
  3469   } else {  // neither virtual nor static:  opt_virtual
  3470     null_check_receiver(method);
  3471     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3472                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3473                                 method, bci());
  3474     slow_call->set_optimized_virtual(true);
  3476   set_arguments_for_java_call(slow_call);
  3477   set_edges_for_java_call(slow_call);
  3478   return slow_call;
  3482 //------------------------------inline_native_hashcode--------------------
  3483 // Build special case code for calls to hashCode on an object.
  3484 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3485   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3486   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3488   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3490   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3491   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3492                                                       TypeInt::INT);
  3493   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3494   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3495                                                       TypePtr::BOTTOM);
  3496   Node* obj = NULL;
  3497   if (!is_static) {
  3498     // Check for hashing null object
  3499     obj = null_check_receiver(callee());
  3500     if (stopped())  return true;        // unconditionally null
  3501     result_reg->init_req(_null_path, top());
  3502     result_val->init_req(_null_path, top());
  3503   } else {
  3504     // Do a null check, and return zero if null.
  3505     // System.identityHashCode(null) == 0
  3506     obj = argument(0);
  3507     Node* null_ctl = top();
  3508     obj = null_check_oop(obj, &null_ctl);
  3509     result_reg->init_req(_null_path, null_ctl);
  3510     result_val->init_req(_null_path, _gvn.intcon(0));
  3513   // Unconditionally null?  Then return right away.
  3514   if (stopped()) {
  3515     set_control( result_reg->in(_null_path) );
  3516     if (!stopped())
  3517       push(      result_val ->in(_null_path) );
  3518     return true;
  3521   // After null check, get the object's klass.
  3522   Node* obj_klass = load_object_klass(obj);
  3524   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3525   // For each case we generate slightly different code.
  3527   // We only go to the fast case code if we pass a number of guards.  The
  3528   // paths which do not pass are accumulated in the slow_region.
  3529   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3530   record_for_igvn(slow_region);
  3532   // If this is a virtual call, we generate a funny guard.  We pull out
  3533   // the vtable entry corresponding to hashCode() from the target object.
  3534   // If the target method which we are calling happens to be the native
  3535   // Object hashCode() method, we pass the guard.  We do not need this
  3536   // guard for non-virtual calls -- the caller is known to be the native
  3537   // Object hashCode().
  3538   if (is_virtual) {
  3539     generate_virtual_guard(obj_klass, slow_region);
  3542   // Get the header out of the object, use LoadMarkNode when available
  3543   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3544   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3546   // Test the header to see if it is unlocked.
  3547   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3548   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3549   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3550   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3551   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3553   generate_slow_guard(test_unlocked, slow_region);
  3555   // Get the hash value and check to see that it has been properly assigned.
  3556   // We depend on hash_mask being at most 32 bits and avoid the use of
  3557   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3558   // vm: see markOop.hpp.
  3559   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3560   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3561   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3562   // This hack lets the hash bits live anywhere in the mark object now, as long
  3563   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3564   // Java spec says that HashCode is an int so there's no point in capturing
  3565   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3566   hshifted_header      = ConvX2I(hshifted_header);
  3567   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3569   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3570   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3571   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3573   generate_slow_guard(test_assigned, slow_region);
  3575   Node* init_mem = reset_memory();
  3576   // fill in the rest of the null path:
  3577   result_io ->init_req(_null_path, i_o());
  3578   result_mem->init_req(_null_path, init_mem);
  3580   result_val->init_req(_fast_path, hash_val);
  3581   result_reg->init_req(_fast_path, control());
  3582   result_io ->init_req(_fast_path, i_o());
  3583   result_mem->init_req(_fast_path, init_mem);
  3585   // Generate code for the slow case.  We make a call to hashCode().
  3586   set_control(_gvn.transform(slow_region));
  3587   if (!stopped()) {
  3588     // No need for PreserveJVMState, because we're using up the present state.
  3589     set_all_memory(init_mem);
  3590     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3591     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3592     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3593     Node* slow_result = set_results_for_java_call(slow_call);
  3594     // this->control() comes from set_results_for_java_call
  3595     result_reg->init_req(_slow_path, control());
  3596     result_val->init_req(_slow_path, slow_result);
  3597     result_io  ->set_req(_slow_path, i_o());
  3598     result_mem ->set_req(_slow_path, reset_memory());
  3601   // Return the combined state.
  3602   set_i_o(        _gvn.transform(result_io)  );
  3603   set_all_memory( _gvn.transform(result_mem) );
  3604   push_result(result_reg, result_val);
  3606   return true;
  3609 //---------------------------inline_native_getClass----------------------------
  3610 // Build special case code for calls to getClass on an object.
  3611 bool LibraryCallKit::inline_native_getClass() {
  3612   Node* obj = null_check_receiver(callee());
  3613   if (stopped())  return true;
  3614   push( load_mirror_from_klass(load_object_klass(obj)) );
  3615   return true;
  3618 //-----------------inline_native_Reflection_getCallerClass---------------------
  3619 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3620 //
  3621 // NOTE that this code must perform the same logic as
  3622 // vframeStream::security_get_caller_frame in that it must skip
  3623 // Method.invoke() and auxiliary frames.
  3628 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3629   ciMethod*       method = callee();
  3631 #ifndef PRODUCT
  3632   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3633     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3635 #endif
  3637   debug_only(int saved_sp = _sp);
  3639   // Argument words:  (int depth)
  3640   int nargs = 1;
  3642   _sp += nargs;
  3643   Node* caller_depth_node = pop();
  3645   assert(saved_sp == _sp, "must have correct argument count");
  3647   // The depth value must be a constant in order for the runtime call
  3648   // to be eliminated.
  3649   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3650   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3651 #ifndef PRODUCT
  3652     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3653       tty->print_cr("  Bailing out because caller depth was not a constant");
  3655 #endif
  3656     return false;
  3658   // Note that the JVM state at this point does not include the
  3659   // getCallerClass() frame which we are trying to inline. The
  3660   // semantics of getCallerClass(), however, are that the "first"
  3661   // frame is the getCallerClass() frame, so we subtract one from the
  3662   // requested depth before continuing. We don't inline requests of
  3663   // getCallerClass(0).
  3664   int caller_depth = caller_depth_type->get_con() - 1;
  3665   if (caller_depth < 0) {
  3666 #ifndef PRODUCT
  3667     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3668       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3670 #endif
  3671     return false;
  3674   if (!jvms()->has_method()) {
  3675 #ifndef PRODUCT
  3676     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3677       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3679 #endif
  3680     return false;
  3682   int _depth = jvms()->depth();  // cache call chain depth
  3684   // Walk back up the JVM state to find the caller at the required
  3685   // depth. NOTE that this code must perform the same logic as
  3686   // vframeStream::security_get_caller_frame in that it must skip
  3687   // Method.invoke() and auxiliary frames. Note also that depth is
  3688   // 1-based (1 is the bottom of the inlining).
  3689   int inlining_depth = _depth;
  3690   JVMState* caller_jvms = NULL;
  3692   if (inlining_depth > 0) {
  3693     caller_jvms = jvms();
  3694     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3695     do {
  3696       // The following if-tests should be performed in this order
  3697       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3698         // Skip a Method.invoke() or auxiliary frame
  3699       } else if (caller_depth > 0) {
  3700         // Skip real frame
  3701         --caller_depth;
  3702       } else {
  3703         // We're done: reached desired caller after skipping.
  3704         break;
  3706       caller_jvms = caller_jvms->caller();
  3707       --inlining_depth;
  3708     } while (inlining_depth > 0);
  3711   if (inlining_depth == 0) {
  3712 #ifndef PRODUCT
  3713     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3714       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3715       tty->print_cr("  JVM state at this point:");
  3716       for (int i = _depth; i >= 1; i--) {
  3717         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3720 #endif
  3721     return false; // Reached end of inlining
  3724   // Acquire method holder as java.lang.Class
  3725   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3726   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3727   // Push this as a constant
  3728   push(makecon(TypeInstPtr::make(caller_mirror)));
  3729 #ifndef PRODUCT
  3730   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3731     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3732     tty->print_cr("  JVM state at this point:");
  3733     for (int i = _depth; i >= 1; i--) {
  3734       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3737 #endif
  3738   return true;
  3741 // Helper routine for above
  3742 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3743   ciMethod* method = jvms->method();
  3745   // Is this the Method.invoke method itself?
  3746   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3747     return true;
  3749   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3750   ciKlass* k = method->holder();
  3751   if (k->is_instance_klass()) {
  3752     ciInstanceKlass* ik = k->as_instance_klass();
  3753     for (; ik != NULL; ik = ik->super()) {
  3754       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3755           ik == env()->find_system_klass(ik->name())) {
  3756         return true;
  3760   else if (method->is_method_handle_adapter()) {
  3761     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  3762     return true;
  3765   return false;
  3768 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3769                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3770                                      // computing it since there is no lookup field by name function in the
  3771                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3772                                      // Using a static variable here is safe even if we have multiple compilation
  3773                                      // threads because the offset is constant.  At worst the same offset will be
  3774                                      // computed and  stored multiple
  3776 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3777   // Restore the stack and pop off the argument
  3778   _sp+=1;
  3779   Node *obj = pop();
  3781   // get the offset of the "value" field. Since the CI interfaces
  3782   // does not provide a way to look up a field by name, we scan the bytecodes
  3783   // to get the field index.  We expect the first 2 instructions of the method
  3784   // to be:
  3785   //    0 aload_0
  3786   //    1 getfield "value"
  3787   ciMethod* method = callee();
  3788   if (value_field_offset == -1)
  3790     ciField* value_field;
  3791     ciBytecodeStream iter(method);
  3792     Bytecodes::Code bc = iter.next();
  3794     if ((bc != Bytecodes::_aload_0) &&
  3795               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3796       return false;
  3797     bc = iter.next();
  3798     if (bc != Bytecodes::_getfield)
  3799       return false;
  3800     bool ignore;
  3801     value_field = iter.get_field(ignore);
  3802     value_field_offset = value_field->offset_in_bytes();
  3805   // Null check without removing any arguments.
  3806   _sp++;
  3807   obj = do_null_check(obj, T_OBJECT);
  3808   _sp--;
  3809   // Check for locking null object
  3810   if (stopped()) return true;
  3812   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3813   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3814   int alias_idx = C->get_alias_index(adr_type);
  3816   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3818   push_pair(result);
  3820   return true;
  3823 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3824   // Restore the stack and pop off the arguments
  3825   _sp+=5;
  3826   Node *newVal = pop_pair();
  3827   Node *oldVal = pop_pair();
  3828   Node *obj = pop();
  3830   // we need the offset of the "value" field which was computed when
  3831   // inlining the get() method.  Give up if we don't have it.
  3832   if (value_field_offset == -1)
  3833     return false;
  3835   // Null check without removing any arguments.
  3836   _sp+=5;
  3837   obj = do_null_check(obj, T_OBJECT);
  3838   _sp-=5;
  3839   // Check for locking null object
  3840   if (stopped()) return true;
  3842   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3843   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3844   int alias_idx = C->get_alias_index(adr_type);
  3846   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3847   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  3848   set_memory(store_proj, alias_idx);
  3849   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  3851   Node *result;
  3852   // CMove node is not used to be able fold a possible check code
  3853   // after attemptUpdate() call. This code could be transformed
  3854   // into CMove node by loop optimizations.
  3856     RegionNode *r = new (C, 3) RegionNode(3);
  3857     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  3859     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  3860     Node *iftrue = opt_iff(r, iff);
  3861     r->init_req(1, iftrue);
  3862     result->init_req(1, intcon(1));
  3863     result->init_req(2, intcon(0));
  3865     set_control(_gvn.transform(r));
  3866     record_for_igvn(r);
  3868     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3871   push(_gvn.transform(result));
  3872   return true;
  3875 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3876   // restore the arguments
  3877   _sp += arg_size();
  3879   switch (id) {
  3880   case vmIntrinsics::_floatToRawIntBits:
  3881     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  3882     break;
  3884   case vmIntrinsics::_intBitsToFloat:
  3885     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  3886     break;
  3888   case vmIntrinsics::_doubleToRawLongBits:
  3889     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  3890     break;
  3892   case vmIntrinsics::_longBitsToDouble:
  3893     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  3894     break;
  3896   case vmIntrinsics::_doubleToLongBits: {
  3897     Node* value = pop_pair();
  3899     // two paths (plus control) merge in a wood
  3900     RegionNode *r = new (C, 3) RegionNode(3);
  3901     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  3903     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  3904     // Build the boolean node
  3905     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3907     // Branch either way.
  3908     // NaN case is less traveled, which makes all the difference.
  3909     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3910     Node *opt_isnan = _gvn.transform(ifisnan);
  3911     assert( opt_isnan->is_If(), "Expect an IfNode");
  3912     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3913     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3915     set_control(iftrue);
  3917     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3918     Node *slow_result = longcon(nan_bits); // return NaN
  3919     phi->init_req(1, _gvn.transform( slow_result ));
  3920     r->init_req(1, iftrue);
  3922     // Else fall through
  3923     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3924     set_control(iffalse);
  3926     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  3927     r->init_req(2, iffalse);
  3929     // Post merge
  3930     set_control(_gvn.transform(r));
  3931     record_for_igvn(r);
  3933     Node* result = _gvn.transform(phi);
  3934     assert(result->bottom_type()->isa_long(), "must be");
  3935     push_pair(result);
  3937     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3939     break;
  3942   case vmIntrinsics::_floatToIntBits: {
  3943     Node* value = pop();
  3945     // two paths (plus control) merge in a wood
  3946     RegionNode *r = new (C, 3) RegionNode(3);
  3947     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  3949     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  3950     // Build the boolean node
  3951     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3953     // Branch either way.
  3954     // NaN case is less traveled, which makes all the difference.
  3955     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3956     Node *opt_isnan = _gvn.transform(ifisnan);
  3957     assert( opt_isnan->is_If(), "Expect an IfNode");
  3958     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3959     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3961     set_control(iftrue);
  3963     static const jint nan_bits = 0x7fc00000;
  3964     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  3965     phi->init_req(1, _gvn.transform( slow_result ));
  3966     r->init_req(1, iftrue);
  3968     // Else fall through
  3969     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3970     set_control(iffalse);
  3972     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  3973     r->init_req(2, iffalse);
  3975     // Post merge
  3976     set_control(_gvn.transform(r));
  3977     record_for_igvn(r);
  3979     Node* result = _gvn.transform(phi);
  3980     assert(result->bottom_type()->isa_int(), "must be");
  3981     push(result);
  3983     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3985     break;
  3988   default:
  3989     ShouldNotReachHere();
  3992   return true;
  3995 #ifdef _LP64
  3996 #define XTOP ,top() /*additional argument*/
  3997 #else  //_LP64
  3998 #define XTOP        /*no additional argument*/
  3999 #endif //_LP64
  4001 //----------------------inline_unsafe_copyMemory-------------------------
  4002 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4003   if (callee()->is_static())  return false;  // caller must have the capability!
  4004   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  4005   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  4006   null_check_receiver(callee());  // check then ignore argument(0)
  4007   if (stopped())  return true;
  4009   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4011   Node* src_ptr = argument(1);
  4012   Node* src_off = ConvL2X(argument(2));
  4013   assert(argument(3)->is_top(), "2nd half of long");
  4014   Node* dst_ptr = argument(4);
  4015   Node* dst_off = ConvL2X(argument(5));
  4016   assert(argument(6)->is_top(), "2nd half of long");
  4017   Node* size    = ConvL2X(argument(7));
  4018   assert(argument(8)->is_top(), "2nd half of long");
  4020   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4021          "fieldOffset must be byte-scaled");
  4023   Node* src = make_unsafe_address(src_ptr, src_off);
  4024   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4026   // Conservatively insert a memory barrier on all memory slices.
  4027   // Do not let writes of the copy source or destination float below the copy.
  4028   insert_mem_bar(Op_MemBarCPUOrder);
  4030   // Call it.  Note that the length argument is not scaled.
  4031   make_runtime_call(RC_LEAF|RC_NO_FP,
  4032                     OptoRuntime::fast_arraycopy_Type(),
  4033                     StubRoutines::unsafe_arraycopy(),
  4034                     "unsafe_arraycopy",
  4035                     TypeRawPtr::BOTTOM,
  4036                     src, dst, size XTOP);
  4038   // Do not let reads of the copy destination float above the copy.
  4039   insert_mem_bar(Op_MemBarCPUOrder);
  4041   return true;
  4044 //------------------------clone_coping-----------------------------------
  4045 // Helper function for inline_native_clone.
  4046 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4047   assert(obj_size != NULL, "");
  4048   Node* raw_obj = alloc_obj->in(1);
  4049   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4051   if (ReduceBulkZeroing) {
  4052     // We will be completely responsible for initializing this object -
  4053     // mark Initialize node as complete.
  4054     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4055     // The object was just allocated - there should be no any stores!
  4056     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4059   // Copy the fastest available way.
  4060   // TODO: generate fields copies for small objects instead.
  4061   Node* src  = obj;
  4062   Node* dest = alloc_obj;
  4063   Node* size = _gvn.transform(obj_size);
  4065   // Exclude the header but include array length to copy by 8 bytes words.
  4066   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4067   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4068                             instanceOopDesc::base_offset_in_bytes();
  4069   // base_off:
  4070   // 8  - 32-bit VM
  4071   // 12 - 64-bit VM, compressed oops
  4072   // 16 - 64-bit VM, normal oops
  4073   if (base_off % BytesPerLong != 0) {
  4074     assert(UseCompressedOops, "");
  4075     if (is_array) {
  4076       // Exclude length to copy by 8 bytes words.
  4077       base_off += sizeof(int);
  4078     } else {
  4079       // Include klass to copy by 8 bytes words.
  4080       base_off = instanceOopDesc::klass_offset_in_bytes();
  4082     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4084   src  = basic_plus_adr(src,  base_off);
  4085   dest = basic_plus_adr(dest, base_off);
  4087   // Compute the length also, if needed:
  4088   Node* countx = size;
  4089   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4090   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4092   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4093   bool disjoint_bases = true;
  4094   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4095                                src, NULL, dest, NULL, countx);
  4097   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4098   if (card_mark) {
  4099     assert(!is_array, "");
  4100     // Put in store barrier for any and all oops we are sticking
  4101     // into this object.  (We could avoid this if we could prove
  4102     // that the object type contains no oop fields at all.)
  4103     Node* no_particular_value = NULL;
  4104     Node* no_particular_field = NULL;
  4105     int raw_adr_idx = Compile::AliasIdxRaw;
  4106     post_barrier(control(),
  4107                  memory(raw_adr_type),
  4108                  alloc_obj,
  4109                  no_particular_field,
  4110                  raw_adr_idx,
  4111                  no_particular_value,
  4112                  T_OBJECT,
  4113                  false);
  4116   // Do not let reads from the cloned object float above the arraycopy.
  4117   insert_mem_bar(Op_MemBarCPUOrder);
  4120 //------------------------inline_native_clone----------------------------
  4121 // Here are the simple edge cases:
  4122 //  null receiver => normal trap
  4123 //  virtual and clone was overridden => slow path to out-of-line clone
  4124 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4125 //
  4126 // The general case has two steps, allocation and copying.
  4127 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4128 //
  4129 // Copying also has two cases, oop arrays and everything else.
  4130 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4131 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4132 //
  4133 // These steps fold up nicely if and when the cloned object's klass
  4134 // can be sharply typed as an object array, a type array, or an instance.
  4135 //
  4136 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4137   int nargs = 1;
  4138   PhiNode* result_val;
  4140   //set the original stack and the reexecute bit for the interpreter to reexecute
  4141   //the bytecode that invokes Object.clone if deoptimization happens
  4142   { PreserveReexecuteState preexecs(this);
  4143     jvms()->set_should_reexecute(true);
  4145     //null_check_receiver will adjust _sp (push and pop)
  4146     Node* obj = null_check_receiver(callee());
  4147     if (stopped())  return true;
  4149     _sp += nargs;
  4151     Node* obj_klass = load_object_klass(obj);
  4152     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4153     const TypeOopPtr*   toop   = ((tklass != NULL)
  4154                                 ? tklass->as_instance_type()
  4155                                 : TypeInstPtr::NOTNULL);
  4157     // Conservatively insert a memory barrier on all memory slices.
  4158     // Do not let writes into the original float below the clone.
  4159     insert_mem_bar(Op_MemBarCPUOrder);
  4161     // paths into result_reg:
  4162     enum {
  4163       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4164       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4165       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4166       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4167       PATH_LIMIT
  4168     };
  4169     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4170     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
  4171                                                         TypeInstPtr::NOTNULL);
  4172     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4173     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4174                                                         TypePtr::BOTTOM);
  4175     record_for_igvn(result_reg);
  4177     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4178     int raw_adr_idx = Compile::AliasIdxRaw;
  4179     const bool raw_mem_only = true;
  4182     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4183     if (array_ctl != NULL) {
  4184       // It's an array.
  4185       PreserveJVMState pjvms(this);
  4186       set_control(array_ctl);
  4187       Node* obj_length = load_array_length(obj);
  4188       Node* obj_size  = NULL;
  4189       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
  4190                                   raw_mem_only, &obj_size);
  4192       if (!use_ReduceInitialCardMarks()) {
  4193         // If it is an oop array, it requires very special treatment,
  4194         // because card marking is required on each card of the array.
  4195         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4196         if (is_obja != NULL) {
  4197           PreserveJVMState pjvms2(this);
  4198           set_control(is_obja);
  4199           // Generate a direct call to the right arraycopy function(s).
  4200           bool disjoint_bases = true;
  4201           bool length_never_negative = true;
  4202           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4203                              obj, intcon(0), alloc_obj, intcon(0),
  4204                              obj_length,
  4205                              disjoint_bases, length_never_negative);
  4206           result_reg->init_req(_objArray_path, control());
  4207           result_val->init_req(_objArray_path, alloc_obj);
  4208           result_i_o ->set_req(_objArray_path, i_o());
  4209           result_mem ->set_req(_objArray_path, reset_memory());
  4212       // Otherwise, there are no card marks to worry about.
  4213       // (We can dispense with card marks if we know the allocation
  4214       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4215       //  causes the non-eden paths to take compensating steps to
  4216       //  simulate a fresh allocation, so that no further
  4217       //  card marks are required in compiled code to initialize
  4218       //  the object.)
  4220       if (!stopped()) {
  4221         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4223         // Present the results of the copy.
  4224         result_reg->init_req(_array_path, control());
  4225         result_val->init_req(_array_path, alloc_obj);
  4226         result_i_o ->set_req(_array_path, i_o());
  4227         result_mem ->set_req(_array_path, reset_memory());
  4231     // We only go to the instance fast case code if we pass a number of guards.
  4232     // The paths which do not pass are accumulated in the slow_region.
  4233     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4234     record_for_igvn(slow_region);
  4235     if (!stopped()) {
  4236       // It's an instance (we did array above).  Make the slow-path tests.
  4237       // If this is a virtual call, we generate a funny guard.  We grab
  4238       // the vtable entry corresponding to clone() from the target object.
  4239       // If the target method which we are calling happens to be the
  4240       // Object clone() method, we pass the guard.  We do not need this
  4241       // guard for non-virtual calls; the caller is known to be the native
  4242       // Object clone().
  4243       if (is_virtual) {
  4244         generate_virtual_guard(obj_klass, slow_region);
  4247       // The object must be cloneable and must not have a finalizer.
  4248       // Both of these conditions may be checked in a single test.
  4249       // We could optimize the cloneable test further, but we don't care.
  4250       generate_access_flags_guard(obj_klass,
  4251                                   // Test both conditions:
  4252                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4253                                   // Must be cloneable but not finalizer:
  4254                                   JVM_ACC_IS_CLONEABLE,
  4255                                   slow_region);
  4258     if (!stopped()) {
  4259       // It's an instance, and it passed the slow-path tests.
  4260       PreserveJVMState pjvms(this);
  4261       Node* obj_size  = NULL;
  4262       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  4264       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4266       // Present the results of the slow call.
  4267       result_reg->init_req(_instance_path, control());
  4268       result_val->init_req(_instance_path, alloc_obj);
  4269       result_i_o ->set_req(_instance_path, i_o());
  4270       result_mem ->set_req(_instance_path, reset_memory());
  4273     // Generate code for the slow case.  We make a call to clone().
  4274     set_control(_gvn.transform(slow_region));
  4275     if (!stopped()) {
  4276       PreserveJVMState pjvms(this);
  4277       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4278       Node* slow_result = set_results_for_java_call(slow_call);
  4279       // this->control() comes from set_results_for_java_call
  4280       result_reg->init_req(_slow_path, control());
  4281       result_val->init_req(_slow_path, slow_result);
  4282       result_i_o ->set_req(_slow_path, i_o());
  4283       result_mem ->set_req(_slow_path, reset_memory());
  4286     // Return the combined state.
  4287     set_control(    _gvn.transform(result_reg) );
  4288     set_i_o(        _gvn.transform(result_i_o) );
  4289     set_all_memory( _gvn.transform(result_mem) );
  4290   } //original reexecute and sp are set back here
  4292   push(_gvn.transform(result_val));
  4294   return true;
  4298 // constants for computing the copy function
  4299 enum {
  4300   COPYFUNC_UNALIGNED = 0,
  4301   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  4302   COPYFUNC_CONJOINT = 0,
  4303   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  4304 };
  4306 // Note:  The condition "disjoint" applies also for overlapping copies
  4307 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
  4308 static address
  4309 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
  4310   int selector =
  4311     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  4312     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  4314 #define RETURN_STUB(xxx_arraycopy) { \
  4315   name = #xxx_arraycopy; \
  4316   return StubRoutines::xxx_arraycopy(); }
  4318   switch (t) {
  4319   case T_BYTE:
  4320   case T_BOOLEAN:
  4321     switch (selector) {
  4322     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  4323     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  4324     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  4325     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  4327   case T_CHAR:
  4328   case T_SHORT:
  4329     switch (selector) {
  4330     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  4331     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  4332     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  4333     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  4335   case T_INT:
  4336   case T_FLOAT:
  4337     switch (selector) {
  4338     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  4339     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  4340     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  4341     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  4343   case T_DOUBLE:
  4344   case T_LONG:
  4345     switch (selector) {
  4346     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  4347     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  4348     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  4349     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  4351   case T_ARRAY:
  4352   case T_OBJECT:
  4353     switch (selector) {
  4354     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
  4355     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
  4356     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
  4357     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
  4359   default:
  4360     ShouldNotReachHere();
  4361     return NULL;
  4364 #undef RETURN_STUB
  4367 //------------------------------basictype2arraycopy----------------------------
  4368 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4369                                             Node* src_offset,
  4370                                             Node* dest_offset,
  4371                                             bool disjoint_bases,
  4372                                             const char* &name) {
  4373   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4374   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4376   bool aligned = false;
  4377   bool disjoint = disjoint_bases;
  4379   // if the offsets are the same, we can treat the memory regions as
  4380   // disjoint, because either the memory regions are in different arrays,
  4381   // or they are identical (which we can treat as disjoint.)  We can also
  4382   // treat a copy with a destination index  less that the source index
  4383   // as disjoint since a low->high copy will work correctly in this case.
  4384   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4385       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4386     // both indices are constants
  4387     int s_offs = src_offset_inttype->get_con();
  4388     int d_offs = dest_offset_inttype->get_con();
  4389     int element_size = type2aelembytes(t);
  4390     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4391               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4392     if (s_offs >= d_offs)  disjoint = true;
  4393   } else if (src_offset == dest_offset && src_offset != NULL) {
  4394     // This can occur if the offsets are identical non-constants.
  4395     disjoint = true;
  4398   return select_arraycopy_function(t, aligned, disjoint, name);
  4402 //------------------------------inline_arraycopy-----------------------
  4403 bool LibraryCallKit::inline_arraycopy() {
  4404   // Restore the stack and pop off the arguments.
  4405   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4406   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4408   Node *src         = argument(0);
  4409   Node *src_offset  = argument(1);
  4410   Node *dest        = argument(2);
  4411   Node *dest_offset = argument(3);
  4412   Node *length      = argument(4);
  4414   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4415   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4416   // is.  The checks we choose to mandate at compile time are:
  4417   //
  4418   // (1) src and dest are arrays.
  4419   const Type* src_type = src->Value(&_gvn);
  4420   const Type* dest_type = dest->Value(&_gvn);
  4421   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4422   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4423   if (top_src  == NULL || top_src->klass()  == NULL ||
  4424       top_dest == NULL || top_dest->klass() == NULL) {
  4425     // Conservatively insert a memory barrier on all memory slices.
  4426     // Do not let writes into the source float below the arraycopy.
  4427     insert_mem_bar(Op_MemBarCPUOrder);
  4429     // Call StubRoutines::generic_arraycopy stub.
  4430     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4431                        src, src_offset, dest, dest_offset, length);
  4433     // Do not let reads from the destination float above the arraycopy.
  4434     // Since we cannot type the arrays, we don't know which slices
  4435     // might be affected.  We could restrict this barrier only to those
  4436     // memory slices which pertain to array elements--but don't bother.
  4437     if (!InsertMemBarAfterArraycopy)
  4438       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4439       insert_mem_bar(Op_MemBarCPUOrder);
  4440     return true;
  4443   // (2) src and dest arrays must have elements of the same BasicType
  4444   // Figure out the size and type of the elements we will be copying.
  4445   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4446   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4447   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4448   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4450   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4451     // The component types are not the same or are not recognized.  Punt.
  4452     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4453     generate_slow_arraycopy(TypePtr::BOTTOM,
  4454                             src, src_offset, dest, dest_offset, length);
  4455     return true;
  4458   //---------------------------------------------------------------------------
  4459   // We will make a fast path for this call to arraycopy.
  4461   // We have the following tests left to perform:
  4462   //
  4463   // (3) src and dest must not be null.
  4464   // (4) src_offset must not be negative.
  4465   // (5) dest_offset must not be negative.
  4466   // (6) length must not be negative.
  4467   // (7) src_offset + length must not exceed length of src.
  4468   // (8) dest_offset + length must not exceed length of dest.
  4469   // (9) each element of an oop array must be assignable
  4471   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4472   record_for_igvn(slow_region);
  4474   // (3) operands must not be null
  4475   // We currently perform our null checks with the do_null_check routine.
  4476   // This means that the null exceptions will be reported in the caller
  4477   // rather than (correctly) reported inside of the native arraycopy call.
  4478   // This should be corrected, given time.  We do our null check with the
  4479   // stack pointer restored.
  4480   _sp += nargs;
  4481   src  = do_null_check(src,  T_ARRAY);
  4482   dest = do_null_check(dest, T_ARRAY);
  4483   _sp -= nargs;
  4485   // (4) src_offset must not be negative.
  4486   generate_negative_guard(src_offset, slow_region);
  4488   // (5) dest_offset must not be negative.
  4489   generate_negative_guard(dest_offset, slow_region);
  4491   // (6) length must not be negative (moved to generate_arraycopy()).
  4492   // generate_negative_guard(length, slow_region);
  4494   // (7) src_offset + length must not exceed length of src.
  4495   generate_limit_guard(src_offset, length,
  4496                        load_array_length(src),
  4497                        slow_region);
  4499   // (8) dest_offset + length must not exceed length of dest.
  4500   generate_limit_guard(dest_offset, length,
  4501                        load_array_length(dest),
  4502                        slow_region);
  4504   // (9) each element of an oop array must be assignable
  4505   // The generate_arraycopy subroutine checks this.
  4507   // This is where the memory effects are placed:
  4508   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4509   generate_arraycopy(adr_type, dest_elem,
  4510                      src, src_offset, dest, dest_offset, length,
  4511                      false, false, slow_region);
  4513   return true;
  4516 //-----------------------------generate_arraycopy----------------------
  4517 // Generate an optimized call to arraycopy.
  4518 // Caller must guard against non-arrays.
  4519 // Caller must determine a common array basic-type for both arrays.
  4520 // Caller must validate offsets against array bounds.
  4521 // The slow_region has already collected guard failure paths
  4522 // (such as out of bounds length or non-conformable array types).
  4523 // The generated code has this shape, in general:
  4524 //
  4525 //     if (length == 0)  return   // via zero_path
  4526 //     slowval = -1
  4527 //     if (types unknown) {
  4528 //       slowval = call generic copy loop
  4529 //       if (slowval == 0)  return  // via checked_path
  4530 //     } else if (indexes in bounds) {
  4531 //       if ((is object array) && !(array type check)) {
  4532 //         slowval = call checked copy loop
  4533 //         if (slowval == 0)  return  // via checked_path
  4534 //       } else {
  4535 //         call bulk copy loop
  4536 //         return  // via fast_path
  4537 //       }
  4538 //     }
  4539 //     // adjust params for remaining work:
  4540 //     if (slowval != -1) {
  4541 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4542 //     }
  4543 //   slow_region:
  4544 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4545 //     return  // via slow_call_path
  4546 //
  4547 // This routine is used from several intrinsics:  System.arraycopy,
  4548 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4549 //
  4550 void
  4551 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4552                                    BasicType basic_elem_type,
  4553                                    Node* src,  Node* src_offset,
  4554                                    Node* dest, Node* dest_offset,
  4555                                    Node* copy_length,
  4556                                    bool disjoint_bases,
  4557                                    bool length_never_negative,
  4558                                    RegionNode* slow_region) {
  4560   if (slow_region == NULL) {
  4561     slow_region = new(C,1) RegionNode(1);
  4562     record_for_igvn(slow_region);
  4565   Node* original_dest      = dest;
  4566   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4567   bool  must_clear_dest    = false;
  4569   // See if this is the initialization of a newly-allocated array.
  4570   // If so, we will take responsibility here for initializing it to zero.
  4571   // (Note:  Because tightly_coupled_allocation performs checks on the
  4572   // out-edges of the dest, we need to avoid making derived pointers
  4573   // from it until we have checked its uses.)
  4574   if (ReduceBulkZeroing
  4575       && !ZeroTLAB              // pointless if already zeroed
  4576       && basic_elem_type != T_CONFLICT // avoid corner case
  4577       && !_gvn.eqv_uncast(src, dest)
  4578       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4579           != NULL)
  4580       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4581       && alloc->maybe_set_complete(&_gvn)) {
  4582     // "You break it, you buy it."
  4583     InitializeNode* init = alloc->initialization();
  4584     assert(init->is_complete(), "we just did this");
  4585     assert(dest->is_CheckCastPP(), "sanity");
  4586     assert(dest->in(0)->in(0) == init, "dest pinned");
  4587     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4588     // From this point on, every exit path is responsible for
  4589     // initializing any non-copied parts of the object to zero.
  4590     must_clear_dest = true;
  4591   } else {
  4592     // No zeroing elimination here.
  4593     alloc             = NULL;
  4594     //original_dest   = dest;
  4595     //must_clear_dest = false;
  4598   // Results are placed here:
  4599   enum { fast_path        = 1,  // normal void-returning assembly stub
  4600          checked_path     = 2,  // special assembly stub with cleanup
  4601          slow_call_path   = 3,  // something went wrong; call the VM
  4602          zero_path        = 4,  // bypass when length of copy is zero
  4603          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4604          PATH_LIMIT       = 6
  4605   };
  4606   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4607   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4608   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4609   record_for_igvn(result_region);
  4610   _gvn.set_type_bottom(result_i_o);
  4611   _gvn.set_type_bottom(result_memory);
  4612   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4614   // The slow_control path:
  4615   Node* slow_control;
  4616   Node* slow_i_o = i_o();
  4617   Node* slow_mem = memory(adr_type);
  4618   debug_only(slow_control = (Node*) badAddress);
  4620   // Checked control path:
  4621   Node* checked_control = top();
  4622   Node* checked_mem     = NULL;
  4623   Node* checked_i_o     = NULL;
  4624   Node* checked_value   = NULL;
  4626   if (basic_elem_type == T_CONFLICT) {
  4627     assert(!must_clear_dest, "");
  4628     Node* cv = generate_generic_arraycopy(adr_type,
  4629                                           src, src_offset, dest, dest_offset,
  4630                                           copy_length);
  4631     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4632     checked_control = control();
  4633     checked_i_o     = i_o();
  4634     checked_mem     = memory(adr_type);
  4635     checked_value   = cv;
  4636     set_control(top());         // no fast path
  4639   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4640   if (not_pos != NULL) {
  4641     PreserveJVMState pjvms(this);
  4642     set_control(not_pos);
  4644     // (6) length must not be negative.
  4645     if (!length_never_negative) {
  4646       generate_negative_guard(copy_length, slow_region);
  4649     // copy_length is 0.
  4650     if (!stopped() && must_clear_dest) {
  4651       Node* dest_length = alloc->in(AllocateNode::ALength);
  4652       if (_gvn.eqv_uncast(copy_length, dest_length)
  4653           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4654         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4655       } else {
  4656         // Clear the whole thing since there are no source elements to copy.
  4657         generate_clear_array(adr_type, dest, basic_elem_type,
  4658                              intcon(0), NULL,
  4659                              alloc->in(AllocateNode::AllocSize));
  4660         // Use a secondary InitializeNode as raw memory barrier.
  4661         // Currently it is needed only on this path since other
  4662         // paths have stub or runtime calls as raw memory barriers.
  4663         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4664                                                        Compile::AliasIdxRaw,
  4665                                                        top())->as_Initialize();
  4666         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4670     // Present the results of the fast call.
  4671     result_region->init_req(zero_path, control());
  4672     result_i_o   ->init_req(zero_path, i_o());
  4673     result_memory->init_req(zero_path, memory(adr_type));
  4676   if (!stopped() && must_clear_dest) {
  4677     // We have to initialize the *uncopied* part of the array to zero.
  4678     // The copy destination is the slice dest[off..off+len].  The other slices
  4679     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4680     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4681     Node* dest_length = alloc->in(AllocateNode::ALength);
  4682     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4683                                                           copy_length) );
  4685     // If there is a head section that needs zeroing, do it now.
  4686     if (find_int_con(dest_offset, -1) != 0) {
  4687       generate_clear_array(adr_type, dest, basic_elem_type,
  4688                            intcon(0), dest_offset,
  4689                            NULL);
  4692     // Next, perform a dynamic check on the tail length.
  4693     // It is often zero, and we can win big if we prove this.
  4694     // There are two wins:  Avoid generating the ClearArray
  4695     // with its attendant messy index arithmetic, and upgrade
  4696     // the copy to a more hardware-friendly word size of 64 bits.
  4697     Node* tail_ctl = NULL;
  4698     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4699       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4700       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4701       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4702       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4705     // At this point, let's assume there is no tail.
  4706     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4707       // There is no tail.  Try an upgrade to a 64-bit copy.
  4708       bool didit = false;
  4709       { PreserveJVMState pjvms(this);
  4710         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4711                                          src, src_offset, dest, dest_offset,
  4712                                          dest_size);
  4713         if (didit) {
  4714           // Present the results of the block-copying fast call.
  4715           result_region->init_req(bcopy_path, control());
  4716           result_i_o   ->init_req(bcopy_path, i_o());
  4717           result_memory->init_req(bcopy_path, memory(adr_type));
  4720       if (didit)
  4721         set_control(top());     // no regular fast path
  4724     // Clear the tail, if any.
  4725     if (tail_ctl != NULL) {
  4726       Node* notail_ctl = stopped() ? NULL : control();
  4727       set_control(tail_ctl);
  4728       if (notail_ctl == NULL) {
  4729         generate_clear_array(adr_type, dest, basic_elem_type,
  4730                              dest_tail, NULL,
  4731                              dest_size);
  4732       } else {
  4733         // Make a local merge.
  4734         Node* done_ctl = new(C,3) RegionNode(3);
  4735         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4736         done_ctl->init_req(1, notail_ctl);
  4737         done_mem->init_req(1, memory(adr_type));
  4738         generate_clear_array(adr_type, dest, basic_elem_type,
  4739                              dest_tail, NULL,
  4740                              dest_size);
  4741         done_ctl->init_req(2, control());
  4742         done_mem->init_req(2, memory(adr_type));
  4743         set_control( _gvn.transform(done_ctl) );
  4744         set_memory(  _gvn.transform(done_mem), adr_type );
  4749   BasicType copy_type = basic_elem_type;
  4750   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4751   if (!stopped() && copy_type == T_OBJECT) {
  4752     // If src and dest have compatible element types, we can copy bits.
  4753     // Types S[] and D[] are compatible if D is a supertype of S.
  4754     //
  4755     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4756     // which performs a fast optimistic per-oop check, and backs off
  4757     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4758     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4760     // Get the klassOop for both src and dest
  4761     Node* src_klass  = load_object_klass(src);
  4762     Node* dest_klass = load_object_klass(dest);
  4764     // Generate the subtype check.
  4765     // This might fold up statically, or then again it might not.
  4766     //
  4767     // Non-static example:  Copying List<String>.elements to a new String[].
  4768     // The backing store for a List<String> is always an Object[],
  4769     // but its elements are always type String, if the generic types
  4770     // are correct at the source level.
  4771     //
  4772     // Test S[] against D[], not S against D, because (probably)
  4773     // the secondary supertype cache is less busy for S[] than S.
  4774     // This usually only matters when D is an interface.
  4775     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4776     // Plug failing path into checked_oop_disjoint_arraycopy
  4777     if (not_subtype_ctrl != top()) {
  4778       PreserveJVMState pjvms(this);
  4779       set_control(not_subtype_ctrl);
  4780       // (At this point we can assume disjoint_bases, since types differ.)
  4781       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4782       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4783       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4784       Node* dest_elem_klass = _gvn.transform(n1);
  4785       Node* cv = generate_checkcast_arraycopy(adr_type,
  4786                                               dest_elem_klass,
  4787                                               src, src_offset, dest, dest_offset,
  4788                                               ConvI2X(copy_length));
  4789       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4790       checked_control = control();
  4791       checked_i_o     = i_o();
  4792       checked_mem     = memory(adr_type);
  4793       checked_value   = cv;
  4795     // At this point we know we do not need type checks on oop stores.
  4797     // Let's see if we need card marks:
  4798     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4799       // If we do not need card marks, copy using the jint or jlong stub.
  4800       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4801       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4802              "sizes agree");
  4806   if (!stopped()) {
  4807     // Generate the fast path, if possible.
  4808     PreserveJVMState pjvms(this);
  4809     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4810                                  src, src_offset, dest, dest_offset,
  4811                                  ConvI2X(copy_length));
  4813     // Present the results of the fast call.
  4814     result_region->init_req(fast_path, control());
  4815     result_i_o   ->init_req(fast_path, i_o());
  4816     result_memory->init_req(fast_path, memory(adr_type));
  4819   // Here are all the slow paths up to this point, in one bundle:
  4820   slow_control = top();
  4821   if (slow_region != NULL)
  4822     slow_control = _gvn.transform(slow_region);
  4823   debug_only(slow_region = (RegionNode*)badAddress);
  4825   set_control(checked_control);
  4826   if (!stopped()) {
  4827     // Clean up after the checked call.
  4828     // The returned value is either 0 or -1^K,
  4829     // where K = number of partially transferred array elements.
  4830     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4831     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4832     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4834     // If it is 0, we are done, so transfer to the end.
  4835     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4836     result_region->init_req(checked_path, checks_done);
  4837     result_i_o   ->init_req(checked_path, checked_i_o);
  4838     result_memory->init_req(checked_path, checked_mem);
  4840     // If it is not zero, merge into the slow call.
  4841     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4842     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4843     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4844     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4845     record_for_igvn(slow_reg2);
  4846     slow_reg2  ->init_req(1, slow_control);
  4847     slow_i_o2  ->init_req(1, slow_i_o);
  4848     slow_mem2  ->init_req(1, slow_mem);
  4849     slow_reg2  ->init_req(2, control());
  4850     slow_i_o2  ->init_req(2, checked_i_o);
  4851     slow_mem2  ->init_req(2, checked_mem);
  4853     slow_control = _gvn.transform(slow_reg2);
  4854     slow_i_o     = _gvn.transform(slow_i_o2);
  4855     slow_mem     = _gvn.transform(slow_mem2);
  4857     if (alloc != NULL) {
  4858       // We'll restart from the very beginning, after zeroing the whole thing.
  4859       // This can cause double writes, but that's OK since dest is brand new.
  4860       // So we ignore the low 31 bits of the value returned from the stub.
  4861     } else {
  4862       // We must continue the copy exactly where it failed, or else
  4863       // another thread might see the wrong number of writes to dest.
  4864       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4865       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4866       slow_offset->init_req(1, intcon(0));
  4867       slow_offset->init_req(2, checked_offset);
  4868       slow_offset  = _gvn.transform(slow_offset);
  4870       // Adjust the arguments by the conditionally incoming offset.
  4871       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4872       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4873       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4875       // Tweak the node variables to adjust the code produced below:
  4876       src_offset  = src_off_plus;
  4877       dest_offset = dest_off_plus;
  4878       copy_length = length_minus;
  4882   set_control(slow_control);
  4883   if (!stopped()) {
  4884     // Generate the slow path, if needed.
  4885     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4887     set_memory(slow_mem, adr_type);
  4888     set_i_o(slow_i_o);
  4890     if (must_clear_dest) {
  4891       generate_clear_array(adr_type, dest, basic_elem_type,
  4892                            intcon(0), NULL,
  4893                            alloc->in(AllocateNode::AllocSize));
  4896     generate_slow_arraycopy(adr_type,
  4897                             src, src_offset, dest, dest_offset,
  4898                             copy_length);
  4900     result_region->init_req(slow_call_path, control());
  4901     result_i_o   ->init_req(slow_call_path, i_o());
  4902     result_memory->init_req(slow_call_path, memory(adr_type));
  4905   // Remove unused edges.
  4906   for (uint i = 1; i < result_region->req(); i++) {
  4907     if (result_region->in(i) == NULL)
  4908       result_region->init_req(i, top());
  4911   // Finished; return the combined state.
  4912   set_control( _gvn.transform(result_region) );
  4913   set_i_o(     _gvn.transform(result_i_o)    );
  4914   set_memory(  _gvn.transform(result_memory), adr_type );
  4916   // The memory edges above are precise in order to model effects around
  4917   // array copies accurately to allow value numbering of field loads around
  4918   // arraycopy.  Such field loads, both before and after, are common in Java
  4919   // collections and similar classes involving header/array data structures.
  4920   //
  4921   // But with low number of register or when some registers are used or killed
  4922   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4923   // The next memory barrier is added to avoid it. If the arraycopy can be
  4924   // optimized away (which it can, sometimes) then we can manually remove
  4925   // the membar also.
  4926   //
  4927   // Do not let reads from the cloned object float above the arraycopy.
  4928   if (InsertMemBarAfterArraycopy || alloc != NULL)
  4929     insert_mem_bar(Op_MemBarCPUOrder);
  4933 // Helper function which determines if an arraycopy immediately follows
  4934 // an allocation, with no intervening tests or other escapes for the object.
  4935 AllocateArrayNode*
  4936 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4937                                            RegionNode* slow_region) {
  4938   if (stopped())             return NULL;  // no fast path
  4939   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4941   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4942   if (alloc == NULL)  return NULL;
  4944   Node* rawmem = memory(Compile::AliasIdxRaw);
  4945   // Is the allocation's memory state untouched?
  4946   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4947     // Bail out if there have been raw-memory effects since the allocation.
  4948     // (Example:  There might have been a call or safepoint.)
  4949     return NULL;
  4951   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4952   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4953     return NULL;
  4956   // There must be no unexpected observers of this allocation.
  4957   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4958     Node* obs = ptr->fast_out(i);
  4959     if (obs != this->map()) {
  4960       return NULL;
  4964   // This arraycopy must unconditionally follow the allocation of the ptr.
  4965   Node* alloc_ctl = ptr->in(0);
  4966   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4968   Node* ctl = control();
  4969   while (ctl != alloc_ctl) {
  4970     // There may be guards which feed into the slow_region.
  4971     // Any other control flow means that we might not get a chance
  4972     // to finish initializing the allocated object.
  4973     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4974       IfNode* iff = ctl->in(0)->as_If();
  4975       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4976       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4977       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4978         ctl = iff->in(0);       // This test feeds the known slow_region.
  4979         continue;
  4981       // One more try:  Various low-level checks bottom out in
  4982       // uncommon traps.  If the debug-info of the trap omits
  4983       // any reference to the allocation, as we've already
  4984       // observed, then there can be no objection to the trap.
  4985       bool found_trap = false;
  4986       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  4987         Node* obs = not_ctl->fast_out(j);
  4988         if (obs->in(0) == not_ctl && obs->is_Call() &&
  4989             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  4990           found_trap = true; break;
  4993       if (found_trap) {
  4994         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  4995         continue;
  4998     return NULL;
  5001   // If we get this far, we have an allocation which immediately
  5002   // precedes the arraycopy, and we can take over zeroing the new object.
  5003   // The arraycopy will finish the initialization, and provide
  5004   // a new control state to which we will anchor the destination pointer.
  5006   return alloc;
  5009 // Helper for initialization of arrays, creating a ClearArray.
  5010 // It writes zero bits in [start..end), within the body of an array object.
  5011 // The memory effects are all chained onto the 'adr_type' alias category.
  5012 //
  5013 // Since the object is otherwise uninitialized, we are free
  5014 // to put a little "slop" around the edges of the cleared area,
  5015 // as long as it does not go back into the array's header,
  5016 // or beyond the array end within the heap.
  5017 //
  5018 // The lower edge can be rounded down to the nearest jint and the
  5019 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5020 //
  5021 // Arguments:
  5022 //   adr_type           memory slice where writes are generated
  5023 //   dest               oop of the destination array
  5024 //   basic_elem_type    element type of the destination
  5025 //   slice_idx          array index of first element to store
  5026 //   slice_len          number of elements to store (or NULL)
  5027 //   dest_size          total size in bytes of the array object
  5028 //
  5029 // Exactly one of slice_len or dest_size must be non-NULL.
  5030 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5031 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5032 void
  5033 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5034                                      Node* dest,
  5035                                      BasicType basic_elem_type,
  5036                                      Node* slice_idx,
  5037                                      Node* slice_len,
  5038                                      Node* dest_size) {
  5039   // one or the other but not both of slice_len and dest_size:
  5040   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5041   if (slice_len == NULL)  slice_len = top();
  5042   if (dest_size == NULL)  dest_size = top();
  5044   // operate on this memory slice:
  5045   Node* mem = memory(adr_type); // memory slice to operate on
  5047   // scaling and rounding of indexes:
  5048   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5049   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5050   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5051   int bump_bit  = (-1 << scale) & BytesPerInt;
  5053   // determine constant starts and ends
  5054   const intptr_t BIG_NEG = -128;
  5055   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5056   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5057   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5058   if (slice_len_con == 0) {
  5059     return;                     // nothing to do here
  5061   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5062   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5063   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5064     assert(end_con < 0, "not two cons");
  5065     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5066                        BytesPerLong);
  5069   if (start_con >= 0 && end_con >= 0) {
  5070     // Constant start and end.  Simple.
  5071     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5072                                        start_con, end_con, &_gvn);
  5073   } else if (start_con >= 0 && dest_size != top()) {
  5074     // Constant start, pre-rounded end after the tail of the array.
  5075     Node* end = dest_size;
  5076     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5077                                        start_con, end, &_gvn);
  5078   } else if (start_con >= 0 && slice_len != top()) {
  5079     // Constant start, non-constant end.  End needs rounding up.
  5080     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5081     intptr_t end_base  = abase + (slice_idx_con << scale);
  5082     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5083     Node*    end       = ConvI2X(slice_len);
  5084     if (scale != 0)
  5085       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  5086     end_base += end_round;
  5087     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  5088     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  5089     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5090                                        start_con, end, &_gvn);
  5091   } else if (start_con < 0 && dest_size != top()) {
  5092     // Non-constant start, pre-rounded end after the tail of the array.
  5093     // This is almost certainly a "round-to-end" operation.
  5094     Node* start = slice_idx;
  5095     start = ConvI2X(start);
  5096     if (scale != 0)
  5097       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  5098     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  5099     if ((bump_bit | clear_low) != 0) {
  5100       int to_clear = (bump_bit | clear_low);
  5101       // Align up mod 8, then store a jint zero unconditionally
  5102       // just before the mod-8 boundary.
  5103       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5104           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5105         bump_bit = 0;
  5106         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5107       } else {
  5108         // Bump 'start' up to (or past) the next jint boundary:
  5109         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  5110         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5112       // Round bumped 'start' down to jlong boundary in body of array.
  5113       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  5114       if (bump_bit != 0) {
  5115         // Store a zero to the immediately preceding jint:
  5116         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  5117         Node* p1 = basic_plus_adr(dest, x1);
  5118         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5119         mem = _gvn.transform(mem);
  5122     Node* end = dest_size; // pre-rounded
  5123     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5124                                        start, end, &_gvn);
  5125   } else {
  5126     // Non-constant start, unrounded non-constant end.
  5127     // (Nobody zeroes a random midsection of an array using this routine.)
  5128     ShouldNotReachHere();       // fix caller
  5131   // Done.
  5132   set_memory(mem, adr_type);
  5136 bool
  5137 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5138                                          BasicType basic_elem_type,
  5139                                          AllocateNode* alloc,
  5140                                          Node* src,  Node* src_offset,
  5141                                          Node* dest, Node* dest_offset,
  5142                                          Node* dest_size) {
  5143   // See if there is an advantage from block transfer.
  5144   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5145   if (scale >= LogBytesPerLong)
  5146     return false;               // it is already a block transfer
  5148   // Look at the alignment of the starting offsets.
  5149   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5150   const intptr_t BIG_NEG = -128;
  5151   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5153   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  5154   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  5155   if (src_off < 0 || dest_off < 0)
  5156     // At present, we can only understand constants.
  5157     return false;
  5159   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5160     // Non-aligned; too bad.
  5161     // One more chance:  Pick off an initial 32-bit word.
  5162     // This is a common case, since abase can be odd mod 8.
  5163     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5164         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5165       Node* sptr = basic_plus_adr(src,  src_off);
  5166       Node* dptr = basic_plus_adr(dest, dest_off);
  5167       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5168       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5169       src_off += BytesPerInt;
  5170       dest_off += BytesPerInt;
  5171     } else {
  5172       return false;
  5175   assert(src_off % BytesPerLong == 0, "");
  5176   assert(dest_off % BytesPerLong == 0, "");
  5178   // Do this copy by giant steps.
  5179   Node* sptr  = basic_plus_adr(src,  src_off);
  5180   Node* dptr  = basic_plus_adr(dest, dest_off);
  5181   Node* countx = dest_size;
  5182   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5183   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5185   bool disjoint_bases = true;   // since alloc != NULL
  5186   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5187                                sptr, NULL, dptr, NULL, countx);
  5189   return true;
  5193 // Helper function; generates code for the slow case.
  5194 // We make a call to a runtime method which emulates the native method,
  5195 // but without the native wrapper overhead.
  5196 void
  5197 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5198                                         Node* src,  Node* src_offset,
  5199                                         Node* dest, Node* dest_offset,
  5200                                         Node* copy_length) {
  5201   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5202                                  OptoRuntime::slow_arraycopy_Type(),
  5203                                  OptoRuntime::slow_arraycopy_Java(),
  5204                                  "slow_arraycopy", adr_type,
  5205                                  src, src_offset, dest, dest_offset,
  5206                                  copy_length);
  5208   // Handle exceptions thrown by this fellow:
  5209   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5212 // Helper function; generates code for cases requiring runtime checks.
  5213 Node*
  5214 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5215                                              Node* dest_elem_klass,
  5216                                              Node* src,  Node* src_offset,
  5217                                              Node* dest, Node* dest_offset,
  5218                                              Node* copy_length) {
  5219   if (stopped())  return NULL;
  5221   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  5222   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5223     return NULL;
  5226   // Pick out the parameters required to perform a store-check
  5227   // for the target array.  This is an optimistic check.  It will
  5228   // look in each non-null element's class, at the desired klass's
  5229   // super_check_offset, for the desired klass.
  5230   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  5231   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5232   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5233   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5234   Node* check_value  = dest_elem_klass;
  5236   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5237   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5239   // (We know the arrays are never conjoint, because their types differ.)
  5240   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5241                                  OptoRuntime::checkcast_arraycopy_Type(),
  5242                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5243                                  // five arguments, of which two are
  5244                                  // intptr_t (jlong in LP64)
  5245                                  src_start, dest_start,
  5246                                  copy_length XTOP,
  5247                                  check_offset XTOP,
  5248                                  check_value);
  5250   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5254 // Helper function; generates code for cases requiring runtime checks.
  5255 Node*
  5256 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5257                                            Node* src,  Node* src_offset,
  5258                                            Node* dest, Node* dest_offset,
  5259                                            Node* copy_length) {
  5260   if (stopped())  return NULL;
  5262   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5263   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5264     return NULL;
  5267   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5268                     OptoRuntime::generic_arraycopy_Type(),
  5269                     copyfunc_addr, "generic_arraycopy", adr_type,
  5270                     src, src_offset, dest, dest_offset, copy_length);
  5272   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5275 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5276 void
  5277 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5278                                              BasicType basic_elem_type,
  5279                                              bool disjoint_bases,
  5280                                              Node* src,  Node* src_offset,
  5281                                              Node* dest, Node* dest_offset,
  5282                                              Node* copy_length) {
  5283   if (stopped())  return;               // nothing to do
  5285   Node* src_start  = src;
  5286   Node* dest_start = dest;
  5287   if (src_offset != NULL || dest_offset != NULL) {
  5288     assert(src_offset != NULL && dest_offset != NULL, "");
  5289     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5290     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5293   // Figure out which arraycopy runtime method to call.
  5294   const char* copyfunc_name = "arraycopy";
  5295   address     copyfunc_addr =
  5296       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5297                           disjoint_bases, copyfunc_name);
  5299   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5300   make_runtime_call(RC_LEAF|RC_NO_FP,
  5301                     OptoRuntime::fast_arraycopy_Type(),
  5302                     copyfunc_addr, copyfunc_name, adr_type,
  5303                     src_start, dest_start, copy_length XTOP);

mercurial