src/cpu/x86/vm/assembler_x86.hpp

Sat, 26 Feb 2011 12:10:54 -0800

author
kvn
date
Sat, 26 Feb 2011 12:10:54 -0800
changeset 2602
41d4973cf100
parent 2569
6bbaedb03534
child 2686
b40d4fa697bf
child 2781
e1162778c1c8
permissions
-rw-r--r--

6942326: x86 code in string_indexof() could read beyond reserved heap space
Summary: copy small (<8) strings on stack if str+16 crosses a page boundary and load from stack into XMM. Back up pointer when loading string's tail.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
    26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
    28 class BiasedLockingCounters;
    30 // Contains all the definitions needed for x86 assembly code generation.
    32 // Calling convention
    33 class Argument VALUE_OBJ_CLASS_SPEC {
    34  public:
    35   enum {
    36 #ifdef _LP64
    37 #ifdef _WIN64
    38     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    39     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
    40 #else
    41     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    42     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
    43 #endif // _WIN64
    44     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    45     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
    46 #else
    47     n_register_parameters = 0   // 0 registers used to pass arguments
    48 #endif // _LP64
    49   };
    50 };
    53 #ifdef _LP64
    54 // Symbolically name the register arguments used by the c calling convention.
    55 // Windows is different from linux/solaris. So much for standards...
    57 #ifdef _WIN64
    59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
    60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
    61 REGISTER_DECLARATION(Register, c_rarg2, r8);
    62 REGISTER_DECLARATION(Register, c_rarg3, r9);
    64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    69 #else
    71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
    72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
    73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
    74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
    75 REGISTER_DECLARATION(Register, c_rarg4, r8);
    76 REGISTER_DECLARATION(Register, c_rarg5, r9);
    78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
    83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
    84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
    85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
    87 #endif // _WIN64
    89 // Symbolically name the register arguments used by the Java calling convention.
    90 // We have control over the convention for java so we can do what we please.
    91 // What pleases us is to offset the java calling convention so that when
    92 // we call a suitable jni method the arguments are lined up and we don't
    93 // have to do little shuffling. A suitable jni method is non-static and a
    94 // small number of arguments (two fewer args on windows)
    95 //
    96 //        |-------------------------------------------------------|
    97 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
    98 //        |-------------------------------------------------------|
    99 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
   100 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
   101 //        |-------------------------------------------------------|
   102 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
   103 //        |-------------------------------------------------------|
   105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
   106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
   107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
   108 // Windows runs out of register args here
   109 #ifdef _WIN64
   110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
   111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
   112 #else
   113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
   114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
   115 #endif /* _WIN64 */
   116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
   118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
   119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
   120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
   121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
   122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
   123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
   124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
   125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
   127 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
   128 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
   130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
   131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
   133 #else
   134 // rscratch1 will apear in 32bit code that is dead but of course must compile
   135 // Using noreg ensures if the dead code is incorrectly live and executed it
   136 // will cause an assertion failure
   137 #define rscratch1 noreg
   138 #define rscratch2 noreg
   140 #endif // _LP64
   142 // JSR 292 fixed register usages:
   143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
   145 // Address is an abstraction used to represent a memory location
   146 // using any of the amd64 addressing modes with one object.
   147 //
   148 // Note: A register location is represented via a Register, not
   149 //       via an address for efficiency & simplicity reasons.
   151 class ArrayAddress;
   153 class Address VALUE_OBJ_CLASS_SPEC {
   154  public:
   155   enum ScaleFactor {
   156     no_scale = -1,
   157     times_1  =  0,
   158     times_2  =  1,
   159     times_4  =  2,
   160     times_8  =  3,
   161     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
   162   };
   163   static ScaleFactor times(int size) {
   164     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
   165     if (size == 8)  return times_8;
   166     if (size == 4)  return times_4;
   167     if (size == 2)  return times_2;
   168     return times_1;
   169   }
   170   static int scale_size(ScaleFactor scale) {
   171     assert(scale != no_scale, "");
   172     assert(((1 << (int)times_1) == 1 &&
   173             (1 << (int)times_2) == 2 &&
   174             (1 << (int)times_4) == 4 &&
   175             (1 << (int)times_8) == 8), "");
   176     return (1 << (int)scale);
   177   }
   179  private:
   180   Register         _base;
   181   Register         _index;
   182   ScaleFactor      _scale;
   183   int              _disp;
   184   RelocationHolder _rspec;
   186   // Easily misused constructors make them private
   187   // %%% can we make these go away?
   188   NOT_LP64(Address(address loc, RelocationHolder spec);)
   189   Address(int disp, address loc, relocInfo::relocType rtype);
   190   Address(int disp, address loc, RelocationHolder spec);
   192  public:
   194  int disp() { return _disp; }
   195   // creation
   196   Address()
   197     : _base(noreg),
   198       _index(noreg),
   199       _scale(no_scale),
   200       _disp(0) {
   201   }
   203   // No default displacement otherwise Register can be implicitly
   204   // converted to 0(Register) which is quite a different animal.
   206   Address(Register base, int disp)
   207     : _base(base),
   208       _index(noreg),
   209       _scale(no_scale),
   210       _disp(disp) {
   211   }
   213   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   214     : _base (base),
   215       _index(index),
   216       _scale(scale),
   217       _disp (disp) {
   218     assert(!index->is_valid() == (scale == Address::no_scale),
   219            "inconsistent address");
   220   }
   222   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
   223     : _base (base),
   224       _index(index.register_or_noreg()),
   225       _scale(scale),
   226       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
   227     if (!index.is_register())  scale = Address::no_scale;
   228     assert(!_index->is_valid() == (scale == Address::no_scale),
   229            "inconsistent address");
   230   }
   232   Address plus_disp(int disp) const {
   233     Address a = (*this);
   234     a._disp += disp;
   235     return a;
   236   }
   238   // The following two overloads are used in connection with the
   239   // ByteSize type (see sizes.hpp).  They simplify the use of
   240   // ByteSize'd arguments in assembly code. Note that their equivalent
   241   // for the optimized build are the member functions with int disp
   242   // argument since ByteSize is mapped to an int type in that case.
   243   //
   244   // Note: DO NOT introduce similar overloaded functions for WordSize
   245   // arguments as in the optimized mode, both ByteSize and WordSize
   246   // are mapped to the same type and thus the compiler cannot make a
   247   // distinction anymore (=> compiler errors).
   249 #ifdef ASSERT
   250   Address(Register base, ByteSize disp)
   251     : _base(base),
   252       _index(noreg),
   253       _scale(no_scale),
   254       _disp(in_bytes(disp)) {
   255   }
   257   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   258     : _base(base),
   259       _index(index),
   260       _scale(scale),
   261       _disp(in_bytes(disp)) {
   262     assert(!index->is_valid() == (scale == Address::no_scale),
   263            "inconsistent address");
   264   }
   266   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
   267     : _base (base),
   268       _index(index.register_or_noreg()),
   269       _scale(scale),
   270       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
   271     if (!index.is_register())  scale = Address::no_scale;
   272     assert(!_index->is_valid() == (scale == Address::no_scale),
   273            "inconsistent address");
   274   }
   276 #endif // ASSERT
   278   // accessors
   279   bool        uses(Register reg) const { return _base == reg || _index == reg; }
   280   Register    base()             const { return _base;  }
   281   Register    index()            const { return _index; }
   282   ScaleFactor scale()            const { return _scale; }
   283   int         disp()             const { return _disp;  }
   285   // Convert the raw encoding form into the form expected by the constructor for
   286   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   287   // that to noreg for the Address constructor.
   288   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
   290   static Address make_array(ArrayAddress);
   292  private:
   293   bool base_needs_rex() const {
   294     return _base != noreg && _base->encoding() >= 8;
   295   }
   297   bool index_needs_rex() const {
   298     return _index != noreg &&_index->encoding() >= 8;
   299   }
   301   relocInfo::relocType reloc() const { return _rspec.type(); }
   303   friend class Assembler;
   304   friend class MacroAssembler;
   305   friend class LIR_Assembler; // base/index/scale/disp
   306 };
   308 //
   309 // AddressLiteral has been split out from Address because operands of this type
   310 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   311 // the few instructions that need to deal with address literals are unique and the
   312 // MacroAssembler does not have to implement every instruction in the Assembler
   313 // in order to search for address literals that may need special handling depending
   314 // on the instruction and the platform. As small step on the way to merging i486/amd64
   315 // directories.
   316 //
   317 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   318   friend class ArrayAddress;
   319   RelocationHolder _rspec;
   320   // Typically we use AddressLiterals we want to use their rval
   321   // However in some situations we want the lval (effect address) of the item.
   322   // We provide a special factory for making those lvals.
   323   bool _is_lval;
   325   // If the target is far we'll need to load the ea of this to
   326   // a register to reach it. Otherwise if near we can do rip
   327   // relative addressing.
   329   address          _target;
   331  protected:
   332   // creation
   333   AddressLiteral()
   334     : _is_lval(false),
   335       _target(NULL)
   336   {}
   338   public:
   341   AddressLiteral(address target, relocInfo::relocType rtype);
   343   AddressLiteral(address target, RelocationHolder const& rspec)
   344     : _rspec(rspec),
   345       _is_lval(false),
   346       _target(target)
   347   {}
   349   AddressLiteral addr() {
   350     AddressLiteral ret = *this;
   351     ret._is_lval = true;
   352     return ret;
   353   }
   356  private:
   358   address target() { return _target; }
   359   bool is_lval() { return _is_lval; }
   361   relocInfo::relocType reloc() const { return _rspec.type(); }
   362   const RelocationHolder& rspec() const { return _rspec; }
   364   friend class Assembler;
   365   friend class MacroAssembler;
   366   friend class Address;
   367   friend class LIR_Assembler;
   368 };
   370 // Convience classes
   371 class RuntimeAddress: public AddressLiteral {
   373   public:
   375   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   377 };
   379 class OopAddress: public AddressLiteral {
   381   public:
   383   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
   385 };
   387 class ExternalAddress: public AddressLiteral {
   389   public:
   391   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
   393 };
   395 class InternalAddress: public AddressLiteral {
   397   public:
   399   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   401 };
   403 // x86 can do array addressing as a single operation since disp can be an absolute
   404 // address amd64 can't. We create a class that expresses the concept but does extra
   405 // magic on amd64 to get the final result
   407 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   408   private:
   410   AddressLiteral _base;
   411   Address        _index;
   413   public:
   415   ArrayAddress() {};
   416   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   417   AddressLiteral base() { return _base; }
   418   Address index() { return _index; }
   420 };
   422 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
   424 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
   425 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
   426 // is what you get. The Assembler is generating code into a CodeBuffer.
   428 class Assembler : public AbstractAssembler  {
   429   friend class AbstractAssembler; // for the non-virtual hack
   430   friend class LIR_Assembler; // as_Address()
   431   friend class StubGenerator;
   433  public:
   434   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
   435     zero          = 0x4,
   436     notZero       = 0x5,
   437     equal         = 0x4,
   438     notEqual      = 0x5,
   439     less          = 0xc,
   440     lessEqual     = 0xe,
   441     greater       = 0xf,
   442     greaterEqual  = 0xd,
   443     below         = 0x2,
   444     belowEqual    = 0x6,
   445     above         = 0x7,
   446     aboveEqual    = 0x3,
   447     overflow      = 0x0,
   448     noOverflow    = 0x1,
   449     carrySet      = 0x2,
   450     carryClear    = 0x3,
   451     negative      = 0x8,
   452     positive      = 0x9,
   453     parity        = 0xa,
   454     noParity      = 0xb
   455   };
   457   enum Prefix {
   458     // segment overrides
   459     CS_segment = 0x2e,
   460     SS_segment = 0x36,
   461     DS_segment = 0x3e,
   462     ES_segment = 0x26,
   463     FS_segment = 0x64,
   464     GS_segment = 0x65,
   466     REX        = 0x40,
   468     REX_B      = 0x41,
   469     REX_X      = 0x42,
   470     REX_XB     = 0x43,
   471     REX_R      = 0x44,
   472     REX_RB     = 0x45,
   473     REX_RX     = 0x46,
   474     REX_RXB    = 0x47,
   476     REX_W      = 0x48,
   478     REX_WB     = 0x49,
   479     REX_WX     = 0x4A,
   480     REX_WXB    = 0x4B,
   481     REX_WR     = 0x4C,
   482     REX_WRB    = 0x4D,
   483     REX_WRX    = 0x4E,
   484     REX_WRXB   = 0x4F
   485   };
   487   enum WhichOperand {
   488     // input to locate_operand, and format code for relocations
   489     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
   490     disp32_operand = 1,          // embedded 32-bit displacement or address
   491     call32_operand = 2,          // embedded 32-bit self-relative displacement
   492 #ifndef _LP64
   493     _WhichOperand_limit = 3
   494 #else
   495      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
   496     _WhichOperand_limit = 4
   497 #endif
   498   };
   502   // NOTE: The general philopsophy of the declarations here is that 64bit versions
   503   // of instructions are freely declared without the need for wrapping them an ifdef.
   504   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
   505   // In the .cpp file the implementations are wrapped so that they are dropped out
   506   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
   507   // to the size it was prior to merging up the 32bit and 64bit assemblers.
   508   //
   509   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
   510   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
   512 private:
   515   // 64bit prefixes
   516   int prefix_and_encode(int reg_enc, bool byteinst = false);
   517   int prefixq_and_encode(int reg_enc);
   519   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
   520   int prefixq_and_encode(int dst_enc, int src_enc);
   522   void prefix(Register reg);
   523   void prefix(Address adr);
   524   void prefixq(Address adr);
   526   void prefix(Address adr, Register reg,  bool byteinst = false);
   527   void prefixq(Address adr, Register reg);
   529   void prefix(Address adr, XMMRegister reg);
   531   void prefetch_prefix(Address src);
   533   // Helper functions for groups of instructions
   534   void emit_arith_b(int op1, int op2, Register dst, int imm8);
   536   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
   537   // only 32bit??
   538   void emit_arith(int op1, int op2, Register dst, jobject obj);
   539   void emit_arith(int op1, int op2, Register dst, Register src);
   541   void emit_operand(Register reg,
   542                     Register base, Register index, Address::ScaleFactor scale,
   543                     int disp,
   544                     RelocationHolder const& rspec,
   545                     int rip_relative_correction = 0);
   547   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
   549   // operands that only take the original 32bit registers
   550   void emit_operand32(Register reg, Address adr);
   552   void emit_operand(XMMRegister reg,
   553                     Register base, Register index, Address::ScaleFactor scale,
   554                     int disp,
   555                     RelocationHolder const& rspec);
   557   void emit_operand(XMMRegister reg, Address adr);
   559   void emit_operand(MMXRegister reg, Address adr);
   561   // workaround gcc (3.2.1-7) bug
   562   void emit_operand(Address adr, MMXRegister reg);
   565   // Immediate-to-memory forms
   566   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
   568   void emit_farith(int b1, int b2, int i);
   571  protected:
   572   #ifdef ASSERT
   573   void check_relocation(RelocationHolder const& rspec, int format);
   574   #endif
   576   inline void emit_long64(jlong x);
   578   void emit_data(jint data, relocInfo::relocType    rtype, int format);
   579   void emit_data(jint data, RelocationHolder const& rspec, int format);
   580   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
   581   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
   584   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
   586   // These are all easily abused and hence protected
   588   // 32BIT ONLY SECTION
   589 #ifndef _LP64
   590   // Make these disappear in 64bit mode since they would never be correct
   591   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
   592   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   594   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   595   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
   597   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
   598 #else
   599   // 64BIT ONLY SECTION
   600   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
   602   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
   603   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
   605   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
   606   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
   607 #endif // _LP64
   609   // These are unique in that we are ensured by the caller that the 32bit
   610   // relative in these instructions will always be able to reach the potentially
   611   // 64bit address described by entry. Since they can take a 64bit address they
   612   // don't have the 32 suffix like the other instructions in this class.
   614   void call_literal(address entry, RelocationHolder const& rspec);
   615   void jmp_literal(address entry, RelocationHolder const& rspec);
   617   // Avoid using directly section
   618   // Instructions in this section are actually usable by anyone without danger
   619   // of failure but have performance issues that are addressed my enhanced
   620   // instructions which will do the proper thing base on the particular cpu.
   621   // We protect them because we don't trust you...
   623   // Don't use next inc() and dec() methods directly. INC & DEC instructions
   624   // could cause a partial flag stall since they don't set CF flag.
   625   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
   626   // which call inc() & dec() or add() & sub() in accordance with
   627   // the product flag UseIncDec value.
   629   void decl(Register dst);
   630   void decl(Address dst);
   631   void decq(Register dst);
   632   void decq(Address dst);
   634   void incl(Register dst);
   635   void incl(Address dst);
   636   void incq(Register dst);
   637   void incq(Address dst);
   639   // New cpus require use of movsd and movss to avoid partial register stall
   640   // when loading from memory. But for old Opteron use movlpd instead of movsd.
   641   // The selection is done in MacroAssembler::movdbl() and movflt().
   643   // Move Scalar Single-Precision Floating-Point Values
   644   void movss(XMMRegister dst, Address src);
   645   void movss(XMMRegister dst, XMMRegister src);
   646   void movss(Address dst, XMMRegister src);
   648   // Move Scalar Double-Precision Floating-Point Values
   649   void movsd(XMMRegister dst, Address src);
   650   void movsd(XMMRegister dst, XMMRegister src);
   651   void movsd(Address dst, XMMRegister src);
   652   void movlpd(XMMRegister dst, Address src);
   654   // New cpus require use of movaps and movapd to avoid partial register stall
   655   // when moving between registers.
   656   void movaps(XMMRegister dst, XMMRegister src);
   657   void movapd(XMMRegister dst, XMMRegister src);
   659   // End avoid using directly
   662   // Instruction prefixes
   663   void prefix(Prefix p);
   665   public:
   667   // Creation
   668   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
   670   // Decoding
   671   static address locate_operand(address inst, WhichOperand which);
   672   static address locate_next_instruction(address inst);
   674   // Utilities
   676 #ifdef _LP64
   677  static bool is_simm(int64_t x, int nbits) { return -(CONST64(1) << (nbits-1)) <= x &&
   678                                                     x < (CONST64(1) << (nbits-1)); }
   679  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
   680 #else
   681  static bool is_simm(int32_t x, int nbits) { return -(1 << (nbits-1)) <= x &&
   682                                                     x < (1 << (nbits-1)); }
   683  static bool is_simm32(int32_t x) { return true; }
   684 #endif // _LP64
   686   // Generic instructions
   687   // Does 32bit or 64bit as needed for the platform. In some sense these
   688   // belong in macro assembler but there is no need for both varieties to exist
   690   void lea(Register dst, Address src);
   692   void mov(Register dst, Register src);
   694   void pusha();
   695   void popa();
   697   void pushf();
   698   void popf();
   700   void push(int32_t imm32);
   702   void push(Register src);
   704   void pop(Register dst);
   706   // These are dummies to prevent surprise implicit conversions to Register
   707   void push(void* v);
   708   void pop(void* v);
   710   // These do register sized moves/scans
   711   void rep_mov();
   712   void rep_set();
   713   void repne_scan();
   714 #ifdef _LP64
   715   void repne_scanl();
   716 #endif
   718   // Vanilla instructions in lexical order
   720   void adcl(Address dst, int32_t imm32);
   721   void adcl(Address dst, Register src);
   722   void adcl(Register dst, int32_t imm32);
   723   void adcl(Register dst, Address src);
   724   void adcl(Register dst, Register src);
   726   void adcq(Register dst, int32_t imm32);
   727   void adcq(Register dst, Address src);
   728   void adcq(Register dst, Register src);
   730   void addl(Address dst, int32_t imm32);
   731   void addl(Address dst, Register src);
   732   void addl(Register dst, int32_t imm32);
   733   void addl(Register dst, Address src);
   734   void addl(Register dst, Register src);
   736   void addq(Address dst, int32_t imm32);
   737   void addq(Address dst, Register src);
   738   void addq(Register dst, int32_t imm32);
   739   void addq(Register dst, Address src);
   740   void addq(Register dst, Register src);
   742   void addr_nop_4();
   743   void addr_nop_5();
   744   void addr_nop_7();
   745   void addr_nop_8();
   747   // Add Scalar Double-Precision Floating-Point Values
   748   void addsd(XMMRegister dst, Address src);
   749   void addsd(XMMRegister dst, XMMRegister src);
   751   // Add Scalar Single-Precision Floating-Point Values
   752   void addss(XMMRegister dst, Address src);
   753   void addss(XMMRegister dst, XMMRegister src);
   755   void andl(Register dst, int32_t imm32);
   756   void andl(Register dst, Address src);
   757   void andl(Register dst, Register src);
   759   void andq(Register dst, int32_t imm32);
   760   void andq(Register dst, Address src);
   761   void andq(Register dst, Register src);
   763   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
   764   void andpd(XMMRegister dst, Address src);
   765   void andpd(XMMRegister dst, XMMRegister src);
   767   void bsfl(Register dst, Register src);
   768   void bsrl(Register dst, Register src);
   770 #ifdef _LP64
   771   void bsfq(Register dst, Register src);
   772   void bsrq(Register dst, Register src);
   773 #endif
   775   void bswapl(Register reg);
   777   void bswapq(Register reg);
   779   void call(Label& L, relocInfo::relocType rtype);
   780   void call(Register reg);  // push pc; pc <- reg
   781   void call(Address adr);   // push pc; pc <- adr
   783   void cdql();
   785   void cdqq();
   787   void cld() { emit_byte(0xfc); }
   789   void clflush(Address adr);
   791   void cmovl(Condition cc, Register dst, Register src);
   792   void cmovl(Condition cc, Register dst, Address src);
   794   void cmovq(Condition cc, Register dst, Register src);
   795   void cmovq(Condition cc, Register dst, Address src);
   798   void cmpb(Address dst, int imm8);
   800   void cmpl(Address dst, int32_t imm32);
   802   void cmpl(Register dst, int32_t imm32);
   803   void cmpl(Register dst, Register src);
   804   void cmpl(Register dst, Address src);
   806   void cmpq(Address dst, int32_t imm32);
   807   void cmpq(Address dst, Register src);
   809   void cmpq(Register dst, int32_t imm32);
   810   void cmpq(Register dst, Register src);
   811   void cmpq(Register dst, Address src);
   813   // these are dummies used to catch attempting to convert NULL to Register
   814   void cmpl(Register dst, void* junk); // dummy
   815   void cmpq(Register dst, void* junk); // dummy
   817   void cmpw(Address dst, int imm16);
   819   void cmpxchg8 (Address adr);
   821   void cmpxchgl(Register reg, Address adr);
   823   void cmpxchgq(Register reg, Address adr);
   825   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
   826   void comisd(XMMRegister dst, Address src);
   828   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
   829   void comiss(XMMRegister dst, Address src);
   831   // Identify processor type and features
   832   void cpuid() {
   833     emit_byte(0x0F);
   834     emit_byte(0xA2);
   835   }
   837   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
   838   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   840   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
   841   void cvtsi2sdl(XMMRegister dst, Register src);
   842   void cvtsi2sdq(XMMRegister dst, Register src);
   844   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
   845   void cvtsi2ssl(XMMRegister dst, Register src);
   846   void cvtsi2ssq(XMMRegister dst, Register src);
   848   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
   849   void cvtdq2pd(XMMRegister dst, XMMRegister src);
   851   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
   852   void cvtdq2ps(XMMRegister dst, XMMRegister src);
   854   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
   855   void cvtss2sd(XMMRegister dst, XMMRegister src);
   857   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
   858   void cvttsd2sil(Register dst, Address src);
   859   void cvttsd2sil(Register dst, XMMRegister src);
   860   void cvttsd2siq(Register dst, XMMRegister src);
   862   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
   863   void cvttss2sil(Register dst, XMMRegister src);
   864   void cvttss2siq(Register dst, XMMRegister src);
   866   // Divide Scalar Double-Precision Floating-Point Values
   867   void divsd(XMMRegister dst, Address src);
   868   void divsd(XMMRegister dst, XMMRegister src);
   870   // Divide Scalar Single-Precision Floating-Point Values
   871   void divss(XMMRegister dst, Address src);
   872   void divss(XMMRegister dst, XMMRegister src);
   874   void emms();
   876   void fabs();
   878   void fadd(int i);
   880   void fadd_d(Address src);
   881   void fadd_s(Address src);
   883   // "Alternate" versions of x87 instructions place result down in FPU
   884   // stack instead of on TOS
   886   void fadda(int i); // "alternate" fadd
   887   void faddp(int i = 1);
   889   void fchs();
   891   void fcom(int i);
   893   void fcomp(int i = 1);
   894   void fcomp_d(Address src);
   895   void fcomp_s(Address src);
   897   void fcompp();
   899   void fcos();
   901   void fdecstp();
   903   void fdiv(int i);
   904   void fdiv_d(Address src);
   905   void fdivr_s(Address src);
   906   void fdiva(int i);  // "alternate" fdiv
   907   void fdivp(int i = 1);
   909   void fdivr(int i);
   910   void fdivr_d(Address src);
   911   void fdiv_s(Address src);
   913   void fdivra(int i); // "alternate" reversed fdiv
   915   void fdivrp(int i = 1);
   917   void ffree(int i = 0);
   919   void fild_d(Address adr);
   920   void fild_s(Address adr);
   922   void fincstp();
   924   void finit();
   926   void fist_s (Address adr);
   927   void fistp_d(Address adr);
   928   void fistp_s(Address adr);
   930   void fld1();
   932   void fld_d(Address adr);
   933   void fld_s(Address adr);
   934   void fld_s(int index);
   935   void fld_x(Address adr);  // extended-precision (80-bit) format
   937   void fldcw(Address src);
   939   void fldenv(Address src);
   941   void fldlg2();
   943   void fldln2();
   945   void fldz();
   947   void flog();
   948   void flog10();
   950   void fmul(int i);
   952   void fmul_d(Address src);
   953   void fmul_s(Address src);
   955   void fmula(int i);  // "alternate" fmul
   957   void fmulp(int i = 1);
   959   void fnsave(Address dst);
   961   void fnstcw(Address src);
   963   void fnstsw_ax();
   965   void fprem();
   966   void fprem1();
   968   void frstor(Address src);
   970   void fsin();
   972   void fsqrt();
   974   void fst_d(Address adr);
   975   void fst_s(Address adr);
   977   void fstp_d(Address adr);
   978   void fstp_d(int index);
   979   void fstp_s(Address adr);
   980   void fstp_x(Address adr); // extended-precision (80-bit) format
   982   void fsub(int i);
   983   void fsub_d(Address src);
   984   void fsub_s(Address src);
   986   void fsuba(int i);  // "alternate" fsub
   988   void fsubp(int i = 1);
   990   void fsubr(int i);
   991   void fsubr_d(Address src);
   992   void fsubr_s(Address src);
   994   void fsubra(int i); // "alternate" reversed fsub
   996   void fsubrp(int i = 1);
   998   void ftan();
  1000   void ftst();
  1002   void fucomi(int i = 1);
  1003   void fucomip(int i = 1);
  1005   void fwait();
  1007   void fxch(int i = 1);
  1009   void fxrstor(Address src);
  1011   void fxsave(Address dst);
  1013   void fyl2x();
  1015   void hlt();
  1017   void idivl(Register src);
  1018   void divl(Register src); // Unsigned division
  1020   void idivq(Register src);
  1022   void imull(Register dst, Register src);
  1023   void imull(Register dst, Register src, int value);
  1025   void imulq(Register dst, Register src);
  1026   void imulq(Register dst, Register src, int value);
  1029   // jcc is the generic conditional branch generator to run-
  1030   // time routines, jcc is used for branches to labels. jcc
  1031   // takes a branch opcode (cc) and a label (L) and generates
  1032   // either a backward branch or a forward branch and links it
  1033   // to the label fixup chain. Usage:
  1034   //
  1035   // Label L;      // unbound label
  1036   // jcc(cc, L);   // forward branch to unbound label
  1037   // bind(L);      // bind label to the current pc
  1038   // jcc(cc, L);   // backward branch to bound label
  1039   // bind(L);      // illegal: a label may be bound only once
  1040   //
  1041   // Note: The same Label can be used for forward and backward branches
  1042   // but it may be bound only once.
  1044   void jcc(Condition cc, Label& L,
  1045            relocInfo::relocType rtype = relocInfo::none);
  1047   // Conditional jump to a 8-bit offset to L.
  1048   // WARNING: be very careful using this for forward jumps.  If the label is
  1049   // not bound within an 8-bit offset of this instruction, a run-time error
  1050   // will occur.
  1051   void jccb(Condition cc, Label& L);
  1053   void jmp(Address entry);    // pc <- entry
  1055   // Label operations & relative jumps (PPUM Appendix D)
  1056   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
  1058   void jmp(Register entry); // pc <- entry
  1060   // Unconditional 8-bit offset jump to L.
  1061   // WARNING: be very careful using this for forward jumps.  If the label is
  1062   // not bound within an 8-bit offset of this instruction, a run-time error
  1063   // will occur.
  1064   void jmpb(Label& L);
  1066   void ldmxcsr( Address src );
  1068   void leal(Register dst, Address src);
  1070   void leaq(Register dst, Address src);
  1072   void lfence() {
  1073     emit_byte(0x0F);
  1074     emit_byte(0xAE);
  1075     emit_byte(0xE8);
  1078   void lock();
  1080   void lzcntl(Register dst, Register src);
  1082 #ifdef _LP64
  1083   void lzcntq(Register dst, Register src);
  1084 #endif
  1086   enum Membar_mask_bits {
  1087     StoreStore = 1 << 3,
  1088     LoadStore  = 1 << 2,
  1089     StoreLoad  = 1 << 1,
  1090     LoadLoad   = 1 << 0
  1091   };
  1093   // Serializes memory and blows flags
  1094   void membar(Membar_mask_bits order_constraint) {
  1095     if (os::is_MP()) {
  1096       // We only have to handle StoreLoad
  1097       if (order_constraint & StoreLoad) {
  1098         // All usable chips support "locked" instructions which suffice
  1099         // as barriers, and are much faster than the alternative of
  1100         // using cpuid instruction. We use here a locked add [esp],0.
  1101         // This is conveniently otherwise a no-op except for blowing
  1102         // flags.
  1103         // Any change to this code may need to revisit other places in
  1104         // the code where this idiom is used, in particular the
  1105         // orderAccess code.
  1106         lock();
  1107         addl(Address(rsp, 0), 0);// Assert the lock# signal here
  1112   void mfence();
  1114   // Moves
  1116   void mov64(Register dst, int64_t imm64);
  1118   void movb(Address dst, Register src);
  1119   void movb(Address dst, int imm8);
  1120   void movb(Register dst, Address src);
  1122   void movdl(XMMRegister dst, Register src);
  1123   void movdl(Register dst, XMMRegister src);
  1124   void movdl(XMMRegister dst, Address src);
  1126   // Move Double Quadword
  1127   void movdq(XMMRegister dst, Register src);
  1128   void movdq(Register dst, XMMRegister src);
  1130   // Move Aligned Double Quadword
  1131   void movdqa(Address     dst, XMMRegister src);
  1132   void movdqa(XMMRegister dst, Address src);
  1133   void movdqa(XMMRegister dst, XMMRegister src);
  1135   // Move Unaligned Double Quadword
  1136   void movdqu(Address     dst, XMMRegister src);
  1137   void movdqu(XMMRegister dst, Address src);
  1138   void movdqu(XMMRegister dst, XMMRegister src);
  1140   void movl(Register dst, int32_t imm32);
  1141   void movl(Address dst, int32_t imm32);
  1142   void movl(Register dst, Register src);
  1143   void movl(Register dst, Address src);
  1144   void movl(Address dst, Register src);
  1146   // These dummies prevent using movl from converting a zero (like NULL) into Register
  1147   // by giving the compiler two choices it can't resolve
  1149   void movl(Address  dst, void* junk);
  1150   void movl(Register dst, void* junk);
  1152 #ifdef _LP64
  1153   void movq(Register dst, Register src);
  1154   void movq(Register dst, Address src);
  1155   void movq(Address  dst, Register src);
  1156 #endif
  1158   void movq(Address     dst, MMXRegister src );
  1159   void movq(MMXRegister dst, Address src );
  1161 #ifdef _LP64
  1162   // These dummies prevent using movq from converting a zero (like NULL) into Register
  1163   // by giving the compiler two choices it can't resolve
  1165   void movq(Address  dst, void* dummy);
  1166   void movq(Register dst, void* dummy);
  1167 #endif
  1169   // Move Quadword
  1170   void movq(Address     dst, XMMRegister src);
  1171   void movq(XMMRegister dst, Address src);
  1173   void movsbl(Register dst, Address src);
  1174   void movsbl(Register dst, Register src);
  1176 #ifdef _LP64
  1177   void movsbq(Register dst, Address src);
  1178   void movsbq(Register dst, Register src);
  1180   // Move signed 32bit immediate to 64bit extending sign
  1181   void movslq(Address  dst, int32_t imm64);
  1182   void movslq(Register dst, int32_t imm64);
  1184   void movslq(Register dst, Address src);
  1185   void movslq(Register dst, Register src);
  1186   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
  1187 #endif
  1189   void movswl(Register dst, Address src);
  1190   void movswl(Register dst, Register src);
  1192 #ifdef _LP64
  1193   void movswq(Register dst, Address src);
  1194   void movswq(Register dst, Register src);
  1195 #endif
  1197   void movw(Address dst, int imm16);
  1198   void movw(Register dst, Address src);
  1199   void movw(Address dst, Register src);
  1201   void movzbl(Register dst, Address src);
  1202   void movzbl(Register dst, Register src);
  1204 #ifdef _LP64
  1205   void movzbq(Register dst, Address src);
  1206   void movzbq(Register dst, Register src);
  1207 #endif
  1209   void movzwl(Register dst, Address src);
  1210   void movzwl(Register dst, Register src);
  1212 #ifdef _LP64
  1213   void movzwq(Register dst, Address src);
  1214   void movzwq(Register dst, Register src);
  1215 #endif
  1217   void mull(Address src);
  1218   void mull(Register src);
  1220   // Multiply Scalar Double-Precision Floating-Point Values
  1221   void mulsd(XMMRegister dst, Address src);
  1222   void mulsd(XMMRegister dst, XMMRegister src);
  1224   // Multiply Scalar Single-Precision Floating-Point Values
  1225   void mulss(XMMRegister dst, Address src);
  1226   void mulss(XMMRegister dst, XMMRegister src);
  1228   void negl(Register dst);
  1230 #ifdef _LP64
  1231   void negq(Register dst);
  1232 #endif
  1234   void nop(int i = 1);
  1236   void notl(Register dst);
  1238 #ifdef _LP64
  1239   void notq(Register dst);
  1240 #endif
  1242   void orl(Address dst, int32_t imm32);
  1243   void orl(Register dst, int32_t imm32);
  1244   void orl(Register dst, Address src);
  1245   void orl(Register dst, Register src);
  1247   void orq(Address dst, int32_t imm32);
  1248   void orq(Register dst, int32_t imm32);
  1249   void orq(Register dst, Address src);
  1250   void orq(Register dst, Register src);
  1252   // SSE4.2 string instructions
  1253   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
  1254   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
  1256 #ifndef _LP64 // no 32bit push/pop on amd64
  1257   void popl(Address dst);
  1258 #endif
  1260 #ifdef _LP64
  1261   void popq(Address dst);
  1262 #endif
  1264   void popcntl(Register dst, Address src);
  1265   void popcntl(Register dst, Register src);
  1267 #ifdef _LP64
  1268   void popcntq(Register dst, Address src);
  1269   void popcntq(Register dst, Register src);
  1270 #endif
  1272   // Prefetches (SSE, SSE2, 3DNOW only)
  1274   void prefetchnta(Address src);
  1275   void prefetchr(Address src);
  1276   void prefetcht0(Address src);
  1277   void prefetcht1(Address src);
  1278   void prefetcht2(Address src);
  1279   void prefetchw(Address src);
  1281   // POR - Bitwise logical OR
  1282   void por(XMMRegister dst, XMMRegister src);
  1284   // Shuffle Packed Doublewords
  1285   void pshufd(XMMRegister dst, XMMRegister src, int mode);
  1286   void pshufd(XMMRegister dst, Address src,     int mode);
  1288   // Shuffle Packed Low Words
  1289   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  1290   void pshuflw(XMMRegister dst, Address src,     int mode);
  1292   // Shift Right by bits Logical Quadword Immediate
  1293   void psrlq(XMMRegister dst, int shift);
  1295   // Shift Right by bytes Logical DoubleQuadword Immediate
  1296   void psrldq(XMMRegister dst, int shift);
  1298   // Logical Compare Double Quadword
  1299   void ptest(XMMRegister dst, XMMRegister src);
  1300   void ptest(XMMRegister dst, Address src);
  1302   // Interleave Low Bytes
  1303   void punpcklbw(XMMRegister dst, XMMRegister src);
  1305 #ifndef _LP64 // no 32bit push/pop on amd64
  1306   void pushl(Address src);
  1307 #endif
  1309   void pushq(Address src);
  1311   // Xor Packed Byte Integer Values
  1312   void pxor(XMMRegister dst, Address src);
  1313   void pxor(XMMRegister dst, XMMRegister src);
  1315   void rcll(Register dst, int imm8);
  1317   void rclq(Register dst, int imm8);
  1319   void ret(int imm16);
  1321   void sahf();
  1323   void sarl(Register dst, int imm8);
  1324   void sarl(Register dst);
  1326   void sarq(Register dst, int imm8);
  1327   void sarq(Register dst);
  1329   void sbbl(Address dst, int32_t imm32);
  1330   void sbbl(Register dst, int32_t imm32);
  1331   void sbbl(Register dst, Address src);
  1332   void sbbl(Register dst, Register src);
  1334   void sbbq(Address dst, int32_t imm32);
  1335   void sbbq(Register dst, int32_t imm32);
  1336   void sbbq(Register dst, Address src);
  1337   void sbbq(Register dst, Register src);
  1339   void setb(Condition cc, Register dst);
  1341   void shldl(Register dst, Register src);
  1343   void shll(Register dst, int imm8);
  1344   void shll(Register dst);
  1346   void shlq(Register dst, int imm8);
  1347   void shlq(Register dst);
  1349   void shrdl(Register dst, Register src);
  1351   void shrl(Register dst, int imm8);
  1352   void shrl(Register dst);
  1354   void shrq(Register dst, int imm8);
  1355   void shrq(Register dst);
  1357   void smovl(); // QQQ generic?
  1359   // Compute Square Root of Scalar Double-Precision Floating-Point Value
  1360   void sqrtsd(XMMRegister dst, Address src);
  1361   void sqrtsd(XMMRegister dst, XMMRegister src);
  1363   // Compute Square Root of Scalar Single-Precision Floating-Point Value
  1364   void sqrtss(XMMRegister dst, Address src);
  1365   void sqrtss(XMMRegister dst, XMMRegister src);
  1367   void std() { emit_byte(0xfd); }
  1369   void stmxcsr( Address dst );
  1371   void subl(Address dst, int32_t imm32);
  1372   void subl(Address dst, Register src);
  1373   void subl(Register dst, int32_t imm32);
  1374   void subl(Register dst, Address src);
  1375   void subl(Register dst, Register src);
  1377   void subq(Address dst, int32_t imm32);
  1378   void subq(Address dst, Register src);
  1379   void subq(Register dst, int32_t imm32);
  1380   void subq(Register dst, Address src);
  1381   void subq(Register dst, Register src);
  1384   // Subtract Scalar Double-Precision Floating-Point Values
  1385   void subsd(XMMRegister dst, Address src);
  1386   void subsd(XMMRegister dst, XMMRegister src);
  1388   // Subtract Scalar Single-Precision Floating-Point Values
  1389   void subss(XMMRegister dst, Address src);
  1390   void subss(XMMRegister dst, XMMRegister src);
  1392   void testb(Register dst, int imm8);
  1394   void testl(Register dst, int32_t imm32);
  1395   void testl(Register dst, Register src);
  1396   void testl(Register dst, Address src);
  1398   void testq(Register dst, int32_t imm32);
  1399   void testq(Register dst, Register src);
  1402   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  1403   void ucomisd(XMMRegister dst, Address src);
  1404   void ucomisd(XMMRegister dst, XMMRegister src);
  1406   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  1407   void ucomiss(XMMRegister dst, Address src);
  1408   void ucomiss(XMMRegister dst, XMMRegister src);
  1410   void xaddl(Address dst, Register src);
  1412   void xaddq(Address dst, Register src);
  1414   void xchgl(Register reg, Address adr);
  1415   void xchgl(Register dst, Register src);
  1417   void xchgq(Register reg, Address adr);
  1418   void xchgq(Register dst, Register src);
  1420   void xorl(Register dst, int32_t imm32);
  1421   void xorl(Register dst, Address src);
  1422   void xorl(Register dst, Register src);
  1424   void xorq(Register dst, Address src);
  1425   void xorq(Register dst, Register src);
  1427   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1428   void xorpd(XMMRegister dst, Address src);
  1429   void xorpd(XMMRegister dst, XMMRegister src);
  1431   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1432   void xorps(XMMRegister dst, Address src);
  1433   void xorps(XMMRegister dst, XMMRegister src);
  1435   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
  1436 };
  1439 // MacroAssembler extends Assembler by frequently used macros.
  1440 //
  1441 // Instructions for which a 'better' code sequence exists depending
  1442 // on arguments should also go in here.
  1444 class MacroAssembler: public Assembler {
  1445   friend class LIR_Assembler;
  1446   friend class Runtime1;      // as_Address()
  1447  protected:
  1449   Address as_Address(AddressLiteral adr);
  1450   Address as_Address(ArrayAddress adr);
  1452   // Support for VM calls
  1453   //
  1454   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1455   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1456   // additional registers when doing a VM call).
  1457 #ifdef CC_INTERP
  1458   // c++ interpreter never wants to use interp_masm version of call_VM
  1459   #define VIRTUAL
  1460 #else
  1461   #define VIRTUAL virtual
  1462 #endif
  1464   VIRTUAL void call_VM_leaf_base(
  1465     address entry_point,               // the entry point
  1466     int     number_of_arguments        // the number of arguments to pop after the call
  1467   );
  1469   // This is the base routine called by the different versions of call_VM. The interpreter
  1470   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1471   // additional registers when doing a VM call).
  1472   //
  1473   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  1474   // returns the register which contains the thread upon return. If a thread register has been
  1475   // specified, the return value will correspond to that register. If no last_java_sp is specified
  1476   // (noreg) than rsp will be used instead.
  1477   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  1478     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  1479     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  1480     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  1481     address  entry_point,              // the entry point
  1482     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  1483     bool     check_exceptions          // whether to check for pending exceptions after return
  1484   );
  1486   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1487   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1488   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1489   virtual void check_and_handle_popframe(Register java_thread);
  1490   virtual void check_and_handle_earlyret(Register java_thread);
  1492   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  1494   // helpers for FPU flag access
  1495   // tmp is a temporary register, if none is available use noreg
  1496   void save_rax   (Register tmp);
  1497   void restore_rax(Register tmp);
  1499  public:
  1500   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1502   // Support for NULL-checks
  1503   //
  1504   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1505   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1506   // offset. No explicit code generation is needed if the offset is within a certain
  1507   // range (0 <= offset <= page_size).
  1509   void null_check(Register reg, int offset = -1);
  1510   static bool needs_explicit_null_check(intptr_t offset);
  1512   // Required platform-specific helpers for Label::patch_instructions.
  1513   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1514   void pd_patch_instruction(address branch, address target);
  1515 #ifndef PRODUCT
  1516   static void pd_print_patched_instruction(address branch);
  1517 #endif
  1519   // The following 4 methods return the offset of the appropriate move instruction
  1521   // Support for fast byte/short loading with zero extension (depending on particular CPU)
  1522   int load_unsigned_byte(Register dst, Address src);
  1523   int load_unsigned_short(Register dst, Address src);
  1525   // Support for fast byte/short loading with sign extension (depending on particular CPU)
  1526   int load_signed_byte(Register dst, Address src);
  1527   int load_signed_short(Register dst, Address src);
  1529   // Support for sign-extension (hi:lo = extend_sign(lo))
  1530   void extend_sign(Register hi, Register lo);
  1532   // Load and store values by size and signed-ness
  1533   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
  1534   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
  1536   // Support for inc/dec with optimal instruction selection depending on value
  1538   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  1539   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
  1541   void decrementl(Address dst, int value = 1);
  1542   void decrementl(Register reg, int value = 1);
  1544   void decrementq(Register reg, int value = 1);
  1545   void decrementq(Address dst, int value = 1);
  1547   void incrementl(Address dst, int value = 1);
  1548   void incrementl(Register reg, int value = 1);
  1550   void incrementq(Register reg, int value = 1);
  1551   void incrementq(Address dst, int value = 1);
  1554   // Support optimal SSE move instructions.
  1555   void movflt(XMMRegister dst, XMMRegister src) {
  1556     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
  1557     else                       { movss (dst, src); return; }
  1559   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  1560   void movflt(XMMRegister dst, AddressLiteral src);
  1561   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
  1563   void movdbl(XMMRegister dst, XMMRegister src) {
  1564     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
  1565     else                       { movsd (dst, src); return; }
  1568   void movdbl(XMMRegister dst, AddressLiteral src);
  1570   void movdbl(XMMRegister dst, Address src) {
  1571     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
  1572     else                         { movlpd(dst, src); return; }
  1574   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
  1576   void incrementl(AddressLiteral dst);
  1577   void incrementl(ArrayAddress dst);
  1579   // Alignment
  1580   void align(int modulus);
  1582   // Misc
  1583   void fat_nop(); // 5 byte nop
  1585   // Stack frame creation/removal
  1586   void enter();
  1587   void leave();
  1589   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  1590   // The pointer will be loaded into the thread register.
  1591   void get_thread(Register thread);
  1594   // Support for VM calls
  1595   //
  1596   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1597   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1598   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1601   void call_VM(Register oop_result,
  1602                address entry_point,
  1603                bool check_exceptions = true);
  1604   void call_VM(Register oop_result,
  1605                address entry_point,
  1606                Register arg_1,
  1607                bool check_exceptions = true);
  1608   void call_VM(Register oop_result,
  1609                address entry_point,
  1610                Register arg_1, Register arg_2,
  1611                bool check_exceptions = true);
  1612   void call_VM(Register oop_result,
  1613                address entry_point,
  1614                Register arg_1, Register arg_2, Register arg_3,
  1615                bool check_exceptions = true);
  1617   // Overloadings with last_Java_sp
  1618   void call_VM(Register oop_result,
  1619                Register last_java_sp,
  1620                address entry_point,
  1621                int number_of_arguments = 0,
  1622                bool check_exceptions = true);
  1623   void call_VM(Register oop_result,
  1624                Register last_java_sp,
  1625                address entry_point,
  1626                Register arg_1, bool
  1627                check_exceptions = true);
  1628   void call_VM(Register oop_result,
  1629                Register last_java_sp,
  1630                address entry_point,
  1631                Register arg_1, Register arg_2,
  1632                bool check_exceptions = true);
  1633   void call_VM(Register oop_result,
  1634                Register last_java_sp,
  1635                address entry_point,
  1636                Register arg_1, Register arg_2, Register arg_3,
  1637                bool check_exceptions = true);
  1639   void call_VM_leaf(address entry_point,
  1640                     int number_of_arguments = 0);
  1641   void call_VM_leaf(address entry_point,
  1642                     Register arg_1);
  1643   void call_VM_leaf(address entry_point,
  1644                     Register arg_1, Register arg_2);
  1645   void call_VM_leaf(address entry_point,
  1646                     Register arg_1, Register arg_2, Register arg_3);
  1648   // last Java Frame (fills frame anchor)
  1649   void set_last_Java_frame(Register thread,
  1650                            Register last_java_sp,
  1651                            Register last_java_fp,
  1652                            address last_java_pc);
  1654   // thread in the default location (r15_thread on 64bit)
  1655   void set_last_Java_frame(Register last_java_sp,
  1656                            Register last_java_fp,
  1657                            address last_java_pc);
  1659   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
  1661   // thread in the default location (r15_thread on 64bit)
  1662   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  1664   // Stores
  1665   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  1666   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
  1668   void g1_write_barrier_pre(Register obj,
  1669 #ifndef _LP64
  1670                             Register thread,
  1671 #endif
  1672                             Register tmp,
  1673                             Register tmp2,
  1674                             bool     tosca_live);
  1675   void g1_write_barrier_post(Register store_addr,
  1676                              Register new_val,
  1677 #ifndef _LP64
  1678                              Register thread,
  1679 #endif
  1680                              Register tmp,
  1681                              Register tmp2);
  1684   // split store_check(Register obj) to enhance instruction interleaving
  1685   void store_check_part_1(Register obj);
  1686   void store_check_part_2(Register obj);
  1688   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  1689   void c2bool(Register x);
  1691   // C++ bool manipulation
  1693   void movbool(Register dst, Address src);
  1694   void movbool(Address dst, bool boolconst);
  1695   void movbool(Address dst, Register src);
  1696   void testbool(Register dst);
  1698   // oop manipulations
  1699   void load_klass(Register dst, Register src);
  1700   void store_klass(Register dst, Register src);
  1702   void load_heap_oop(Register dst, Address src);
  1703   void store_heap_oop(Address dst, Register src);
  1705   // Used for storing NULL. All other oop constants should be
  1706   // stored using routines that take a jobject.
  1707   void store_heap_oop_null(Address dst);
  1709   void load_prototype_header(Register dst, Register src);
  1711 #ifdef _LP64
  1712   void store_klass_gap(Register dst, Register src);
  1714   // This dummy is to prevent a call to store_heap_oop from
  1715   // converting a zero (like NULL) into a Register by giving
  1716   // the compiler two choices it can't resolve
  1718   void store_heap_oop(Address dst, void* dummy);
  1720   void encode_heap_oop(Register r);
  1721   void decode_heap_oop(Register r);
  1722   void encode_heap_oop_not_null(Register r);
  1723   void decode_heap_oop_not_null(Register r);
  1724   void encode_heap_oop_not_null(Register dst, Register src);
  1725   void decode_heap_oop_not_null(Register dst, Register src);
  1727   void set_narrow_oop(Register dst, jobject obj);
  1728   void set_narrow_oop(Address dst, jobject obj);
  1729   void cmp_narrow_oop(Register dst, jobject obj);
  1730   void cmp_narrow_oop(Address dst, jobject obj);
  1732   // if heap base register is used - reinit it with the correct value
  1733   void reinit_heapbase();
  1735   DEBUG_ONLY(void verify_heapbase(const char* msg);)
  1737 #endif // _LP64
  1739   // Int division/remainder for Java
  1740   // (as idivl, but checks for special case as described in JVM spec.)
  1741   // returns idivl instruction offset for implicit exception handling
  1742   int corrected_idivl(Register reg);
  1744   // Long division/remainder for Java
  1745   // (as idivq, but checks for special case as described in JVM spec.)
  1746   // returns idivq instruction offset for implicit exception handling
  1747   int corrected_idivq(Register reg);
  1749   void int3();
  1751   // Long operation macros for a 32bit cpu
  1752   // Long negation for Java
  1753   void lneg(Register hi, Register lo);
  1755   // Long multiplication for Java
  1756   // (destroys contents of eax, ebx, ecx and edx)
  1757   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
  1759   // Long shifts for Java
  1760   // (semantics as described in JVM spec.)
  1761   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  1762   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
  1764   // Long compare for Java
  1765   // (semantics as described in JVM spec.)
  1766   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
  1769   // misc
  1771   // Sign extension
  1772   void sign_extend_short(Register reg);
  1773   void sign_extend_byte(Register reg);
  1775   // Division by power of 2, rounding towards 0
  1776   void division_with_shift(Register reg, int shift_value);
  1778   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  1779   //
  1780   // CF (corresponds to C0) if x < y
  1781   // PF (corresponds to C2) if unordered
  1782   // ZF (corresponds to C3) if x = y
  1783   //
  1784   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1785   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  1786   void fcmp(Register tmp);
  1787   // Variant of the above which allows y to be further down the stack
  1788   // and which only pops x and y if specified. If pop_right is
  1789   // specified then pop_left must also be specified.
  1790   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
  1792   // Floating-point comparison for Java
  1793   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  1794   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1795   // (semantics as described in JVM spec.)
  1796   void fcmp2int(Register dst, bool unordered_is_less);
  1797   // Variant of the above which allows y to be further down the stack
  1798   // and which only pops x and y if specified. If pop_right is
  1799   // specified then pop_left must also be specified.
  1800   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
  1802   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  1803   // tmp is a temporary register, if none is available use noreg
  1804   void fremr(Register tmp);
  1807   // same as fcmp2int, but using SSE2
  1808   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1809   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1811   // Inlined sin/cos generator for Java; must not use CPU instruction
  1812   // directly on Intel as it does not have high enough precision
  1813   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  1814   // number of FPU stack slots in use; all but the topmost will
  1815   // require saving if a slow case is necessary. Assumes argument is
  1816   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  1817   // this code.
  1818   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
  1820   // branch to L if FPU flag C2 is set/not set
  1821   // tmp is a temporary register, if none is available use noreg
  1822   void jC2 (Register tmp, Label& L);
  1823   void jnC2(Register tmp, Label& L);
  1825   // Pop ST (ffree & fincstp combined)
  1826   void fpop();
  1828   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1829   void push_fTOS();
  1831   // pops double TOS element from CPU stack and pushes on FPU stack
  1832   void pop_fTOS();
  1834   void empty_FPU_stack();
  1836   void push_IU_state();
  1837   void pop_IU_state();
  1839   void push_FPU_state();
  1840   void pop_FPU_state();
  1842   void push_CPU_state();
  1843   void pop_CPU_state();
  1845   // Round up to a power of two
  1846   void round_to(Register reg, int modulus);
  1848   // Callee saved registers handling
  1849   void push_callee_saved_registers();
  1850   void pop_callee_saved_registers();
  1852   // allocation
  1853   void eden_allocate(
  1854     Register obj,                      // result: pointer to object after successful allocation
  1855     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1856     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1857     Register t1,                       // temp register
  1858     Label&   slow_case                 // continuation point if fast allocation fails
  1859   );
  1860   void tlab_allocate(
  1861     Register obj,                      // result: pointer to object after successful allocation
  1862     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1863     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1864     Register t1,                       // temp register
  1865     Register t2,                       // temp register
  1866     Label&   slow_case                 // continuation point if fast allocation fails
  1867   );
  1868   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
  1869   void incr_allocated_bytes(Register thread,
  1870                             Register var_size_in_bytes, int con_size_in_bytes,
  1871                             Register t1 = noreg);
  1873   // interface method calling
  1874   void lookup_interface_method(Register recv_klass,
  1875                                Register intf_klass,
  1876                                RegisterOrConstant itable_index,
  1877                                Register method_result,
  1878                                Register scan_temp,
  1879                                Label& no_such_interface);
  1881   // Test sub_klass against super_klass, with fast and slow paths.
  1883   // The fast path produces a tri-state answer: yes / no / maybe-slow.
  1884   // One of the three labels can be NULL, meaning take the fall-through.
  1885   // If super_check_offset is -1, the value is loaded up from super_klass.
  1886   // No registers are killed, except temp_reg.
  1887   void check_klass_subtype_fast_path(Register sub_klass,
  1888                                      Register super_klass,
  1889                                      Register temp_reg,
  1890                                      Label* L_success,
  1891                                      Label* L_failure,
  1892                                      Label* L_slow_path,
  1893                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
  1895   // The rest of the type check; must be wired to a corresponding fast path.
  1896   // It does not repeat the fast path logic, so don't use it standalone.
  1897   // The temp_reg and temp2_reg can be noreg, if no temps are available.
  1898   // Updates the sub's secondary super cache as necessary.
  1899   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  1900   void check_klass_subtype_slow_path(Register sub_klass,
  1901                                      Register super_klass,
  1902                                      Register temp_reg,
  1903                                      Register temp2_reg,
  1904                                      Label* L_success,
  1905                                      Label* L_failure,
  1906                                      bool set_cond_codes = false);
  1908   // Simplified, combined version, good for typical uses.
  1909   // Falls through on failure.
  1910   void check_klass_subtype(Register sub_klass,
  1911                            Register super_klass,
  1912                            Register temp_reg,
  1913                            Label& L_success);
  1915   // method handles (JSR 292)
  1916   void check_method_handle_type(Register mtype_reg, Register mh_reg,
  1917                                 Register temp_reg,
  1918                                 Label& wrong_method_type);
  1919   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  1920                                   Register temp_reg);
  1921   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
  1922   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
  1925   //----
  1926   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
  1928   // Debugging
  1930   // only if +VerifyOops
  1931   void verify_oop(Register reg, const char* s = "broken oop");
  1932   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  1934   // only if +VerifyFPU
  1935   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  1937   // prints msg, dumps registers and stops execution
  1938   void stop(const char* msg);
  1940   // prints msg and continues
  1941   void warn(const char* msg);
  1943   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  1944   static void debug64(char* msg, int64_t pc, int64_t regs[]);
  1946   void os_breakpoint();
  1948   void untested()                                { stop("untested"); }
  1950   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
  1952   void should_not_reach_here()                   { stop("should not reach here"); }
  1954   void print_CPU_state();
  1956   // Stack overflow checking
  1957   void bang_stack_with_offset(int offset) {
  1958     // stack grows down, caller passes positive offset
  1959     assert(offset > 0, "must bang with negative offset");
  1960     movl(Address(rsp, (-offset)), rax);
  1963   // Writes to stack successive pages until offset reached to check for
  1964   // stack overflow + shadow pages.  Also, clobbers tmp
  1965   void bang_stack_size(Register size, Register tmp);
  1967   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
  1968                                                 Register tmp,
  1969                                                 int offset);
  1971   // Support for serializing memory accesses between threads
  1972   void serialize_memory(Register thread, Register tmp);
  1974   void verify_tlab();
  1976   // Biased locking support
  1977   // lock_reg and obj_reg must be loaded up with the appropriate values.
  1978   // swap_reg must be rax, and is killed.
  1979   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  1980   // be killed; if not supplied, push/pop will be used internally to
  1981   // allocate a temporary (inefficient, avoid if possible).
  1982   // Optional slow case is for implementations (interpreter and C1) which branch to
  1983   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  1984   // Returns offset of first potentially-faulting instruction for null
  1985   // check info (currently consumed only by C1). If
  1986   // swap_reg_contains_mark is true then returns -1 as it is assumed
  1987   // the calling code has already passed any potential faults.
  1988   int biased_locking_enter(Register lock_reg, Register obj_reg,
  1989                            Register swap_reg, Register tmp_reg,
  1990                            bool swap_reg_contains_mark,
  1991                            Label& done, Label* slow_case = NULL,
  1992                            BiasedLockingCounters* counters = NULL);
  1993   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  1996   Condition negate_condition(Condition cond);
  1998   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  1999   // operands. In general the names are modified to avoid hiding the instruction in Assembler
  2000   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  2001   // here in MacroAssembler. The major exception to this rule is call
  2003   // Arithmetics
  2006   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  2007   void addptr(Address dst, Register src);
  2009   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  2010   void addptr(Register dst, int32_t src);
  2011   void addptr(Register dst, Register src);
  2013   void andptr(Register dst, int32_t src);
  2014   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
  2016   void cmp8(AddressLiteral src1, int imm);
  2018   // renamed to drag out the casting of address to int32_t/intptr_t
  2019   void cmp32(Register src1, int32_t imm);
  2021   void cmp32(AddressLiteral src1, int32_t imm);
  2022   // compare reg - mem, or reg - &mem
  2023   void cmp32(Register src1, AddressLiteral src2);
  2025   void cmp32(Register src1, Address src2);
  2027 #ifndef _LP64
  2028   void cmpoop(Address dst, jobject obj);
  2029   void cmpoop(Register dst, jobject obj);
  2030 #endif // _LP64
  2032   // NOTE src2 must be the lval. This is NOT an mem-mem compare
  2033   void cmpptr(Address src1, AddressLiteral src2);
  2035   void cmpptr(Register src1, AddressLiteral src2);
  2037   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2038   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2039   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2041   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2042   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2044   // cmp64 to avoild hiding cmpq
  2045   void cmp64(Register src1, AddressLiteral src);
  2047   void cmpxchgptr(Register reg, Address adr);
  2049   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
  2052   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
  2055   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
  2057   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
  2059   void shlptr(Register dst, int32_t shift);
  2060   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
  2062   void shrptr(Register dst, int32_t shift);
  2063   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
  2065   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  2066   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
  2068   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2070   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2071   void subptr(Register dst, int32_t src);
  2072   void subptr(Register dst, Register src);
  2075   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2076   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2078   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2079   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2081   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
  2085   // Helper functions for statistics gathering.
  2086   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  2087   void cond_inc32(Condition cond, AddressLiteral counter_addr);
  2088   // Unconditional atomic increment.
  2089   void atomic_incl(AddressLiteral counter_addr);
  2091   void lea(Register dst, AddressLiteral adr);
  2092   void lea(Address dst, AddressLiteral adr);
  2093   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
  2095   void leal32(Register dst, Address src) { leal(dst, src); }
  2097   void test32(Register src1, AddressLiteral src2);
  2099   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2100   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2101   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2103   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  2104   void testptr(Register src1, Register src2);
  2106   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2107   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2109   // Calls
  2111   void call(Label& L, relocInfo::relocType rtype);
  2112   void call(Register entry);
  2114   // NOTE: this call tranfers to the effective address of entry NOT
  2115   // the address contained by entry. This is because this is more natural
  2116   // for jumps/calls.
  2117   void call(AddressLiteral entry);
  2119   // Jumps
  2121   // NOTE: these jumps tranfer to the effective address of dst NOT
  2122   // the address contained by dst. This is because this is more natural
  2123   // for jumps/calls.
  2124   void jump(AddressLiteral dst);
  2125   void jump_cc(Condition cc, AddressLiteral dst);
  2127   // 32bit can do a case table jump in one instruction but we no longer allow the base
  2128   // to be installed in the Address class. This jump will tranfers to the address
  2129   // contained in the location described by entry (not the address of entry)
  2130   void jump(ArrayAddress entry);
  2132   // Floating
  2134   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  2135   void andpd(XMMRegister dst, AddressLiteral src);
  2137   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  2138   void comiss(XMMRegister dst, AddressLiteral src);
  2140   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  2141   void comisd(XMMRegister dst, AddressLiteral src);
  2143   void fadd_s(Address src)        { Assembler::fadd_s(src); }
  2144   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
  2146   void fldcw(Address src) { Assembler::fldcw(src); }
  2147   void fldcw(AddressLiteral src);
  2149   void fld_s(int index)   { Assembler::fld_s(index); }
  2150   void fld_s(Address src) { Assembler::fld_s(src); }
  2151   void fld_s(AddressLiteral src);
  2153   void fld_d(Address src) { Assembler::fld_d(src); }
  2154   void fld_d(AddressLiteral src);
  2156   void fld_x(Address src) { Assembler::fld_x(src); }
  2157   void fld_x(AddressLiteral src);
  2159   void fmul_s(Address src)        { Assembler::fmul_s(src); }
  2160   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
  2162   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  2163   void ldmxcsr(AddressLiteral src);
  2165 private:
  2166   // these are private because users should be doing movflt/movdbl
  2168   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  2169   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  2170   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  2171   void movss(XMMRegister dst, AddressLiteral src);
  2173   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
  2174   void movlpd(XMMRegister dst, AddressLiteral src);
  2176 public:
  2178   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
  2179   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
  2180   void addsd(XMMRegister dst, AddressLiteral src) { Assembler::addsd(dst, as_Address(src)); }
  2182   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
  2183   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
  2184   void addss(XMMRegister dst, AddressLiteral src) { Assembler::addss(dst, as_Address(src)); }
  2186   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
  2187   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
  2188   void divsd(XMMRegister dst, AddressLiteral src) { Assembler::divsd(dst, as_Address(src)); }
  2190   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
  2191   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
  2192   void divss(XMMRegister dst, AddressLiteral src) { Assembler::divss(dst, as_Address(src)); }
  2194   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  2195   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  2196   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  2197   void movsd(XMMRegister dst, AddressLiteral src) { Assembler::movsd(dst, as_Address(src)); }
  2199   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
  2200   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
  2201   void mulsd(XMMRegister dst, AddressLiteral src) { Assembler::mulsd(dst, as_Address(src)); }
  2203   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
  2204   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
  2205   void mulss(XMMRegister dst, AddressLiteral src) { Assembler::mulss(dst, as_Address(src)); }
  2207   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
  2208   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
  2209   void sqrtsd(XMMRegister dst, AddressLiteral src) { Assembler::sqrtsd(dst, as_Address(src)); }
  2211   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
  2212   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
  2213   void sqrtss(XMMRegister dst, AddressLiteral src) { Assembler::sqrtss(dst, as_Address(src)); }
  2215   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
  2216   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
  2217   void subsd(XMMRegister dst, AddressLiteral src) { Assembler::subsd(dst, as_Address(src)); }
  2219   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
  2220   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
  2221   void subss(XMMRegister dst, AddressLiteral src) { Assembler::subss(dst, as_Address(src)); }
  2223   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  2224   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
  2225   void ucomiss(XMMRegister dst, AddressLiteral src);
  2227   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  2228   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
  2229   void ucomisd(XMMRegister dst, AddressLiteral src);
  2231   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  2232   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  2233   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  2234   void xorpd(XMMRegister dst, AddressLiteral src);
  2236   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  2237   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  2238   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  2239   void xorps(XMMRegister dst, AddressLiteral src);
  2241   // Data
  2243   void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2245   void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2246   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2248   void movoop(Register dst, jobject obj);
  2249   void movoop(Address dst, jobject obj);
  2251   void movptr(ArrayAddress dst, Register src);
  2252   // can this do an lea?
  2253   void movptr(Register dst, ArrayAddress src);
  2255   void movptr(Register dst, Address src);
  2257   void movptr(Register dst, AddressLiteral src);
  2259   void movptr(Register dst, intptr_t src);
  2260   void movptr(Register dst, Register src);
  2261   void movptr(Address dst, intptr_t src);
  2263   void movptr(Address dst, Register src);
  2265 #ifdef _LP64
  2266   // Generally the next two are only used for moving NULL
  2267   // Although there are situations in initializing the mark word where
  2268   // they could be used. They are dangerous.
  2270   // They only exist on LP64 so that int32_t and intptr_t are not the same
  2271   // and we have ambiguous declarations.
  2273   void movptr(Address dst, int32_t imm32);
  2274   void movptr(Register dst, int32_t imm32);
  2275 #endif // _LP64
  2277   // to avoid hiding movl
  2278   void mov32(AddressLiteral dst, Register src);
  2279   void mov32(Register dst, AddressLiteral src);
  2281   // to avoid hiding movb
  2282   void movbyte(ArrayAddress dst, int src);
  2284   // Can push value or effective address
  2285   void pushptr(AddressLiteral src);
  2287   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  2288   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  2290   void pushoop(jobject obj);
  2292   // sign extend as need a l to ptr sized element
  2293   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  2294   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  2296   // IndexOf strings.
  2297   // Small strings are loaded through stack if they cross page boundary.
  2298   void string_indexof(Register str1, Register str2,
  2299                       Register cnt1, Register cnt2,
  2300                       int int_cnt2,  Register result,
  2301                       XMMRegister vec, Register tmp);
  2303   // IndexOf for constant substrings with size >= 8 elements
  2304   // which don't need to be loaded through stack.
  2305   void string_indexofC8(Register str1, Register str2,
  2306                       Register cnt1, Register cnt2,
  2307                       int int_cnt2,  Register result,
  2308                       XMMRegister vec, Register tmp);
  2310     // Smallest code: we don't need to load through stack,
  2311     // check string tail.
  2313   // Compare strings.
  2314   void string_compare(Register str1, Register str2,
  2315                       Register cnt1, Register cnt2, Register result,
  2316                       XMMRegister vec1);
  2318   // Compare char[] arrays.
  2319   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  2320                           Register limit, Register result, Register chr,
  2321                           XMMRegister vec1, XMMRegister vec2);
  2323   // Fill primitive arrays
  2324   void generate_fill(BasicType t, bool aligned,
  2325                      Register to, Register value, Register count,
  2326                      Register rtmp, XMMRegister xtmp);
  2328 #undef VIRTUAL
  2330 };
  2332 /**
  2333  * class SkipIfEqual:
  2335  * Instantiating this class will result in assembly code being output that will
  2336  * jump around any code emitted between the creation of the instance and it's
  2337  * automatic destruction at the end of a scope block, depending on the value of
  2338  * the flag passed to the constructor, which will be checked at run-time.
  2339  */
  2340 class SkipIfEqual {
  2341  private:
  2342   MacroAssembler* _masm;
  2343   Label _label;
  2345  public:
  2346    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  2347    ~SkipIfEqual();
  2348 };
  2350 #ifdef ASSERT
  2351 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  2352 #endif
  2354 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP

mercurial